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Abstract
In this thesis, the impact of the particle size distribution and spatial correlations
in porous granular material structures on fluid permeability is systematically in-
vestigated. A goal is to complement the existing versions of the Kozeny-Carman
equation, relating the material properties fluid permeability, porosity and specific
surface, with an explicit spatial dependence. Including such a dependence would
make it possible to distinguish between materials with different degree of hetero-
geneity, i.e. granular structures in which the granules are uniformly distributed and
in which the they tend to create clusters. An in silico (simulation-based) approach
is employed, where virtual material structures based on monodisperse, lognormal
and bidisperse size distributions of granules are generated using Monte Carlo-based
algorithms. The spatial correlations in the structures are characterized using two
types of microstructural descriptors, the pore size distribution and the two-point
probability function. Fluid dynamics simulations, from which the fluid permeability
is obtained, are performed using a lattice Boltzmann method-based software. The
results suggest that there is a linear relationship between the fluid permeability and
the squared mean of the pore size distribution. This relationship holds for isotropic
structures. As the degree of isotropy decreases, the permeability becomes dependent
on the flow direction. It is also shown that the two-point probability function may
be used to investigate the order and correlations in the structures, as well as to
characterize clustering.

Keywords: Virtual material design, fluid permeability, soft matter physics, granular
media.
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1
Introduction

A prerequisite for technological progress overall is the development of novel materials
tailored for certain purposes [5]. The materials development process involves experi-
mental procedures where material samples are physically produced and tested, often
in a costly and time-consuming trial-and-error manner [5, 6]. A material’s function-
ality is the result of a combination of a number of structural properties and depends
on the internal interactions between components. In order to understand and isolate
individual material parameters, a decoupling of the complex interactions is needed
[7, 8]. In addition, environmental toxicity and availability of natural resources need
to be taken into account, making the developing process a task of a multiple di-
mensional nature [5]. A high-throughput experimental screening approach, where a
systematic variation of parameters is performed in order to investigate the space of
material structures, may in some cases imply a time span of development of many
years, hindering the progress of technology [6]. Modern computational resources
have opened up for new possibilities of virtual materials design and a digitalization
of the high-throughput screening approach, where a combination of theoretical stud-
ies using computer simulations and experiments work symbiotically [6]. The need
to produce physical samples is reduced, and instead computers function as virtual
laboratories where material properties are investigated in a simulated environment.
This approach is also beneficial in cases where the experimental procedures are dif-
ficult, one example being the search for stable alloys, where the production involves
high pressures and temperatures and hazardous materials [5].

A vast field within materials science is soft materials, or soft condensed matter,
which is a subfield of condensed matter [9]. Soft materials are complex structures
including, among others, colloids, membranes, emulsions, a number of biomaterials,
liquid crystals, and polymers. Some everyday examples are paint, glues, soaps and
food. Many soft materials are porous, i.e. structures containing void parts. De-
pending on the void regions, or pores, and how these regions are connected inside
the material, flow through the medium may be possible. A mathematical formula-
tion relating the fluid permeability1 of a material to microstructural features, e.g.
porosity, is the Kozeny-Carman equation [10, 11]. However, a missing corner stone
in the equation is an explicit dependence of the spatial distribution of the material
components (or the pores). Spatial correlations are instead included in a constant,
and hence it not possible to make an a priori distinction between materials pos-
sessing different degrees of heterogeneity. In order to facilitate better predictions
of the permeability of porous media, a complement to the existing versions of the

1From now on, fluid permeability and permeability will be used interchangeably.
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1. Introduction

Kozeny-Carman equation is needed.

1.1 Aim of the project
Systematic investigations using computer simulations will be performed to examine
the link between different material structure parameters, such as different size dis-
tributions, and the permeability of porous materials. A pressure-driven flow will be
employed. A goal is to find a property linked to the structure that can be used to
complement an existing version of the Kozeny-Carman equation.

The project is performed at SP Food and Bioscience and is a part of the VINN
Excellence Center SuMo Biomaterials collaboration at Chalmers University of Tech-
nology.

1.2 Method
The thesis is based on a theoretical approach, and no comparison to experimental
data is performed. Virtual material structures are generated using Monte Carlo-
based algorithms implemented in Matlab. Fluid dynamics simulations are performed
using the lattice Boltzmann method-based software Gesualdo, developed as a part
of the SuMo Biomaterials collaboration.

1.3 Limitations
There is a large number of material parameters to vary, e.g. the particle size distri-
bution or the shape of the particles. Only granular materials consisting of spherical
granules will be considered. It is assumed that the particles, or spheres, are impen-
etrable and, hence, nonoverlapping.

The Kozeny-Carman equation exists in different versions depending on the ap-
plication. Only one version of the equation will be considered in this thesis.

There are several computational methods in order to generate virtual material
structures, deterministic as well as stochastic. This project focuses on implement-
ing stochastic Monte Carlo methods. No comparison between different generating
methods is performed.

1.4 Outline
Chapter 2 begins with an introduction to different material types and material
properties. Also, different simulation approaches are presented and some necessary
mathematical preliminaries are dealt with. In Chapter 3, a more thorough explana-
tion of the simulation methods most relevant to this project is presented, and the
methods used in the simulations and the data analyses are explained. Chapter 4
combines results and discussion. Chapter 5 rounds off the thesis with some final
concluding remarks and possible continuations.

2



2
Theory

2.1 Material types

2.1.1 Soft matter
A characteristic feature of materials which are to be accounted for as soft, is that they
are neither typically crystalline solids nor liquids, seen from a mechanical point of
view, where the response to an external force defines the division [9, 12]. Put simply,
the most prominent characteristic is their macroscopic softness. An ideal Hookean
solid will respond to a shear stress in a perfectly elastic way while a Newtonian fluid,
which is the other of the two extreme behaviors of condensed matter, is characterized
by its completely inelastic viscosity and will respond by producing a flow [12]. A
soft material’s response, on the other hand, is a combination of elastic and viscous
behavior, a so called viscoelastic response, which is dependent on the time scale and
the relaxation time of the system. If an external force is applied on a shorter time
scale than the relaxation time, the viscoelastic soft material will behave as a solid,
while in the opposite case the material will behave as a fluid [12]. An excellent
example is a dispersion of corn starch in water, which will behave either as a solid or
a fluid depending on the applied force (shear-thickening). Paint is another example,
which will respond to an external force by getting thinner (shear-thinning) [12].

Some common features of soft materials are the importance of interactions on
different length scales and the ability to self-assemble. Interactions on an atomic or
molecular level may give rise to microscopic assemblies, which in turn may arrange
in highly ordered larger structures and a hierarchical material [12]. An example of
self-assembling systems are micelles, which are aggregations of amphiphilic molecules
consisting of both an hydrophilic and an hydrophobic part. In an aquatic solution,
the molecules create arrangements favorable for the amphiphile, like spheres or cylin-
ders, where the hydrophobic parts are screened from the aquatic solution, and hence
minimize the energy of the system [12].

2.1.2 Porous and granular materials
A porous material is a material that contains void regions, or pores. Due to the
void type structure, porous materials have a larger specific area and possess a lighter
weight compared to a more solid alternative, which may be desirable in certain ap-
plications. Porous structures are occurring both naturally, for example in bones,
wood, corals and lava, and as industrially manufactured porous metals, porous ce-
ramics and polymer foams [13]. A material property which works as a measure of

3



2. Theory

the void is porosity, which is defined as the fraction of the total volume in a medium
that is occupied by pores. The relation between the volume fractions of void and
solid is hence

Φvoid + Φsolid = 1, (2.1)
where Φvoid is the porosity and Φsolid is the solid volume fraction. The pores in the
material may be either isolated or connected, where connected pores contribute in
the transport process, enabling for fluid to pass through the material [14]. A highly
porous material lets fluid to pass more easily. Applications of flow through porous
media are numerous, e.g. filtration or permeation of water [11].

Granular materials, such as collections of sand or rice, is a subgroup of porous
materials. A granular material is composed of constituent particle, so-called gran-
ules. Due to the porous nature of the structures, granular materials are used in
particle size separation processes, gel permeation chromatography and filtering, to
name a few examples.

2.2 Permeability
Permeability characterizes a material’s ability to let a flow of fluid pass through it.
In 1856 [15], Darcy empirically established the law

v̄ = −κ∆p
µL

, (2.2)

where v̄ is the average flow velocity, κ is the permeability, µ is the dynamic viscosity,
L = |x2 − x1| is the length of the domain [x1, x2] in the flow direction, and ∆p =
p2 − p1 is the pressure difference between x1 and x2 [16].

A frequently quoted empirical relation between the permeability, specific surface,
i.e. the surface of the solid phase divided by the total volume of the domain, and
porosity, is the Kozeny-Carman equation:

κ = C
Φ3
void

S2(1− Φvoid)2 , (2.3)

where κ is the permeability, C is a constant, Φvoid is the porosity, and S is the
specific surface [11]. As can be seen, the permeability follows the intuition that a
fully solid material with Φvoid = 0 will not let any flow through, and the opposite
situation, where a material only consists of void will let the fluid pass infinitely well.
Note that both Darcy’s law and the Kozeny-Carman equation are valid only for
laminar flow, i.e. for small Reynolds numbers [11].

One would expect that the way materials are composed, i.e. if particles form
clusters or tend to spread evenly, would have an effect on the permeability. However,
as can be seen in Eq. (2.3), there is no dependence on the size of the voids. A
measure of the void sizes is the material’s pore size distribution, which is defined as
the distribution of distances from all points in pore space to the nearest solid surface
(spatial statistics and microstructural descriptors are dealt with in Section 2.5).
Materials with similar volume fractions may have different pore size distributions,
meaning that some regions have a higher particle density. It would be desirable to

4



2. Theory

explicitly include a dependence on pore sizes, and hence end up with the following
form of the Kozeny-Carman equation:

κ = C̃f(Λ) Φ3
void

S2(1− Φvoid)2 , (2.4)

where C = C̃f(Λ) and f(Λ) is a function of some property Λ related to the pore size
distribution. One suggestion has been to relate the permeability to the square of
some characteristic pore size [10]. However, this is a relation still absent in Eq. (2.3).
A simplification of the problem is depicted in Fig. 2.1. The solid volume fraction
and hence also the porosity and the specific surface are kept constant. Still, the
two geometries are quite different, and a difference in pore sizes can be observed.
Particles that tend to create clusters may give rise to more open regions in the
structures, which is a phenomenon not captured explicitly in Eq. (2.3).

Figure 2.1: Uniformly distributed particles (left) and clustered particles (right).

2.3 Models for granular materials and particle pack-
ings

The challenge of packing spherical objects in the most efficient way is an old problem
known as the cannonball packing problem [17]. Kepler proposed in the 17th cen-
tury that the densest packing of identical spheres is obtained by the face-centered
cubic pattern (fcc pattern) with a solid volume fraction, or packing fraction, of
π/
√

18 ≈ 0.74 [17]. Any proof of Kepler’s proposal was, however, lacking, and
around three hundred years later, the problem still baffled mathematicians. In
1900, David Hilbert presented a list of 23 unresolved mathematical problems for the
time being. Number 18 was concerning the cannonball packing [17, 18]. It took
around an additional hundred years until a proof based on computer simulations
was obtained, that confirmed Kepler’s proposal from four hundred years earlier, i.e.
that the maximum packing fraction of identical spheres is around 0.74 [17].

This limit in solid volume fraction is however not restricted to the fcc pattern
exclusively. The hexagonal close-packing (hcp pattern), for which the layers are
staggered compared to the fcc pattern, gives rise to the same packing fraction as
an fcc structure [17]. The layers in an fcc-based structure is repeated for every
third layer, whereas in hcp, layers are repeated for every second layer. Both the fcc
and the hcp structures are so-called lattice structures, meaning that the particles
are arranged in a periodic manner. Other lattice structures are for example the

5



2. Theory

simple cubic (sc) lattice and the body-centered (bc) lattice. All four examples are
cubic systems. There are, however, six other groups of lattices: triclinic, monoclinic,
orthorhombic, tetragonal, trigonal and hexagonal lattices [19]. These groups will not
be dealt with further in this project. An illustration of the sc, bcc and fcc structures
are found in Fig. 2.2.

Figure 2.2: Cubic lattices. (a) is simple cubic, (b) is body-centred cubic, and (c)
is face-centered cubic. In all cells, α = β = γ = π/2 and a = b = c. Figure taken
from [1].

In addition to the lattice-based structures, there are structures of a more random
nature, one class being random close packings (RCP). A precise definition of the
RCP state does not exist, since the obtained packing fraction depends on the used
(experimental or simulation) protocol, but a description of the state would be struc-
tures of randomly distributed particles packed to a maximum possible density [20].
Experiments based on pouring a large number of uniform balls into a vessel, and
having them shaken down to stable positions, show that a maximum packing frac-
tion of spherical particles of equal size, i.e. monodisperse spheres, is around 0.637
[21]. The maximum packing fraction of monodisperse spheres depends, however,
on the system size. To reach the maximum packing fraction, an infinite system is
needed. For a certain system of size h, the expected packing fraction ΦRCP is

ΦRCP = Φ∞RCP − C/h, (2.5)

where C is a fitting constant and Φ∞RCP is the packing fraction as h → ∞ [22].
Another class of random packings are random-loose packings (RLP), which have
densities below the maximum packing fraction [23, 24]. Like the RCP state, the
definition of RLP is somewhat vague, but it represents the lowest possible packing
fraction still mechanically stable [24].

The particle size distribution affects the maximum packing fraction in RCP [22,
25]. Experiments and simulations show that by introducing a polydisperse size
distribution, meaning that particles of different sizes are allowed in the structure, the
packing fraction for RCP can reach above the limit for a monodisperse distribution
[22]. A denser packing is achieved as smaller particles are filling the void between
the larger ones, space otherwise inaccessible. Also, the particle shape has an impact
of the maximum packing fraction [25–27]. Simulations show that as the aspect ratio
α of the particles changes, the packing fraction reaches a maximum value of around
0.71 (α ≈ 1.5 (prolate) and α ≈ 0.67 (oblate)) [27]. As α increases (decreases) for
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2. Theory

prolate (oblate) particles, the maximum packing fraction decreases, which may be
related to the strong excluded-volume effects in such structures [27].

As a diversity in the particle sizes is introduced, the specific surface of the system
may change. Two structures that have the same solid volume fractions may have
different specific surfaces. Smaller particles have larger area per unit volume, which
affects the total surface area. It can be shown with an example how the specific
surface is expected to behave when introducing a polydisperse size distribution and
see how the surface area changes. Assume two systems are consisting of only two
particles each1. Let the first system, 1, contain two identical particles with radius
r, and the second system, 2, contain two particles with radii r − a and r + b where
a, b ≥ 0 are some constants. In 1, the total surface area of the particles and the
total solid volume are

A1 = 8πr2,

V1 = 8π
3 r3,

(2.6)

and in 2 they are

A2 = 4π[(r − a)2 + (r + b)2],

V2 = 4π
3 [(r − a)3 + (r + b)3].

(2.7)

Let the solid volumes be equal, yielding that

(r + b) = (2r3 − (r − a)3)1/3. (2.8)

Using the above result, the expression for A2 can be rewritten accordingly:

A2 = 4π
[
(r − a)2 +

(
2r3 − (r − a)3

)2/3
]
. (2.9)

Now, the derivative ∂A2
∂a

is

∂A2

∂a
= 8π

[
−(r − a) + (r − a)2

[2r3 − (r − a)3]1/3

]
(2.10)

and setting ∂A2
∂a

= 0 yields the optimum a = 0. The nature of this optimum is given
by the sign of ∂2A2

∂a2 . Taking the derivative once more,

∂2A2

∂a2 = 8π
[
1− 2(r − a)

[2r3 − (r − a)3]1/3
− (r − a)4

[2r3 − (r − a)3]4/3

]
, (2.11)

and inserting a = 0 yields ∂2A2
∂a2 |a=0 = −16π < 0. Hence, the optimum is a maximum,

and corresponds to the largest value of the specific surface, and by introducing a
variety of particle sizes in the distribution, the area, and in the extent the specific
surface, decreases.

1Note that the example is transferable to a larger system of particles, as long as the number

7
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2.4 Simulation techniques

2.4.1 Techniques for generating virtual material structures
Virtual material structures can be generated by using different approaches, deter-
ministic as well as stochastic, or a combination of the two. Molecular dynamics
models are based on simulating particle interactions by Newtonian mechanics, where
the force

~Fi = mi
d2~ri
dt2

(2.12)

on a particle i depends on its surrounding and its interactions with the other par-
ticles in the domain [3]. In contrast to this deterministic approach, Monte Carlo
simulations are based on stochasticity. The idea is to simulate random particle
movements and interactions instead of deterministic ones. Most Monte Carlo meth-
ods do not include the equations of motion. Such models are suitable for modelling
systems where the static, and not the dynamic, properties are of interest. Brownian
dynamics methods, on the other hand, include both the equations of motion and
stochasticity. A deterministic part, including contributions as external forces and
friction, is complemented by a random force [3].

In methods based on sequential deposition of particles, virtual particles are dropped
one at a time into a simulated gravitational field, and subsequently settle in the do-
main. Note that Newton’s equations are not solved for the particles as they fall.
Instead, particles use rotational and translational motion to achieve the steepest
descent on its downward trajectory. A falling particle interacts with the current
structure and settles in a stable position corresponding to a minimum potential en-
ergy [28]. After settling, the particle positions are fixed. However, some sequential
deposition methods have implemented a step where a shaking of the vessel, like in
some experimental procedures [21], is simulated [28].

2.4.2 Fluid flow modelling
A common approach in fluid flow modelling is to consider macroscopic properties
of the flow, such as velocity. temperature, pressure and density. A successful and
often used method, based on this approach, is the finite volume method (FVM).
Fundamental parts of FVM are (i) integration over a small control volume δV of the
problem-dependent governing equations, and (ii) conservation laws (conservation of
mass, Newtons’s second law and the first law of thermodynamics) [29]. The essential
equation in fluid dynamics is the Navier-Stokes equation, which for incompressible
flow and constant viscosity µ is given by

ρ
dvi
dt

= − ∂p

∂xi
+ µ

∑
j

∂2vi
∂xj∂xj

+ ρfi, (2.13)

where ρ is the density, vi is the velocity in direction i, p is the pressure and fi is the
body forces in direction i, e.g. gravitational or electromagnetic forces [30]. Equation

fraction of the two kinds are the same (50/50).
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(2.13) is a transport equation for momentum in direction i. A convection-diffusion
equation for a general variable φ is given by

∂

∂t
(ρφ) +∇ · (ρφ~u) = ∇ · (Γ∇φ) + Sφ, (2.14)

where ~u is the velocity and Γ is the diffusion coefficient. The terms, from left to
right, correspond to a transient term, convection, diffusion and a source term.

Following the FVM principles, Eq. (2.14) is integrated over δV in space and ∆t
in time, which yields

∫
∆t

∂

∂t

(∫
δV

(ρφ)dV
)
dt+

∫
∆t

∫
A
~n · (ρφ~u)dAdt

=
∫

∆t

∫
A
~n · (Γ∇φ)dAdt+

∫
∆t

∫
δV
SφdV dt,

(2.15)

where Gauss theorem has been used to transform the volume integral of the convec-
tive and diffusive terms into surface integrals over the bounding surface A. Equation
(2.15) is then discretized using the control volume δV and associated (proper) dis-
cretization schemes2 and the conservation laws [29]. An illustration of a control
volume δV = ∆x in 1-D enclosing a lattice point P in a discretized space is found in
Fig. 2.3. The integration interval is [w,e], indicating the west and east faces of the
control volume, respectively. For the interested reader, a detailed analysis of FVM
is found in [29].

In complex geometries with irregular boundaries, e.g. soft matter and porous
media, it may be difficult to set up the boundary conditions needed for simulating
the macroscopic flow properties in FVM. In such cases, it is beneficial to use in-
teractions on a mesoscopic scale to describe macroscopic flow properties [31]. One
method utilizing this concept is the lattice Boltzmann method (LBM) [3, 31]. LBM
originates from the lattice gas cellular automata, which is a simplified description of
molecular interactions of a gas, where virtual particles move and interact on a lattice
[31]. Instead of considering single particles, LBM employs concepts from statistical
mechanics3 and provides a particle distribution function f(~r,~v, t) for the lattice sites.
The (fluid) particles, which in turn are collections of molecules, translate between
lattice sites [3], and from the microscopic states it is possible to obtain macroscopic
flow properties, such as density and velocity. A more detailed description of LBM
is found in Section 3.2.1.

2Properties such as conservativeness, boundedness and transportiveness differ between schemes.
The choice of scheme may depend on the term in question.

3A short introduction to statistical mechanics is found in Appendix A.1.
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Figure 2.3: Control volume δV = ∆x used in 1-D FVM. Figure taken from [2].

2.5 Spatial statistics
As has been seen in above sections, there is a relationship between microscopic
properties of the material and macroscopic properties of the flow. Hence, to facilitate
a prediction of the permeability, some sort of characterization of the material through
microstructural descriptors would be beneficial, one approach being microstructural
correlation functions. There are several microstructural descriptors, e.g. n-point
probability functions, surface correlation functions, the lineal-path function, the
chord-length density function and the pore size distribution function, to name a
few. The n-point probability function and the pore size distribution function will
be used later to characterize structures. Hence, these descriptors will be explained
below. For further information about other microstructural correlation functions,
the reader is referred to [4].

2.5.1 Pore size probability density function
The pore size probability density function P (δ) for isotropic media is defined as in
[4]:

P (δ)dδ = Probability that a randomly chosen point in a realization
of the pore phase lies at a distance between δ and δ + dδ

from the nearest point on the pore-solid interface.
(2.16)

Normalization yields ∫ ∞
0

P (δ)dδ = 1. (2.17)

In three dimensions, the distribution of the pore sizes is equivalent to the distribution
of sphere radii [4].

2.5.2 n-point probability function
The n-point probability function is, as well as the pore size probability density
function, a measure based on a probabilistic description of the structure. Consider
a sample space Ω, where the points ω ∈ Ω constitute a random realization of the
medium. If the system considered is consisting of two separate phases (solid and
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void), i = 1 2, they will occupy subsets νi so that ν1 ∪ ν2 = ν and ν1 ∩ ν2 = ∅.
Then, for a point at position ~x and for a certain realization ω, an indicator function
I(i)(~x;ω) can be defined as

I(i)(~x;ω) =

1 if ~x ∈ νi(ω)
0 otherwise

(2.18)

Hence,
P
{
I(i)(~x;ω) = 1

}
+ P

{
I(i)(~x;ω) = 0

}
= 1. (2.19)

The expectation value of I(i)(~x;ω) is given by
〈
I(i)(~x;ω)

〉
= P

{
I(i)(~x;ω) = 1

}
· 1 + P

{
I(i)(~x;ω) = 0

}
· 0

= P
{
I(i)(~x;ω) = 1

}
,

(2.20)

and hence, in this case, is the same as the probability of finding a point at position ~x
in phase i. Using this result, a one-point probability function S(i)

1 (~x) can be defined
as

S
(i)
1 (~x) :=

〈
I(i)(~x;ω)

〉
= P

{
I(i)(~x;ω) = 1

}
,

(2.21)

which gives the probability of ~x being located in the phase i, an equivalent to the
volume fraction.

The case for n = 2, the two-point probability function S(i)
2 ( ~x1, ~x2) for a phase i,

is also an interesting case. It is defined as

S
(i)
2 ( ~x1, ~x2) :=

〈
I(i)(~x1;ω)I(i)(~x2;ω)

〉
= P

{
I(i)(~x1;ω) = 1, I(i)(~x2;ω) = 1

}
,

(2.22)

and describes the probability of two randomly generated points at positions ~x1 and
~x2 to be located in phase i. A further analysis of S(i)

2 ( ~x1, ~x2) is performed in Section
3.3.2.

By following the above reasoning, a generalization for n points may be performed,
and the n-point probability function S(i)

n ( ~x1, ~x2, . . . , ~xn) is hence defined as

S(i)
n ( ~x1, ~x2, . . . , ~xn) :=

〈
I(i)(~x1;ω)I(i)(~x2;ω) . . . I(i)(~xn;ω)

〉
= P

{
I(i)(~x1;ω) = 1, I(i)(~x2;ω) = 1, . . . , I(i)(~xn;ω) = 1

}
,

(2.23)

which is the probability of the n points positioned at ~x1, ~x2, . . . , ~xn are located in
phase i [4].
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2.6 Related earlier work
Material design and fluid dynamics are already on an individual basis two major
fields of research, and combining them generates a vast space of physics to explore.
Earlier investigations relating the particle shape to a material’s transport properties
have been conducted, where packings of ellipsoidal, cylindrical and parallelepipedic
grains of identical size were investigated, where an impact of the particle type was
observed [28]. The effect of size distribution has been dealt with as well. In one
study, the choice of size distribution and related effects on diffusion was investigated,
and an analysis of the spatial statistics of the structure was performed [32]. No
convective flow was, however, considered, and despite the detailed analysis, a more
exhaustive and systematic exploration of the space of material structures would be
preferable.

12



3
Methods

3.1 Generating virtual granular materials
The granular structures were generated using a Monte Carlo-based simulation method.
Initially, spherical particles were randomly distributed throughout the domain by
picking positions based on a uniform distribution inside simulation domain [0, L]3
for L = 1. The initial particle radii were set by specifying an initial volume fraction
Φ0,

Φ0 = 4π
3V

∑
r3
i , (3.1)

to start with. For identical particles, ∑ r3
i simplifies to Nr3, where N is the number

of particles.
Periodic boundary conditions were used, which means that portions of the par-

ticles that happened to be located outside the interval [0, L] in any direction were
cut off and moved to enter with corresponding volume on the opposite side of the
domain. In other words, for a particle i, its position ~Ri(x, y, z) fulfilled the relation

~Ri → ~Ri mod L. (3.2)

A concept similar to energy was introduced. For the particle i at position ~Ri, an
energy E( ~Ri) was defined as:

Ei( ~Ri) =
∑

overlapping particles
1/Rα

i,j (3.3)

where Ri,j = |~Ri,j| is the distance between the centers of particle i and particle j,
and α > 0 is a constant. The particles were forced to find positions with successively
lower (or equally high/low) energy until Ei( ~Ri) = 0, i.e. no overlap occurred, for all i.
In one sweep, i.e. in a loop over all particles, a small displacement ∆ ~Ri was randomly
drawn from a normal distribution for each particle. A corresponding energy Ei,new
for the new particle position ~Ri,new = ~Ri+∆ ~Ri was calculated. If Ei,new ≤ Ei,old, the
position for particle i was updated to the new position. Otherwise, its old position
was kept. Also free particles (with an energy E = 0) were allowed to move, even
though they had no energy, as long as the new position did not lead to an increase in
energy. Considering also the nonoverlapping particles, allowing them to move too,
were helping overlapping particles to find better positions by opening up regions in
the domain otherwise blocked by fixed free particles.

It is advantageous to keep track of the frequency of accepted displacements ∆ ~Ri

and to control the magnitude of ∆ ~Ri, especially as the material is getting denser.

13



3. Methods

Keeping the displacements very small yields a high acceptance rate, since the chance
of finding a position with lower energy is high. However, such a method would
become very inefficient, since a large number of sweeps would be necessary to get
the overlaps resolved. Too large magnitudes of ∆ ~Ri risk to almost never be accepted,
since the new positions easily could give rise to an even larger overlap with other
particles. Hence, controlling the magnitude of the displacement by a factor, which
depends on the number of accepted new positions in the previous sweep, scales the
displacement to an appropriate value suitable for the current volume fraction. This
type of scaling was implemented in the simulation for all methods involving particle
displacements introduced below, i.e. the magnitude of the corrections was controlled
in such way so that the rate of accepted displacements was kept within the interval
]0.25, 0.40[, where the magnitude of the scaling was decreased or increased for too
low or too high acceptance rate, respectively.

The algorithm continued until no particle overlap occurred. When the condition
of no overlap was fulfilled for a specific solid volume fraction Φi, the particle radii
were increased so that the solid volume fraction increased with some constant ε, i.e.

Φi+1 = Φi + ε (3.4)

where ε typically in the range 10−5− 10−4. As shrinking the domain and letting the
radii expand are equivalent, a relation for the corresponding radii in step i+ 1 was
achieved by realizing that Φi+1 = CiΦi where Ci is a factor specific for the iteration
step i. Using this yields

Φi + ε = CiΦi =⇒ Ci = Φi + ε

Φi

. (3.5)

Since Φ ∼ r3, the equation for ri+1 is given by

ri+1 = C
1/3
i ri

=
(

Φi + ε

Φi

)1/3

ri,
(3.6)

which was used in the simulations in order to update the volume fractions of the
solid phase.

The computational time needed for the simulations depended on the number of
particles. Consideration was taken to computational time and physical relevance of
the system, and a number of 250 particles was used unless otherwise stated.

3.1.1 Polydisperse size distribution
Some additional steps were done in the cases of polydisperse size distributions, which
were created in two steps. A set of radii was selected, without concern to the solid
volume fraction. Hence, the radii had to be scaled so that the particle volumes
would add up to the correct starting volume fraction. From the original volume

14



3. Methods

fraction Φorg of a structure,

Φorg = 4π
3V

∑
r3
i,org, (3.7)

where {ri,org} is the set of original radii, and the desired starting volume fraction Φ0,
a correction for the radii was calculated. Since Φ ∼ r3, the correct starting radius
ri for particle i was

ri =
(

Φ0

Φorg

)1/3

ri,org. (3.8)

Two cases of polydisperse size distributions were investigated, the lognormal dis-
tribution with parameters µ and σ (corresponding to the exponent of a normal
distribution with mean µ and standard deviation σ), whose logarithm is normally
distributed, and the bidisperse distribution, which consists of only two different par-
ticle sizes. The scaling of the radii was performed as described above. Since only
relative values were of interest, no comparison to experimental results was done, this
type of scaling works. The coefficient of variation δ, though,

δ = σ(r)
r̄

(3.9)

was constant throughout a series as the particles were expanding. For the bidisperse
distribution, the varied parameters were the size ratio between the particles and the
number of small/large particles.

3.1.2 Lattice structures and random packings
An interesting class of materials are the so-called semicrystalline, which contain re-
gions of both crystal structure and random regions. An emerging problem, though,
is that it is not possible to obtain packing fractions above around 0.64 for RCP1.
Hence, the process described in Section 3.1 was not applicable. A way to overcome
the problem was to employ a "reversed" process, meaning that instead of compress-
ing the domain (letting the particles expand) until a desired packing fraction was
reached, the implemented process started from an fcc lattice structure, which pos-
sesses the largest possible packing fraction for a monodisperse size distribution. The
domain was then decompressed (the particles were compressed) successively to gen-
erate a set of desired solid volume fractions, ranging in reversed order, i.e. from
Φmax = π/

√
18 = 0.7403 to some Φmin. In order to introduce random features in

the structures, the particles, after successively expanding the domain, were allowed
to move for a number of sweeps. Displacements ∆R for a particle i was randomly
generated, and an energy Ei,new was calculated using Eq. (3.3). The original in-
teraction energy for every particle was E = 0, since the starting positions were
corresponding to the lattice positions, and if Ei,new = 0, meaning no new overlaps
were created in the process, the new position was kept. If, however, any overlaps
were created, the old position was kept. This procedure will from hereon be referred
to as the lattice method.

1The chance of obtaining packing fractions above around 0.64 for RCP is vanishingly small,
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3.1.3 Modifying the structure
As mentioned in Section 2.2, there is no explicit dependence on the pore size distri-
bution in the Kozeny-Carman equation, and some geometric properties are hidden
in the constant C. It would be desirable to have some sort of control over the pore
sizes, and in turn investigate the link between geometric properties of the struc-
tures and the permeability. A way to proceed in this investigation was to modify
structures after E = 0 was reached, in that sense that the particles were relocated
compared to the original structures. Hence, the pore size distribution was changed
while keeping the specific surface and porosity constant. To that end, different
methods for controlling the spatial distribution of the particles were implemented:
(i) a purely attractive force was introduced between the particles to make them cre-
ate clusters, (ii) a potential inspired by the Lennard-Jones potential, consisting of
both an attractive and a repulsive force between the particles was introduced, (iii) a
bidisperse distribution of particles, for which the larger particles were deleted after
unraveling overlapping particles, was generated and (iv) repulsive point potentials
were introduced in the domain, already in the generating process, in order to push
the particles together.

3.1.3.1 Attractive force between particles

The method used to achieve an attractive force between the particles was similar to
the way the overlaps were resolved. A sweep over all particles was performed, and
for every particle i, an energy Ei was calculated:

Ei =
∑

all particles j 6=i

1[
Ri,j − (r∗i + r∗j )

]α
=

∑
all particles j 6=i

E
(i)
j

(3.10)

Here, Ri,j is the distance between the centers of particles i and j, α > 0 is some
odd integer, r∗i and r∗j are the particle radii of particle i and j, respectively, and
E

(i)
j is the energy contribution of particle j to Ei. As can be seen, E(i)

j → ∞ as
the particle surfaces meet. If the particles are overlapping, the energy contribution
is negative. A small displacement ∆~R was drawn randomly from a normal dis-
tribution, and a new corresponding energy Ei,new was calculated. If the condition
Ei,new ≥ Ei,old, where Ei,old corresponds to the former energy, held, and if no energy
contributions were negative (i.e. no overlaps were created), the particle position was
updated. Otherwise, the old position was kept. As seen, the negative sign of the
energy contribution of overlapping particles facilitates the monitoring of forbidden
updates of the positions corresponding to creation of overlaps (unaccepted displace-
ments). If α were to attain an even value, it would not be possible to distinguish
between overlapping and nonoverlapping positions in Eq. (3.10), since the square
of the denominator, and hence the energy contribution, would be positive for both
the overlapping and nonoverlapping positions. Since there is no clear goal for the

and hence considered practically impossible.
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algorithm to reach, like in the case of packing the particles to a certain volume frac-
tion, a limit of maximum number of sweeps was set. Different approaches can be
employed in order to find an appropriate number of sweeps. For this method, the
mean pore size was monitored in a trial run, and the number of sweeps needed until
the change between sweeps was negligible was estimated. Another possible quantity
to monitor is the interaction energy between the particles, which should decrease as
a function of sweeps. Monitoring particle interaction energy might, however, be a
more reliable approach compared to monitoring the mean pore sizes, and was hence
the preferred approach in other methods described below.

3.1.3.2 Attractive and repulsive forces between particles

A potential inspired by the Lennard-Jones potential was introduced, including both
an attractive and a repulsive part in the interaction energy between particles. The
method is in principle the same as the one described in Section 3.1.3.1, where only
an attractive force was considered. For a particle i, an interaction energy Ei is
defined accordingly:

Ei =
∑

all particles j 6=i

 1[
Ri,j − (r∗i + r∗j )

]α − 1[
Ri,j − (r∗i + r∗j )

]β


=
∑

all particles j 6=i
E

(i)
j .

(3.11)

where α > β > 0 are some integers. To facilitate the monitoring of overlapping
particles, α is odd. The choice of β (odd or even) does not really matter, since the
first term on the LHS in Eq. (3.11) will dominate (for α > β > 0) in the overlapping
region. The procedure regarding the update of particle positions was identical to
the former case.

3.1.3.3 Introducing repulsive point potentials in the domain

Another way to force particles together is to introduce randomly distributed points
in the domain working as repulsive potentials, pushing the particles away from
certain regions. For a particle i, the energy Ei corresponding to the interaction with
N potentials is defined as

Ei =
N∑
j=1

1
Rα
j

(3.12)

where Rj is the distance between the center of particle i and potential j and α > 0
is some integer. A high energy was considered disadvantageous, and hence the
particles were forced to find positions minimizing the energy. A new position was
evaluated, and if the the energy decreased under the constraint that no overlaps
were created the new particle position was kept. Trial runs were performed in order
to find out the number of sweeps needed to find an energy minimum in the system
(i.e. minimizing the energy for all particles). For every sweep, the total energy was
calculated, and when the energy stabilized, i.e. was approximately constant for a
certain number of sweeps, the system was considered to be in equilibrium.
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3.1.3.4 Selectively deleting one type of particle in structures

The idea of the model is to generate structures based on bidisperse size distribu-
tions. After successfully having all the overlaps resolved, the larger particles were
deleted from the structures. Hence, pore sizes of at least the size of the deleted
particles would be produced. This method is of interest due to possible industrial
applications, where materials are constructed using two types of particles. In a sec-
ond stage, one of the particle types is removed from the structures using e.g. heat
or a chemical procedure, leaving pores of the size of the deleted particles. Since
there exists an interest in translating the theoretical approach in this method to an
actual production of physical materials, the physical relevance in the setup of the
algorithm was crucial. Hence, the size of the remaining smaller particles was kept
constant, and an increase of the solid volume fraction was achieved by increasing
the number of particles (instead of changing the size of the particles). A similar
approach was implemented for the larger particles (which were to be deleted in the
second stage).

3.1.4 Triangulating the surface using VoxSurface

Before investigating material properties in Gesualdo, generated structures need to
be converted to triangulated surfaces. A discretization was performed in Matlab
generating N × N × N binary structures, for N = 300, where 0 corresponded to a
voxel position occupied by void and 1 corresponded to a voxel position occupied by
solid. The structures were exported to multipage .tif format and then imported in
VoxSurface, a part of the Gesualdo program, where the structures were triangulated.
The structures were coarsened and Gaussian smoothing was applied. Also, the
resulting structures were prepared for periodic boundary conditions in the upcoming
flow simulations. An example of a triangulated structure is found in in Fig. 3.1a.

In the discretization step, involving both the voxelization in Matlab and the
triangulation in VoxSurface, the structures were coarsened. The volume fraction
changed somewhat, and hence the structures used in the flow simulation were not
completely identical to the one originally generated in Matlab. In the example in
Fig. 3.1, the initial volume fraction was 0.50 of the total volume. In the triangulated
structure, the solid volume fraction was 0.493.

When the discretization step is larger than the distance between the particles,
it is not possible to make a distinction between the two surfaces. What happens
is that the surfaces tend to get "welded" together, and the particles get connected.
This affects both the volume and the surface of the particles, and hence affects the
results in the computation of the permeability. An example of welded particles is
found in Fig. 3.1b.
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Figure 3.1: (a) An example of a generated structure after triangulation, coarsening
and smoothing. The solid volume fraction is around 0.50 (0.493). As can be seen,
portions of the particles that are located outside of the domain are cut off and moved
to the corresponding opposite side of the volume. (b) Particles close to each other
tend to get welded together in the discretization process.

3.2 Mass transport simulations

3.2.1 The lattice Boltzmann method

As mentioned in Section 2.4.2, the lattice Boltzmann method (LBM) utilizes inter-
actions between virtual fluid particles on a mesoscopic scale to describe macroscopic
properties of the flow [3, 31]. Instead of considering single particles, a particle distri-
bution function f(~r,~v, t) is employed. It is assumed that all particles have the same
mass m. Integration of f(~r,~v, t) over a velocity interval ∆~v gives the number den-
sity of particles, i.e. the number of particles per unit volume, within that interval.
Hence, the following relations for the macroscopic properties are obtained [31]:

ρ = m
∫
f(~r,~v, t)d~v

ρui = m
∫
f(~r,~v, t)vid~v

(3.13)

where ρ is the density of the fluid and ui is the mean flow velocity in direction i.
As an example, a discrete lattice space is considered, where only transitions be-

tween neighboring sites are permitted [3]. A part of a larger two dimensional lattice
is found in Fig. 3.2. Assume that particles at time t are positioned at the site in
the center of the square (the dot). At time t + ∆t, where ∆t is the time step used
in the simulation, the possible choices for the particles are to either move to the
surrounding sites or to stay in the center. If the distance between neighboring sites
in the vertical and horizontal direction is ∆x, the velocity for a movement between
the center and the sites marked with a star is v∗ = ∆x/∆t. The velocity for a
movement between the center and the corner cites, the sites marked with circles, is
then v◦ =

√
2∆x/∆t =

√
2v∗. [3]
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Figure 3.2: A two dimensional example of adjacent lattice sites. Example taken
from [3]

A new definition of the particle distribution function may be introduced that
incorporates the velocity interval. This definition is suitable for a discrete space.
Let f(~r,~v, t) → fα(~r, t), where α corresponds to the direction of the particles with
a mean velocity vα. In the example in Fig. 3.2, α = {1, 2, . . . , 9}, corresponding to
the nine possible transitions between the sites, including staying at the same site,
and the mean velocities are 0, v∗ and v◦ depending on the choice of direction. A
summation over all possible directions yields the macroscopic density at a position
~r at time t:

m
∑
α

fα(~r, t) = ρ(~r, t). (3.14)

Multiplying fα(~r, t) with the corresponding velocity in the α-direction, followed by
a summation over all the directions yields

m
∑
α

fα(~r, t)vα = ρ(~r, t)~vmean, (3.15)

where ~vmean is the mean velocity of the flow (the macroscopic flow velocity). Hence,
Eq. (3.15) is the momentum of the mean flow per unit volume at the position ~r.
From above calculations, it is clear that the macroscopic properties of the flow can
be obtained by considering the interactions on a mesoscopic level. [3]

3.2.2 Fluid dynamics simulations
For fluid dynamics simulations, the lattice Boltzmann software tool Gesualdo [33]
was used, based on the open-source lattice Boltzmann code Palabos2. Gesualdo is
developed at the Department of Mathematical Sciences, Chalmers, and an outcome
of the VINN Excellence Center SuMo Biomaterials 3. With the settings used in Gesu-
aldo for this project, the Navier-Stokes equations are solved for a pressure-driven
flow with constant pressure difference across the domain and a no-slip condition on
the solid surface [6]. The permeability is calculated using Darcy’s law, Eq. (2.2).
Since Darcy’s law is only valid for laminar flow with small Reynolds number, the
pressure gradient driving the flow needs to be small.

The structures generated in VoxSurface were imported in Gesualdo. In order to
speed up the calculation, one third of the 300 voxels in all directions was used, i.e.

2www.palabos.org
3www.chalmers.se/en/centres/sumo
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the computational grid size was 100×100×100. Periodic boundary conditions were
used for the domain boundaries in all three directions. The convergence tolerance
was set to 10−4 over 500 iterations. The kinematic viscosity of the fluid was set to
1.004 · 10−6, i.e. water at 20◦C. The resulting force from the pressure gradient was
set to 10−8.

3.3 Data analysis and spatial statistics

3.3.1 Calculating pore size distribution
The Matlab function bwdist [34] was used to find out the Euclidian distance in units
of voxels to the nearest occupied (solid) position. This distance is the maximum
possible sphere radius for a particle positioned in that voxel, and hence works as a
discrete version of the pore size distribution obtained from the pore size probability
density function introduced in Section 2.5.1. A matrix with the same size as the
structure, i.e. N × N × N , containing the maximum possible sphere radii was the
result.

3.3.2 Two-point probability function
As mentioned in Section 2.5.2, an interesting case of the n-point probability function
is for n = 2, S(i)

2 ( ~x1, ~x2). It corresponds to the probability of finding a pair of random
points at locations ~x1 and ~x2, separated by a distance r = | ~x1 − ~x2|, in a certain
phase i. For isotropic media, S(i)

2 ( ~x1, ~x2) is not depending on the orientation of the
random points, only the separation r. Hence, S(i)

2 ( ~x1, ~x2) = S
(i)
2 (r). The generated

structures are assumed to be isotropic, and hence S(i)
2 (r) is used. The argument is

dropped from hereon.
The two extreme point separations, r = 0 and r → ∞, correspond to S(i)

2 = Φi

and (Φi)2, respectively. The behavior of S(i)
2 between the two extreme point sep-

arations depends on the structure, which is explained by using an example. Two
different systems, nonoverlapping and overlapping disks, where the fractions of the
phases 1 and 2 are Φ(1) = Φ(2) = 0.5, are shown in Fig. 3.3. For the nonoverlapping
disks, S(i)

2 attains its maximum value, corresponding to the fraction of phase i in
the system, when r = 0. As the separation increases, S(i)

2 decays and attains its
minimum value for a separation around one disk diameter, to then experience os-
cillations with a period approximately equal to the disk diameter. This behavior is
an effect of the hard-core potential of the disk, where no overlaps are allowed. The
asymptotic value is (Φ(i))2 = 0.25 [4].

Also, for the overlapping disks, the maximum value of S(i)
2 is the fraction of phase

i, which occurs at r = 0. As the separation increases, S(i)
2 decays. However, in the

case of overlapping disks, there is no minimum at a separation of one disk diameter,
and no oscillations occur as the separation increases. Instead, S(i)

2 decays to the
asymptotic value of (Φ(i))2 = 0.25 at a separation of one disk diameter, and stays
constant. Hence, there is a relation between correlation lengths and oscillations, or
dips at certain separation lengths, of S2, and the oscillations may be used as an
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indicator of the microstructural correlations [4].

Figure 3.3: Example of two systems, nonoverlapping disks (upper) and overlapping
disks (lower). The fractions of the two phases (disk and void) is 0.5. The disk
diameter is D and the separation between the end points is r. The example is taken
from [4].

The S(i)
2 function was implemented and used in the spatial analysis of the struc-

tures. A random point located at ~x1 and a random normalized orientation r̂ were
picked. For a set of separations

Ω = {0, r1, r2, . . . , ri, . . . , rn}
= d{0, 1, 2, . . . , i, . . . , n},

(3.16)

a set of n + 1 corresponding points was calculated. Hence, for separation ri the
corresponding point is

~x2 = rir̂ = dir̂ (3.17)
Put simple, the procedure generated a set of points separated by a distance d on a
straight line of length dn starting in ~x1 in direction r̂. If a pair of points ~x1 and ~x2
were located in a certain phase i, this was logged as 1, otherwise 0. The procedure
was repeated for a (large) number of random ~x1 and r̂ and the set Ω, i.e. a (large)
number of straight lines of length dn divided into n sections pointing in arbitrary
directions. The probability of finding the pair of points ~x1 and ~x2 in phase i as
function of the point separation was evaluated and corresponds to S(i)

2 .

3.3.3 Representation of the results
When generating structures as those presented above, different approaches can be
used. For convenience, the algorithms were implemented such that the radii of the
particles were increased, instead of shrinking the simulation domain, i.e. the virtual
box containing the particles. Both approaches can produce series where the solid
volume fraction increases. Important, though, is the representation of the result,
and the choice of units. The unit of permeability in the Gesualdo output is voxels2.
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However, changing the particle sizes, as well as changing the size of the surrounding
domain, changes the length scale of the system. Hence, also the physical size of the
voxels, and hence the results, are affected. To overcome this issue, the results need
to be scaled in some appropriate way by finding a proper length scale. Using the
computational resolution set in Gesualdo, a new permeability can be defined as

κphysical = κsimulated(
l2n2

L2

)
= κsimulated

fc

(3.18)

which will have units of some proper length l2 related to the particle sizes, e.g. the
mean radius in the distribution or some other length representative of the particle
system. Here, n is the computational resolution in one dimension and L is the length
of the side of the cubic domain. The conversion factor, or scale factor is

fc = l2n2

L2 . (3.19)

The computational resolution was set to n = 100. Note that n specifies the com-
putational grid size in Gesualdo, i.e. the number of grid points actually used in the
fluid dynamics simulation, and must not be mistaken for the number of voxels used
in the discretization of the structures in Matlab.

Quantities θ in units of length (in contrast to length2), such as the pore sizes,
scales in a similar way, namely

θphysical = θsimulated√
fc

. (3.20)

The resulting quantity will have the unit l.
The Gesualdo output contains the total area of the solid in units of voxels, which

can be converted to specific surface in units of l−1 using the total number of voxels
in the domain. The specific surface S is given by

S = nsurface
n3

√
fc, (3.21)

where nsurface is the total area of the solid in units of voxels.

3.4 Simulation setup
Four major cases were dealt with. In Chapter 4 they are named accordingly: (i)
Comparison of size distributions, (ii) The bidisperse size distribution, (iii) From
lattice structures to random packings and (iv) Investigations of effects related to
spatial correlations. The specific setups and parameter settings are presented here.

3.4.1 Comparison of size distributions
Three series of structures with volume fractions ranging from 0.30 to 0.63 were
generated. The first series consisted of identical particles, and in the two other,
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different particle radii were used. One was based on a lognormal size distribution
and the other was based on a bidisperse size distribution. The lognormal distribution
was generated in two steps as explained in Section 3.1.1. First, a set of radii was
picked from a lognormal distribution with µ = 1 and σ = 0.3, then the radii were
scaled to get the correct starting volume fraction. For the bidisperse distribution,
the size ratio between the particles was 0.5 and the number fraction of small particles
was 0.4. A histogram of the scaled radii (so that r ∈ [0, 1]) in the lognormal case is
found in Fig. 3.4 below. The coefficient of variation is δ = 0.2744. Since the number
of particles is still quite low (250), a higher value of δ sometimes generated single
particles having very large radii compared to the smaller ones. This was considered
an extreme case, and was not desired. Hence, δ was kept around 0.3.

The compression of the systems continued until a maximum packing fraction was
reached, which was considered to have occurred when a maximum number of sweeps,
where in every sweep the overlapping particles were trying to find better positions
for a certain volume fraction Φnew = Φold + ∆Φ, was reached. If some particles
still overlapped after reaching the maximum number of sweeps, the last accepted
structure (without overlap) was considered to possess the maximum packing fraction
for the distribution in question. In these cases, the maximum number of sweeps was
around 4,000.

The scale factor Eq. (3.19) was based on

l =
(

1
N

N∑
i=1

r3
i

)(1/3)

, (3.22)

which is the same for all three distributions for a specific volume fraction (since all
three have the same solid volume fractions), and L = 1.

Figure 3.4: A histogram of the scaled radii from the lognormal distribution. The
volume fractions are scale independent, and the plot should merely function as a
tool to display the spread in the distribution.

3.4.2 The bidisperse size distribution
A series based on bidisperse size distributions was generated, where the fraction
of small particles and the size ratio between the larger and smaller particles were
varied. The number fraction was varied between 0 and 1, and the size ratio between
0.1 and 1. The total solid volume fraction was held constant and set to 0.50 for all
structures.
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An appropriate scaling in this case was based on assuming a constant size of the
smallest particle throughout the series. Hence, the size of the virtual box containing
the particles and the larger particle size had to be changed, in order to fulfill a
constant solid volume fraction of 0.50. The smallest of the two particle radii in the
distributions was set to 1, and the system and the results were scaled based on this,
using Eq. (3.19) with

l = rnewsmall = 1; Lnew = Lold · 1/roldsmall. (3.23)

3.4.3 From lattice structures to random packings
A series of structures was generated, with volume fractions going from the maxi-
mum possible packing fraction π/

√
18 ≈ 0.74, discussed in Section 2.3, to 0.63. In

every step the particles started in the fcc lattice positions. The particle radii were
decreased in order for the particles to fill a certain total solid volume fraction. The
number of sweeps, for which the particles were allowed to move, was 30,000 for every
structure. The scaling procedure was the same as described in Section 3.4.1.

3.4.4 Investigations of effects related to spatial correlations
The scaling procedure was the same as described in Section 3.4.1 for all three cases
below.

Introducing forces between the particles

A series of structures with solid volume fractions ranging between 0.2 and 0.4 was
generated and then modified afterwards in two different ways. In the first case,
an attractive force between particles was introduced, and in the second, both an
attractive and a repulsive force were introduced. In both cases, the modification
was set to run for 30,000 sweeps for every structure.

Repulsive point potentials

A series of structures, for which the solid volume fraction and the number of repulsive
potentials were varied, was generated. The solid volume fraction ranged between
0.2 and 0.4, and the number of repulsive potentials ranged from 0 to 50. The
modification was set to run for 500 sweeps.

Deleting particles from the structure

The method was implemented for a fixed number of small particles of a certain size,
only changing the number of larger particles which were deleted in a second stage.
The number of small particles were 200, which corresponded to a volume fraction of
0.20. The size, as well as the volume fraction, of the larger particles were varied. A
choice was made to increase the volume fraction of the larger particles by adding new
particles to the system. Hence, the volume fraction of the larger particles increased
in steps of particles added. The size of the larger particles was depending of the size
ratio.
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Results and discussion

4.1 Comparison of size distributions

Three sets of structures were generated based on monodisperse, lognormal, and
bidisperse size distributions. Comparisons of the permeability and the specific sur-
face are plotted in Fig. 4.1. As can be seen, for lower solid volume fractions,
the permeability is higher for the polydisperse size distributions compared to the
monodisperse case. Also, the specific surface is smaller in these two cases, a result
which corresponds to the theoretical investigation in Section 2.3. There is a resem-
blance between the bidisperse and the lognormal cases, both regarding permeability
and the specific surface. A reason for this might be that in the two polydisperse
distributions, particles of both smaller and larger sizes compared to the monodis-
perse case are allowed (increasing the specific surface of both in comparison to the
monodisperse case). With the given distributions, it may be possible that the set
of particle sizes introduced in the lognormal distribution, compared to the two sizes
in the bidisperse case, does not introduce any significant difference in the packing
results. Smaller particles fill the voids between the larger ones in both the bidis-
perse and the lognormal case, and different packings are hence enabled compared
to the monodisperse case. The flattening out of the specific surface observed in the
monodisperse case for higher solid volume fractions may be a result of the welding
artifact of neighbouring particles described in Section 3.1.4. As the system is com-
pressed, the distances between the particles decrease and the risk for a separation
smaller than the discretization step increases. Hence, the risk for welding increases
as well. The reason for a less significant effect for the polydisperse distributions may
be because of the smaller particles existing in these distributions, which may give
rise to configurations inaccessible in the monodisperse case.
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Figure 4.1: Permeability (left) and specific surface (right) for the monodisperse,
lognormal and bidisperse size distribtions as functions of the solid volume fraction.
Note that l is the problem-dependent proper length (see Sections 3.3.3 and 3.4.1).

For all cases, the pore size distributions were calculated and the resulting mean
pore sizes are plotted in Fig. 4.2. As can be seen, the mean pore size is slightly larger
for the polydisperse cases. Again, the lognormal and the bidisperse distributions
virtually coincide. It seems like the additional possible particle configurations give
rise to an increase in mean pore size in the polydisperse cases. A comparison between
Fig. 4.1 and Fig. 4.2 suggests that there is a relation between an increased mean
pore size and an increase of the permeability. Such a relation seems reasonable.
The void regions are all connected to one another, and hence establish a network
throughout the structures where all pores contribute in the transport process. A
larger mean pore size would hence imply a greater possibility for the fluid to pass
through.

Figure 4.2: Mean pore sizes for the monodisperse, lognormal and bidisperse size
distribtions as functions of the solid volume fraction. Note that l is the problem-
dependent proper length (see Sections 3.3.3 and 3.4.1).

A further investigation shows that there is a linear relation between the square of
the mean pore size and the permeability. This assumption holds for all three cases.
Plots of comparisons between the squared mean pore size and the permeability are
found in Fig. 4.3. The squared mean pore size is scaled with a factor based on
minimizing the sum of squared differences to the permeability.
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Figure 4.3: Comparison between permeability and squared mean pore size for
monodisperse, lognormal and bidisperse distributions as function of the solid volume
fraction.

The compression of the systems continued until a maximum packing fraction was
reached, and the resulting volume fractions are found in Table 4.1 below. As can be
seen, the particle size distribution affects the maximum possible packing fraction,
where the largest maximum packing fraction was obtained using a lognormal size
distribution, and the smallest was obtained in the monodisperse case. In between is
the bidisperse distribution, although this result is dependent upon the parameters
of the distributions. Following the reasoning above, smaller particles in the poly-
disperse cases fill out the void parts between the larger particles. By introducing a
set of particle sizes, as in the lognormal case, the number of degrees of freedom in-
creases, and hence a denser packing compared to the bidisperse case is possible. The
minimum and maximum values in the lognormal and the bidisperse distributions,
scaled with the monodisperse radius, are given by

rlognormal ∈ [0.3933, 1.8679]; rbidisperse ∈ [0.5772, 1.1544]. (4.1)

Hence, the spread in the lognormal case is wider, which also might have an effect
on the maximum packing fraction. Increasing the size difference in the bidisperse
distribution would possibly increase the maximum packing fraction. However, the
bidisperse distribution still lacks the vast packing possibilities associated with the set
of sizes in the lognormal distribution. What can be concluded, though, is that the
maximum packing fraction is affected by introducing a polydisperse size distribution.

An important note is that the packing fractions obtained here were limited by a
maximum number of sweeps. It would perhaps be possible to make the structures
slightly denser by decreasing ∆Φ and increasing the maximum number of sweeps.
Also, the number of particles, and equivalently the size of the domain, is limited,
which is probably the most important reason for not obtaining denser packings. As
mentioned in Section 2.3, the true maximum packing fraction is obtained by letting
the domain size go to infinity. Since the particle sizes are scaled with regard to a
fixed domain size in such a way that the total particle volume adds up to a desired
volume fraction, increasing the domain volume would correspond to increasing the
number of particles in the simulation. Due to the computational time, the number
of particles needed to be restricted to a convenient number, in these cases set to 250.
If more time were at hand it would be possible to increase the number of particles.
This increase would then hopefully enable compressing the system to such extent
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that a packing fraction of around 0.64 would be obtained for the monodisperse
distribution.
Table 4.1: Maximum packing fractions.

Monodisperse Lognormal Bidisperse
0.6310 0.6609 0.6512

4.2 The bidisperse size distribution

The resulting permeability for a series of bidisperse size distributions, where the
size ratio between the smaller and larger particles and the number fraction of small
particles were varied, is plotted in Fig. 4.4. Plots of the mean pore size as a function
of the number fraction of small particles for all size ratios are found in Fig. 4.5. A
comparison between the permeability and the mean pore size confirms the conclusion
in Section 4.1, i.e. that larger average pores seem to imply an increased permeability.
When the size ratio is small, i.e. when there is a large difference in size between
the two particle types, the permeability stays quite unaffected as larger particles
are replaced by smaller ones. However, when the larger particles tend to be quite
few, drastic effects for every step in number fraction can be observed. A reason for
this might be that the lack of solid volume suddenly appearing as larger particles
are exchanged into smaller ones, is more evident as the number of large particles is
low. Most of the solid volume is concentrated in the larger particles, and deleting a
significant fraction of these will then create a large volume of void space needed to
be compensated for by increasing all the particle radii in the structure in order to
have a constant solid volume fraction. In the opposite end of the spectrum, where
the size ratio approaches 1, switching sizes of particles does not have any significant
effect, which is expected. If the particles are of the same size, a switch between the
two types will be equivalent to no switch at all. The observed fluctuations are merely
noise as a result of the randomness of the structures. In between the two extreme
cases the dependence tends to be more linear, showing that the effect of changing
particle sizes has a similar effect for all number fractions. A scaled comparison based
on minimizing the sum of squared differences between permeability and squared
mean pore size is found in Fig. 4.6. Again, the correspondence between the two
quantities is evident.
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Figure 4.4: Permeability [l2] as a function of the number fraction (x-axes) of small
particles plotted for all size ratios (captions) separately. The solid volume fraction
is 0.50. Note that l is the problem-dependent proper length (see Sections 3.3.3 and
3.4.2)

Figure 4.5: The mean pore size [l] as a function of the number fraction (x-axes)
of small particles plotted for all size ratios (captions) separately. The solid volume
fraction is 0.50. Note that l is the problem-dependent proper length (see Sections
3.3.3 and 3.4.2).
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Figure 4.6: Comparison of permeability and squared mean pore size as a function
of the number fraction (x-axes) of small particles plotted for all size ratios (captions)
separately. The solid volume fraction is 0.50.

4.3 From lattice structures to random packings

A series of structures based on monodisperse size distributions, with solid volume
fractions ranging between the maximum packing fraction Φmax = π/

√
18 ≈ 0.7403

to Φmin = 0.63, was generated using the lattice method described in Section 3.1.2.
The resulting permeability and mean pore size are plotted in Fig. 4.7. A scaled com-
parison based on minimizing the sum of squared differences between permeability
and squared mean pore size is plotted in Fig. 4.8. As can be seen, the assumption
that there is a linear relation between the permeability and the squared mean pore
size holds even for dense packings.

Figure 4.7: Permeability (left) and mean pore size (right) as functions of solid
volume fraction. Note that l is the problem-dependent proper length (see Sections
3.3.3 and 3.4.3).
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Figure 4.8: A comparison between the permeability and the squared mean pore
size.

The two-point probability functions for the void phase for some of the solid volume
fractions are calculated and plotted in Fig. 4.9. For a vanishing point separation,
S2 attains the value of the volume fraction of the void Φvoid, which corresponds to
the expected behavior explained in Section 3.3.2. As the separation increases, S2
starts to oscillate around the asymptotic values Φ2

void. In the example in Section
3.3.2, oscillations indicated correlations between the points. As can be seen in Fig.
4.9, the different structures seem to be approximately equally correlated, based on
visual comparison of the oscillations. However, the S2 curve seems to stretch as the
solid volume fraction decreases, indicating that the correlation lengths tend to be
longer for smaller solid volume fractions. This is not surprising, since all structures
in the series start from an fcc structure, and the stretching of S2 merely indicates
that the lattice is expanding. The expansion pushes the starting positions of the
particles away from each other as the solid volume fraction decreases.

Since the algorithm runs for a certain number of iterations, and no specific goal is
to be achieved (minimizing interaction energy etc.), the order in the structures from
the lattice state obviously remains to some extent. A reason why the structures
resemble each other to such a degree might be because of the dense nature of the
structures. There is simply no room for the particles to relocate enough to observe
any substantial difference between the different volume fractions, with the exception
of the increase in correlation length due to the expansion of the lattice. The max-
imum packing fraction obtained in RCP for a monodisperse size distribution was
found to be around 0.63, which implicates a quite narrow span of position options
for the relocating particles in the expanded lattice, especially for volume fractions
above 0.63. Hence, this suggests that an increase in the number of iterations for
which the particles are allowed to move might not have any large effect on the result.
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Figure 4.9: S2 for the void phase as a function of the point separation for some
different solid volume fractions.

An interesting comparison is between the two structures, with solid volume frac-
tion 0.63, one obtained via RCP and the other obtained via the lattice method.
The two-point probability function is plotted in Fig. 4.11 and a histogram of the
pore sizes is found in Fig. 4.12. As can be seen, the structure obtained by the
lattice method possesses longer-length correlations, in agreement with the analysis
above. A visual comparison between the pore sizes in Fig. 4.12 indicates that the
RCP structure seems to contain larger pores on average. The mean pore sizes are
0.1562 l for the RCP structure and 0.1402 l for the lattice method structure. Hence,
the RCP structure, which approximately attains the largest possible value for an
RCP (see Section 4.1), encloses void space inaccessible without any order in the
configuration. Also, permeability is higher for the RCP structure (0.0031 l2 com-
pared to 0.0027 l2), which corresponds well to the above reasoning in Section 4.1
about the link between permeability and mean pore size. The two structures are
illustrated in Fig. 4.10. As can be seen, despite the same solid volume fraction, the
structures truly are different. The ordered nature of the structure obtained by the
lattice method, as well as the high randomness in the structure obtained by RCP, is
clearly visible. Hence, the different correlation lengths observable in Fig. 4.11 seems
reasonable.

It might be concluded, though, that the lattice method does not generate typ-
ical semicrystalline structures, where some regions are random and other are or-
dered. The generated structures are rather perturbed lattices. Due to the lack of
space needed for the particles to reconfigure, the crystalline part clearly dominates
throughout the structures (since the particles more or less are locked in their posi-
tions). If the expansion of the lattice were continued, e.g. to a corresponding solid
volume fraction 0.4, the particles would be given more space to utilize in the reconfig-
uration process. However, the random displacements introduced in the second stage
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(after expanding the lattice) would jeopardize the crystalline part. Hence, the lattice
method seems to either generate perturbed lattice structures (for denser packings)
or structures similar to random packings (for looser packings). Hence, a suggested
way to overcome the problem would be to created structures from crystalline and
random substructures, generated separately.

Figure 4.10: The structures obtained by the lattice method (left) and RCP (right).

Figure 4.11: S2 for the void phase as a function of the point separation for a solid
volume fraction of 0.63, obtained by RCP and by the lattice method.
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Figure 4.12: A comparison of the pore sizes for the two structures, obtained by
RCP and by the lattice method. Note that l is the problem-dependent proper length
(see Sections 3.3.3 and 3.4.3).

4.4 Investigation of effects related to spatial cor-
relations

As mentioned in Section 3.1.3, to investigate the effect related to spatial correlations
in the structures, only particle positions are changed, keeping the size distribution,
and hence the solid volume fraction, porosity and specific surface constant. Dif-
ferent approaches were applied in order to force the particles to move to or avoid
certain locations in the structure: (i) introducing forces between the particles, (ii)
including repulsive point potentials in the structure, and (iii) deleting particles from
a generated structure. The methods are described in Section 3.1.3.

4.4.1 Introducing forces between particles
The resulting permeabilities and mean pore sizes for the different cases of applied
forces are found in Fig. 4.13. Comparisons between permeability and squared mean
pore size are plotted in Fig. 4.14 separately. As can be seen, the permeability is
affected by the performed modifications of the structures. The effect is large for
lower volume fractions, which seems reasonable, because in denser structures, where
the solid volume fraction is high, the particles are already packed close together,
effectively decreasing the degrees of freedom. Applying any type of force between
the particles to such a structure does not create any significant difference between the
modified and the original structure. Hence, the impact of structure on permeability
decreases with increasing solid volume fraction. A small fluctuating difference in
permeability between the two cases, attractive and attractive + repulsive forces,
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can be observed. This is probably an effect of noise caused by the random nature
of the generating process of the structures.

Figure 4.13: Permeability (left) and mean pore size (right) for the three different
cases. Note that l is the problem-dependent proper length (see Sections 3.3.3 and
3.4.4).

Figure 4.14: A scaled comparison based on minimizing the sum of squared differ-
ences between permeability and squared mean pore size.

S2 for the void phase for the three cases for a solid volume fraction of 0.20 is
plotted in Fig. 4.15. For a vanishing point separation, S2 attains the value of the
volume fraction of the void Φvoid = 0.80, and for a large separation, S2 attains the
asymptotic value of Φ2

void = 0.64, indicating that points separated on these distances
are uncorrelated, as discussed in Section 3.3.2. The minima are corresponding to
a separation of about one particle diameter. Interesting, though, are the minimum
values of S2 for the three cases, which differ. The smallest minimum value corre-
sponds to the original structure, where no force is applied. The largest minimum
value corresponds to the case where both an attractive and a repulsive force were
applied between the particles. In between is the case corresponding to only an at-
tractive force between the particles. Comparing this result to the example in Section
3.3.2, it seems like the cases, in which some kind of force has been applied, are in
between the two extreme cases of overlapping and nonoverlapping particles. This
intermediate state may be interpreted as that particles tend to create clusters. A
possible reason for the shallower dip in the case of opposing forces, compared to only
an attractive one, may be that particle clusters get pushed away from each other,
due to the repulsive force acting on longer distances, which seems to have increased
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the clustering effect. The stretching tendency of S2, similar to the one observed in
Fig. 4.9 for the lattice method, is observed in Fig. 4.15 as well, which may be a
result of the separation between particle clusters.

Figure 4.15: S2 for the void phase for three cases (left) and a magnification of the
minima (right). The solid volume fraction is 0.20.

A comparison between the mean pore sizes (Fig. 4.13) for solid volume fraction
0.20 shows that the mean pore size is larger for attractive + repulsive forces than
for only an attractive force. This coincides with the analysis of S2 above. For a
solid volume fraction of 0.22, the mean pore size for the two cases of applied forces
are almost equal. S2 for the two cases is plotted in Fig. 4.16. As can be seen, the
two curves now almost attains the same minimum, which is related to the similar
mean pore sizes observed in Fig. 4.13. Permeability, on the other hand, is shifted
between the two cases of solid volume fraction. This, however, is probably a noise
effect related to the randomness in the generating process and in the structures,
which might not be fully captured in the mean pore size and in S2.

Figure 4.16: S2 for the void phase for three cases (left) and a magnification of the
minima (right). The solid volume fraction is 0.22.

As mentioned in Section 3.1.4, the voxelization in Matlab and the triangulation
in VoxSurface affect the final structures used in the fluid dynamics simulations. For
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example, particles located close to each other may in some cases be separated by
a distance smaller than the discretization step, which results in a welding of the
surfaces, as observed for the denser packings in Section 4.1. The more clusters in
the structure, the greater the risk of getting an effect of the welding. By forcing
the particles to create clusters may hence alter the specific surface and the volume
fraction somewhat. The corresponding values on the specific surface are plotted in
Fig. 4.17. Theoretically, the specific surface should be equal in all three cases for
a certain solid volume fraction. However, the tendency toward lower values in the
cases where forces have been introduced is a result of particle clusters and welding.

Figure 4.17: Specific surface as a function of the solid volume fraction for the
original and the modified structures. Note that l is the problem-dependent proper
length (see Sections 3.3.3 and 3.4.4).

4.4.2 Repulsive point potentials
The resulting permeability and mean pore size are plotted in Fig. 4.18. A com-
parison between the permeability and the squared mean pore size is plotted in Fig.
4.19. There seems to be large variations in permeability, both as a function of the
solid volume fraction and as a function of the number of potentials. Similar to the
case in Section 4.4.1, the significance of the repulsive potentials is larger for smaller
volume fractions due to the larger fraction of void in these structures, meaning a
greater translational freedom for the particles. A possible explanation to the large
fluctuations may be the impact of the random positioning of the potentials. Since
there is no counter force in the model, more than the condition that no overlaps
should occur, the influence of a single potential on the particles may be very large.
If potentials happen to be located very close to each other, there will only be a small
region between them where they will oppose each other’s effect on the particles. In
the remaining domain, closely positioned potentials will work as one. The greater
the distance between the potentials, the more significant their individual contribu-
tions will be. This effect seems to decrease somewhat with an increasing number of
potentials. With a larger number of potentials, the chance for a wider spread of the
potentials in the domain is increased.

The fluctuations are not as significant in the mean pore size, which tends to
be fairly constant as a function of the number of potentials, and decreases as a
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function of the solid volume fraction. Based on the scaled comparison in Fig. 4.19,
it seems like the correspondence between the permeability and the squared mean
pore size found in previous sections is no longer as evident. A comparison between
structures where the correspondence between permeability and squared mean pore
size are good and bad, respectively, is found in Figs. 4.20 - 4.21. As can be seen,
as the number of potentials is low, their individual effect is larger. Since there is
no counter force to the repulsive potentials, the particles will be pushed away from
these regions, and the result is a large opening in the structure. The flow is in the
x-direction, and as can be seen in the structure to the right hand side in Figs. 4.20
- 4.21, the particles form a wall in the yz-plane, creating a barrier for the fluid to
pass through. This is the reason for the low permeability despite a relatively high
value on the squared mean pore size. Hence, in cases where the structures are less
isotropic, the assumption that the spatial correlations may be captured in the mean
pore size alone is too much of a simplification.

Figure 4.18: Permeability (left) and mean pore size (right) as functions of the
number of repulsive potentials and the solid volume fraction.
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Figure 4.19: Comparison of the permeability and the squared mean pore size
as a function of the solid volume fraction (x-axes) plotted separately for different
number of repulsive potentials (captions). Note that l is the problem-dependent
proper length (see Sections 3.3.3 and 3.4.4).

Figure 4.20: Comparison of two structures in the xy-plane for which the corre-
spondence between the permeability and the squared mean pore size is good (left)
and bad (right). The solid volume fraction is 0.22 in both cases, and the number of
repulsive potentials is 48 (left) and 2 (right).
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Figure 4.21: Same comparison as in Fig. 4.20, but from a different angle. The
left structure produces a good correspondence and the right structure produces a
bad correspondence. A clarification of the spatial orientation: x (red), y (green), z
(blue).

S2 for the two cases of structure is plotted in Fig. 4.22. In the interval [0, 2rparticle],
the curves follow each other, and both structures show a dip for a point separation
around 2rparticle. As the separation increases, S2 decreases. As can be seen, the
plain blue line corresponding to the anisotropic structure attains higher values than
for the more isotropic structure. This indicates that the probability of successfully
finding two points in void space is higher than in the anisotropic structure, which
corresponds well to the open structure in Fig. 4.20 - 4.21.

To increase the number of particles used (and scale them to appropriate sizes to
obtain the same solid volume fractions as before) while keeping the number of poten-
tials unchanged, as an attempt to overcome the problem with creating anisotropic
structures, would probably have a small, if any, effect on the result. The repulsive
forces acts without any balance to other forces in the system (apart from the con-
dition of nonoverlapping particles). Hence, particles, no matter the total number
in the system, will be pushed away in a similar manner for similar solid volume
fractions.

Figure 4.22: S2 for the two structures in Fig. 4.20 - 4.21.

42



4. Results and discussion

4.4.3 Deleting particles from the structure

The resulting permeability and mean pore size are plotted in Fig. 4.23. An inves-
tigation of the plots indicates that the permeability behaves in a similar irregular
manner as in the previous case in Section 4.4.2, but not to the same degree. The
resemblance between the cases holds for the mean pore size as well. Despite the
irregularities, there is an observable trend tending to display a relation between the
pore sizes and the permeability. The permeability and the squared mean pore size
are plotted in Fig. 4.24. As can be seen, the linear relationship is weaker in cases
where the influence on the structures are large, i.e. in the cases where either the
size or the volume fraction of the deleted particles are large.

The resemblance between deleting particles from the structures and to introduce
repulsive potentials is not surprising, though. The larger particles, like the repulsive
potentials, are distributed randomly. Hence, it is possible that larger particles hap-
pen to be located close to each other, and deleting them would give rise to large void
regions in the domain. The impact on the structure, however, is less significant. In
contrast to the long range action of the repulsive potentials, the effect of deleting
particles is only local. The risk of forcing the particles into wall formations can also
be controlled via the size ratio and volume fraction of the larger particles. This type
of mechanism is not achievable using unbalanced repulsive potentials, as in Section
4.4.2. Hence, it seems achievable to introduce some sort of control over the pore
sizes, and have some manual influence of the structure, by deleting a portion of the
particles from the domain. However, in order to obtain a more reliable and sta-
ble correlation between the permeability and the mean pore size (or squared mean
pore size), a larger system needs to be taken under consideration, meaning a larger
number of particles (of both sizes).

Figure 4.23: Permeability (left) and mean pore size (right) as functions of number
of larger particles and size ratio between the larger and smaller particles and solid
volume fraction of the larger particles. Note that l is the problem-dependent proper
length (see Sections 3.3.3 and 3.4.4).
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Figure 4.24: Comparison between the permeability and squared mean pore size
as a function of the volume fraction of the larger particles, plotted separately for
different size ratios.

4.5 The Kozeny-Carman equation

The version of the Kozeny-Carman equation including a dependence on the pore
size distribution, Eq. (2.4) stated in Section 2.2, is provided once more:

κ = C̃f(Λ) Φ3
void

S2(1− Φvoid)2 . (4.2)

The results from the simulations strongly suggests that a there is a relationship
between the squared mean pore size and the permeability, at least for isotropic
structures. To reiterate, the generating method gives statistically isotropic struc-
tures. However, a particular realization may be highly anisotropic. Problems arise
when the isotropy of the structures decreases, and for highly anisotropic structures,
the choice of flow direction in the simulation becomes important. As can be seen
in Fig. 4.20-4.21, the choice of direction is truly important for the structure on
the right-hand side. As mentioned in Section 4.4.2, the flow was in the x-direction.
However, the open structure would function as a canal in the z-direction. Hence,
considerably different results would be expected if flow in the z-direction were to be
considered instead. Some sort of quantification of the isotropy (or anisotropy), or
a related property of the structure, would be preferable. This, however, will not be
achievable during the time frame of this thesis, and hence, the effects of anisotropy
will be neglected in the discussion. However, based on the results from the more
isotropic structures it can be concluded that

f(Λ) = Λ2, (4.3)
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where Λ is the mean pore size. A suggested version of the Kozeny-Carman equation
would then take the form

κ = C̃Λ2 Φ3
void

S2(1− Φvoid)2 . (4.4)

The obtained exponent of Λ it is not obvious (e.g. from dimesional analysis), though,
since C̃ might have a unit as well. However, Λ2 seems natural since permeability
has unit of length2 and the mean pore size has unit of length.

Now, using the earlier results from the Section 4.4.1, for which the relation be-
tween permeability and the squared mean pore size holds, a test of the assumption
may be performed. For a specific volume fraction, the only difference between the
three series is the particle positions. Hence, C̃ in Eq. (4.4) should be the same. For
the three cases, C̃ is estimated by minimizing the sum of squared differences. The
resulting constants are:

Corg = 0.005840; Catt = 0.006048; Catt+rep = 0.005982. (4.5)

As can be seen, they are approximately equal. This strengthens the hypothesis that
for isotropic structures, the permeability is a function of the squared mean pore size.
The fact that there is a relationship between the two quantities is quite natural. A
larger amount of empty space in the structure would reasonably permit a larger flow.
A condition for a flow is, though, that the porous domains are connected. This is
the case in the structures used, since the particles are not overlapping. If, however,
overlapping particles were allowed in the structure, it would have been possible for
porous domains to be isolated and not contribute to the transport of fluid through
the structure.
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5
Conclusion

It has been shown that permeability is affected by the particle size distribution.
The permeability is larger for a polydisperse case compared the monodisperse case
of the same solid volume fraction. The obtained mean pore sizes were larger in the
polydisperse cases, which tentatively is the reason for the increased permeability. A
more detailed analysis of the bidisperse size distribution was performed. However,
a similar exhaustive investigation may be interesting for the lognormal distribution,
as well, e.g. varying variance and solid volume fraction.

The size distribution affects the maximum packing fraction obtained by RCP,
i.e. the packing fraction of structures of randomly distributed particles packed to a
maximum possible density, as well. By using a polydisperse size distribution, denser
packing fractions are possible, which coincides with previous experimental and the-
oretical results. The obtained maximum packing fraction for the monodisperse dis-
tribution was around 0.63, which is somewhat lower than previous published results.
However, the maximum packing fraction is dependent on the size of the domain, and
hence a larger number of particles would be needed to obtain denser packings. An
interesting continuation would be to investigate the effects on RCP by changing the
parameters in the distributions, e.g. size ratio and variance.

Different degrees of heterogeneity in the structures has been shown to affect the
permeability. Attempts to control the pore sizes in the structures were performed
using methods of different degree of physical relevance. An attractive force, in com-
bination with or without any repulsive force, between the particles affects the clus-
tering. Introducing repulsive point potentials at random positions in the domain is
a rather unphysical approach, and without any counter force it is difficult to control
the effect on the structures. When the number of potentials is low, the positions of
the repulsive point potentials have substantial impact. This effect decreases some-
what as the number of potentials, as well as the solid volume fraction, is increased.
A more reliable and realistic method seems to be to generate structures based on
bidisperse size distributions, where one particle type is removed in the second stage.
The pore sizes may be controlled by changing the number fraction and size of the
particles to be removed. Hence, the risk of obtaining highly anisotropic structures,
as the ones obtained using repulsive potentials, may be reduced by tuning these
parameters. However, in order to fully evaluate the method, a larger number of
particles is needed (tentatively of both kinds).

The combined result from changing the particle size distribution and from chang-
ing the degree of heterogeneity in the structures suggests that there is a linear
relationship between the permeability and the squared mean of the pore size dis-
tribution. However, modifying the structures in order to obtain different degrees
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of heterogeneity might affect the degree of isotropy in the structures. For highly
anisotropic structures, the permeability becomes dependent on the flow direction, a
feature not captured by the mean pore size. Possibly, computing the permeability
as an average over all three flow directions may give more consistent results.

The two-point probability function was successfully used to investigate spatial
correlations and order in structures, as well as to characterize clustering. Isotropic
structures were assumed, and hence the dependence of the orientation of the points
was neglected. However, this assumption does not hold for highly anisotropic struc-
tures, e.g. for modified structures where only a few repulsive potentials have been
used. Despite an indication of highly anisotropic structures due to large void re-
gions, the significant difference between isotropic and anisotropic structures is not
captured to an appropriate degree by the isotropic version of the two-point proba-
bility function used. To not assume isotropy, and hence include a dependence on the
orientation of the points, might provide some interesting results and is suggested as
a possible continuation of the investigation.

Only spherical granules were studied in this thesis. In the continuation of the
exploration of the space of material configurations, also particles of different shapes
may be considered, e.g. ellipsoids or rods. Also allowing particles to overlap would
introduce another dimension to the problem.
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A
Appendix 1

A.1 Statistical mechanics
First, consider a system of N particles where particle i has position vector ~ri and
momentum ~pi. For a three dimensional domain, a 6N -dimensional space consisting
of the configurations of all the particles defines the phase space. A configuration of all
the 6N variables, denoted in the compact form ~X, defines a microstate of the system,
with a corresponding energy E( ~X). Using the energy given for the microstates, a
probability density function, or distribution function, may be introduced:

f( ~X, t) = exp{−E( ~X)/kT}∫
exp{−E( ~X)/kT}d ~X

, (A.1)

where k is Boltzmann’s constant and T is the temperature [3, 35]. The denominator
is the intergral over all microstates. The normalization ensures that∫

f( ~X, t)d ~X = 1 (A.2)

holds [35]. Since the system considered usually consists of a large number of particles,
it is not (always) a convenient approach to keep track on microstates. Instead, a
macrostate is defined, where properties such as pressure, temperature, and volume
are considered, rather than particle positions and momentum. It is possible for a
number of microstates to correspond to the same macrostate [35].
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