

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, May 2012

CC Data Visualization Library:

Visualizing large amounts of scientific data through interactive graph
widgets on ordinary workstations

Master of Science Thesis in the programmes

Interaction Design & Algorithms, Languages and Logic

MAX OCKLIND

ERIK WIKLUND

i

The Authors grant to Chalmers University of Technology the non-exclusive right to

publish the Work electronically and in a non-commercial purpose make it accessible on

the Internet.

The Authors warrant that they are the authors to the Work, and warrant that the Work

does not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

Authors have signed a copyright agreement with a third party regarding the Work, the

Authors warrant hereby that they have obtained any necessary permission from this

third party to let Chalmers University of Technology store the Work electronically and

make it accessible on the Internet.

CC Data Visualization Library:

Visualizing large amounts of scientific data through interactive graph widgets on

ordinary workstations

MAX OCKLIND

ERIK WIKLUND

© MAX OCKLIND, May 2012.

© ERIK WIKLUND, May 2012.

Examiner: Olof Torgersson

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
The GUI of the CCDVL library during a test run, showing a scatter plot graph of sample data with a

lasso selection overlay. Sections 4.2.3 FRONTEND AND GUI ANALYSIS AND DESIGN and 4.3.3 FRONTEND

AND GUI IMPLEMENTATION as well as APPENDIX B - MANUAL AND USER GUIDE contains detailed

descriptions of the GUI and frontend.

Department of Computer Science and Engineering

Göteborg, Sweden May 2012

ii

Abstract

A big problem today is that there are currently few or no solutions available for

workstations that are able to provide both good interactivity and fast response times

while visualizing large amounts of data. Using existing solutions often cause crashes or

freezes due to the assumption that all data will fit in main memory and can be processed

as such. The purpose of this thesis was thus to simplify analysis of large amounts of

scientific data by creating a small modular and extensible cross-platform graphics

library, intended to run on ordinary workstations, capable of handling such data and

present it through highly interactive plot graph widgets. Focus was on basic

functionality for two-dimensional graphs, namely scatter plot graphs and time series

graphs.

The created library implements a memory manager that avoids keeping too much data

in memory by controlling and partially storing and loading data to and from a temporary

file and the main memory as needed. A clipmap-like structure is used to display the

graph, and a cache of clipmap image tiles is used in combination with progressive

updates to improve performance and responsiveness. Insufficient planning forced some

of the functionality and requirements to be dropped, which left room for much

improvement, as well as a lot of possible out of scope additions and extensions, such as

better utilization of the cache, supporting groups of selected data points, logarithmic

scaling, and improvements to the memory manager, renderer and GUI.

Comparing the results of a simple review and tests of some existing data visualization

libraries it was found that the used renderer had average performance, although it had

problems using very large or many clipmap image tiles. The resulting library may not

be faster than many existing libraries, but it allows faster interaction with good tile

configurations and stands out in that it also allows interaction during loading of data and

graph updates, while normally avoid consuming all system resources. Its potential is

promising, as it thus allows for faster extraction of interesting portions of the data,

giving it many possible applications within several areas.

Keywords

Algorithms, Data points, Design, Human-computer interaction, Information

visualization, Large data visualization, Memory management, Scatter plot, Time series

plot, User interface

iii

Acknowledgements

The authors would like to thank Olof Torgersson, the supervisor and examiner at

Chalmers, for his support and feedback throughout the thesis work; Peter Karlsson and

Alexander Busck at Combine for their encouragement and inspiring vision; Stefan

Larsson at Volvo Car Corporation for his great insight and advice regarding graphs and

plotting interfaces; and last, but not least, the authors would like to thank all family and

friends for their support.

iv

Table of contents

1 INTRODUCTION .. 1

1.1 BACKGROUND .. 1
1.2 PROBLEM .. 2
1.3 PURPOSE ... 2
1.4 DELIMITATIONS .. 2

2 THEORY ... 3

2.1 OPERATING SYSTEM MEMORY MANAGEMENT ... 3
2.1.1 Virtual memory, swap and memory leaks .. 3

2.2 ALGORITHMIC PROBLEMS .. 5
2.2.1 Algorithms ... 5

2.2.1.1 Algorithm complexity analysis .. 5
2.2.1.2 Polynomial problems ... 7
2.2.1.3 Nondeterministic polynomial problems ... 7
2.2.1.4 Other complexity classes ... 8

2.2.2 Binary search .. 9
2.2.3 Cache ... 9
2.2.4 Point in polygon .. 9

2.3 CONCURRENT PROGRAMING AND MULTIPROCESSING ... 12
2.4 SOFTWARE ENGINEERING DESIGN PATTERNS ... 13

2.4.1 Observer .. 13
2.4.2 Visitor and double dispatch ... 13
2.4.3 Iterator ... 13
2.4.4 Readers-writer lock ... 14
2.4.5 Message queue .. 14

2.5 HUMAN-COMPUTER INTERACTION ... 14
2.6 INFORMATION VISUALIZATION ... 15

2.6.1 Examples of information visualization .. 16
2.6.2 Representation ... 19

2.6.2.1 Data types and data complexity ... 19
2.6.2.2 Data encoding methods and guidelines .. 22

2.6.3 Presentation of represented data ... 25
2.6.3.1 Display limitation techniques .. 25
2.6.3.2 Time limitation techniques .. 26

2.6.4 Interaction with presented data ... 27
2.6.4.1 Exploration and insight through interaction ... 27
2.6.4.2 Information spaces and types of interactions ... 28
2.6.4.3 The Action Cycle and human aspects of interaction .. 28

2.7 GRAPHICAL USER INTERFACE .. 30
2.7.1 User type and application posture .. 30
2.7.2 Flow and excise ... 31
2.7.3 Design patterns, heuristics and guidelines .. 31
2.7.4 Gestalt grouping principles ... 34

3 METHOD .. 36

3.1 RESEARCH METHODS .. 36
3.2 PRESTUDY METHODS .. 36

v

3.3 DEVELOPMENT METHOD AND SOFTWARE LIBRARIES .. 38
3.3.1 Iterative development process ... 38
3.3.2 Programming language and software libraries .. 39

3.4 TOOLS AND COLLABORATION METHODS .. 40

4 DEVELOPMENT ... 41

4.1 PLANNING AND REQUIREMENTS ... 41
4.2 ANALYSIS AND DESIGN .. 42

4.2.1 API analysis and design .. 42
4.2.1.1 Iterators analysis and design .. 45

4.2.2 Backend analysis and design ... 45
4.2.2.1 Memory manager analysis and design ... 45
4.2.2.2 Renderer analysis and design ... 46

4.2.3 Frontend and GUI analysis and design ... 47
4.2.3.1 GUI overview and structure ... 47
4.2.3.2 Grid and graph axes ... 49
4.2.3.3 Graph interaction tools ... 50
4.2.3.4 Neighbourhood overview... 51
4.2.3.5 Information labels .. 52
4.2.3.6 Groups list .. 53
4.2.3.7 Settings dialog ... 53

4.3 IMPLEMENTATION .. 54
4.3.1 API implementation ... 55

4.3.1.1 Cache implementation ... 56
4.3.1.2 Groups implementation .. 56
4.3.1.3 Iterator implementions ... 56
4.3.1.4 Mathematical transformations ... 57

4.3.2 Backend implementation ... 58
4.3.2.1 Memory manager implementation ... 58
4.3.2.2 Renderer implementation ... 59

4.3.3 Frontend and GUI implementation ... 59
4.3.3.1 Graph interaction tools and settings ... 61
4.3.3.2 Graph image clipmap and state objects .. 62
4.3.3.3 Qt and graph coordinate systems ... 63
4.3.3.4 Graph image clipmap position ... 65

4.4 TESTING AND EVALUATION .. 66
4.4.1 API and backend testing and evaluation ... 66

4.4.1.1 Cache evaluation and alterations.. 67
4.4.2 Frontend testing and evaluation .. 67

4.4.2.1 GUI evaluation and alterations .. 69
4.4.2.2 Graph interaction tools evaluation and alterations ... 70

4.4.3 Initial performance and test results ... 71

5 RESULT .. 73

5.1 CCDVL LIBRARY AND API .. 73
5.2 PERFORMANCE AND TEST RESULTS .. 75
5.3 COMPARISON WITH PRESTUDY RESULTS .. 79

6 DISCUSSION .. 80

6.1 METHOD DISCUSSION ... 80
6.2 PRESTUDY .. 80
6.3 DEVELOPMENT DISCUSSION ... 81

vi

6.3.1 API and library specification .. 81
6.3.2 Modules and components .. 82
6.3.3 Python bindings ... 83

6.4 RESULT DISCUSSION ... 84
6.5 LESSONS LEARNT ... 84
6.6 FUTURE WORK, ADDITIONS AND EXTENSIONS ... 85

6.6.1 API and backend.. 85
6.6.2 Frontend and GUI ... 87
6.6.3 New modules .. 91

7 CONCLUSION ... 93

REFERENCES ... 94

APPENDICES

APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS
APPENDIX B - MANUAL AND USER GUIDE
APPENDIX C - PRESTUDY RESULTS
APPENDIX D - PLANNING REPORT
APPENDIX E - CCDVL API DOCUMENTATION

vii

List of Figures

FIGURE 1. AN INEFFECTIVE WAY TO STORE AND VISUALIZE LARGE AMOUNTS OF DATA TO BE

ANALYSED. .. 1

FIGURE 2. AN OVERVIEW OF THE RELATIONSHIP BETWEEN VIRTUAL MEMORY, PHYSICAL

MEMORY AND DISK MEMORY. THE LIGHT-BROWN PAGES (SUCH AS PAGE 2) HAVE BEEN

SWAPPED TO THE DISK, WHILE THE GREEN PAGES (SUCH AS PAGE 1) ARE STILL RETAINED

IN THE PHYSICAL MAIN MEMORY. THE PALE-GREEN FRAMES (SUCH AS FRAME 2)

REPRESENT FREE UNUSED MEMORY. .. 4

FIGURE 3. THE SHADED AREAS OF THIS SELF-INTERSECTING POLYGON REPRESENT THE AREAS

THAT THE (A) ODD OR EVEN AND (B) WINDING NUMBER STRATEGIES CONSIDER AS BEING

INSIDE THE POLYGON. ... 11

FIGURE 4. AN ASSOCIATION CHART SHOWING SOME OF THE MAIN FIELDS CONTRIBUTING TO

HUMAN-COMPUTER INTERACTION. ... 14

FIGURE 5. A SUMMARY OF THE INFORMATION VISUALIZATION PROCESS. 16

FIGURE 6. CHARLES JOSEPH MINARD’S MAP OF NAPOLEON’S MARCH AND RETREAT TO AND

FROM MOSCOW. ... 17

FIGURE 7. A CLUSTER MAP OF THE 1845 SOHO DISTRICT IN LONDON, SHOWING CHOLERA

DEATHS (AS DOTS) AND WATER PUMPS (AS CROSSES). THE PUMP AT BROAD STREET IS

LOCATED ROUGHLY AT THE CENTER OF THE MAP. ... 17

FIGURE 8. A RADIAL TABLE SHOWING THE RELATIONS BETWEEN DIFFERENT CARS AND CAR

MODELS. ... 18

FIGURE 9 A MULTILAYERED VENN DIAGRAM SHOWING THE RELATIONS OF THE DIFFERENT

ELEMENTS AND FIELDS THAT CONTRIBUTE TO AND MAKE UP DATA VISUALIZATION. 19

FIGURE 10. SOME EXAMPLES OF REPRESENTATIONS OF DATA WITH DIFFERENT COMPLEXITIES.

 .. 20

FIGURE 11 A STAR PLOT SHOWING THE ATTRIBUTES OF A QUALITY-DRIVEN APPLICATION..... 20

FIGURE 12 A MOSAIC PLOT SHOWING THE RELATION BETWEEN HAIR COLOR AND EYE COLOR.

 .. 21

FIGURE 13 A TREE MAP SHOWING THE HIERARCHY, AMOUNT, SIZE AND (COLOR-CODED) TYPES

OF FILES LOCATED IN A COMPUTER DIRECTORY. ... 21

FIGURE 14. BERTIN’S GUIDANCE REGARDING THE SUITABILITY OF VARIOUS ENCODING

METHODS TO SUPPORT COMMON TASKS IN INFORMATION VISUALIZATION. 22

viii

FIGURE 15. AN EXAMPLE OF CHROMOSTEREOPSIS SHOWING TWO OBJECTS OF THE SAME

SHAPE AND SIZE. TO MOST PEOPLE THE RED CIRCLE APPEARS CLOSER TO THE FRONT

THAN THE BLUE CIRCLE. .. 25

FIGURE 16. AN EXAMPLE OF THE OVERVIEW PLUS DETAIL DESIGN PATTERN SHOWING A PDF-

DOCUMENT IN THE PREVIEW APPLICATION RUNNING ON MAC OS X 26

FIGURE 17. THE ACTION CYCLE, PRESENTED BY DONALD NORMAN IN 1988. 28

FIGURE 18. AN EXAMPLE OF CHANGE BLINDNESS. THE TWO PICTURES ARE DIFFERENT (ONE

OBJECT HAS BEEN REMOVED), BUT THE CHANGE CAN BE HARD TO NOTICE AT FIRST

GLANCE. CAN YOU SPOT THE DIFFERENCE? ... 29

FIGURE 19. ILLUSTRATED EXAMPLES OF THE GESTALT GROUPING PRINCIPLES.................... 34

FIGURE 20. ILLUSTRATED EXAMPLES OF THE GESTALT GROUPING PRINCIPLES.................... 34

FIGURE 21. ILLUSTRATED EXAMPLES OF THE GESTALT GROUPING PRINCIPLES.................... 35

FIGURE 22. ILLUSTRATED EXAMPLE OF THE COMMON REGION GESTALT GROUPING PRINCIPLE.

 .. 35

FIGURE 23. AN OVERVIEW OF THE STEPS MAKING UP THE ITERATIVE DEVELOPMENT PROCESS.

 .. 38

FIGURE 24. EARLY API DESIGN OVERVIEW. ... 43

FIGURE 25 A TYPICAL USAGE SCENARIO AS SEEN FROM THE API PERSPECTIVE. 43

FIGURE 26. UPDATED API DESIGN OVERVIEW. .. 44

FIGURE 27. A SKETCH OF ONE OF THE PROPOSED GUI DESIGN AND LAYOUTS OF THE GRAPH

WIDGET PROTOTYPE, SHOWING THE MAIN GRAPH VIEW AREA AT THE TOP LEFT WITH A

TOOLBAR, OVERVIEW, COORDINATE AND GRAPH VIEW RANGE BOXES BELOW. A GROUPS

PANEL AND A PROCESS PROGRESS PANEL IS SHOWN TO THE RIGHT. 48

FIGURE 28. ANOTHER SKETCH OF ONE OF THE PROPOSED GUI DESIGN AND LAYOUTS OF THE

GRAPH WIDGET PROTOTYPE, CLOSER TO THE FINAL DESIGN WITH THE OVERVIEW BOX IN

THE TOP RIGHT CORNER AND THE COORDINATE AND GRAPH VIEW RANGE BOXES

COMBINED AT THE BOTTOM ... 49

FIGURE 29. A LIST OF POSSIBLE TOOLS ALONG WITH SUGGESTIONS OF CORRESPONDING

ICONS. TOOLS FROM TOP TO BOTTOM: PAN, POINT SELECT, ZOOM IN, ZOOM OUT, ZOOM

SELECT, LASSO SELECT, RECTANGLE SELECT AND UNDO/REDO. THE REASON WHY THE

ZOOM SELECT TOOL HAS BEEN STRIKED OUT CAN BE FOUND IN SECTION 4.4.2.2 GRAPH

INTERACTION TOOLS EVALUATION AND ALTERATIONS. ... 51

FIGURE 30. SOME ALTERNATIVE VERSIONS AND LAYOUTS OF THE GRAPH NEIGHBOURHOOD

OVERVIEW, GRAPH VIEW RANGE AND COORDINATES. ... 52

ix

FIGURE 31. EARLY VERSIONS OF THE ROW LAYOUT AND CONTENTS OF THE GROUPS LIST. 53

FIGURE 32. A QUICK SKETCH OF THE CONTENTS OF THE SETTINGS DIALOG. 54

FIGURE 33. A CLASS DIAGRAM SHOWING THE LIBRARY CLASSES NOT BELONGING TO THE

FRONTEND OR GUI. .. 55

FIGURE 34. A CLASS DIAGRAM OF THE FRONTEND. THE QTGUI AND QTCORE MODULES AND

THEIR CONTAINED CLASSES BELONG TO THE QT FRAMEWORK AND ARE NOT DIRECTLY

PART OF THE CCDVL LIBRARY. ALL CCDVL CLASS NAMES USE QT AS PREFIX TO SIGNAL

THAT IT IS A QT-BASED FRONTEND. .. 60

FIGURE 35. AN EXAMPLE SHOWING THE THREE STEPS OF A PAN TRIGGERED UPDATE OF THE

GRAPH IMAGE. THE GRAPH IMAGE TILES HAVE BEEN OUTLINED AND NUMBERED IN THIS

EXAMPLE FOR CLARITY. THE BLACK SOLID OUTLINE REPRESENTS THE POSITION, SIZE AND

SHAPE OF THE VIEWPORT IN THE SCENE, AND THE BLUE DASHED OUTLINE REPRESENTS

THE NORMALLY INVISIBLE BORDER WHICH THE CENTER POINT OF THE VIEWPORT MUST

PASS TO TRIGGER AN UPDATE OF THE GRAPH IMAGE, AS SEEN IN STEP (A). STEP (B)

REMOVES TILES 1-4 AND APPENDS TILES 17-20, RESULTING IN THE NEW GRAPH IMAGE IN

STEP (C). .. 62

FIGURE 36. AN OVERVIEW OF THE DIFFERENT COORDINATE SYSTEMS IN USE IN THE FRONTEND

COMPONENTS, SHOWING THE RESPECTIVE ORIGIN AND POSITIVE DIRECTIONS FOR EACH.

POINT P THUS HAS DIFFERENT COORDINATES IN EACH OF THE COORDINATE SYSTEMS.

NOTE THAT, IN ACTUALITY, THE VIEWPORT OF THE GRAPHICS VIEW COVERS THE ENTIRE

GRAPHICS VIEW WIDGET, AND IT IS MADE SURE THAT THE GRAPH IMAGE COVERS THE

ENTIRE GRAPHICS SCENE, AS MENTIONED IN THE TEXT ABOVE. 64

FIGURE 37. A SCREENSHOT OF THE GUI OF THE FINAL GRAPH WIDGET EXAMPLE

IMPLEMENTATION PROTOTYPE SHOWING A SMALLER SAMPLE OF SCIENTIFIC DATA

PROVIDED BY COMBINE. .. 73

FIGURE 38. A SEQUENCE DIAGRAM OF TYPICAL RUN OF AN APPLICATION USING THE CCDVL

LIBRARY, SUCH AS THE GRAPH WIDGET EXAMPLE IMPLEMENTATION PROTOTYPE. 74

FIGURE 39. RELATIONS BETWEEN GRAPH IMAGE TILE CONFIGURATIONS (A), GRAPH IMAGE

SIZE (B) AND TOTAL RENDERING TIME (WITH AN EMPTY CACHE) IN THE FINAL TEST, BASED

ON THE DATA IN TABLE 4. ... 77

x

List of Tables

TABLE 1. GUIDANCE FOR THE ENCODING OF QUANTITATIVE, ORDINAL AND CATEGORICAL

DATA. THE METHODS ARE LISTED IN DESCENDING ORDER OF ACCURACY FOR

EVALUATING THE ENCODED VALUES. ... 23

TABLE 2. AN OVERVIEW OF THE ITERATION MAIN TASKS, ALONG WITH NUMBER OF

SUBVERSION REVISIONS AND APPROXIMATE TIME SPENT ON EACH ITERATION. 41

TABLE 3. LATE TEST RESULTS WITH HIGH TOTAL RENDERING TIMES DUE TO SUB-OPTIMAL

RENDERING. 25 MILLION POINTS OF GENERATED DATA WAS LOADED AND RENDERED ON

THE TEST NOTEBOOK WITH THE GRAPH WIDGET EXAMPLE IMPLEMENTATION PROTOTYPE.

 .. 72

TABLE 4. FINAL TEST RESULTS WITH IMPROVED TOTAL RENDERING TIMES. 25 MILLION POINTS

OF GENERATED DATA WAS AGAIN LOADED AND RENDERED ON THE TEST NOTEBOOK WITH

THE GRAPH WIDGET EXAMPLE IMPLEMENTATION PROTOTYPE. 76

TABLE 5 FINAL TEST RESULTS RUN ON THE MORE POWERFUL TEST DESKTOP COMPUTER WITH

THE GRAPH WIDGET EXAMPLE IMPLEMENTATION PROTOTYPE. 78

xi

Abbreviations

Anti-Grain Geometry (AGG): An open source image rendering library first distributed

under the BSD license, and later versions under the GPL licence.

Apache Subversion (SVN): A software versioning and revision control system

distributed under an open source license.

Application Programming Interface (API): A description of how applications may

communicate, use, extend or borrow provided functionality.

Berkeley Software Distribution (BSD): An open source operating system that comes

in a few different flavours, distributed under a nearly unrestricted software license.

Cathode Ray Tube (CRT): Older “thicker” monitors, usually called CRT-monitors,

use a cathode ray tube, which is a vacuum tube containing electron guns, which in turn

are used to manipulate an electron beam onto a fluorescent screen to displaying images.

CC Data Visualization Library (CCDVL): The library developed during this thesis,

where CC refers to the file name extension of the C++ source code files.

Central Processing Unit (CPU): The CPU, or processor, performs computations and

executes program instructions.

Dynamic Random-Access Memory (DRAM): One of the most common types of

RAM used today, where each data bit is stored in a separate capacitor that is refreshed

periodically to keep its charge, thus making it dynamic.

Fast, Light Toolkit (FLTK): An open source GUI toolkit released under the LGPL

licence.

GIMP Toolkit (GTK+): A free GUI toolkit originally developed for GIMP.

GNU General Public Licence (GPL): A strict open source license, which GNU is

distributed under.

GNU Image Manipulation Program (GIMP): A free image manipulation program.

GNU is Not UNIX (GNU) :An open source reimplementation of a UNIX like system,

with a recursive abbreviation.

GNU Lesser General Public Licence (LGPL) :A slightly less strict version of the

GPL license, often more suitable for software libraries.

Graphical User Interface (GUI): An interface used by users to interact with

applications through displayed graphics; often windows, buttons, checkboxes, etc.

Hierarchical Data Format, version 5 (HDF5): A portable file format with no limit on

the number or size of data objects in the collection, distributed under the BSD license.

xii

Integrated Development Environment (IDE): An application facilitating software

development, usually providing at least a source code editor, automated building tools

and a debugger for the computer programmers to use.

Input/Output (I/O): Data communication (in and out), referring to using either a

communication port or a data bus.

Liquid Crystal Display (LCD): A flat panel display, which uses the light modulation

properties of liquid crystals to display images.

Not a Number (NaN): An error which can occur during floating point operations,

involving infinite values, other NaN values and calculations with undefined results.

Portable Document Format (PDF): A platform independent file format for storing and

formatting rich text documents.

Portable Operating System Interface for UNIX (POSIX): A UNIX like operating

system API.

Postscript (PS): A format used to describe and store documents.

Random-Access Memory (RAM): The physical main memory of a computer, used by

the operating system, processes and applications to store and manipulate temporary

data. More specifically, DRAM is usually the type of memory used.

Solid-State Drive (SSD): A type of data storage devices, usually flash memory-based

or DRAM-based, which contain no moving parts. They are faster than traditional

mechanical storage devices, such as hard disk drives, in that they generally have better

read and write speed and performance.

Subversion (SVN): See Apache Subversion (SVN) above.

Symmetric Multiprocessing (SMP): Two or more processors, or processor cores,

share and access the same main memory, controlled by a single operating system. This

allows the operating system to distribute tasks between the processors, or processor

cores, and balance the workload more efficiently.

1 Introduction

1

1 Introduction

This master’s thesis was carried out during the late fall and winter of 2011 and finished

in the spring of 2012 at Chalmers University of Technology and at Combine AB in

Gothenburg, Sweden. Combine is a Swedish company doing work and consultation

within the areas of control systems, software development, electronics and mechanics.

Their main office is located in Gothenburg, and they have offices located in Lund,

Sweden, and Beijing, People’s Republic of China, as well (Combine, 2012).

1.1 Background

As technology advances and computers are able to process and store larger and larger

amounts of data, there is an ever growing need to visualize and analyse all this

exponentially increasing amount of data (Zverina, 2010). This is especially true for the

vast amount of multidimensional scientific data generated through tests and

measurements, which must usually be visualized one way or another before analysis can

begin (Spence, 2007). FIGURE 1 contains a good metaphor that may give the reader an

idea of the scale of data that has to be dealt with. Using visualization tools to produce

advanced interactive diagrams, graphs or similar graphic visualizations have become

common practice, often utilizing more powerful algorithms, data structures, computers

or computing solutions, such as high-performance computers or supercomputers to be

able to process and interact with the vast amount data (National Endowment for the

Humanities, Office of Digital Humanities, 2012). See section 2.2 ALGORITHMIC

PROBLEMS for more on algorithms and section 2.6 INFORMATION VISUALIZATION for

more on visualizing data.

Image source: http://www.businessweek.com/articles/2012-04-23/the-big-deal-about-big-data

Figure 1. An ineffective way to store and visualize large amounts of data to be analysed.

1 Introduction

2

1.2 Problem

Currently there are few solutions that still yield fast response times while visualizing

large amounts of scientific data on ordinary (less powerful) workstation personal

computers (National Endowment for the Humanities, Office of Digital Humanities,

2012). In this context large amounts of scientific data is considered to be millions of

measurements or reference points stored in one or more files in the size range of up to a

couple of gigabytes each. Such files often contain too much data or are often too large

to be handled by existing plotting software running on workstations, causing these to

crash due to the assumption that all data will fit in main memory, or seemingly freeze

due to lack of responsiveness in the software user interface (Musumeci, 2002). A more

detailed description of operating system memory management can be found in section

2.1 OPERATING SYSTEM MEMORY MANAGEMENT. Combine proposed creating a software

library addressing these issues, as described in the purpose below.

1.3 Purpose

The purpose of this thesis is to simplify analysis of large amounts of scientific data by

creating a small modular and extensible cross-platform graphics library, intended to run

on ordinary workstations, capable of handling such data and present it through highly

interactive plot graph widgets. The library API should also provide Python bindings to

allow smoother integration with other Python-based software projects that are used and

developed at Combine.

1.4 Delimitations

Only two-dimensional graphs, with a focus on scatter plot graphs and time series

graphs, with the most basic functionality will be considered in this thesis due to the

limited time frame. High-level programming languages, such as Java, will not be used

to implement the API, due to the need of low level memory management. Further, an

external GUI library will be used to save time and avoid reinventing the wheel while

working on the interface. Finally, Combine requests that the proposed library will be

distributed under the BSD license, and that all external libraries used by the

implementation should only use less strict types of licenses, such as BSD or LGPL. This

would allow Combine the freedom of use needed when working with the proposed

library.

A notebook and a desktop computer will be used for the prestudy and library

benchmarks, representing “typical” workstations. The low-end notebook, which will be

used for most of the tests, has a 1.6 GHz single core processor, a 120 GB (5400 rpm)

hard drive, 2 GB RAM and 2 GB swap. The more powerful desktop computer, which

will be used to verify performance gains on better hardware, has a 3.4 GHz single core

processor with hyperthreading, a 300 GB (7200 rpm) hard drive, 3 GB RAM and 1 GB

swap.

2 Theory

3

2 Theory

This chapter contains theory relevant to this thesis; theory related to operating system

memory management, algorithms, software engineering design patterns, concurrency

and multithreading, human-computer interaction, information visualization and

graphical user interfaces.

2.1 Operating system memory management

By definition, large amounts of data greater than the total amount of available physical

memory (RAM) makes it impossible for an application to keep all this data available in

memory. Applications can avoid this problem with memory management, simply by

keeping smaller parts of the data in the memory, and by efficiently reusing parts of

occupied memory that are no longer needed. Memory is normally managed by the

programming language runtime, which in turn uses memory management routines from

the operating system. Poor system performance for memory-intensive applications stem

from the programing language runtime and how the operating system share system

resources. Programming language runtimes usually have no idea what the memory is

going to be used for and will consequently simply allocate the required amount. Naive

memory-intensive applications relying only on this form of memory allocation will

quickly use up system resources.

Modern operating systems try to share memory as a resource between all running

applications (Silberschatz, 2008), but unfortunately this also contributes to poor system

performance when running memory-intensive applications, as explained above

(Musumeci, 2002). Applications are forced to share free memory more aggressively

when it begins to run out, and the effects this has on other applications are not

completely obvious. Naturally, allocated memory that is not used by an application

anymore is safe to reuse, but an operating system cannot safely decide if allocated

memory is no longer used, unless told so by the application that allocated it. This will

lead to memory shortage when applications request more memory than what is currently

known to be available. The solution to this is virtual memory and swapping of virtual

memory blocks, which greatly simplifies memory sharing, as described in the next

section.

2.1.1 Virtual memory, swap and memory leaks

Every application is given a private memory address space, known as virtual memory,

which is not shared with other applications (Silberschatz, 2008). At first this may seem

to contradict the concept of sharing memory, but only the data of the application is

made private, not the physical memory on which it is stored. For convenience, virtual

memory is divided into small pieces of equal size, called pages, each mapped to a frame

in physical memory (Silberschatz, 2008). An operating system may move rarely used

pages from their frames to a storage media, which is known as swapping, releasing used

memory and thus allowing more memory than physically available to be allocated by

applications. FIGURE 2 below shows an overview of this setup, using a hard disk drive

as storage media.

2 Theory

4

Figure 2. An overview of the relationship between virtual memory, physical memory and disk memory.

The light-brown pages (such as page 2) have been swapped to the disk, while the green pages (such as

page 1) are still retained in the physical main memory. The pale-green frames (such as frame 2)

represent free unused memory.

A page fault occurs when an application attempts to access a swapped page, which also

halts application execution. The page fault is caught and handled by the operating

system, which proceeds to move the missing page back into a frame for use, allowing

application execution to continue (Silberschatz, 2008). The primary cause of poor

application performance comes with large amounts of swapping, due to the fact that

accessing storage media is an order of magnitude slower than accessing physical

memory (Pudov, 2011). Memory intensive applications often tend to access swapped

pages and are forced to wait for longer periods of time until the required pages are

loaded. Memory leaks may also contribute to poor application performance as larger or

many memory leaks will effectively decrease the total amount of available memory over

time. A memory leak occurs when an application do not reuse or release allocated

memory during its runtime, but rather requests more memory from the operating system

instead of reusing it. As memory shortage increases the number of swapped pages, the

overall application performance will quickly decrease (Wiseman, 2009), also resulting

in an unresponsive operating system that seems to freeze (Musumeci, 2002). This

happens because the operating system tries to be fair, freeing up frames used by other

applications to run a memory intensive application, until another page fault occurs,

which will likely happen frequently during a memory shortage. The problem then

becomes I/O overload due to swapping, while the CPU is forced to wait for pages to

return to suitable frames to be able to access them. A more natural way of describing

this problem is system wide resource starvation, where applications are denied access to

their data stored in memory and must wait for it to become available.

2 Theory

5

2.2 Algorithmic problems

This section describes algorithms in general, algorithmic problems that are interesting in

the context of this thesis, and their solution strategies.

2.2.1 Algorithms

An algorithm is a well-defined method for solving specific computational problems

(Arora, 2009), and any instance of the same type of algorithmic problem can therefore

be solved by the same algorithm. Kleinberg (2005) states that “algorithmic problems

form the heart of computer science, but rarely arrive as cleanly packaged,

mathematically precise questions” (Kleinberg, 2005, pp. xiii).

Algorithm efficiency is an important topic in addition to correctness, as it allows

different algorithms and their implementations, which solve the same kind of problem,

to be compared. Algorithmic problems are classified into categories, called complexity

classes, based on how hard they are to solve, measuring required resources to solve a

problem. However, quantifying algorithm efficiency requires some thought; as

inefficient algorithms could be as fast as an efficient one, given powerful hardware and

small inputs (Kleinberg, 2005). This in turn leads to the area of computational

complexity theory, which focuses on measuring efficiency of computations (Arora,

2009).

2.2.1.1 Algorithm complexity analysis

When considering the resources, and the amount needed, which are required to solve a

problem, time is often the first resource that comes to mind, at least in the context of

algorithm efficiency. But relying on time alone is not very dependable; simply running

other applications in the background could skew the results, which are hardware and

input dependent as well. However, running-time can serve as a complement to regular

time complexity analysis (Collins, 2005). There are three major points of interest when

analysing an algorithm:

 Correctness: an algorithm must yield an acceptable result for all inputs.

 Time complexity: the number of steps needed to solve a problem.

 Space complexity: the amount memory needed to solve a problem.

The degree of importance for each point may vary, depending on the requirements of an

algorithm. Consequently, there often exist numerous algorithms based on different

designs to solve the same problem.

For correctness, a proof showing that it is not possible for an algorithm to be incorrect is

required. However, it is not always the case that an optimal answer for a problem is

needed; a good enough result or approximation could be just as interesting for problems

that are difficult to solve exactly. Algorithms that are designed to sacrifice correctness

2 Theory

6

for speed, are called approximation algorithms, and their correctness is shown using a

bound guarantee (Kleinberg, 2005), with a lower optimal answer and an upper, worst

answer.

Time complexity does not simply measure the running-time of a few instances of

algorithms solving problems. As mentioned previously, such tests are not very useful

due to interference from applications running in the background, as well as operating

system and hardware limitations (Collins, 2005). Instead, a more general approach is

used, where one counts the number of basic computational steps needed by an algorithm

to find an answer. A formula is derived from an analysis of a worst case scenario using

only the problem input size as a variable. If the chosen input is considered to give the

largest possible number of steps, the function obtained then yields an upper bound of

the number of operations needed for an algorithm to complete. Using big-O notation,

functions are simplified and stripped from constants and less dominant expressions,

leaving out a worst case asymptotic behaviour depending on input size (Kleinberg,

2005). This time complexity analysis is crude, as large constants and extremely small

factors are lost. A definition of big-O based on the theory provided by (Kleinberg,

2005), including an example follows.

Let T(n) be any function, but for clarity, say that it yields an algorithm’s worst

running time for a problem of size n.

Let f(n) be a function.

T(n) is of order f(n) if T(n) ≤ C * f(n), for all n ≥ K, where constants C > 0

and K ≥ 0.

T(n) is of order f(n) is then written as T(n) is O(f(n)).

Example

Let T(n) = 2 * n2 + n + 8, then T(n) is O(n2).

Proof

2 * n2 ≤ 2 * n2, n ≤ n2
 and 8 ≤ 8 * n2

 for n ≥ 1.

Thus T(n) ≤ 2 * n2 + n2 + 8 * n2 ⟺ T(n) ≤ 11 * n2
, for n ≥ 1.

Choosing C = 11 and K = 1, then T(n) ≤ C * f(n) holds for f(n) = n2 and all n

≥ K.

An interesting implication from the definition is that f(n) can overestimate the order of

T(n), if T(n) is O(n2) then it also is O(n3) (Kleinberg, 2005). Further proofs for big-O

will not be provided here, since it should be clear from the proof above that using the

fastest growing term without constants is enough.

2 Theory

7

Space complexity analysis is similar to time complexity analysis, but instead of

counting computational steps, the number of variables used is counted (Collins, 2005).

For example, an array of length n would count as n variables (Collins, 2005). There are

also dynamic programming algorithms that sacrifice memory in favour of speed by

memorizing results for a recursive function (Kleinberg, 2005).One of the most clear

examples where this technique improve performance is when computing the ith

Fibonacci number, simply by saving the two previous numbers so that the next number,

which by definition depend on the two previous numbers, can be quickly computed

instead of inefficiently recomputing all previous recursive steps over and over.

2.2.1.2 Polynomial problems

The polynomial class P can be defined by using a parameterized class TIME(f(n)),
proposed by Papadimitriou (1993). If TIME(f(n)), or DTIME(f(n)) for deterministic

time, is the complexity class containing problems that can be solved in O(f(n)) time by a

deterministic Turing-machine, where f : ℕ → ℕ and f(n + 1) ≥ f(n) for all n ∊ ℕ

(Papadimitriou, 1993), then:

P = ⋃k∊ℕ DTIME(nk)

Problems belonging to P are therefore by definition solvable in polynomial time

because a Turing-machine is essentially a simple computer derived from a state-

machine and uses a number of tapes as memory. Algorithms solving problems in P are

considered fast compared to those solving problems exclusively belonging to more

difficult complexity classes, while k could be arbitrary large, algorithms solving

problems in P are seldom slower than O(n5) (Arora, 2009). It has also happened that

newly discovered algorithms in P with an initial large time complexity were simplified

enough afterwards to be no slower than O(n5) (Arora, 2009).

2.2.1.3 Nondeterministic polynomial problems

Defining the non-deterministic polynomial class NP using NTIME(f(n)), which is the

class of problems solvable by a nondeterministic Turing-machine in O(f(n)) time

(Papadimitriou, 1993), gives:

NP = ⋃k∊ℕ NTIME(nk)

An alternative definition is that a problem belongs to NP if there exists a deterministic

Turing-machine that can verify if a given answer to a problem in NP is correct in

polynomial time; thus problems in NP are efficiently verifiable versus problems in P

that are efficiently solvable (Arora, 2009). It should now be clear that that P ⊆ NP.

However, it may not be clear that NP actually contains more difficult problems. A

nondeterministic Turing-machine has two transition functions at any given state (Arora,

2009), and can thus search multiple computational paths with each computational step.

2 Theory

8

A simpler way to look at it is that it will always make a correct choice, or that it is

extremely lucky at guessing.

NP-complete problems, which are the hardest problems in NP, are considered to be

computationally hard for all practical purposes, but it has yet to be proven (Kleinberg,

2005). This leads to one of the largest questions within computational complexity and

computer science in general: is P = NP or is P ⊊ NP, or stated more simply: does

efficient algorithms exists for all problems in NP or not. This question is further

promoted by the large number of problems that appear in NP, not just the well-known

traveling salesman problem, but also aspects of creative effort seem to be included, and

so the number of known NP problems are now thousands (Arora, 2009). An interesting

feature of all NP-complete problems is that they can be reduced to each other with

algorithms running in polynomial time, which means that if it can be proven that one of

the NP-complete problems is in P, then all NP problems are in P (Arora, 2009). A proof

for either P = NP or P ⊊ NP has yet to be found, so this still remains an open question.

However, most believe that P ⊊ NP because P = NP is simply too good to be true,

although the implications of this, were it to be true, would be of huge interest for

practical, scientific and philosophical areas (Arora, 2009).

2.2.1.4 Other complexity classes

To provide a perspective of the jungle of complexity classes, it is worth mentioning that

there exists close to 500 known complexity classes (Aaronson, 2012), a few of which

with higher importance are listed below.

 ALL - The class of all languages.

 EXP - Exponential time.

 PSPACE - Polynomial space.

 PP - Probabilistic polynomial time.

 coNP - Complement of NP.

 BPP - Bounded-error probabilistic polynomial time.

 NP - Non-deterministic polynomial time.

 P - Polynomial time.

 L - Logarithmic space.

These will not be described further, as they are of little interest to the thesis, but the

interested reader is referred to Aaronson (2012), Arora (2009) and Papadimitriou

(1993).

2 Theory

9

2.2.2 Binary search

This is one of the most basic and common methods that quickly find a specific piece of

data in a (strictly) sorted data set (Kleinberg, 2005). Binary search has a time

complexity of O(log(n)), compared to a naive lookup approach that uses O(n) steps

dataset (Kleinberg, 2005). In short, the fact that the data is sorted allows the search

space to be cut in half by each operation, instead of looking at every location in

sequential order using a naive lookup approach. A common data structure which utilizes

this is, for instance, a tree.

2.2.3 Cache

Caching is a method used to improve performance by temporarily saving specific data,

which is often normally slow to obtain, when that data is expected to be needed again

soon, allowing faster retrieval for sequential request. A cache is usually a chunk of fast

memory with a fixed size or limited by some other rule, such as maximum number of

bytes, maximum number of items stored, or a combination of both. Examples where

caching can be used to improve performance are costly computations, slow network

links, slow mass storage devices and similar.

Cache efficiency is defined by how often a requested item is found in the cache or not,

called hit or miss respectively, and an algorithmic optimal cache must minimize the

number of misses (Kleinberg, 2005). When a miss occurs in a full cache, one or more

items must be evicted to make room for the missing item. But selecting which item or

items to evict is the interesting part, there exist multiple algorithmic strategies. Two

such are described below.

 Farthest-in-Future: if future cache requests are known, the item needed as

far as possible into the future will be evicted first. This algorithm has been

proven optimal by Belady (1966), but in real world scenarios future requests

are often not known, making this algorithm unusable. However, it is used as

a quality measurement when evaluating other strategies (Kleinberg, 2005).

 Least-Recently-Used: an item’s last-hit timestamp can be used when future

requests are not known, evicting the item with the oldest timestamp first. It

is known that this strategy’s maximum number of misses is roughly

bounded by e * n, where e is the optimal number of evictions and n is the

maximum number of items. A randomized variation with slightly better

results also exists, bounded by e * log(n) (Kleinberg, 2005).

2.2.4 Point in polygon

Just as the name suggests, this is a straightforward true or false question; is a given

point inside a given polygon or not? This problem appears when, for example, a user

interface needs to find out which button was clicked and in collision detection for games

2 Theory

10

(O'Rourke, 1998). There exist several different (polynomial time) strategies for solving

this problem, as described below:

 Angular sum: uses the winding number of a polygon to determine the

number of times a polygon winds around a point (Huang, 1996).

 Odd or even: uses a ray crossing test to determine the number of times a

line, starting in a given point and ending outside a polygon, crosses each

polygon edge (Huang, 1996).

 Grid: uses a grid instead of vertices to represent a polygon, where the cells

of the grid are known to be inside or outside the polygon and the point

covers a single cell (Huang, 1996).

 Swath: uses a ray crossing test, with several preprocessing steps to divide a

polygon into swaths to allow binary search to be utilized over the y-axis

(Huang, 1996).

 Wedge: divides a convex polygon into wedges. A point then only needs to

be tested against a single wedge, which can be found quickly using binary

search (Huang, 1996).

Time complexity for the angular sum, odd or even and grid strategies is O(n) (Huang,

1996). Swath and wedge have a better expected time complexity of O(log(n)), but

require preprocessing steps (Huang, 1996). Swath’s preprocessing time complexity is

O(n * log(n)), and additionally, in a worst case scenario swath might use O(n2) amount

of memory instead of O(n), while still taking O(n) time (Huang, 1996). Considering

this, wedge’s preprocessing time complexity is only O(n) (Huang, 1996), which would

make wedge a better choice when only convex polygons are expected.

These tests could be extended with a bounding box check, to first testing if a point is

near a polygon, thereby potentially avoiding a full point in polygon test. This could

improve performance, but if a series of close points are tested in a tight-loop it will have

an opposite effect on performance and improvements will be minor, if any, for polygons

with few vertices.

Angular sum is the sum of all angles between a point and two endpoints in a segment of

a closed curve, if and only if that sum is zero then the test point is outside the polygon

(Hormann, 2001). Angular sum is often mistaken to be completely different from and

inferior to odd or even, however this was disproven by Hormann (2001), by showing

that a fast ray crossing algorithm equal to winding number exists. O'Rourke claimed

that the reasons why winding number was not as fast was its dependence on floating

point and trigonometric operations (O'Rourke, 1998), and indeed, both floating point

and trigonometric operations are much slower than integer and boolean operations

(Huang, 1996). But Hormann’s (2001) algorithm does not need floating point numbers,

nor trigonometric operations, thus avoiding those problems altogether.

Odd or even makes its decision based on if the polygon line cross count is odd or even.

A line starting in a given point and ending outside a polygon is used, and the edge cross

count is odd if the point is inside the polygon. The winding number strategy behaves

2 Theory

11

slightly different in comparison; if the polygon is self-intersecting, points in those

intersecting areas have a non-zero winding number, but their cross count can be even,

depending on the number of overlapping self-intersections (Hormann, 2001). This

difference is shown in FIGURE 3.

(a) odd or even (b) winding number

Figure 3. The shaded areas of this self-intersecting polygon represent the areas that the (a) odd or even

and (b) winding number strategies consider as being inside the polygon.

Despite a very good time complexity, wedge is at a disadvantage since it only works

with convex polygons. Nevertheless, it is possible to apply this algorithm to a simple

(non-self-intersecting) polygon by performing an additional preprocessing step to

partition a polygon into convex polygons. Unfortunately, it is more difficult to find an

optimal convex partitioning then a suboptimal one (O'Rourke, 1998); in fact it is NP-

hard for polygons with holes (Lien, 2004). One way to partition a simple polygon into

convex polygons is by triangulation, since all triangles are strictly convex. Triangulation

can be done in O(n) (Chazelle, 1991), while optimal convex partitioning can be done in

O(n + N3) time where N is the number of notches (Chazelle, 1980). An interesting

approximation algorithm exists, capable of exactly solving simple polygons without

holes in O(n * N2) time, or finding an approximation for polygons with or without holes

in O(n * N) time (Lien, 2004). A short analysis of the point in polygon query for a naive

approach using a convex partitioning preprocessing and wedge as core follows below.

Let f(a, b) be wedge point in polygon function, where a is a point and b is a

convex polygon.

Let Q denote a set of convex polygons created from a polygon in the

preprocessing step.

Assume that ∀t, t ∊ Q, are already preprocessed by wedge.

Let x denote a point to test.

For each convex polygon p ∊ Q

 If f(x, p)

 Return true

Return false

2 Theory

12

Wedge query complexity is O(log(n)), but with triangulation preprocessing, n equals

three, giving each test a constant time complexity. The number of operations then

depend on how many triangles a simple polygon can be divided into, which is exactly n
- 2, where n in this case is the number of vertices (O'Rourke, 1998). Therefore T(n) =
(n - 2) * log(3), which yield a time complexity of O(n), no better than other proposed

algorithms for the point in polygon problem except for the preprocessing step. If

Chazelle’s (1980) optimal algorithm is used for preprocessing instead, where the

number of convex polygons is bounded by N / 2 + 1 and N + 1 (Chazelle, 1980),

wedge will then in the worst case consider all vertices from a partitioned polygon (if the

polygon was already convex). Since the number of partitions is at worst N + 1 (if they

are all triangles), the time complexity becomes T(N, n) = (N + 1) * log(n). This results

in a crude time complexity of O(N * log(n)), while Chazelle (1980) expects N to often

be small, making not only the preprocessing step more feasible, but also the point in

polygon query as a whole. However, it is not clear if this is enough to perform better

than much simpler algorithms for the point in polygon problem on any simple polygon.

Intuitively, if a simple polygon with many vertices is fairly divided when partitioned,

and N is reasonably small, then a faster query can be expected.

2.3 Concurrent programing and multiprocessing

Modern computers are capable of performing computations in parallel, whether it is

through time multiplexing, additional computational hardware or performed by an

external device. Applications that utilize multiprocessing, to fully exploit the

capabilities of modern hardware, are by design split into multiple processes, where each

process is a sequence of operations that can be executed in parallel. Communication

between two or more processes can be viewed as a channel through which messages are

passed, containing operations to execute, data to process, processed data and

computational results, which are useful when dealing with external devices and

distributed computing. In practice, modern computers use SMP (symmetric

multiprocessing), where the same memory is shared between computational hardware

and can be accessed in an equal amount of time (Andrews, 1999).

The power of multiprocessing also leads to additional problems for software developers.

Consider the following scenario: process A and B work in parallel, thus the interleaved

order of each operation cannot be determined. Process A fetches value x from memory;

process B fetches value x from memory; process A computes x + 1 and stores it back

into memory; process B computes x + 1 and stores it back into memory, this time

overwriting the result from process A. This is likely unwanted behaviour since the result

from process A is lost.

Two basic synchronization directives are used to solve these issues; mutual exclusion

(mutex) for critical sections and conditional synchronization. These form basic

synchronization methods, such as semaphores and signals used in the POSIX thread

standard (IEEE, 2008). But with synchronization other risks also arise, such as

processes waiting indefinitely on each other, known as a deadlock. Furthermore, the

three primary overheads in parallel applications must be minimized to achieve the

highest possible performance gain, namely process creation and scheduling,

communication and synchronization (Andrews, 1999).

2 Theory

13

2.4 Software engineering design patterns

Software engineering design patterns are reusable programming techniques used to

solve common design problems and to avoid common pitfalls.

2.4.1 Observer

Clients normally read data from relevant objects, but when objects change the clients

must either read that data again, or preferably be informed of this by the objects

themselves. A client may list itself as an observer for an object, making the object

inform all such listed clients whenever it is has changed, effectively creating a one-to-

many dependency between an object and multiple clients (Metsker, 2006). It is a

common pattern found in user interfaces (UI), which can be used to update multiple

views in real-time whenever a related object is changed.

2.4.2 Visitor and double dispatch

The purpose of the visitor pattern is to add new operations to an existing class hierarchy,

without actually changing it. There are many advantages to this pattern, such as that a

developer may include support to easily extend class hierarchies with new behaviour

(Metsker, 2006). The pattern itself consists of a class and a visitor interface, which has a

number of subclasses. The interface has a method, often called visit, overloaded with

many different arguments to extend functionality. Each subclass that can be extended

has an accept method that take this visitor as an argument and will in turn call the

appropriate visit method on the provided visitor. This is called a double dispatch.

However, the most beneficial gain is that this makes it possible to eliminate runtime

type information, which would otherwise cause overhead and is a common source of

problems and bugs. These problems stem from that the compiler cannot guarantee that

such a runtime typecast is valid, but by using the visitor pattern, the compiler can and

will identify incorrect use and help to ensure that no incorrect type conversion ever take

place. The visitor interface then contains visit methods that accept all possible

subclasses, and all accept methods simply call visit with its own instance, thus revealing

their type.

2.4.3 Iterator

The iterator pattern defines a way of sequentially accessing objects or data inside a

container by traversing the underlying data structure without exposing it (Metsker,

2006).

2 Theory

14

2.4.4 Readers-writer lock

A type of concurrent design pattern used to protect a shared resource to make sure it can

only be written to by one process at a time, but read by more than one process when no

writers are writing (Silberschatz, 2008).

2.4.5 Message queue

A message queue can be seen as an abstract mail inbox, where messages are processed

strictly in the order they arrive, i.e. first in, first out (Andrews, 1999).

2.5 Human-computer interaction

The aptly named field of human-computer interaction (HCI) focuses on the interaction

between a person (the user) and a computer system, with an emphasis on understanding

the user, his or her behaviour, motivations, needs and desires, as well as the context of

the users and the underlying causes behind their behaviour (Hewett, 1996; Cooper,

2007). It can also be viewed as a model in which people, tasks, technology and the

social, organizational, and physical environment are closely related. HCI is thus a very

complex and broad concept, which covers numerous aspects, as shown in FIGURE 4.

Figure 4. An association chart showing some of the main fields contributing to human-computer

interaction.

Preece (1995) describes the main aspects of a few of the bigger fields that contribute to

HCI, shown in FIGURE 4 above. For example; computer science provides knowledge

and insight about technology and a wide range of software-based tools and methods for

facilitating design and development of computers, systems and user interfaces;

cognitive psychology provides knowledge and insight about the capabilities and

limitations of the users of a system; social psychology uses ethnomethodology to help

2 Theory

15

explain the functions and structure of organizations; and ergonomics and human factors

provide knowledge of how to ensure that hardware and software are designed in such a

way that they do not harm the users physically (Preece, 1995).

Dix (1998) concludes that there exist no general or unified theories covering HCI, and

that it may never be possible to derive one. There are however some basic underlying

principles related to the three major parts of HCI; the user, the computer and the task.

The understanding of these is used to improve the interaction and better meet the need

and goals of the users, for example by making better and easier to use hardware, as well

as better designed software and interfaces that behave more according to the mental

model and expectations of the users. Cooper (2007) points out that the usage patterns of

users are motivated by both the goals and mental models of the users. The mental model

of a user, also called the conceptual model, is how a user thinks something works,

regardless if this view is correct or not. Users thus create cognitive shorthands that are

powerful enough to cover all their interactions with, for example, a system, since they

do not need to know its inner workings to be able to use it (Cooper, 2007). The users’

motivations and goals can further be understood by working with HCI as a user-

centered and highly iterative process (Preece, 1995).

Both Cooper (2007) and Tidwell (2011) state that to help understand the need and goals

of users one should also utilize common user research methods, such as interviews,

direct observation, case studies, focus groups, surveys or personas. These all vary in the

degree of formality and efficiency, depending on the type of user, context and tasks that

are dealt with. Many of these can also be used as evaluation techniques, as described by

Dix (1998). Some HCI aspects are discussed further in section 2.6.4.3 THE ACTION

CYCLE AND HUMAN ASPECTS OF INTERACTION.

2.6 Information visualization

Information visualization offers great potential in understanding and gaining insight into

(large) sets of data through a wide range of different methods of representation,

presentation and interaction, which allow information to be derived from data (Spence,

2007). The underlying philosophy of information visualization is, according to Spence

(2007), to represent (or encode) a problem in such a way that the solution becomes

apparent, and he goes on pointing out that “choosing an effective way to encode data to

make the solution transparent is far from simple and continues to challenge and

fascinate practitioners and researchers” (Spence, 2007, pp. 6).

Because of the vastness of information visualization as a subject, as well as the many

related and overlapping fields, this section will focus only on the most basic and some

specific parts of theory and examples of information visualization, highlighting some of

the most important aspects of representation, presentation and interaction. The extensive

use of computers in the field also makes the broad field of human-computer interaction

important, as described in the previous section.

Computer-aided information visualization has skyrocketed during the last 15-20 years

due to the availability and improvement of computers and related technology, but it is

important to note that, in the end, visualization is a human cognitive activity involving

2 Theory

16

perception and interpretation, which in itself has nothing to do with computers.

Visualization relies heavily on the mental model of represented data, formed by human

beings to help them interpret and process the data. Computers offer great support and

advantages for visualizing information as they can store vast amounts of data, allow fast

interactive selection of subsets with responsive interaction and have high-resolution

graphics that can be used for complex presentations. To be able to encode data in a good

way to support the mental model and to successfully use the advantages that computers

offer one must understand the aspects of human behaviour and characteristics, as well as

how human beings interact with data (Spence, 2007). Graphical representations are

especially good at visualizing large amounts of data, as well as conveying complex

ideas with clarity, precision, and efficiency (Brath, 1999). Brath (1999), focusing more

on graphs, and also including the human aspects, basically says the same thing as

Spence by stating that "a graph has high expressive power when drawn aesthetically on

a plane: the visual representation exploits human visual cognitive capabilities, activates

intuitions, helps find solutions, and makes complex situations understandable" (Brath,

1999, pp. 10).

Spence (2007) provides a compact and easy to understand visualization on the entire

process of information visualization, from data to interpretation and interaction,

recreated below in FIGURE 5.

Image source: Reproduction of Spence (2007)

Figure 5. A summary of the information visualization process.

2.6.1 Examples of information visualization

Two excellent classical examples of data maps are presented below, each capturing the

very essence of information visualization according to Spence (2007), as well as more

recent examples depicting a radial table and a complex Venn diagram. The first example

is Minard’s map of Napoleon’s march and retreat to and from Moscow in 1812-1813

(see FIGURE 6). At just a glance most people find it easy to see and understand that the

thickness of the lines represent the size of the army, and that the brown line represents

the advance and the black line the retreat. Thus a lot of information and understanding

can be gained without reading any of the (French) explanations written on the map.

2 Theory

17

Image source: http://www.edwardtufte.com/tufte/minard

Figure 6. Charles Joseph Minard’s map of Napoleon’s march and retreat to and from Moscow.

The second example is a map of the Soho district in London during the cholera

pandemic in 1845, showing the locations of cholera related deaths and the locations of

the district’s water pumps (see FIGURE 7). Dr John Snow, the medical officer at the

time, observed that the biggest number of deaths was concentrated around the water

pump at Broad Street. He concluded that this was a likely source of contaminant, and

was able to decrease the number of deaths by putting a lock on the pump.

Image source: http://greatwen.com/2011/02/15/london-in-maps/

Figure 7. A cluster map of the 1845 Soho district in London, showing cholera deaths (as dots) and water

pumps (as crosses). The pump at Broad Street is located roughly at the center of the map.

http://www.edwardtufte.com/tufte/minard
http://greatwen.com/2011/02/15/london-in-maps/

2 Theory

18

Tufte (2001) also agrees that the works of Minard and Snow are two very good

examples of use of data maps to communicate complex ideas with clarity, precision and

efficiency; what he refers to as graphical excellence. He even goes so far as to exclaim

that Minard’s map “may well be the best statistical graphic ever drawn” (Tufte, 2001,

pp. 40).

The third final example is that of the relationships between cars and different types of

car models visualized in a radial table, shown in FIGURE 8. A radial table, a design

pattern defined by Tidwell (2011), is useful when you need to show the arbitrary

relationships between the items in a long list. This way flows, connections, similarities,

affinities and value can be represented with arc line color and thickness, and the size

and length of the lines and arcs. Sometimes it is also easier to recognize patterns when

data is displayed in a radial table, and well-made radial tables are often aesthetically

beautiful and attractive (Tidwell, 2011).

Image source: Tidwell (2011)

Figure 8. A radial table showing the relations between different cars and car models.

The final example is a complex and very impressive Venn diagram, shown in FIGURE 9,

effectively acting as both example of information visualization and overview of the

elements making up data visualization (ffunction Inc., 2010). Please also go ahead and

take a look at figure image source for a larger version, as the scaled down version

showed in FIGURE 9 does not do it justice; http://blog.ffctn.com/what-is-data-

visualization.

http://blog.ffctn.com/what-is-data-visualization
http://blog.ffctn.com/what-is-data-visualization

2 Theory

19

Image source: ffunction Inc. (2012)

Figure 9 A multilayered Venn diagram showing the relations of the different elements and fields that

contribute to and make up data visualization.

2.6.2 Representation

Representation is the visual encoding of data, of which Spence (2007) identifies three

important aspects; the type of data to be represented, the complexity of the data and how

a user interprets the encoded data. User interpretation of the encoded data has to do with

aspects of human behaviour, memory and visual cognitive capabilities, and even though

it is most common to represent data visually through graphics (as shown in the

examples below), it is important to remember that data can also be visualized through

sound and other human sensory modalities.

2.6.2.1 Data types and data complexity

When representing data types one needs to consider the relation between two or more

items of the data, as well as how to represent the values and derived values, such as a

range or an average (Spence, 2007). The complexity of the data is related to the number

2 Theory

20

of attributes of the data, most commonly referred to as dimensions, and as the number

of dimensions increase so does the challenge of representing the data. Listed below are

some representation techniques suitable for different complexities of data.

One-dimensional data can be represented as single values, such as by a number, a dial, a

slider or a histogram (see FIGURE 10(a)). Two-dimensional data is usually represented

by a scatter plot (see FIGURE 10(b)), or by line graphs, histograms or bar charts. It is also

very common to use a time series plot, which is a special case of the scatter plot with

one axis representing time and the other some function of time. Three-dimensional data

can be represented by different kinds of 3D representations (see FIGURE 10(c)) or a

scatter plot matrix.

(a) histogram (b) scatter plot (c) 3D graph

Figure 10. Some examples of representations of data with different complexities.

Multidimensional data can also be represented by a scatter plot matrix, but as the

number of attributes increase so does the possible pairs of attributes in a very rapid non-

linear fashion. Multidimensional data is thus more commonly represented by star plots

(see FIGURE 11), which are good for object visibility, and linked histograms, mosaic

plots (see FIGURE 12) or parallel coordinate plots, which are good for showing attribute

visibility. Object visibility has the property of representing each object as a single

coherent visual entity, such as a point, which is desirable when a user wants to know the

values of an object’s attributes in many different dimensions and how objects relate to

each other (Spence, 2007).

Image source: http://www.processimpact.com/articles/principle.html

Figure 11 A star plot showing the attributes of a quality-driven application.

Attribute visibility has the property of clearly visualizing the distribution of objects’

attribute values in each dimension, thus also revealing clusters, which is desirable when

a user wants to know how objects are distributed in an attribute dimension.

http://www.processimpact.com/articles/principle.html

2 Theory

21

Image source: http://www.analyticsworld.net/2010/04/22/data-visualization-example-1-mosaic-plot/

Figure 12 A mosaic plot showing the relation between hair color and eye color.

The relation – the association or connection – between two or more objects can also be

visualized by the use of lines. Drawing straight lines between the objects is a very

simple and powerful method, and arrows, symbols, color, line thickness, line style, line

annotation and relative position may also help represent and clarify the relations

depending on the type of data Association charts, such as the one used in FIGURE 4 and

timeline charts are two good examples using many of these techniques. Maps, diagrams

and tree representations, such as cluster maps (see FIGURE 7), Venn diagrams (see

FIGURE 9), cone trees and tree maps (see FIGURE 13) can also be used to represent

relation (Spence, 2007). The interested reader is referred to Spence (2007) for further

details.

Figure 13 A tree map showing the hierarchy, amount, size and (color-coded) types of files located in a

computer directory.

http://www.analyticsworld.net/2010/04/22/data-visualization-example-1-mosaic-plot/

2 Theory

22

2.6.2.2 Data encoding methods and guidelines

There exist a large number of recommended encoding methods and sets of guidelines

for different kinds of representations depending on the type and complexity of the data,

of which most are based on both research and evaluation. Only some of the more

general encoding methods and guidelines are presented below in short form.

Jacques Bertin, a French pioneer in information visualization, identified four tasks that

are common to information visualization and the encoding methods he considered best

suited for these tasks. He considered encoding by size, value, texture, color, orientation

and shape when dealing with the common tasks of visualizing association, selection,

order, and quantity (Bertin, 1983).

Image source: Spence (2007)

Figure 14. Bertin’s guidance regarding the suitability of various encoding methods to support common

tasks in information visualization.

2 Theory

23

FIGURE 14 shows Spence’s (2007) interpretation of Bertin’s conclusions. Spence also

points out that the best suited encoding method for a task is very dependent on the

context, and that the conclusions can be considered no more than guidance. The

“marks” in the figure refer to the result of the encoding method that is used. The

difficulty of accurately evaluating values depends on the encoding method used. In this

aspect Spence (2007) again provides guidance for which encoding methods to use when

encoding quantitative, ordinal and categorical data, summarized in TABLE 1 below.

Table 1. Guidance for the encoding of quantitative, ordinal and categorical data. The methods are listed

in descending order of accuracy for evaluating the encoded values.

Table source: Spence (2007)

Quantitative Ordinal Categorical

Position Position Position

Length Density Color hue

Angle Color saturation Texture

Slope Color hue Connection

Area Texture Containment

Volume Connection Density

Color Containment Color saturation

Density Length Shape

Shape Angle Length

 Slope Angle

 Area Slope

 Volume Area

 Volume

Images of visualized data, which is one of the most commonly used visualization

mediums, are sometimes also referred to as information graphics. These are defined by

Brath (1999) as highly specialized images that transform quantitative, categorical, or

relationships data into understandable images. Tufte (2001) provides a set of goals that

an effective information graphic should strive to:

 show the data,

 make the viewers think about the substance,

 avoid distorting the data,

 present many numbers in a small space,

 make large datasets coherent,

 encourage comparisons of different pieces of data,

 reveal data at several levels of detail,

2 Theory

24

 serve a reasonably clear purpose of exploration, description, tabulation or

decoration, and

 be closely integrated with the verbal and statistical descriptions of the

dataset.

To fulfil these goals he also recommends adhering to the following set of principles:

 showing the data and showing as much data as possible,

 removing non-data information and reduce redundant data information as

much as possible,

 avoiding perceptual junk, such as moiré patterns, grids and outlines,

 making elements multifunctioning, such as making labels and grid lines

data dependent,

 increasing data density by shrinking the area used for the graphic,

 using multiple instances of graphics to facilitate visual comparisons,

 using words, numbers and graphics together,

 providing a narrative quality,

 using words in full with standard orientation,

 avoiding legends by placing labels directly on the graphic,

 using color carefully to highlight the most important information and to

separate different classes, and avoiding common color blindness

combinations, and

 separating different classes of information into layers, such as separating

the data foreground from the structural background.

As previously suggested, the use of color can also be very beneficial and important if

used correctly. Since color and luminosity are both subjectively and contextually

interpreted, they must be handled with care within a visualization. On this, Tidwell

(2011) points out that you should never use red versus green as a critical color

distinction due to the fact that color-blind users will not be able to see the difference,

and to never use complementary colors together, since the human eye cannot separate

them. Perceived contours and optical illusions of bleeding colors or incorrectly

perceived shade and hue may also occur when some colors are mixed or used in close

vicinity (Spence, 2007). Chromostereopsis is such an unwanted three-dimensional depth

effect that may occur when mixing red and blue two-dimensional objects (Brath, 1999),

as exemplified by FIGURE 15. Color should thus not carry the primary information and

be restricted to discrete values, but according to Brath (1999) the effects of good use of

color in graphic information displays generally improves the performances in recall

task, in search and locate task, in retention task, in decision judgement, as well as

improving the comprehension of instructional materials. Although, using color as a

means of identification does not work for small objects, as it may not be recognizable at

all.

2 Theory

25

Figure 15. An example of chromostereopsis showing two objects of the same shape and size. To most

people the red circle appears closer to the front than the blue circle.

Further, it is recommended to use certain common color combinations, such as red,

yellow and green to represent danger, caution and safe respectively. Cultural differences

may interfere with the meaning of these colors (Tidwell, 2011), so one could use

military standards instead, where red indicates inoperation, flashing red indicates

emergency conditions requiring immediate action, yellow indicates caution or delay,

green indicates a fully operational system, white indicates explanation and blue

indicates advice (Brath, 1999).

2.6.3 Presentation of represented data

Presentation is the selection and layout of the encoded data in the available display area

and the available time. This means that one must decide which part of the representation

that should be displayed, if and how it should be interactive, and even whether

something should be displayed at all. The available display area and the available time

restrict this as well.

2.6.3.1 Display limitation techniques

One of the most basic issues is that of displaying a document that is larger than the

display area. This is usually solved with scrolling, but it is important to remember that

most of the content will be hidden from view, which can make it hard for the user to

keep track of where things are located and make it hard to find their way back to the

current position after searching through the content. This can greatly be avoided by

using a technique called overview plus detail, where two separate views are used to

show an overview with a context and a more detailed view respectively (Spence, 2007;

Tidwell, 2011). FIGURE 16 shows one example of this with smaller thumbnails showing

the pages of a document alongside a full page view.

2 Theory

26

Figure 16. An example of the overview plus detail design pattern showing a pdf-document in the Preview

application running on Mac OS X

A similar problem, referred to as the focus plus context problem, where there is a need

to smoothly show the connection between the detail and overview presentations, can be

solved with the use of the distortion or suppression techniques, or a combination of the

two. The techniques are rather self-explanatory, but the interested reader is referred to

Spence (2007).

Zoom and pan is another useful technique for utilizing the display area when showing

large visualizations with a lot of details. Panning allows the user to smoothly and

continuously move the view location. Zooming in hides non-essential data and may

display more or magnify relevant data in a more manageable view. Zooming out may

reveal hidden data and also allows the user to rediscover their location in the

information space, as well as recalling context and integrating new context into their

mental model. Semantic zoom is often used instead of geometric zoom to allow

different levels of detailed representations to be displayed rather than just magnifying

one single representation. Semantic zoom thus allows the user to focus on the more

important attributes first and reveals data about other attributes (Spence, 2007). A

typical example that uses this technique is basically any interactive digital map.

2.6.3.2 Time limitation techniques

There are some techniques for managing time limitations that have been proven

successful. One is called rapid serial visual presentation, a technique where each item of

a collection of visual representations, such as a set of images, are presented separately

and at the same location for a short period of time, typically 100 milliseconds each. This

gives the user a high probability of detecting a sought-after item, or detecting the

absence of it (Spence, 2007). There are also some techniques involving different

groupings and patterns of movement of the visual representations, mentioned by Spence

(2007). These will not be discussed, since none of these available time limitations

techniques are of any real benefit to the work of this thesis.

2 Theory

27

2.6.4 Interaction with presented data

A single all inclusive view of a large collection of data can seldom provide any insight

without further exploration. That is why being able to change the view of a large

collection of data is one of the greatest benefits of using computers to support

information visualization. One can define interaction as the available means that exists

to change the view of the available data.

2.6.4.1 Exploration and insight through interaction

The progression from one view of data to another is referred to as movement in the

information space, or simply navigation. To be able to better support navigation one

must help the user to answer the typical questions asked at each step of the interaction.

According to Spence (2007), the following are such typical questions:

 where am I,

 where can I go,

 how do I get there,

 what lies beyond,

 where can I usefully go, and

 where have I been (I want to go back).

Efficient navigation is important because in general, tasks or problems to be solved

most often lack precision and has vague, ambiguous and subjective requirements.

Therefore problems are often formulated and specified as they are being solved. On this

Spence (2007) notes that providing navigational guidance by indicating the result of a

changes made to parameters – a technique called brushing – is a simple way to help the

user navigate and explore the information space. This helps the specification of

problems by displaying the sensitivity of the parameters and thus revealing potential

possibilities that the user might not have considered otherwise. A detailed discussion

and guide on how to answer the questions above and how users reason when they

navigate is provided by Spence (2007) and recommended to the interested reader.

The brushing technique is an extremely useful and heavily used visualization technique

that can be applied to most interactive visualizations. Spence (2007) defines brushing as

“a change in the encoding of one or more items essentially immediately following, and

in response to, an interaction with another item“ (Spence, 2007, pp. 235).Some

examples of this is to only highlight the objects with selected attributes from a

collection of objects and attributes, or updating the result of a query when a parameter is

changed, as well as the mouse-over effect, such as the tooltip text, that exists in

practically every software and on all modern web pages.

2 Theory

28

2.6.4.2 Information spaces and types of interactions

Spence (2007) identifies four different types of interaction and two types of information

spaces, all presented briefly with the aid of examples. Looking at Minard’s map (in

FIGURE 6) can be seen as passive interaction, where the mind of the viewer and its

cognitive abilities does the actual interaction. The World Wide Web is an example of

stepped interaction; the user navigates the views of a discrete information space, which

requires both interpretation and a decision to be made by the user to continue at each

step. A very responsive system is desired when navigating a continuous information

space to support efficient exploration and to be able to quickly gain insight to the result

of every change through continuous interaction. The last and most efficient type of

interaction, called composite interaction, combines two or more of the other types.

2.6.4.3 The Action Cycle and human aspects of interaction

Norman’s Action Cycle consists of the Seven Stages of Action needed for a human to

achieve a goal, as shown in FIGURE 17. It helps the interface designer to see things from

the user’s point of view and functions as good support when designing and evaluating

interfaces of all kinds (Norman, 1988).

Image source: Reproduction of Norman (1988)

Figure 17. The Action Cycle, presented by Donald Norman in 1988.

The seven steps consist of one step for forming the goals; three steps for execution:

forming the intention, specifying actions, and executing the actions; and three steps for

evaluation: perceiving the state of the world, interpreting the state of the world, and

evaluating the outcome. Reality is of course never that simple, and Norman points out

that it is an approximate model, that the steps are not discrete entities, most behaviour

2 Theory

29

does not need to go through all the steps in sequence, and that there must be many

sequences leading to sub-goals and sub-intentions, or even new goals, based on the

feedback of previous steps and sequences. He also calls the three steps of execution the

Gulf of Execution to illustrate the problem of knowing what to do in the specific context

to change the state of the world. Similarly, he calls the three steps of evaluation the Gulf

of Evaluation, illustrating the problem of detecting and evaluating changes to the state

of the world in the current context (Norman, 1988).

Falling under the Gulf of Evaluation are two important human phenomena called

inattentional blindness and change blindness, which have to be carefully considered

when interaction is available in the visual representations and presentations.

Inattentional blindness occurs when a person focuses on a specific piece of information

and as a result fails to notice some other obvious piece of information. Spence (2007)

gives an example of this with an experiment where people who were asked to watch a

short video of a group of people tossing a ball back and forth, counting the number of

times one of the girls touches the ball, completely missed a man in a gorilla suit

appearing in the video and fooling around in the middle of the group. Change blindness

occurs when a person is slow or completely fails to notice (sometimes large) changes

between two otherwise similar visualizations. For example the change can be that of

added or removed objects, or change in color or luminosity. FIGURE 18 shows an

example of potential change blindness presented by both Enns (2011) and Spence

(2007). The risk of change blindness also increases with the complexity of the data.

These phenomena must be accounted for, and could break a design and even turn out to

be fatal in critical real-time systems, since visualization strongly involves the user’s

attention to what is being displayed and to what changes.

Image source: Spence (2007)

(a) original image (b) one object is missing

Figure 18. An example of change blindness. The two pictures are different (one object has been

removed), but the change can be hard to notice at first glance. Can you spot the difference?

The use of animation over instant change is recommended to minimize change

blindness, give the user a better chance of perceiving the change and to better support

and expand the mental model of the user. Visual cues and encoding to counteract

inattentional and change blindness must be clear, pop-out and also be balanced against

the increased strain and workload these additions may put on the user (Spence, 2007).

2 Theory

30

2.7 Graphical User Interface

A graphical user interface (GUI) presents the internal encoded representation of

information and data to the user through windows, panels, text, images, icons, buttons

and other visual elements. The user interface is limited by and dependent on the

available screen real estate and space limits of the platform and presentation medium.

For instance, a computer monitor has much more screen real estate to work with than a

smartphone. It is thus of course very important to design the GUI for the intended

platform, but what is an even more important aspect, and generally accepted as the most

important aspect, is the actual user.

User interfaces should be designed to provide an engaging and enjoyable experience

while not requiring too much effort from the users to operate effectively. A user

interface must also be designed in such a way that they do not make users feel stupid or

cause them to make big mistakes (Cooper, 2007). To be able to create a good, effective

and satisfying GUI the designers must truly understand and design for the users, while

also keeping in mind that they themselves rarely represent the intended users (Cooper,

2007). Identifying the intended type of users and the intended posture of the application

is always a good place to start.

2.7.1 User type and application posture

Users can be divided into the three different groups of beginners, intermediates and

experts, depending on their vocabulary, level of knowledge and experience. This

division, like most population distributions, tend to follow the statistical bell curve, and

most users thus tend to be intermediates (Cooper, 2007). All users start out as beginners,

but as beginners are incompetent by definition, and no one likes being incompetent,

they do not stay beginners for long, and few become experts. You should therefore,

according to both Cooper (2007) and Tidwell (2011) design and optimize for

intermediates. The openness of the GUI must also be balanced depending on the

intended user type, and it comes down to how much effort the users are willing to spend

to learn the interface. If the GUI is too open it will confuse and deter beginners and

occasional users and if it is too closed it will cramp and restrict intermediate, expert and

returning users (Tidwell, 2011).

Cooper (2007) defines three different postures of applications; sovereign posture,

transient posture and daemonic posture. Applications that fall under the sovereign

posture are usually bigger, often full screen applications, such as word processors and e-

mail applications, that demands much of the user’s time, the user’s full attention and

that the user learn the applications well. To support the goals and tasks of the user, as

well as to lessen the cognitive load, they should be optimized for full screen use, have a

conservative visual style and exploit rich input. Applications that have a transient

posture are launched, used briefly and then dismissed, such as widgets and music

players. They must be clear, simple and spot on, and preferably retaining its previous

position and settings between launches. Applications that do not normally interact with

the user, such as background processes (daemons), are said to have a daemonic posture

(Cooper, 2007).

2 Theory

31

2.7.2 Flow and excise

People experience a state of mental ergonomics, referred to as flow, when they are able

to focus and concentrate fully on an activity to such a degree that they lose awareness of

peripheral problems and distractions. Flow is often associated with a mild sense of

euphoria and unawareness of the passage of time, and a person in this state can be very

productive, especially when performing constructive activities such as writing,

designing or development (Cooper, 2007). To make the users happier and more

productive the GUI should thus be designed to be responsive and promote, support and

enhance flow. It is likewise important to try to avoid behaviour in the GUI that may

disrupt the flow to make sure that it does not become difficult for the users to be

productive. One way of doing this is by making the application more intelligent by

simply having it derive as much as possible instead of asking the user, thus reducing the

number of distracting dialogs, warnings and confirmations that the user have to

encounter and deal with. Keeping related things together to avoid forcing the user to

switch context when doing related tasks is another way of supporting flow and

minimizing disruption. Minimizing excise is probably also one of the best ways to help

support flow.

Excise are tasks that do not directly contribute to reaching the goals of a user, but are

still necessary to accomplish the goals. It is the extra work required to meet the needs of

the tools or outside agents that are used to work towards the actual goals (Cooper,

2007). Actually eliminating all excise is almost impossible, depending on what context

and definitions are used, since everything short of reaching the goal without any effort

or interaction can be seen as excise. One example of excise is the combined use of

panning and zooming, which can make it difficult for a user to navigate without getting

lost in the information space. Reducing the number of places to navigate to, minimize

scrolling and providing signposts or overviews are good ways to reduce this type of

excise. There also exist visual excise, which can be minimized by avoiding excessive

ornamentation of the GUI, by encoding data in good ways to make it easy for the user to

decode the visual information and by using metaphors carefully and sparingly.

To summarize, well-designed user interfaces are transparent, since putting focus on the

interaction itself interferes with the users’ goals and flow. Cooper (2007) also

summarizes this with brutal honesty: “No matter how cool your interface is, less of it

would be better.” (Cooper, 2007, pp. 202). The curious reader who wants to know more

is referred to Cooper (2007), who has a lot of interesting and insightful things to say

about these subjects.

2.7.3 Design patterns, heuristics and guidelines

To help with designing graphical user interfaces there are a lot of design patterns,

heuristics and guidelines available; Tidwell (2011) alone defines over a hundred

different design patterns, and Cooper (2007) presents many interaction design patterns

and processes, as well as 117 interaction design principles that cover broad ideas, rules

and hints about the practice of design and use of interaction design idioms. Spence

(2007) summarizes this quite nicely when he states that “There are no step-by-step

2 Theory

32

instructions which, when followed, will guarantee success or even an adequate result.

The reason is simple: every new interface is different and usually complex; there are

many requirements to satisfy (social, technological, financial, to name a few); available

technology is changing with time and many different sources of expertise are drawn

upon - cognitive psychology, visual design, the list is long. Design is largely a creative

process and there is no ‘silver bullet’.” (Spence, 2007, pp. 181).

Due to general consensus on what makes a good user interface, it is unavoidable that the

guidelines and design patterns of the different authors overlap with each other and with

many other guidelines and recommendations regarding the subject. Some of the more

general heuristics and guidelines, which every interaction designer and interface

designer should know by heart, are presented below:

 Design for consistency and follow standards, by following standards and

platform conventions, and by keeping the conceptual model, and meaning

of semantics, syntax, situations, actions and display formats uniform and

consistent (Brath, 1999; Nielsen, 1994). Use standard symbols, words,

icons and metaphors whenever possible. The use of metaphors should

always be handled with care, and preferably be minimized since they are

hard to find, they scale poorly, and there simply do not exist enough good

metaphors to go around (Cooper, 2007). They also constrict our thinking

and users’ ability to recognize and correctly interpret them is often

questionable, especially across cultural boundaries (Spence, 2007). Avoid

any exceptions or special conditions that break the consistency of the

design.

 Structure the display, by dividing the view into different areas to present

different types of information. The user’s perception of structure can be

enhanced by using encoding such as color, shape, line style, intensity and

grouping (see section 2.7.4 GESTALT GROUPING PRINCIPLES below).

Combining these also helps to further separate and directing attention to

pieces of information (Brath, 1999).

 Strive for aesthetic and minimalist design, by keeping the information

shown minimal, visible, legible and relevant, since irrelevant and extra

information competes for space, visibility and relevance (Nielsen, 1994).

 Match between system and the real world, by letting the system use

words, phrases and concepts that are familiar to the user, rather than using

system-oriented terms, and by following real-world conventions, making

information appear in a natural and logical order (Nielsen, 1994).

 Feedback and visibility of system status, by always keeping users

informed through appropriate feedback within reasonable time (Nielsen,

1994). Give feedback by, for example, highlighting buttons when pressed,

changing the mouse cursor to a busy icon, using prompts, or displaying

error messages. Feedback and error messages should be positioned close to

the task in the work area or cursor to maintain a visual continuity, rather

than forcing the user to switch back and forth between the work area and a

feedback area (Brath, 1999).

2 Theory

33

 Control response time, by relating response times to user expectations;

simple immediate interactions must have a response time shorter than 100

milliseconds (Brath, 1999). Response times up to about 1 second make the

user feel that the system is responsive. Up to 10 seconds make them feel

that the system i slow, so make sure to provide a progress bar. After 10

seconds the users will lose interest and start doing something else outside

the system. Such slow processes should thus preferably run in the

background to allow the users to continue using the system for other tasks,

while displaying a progress bar with estimated remaining time and

allowing the users to cancel these processes if needed (Cooper, 2007).

 Allow user control and freedom, and accommodate errors, by having

clearly marked escape hatches and supporting undo and redo. This

encourages the users to explore the system (Nielsen, 1994). Tidwell (2011)

also points out that one should always let the users be in control, or at least

feel that they are in control.

 Help users recognize, diagnose and recover from errors, by expressing

visible, useful and understandable error messages in plain language instead

of only error codes, clearly stating the problem and constructively suggest

a solution to the problem (Nielsen, 1994). The effects of ignoring a

warning should also always be clear to the users (Brath, 1999).

 Error prevention, by eliminating error-prone conditions or by letting

users confirm actions that may lead to such conditions, which is of course

better than having to use error messages (Nielsen, 1994). It is also true that

one should avoid breaking the flow of the user with unnecessary error,

notification or confirmation dialogs.

 Help users learn the system, for example by providing help or tutorials

for novice users, and by using prompting, such as highlighting and

dimming actions and choices, to help intermediate users (Brath, 1999).

 Provide help and documentation, which are not too large, easy to search,

focuses on the task of the user and lists clear and concrete step-by-step

instructions. It is even better if the system can be used without any

documentation at all (Nielsen, 1994).

 Flexibility and efficiency of use, by the use of accelerators and by

allowing users to tailor frequent actions (Nielsen, 1994).

 Recognition rather than recall, by minimizing the user's memory load

through good visibility of objects, actions, options and instructions

(Nielsen, 1994). Avoid, as much as possible, to force the user to memorize

information such as shortcuts, commands or legends (Brath, 1999).

Provide memory aids and display relevant information to the user instead.

2 Theory

34

2.7.4 Gestalt grouping principles

Grouping and aligning related objects together also helps improve the interface, helps to

keep the design consistent, as well as helping with keeping the display and tasks

structured. Grouping normally follows the Gestalt principles, where Gestalt theory

dictates that to perceive a figure it must first be separated from its background by the

human perceptual organizational processes. To make a figure easier to perceive it

should clearly stand out from the background, which may be aided by the following

observations; a larger region, or a region that completely surrounds another smaller

region tend to be seen as backgrounds, while surrounded regions and smaller regions

tend to be seen as a figures, as well as tending to perceiving symmetric, vertical and

concave regions as figures compared to asymmetric, diagonal, and convex regions

respectively. The most important Gestalt grouping principles that humans tend to

perceive, according to Brath (1999) and Tidwell (2011), are listed below. Combining

these with sufficient whitespace or group boxes (a type of common region) may also

help crowded GUIs, although it is better to avoid this and display less information with

more clarity instead. Notice how the figures below use whitespace and group boxes to

separate the different examples from each other, thus using the grouping principles

themselves.

 Proximity: objects that are put close together will be associated with one

another (see FIGURE 19(a)).

 Similarity: groups are formed by objects that look similar, for example by

sharing shape, color, size or font (see FIGURE 19(b)).

(a) proximity (b) similarity

Figure 19. Illustrated examples of the Gestalt grouping principles.

 Continuity: relative positioning and alignment of smaller objects form

groups of continuous shapes and directions, such a line perceived from a

series of dots (see FIGURE 20(a)).

 Closure: simple closed shapes, such as rectangles and circles, are

perceived even if there are gaps in the placement of objects in the group

(see FIGURE 20(b)).

(a) continuity (b) closure

Figure 20. Illustrated examples of the Gestalt grouping principles.

2 Theory

35

 Common orientation: objects with a common motion or common

orientation will tend to be grouped together (see FIGURE 21(a)).

 Connectedness: objects connected with lines will be perceived as grouped

(see FIGURE 21(b)). Compare with continuity.

(a) common orientation (b) connectedness

Figure 21. Illustrated examples of the Gestalt grouping principles.

 Common region: objects surrounded by a common background will be

perceived as grouped (see FIGURE 22).

Figure 22. Illustrated example of the common region Gestalt grouping principle.

3 Method

36

3 Method

This chapter describes and motivates the choice of methods used during the entire span

of the thesis. See chapter 6 DISCUSSION for thoughts on how these choices and methods

impacted the final result of the thesis work.

3.1 Research methods

The sources used to gather information and material were mainly those of books from

Chalmers Library (2012) and Google Books (Google Inc., 2011), both physical and

electronic distributions; articles, papers and publications from online databases, such as

ACM Digital Library (Association for Computing Machinery, 2012) and IEEE Xplore

Digital Library (IEEE, 2012); Internet in general, specifically through Google search

with related keywords and phrases such as: data visualization, algorithms, algorithm

complexity, memory management, graph plotting, Qt, python bindings, iterative

development process, etc.

3.2 Prestudy methods

After the initial gathering of source material, a smaller prestudy of similar existing data

visualization libraries was made. Comparisons of functionality and response time, for

large amounts of data, was done between the libraries to get an overview of their

capabilities, and to acquire a set of (very rough) performance benchmarks to compare

with the final result of the thesis. The performance benchmarking was done by

repeatedly timing performed actions during a stress test, and considering the response

time of these actions expected by users. The results were quantified, based on the

observations of Cooper (2007), as fast; 100 milliseconds or less, responsive; up to 1

second, slow; 1-10 seconds, and unusable; more than 10 seconds. Further details of the

examined libraries and test results can be found in APPENDIX C - PRESTUDY RESULTS.

A large amount of data, namely 25 million points, for stress testing was created using

the following Python code:

import numpy as np

 x = np.arange(0, 250000, 0.01)

 y = np.sin(x)

That amount of points in the test data was chosen so that test notebook (see section 1.4

DELIMITATIONS for specifications) would have to struggle, and even fail in some cases,

as it generates the potentially massive overhead of managing and converting every point

of the data to internal objects and data structures stored entirely in RAM, before

displaying the data. 25 million points should thus test the limits of the studied libraries,

even though the size of the generated data was only about 400 megabytes rather than in

the range of a couple of gigabytes. This test data was also chosen to showcase any

potential improvements where the developed library could (hopefully) manage and

display the dataset more efficiently than the existing libraries.

3 Method

37

The following questions regarding functionality, which were derived from the

requirements found in APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS, were

answered, are answered in APPENDIX C - PRESTUDY RESULTS:

 Which license is used? The license recommended was BSD and

preferably using a library should not impose any restrictions on a

commercial product.

 Which platforms are supported? Ideally all platforms supported by

Python, but primary Windows, Mac and Linux.

 Are all graph types supported? The two primary graph examined types

are scatter plot and time series with error bars.

 Which rendering methods are supported? Many libraries support more

than one rendering backend, sometimes also with different GUI toolkits.

This could have an impact on performance and usability.

 Is there any interactive functionality built into the GUI? Capabilities to

pan, zoom and select data were important requirements.

 Are all data points stored in memory? Attempting to keep large datasets

in memory is undesired because the system can become unusable for

longer periods of time as described in section 2.1 OPERATING SYSTEM

MEMORY MANAGEMENT.

 Are data points compressed? Useful for reducing the above problem, but

is by no means a silver bullet to keep large arbitrary datasets in memory.

More generally it is possible to find a dataset with high information

entropy, which causes any attempt to compress the data to be less efficient

(Rezakhanlou, 2007).

 How is basic library API usage? APIs provide functions from a library

by name and arguments, and it is of course easier to learn a new API if it

follows some common convention or is similar to a known one

 Are Python bindings provided? A less critical issue is whether or not

Python-bindings exist, because bindings can in most cases be written with

little effort using automated tools such as SIP.

 Which scaling methods are supported? Linear and logarithmic scaling

methods are required.

 Are there any preprocessing capabilities? Interpolation and similar for

high quality time series and automatic error bars. Not as important since it

can be precomputed and appended as part of the related dataset, before

rendering.

 Is it multithreaded? Concurrent rendering can be used to avoid blocking

the GUI from long delays while rendering. See section 2.3 CONCURRENT

PROGRAMING AND MULTIPROCESSING.

3 Method

38

3.3 Development method and software libraries

The method used during the thesis to develop the proposed library was an iterative

development process, using the C++ programming language, POSIX Threads (IEEE,

2008), Qt libraries (Nokia Corporation, 2012) and the AGG library (Shemanarev, 2006).

Python bindings were provided through the SIP and PyQt libraries (Riverbank

Computing Limited, 2012). CMake (Kitware Inc., 2012) was used to generate platform-

specific build scripts for the library source code.

Unstructured interviews with staff and developers from Combine and Volvo yielded the

initial requirements listed in APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS. To

summarize, two basic graphs were deemed necessary; a regular scatter plot and a time

series graph. Functionality included point selection, grouping, configurable scales and

zoom support, error bars were requested for the time series, and semi-transparent dots

for the scatter plot in order to visualize the points cluster density. A graph widget

example implementation prototype built upon the proposed API, acting as both a

technical demonstration application and test application, was developed in parallel with

the API to be able to show a more tangible result that could be evaluated and compared

to the purpose, prestudy results and API requirements.

3.3.1 Iterative development process

The iterative development process, depicted with its steps in FIGURE 23, was chosen

over more traditional processes, such as the waterfall model’s “do it right the first time”

mentality. The motivation for choosing this was because of the complexity and

uncertainty of how to design and implement the proposed library efficiently, due the

limited knowledge and experience with selected libraries and frameworks, as well as the

added difficulty of actually designing an efficient and useful API rather than an

application. Iterative development also inherently supports modular and modification-

friendly design, structure and code, which goes hand in hand with a well-designed API.

This is further motivated by Sotirovski (2001), who states that increased uncertainty

calls for an iterative development process, of which the purpose is to discover pitfalls

that may otherwise not have been foreseen. Iterative development also allows mistakes

and weaknesses from previous iterations, in both design and code, to be found and

corrected as soon as possible (Sotirovski, 2001).

Figure 23. An overview of the steps making up the iterative development process.

3 Method

39

The iterative development process consists of a step for initial overhead planning,

followed by as many iterations as is deemed necessary (usually three or more), and

finally deployment of the finished software. Each iteration is made up by steps for

planning the tasks for the iteration, selecting requirements and tasks to implement in the

current iteration, analysis and design of the selected requirements and tasks,

implementation of the resulting design, testing the implementation, and finally

evaluation of the iteration.

Rather obvious as it is, Sotirovski (2001) recommends developing the architecture and

critical core functionality first, as this will focus on and establish the infrastructure of

the necessary interactions between the system components. This foundation will act as a

framework and decide the outcome of the rest of the system, since having the

framework in place will focus the effort, boost confidence and provide better insight in

how to implement subsequent components of the system. Focusing on implementing

framework code with wide and shallow integration also reduce rework and mitigates

risks in areas where requirements and design are still uncertain, as well as giving the

problems that arise early attention. Implementing critical core functionality early on as

well, will give it more time to mature and increase in quality as the development

progresses. Once the framework is constructed, adding the other components usually

involves less mutual dependencies, which is an advantage in future iterations, as it

allows for more parallel development (Sotirovski, 2001). See chapter 4 DEVELOPMENT

for more details on the actual use of the process in this thesis.

3.3.2 Programming language and software libraries

C++ was chosen since it is a low- to intermediate-level programming language,

designed for object-oriented programming as well as providing more fine grained

memory management functionality. POSIX Threads (Pthreads for short) is an open

POSIX standard for threads (IEEE, 2008) with implementations available on all larger

platforms and operating systems, thus making it suitable for use in the proposed library.

On the request of Combine, the code style and structure defined by the Google C++

Style Guide (Weinberger, 2011) was also used.

Combine also suggested Qt (version 4), a large well-known and well-documented cross-

platform application and UI framework, distributed under the LGPL license, used by

many companies (Nokia Corporation, 2012). It provides the majority of the basic and

most commonly used GUI components and elements across the major platforms, and is

thus suitable for use as a GUI frontend component for the proposed library. It also

provides rich event handling, a comprehensive signals and slots system, timers, as well

as thread and synchronization support and internal memory management among many

things. It should also be noted that the GUI and Qt components were all implemented by

hand, even though Qt comes bundled with Qt Creator and Designer tools. The reason

for this was to better get to know and learn Qt on a lower level, as well as avoiding

GUI-builder tools, due to previous bad experiences with such tools used for anything

other than prototyping. Although Qt is used to display all visible GUI components, the

shown graph plot image is first rendered by an AGG-renderer to an image buffer in the

3 Method

40

backend, which is then used by Qt. This allows the components to be separated and

modular. AGG is a flexible open source stand-alone cross-platform (two-dimensional)

graphics library, supporting transparent rendering, making it more than sufficient as a

backend rendering component for the proposed library. AGG version 2.4 is used, since

it is the latest version to be distributed under the BSD license, and all later versions are

as of this writing released under GPL (Shemanarev, 2006).

To simplify implementing Python bindings, a tool named SIP was used to generate most

of the necessary glue code required to use a C++ library in Python. Although the

implemented API and library is to be distributed under a BSD license, the PyQt libraries

used by the generated Python bindings are distributed under GPL. This forces the

library bindings for Python to use GPL as well, creating an exception from the license

requests from Combine. This exception was motivated and accepted by Combine, as

they themselves use PyQt libraries in their own application development, and have had

to make the same exception themselves. Finally versions 4 of both the SIP and PyQt

libraries are used, since earlier versions of PyQt do not support Qt version 4.

3.4 Tools and collaboration methods

Pen, paper and whiteboards were used during the planning and design phases to sketch

the structure and GUI, write pseudo code for algorithms, and to generally solve

encountered problems. The NetBeans (Oracle Corporation, 2012) and Code::Blocks

(The Code::Blocks Team, 2011) IDEs were used as basic tools during the development

in combination with or without SVN-plugins, debugger and command line tools. The

Valgrind analysis framework (Valgrind Developers, 2011) was used with the Valkyrie

GUI frontend to find and identify memory leaks (see section 2.1.1 VIRTUAL MEMORY,

SWAP AND MEMORY LEAKS). The Doxygen documentation system (Van Heesch, 2012)

was used to generate the API documentation (see APPENDIX E - CCDVL API

DOCUMENTATION), and it should be noted that although both Valgrind and Doxygen are

distributed under the GPL license, their output and the generated documentation is not.

Typically, the authors would meet almost daily at the Chalmers campus, or periodically

at the Combine office about once a week or every-other week, to work on the thesis.

Otherwise, communication and collaboration was carried out through ordinary means

such as e-mail, live chat and telephone conversations. Google Documents (Google Inc.,

2012) was also used to record interviews and to share documents, material and ideas, as

well as to write this thesis report and the presentation slides, and to get direct feedback

from the supervisor through the built-in comments mechanism. The icons in the GUI

and the figures in this report that lack stated sources, as well as the reproduced figures,

were made by the authors using Adobe Photoshop (Adobe Systems Incorporated, 2012),

GIMP (The GIMP Team, 2012), Microsoft Word (Microsoft Corporation, 2012b), Dia

(Larsson, 2011) and yEd (yWorks, 2012). Finally, the report was transferred to a Word-

document for fine tuning of the formatting and layout, before the final approved version

was converted to a pdf-document and submitted for publication.

4 Development

41

4 Development

This chapter goes into more detail about the iterative development process (described in

the previous chapter) that was used to develop the resulting library. The sections below

each describe one or more of the steps of the iterative development process,

summarizing the tasks, design decisions, encountered problems and their solutions for

the five iterations that were applied during the thesis work. The iterations varied in

length and size to try to avoid splitting some of the larger tasks over several iterations.

TABLE 2 below provides an overview of the iterations.

Table 2. An overview of the iteration main tasks, along with number of subversion revisions and

approximate time spent on each iteration.

Iteration Revisions Length Main tasks

1 41

(r001 – r041)

1 week API framework, component skeleton

structure and interfaces.

2 70

(r042 – r111)

5 weeks Qt, GUI, renderer and memory manager.

3 129

(r112 – r240)

10 weeks Multithreading, memory manager, graph

tools, Doxygen and Python bindings.

4
73

(r241 – r313)
6 weeks Refactoring, multithreading, graph

clipmap cache, graph grid, graph axes

value algorithm, graph neighbourhood

overview and settings dialog.

5
79

(r314 – r392)
4 weeks Refactoring, cleanup, optimization,

formatting and documentation.

The authors collaborated and worked together on all parts, although the bulk of the

work was split into two parts, roughly comprising the frontend and backend

respectively. This allowed more parallel development, as well as allowing each author

to focus on and work with the parts they were better suited for and were better aligned

with the main focuses of their respective master programmes.

4.1 Planning and requirements

Initially, a rough time plan was made together with Combine, containing the bigger

milestones and requirements (listed in APPENDIX A – INITIAL REQUIREMENTS AND

REQUESTS), as well as dates for follow-up and evaluation meetings. Loose opportunistic

time plans for the development and thesis in general were also made and updated at

several occasions during the thesis work. Even so, they were a bit hard to keep up with

due to unforeseen time sinks, some nasty bugs, too few firm milestones, and outside

world obligations taking up much of the time.

4 Development

42

Towards the end, the time series graph was dropped as a requirement due to time

limitations, although the software library and API were still designed with this in mind

to be able to support it in the future. Combine asked that the focus would be on

finishing the basic scatter plot graph and API structure.

4.2 Analysis and design

Data and memory managers and iterators, described in sections 4.2.1.1 ITERATORS

ANALYSIS AND DESIGN and 4.2.2.1 MEMORY MANAGER ANALYSIS AND DESIGN, are

needed to be able to handle large amounts of data, as mentioned in section 1.2

PROBLEM, while avoiding the associated problems. This involves working with and

displaying smaller portions of the data, in this case as a rendered image composed of

tiles, to be able to process and interact with the data. A renderer, described in section

4.2.2.2 RENDERER ANALYSIS AND DESIGN, is thus needed to render the graph image tiles

and a graph tile cache is used to speed up the rendering process. A frontend GUI,

described in section 4.2.3 FRONTEND AND GUI ANALYSIS AND DESIGN, is of course also

needed for displaying the graph image and to allow user interaction, as well as requiring

a module to keep track of groups of data selected by the user through the GUI. All these

components are also described in the following section.

4.2.1 API analysis and design

The memory manager is designed to avoid spending all system resources on system

level memory management by utilizing manual memory page control to swap and free

memory used for data as soon as possible, thereby avoiding system wide resource

starvation as described in section 2.1 OPERATING SYSTEM MEMORY MANAGEMENT. Data

access will be provided through iterators (see sections 2.4.3 ITERATOR), motivated by

simplified data access and the possibility to track the number of existing iterators that

point to some data, which in turn allows that allocated shared data to be freed

immediately when it is no longer needed. Graphs will simply be images, which make

interactive operations more difficult to implement. One of the largest problems

associated with this is how to manage an interactive graph when the actual data will not

be immediately available or selectable. Groups must therefore be represented as a

selection of graph space, which solves data point membership by checking if a data

point is inside the selection, instead of storing additional metadata for each data point.

The rendering process is expected to require a considerable amount of time to complete,

and it is therefore important that it will be designed to not block continued processing of

user actions and events, to fulfil the non-functional requirements listed in APPENDIX A –

INITIAL REQUIREMENTS AND REQUESTS. To achieve this, the rendering process will be

separate from the frontend and GUI, allowing parallel rendering trough multiprocessing,

as described in section 2.3 CONCURRENT PROGRAMING AND MULTIPROCESSING.

Progressive rendering will also be supported by allowing graph images to be accessed

even when the renderer has not finished rendering them. This requires being able to

queuing graph images for rendering, requesting a graph image and an observer callback.

The observer pattern, as described in section 2.4.1 OBSERVER, is used to signal the

frontend that the rendering process is finished, simplifying progressive update stop

4 Development

43

conditions. Early on it was decided that the GUI frontend, renderer and memory

management were to be separate components, following good programming practice to

make the API modular, portable and simple to use. An API draft based on this decision

is shown in FIGURE 24.

Figure 24. Early API design overview.

A typical usage scenario, shown in FIGURE 25, was also created based on this design.

Figure 25 A typical usage scenario as seen from the API perspective.

4 Development

44

A few general problems still remain to be addressed, such as the data type of data

points, which is solved by letting the library work strictly with the double precision

floating point data type internally. However, whenever data is returned through a user

selection it would be preferable if the library returned the data in the form of the same

numeric data type that was inserted into the memory manager to begin with. An abstract

dataset class was thus introduced, having specific subtypes for each supported data type,

which allowed conversion of data values to doubles through polymorphism, while using

a visitor (see section 2.4.2 VISITOR AND DOUBLE DISPATCH) to determine the return data

type of a selection.

Another problem concerns the rendering of graph tiles making up the graph image,

much like a clipmap, and caching of said graph tiles. A cache module was thus added to

the library and asynchronous rendering was incorporated into the cache, shifting process

management from the three primary modules, particularly from the renderer, to the main

library. The request for a graph tile and render graph tile was combined as it can be

easily verified by a cache that a new graph tile must be created and returned.

Furthermore, the renderer was tweaked to allow batch operations by accepting a list of

tiles rather than a single tile at a time, primarily to improve rendering performance using

the SequentialMemoryManager (see section 4.3.2.1 MEMORY MANAGER

IMPLEMENTATION). Adding data to the memory manager while rendering should also be

possible, leading to interesting synchronization requirements and communication

interfaces between the different parts of the library, as seen in FIGURE 26. The memory

manager was designed to be observable so that the cache could easily be invalidated

whenever more data is inserted, to be able to handle the new data being inserted from

another process more gracefully. In order to support graphs that can encode more than

two dimensional data, the API supports components using k-dimensional data, where k

is a nonzero integer

Figure 26. Updated API design overview.

4 Development

45

To ensure generality, a group is thus not necessarily a selection of any kind but rather a

k-dimensional bounding box and a boolean decision function that filter points from

graph space covered by the bounding box, forming an abstract group. The basic idea is

to consider a selection as a polygon and store it as a group, which is why the point in

polygon algorithm in section 2.2.4 POINT IN POLYGON is also interesting. Finally, the

frontend is required to provide methods to access user selections allowing applications

relying on this library and API to query the memory manager and obtaining the user

selected data points.

4.2.1.1 Iterators analysis and design

The memory manager iterator iterates over the abstract datasets mentioned above, and is

stored by the memory manager, which is described further in section 4.3.2.1 MEMORY

MANAGER IMPLEMENTATION. Each dataset is essentially an array representing data

values for a single axis, followed by the dataset for the next axis in the iteration.

Therefore, the actual data points must be obtained by pairing values from each dataset

in a recurring series with a length equal to the number of dimensions used by the

memory manager. This design is motivated by the need to preserve the original data

type of the stored data and the order is similar to how existing libraries loads data,

which is why the memory manager will work in the same way.

A group selection iterator is obtained from a user selection through the GUI frontend

and iterates over the selected data points from a given memory manager. See sections

4.3.1.2 GROUPS IMPLEMENTATION and 4.3.1.3 ITERATOR IMPLEMENTIONS for further

details.

4.2.2 Backend analysis and design

The backend consists of the memory manager and renderer modules, each with an

important task, as described above in section 4.2.1 API ANALYSIS AND DESIGN. Further

backend module details follow below.

4.2.2.1 Memory manager analysis and design

The memory manager is essentially similar to a database where the data is indexed over

all its dimensions. The primary purpose is to avoid keeping data in memory whenever

possible by, flushing data either to a temporary file or to the operating system swap, and

partially loading data to memory as needed to and to quickly find data subsets.

Additionally, safe synchronization is required, where a readers-writer lock (see section

2.4.4 READERS-WRITER LOCK) should be enough to insert data. Although, keeping active

iterator instances will become more complicated if the underlying data structure

accessed by the iterators is changed during iteration. Section 4.2.1.1 ITERATORS

ANALYSIS AND DESIGN additionally describes that a memory manager accepts data as a

series of axes each represented as an abstract dataset that manages the actual values, and

that the iterator also accesses each dataset in the same way.

4 Development

46

Creating a data structure capable of storing these abstract datasets efficiently is a

complex task, perhaps worthy of its own thesis, where a multidimensional tree structure

seems a good candidate. The basic idea is to exploit binary search (see section 2.2.2

BINARY SEARCH) where the search space represent the actual graph space and each

element is a data point. Unfortunately this is not enough, since intersecting lines,

connecting data points outside of a graph tile, will not have the intersecting part drawn

on that graph tile. Those lines should obviously be rendered despite that the data points

cannot be observed directly, which causes an additional requirement. A similar problem

also applies to individual points close to the edges of a graph tile, which may intersect a

neighbouring graph tile depending on the size of the rendered representation of the

point. This could easily be solved by performing a slightly larger search request

proportional to the point size. The data point order must also be preserved and the

resulting iterator should follow this order, adding further requirements.

Ignoring the k-dimensional requirement, it turns out that there are some data structures

capable of handling the problem with intersecting lines mentioned above, namely Line,

MX, edge and polygon map trees (Samet, 2006). Line trees are not suitable due to

approximation of arbitrary lines and because they do not store vertices. MX trees have a

similar problem where the approximation decomposes lines to the last pixel. Edge trees

are similar to MX-trees, but the approximation can be configured to be even less

precise, leaving polygon map trees as the most promising data structure to use as base,

as these handle edges by storing a reference to the endpoints of the lines that cross

partitions (Samet, 2006). Another interesting data structure problem is that storage

media tend to prefer reading data in sequential chunks or blocks. Tree data structures

optimized for block storage are known as b-trees and are therefore commonly found in

file systems (Samet, 2006). Considering all of the above, the required data structure is

something similar to a polygon map based k-d-b-tree. But the truly challenging part is

balancing that data structure efficiently, using only a limited amount of memory.

4.2.2.2 Renderer analysis and design

The large number of possible ways to present data to users calls for a large number of

different renderers, or at the very least a vast configuration. The mindset for good data

presentation is described in section 2.6 INFORMATION VISUALIZATION alongside with

numerous examples of graph types and ways to encode information using a graphical

representation. Obviously, attempting to support everything immediately is unrealistic

and each renderer should represent a specific type of graph with a configuration as large

as possible, possibly including groups as well. The way data is encoded and presented is

thus entirely decided by the renderer, which may cause incompatible translations

between the displayed view, the selection and the rendering of view if all components

do not consider the data in the same way. For now, a standard Euclidean projection will

be used, which will work well for two- and three-dimensional data, while the k-

dimensional rendering model shall allow more exotic graphs and their respective view

to be implementable using the API.

A basic two-dimensional plot graph could render each point as an actual (semi-

transparent) point, draw lines between points and possibly aggregating close data points

4 Development

47

to approximate their location before rendering them. The idea is to create a combined

scatter and time series plot renderer with configurable points, lines and colors, as the

two graph types are quite similar. Each graph tile that is used can thus be represented by

a base offset, scale and zoom levels, size in pixels, saved selected groups and specific

rendering settings.

4.2.3 Frontend and GUI analysis and design

As much of the provided functionality and as many as possible of the standard graphical

components of Qt is to be used and built upon to both save time, to be able to focus

more on fulfilling the requirements (listed in APPENDIX A – INITIAL REQUIREMENTS AND

REQUESTS), and keep the local look and feel, which is automatically handled by Qt for

each operating system. The built-in resource handling system is beneficial as it keeps

that specific functionality of the library portable, and the provided localization system is

also utilized to support the possible need for a translation in the future, as they are both

simple and quick to use.

Communications with the backend will mainly be to fetch image buffers from the graph

cache to compose the displayed graph image, and to handle saved groups of selected

data points. Signals will be received and sent, both externally and internally, to stop or

reload the renderer and update processes, to receive process progress updates from the

renderer through the use of the observer pattern (see section 2.4.1 OBSERVER), and to

notify the cache and renderer of updated parameters, such as zoom level or point color,

when these change through GUI interaction. These communications and their respective

triggered responses must also be synchronized with any on-going (threaded) operations,

such as an update of the graph image or rendering process, as explained in section 2.4

SOFTWARE ENGINEERING DESIGN PATTERNS. Finally, the update process should be

progressive to avoid causing an unresponsive GUI while waiting for the renderer and

graph cache, thus allowing smoother continuous interaction (see section 2.6.4.2

INFORMATION SPACES AND TYPES OF INTERACTIONS) and supporting the design

guidelines of visibility of system status and controlling response time, as described in

section 2.7.3 DESIGN PATTERNS, HEURISTICS AND GUIDELINES. GUI responsiveness is, as

previously stated by the problem description in section 1.2 PROBLEM one of the major

issues and requirements (see Appendix A – Initial requirements and requests) that need

to be addressed.

4.2.3.1 GUI overview and structure

As the purpose of the proposed library is to visualize large amounts of data in graphs, it

is reasonably safe to assume that applications using the library will have a sovereign

posture to maximize the displayed graph area, and to allow potentially lengthy analyses

and explorations of the visualized data. Sovereign posture also dictates a GUI optimized

for full screen use, with a conservative look and not too many colors, as described in

section 2.7.1 USER TYPE AND APPLICATION POSTURE. Use of the center stage and liquid

layout design patterns, as defined by Tidwell (2011), and structuring the display while

striving for a minimalist design, as described in section 2.7.3 DESIGN PATTERNS,

4 Development

48

HEURISTICS AND GUIDELINES, also follow naturally. One interesting thing to note is that

the typical user of the proposed software library and API is a software programmer,

making it possible for the authors to think of themselves as typical users, which is rather

unusual and something normally strongly advised against (Nielsen, 1993).

FIGURE 27 and FIGURE 28 show two of the more finalized versions of possible GUI

designs and layouts of the graph widget example implementation prototype, displayed

in an external window frame with a menu bar. The design and layout are somewhat

influenced and inspired by Adobe Photoshop, perhaps most clearly noticeable in the

graph interaction tools, tool icons, overview area and groups list, and their respective

layouts in FIGURE 28. These follow standard and common look and use of icons and

support the user habituation design pattern and user recognition, as recommended by

Tidwell (2011) and the general guidelines found in section 2.7.3 DESIGN PATTERNS,

HEURISTICS AND GUIDELINES. This also supports the recommendation of designing for

intermediates, as described in section 2.7.1 USER TYPE AND APPLICATION POSTURE.

Figure 27. A sketch of one of the proposed GUI design and layouts of the graph widget prototype,

showing the main graph view area at the top left with a toolbar, overview, coordinate and graph view

range boxes below. A groups panel and a process progress panel is shown to the right.

The different main parts and areas of the GUI are designed as separate components, to

allow quick and easy rearrangement of the main layout or replacement of specific

components. The main components seen in FIGURE 28 are the graph view area with

graph axes and toolbar (see section 4.2.3.2 GRID AND GRAPH AXES and section 4.2.3.3

GRAPH INTERACTION TOOLS), the neighbourhood overview frame (see section 4.2.3.4

NEIGHBOURHOOD OVERVIEW), the graph view range box showing the current graph view

position (see section 4.2.3.5 INFORMATION LABELS), and the groups list of selected and

saved groups of data points (see section 4.2.3.6 GROUPS LIST). Many of these directly or

indirectly correspond to one or more of the requirements listed in APPENDIX A – INITIAL

REQUIREMENTS AND REQUESTS.

4 Development

49

The process progress list, visible in the bottom right corner of the sketches in FIGURE 27

and FIGURE 28 was deemed mostly superfluous and was never implemented to avoid

adding visual excise (see section 2.7.2 FLOW AND EXCISE). It was replaced by a simple

status bar showing messages, mouse-over help texts through brushing (through brushing

described in section 2.6.4.1 EXPLORATION AND INSIGHT THROUGH INTERACTION) and a

progress bar during updates, as well as containing a settings button used to open the

settings dialog. The progress indicator is another Tidwell (2011) design pattern that, in

this case, also encourage users to expect and look for changes during the progressive

updates, which may otherwise go unnoticed due to change blindness (see section 2.6.4.3

THE ACTION CYCLE AND HUMAN ASPECTS OF INTERACTION).

The graph view area is pannable and zoomable since the amount of screen space is

limited and it is not always possible or desirable to show the entire graph in one view, as

described in section 2.6.3.1 DISPLAY LIMITATION TECHNIQUES. Pan and zoom also help

with navigation and answer some of the questions found in section 2.6.4.1

EXPLORATION AND INSIGHT THROUGH INTERACTION, as well as being two of the more

important requirements (see APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS).

Figure 28. Another sketch of one of the proposed GUI design and layouts of the graph widget prototype,

closer to the final design with the overview box in the top right corner and the coordinate and graph view

range boxes combined at the bottom

4.2.3.2 Grid and graph axes

A basic toggleable grid, originating from the graph origin and following the step values

of the graph axes, was added to make the graph easier to interpret at a glance and to

support navigation (see section 2.6.4.1 EXPLORATION AND INSIGHT THROUGH

INTERACTION). The grid is visible in the empty graph view areas in both FIGURE 27 and

4 Development

50

FIGURE 28, although the final grid line style was made solid and semi-transparent rather

than dashed, and the grid lines intersecting the origin were made thicker to emphasize

the borders of the positive and negative halves of the graph.

The alternating pattern of the specified graph axes step values and the intermediate

values displayed with smaller font size, as seen along the axes in FIGURE 27 and FIGURE

28, change dynamically with the graph view when updating, panning, zooming or

changing the graph axes scale factors. If the absolute value of any graph value displayed

along the axes are too high or too low, it will instead be displayed with scientific

notation broken into two lines to better make use of the available space. The values are

also adjusted to align themselves symmetrically around the graph origin with the use of

monospace fonts and padding. These design choices are based on both experience and

the guidelines presented in section 2.6.2.2 DATA ENCODING METHODS AND GUIDELINES,

such as presenting many numbers in a small space and showing as much data as

possible, revealing data at several levels of detail and using words in full with standard

orientation.

4.2.3.3 Graph interaction tools

The graph interaction tools in the toolbar are grouped into two button groups, following

the button groups design pattern defined by Tidwell (2011), which is in turn based on

the basic grouping principles in section 2.7.4 GESTALT GROUPING PRINCIPLES; one

button for selection-tools and one button for pan- and zoom-tools. The tool buttons have

simple icons and mouse-over tooltips to further clarify the respective function of each

tool, which is another example of the brushing technique, described in section 2.6.4.1

EXPLORATION AND INSIGHT THROUGH INTERACTION. Each tool also has a custom mouse

cursor to further indicate its function, such as a cross for rectangle select and a hand for

panning, corresponding to the standard cursors normally used for such tools, thus

following the guidelines in section 2.7.3 DESIGN PATTERNS, HEURISTICS AND GUIDELINES

and the habituation design pattern (Tidwell, 2011). Some of the standard cursor icons

were provided by Qt, but all of the other tool icons were made from scratch with

Photoshop, since a free to use set of icons, with a satisfyingly homogeneous look and

feel, that included all the needed icons could not be found. FIGURE 29 shows some

suggested tools and icons, of which the majority was kept in the final version. Visual

helper lines, radiating from the current mouse cursor position towards the graph axes

(visible in FIGURE 28 were also added to the point select tool to make the graph easier to

read and to further support navigation (see section 2.6.4.1 EXPLORATION AND INSIGHT

THROUGH INTERACTION).

The zoom lens tool was intended to act as a real world magnifying glass, with a

dynamically changeable magnification level, to add an extra level of overview plus

detail (see section 2.6.3.1 DISPLAY LIMITATION TECHNIQUES) and utilize the local

zooming design pattern (Tidwell, 2011), but was excluded due to time limitations as it

was not among the requirements listed in APPENDIX A – INITIAL REQUIREMENTS AND

REQUESTS. The undo and redo functions, even though strongly recommended in section

2.7.3 DESIGN PATTERNS, HEURISTICS AND GUIDELINES, was deemed to have too little

practical use in this specific context to be implemented, as the idea was more along the

4 Development

51

lines of being able to go back and forth between previously rendered graph images,

which would not have added much to the navigation, although helping to answer the

navigational question “where have I been?” (see section 2.6.4.1 EXPLORATION AND

INSIGHT THROUGH INTERACTION).

Figure 29. A list of possible tools along with suggestions of corresponding icons. Tools from top to

bottom: pan, point select, zoom in, zoom out, zoom select, lasso select, rectangle select and undo/redo.

The reason why the zoom select tool has been striked out can be found in section 4.4.2.2 GRAPH

INTERACTION TOOLS EVALUATION AND ALTERATIONS.

A separate stop/reload button, not visible in any of the design sketches, was also added

to allow stopping ongoing progressive updates and reloading the graph view if

necessary, which was also one of the requirements listed in APPENDIX A – INITIAL

REQUIREMENTS AND REQUESTS. It was placed in the gap at the bottom left corner of the

graph view, below the y-axis and in front of the x-axis to keep it close to the graph view

as recommended by the cancelability design pattern (Tidwell, 2011).

4.2.3.4 Neighbourhood overview

The graph neighbourhood overview was initially intended to be a simple overview of

the entire graph to provide an overview plus detail (see section 2.6.3.1 DISPLAY

LIMITATION TECHNIQUES), which was unfortunately more or less pointless for anything

but displaying all clusters large enough to be visible (in relation to the range of the data)

in such a small overview. Thus, this feature was dropped in favour of a bigger graph

view area, even though it was a requirement (see APPENDIX A – INITIAL REQUIREMENTS

AND REQUESTS), area, only to be brought back at a later stage in the form of a

neighbourhood overview, showing a scaled down version of the immediate surrounding

graph area. The overview consists of a black and white mask showing the points with

clear contrast, since transparent points are hard to discern against the background when

scaled down (see section 2.6.2.2 DATA ENCODING METHODS AND GUIDELINES).), or not

drawn at all depending on the renderer and render settings used. A red rectangle outline

directly linked and proportional to the current graph view size and shown position in the

graph, moves with the graph view when it’s shown position changes and may also be

used to pan the graph view area. This helps navigating the graph and helps answer some

of the navigational questions found in section 2.6.4.1 EXPLORATION AND INSIGHT

THROUGH INTERACTION.

4 Development

52

4.2.3.5 Information labels

Displaying numbers indicating the current position of the graph view naturally helps the

user navigate the graph (see section 2.6.4.1 EXPLORATION AND INSIGHT THROUGH

INTERACTION) and currently used scale and zoom factors were added as well to provide

a better context for the shown graph view. The step values visible in FIGURE 27 and

FIGURE 28 was moved to the settings dialog and grouped with the other graph axes

settings. The scale and zoom factors are presented as percentages rather than floating

point numbers to have a better match between the system and the real world, as advised

by section 2.7.3 DESIGN PATTERNS, HEURISTICS AND GUIDELINES and the habituation

design pattern (Tidwell, 2011).

One initial idea was to have the graph range values as text inputs, as shown in FIGURE

27 and FIGURE 28 to allow the user to quickly enter specific ranges and step values for

the graph axes values. However, this idea was abandoned and the ranges was replaced

with text labels, since part of the purpose was to be able to explore the dataset through

the visualized graph with the help of the tools, not by manually entering numbers. It

also cluttered the GUI a bit, adding unwanted visual excise (see section 2.7.2 FLOW AND

EXCISE).

Figure 30. Some alternative versions and layouts of the graph neighbourhood overview, graph view

range and coordinates.

The positions of the x and y unit labels, marked as “US dollars” and “years” in FIGURE

27 and FIGURE 28, changed between iterations from the toolbar below the graph view

area to above the graph view area, to inside the graph view area, within and along the

axes, and to different combinations of these positions, simply to see what positions were

best suited. Their final positions can be seen labelled as “x test label” and “y test label”

respectively in FIGURE 37 found in chapter 5 RESULT. The x- and y-coordinates showing

the mouse-over values, as well as the graph view range text inputs, also changed

position and orientation to a lesser extent for the same reason, but not as radically as

some of the first suggestions shown in FIGURE 30 above.

4 Development

53

4.2.3.6 Groups list

The row striped groups list to the right in FIGURE 27 and FIGURE 28 contains saved

groups of points (selected by the selection tools). Row striping, i.e. alternating between

lighter and darker background shades to make rows easier to separate and read, is a

design pattern defined by Tidwell (2011). To fulfil the group requirements (listed in

APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS), each row in the group list

contains a small open/close button with an arrow icon, a checkbox to toggle visibility in

the graph, a color select button showing the current color for the points contained by the

group, a “zoom to and center on group” button with a magnifying glass icon, the name

of the group and a delete button with a cross icon that removes the group from the list.

The buttons all have tooltips as well, and expanding the group displays additional

information, such as the number of points contained by the group. This technique,

which allows the user to easily show and hide additional information in a list of items to

lessen visual excise (see section 2.7.2 FLOW AND EXCISE), is called list inlay and is also

one of the design patterns defined by Tidwell (2011). FIGURE 31 below shows two early

versions and variations of the groups list with varying layouts and information, such as

combining the color with the visibility checkbox and providing values for the number of

included points, as well as minimum, maximum and average values of these points for

each axis. Hierarchical groups should be indented according to their respective position

within the hierarchy, as well as shown and hidden when parent groups are opened and

closed.

Figure 31. Early versions of the row layout and contents of the groups list.

4.2.3.7 Settings dialog

The modal settings dialog was initially designed to contain all settings in different group

boxes (see section 2.7.4 GESTALT GROUPING PRINCIPLES) on one single page as shown in

the sketch found in FIGURE 32, but this design proved to be too tight and too large to fit

on a typical display. Using scrolling, as suggested in section 2.6.3.1 DISPLAY

LIMITATION TECHNIQUES, seemed a bit excessive as all the settings and information did

not have to be shown at the same time. The settings dialog was instead divided into

several tabs in a settings editor – yet another design pattern from Tidwell (2011).

Furthermore, it also incorporates the right/left alignment, fill-in-the-blanks, input hints

and dropdown chooser design patterns, also defined by Tidwell (2011). This made the

settings dialog more useful and reduced visual excise (described in section 2.7.2 FLOW

4 Development

54

AND EXCISE). The layout and use of the various settings, of which some directly relate to

the requirements listed in APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS, are

shown and explained further in APPENDIX B - MANUAL AND USER GUIDE.

Figure 32. A quick sketch of the contents of the settings dialog.

4.3 Implementation

The library itself was divided into four major parts, as summarized below, which were

put into the ccdvl namespace, named after the library. All the implementations are of

course based on the result of the analysis and design described in the previous section.

 API; Includes class interfaces for the three different modules, groups,

iterators and generic configuration options. Implements asynchronous

rendering, graph tile caching and Python help-classes, as well as basic

implementations for groups, iterators and mathematical transformations

for scaling, zooming and computing view coordinates.

 Memory management backend; A backend that stores data, quickly

searches for data and keeps the data accessible as long as needed. The

memory manager implementations were put into yet another namespace

part of ccdvl, simply named memorymanager.

4 Development

55

 Renderer; A backend that renders graph image tiles. Like memory

managers, renderers were also given a common namespace under ccdvl,

called renderer.

 GUI Frontend; A frontend that include the GUI that displays, configure

and navigates a graph. The frontend was also collected under ccdvl in a

namespace called frontend.

4.3.1 API implementation

The primary parts of the API are just plain interfaces, some implementations and a few

abstract classes. FIGURE 33 below shows the classes belonging to the library, excluding

the frontend and GUI, which are shown in FIGURE 34 in section 4.3.3 FRONTEND AND

GUI IMPLEMENTATION.

Figure 33. A class diagram showing the library classes not belonging to the frontend or GUI.

4 Development

56

4.3.1.1 Cache implementation

The cache was first implemented as a graph clipmap that used a distance function to

find neighbouring graph image tiles, which in theory is a large help class for the GUI,

but it was later refined into a pure cache that no longer performed neighbourhood

searches. The only addition to the refined cache was to allow it to handle asynchronous

rendering to avoid the problems described in section 2.3 CONCURRENT PROGRAMING

AND MULTIPROCESSING, by keeping a graph tile rendering queue for synchronization

(see section 2.4.5 MESSAGE QUEUE). To simplify caching, the least recently used

algorithm, described in section 2.2.3 CACHE was used without randomization to reduce

both re-reading data from storage media and redrawing of graph tiles. The list of

existing tiles and their images were stored internally in a standard map data structure

where the key used for lookup was the tile itself and the stored data was simply the

allocated image buffer. When a requested tile is unavailable the cache allocates a new

image buffer and then proceeds to clear it to its background color using the renderer. It

is then enqueued for asynchronous data rendering before finally returning the image.

4.3.1.2 Groups implementation

The Group2D class was implemented with the (optional) hierarchical groups

requirement in mind (see APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS), based

on the idea that a group is a hierarchical data structure of selections, although full

hierarchical support was never tested or finished completely. The “point in group”

membership test was implemented using the odd or even algorithm (see section 2.2.4

POINT IN POLYGON), as no better algorithm was found at the time.

4.3.1.3 Iterator implementions

Two kinds of special iterators and one basic iterator were implemented and specified; a

wrapper memory manager iterator, a group iterator and the basic memory manager

iterator. A rather nice feature is that a memory manager must provide their own iterator

implementations, which are wrapped in a safe way to allow them to be used more like

regular C++ iterators. In this, the iterator implementations diverted from the chosen

code standard in the Google C++ Style Guide with the motivation to preserve the same

behaviour as the standard C++ iterators, and the group and memory manager iterators

were each given an additional wrapper iterator to provide good compatibility with

Python as well.

The SequentialMemoryManagerIterator was implemented to also count the number of

instances referencing each stored abstract dataset, allowing memory to be deallocated

immediately when the counter reaches zero. The StubMemoryManagerIterator on the

other hand, is simply a reference to the generated datasets. Further memory manager

implementation details are covered in section 4.3.2.1 MEMORY MANAGER

IMPLEMENTATION.

4 Development

57

4.3.1.4 Mathematical transformations

A help class was set aside for mathematical transformations, partly to avoid code

duplication between the implemented renderer and the implemented GUI module, as

well as to keep related transform operations together. It was only implemented to

support two dimensional data with scaling and zooming, with a flipped y-axis because

of the GUI, as described in section 4.3.3.3 QT AND GRAPH COORDINATE SYSTEMS.

Updating the view center coordinates was an interesting problem that was incorporated

into this class as well. See section 4.3.3.4 GRAPH IMAGE CLIPMAP POSITION for a full

description of this particular problem and its solution. The resulting floating point

values from unsuccessful transformations, namely infinity or NaN, should be caught

and passed on as an error to the calling method to ensure proper error handling. The

scaling transformation formulas follow below.

Let P be a coordinate to convert.

Let zi ∊ ℝ+
 be the ith dimension zoom ratio.

Let si ∊ ℝ+
 be the ith dimension scale magnitude.

Let f : ℝ, ℝ+ → ℝ be a scaling function.

Then the converted value for Pi is equal to f(Pi, si) / zi.

The need for linear and logarithmic scaling functions were derived from the

requirements in APPENDIX A – INITIAL REQUIREMENTS AND REQUESTS. Programing

language wise, the cmath library in C++ is only shipped with two different logarithmic

functions; the natural logarithm (log) and the tenth logarithm (log10). Similarly, the

same is also true for the corresponding exponential functions. The sith logarithm of x

can simply be computed with log(x) / log(si). The following mathematical solutions are

obtained by combining the above with the required scaling methods.

Scaling method solutions

linear : x * si / zi ⟺ x / (zi / si)

logarithmic : log(x) / log(si) / zi ⟺ log(x) / (zi * log(si))

Designing an algorithm (see section 2.2.1 ALGORITHMS) using these solutions is trivial

and it is also possible to use precomputed constants for the zoom and scale ratio, which

reduces the number of floating point operations needed when performing multiple

coordinate conversions. Pseudocode for the scaling transformation algorithms in the

mathematical transformation class follow below.

4 Development

58

Definitions

Let P be a coordinate to convert.

Let zi ∊ ℝ+ be the ith dimension zoom ratio.

Let si ∊ ℝ+ be the ith dimension scale magnitude.

Let k be the number of dimensions of P.

Let A be an array of length k.

Initialization Transformation Inverse transformation

For each dimension k

 If logarithmic scaling

 Ak = zk * log(sk)

 Else

 Ak = zk / sk

For each dimension k

 If logarithmic scaling

 Pk = log(Pk) / Ak

 Else

 Pk = Pk / Ak

For each dimension k

 If logarithmic scaling

 Pk = exp(Pk * Ak)

 Else

 Pk = Pk * Ak

4.3.2 Backend implementation

This section contains a general overview of the implementation and workings of the

memory managers in section 4.3.2.1 MEMORY MANAGER IMPLEMENTATION and the

AGG renderer in section 4.3.2.2 RENDERER IMPLEMENTATION.

4.3.2.1 Memory manager implementation

Only two test memory managers were implemented due to time constraints and to keep

things simple; StubMemoryManager and SequentialMemoryManager. The first was a

simple generator that created a small dataset, the second had more advanced

functionality capable of storing, swapping data, freeing memory and re-allocating data.

It was unfortunately not fully synchronized nor indexed for fast search and therefore not

optimal. The data is tracked using a simple list rather than a more complex data

structure better suited for search, such as the one mentioned in section 4.2.2.1 MEMORY

MANAGER ANALYSIS AND DESIGN. Implementations of the abstract dataset class,

introduced in section 4.2.1 API ANALYSIS AND DESIGN, was used to represent stored data

and to preserve the data type while avoiding use of runtime type information by using

the visitor design pattern (see 2.4.2 VISITOR AND DOUBLE DISPATCH).

4 Development

59

The new operator in C++ is normally used to manually allocate memory, but the

SequentialMemoryManager asks the operating system for a memory mapped file to

store the dataset in instead. The operating system proceeds to read pages of this file into

frames, which are then cached, effectively creating a separate controllable swapping

mechanism. The advantage of this approach is that the memory manager is directly able

inform the operating system when it no longer needs the previously allocated pages,

allowing it to write the pages back to the file and release the used memory more

efficiently than the C++ delete operator. A data subset of reasonable size can thus be

mapped to frames in memory from the swap file to sequentially traverse the entire

dataset in smaller chunks. See section 2.1 OPERATING SYSTEM MEMORY MANAGEMENT

for more information on operating system memory management.

A side effect from the current memory manager interface specification is that it must

make a copy of the provided dataset, which is inefficient but only affects the initial

loading time and the required amount of hard drive space. Ideally, an implementation of

the memory manager could avoid additional copying by providing emplacement

operations, which are methods to allocate objects in place. Emplacement operations are

available in the new C++11 standard (International Organization for

Standardization/International Electrotechnical Commission, 2011), but this was not used

due to Google C++ Style Guide restrictions.

4.3.2.2 Renderer implementation

A software-renderer based on AGG was implemented, intended as a reference

implementation to ease the implementation of a renderer using hardware acceleration

later on. Asynchronous rendering is used to allow user actions to be processed during

rendering, making the time needed to render a graph image less critical. Finally, AGG

has a scan-line rasterizer limitation which can be triggered by attempting to render very

long lines, possibly far outside of the canvas (Gmane, 2004). A workaround should be

possible by limiting the required raster size for a line, simply by checking if the limit is

about to be reached and immediately performing a partial rendering of that line if this is

the case.

4.3.3 Frontend and GUI implementation

All Qt class names use the letter Q as prefix, and the bulk of the GUI was mainly

implemented using the aptly named QCheckBox, QColor, QDialog, QFont, QFrame,

QIcon, QImage, QLabel, QGraphicsScene, QGraphicsView, QPainter, QPixmap,

QPushButton and QString classes, along with the provided layout manager classes, such

as QGridLayout, QGroupBox, QHBoxLayout and QVBoxLayout. FIGURE 34 contains an

overview of the CCDVL classes, using the above Qt classes to make up the frontend.

4 Development

60

Figure 34. A class diagram of the frontend. The QtGui and QtCore modules and their contained classes

belong to the Qt framework and are not directly part of the CCDVL library. All CCDVL class names use

Qt as prefix to signal that it is a Qt-based frontend.

The main graph view area, QtGraphViewFrame, is implemented as a frame containing

the toolbar of graph interaction tools (see section 4.3.3.1 GRAPH INTERACTION TOOLS

AND SETTINGS below), an update stop/reload button, graph axes, graph axes labels and a

graphics scene coupled with a custom graphics view (QtToolGraphicsView) to handle

the graph tool interactions and events, as well as providing additional graph coordinate

conversion functions (see section 4.3.3.3 QT AND GRAPH COORDINATE SYSTEMS). The

graphics scene can be seen an off-screen canvas, managing a collection of graphics

items, shapes and their respective layouts, orientations and sizes. It is viewed partially

(or wholly) through the viewports of one or more graphics views connected to the

graphics scene. Three overlapping layers of graphics items were added to the graphics

scene; the image of the plotted graph at the bottom layer, the grid drawn on a

transparent glass pane at the middle layer and graph interaction tool graphic items, such

as the selected points polygon, at the top layer.

The x-axis and y-axis are also implemented as separate graphics scenes, with matching

width and height of the plotted graph image respectively, along with a graphics view

each. The scrollbars of all three graphics views are hidden and synchronized to make

4 Development

61

sure that the axes values mirror the position of the graph view. The algorithm that is

used to display the graph axes values proved to be a very fiddly time sink, taking far

longer to implement than intended. This is also one of the reasons why the groups list

was not implemented, simply due to time constraints.

4.3.3.1 Graph interaction tools and settings

The graph interaction tools (and QtGraphImageTile described in section 4.3.3.2 GRAPH

IMAGE CLIPMAP AND STATE OBJECTS) were the only classes of the frontend that did not

extend any Qt class (see FIGURE 34), although they inevitably make use of many Qt

classes, such as cursors, shapes, graphics items and events. The shared functionality and

functions of the tools, such as default mouse cursor icon and functions for handling key,

mouse and wheel events, are inherited from the QtBaseTool class, making it easy to add

more shared functionality with a minimal impact on the rest of the implementation, as

opposed to using a single complex event filter attached to the graphics view. As

mentioned above, the tools do not listen for events, and the corresponding event handler

functions must be called by the actual event listener, i.e. QtToolGraphicsView in this

case.

Some interesting details in the implementation of the graph interaction tools include the

lasso select tool using and updating an open path (a line) drawn by the cursor

movement, with a closed copy of the path (a polygon) used to display the selection.

Another important detail is that the point selection tool selects a small square rather than

a single pixel, as a single pixel selection was too hard for the user to spot, as well as

being hard for both the frontend and backend to determine exactly which data point was

actually selected on low zoom levels or in tight clusters of possibly overlapping data

points. This is especially true since the point selection takes place on an image

representation of the graph data with possible rounding errors when converting and

looking up coordinates (see section 4.3.3.3 QT AND GRAPH COORDINATE SYSTEMS).

Finally, the rectangle select tool uses a rubber band selection functionality provided by

Qt and the zoom selection actually makes use of a rectangle select tool internally.

A settings class, called QtGraphSettings, contains copies of both current frontend and

current backend settings, such as axes, grid, scale, zoom, renderer and cache settings, as

well as the graph scene state objects (see section 4.3.3.2 GRAPH IMAGE CLIPMAP AND

STATE OBJECTS below). It is used by the frontend to show and modify settings through

internal functions as well as through the settings dialog in the GUI. It using Qt signals

and slots, made available by extending the QObject class, to notify the

QtGraphViewFrame class when changed settings require the displayed graph view area

to be updated. The settings dialog (QtSettingsDialog) suffered due to time running

short, and was thrown together rather quickly at the end of the development, which is

unfortunately reflected in its poor design and partial implementation. It extends the

QDialog class and mostly makes use of the QPushButton, QLineEdit, QComboBox,

QSpinBox, QDoubleSpinBox and QColorDialog classes.

4 Development

62

4.3.3.2 Graph image clipmap and state objects

The graph image is composed by the frontend by stitching together fixed-size graph

image tiles, just like a clipmap. The graph image tiles are fetched on request from the

backend, where they are either rendered by the renderer or fetched from the graph cache

if they have already been rendered and are still present in the graph cache. FIGURE 35

shows an example of how the graph image is updated when panning too close to an

edge of the graphics scene, as shown in step (a). Step (b) shows how tiles 1 through 4

are discarded, tiles 5 through 16 reused, and tiles 17 through 20 are fetched from the

backend. Step (c) shows the new graph image put together during the update, and how

the viewport has been recentered on the new position in the graph image, which

corresponds to the same graph coordinates as those in the previous graph image. The

observant reader will notice that although the graph coordinates of the viewport are still

the same in step (c) as in step (a), the coordinates within the graphics scene are not.

Section 4.3.3.3 QT AND GRAPH COORDINATE SYSTEMS explains this in detail. Another

thing to note is that the invisible border, shown as a dashed blue rectangle in FIGURE 35,

is proportional to the size and shape of the viewport, more specifically by a factor of

1.5, to allow some further panning space while the graph image updates. The viewport,

as well as the linked outline rectangle in the graph neighbourhood overview (described

in section 4.2.3.4 NEIGHBOURHOOD OVERVIEW), also resize and change shape along with

the graph widgets liquid layout (as mentioned previously in section 4.2.3.1 GUI

OVERVIEW AND STRUCTURE).

(a) update triggered (b) update in progress (c) update done

Figure 35. An example showing the three steps of a pan triggered update of the graph image. The graph

image tiles have been outlined and numbered in this example for clarity. The black solid outline

represents the position, size and shape of the viewport in the scene, and the blue dashed outline

represents the normally invisible border which the center point of the viewport must pass to trigger an

update of the graph image, as seen in step (a). Step (b) removes tiles 1-4 and appends tiles 17-20,

resulting in the new graph image in step (c).

The clipmap data structure is made up of a two-dimensional standard C list (the List2D

class seen in FIGURE 33) containing QtGraphImageTile objects. Using lists rather than

vectors avoids the problem of being forced to shift the entire contents every time a row

or column is prepended, appended or removed. The advantage of vectors having

constant access time (see section 2.2.1.1 ALGORITHM COMPLEXITY ANALYSIS) for single

elements, while lists require linear time, does not make that much of a difference

considering that the entire clipmap data structure usually has to be traversed for most

operations, such as updates, which is done in linear time no matter which of these data

structures are used.

4 Development

63

The graph image tile objects contain a valid or invalid tile image as well as a flag used

to indicate if the graph image tile has been drawn to the plotted graph image during an

iteration of a progressive update, which are used to indicate if a tile needs to be fetched

or redrawn during update iterations. By also looking at the renderer image tile flags,

which indicate when a fetched tile is completely rendered, each completely rendered tile

is guaranteed to be drawn only once per update rather than, as initially implemented,

once per update iteration. An update is finished when all image tiles have been

successfully rendered, fetched and drawn to the plotted graph image, which in turn also

stops the timer controlling the progressive updates. The progressive update functions are

also able to detect new update requests, such as repetitive zooming, before the current

update has finished, allowing the current update to be aborted and replaced with the new

update operation. Although this saves some time and resources in the frontend and stops

further requests being sent to the renderer regarding the last update, it still allows the

renderer to finish the last set of requests, since it may currently, or in the future, handle

other requests simultaneously.

The updates themselves are facilitated using state objects, which keep track of the

current and next state of the graph, graphics scene and the graph image tiles. The next

state object replaces the current state object after the necessary updates have been made,

which involve getting updated values from the next state object. When the graph widget

is idle, the current and next state objects are thus identical copies of each other. See

sections 4.2.1 API ANALYSIS AND DESIGN and 4.2.2.2 RENDERER ANALYSIS AND DESIGN

for more information about the renderer.

4.3.3.3 Qt and graph coordinate systems

One of the major sources of bugs and headaches was caused by the many different

coordinate systems used by Qt and the additional one used by the graph to address

pixels and points respectively. Qt only uses the QPoint and QPointF classes to represent

integral and floating point points respectively, regardless of which coordinate system

the points belong to. Widgets and events may also use one or more coordinate system as

well, leaving it up to the programmer to keep track of which coordinate system is used

where and to which coordinate system points belong. Although, the unusually

comprehensive and useful Qt documentation is a big help in this aspect.

The coordinate systems used by Qt all originate from the top left corner of the screen or

widget, with positive directions to the right and down, and there is a global coordinate

system based on computer screen coordinates and a local coordinate system for each

widget instance. The reason it has become common practice for computers and software

to use such coordinate systems probably has to do with the update cycles of the electron

guns in older CRT-monitors, which start at the top left corner and work their way down

to the bottom right corner of the screen. Mathematical graphs and plots on the other

hand, originate from an origin with positive directions to the right and up, and negative

directions to the left and down, making the positive y-axis direction opposite in the

different coordinate systems, or flipped if you will. Transformation functions, which

take this fact into account, as well as considering zoom and scale factors, were thus

4 Development

64

needed to convert points between the graphics scene and graph coordinate systems (see

section 4.3.1.4 MATHEMATICAL TRANSFORMATIONS).

Additionally, the local coordinate system of graphics scenes is detached and

independent, since graphics scene widgets themselves are not displayed on screen. The

viewports of the graphics view widgets, which as mentioned above also have local

coordinate systems, must be used to display a portion of a graphics scene (see FIGURE

36). Further, the graphics scene is always resized to be the exact same size as the graph

image, to avoid having to work with internal offsets inside the graphics scene as well.

Figure 36. An overview of the different coordinate systems in use in the frontend components, showing

the respective origin and positive directions for each. Point p thus has different coordinates in each of the

coordinate systems. Note that, in actuality, the viewport of the graphics view covers the entire graphics

view widget, and it is made sure that the graph image covers the entire graphics scene, as mentioned in

the text above.

This means that in order to transform an onscreen point displayed in the viewport of the

graphics view to the corresponding point in graph coordinates, there have to be two

explicit coordinate conversions made in the correct order; first from view to scene, and

then from scene to graph. Thankfully, Qt first implicitly transforms the point from

screen coordinates to widget coordinates to viewport coordinates, and it also provides

built-in transformation functions between viewport and scene coordinates. It is also

important to note that some precision is inevitably lost in the process, due to

conversions between the integer pixels and floating point graph points. Due to this fact,

a new center point of the viewport, which is always given in graph coordinates, must be

at a distance greater than the Manhattan length of the previous and new center points to

avoid dislocating the viewport by one or more pixels during updates that should not

change the center point.

As a more tangible example based of FIGURE 35 and the transformation functions

described in section 4.3.1.4 MATHEMATICAL TRANSFORMATIONS, consider the

following: if the computer screen is about 1000 x 700 pixels large and the graph uses a

linear scale with a scale and zoom factor of 1, then point p in FIGURE 35 is

approximately located at (440, 390) in screen coordinates, at (320, 230) in widget

4 Development

65

coordinates, at (290, 120) in viewport coordinates, at (350, 310) in scene coordinates,

and at (350, 280) in graph coordinates.

Initially, as one can imagine, all these coordinate systems were very easily mixed and

mistaken for one another, even with good naming schemes for variables, which lead to

potentially disastrous results and bugs that were often difficult to find. Later on, this

problem was more or less neutralized by introducing one explicitly named type

definition (alias) for each type of coordinate, value, size and geometrical shape used for

each of the three coordinate systems (see APPENDIX E - CCDVL API DOCUMENTATION).

For example, it is perfectly clear in this context what kind of points the types ViewPoint,

ScenePoint and GraphPoint refer to, especially compared to the actual types these are

translated to at compile time; QPoint, QPoint and QPoint respectively.

4.3.3.4 Graph image clipmap position

The graph state objects store the bottom left graph coordinate of the graph image to

keep track of which graph image tiles to fetch. When triggering a pan-related update it

is a simple matter of updating the position in the state object (see section 4.3.3.2 GRAPH

IMAGE CLIPMAP AND STATE OBJECTS). However, this position must be recalculated, using

the formula below, when the scale or zoom factors change. The idea is to compute a

new graph bottom left coordinate by providing a new center coordinate together with

new zoom and scale settings. The new graph center coordinate can be trivially obtained

using the inverse of one of the transformation methods described in section 4.3.1.4

MATHEMATICAL TRANSFORMATIONS, and the new bottom left can be obtained by again

using the inverse transform substituting the bottom left coordinate with the new center

coordinate, where the scene coordinate to transform then correspond to the relative

offset from the center to the relative bottom left. This is perhaps easier explained and

clearer by taking it step-by-step mathematically, as shown below:

Let Px be the new scene x-coordinate.

Let Py be the new scene y-coordinate.

Let B be the old bottom left coordinate.

Let Rx = - Sw / 2, where Sw is the scene width, in pixels.

Let Ry = Sh * 1.5, where Sh is the scene height, in pixels (note the flipped y-

axis).

Let Ao be the old zoom and scale ratio.

Let An be the new zoom and scale ratio.

Let f : ℝx, ℝy, b, a → ℝx, ℝy be the inverse transform for two dimensions using

b as bottom left coordinate and a as zoom and scale ratio.

Then the new bottom left is equal to f(Rx, Ry, f(Px, Py, B, Ao), An).

Conveniently f(Px, Py, B, Ao) may be substituted with any graph coordinate to

center on.

4 Development

66

4.4 Testing and evaluation

A few incremental testing applications, including the graph widget example

implementation prototype, which use CCDVL to render and display graphs were made

in order to test and showcase the functionality of the library. These applications also

serve as examples for how this library can be used by developers to display large

datasets. Combine provided some actual scientific test data stored in the HDF5 database

format (The HDF Group, 2011), which one of the examples uses. More information

about the format can be found on the official HDF5 webpage;

http://www.hdfgroup.org/HDF5/.

Besides the feedback received from meetings with Combine, there were some minor

and some bigger issues to address, mostly relating to keeping the backend dynamic, to

platform-specific Qt behaviour and to weaknesses in the frontend GUI. The

collaboration diagrams generated by Doxygen also helped identify and eliminate some

circular dependencies in the API structure (see APPENDIX E - CCDVL API

DOCUMENTATION). Some of the most important and interesting of these issues are

described in the sections below.

4.4.1 API and backend testing and evaluation

Initially, the modules in the API were designed with a template parameter indicating the

number of dimensions of the dataset. This proved unnecessary complicated, as the

amount of code imported from the header files had grown significantly after the first

development iterations and affected module compatibility with the API. Therefore, all

modules requiring this information instead have a public constant to keep track of the

number of dimensions.

Another module refactorization was made concerning the mathematical transformations,

projection, scaling, etc. mentioned previously in section 4.3.1.4 MATHEMATICAL

TRANSFORMATIONS, which were initially divided into multiple implementations between

the AGG render and the Qt frontend. A lot of redundant code, which was difficult to

update due to the specialized use in each module, was introduced in when logarithmic

scaling support was being added. A common Transform2D class, extracted during

refactorization, was instead used for such operations to better keep things separated and

avoid the redundancy issues.

The iterator design described in section 4.2.1.1 ITERATORS ANALYSIS AND DESIGN, where

the accessed data is an abstract dataset, could conflict with a fast data search, making it

more difficult to implement such a search method later. Perhaps a better choice is to

actually iterate the data points rather than the datasets, but each iterator must then

manage the number of dimensions as well, which was initially avoided by the template

design described above.

Valgrind revealed an interesting memory leak (see section 2.1.1 VIRTUAL MEMORY,

SWAP AND MEMORY LEAKS) caused by the glue code generated by SIP, due to confusion

regarding object ownership between Python and C++. The offending code converted a

http://www.hdfgroup.org/HDF5/

4 Development

67

list-based Python data structure to a CCDVL abstract dataset and failed to properly free

an intermediate allocation during the conversion process. While this problem was easily

resolved, the impact was severe as it caused data stored by a memory manager to be

duplicated, effectively creating a permanent copy of the entire dataset in memory while

loading it from Python.

4.4.1.1 Cache evaluation and alterations

The current clipmap location conversion implementation, mentioned in section 4.3.3.4

GRAPH IMAGE CLIPMAP POSITION, has an accumulating rounding error, which will

decrease the efficiency of the cache. It occurs when a user causes the graphics scene to

update when panning too close to the edge and boils down to that the bottom left

coordinate is represented using a floating point type, which is further dependant on

previous values. The effects from this rounding error cause the bottom left coordinate to

not retain the exact same value as before when panning back, which will have a

negative impact on cache lookups from the GUI module.

The early cache implementation attempted to calculate the difference, expressed as a

distance value, between graph tile request configurations, to be able to identify and

provide the closest matching graph tiles to try and counter coordinate rounding errors

mentioned above. Eventually this feature was dropped, primarily because of suspicious

graph tile lookup results and maintenance difficulties, in combination with some other

features that did not work out as intended or did not belong in the cache. It was instead

refactored and replaced with a standard map data structure, which had its own set of

problems. It was plagued with duplicated graph tile entries that looked like data

structure corruption, but the problem was finally tracked down to an incorrectly

implemented comparator.

4.4.2 Frontend testing and evaluation

It was discovered that, occasionally during updates, calculations using the size of certain

components, such as the graphics scene, returned incorrect results. Debugging revealed

that some Qt components would sometimes return zero instead of their actual sizes,

probably due to previous, not fully propagated, resizes. The size and number of the

components used to determine these size changes were always known, and were thus

instead used to calculate the correct size of the Qt components in the affected

calculations. One more thing that did not work out as smoothly as anticipated was the

Qt resource system, which in this case was used primarily to load and use icons. It

would not load correctly with the statically-linked library, and the Q_INIT_RESOURCE

macro had to be used to forcefully initiate the resource system.

During memory leak testing, Valgrind was able to find a few memory leaks and

potential memory leaks (see section 2.1.1 VIRTUAL MEMORY, SWAP AND MEMORY

LEAKS) internally in several Qt classes. As Qt uses its own internal memory

management of QObject and its sub-classes through parent-child chains, there was

nothing to be done about this. These were hopefully harmless memory leaks,

4 Development

68

considering that Qt has already been around for a couple of years and there have been

plenty of time and opportunities to test, discover and remove any significant memory

leaks. Valgrind was also useful for finding the memory leaks in the frontend

components that were introduced by the initial confusion regarding which Qt objects

and sub-classes were automatically managed and which were not.

Qt also caused various headaches in regards to multiprocessing (see section 2.3

CONCURRENT PROGRAMING AND MULTIPROCESSING), as it is possible for multiple

threads to access the QObject class and most non-GUI Qt classes simultaneously, even

though but they are designed to be created and used from within a single thread. This

means that calling a function of an object created in one thread from another thread is

not guaranteed to work. Specifically, a child of a QObject must be created in the same

thread as the parent object and event driven objects, such as timers, may only be used

within the thread that it belongs to. Further, all objects created by a thread must be

deleted before deleting the thread itself, and the Qt GUI classes, such as QWidget, may

only be used from the main thread running the Qt main event loop, i.e. the thread that

has called the QCoreApplication::exec() function (Qt Project Hosting, 2011). There

exist workarounds with simple worker threads, and it is possible to pass instructions

directly to the Qt classes in a thread-safe manner, since the comprehensive signal and

slots system that Qt provides may be used as a communication channel for signals as

well as message passing and even return values. This took some time and a lot of

debugging to get to run smoothly without any deadlocks, since QMutex objects do not

behave quite like regular SMP mutexes due to how Qt handles QObjects and threads, as

mentioned above. In the end, this meant that the majority of the used QMutex objects

could be removed, which noticeably improved performance and response time of the

frontend and GUI.

Another frontend issue that affected GUI performance was due to how different GUI

window managers on different platforms obviously behave differently in some aspects.

In this case it was how resizes of windows through the GUI are handled. Some window

managers sends one single resize event at the end of the resize, but the native window

manager on Mac OS X immediately fires a resize event for even the smallest change of

the window size, which floods Qt with resize events during the entire resize operation.

For instance, if the graph image and graph image tiles are very small and the graph

widget window is enlarged enough so that the graphics view becomes larger than the

graphics scene displaying the graph image, then the graph image must be expanded and

updated. A flood of resize events will in this case cause a flood of update requests, and

in turn a flood of requests to the graph cache and renderer, of which only the result of

the last request will actually be used, potentially wasting a lot of resources depending on

the size and speed of the cache. A resize event timer was added to avoid wasting

resources on intermediate handling and integrity checking, as described in the example

above. It activates on resize events of the graph widget and ignores all consecutive

resize events until after an idle timeout of 500 milliseconds. The timeout is reset each

time a resize event occurs, even if the timer is running, effectively delaying updates

until there is a shorter pause in the resizing of the window. This is also part of the

controlling response time guidelines stated in section 2.7.3 DESIGN PATTERNS,

HEURISTICS AND GUIDELINES, to make the GUI more responsive. It is also worth noting

that the resize event is still propagated internally through Qt to the shown GUI widgets,

4 Development

69

assuring that the liquid layout is still in effect for smoother and more natural window

and widget resizes (see section 4.2.3.1 GUI OVERVIEW AND STRUCTURE).

A check to make sure that the size of the viewport of the graphics view did not exceed

the size of the graphics scene (and thus the graph image) during resizes was

implemented to allow dynamically increasing the size of the graph image by adding

more tiles as needed. This also makes sure that the available panning space stays

proportional to its original settings, thus ensuring that the pan triggered updates

continue to work as intended by making sure that the invisible pan trigger border is not

too tight (see section 4.3.3.2 GRAPH IMAGE CLIPMAP AND STATE OBJECTS).

4.4.2.1 GUI evaluation and alterations

It was decided to add a “make new group from selection” button, rather than

automatically making new groups for each selection, to avoid unnecessary computations

and bloating the groups list. Another computationally expensive process was the

drawing of the grid, especially on lower zoom levels where more lines had to be drawn,

due to the grid lines being drawn at intervals set in dynamically rendered graph

coordinates rather than static scene coordinates, which also cluttered the graph image

and added visual excise (see section 2.7.2 FLOW AND EXCISE). The default grid was

changed to a static scene coordinate grid, and options for using the original grid and an

additional grid proportional to the zoom level was added as well. The grid is of course

only drawn once at the beginning of each update, as it does not change during

progressive update iterations, and a glass pane was also added to draw the grid upon and

to support future overlays, such as static functions and additional helper lines.

A loading message was added to the graph neighbourhood overview while the graph

image was updating, as the two representations of the graph image otherwise could

temporarily fall out of sync, which would go against the recommendations of error

prevention, giving clear feedback and having good visibility of the system status (see

section 2.7.3 DESIGN PATTERNS, HEURISTICS AND GUIDELINES). Graph image updates

triggered through panning using the neighbourhood overview were also disabled for the

same reasons. Panning back and forth quickly between opposite edges would also

trigger a lot of unnecessary updates, making it hard to pan the entire neighbourhood

overview without accidentally triggering an update. On a side note, a purely cosmetic

quirk in the presentation of the GUI, probably due to the implementation of the Qt

framework on different platforms, was discovered in the black-and-white mask used by

the neighbourhood overview; its color was inverted depending on platform. Another

cosmetic Qt quirk, with potentially greater impact on the GUI, was found after testing

the library on different platforms, and realizing that the operating system dependent

default look and feel font had precedence over the internally explicitly specified fonts

for most standard GUI components. It was decided to override this behaviour, to avoid

potential derailment of the layout due to changing font family and font size, by using a

global style sheet in Qt. Common standard monospace fonts were chosen to make sure

that the fonts would most likely be present and behave similarly on all platforms.

4 Development

70

4.4.2.2 Graph interaction tools evaluation and alterations

The zoom in, zoom out and zoom select tools were merged into one zoom tool with a

single zoom button labelled with a magnifying glass icon. The zoom tool zooms in on

left click by default, zooms out on left click while the option key is depressed and

zooms in to the selected rectangle with click and drag, or zooms out in inverse

proportion to the selected rectangle size with option-click and drag. Pressing and

releasing the option key also changes the sign of the magnifying glass cursor icon from

plus to minus, and back to plus again respectively, to indicate its current function.

Double clicking the zoom button would reset the zoom level to 100%, but Combine

suggested adding a specific tool button with the same functionality, as it was easier for

the user to find. An abort mechanism for the zoom select functionality was further

requested, as it was pointed out that it was not an uncommon scenario where the user

might want to change the anchor point of the selection rectangle or abort the operation

altogether after initiating the zoom selection. Such user behaviour is also reflected by

the changes in midstream design pattern defined by Tidwell (2011). Pressing the escape

key seemed the most intuitive and natural way of doing this, based on experience and

the habituation design pattern (Tidwell, 2011). Combine also suggested including an

option of having the toolbar at the top above the graph image, as is common in most

applications, thus also supporting the habituation design pattern in this aspect as well.

Initially, Combine wanted the stop and reload button to automatically reload the current

graph view after it had been pushed. However, after some discussion they agreed that it

would be better to actually be able to fully stop the update process, which might have

got stuck in a very large (or possibly bug-induced infinite) loop, rather than reloading

only to get stuck again. All the additions mentioned above in this section were

implemented as suggested in the following iterations.

The mouse cursor icons provided by Qt that were used by the proposed library stand out

well against both dark and light backgrounds due to their white outlines. The created

black lasso tool cursor icon has no such outline, and tended to disappear over darker

regions of the graph image. An outline was added at first, although a different solution

was used in the end, as the outline looked a bit too bulky and ugly. The lasso select tool

cursor icon was made to dynamically invert its color depending on the color of the

background below the cursor. This was again inspired by Adobe Photoshop and

provided good results with better contrast. Initially a copy of the entire rendered graph

image was used for color lookup, which was composed by graph image tiles stored as

instances of the QImage class rather than instances of the QPixmap class, since only the

former allows pixel lookup among other image manipulation functions. The

disadvantages with this first approach was that the graphics scene items only handle

pixmaps, and that the conversion from an image to a pixmap is quite computationally

expensive, as well as creating an additional copy of the graph image to keep in memory.

This was eventually avoided by having the lasso select tool render and update a

(QImage) snapshot of the currently shown graphics view content, which was used for

color lookup when the mouse cursor moves within the graphics view. This also allowed

the graph image tiles to be stored as pixmaps, reducing the amount of used memory,

4 Development

71

speeding up the update process slightly and made the lasso select tool less dependent on

other classes.

The helper lines of the point select tool were given a similar makeover as the lasso

select tool icon to make them stand out with good contrast on both light and dark

surfaces. They were changed from solid black dashed lines to semi-transparent white

lines overlaid with semi-transparent black dotted lines, almost functioning as some kind

of inverted camouflage, making the helper lines stand out while keeping the transitions

over differently colored backgrounds smooth and unnoticed. Section 2.6.2.2 DATA

ENCODING METHODS AND GUIDELINES discusses the use of color further.

4.4.3 Initial performance and test results

A few larger performance tests were conducted close to the end of the development

phase. TABLE 3 shows the results of a late test performed with the graph widget example

implementation prototype running on the test notebook specified in section 1.4

DELIMITATIONS. The six columns of TABLE 3 contain the following:

 The first two columns contain the number of graph image tiles used and

their respective sizes. The check that dynamically adds more graph image

tiles as needed, described in section 4.4.2 FRONTEND TESTING AND

EVALUATION, was disabled during the test, partly because it was not fully

implemented at the time, but primarily to make sure that the results were

not skewed by adding additional tiles.

 The third column contains the time taken to generate the data, pass it from

Python to C++ and finally save it to the temporary swap file. These times

are roughly the same as an identical dataset, generated in the same manner

as in the prestudy (see section 3.2 PRESTUDY), is used throughout the

entire test.

 The fourth column contains the average time it takes to redraw the entire

graph image for each iteration of a progressive update, i.e. the time during

which the GUI may become noticeably slow or unresponsive.

 The fifth column contains the actual rendering time needed by the renderer

to finish a batch rendering request containing all the graph image tiles. It

was made sure that the graph image tile cache was empty during the test to

not affect the raw results. Although, using one or more cached graph

image tiles would of course have improved the results proportionately with

the current renderer and memory manager implementations, as deducted

by section 4.2.1.1 ITERATORS ANALYSIS AND DESIGN.

 The sixth column contains the system wide swap usage during rendering,

which is of course strongly dependent on the used computer hardware,

operating system and other running applications, as described in section

2.1.1 VIRTUAL MEMORY, SWAP AND MEMORY LEAKS.

4 Development

72

Table 3. Late test results with high total rendering times due to sub-optimal rendering. 25 million points

of generated data was loaded and rendered on the test notebook with the graph widget example

implementation prototype.

Graph

image tiles

(width x

height)

Graph image

tile size

(width x

height in

pixels)

Data load

time (s)

GUI

update

time (s)

Total

rendering

time (s)

System

swap use

(%)

4 x 4 1000 x 1000 16.11 0.38 1031.60 0

4 x 4 500 x 500 16.05 0.08 861.50 0

4 x 4 250 x 250 16.09 0.02 833.88 0

4 x 4 125 x 125 16.06 0.00 827.08 0

5 x 5 1000 x 1000 16.21 0.59 1894.89 0

5 x 5 500 x 500 16.14 0.12 1353.30 0

5 x 5 250 x 250 16.08 0.03 1330.08 0

5 x 5 125 x 125 16.07 0.01 1912.24 0

8 x 8 1000 x 1000 16.07 2.05 6691,79 30

8 x 8 500 x 500 16.10 0.41 4369.93 1

8 x 8 250 x 250 16.89 0.08 3589.56 0

8 x 8 125 x 125 16.24 0.02 3478.48 0

10 x 10 1000 x 1000 16.08 3.11 10450.17 56

10 x 10 500 x 500 16.04 0.61 7831.47 0

10 x 10 250 x 250 16.06 0.13 5705.51 0

10 x 10 125 x 125 16.04 0.03 5511.91 0

Although the test is a bit rough as it was run on an unfinished version of the library just

before the final iteration, it still serves as useful comparison with the final

implementation to help highlight the results of the optimizations made in the last

iteration. One such optimization was made to the rendering loop, since the renderer

initially required a very long time to finish, as seen in the results of the above test.

5 Result

73

5 Result

The purpose of this thesis, described in section 1.3 PURPOSE, was to simplify analysis of

large amounts of scientific data by creating a small modular and extensible cross-

platform graphics library, intended to run on ordinary workstations, capable of handling

such data and present it through highly interactive plot graph widgets, while also

providing Python bindings for the library API.

5.1 CCDVL library and API

The resulting cross-platform library was named CC Data Visualization Library

(CCDVL), where CC is a reference to the “.cc” C++ source code file extension. It can

certainly be used to facilitate and simplify analysis of large amounts of scientific data on

ordinary workstations, due to the use of clipmap rendering and clever memory manager

and iterator classes that dynamically read and process the data in smaller subsets, which

are within the size and resource limitations of workstations. This is done in a separate

thread and data is stored to a memory mapped file, ensuring good responsiveness and

interactivity as well as a better balanced I/O workload at the cost of additional hard

drive space and a somewhat increased CPU usage. A clipmap tile cache and progressive

updates are also used to further improve performance and responsiveness. See section

4.2 ANALYSIS AND DESIGN for more details.

Figure 37. A screenshot of the GUI of the final graph widget example implementation prototype showing

a smaller sample of scientific data provided by Combine.

The final graph widget example implementation prototype seen in FIGURE 37 above

provides two-dimensional scatter plots with semi-transparent points for better cluster

5 Result

74

visibility and interaction in form of different graph interaction tools with selection,

zoom and pan functionalities, as well as providing various GUI and data settings, as

described in detail in the previous chapter. Python bindings for basic functionality are

made available through SIP and PyQt, all non-functional requirements and all other

(non-optional) functional requirements listed in APPENDIX A – INITIAL REQUIREMENTS

AND REQUESTS were met, with the exception of the time series graphs and its associated

requirements, unfinished logarithmic scale support and selected data groups

management. A few optional functional requirements were implemented as well, such

as the possibility to render lines between points and configurable colors in the graph.

The CCDVL library was published under the LGPL license in accordance with the

license boilerplate provided by Combine, despite the fact that they initially explicitly

requested that the library should be licensed under a BSD license. The Python bindings

were licensed under the GPL, as explained previously in section 3.3.2 PROGRAMMING

LANGUAGE AND SOFTWARE LIBRARIES.

Figure 38. A sequence diagram of typical run of an application using the CCDVL library, such as the

graph widget example implementation prototype.

5 Result

75

APPENDIX B - MANUAL AND USER GUIDE contains more details on the GUI and how to

interact with it from a user perspective, and FIGURE 38 above displays a sequence

diagram showing user interaction and the internal workings and communication

between the CCDVL modules of a typical run, to give the reader an overview and a

better idea of the internal workings of the library. The components of the modules can

be found in the class diagrams in FIGURE 33 and FIGURE 34 in the previous chapter.

As a side note for the curious reader, it is worth mentioning that the resulting version of

CCDVL is rather big, as is common with APIs and software libraries. It consist of just

under 7 500 lines of source code, out of which 57% are comments, 25% are code only,

15% are empty and 2% are both code and comments.

5.2 Performance and test results

The exact same performance test described in section 4.4.3 INITIAL PERFORMANCE AND

TEST RESULTS was repeated with the final version of the library, yielding the results

found in TABLE 4. Compared to the previous CCDVL test results, found in TABLE 3 in

the aforementioned section, the most significant differences are improved data load

time, somewhat slower GUI update for some test cases and that the renderer is now able

to finish within a reasonable timeframe. The change in GUI update time is caused by

extra computational overhead due to an added condition in the graph update loop used

to lessen the load on the cache and renderer by reducing requests of completely

rendered and updated graph image tiles, as described in section 4.3.3.2 GRAPH IMAGE

CLIPMAP AND STATE OBJECTS. The improved total rendering time is due to both compiler

optimizations and a renderer optimization, where some misplaced code was extracted

from inside the rendering loop, reducing the computational overhead.

The automatic graph image tile padding for test cases where the rendered graph image

was smaller than the viewport of the graphics view, described in section 4.4.2

FRONTEND TESTING AND EVALUATION, was turned off to not affect the results as well as

to be able to better compare the results from the previous test (where it was not

implemented). The meaning of the columns of TABLE 4 are also equivalent to those of

TABLE 3, described in more detail in section 4.4.3 INITIAL PERFORMANCE AND TEST

RESULTS, but can be summarized as follows:

 The first two columns contain the number of graph image tiles and their

sizes.

 The third column contains the time taken to generate the data, pass it from

Python to C++ and save it to the temporary swap file.

 The fourth column contains the time it takes to redraw the graph while

rendering.

 The fifth column contains the actual rendering time needed by the renderer

to finish a batch rendering request.

 The sixth column contains the system wide swap usage during rendering.

5 Result

76

Table 4. Final test results with improved total rendering times. 25 million points of generated data was

again loaded and rendered on the test notebook with the graph widget example implementation prototype.

Graph

image tiles

(width x

height)

Graph image

tile size

(width x

height in

pixels)

Data load

time (s)

GUI

update

time (s)

Total

rendering

time (s)

System

swap use

(%)

4 x 4 1000 x 1000 15.55 0.5 78.16 0

4 x 4 500 x 500 15.45 0.08 57.15 0

4 x 4 250 x 250 15.56 0.01 56.61 0

4 x 4 125 x 125 15.57 0.00 55.19 0

5 x 5 1000 x 1000 15.48 0.75 148.92 0

5 x 5 500 x 500 15.51 0.13 93.77 0

5 x 5 250 x 250 15.93 0.02 87.66 0

5 x 5 125 x 125 15.65 0.00 86.88 0

8 x 8 1000 x 1000 15.54 1.92 453.36 48

8 x 8 500 x 500 15.52 0.53 317.98 1

8 x 8 250 x 250 15.54 0.06 234.15 0

8 x 8 125 x 125 15.52 0.01 228.71 0

10 x 10 1000 x 1000 15.47 2.59 703.05 53

10 x 10 500 x 500 15.52 0.77 593.69 0

10 x 10 250 x 250 15.49 0.10 382.58 1

10 x 10 125 x 125 15.48 0.02 359.80 1

From these results it can be concluded that software rendering time increases heavily

with the number of graph image tiles and also somewhat with graph image tile size,

which can clearly be seen in FIGURE 39(a). This relation is also true even when the

whole graph image is represented with the same number of pixels; e.g. rendering a

graph image of size 1 000 x 1 000 pixels with 4 x 4 tiles of size 250 x 250 pixels is

faster than rendering the same graph image with 8 x 8 tiles of size 125 x 125 pixels, as

seen in FIGURE 39(b). FIGURE 39(a) also shows that the rendering times increase more

rapidly for the two graph image tile configurations with the most and largest graph

image tiles, which were caused by the test notebook running out of memory due to the

large tile image buffers. This promptly made the operating system temporarily unusable

as it was forced to start swapping (see section 2.1 OPERATING SYSTEM MEMORY

MANAGEMENT), which also occurred for the corresponding test cases in both the

previous and following tests as well.

5 Result

77

(a) graph image tile configurations and total rendering time

(b) graph image size and total rendering time

Figure 39. Relations between graph image tile configurations (a), graph image size (b) and total

rendering time (with an empty cache) in the final test, based on the data in TABLE 4.

5 Result

78

The final test was also run on the more powerful test desktop computer, specified in

section 1.4 DELIMITATIONS, to see how much this would affect the results. TABLE 5

shows the outcome, and it is clear that the loading times improved while the update and

rendering time improved slightly but scaled worse. It scaled badly enough to have the

test notebook surprisingly outperform the test desktop computer in the larger test cases

– which could be related to some hardware issues that the test desktop computer have

shown symptoms of. Nonetheless, the test showed that CCDVL runs smoother (with

good configurations) on better hardware, as one would generally expect.

Table 5 Final test results run on the more powerful test desktop computer with the graph widget example

implementation prototype.

Graph

image tiles

(width x

height)

Graph image

tile size

(width x

height in

pixels)

Data load

time (s)

GUI

update

time (s)

Total

rendering

time (s)

System

swap use

(%)

4 x 4 1000 x 1000 9.82 0.35 63.82 0

4 x 4 500 x 500 9.87 0.06 51.80 0

4 x 4 250 x 250 9.95 0.02 50.76 0

4 x 4 125 x 125 9.93 0.00 48.35 0

5 x 5 1000 x 1000 9.79 0.61 116.83 0

5 x 5 500 x 500 9.91 0.11 88.76 0

5 x 5 250 x 250 9.89 0.03 82.14 0

5 x 5 125 x 125 10.04 0.01 90.91 0

8 x 8 1000 x 1000 9.90 2.78 894.97 0

8 x 8 500 x 500 9.89 0.42 296.53 0

8 x 8 250 x 250 9.90 0.08 296.53 0

8 x 8 125 x 125 10.04 0.02 216.61 0

10 x 10 1000 x 1000 9.91 3.80 1564.75 40

10 x 10 500 x 500 10.08 0.71 672.59 0

10 x 10 250 x 250 10.02 0.04 396.41 0

10 x 10 125 x 125 9.88 0.08 378.50 0

Worth mentioning is that the frontend also supports rectangular graph images

constructed by non-identical number of graph image tiles, such as 4 x 5 or 5 x 22, as

well as any tile size larger than zero. Rectangular sizes were used in the tests to keep

things simple and to make it easier to compare the results, as it is the total number of

graph image tiles, the graph image size and the size of the dataset that really matters.

5 Result

79

5.3 Comparison with prestudy results

All the performance tests were intended to estimate both the graph widget performance

and the operating system performance as a whole during rendering and interaction,

which is why the results are still interesting despite the fact that the measurements

depend on the hardware, operating system and other applications running in the

background. All of the cross-platform libraries examined in the prestudy had multiple

rendering backends, supported Python and provided both scatter plots and time series

graphs with both linear and logarithmic scaling (see APPENDIX C - PRESTUDY RESULTS).

However, they could not handle large amounts of data as there was no memory

management, highlighting the main problem described in section 1.2 PROBLEM. None of

the examined libraries were multithreaded, which was clearly noticeable in the

interaction performance tests, and it should be pointed out that even though a varying

degree of interactivity was available between the rendering backends, these libraries

does not seem to focus on interactivity, but rather on providing more static graphs and

graph images.

The tests in the previous section show that CCDVL is able to handle the full test dataset

rather smoothly, unlike any of the libraries examined in the prestudy. Few of the

rendering backends of these libraries could manage the full test dataset without

crashing. These libraries were however able to handle half of the test dataset with a

severe impact on system and application usability while rendering, as described in

APPENDIX C - PRESTUDY RESULTS. Furthermore, each of the examined libraries had to

immediately redraw the graph for every user interaction affecting the graph view,

traversing the entire dataset each time, making any such interaction more difficult and

time consuming to perform on very large datasets. CCDVL mostly avoids this by

rendering the graph as a set of graph image tiles and manually managing memory usage

of datasets as previously described in section 5.1 CCDVL LIBRARY AND API and chapter

4 DEVELOPMENT, while simultaneously utilizing progressive updates and a graph image

tile cache.

Numerous suggestions on how to further improve CCDVL are provided in section 6.6

FUTURE WORK, ADDITIONS AND EXTENSIONS, and as a closing comment, it is interesting

to note that the PLplot library, which performed best out of the three libraries examined

in the prestudy, is also the library that seems to be most similar to CCDVL.

6 Discussion

80

6 Discussion

This was a very large thesis overlapping many huge fields, such as software engineering

and information visualization described in chapter 2 THEORY, as well as comprising

parts that could easily be used as subjects for independent theses, such as creating the

optimal data structure for the memory manager discussed in section 4.2.2.1 MEMORY

MANAGER ANALYSIS AND DESIGN. There was a lot of potential in CCDVL to explore and

develop, and still is as noted by the suggestions taken off the top of our heads in section

6.6 FUTURE WORK, ADDITIONS AND EXTENSIONS below. As such, the thesis also took

quite a bit longer to complete than normal. One of the major causes, if not the biggest

cause, of the thesis’ tendency to drag on was initial administrative setbacks. While these

were being resolved we could not work full time on the thesis, and we were stuck at a

work rate around 50-70% for at least half of the thesis duration.

6.1 Method discussion

If we were to take on such a huge project as this thesis again, we would generally:

 improved on planning, have more and clearer milestones, as well as a more

realistic time plan with better follow ups,

 prioritized the requirements better to make sure that all important bits were in

place,

 keep iterations smaller and shorter, since many of our iterations were both too

large and took too long to complete,

 work closer with Combine, by doing more of the thesis work out of their office,

and

 perform a wider and more accurate prestudy.

Otherwise the chosen methods worked out rather well, although it was a bit hard to do

any thorough user tests of the results and iterations of an on-going development of a

fresh API. As mentioned in section 3.3.2 PROGRAMMING LANGUAGE AND SOFTWARE

LIBRARIES, the Qt Designer application was not used due to bad experiences with

similar tools, but choosing to use it from the start would probably have saved some time

initially. But the question remains if it would not have required more effort when

making changes and during debugging, as our understanding of the Qt workings

probably would have been less compared to working directly with the code. It would

thus been interesting to make the same GUI and changes again in Qt Designer and

compare the generated code, time and effort spent to see if it actually proved to be a

good GUI-builder tool or not.

6.2 Prestudy

The fairness of the prestudy is somewhat questionable, as we only looked at a few free

Python libraries and libraries that had Python bindings, which used a permissive license,

and only performed tests on the built-in interactive GUIs. It should definitely have been

6 Discussion

81

expanded to cover a few non-Python libraries and possibly also one or two proprietary

solutions to be more valid. The studied libraries are also intended to be basic graph

renderers, with the exception of the interactive backends, but they still worked as the

very rough estimate they were intended to be. We were pretty satisfied to be able to tell

if CCDVL was slower than, on par with or even faster than some existing commonly

used libraries. This at least gave us a hint of that we were going in the right direction.

Finally, an odd problem occurred when verifying test results; PLplot refused to build the

Python bindings while we were trying to increase the granularity of the benchmarks,

which made the PLplot test results less precise as only a few initial tests could be made.

It would have been interesting to test this library more as it was somewhat similar to

CCDVL, as mentioned in section 5.3 COMPARISON WITH PRESTUDY RESULTS.

6.3 Development discussion

This section discusses the design and development of the CCDVL library and API, as

well as the internal modules and the external python bindings. Image buffer formats,

data compression and the possibilities of hardware accelerated rendering are among the

discussed topics.

6.3.1 API and library specification

The library was wrapped into a common namespace and each module was also wrapped

into its own namespaces, while some module classes were not. Arguably, they should

all have belonged to their respective namespace, like in the case with the memory

managers, which also provide an iterator in addition to an implementation of the

abstract class MemoryManager. In hindsight, the naming conventions of the frontend

classes were perhaps not the best either, as they probably are a bit too similar to the ones

used by Qt to be unambiguous. The naming conventions seemed logical at first, before

any namespaces were enforced, and it stuck without us giving it any more thought.

A few things were left out, either on purpose or because we did not come to think of it

until much later, of which two things stand out. Firstly, the specification does not state

what kind of image buffer to use, which allows any pixel format; making the API more

flexible at the risk of incompatible module implementations. Initially two different pixel

formats, one without an alpha channel and one with, were to be supported. Primarily to

be able to handle groups as transparent overlays and thereby avoid re-rendering all tiles

when a selection is hidden. This brought up an unexpected question in how to handle

other pixel formats. In the end it was up to the implementation to decide freely. A good

idea might be to enumerate some of the most common pixel formats, and then either let

developers choose one of these, or attempt to auto-detect a compatible configuration to

avoid unpleasant surprises such as incorrect colors and flipped or mirrored image tiles.

Secondly, is the ordering of the data; the order in which a memory manager iterator

traverses held data is important because it currently affects how the renderer attempts to

draw a line between points, as well as affecting the group selection iterator. It is

preferable if the original input order could be preserved, a wish also expressed by

6 Discussion

82

Combine, but using a plain tree data structure would normally sort the data causing this

initial ordering to be lost. One way to counter this is to add additional metadata to keep

track of the order internally, which leads to the next problem of figuring out how the

memory manager iterator should mark sparse ordering (a sorted list with empty gaps)

that may occur when data points in the middle of the input order do not match the

search criterion, i.e. is not within the given bounding box used by the search. While this

problem was never solved it matters little at the moment since the implemented memory

managers do not support search.

Data compression, which could be used to improve memory usage efficiency, is not

used in the current implementation to avoid making additional copies of data in memory

and in order to save time. However, there is nothing preventing a memory manager

implementation from compressing stored data. The image tile buffer format that the API

uses to transfer tiles from a renderer to a GUI could also be compressed since no pixel

format was standardised (as stated above), but this will likely prove challenging to

support as well as requiring both a new renderer and GUI module capable of directly

manipulating and displaying a compressed image.

An interesting but unintended side effect, which lies outside the purpose and scope of

the thesis, due to passing graph image tiles through the API strictly as image buffers and

implementing the asynchronous rendering as a tile message queue to handle batch

request, is the possibility to divide the library between the renderer and cache with a

network interface in a client-server solution. This would allow data and graph image tile

rendering to be done on a large server with more capacity than a small desktop or

notebook. Both the server and the client should in this scenario send compressed images

and use a cache in order to reduce network usage and to maintain good performance for

multiple clients viewing the same dataset.

6.3.2 Modules and components

Since Combine requested a graph rendering library that is capable of handling large

datasets while keeping reasonable performance with advanced interactive functionality,

there was thoughts about utilizing hardware acceleration, such as OpenGL, to ensure

fast rendering separated from the graph rendering thread. In our tests we have

experienced that AGG performance is slower when rendering lines or larger data point

representations. The CCDVL API ended up not supporting hardware accelerated

rendering both due to that AGG does not support it and that no separate OpenGL

rendering was implemented. Unforeseen time sinks and a limited timeframe prevented

hardware acceleration from finally being addressed. The intent was to use the software

renderer as a reference implementation, simply because the API is supposed to be

completely platform independent, making hardware acceleration an optional feature.

An outline for an OpenGL renderer implementation that conforms with the current API

would probably use frame buffer objects, with the intention to ask the graphics card to

draw the data on the image buffer located on the card and retrieving the image buffer

upon completion. Although, this method has an interesting shortcoming in that to

conform with the API the image buffer must first be retrieved from the card, passed to

6 Discussion

83

the GUI and stitched together in the software, before finally sending it back to the

graphics card – when it is possible to display it immediately by simply telling the

graphics card to directly display the image at the correct location on screen. This would

of course also require that the graph view was implemented using (for example)

OpenGL, which will also reduce the cost of the computationally expensive image buffer

to image objects conversions. A few other possible gains from hardware accelerated

rendering is of course that the memory used for image buffers could be kept in video

memory and that the coordinate transformations could be performed directly on the

GPU, offloading the CPU further. However, it is important that the system load is

balanced, and putting the entire load on a low-end graphics card to save CPU power and

memory could be counterproductive.

The QtGraphViewFrame class ended up containing a bit too much functionality, and

should have been refactored into at least one additional helper class and separate more

general (possibly template) graph axes components to better follow good programming

practice and the object oriented paradigm as well. Time ran short however, and there is

also no explicit functionality for prerendering graph images or graph image tiles, which

can be achieved quite easily by breaking out some code of one of the graph update

functions and making it a bit more general. Prerendering functions should perhaps have

been part of a frontend interface, and an interface would also have helped to keep the

frontend and GUI components more modular and better separated. See section 6.6.2

FRONTEND AND GUI below for more details.

As a side note, the similar simpler Qwt library (Rathmann, 2011), a library with Qt

widgets for technical applications, providing some graph widgets and components, was

examined briefly for possible use of components. Although, it seemed too much work

trying to integrate and modify these to work with our API, as there probably would have

been too many components to modify, and it thus seemed better to focus on making the

things we needed from scratch, rather than getting to know, modifying and being

restricted by the Qwt components.

6.3.3 Python bindings

There are several issues to address with the current Python bindings; they need to be

refactored into several modules and only the basic functionality is supported. But more

alarming is the excessive data conversion between Python and C++, which is perhaps

not surprising, but memory managers also copies and store the data. The additional copy

between Python and C++ should therefore be avoidable by directly copying the data

into the memory manager, which would probably also improve the data load time of the

performance tests described in the previous chapters. However, Python will wait for the

first data copy operation to finish before being able to continue, which is important

when it comes to both concurrent data insertion and Python performance.

In general, these problems stem from the fact that we were not familiar with SIP and

that it thus took quite some time to get started with them and even more time to

successfully export the basic functionalities of CCDVL. It is also interesting that

supporting arrays is quite difficult as SIP cannot handle variable length arrays well, and

6 Discussion

84

is furthermore unable to handle multidimensional arrays without additional code. This

caused a few changes to the original API design, changing a few methods’ argument

types from array pointers to vector objects, yielding both a more type-safe and C++ like

API.

6.4 Result discussion

The bottleneck unexpectedly appears to be the CPU rather than I/O as first anticipated

(see 2.1.1 VIRTUAL MEMORY, SWAP AND MEMORY LEAKS), of course the fact that the

CPU is not forced to wait for I/O is a good sign that the anticipated problem has been

solved, but could also be indications that the current renderer implementation is

inefficient. A simple straightforward way that should boost the performance and

improve the efficiency of the library is of course to run it on computers with better

hardware, especially those with large amounts of RAM and disks with greater IO

capacity, such as SSD disks or striped raid arrays. However, the test results shown in

TABLE 4 and TABLE 5 in section 5.2 PERFORMANCE AND TEST RESULTS are inconclusive

as these both show a performance boost and lower efficiency, which was unexpected,

especially considering that the notebook managed to outperform the desktop computer

for the larger graph sizes. The tests could have been repeated on a more stable desktop

computer if there had been time, which would likely have given better and more

expected results. Running the tests on a typical workstation actually used by Combine,

as well as testing other datasets of gigabyte sized data would also have been interesting.

Another important aspect is of course the potential and possible applications of the

CCDVL library. Its purpose is to simplify the analysis of large amounts of scientific

data, which offers possibilities and advantages to both users and businesses alike.

CCDVL can for instance be used as a component in a data analysis application, in a

larger analysis framework or as a step in an analytical process to provide an overview of

large datasets with the possibility to quickly drill down, select and extract relevant

subsets of the data for further analysis. This can boost efficiency by saving much time,

as the interaction in the CCDVL graph widget is responsive throughout the entire drill

down process, which in turn reduces the time needed before relevant data can be passed

on and processed. Thus results, such as insights into the data or the creation of

mathematical models, can be achieved faster. Additionally, this can all be done on the

go, as CCDVL can be run locally, without the need for any Internet connection, server

or powerful hardware, which is a big advantage for the traveling analyst who wants to

efficiently utilize all possible working hours.

6.5 Lessons learnt

Large projects, such as this thesis, require a lot of planning, which we already knew of

course. But we realized that we did not do enough planning, especially when some

iterations started to drag on, and that it would perhaps have been better if one of us took

on the role of project manager and planner a bit more seriously to enforce and revise the

time plans in better ways. Another management-level bump in the road that we

encountered was a lot of SVN conflicts associated with sparse larger commits, caused

by the unspoken consensus of not committing code that did not compile. This and the

fact that we had divided the work into the frontend and backend, meant that some larger

6 Discussion

85

additions and changes was not committed until completely finished rather than in

smaller steps, which would have reduced the number of SVN conflicts. Perhaps using

another versioning and revision control system with support for branches, such as GIT

or Mercurial, would have suited this kind of approach better.

We both had a good idea how operating systems manage memory and how virtual

memory and swapping worked. Using a low level memory API was very interesting,

partly because it was easily available, but mostly because of its capabilities. We

generally improved our C++ skills as well, and the Google C++ Style Guide, which is

based on sound ideas that reinforce good programming practice, helped us along the

way. We also gained some experience working with The Doxygen documentation

system, which is similar to the Java Javadoc tool that we have both used before, as well

as working with HDF5 database basics, such as opening database files and reading data

using the C/C++ API with the testing applications.

Neither of us had worked (much) with Qt before, meaning that we were in for a few

surprises, most of which are described in section 4.4.2 FRONTEND TESTING AND

EVALUATION. Another one is that Qt projects requires precompiling, which is not

actually a surprise but nevertheless ended with CCDVL using CMake to generate

platform-specific build scripts to avoid maintaining project makefiles, as mentioned in

section 3.3 DEVELOPMENT METHOD AND SOFTWARE LIBRARIES. This way we learned

first-hand that CMake is a powerful tool that simplified extending CCDVL with new

Qt, SIP and Python source code files and components.

We also learned that SIP is not fully automated and needs both hints and in some cases

glue code that use the Python C API. To sum things up, SIP was quite difficult to get

started with, and the most challenging parts were some of the more advanced features

that were CCDVL was required to export (see section 6.3 DEVELOPMENT DISCUSSION

for more details). Of course, SIP still fulfilled its purpose of simplifying the generation

of the necessary C code that connects a C++ library with Python, which would

otherwise be cumbersome and very time consuming to keep updated.

6.6 Future work, additions and extensions

There are numerous things left to address that essentially belong to few different

groups; those that require the API to be revisited, those that can be addressed almost

immediately, those that do not depend on the API but possibly on other parts, and

finally those that require new modules. These are summarized and listed below.

6.6.1 API and backend

 Ensure full cross-platform support; Combine wished for platform

support across Windows, Mac OS X and Linux, which was intended to be

supported through the use of libraries which already support these

operating systems. While this is true for Qt, neither Pthreads or POSIX

memory management are natively available under Windows. A possible

6 Discussion

86

workaround is to use Cygwin to compile the affected CCDVL modules for

Windows (Faylor, C. et al. 2012). One could also use the included

Windows implementation of Pthreads, which is currently not used by

CCDVL, as a substitute for the missing APIs when compiling for

Windows. However, POSIX memory management, namely the mmap and

msync functions, are still missing under Windows and equivalent memory

management functions from the Windows API, such as VirtualAlloc and

CreateFileMapping (Microsoft Corporation, 2012a), must be used instead.

 Hardware rendering; Instead of only using image buffers, a window

handle or canvas could be used to support OpenGL or similar, but must be

optional and any component that can use it must check that it is

implemented and fully supported on the current platform and computer.

The current cache implementation will also need to be updated to reflect

such API changes.

 Sparse data ordering support; Capability to indicate and decide when a

line between two data point leave the area of interest, primarily an iterator

enhancement that will improve and simplify the rendering process. This is

also a prerequisite to be able to quickly find all data points within a

bounding box.

 More rendering progress information; Currently the cache observer

only includes information about any batch rendering start or completion.

Progress on individual tiles will for example likely be interesting, however

updating this too often could reduce the performance of the render.

 Configuration observer interface; Simplifies caching and allows settings

to change on cached tiles while automatically updating the rendered graph

tile.

 Renderer configuration improvements; Remove line color from group

and changing line color to be a general configuration for the renderer,

which will simplify how renderers are supposed to handle grouped data

points.

 Additional memory manager metadata; The memory manager could

hold more metadata regarding the dataset, such as labels and global

minimum and maximum for each dimension of the data.

 Dataset preprocessing; Common preprocessing steps, such as sorting,

extracting or excluding ranges of data could of course be added, although

it can be argued that it is not the responsibility of CCDVL but rather the

application using the library.

 k-dimensional groups; A group is not strictly a two dimensional polygon

representing a selection but an abstract class representing a bounding box

with an arbitrary number of dimensions and a decision function. For now,

groups are strictly two dimensional (see section 4.3.1.2 GROUPS), just like

the AGG renderer, but it should be possible to extend them past these two

dimensions.

6 Discussion

87

 Logarithmic scaling; Currently this scaling method is missing validation

for infinity and NaN handling by classes using the scale and zoom

transform methods. This causes axes to range from NaN to NaN, making it

impossible to determine where to draw data points. Note that it could also

be possible for this to happen with linear scaling, if one of the view

coordinates reaches infinity.

 Group hierarchies; No behaviour for group intersections was specified

by the API, and consequently no set operations were implemented for

groups. One idea was to consider a group to contain a list of sub-groups

were each group may not extend outside its parent nor overlap other leaf

groups, making them similar to tree data structures. However groups

should be free from such restrictions to simplify usage, but a group

exclusively consisting of other groups while supporting set operations on

the data selected by the groups could be rather challenging to design and

implement, especially if we consider a few different types of groups with

incompatible internal data representations. After all, the API only specifies

the existence of an abstract group that can verify if a data point is part of it

or not and tell the size of the covered data range, which could for example

be used to create arbitrary data filters.

 Python binding updates; As mentioned in sections 3.3.2 PROGRAMMING

LANGUAGE AND SOFTWARE LIBRARIES and 6.3.3 PYTHON BINDINGS, the

Python bindings need to be refactored and cleaned up. Both to improve

performance and to avoid licensing them completely under GPL by

writing separate bindings for each CCDVL module and combining them

under a common namespace. Furthermore, the bindings do not currently

export all methods and classes, which is another reason to continue

working on them.

 Graph type superclass; Although the scatter plot and time series graphs

are very similar and can easily be combined into one class, it would be

more object-oriented to have one common more abstract superclass with

the shared functionality, which could also be used when adding additional

graph types in the future.

 Improved iterator design; As stated before, the memory manager iterator

needs a few improvements to handle sparse data, meaning that the memory

manager iterator instead of iterating datasets should iterate data points;

similar to the group iterator.

6.6.2 Frontend and GUI

 Frontend design and interface; Currently the internal design of the

frontend is not really satisfactory, and there is no interface for the

frontend, as it initially seemed hard not to tie it to a specific GUI library of

framework. Bad planning and time limitations made the needed redesigns

of the frontend slip by. In hindsight, there is some frontend functionality

6 Discussion

88

that obviously belongs in a general frontend interface, such as getting and

setting the tool selection, the saved groups of points and the current state

or settings, as well as functionality for updates, stop and reloading,

toggling of the grid and general communication with the backend. This

would also have made the internal design of the frontend better and less

coupled. Utilizing more observers (see section 2.4.1 OBSERVER) and Qt

signals and slots could further reduce coupling and circular dependencies.

 Complete settings dialog; The settings dialog is currently not fully

implemented, especially validators for the input fields are needed. An

example of these is the validators needed for the neighbourhood overview

box, as seen in FIGURE B.5 in APPENDIX B - MANUAL AND USER GUIDE,

containing the graph image tiles size and number of graph image tiles,

were the tile size times the number of tiles cannot be less than the

respective size of the viewport times three. The apply button should

feature the prominent “done” button design pattern (Tidwell, 2011) better

by being highlighted by default, and the good defaults, input hint and

same-page error messages design patterns (Tidwell, 2011) should also be

utilized extensively in the settings dialog. Additionally, settings for

specifying the limits controlling when scientific notation should be used

for graph axes values could be added.

 Aligned clipmap grid; The graph image tile layout of the graph space

should be quantized to eliminate the bottom left rounding error, which

would improve caching and possibly improve performance of the center

on graph coordinate method. Currently, when changing zoom or scale

level, a new grid layout is created for the graph image tiles each time

based on the current center point of the viewport, making it very unlikely

to coincide with graph image tiles already stored in the graph cache.

Checking the cache for graph image tiles with the correct properties and

then aligning to their grid layout is a possible extension to the existing

implementation. Adding additional metadata to the graph cache could also

make such an alignment less costly to perform.

 Prerendering; It would be nice to be able to prerender nearby graph

image tiles on both the current zoom level and on zoom levels one or more

steps below and above, allowing the renderer to work in the background,

to facilitate smoother transitions. This requires the aligning of graph image

tiles mentioned in the previous bullet point, and must of course be limited

by the size of the graph cache to avoid potentially filling it with tiles that

will not be needed in the near future or at all. An additional invisible

border or set of borders, lying inside the pan-trigger border, could be used

to detect and predict the direction the user is panning to start pre-rendering

of graph image tiles beyond that point in the given direction. This must of

course be balanced carefully to not interfere with the user interaction and

to avoid constantly running the renderer if there is little gain. An option for

enabling, disabling and controlling the degree of prerendering could also

be added to the settings dialog.

6 Discussion

89

 Type-safe coordinate system types; An interesting idea is to make the

type definitions for the different coordinate systems into type-safe,

implicitly self-converting coordinate type classes extending the Qt classes.

This could have been useful, and would probably have saved time while

developing the GUI, even though some time must be spent to override,

overload and wrap most of the functions and all operators implemented in

the original Qt classes, to make the new type classes work seamlessly with

the other Qt classes. Compile time warnings could also have been added

when mixing coordinates and values from more than one type, to allow

easier debugging and for possible coordinate-related mistakes to be

immediately highlighted.

 Catch coordinate conversion errors; The Transform2D class returns an

outcome of the conversion, stating if it was a success or if an error

occurred, indicating if the values stored in the provided array represents

valid coordinates or possibly NaN or infinity. Currently, the

QtToolGraphicsView ignores these and always assumes that the

conversion succeeds. If these are to be checked by the frontend, the

checking step must be propagated to all functions using the

transformations, and possibly to all functions receiving coordinate points

as arguments or return values from other functions, which basically affects

every non-trivial function in the frontend. Replacing the points that are

used with pointers to points, and using NULL-pointers to represent failed

conversions is one possible option. Decisions on how to handle failures

must of course also be made in each case, such as deciding to retry or

abort the operation, and if and how the user should be informed of this.

Overloading the conversion functions in the tool graphics view to take one

additional argument stating the number of retries is another possible

option.

 Grid and axes draw functions functors; The functions responsible for

drawing the grid and axes are quite complex and hard to follow with a lot

of nested loops, if-statements and conditional if-statements used to keep

track of all of the many parameters used. Although the code could be

converted into more aesthetic recursive functions without too much work,

we decided against this design early on as there are usually many hundreds

of iterations with a lot of parameters to go through when drawing the axes,

which does not usually sit well with operating system memory usage when

doing this recursively. The code should instead be changed to use functors

for each axis, which should make the whole thing a lot easier to follow and

understand. Reducing the number of parameters would also be helpful, but

may be hard in the graph axes case due to the amount needed to keep track

of the values of the previous, current and next iteration steps, which are

used for formatting, layout and drawing the graph axes. The amount could

be visibly reduced and easier to handle by instead moving groups of

parameters to structs.

 Change displayed axes dimensions on-the-go; The axes unit labels could

be replaced with dropdown choosers to allow a quick and easy way of

changing what dimensions are displayed along the axes when the dataset

6 Discussion

90

contains multidimensional data. This approach was initially discussed and

was supposed to be used, but somehow got lost on the way.

 Movable GUI panels; Allowing the user to move, rearrange, resize,

show/expand and hide/collapse individual GUI panels to customize the

layout to their liking is always a nice feature of any non-trivial GUI.

Tidwell (2011) defines this as the movable panels design pattern. The only

currently available option for something like this in the graph widget

example implementation prototype is that the toolbar can (statically) be set

to be either above or below the graph view at widget creation and

initiation.

 Display more process progress information; A progress bar alternating

between the current processes, or a progress bar displaying a mouse-over

list of current processes with progress bars, much like one used in

NetBeans, are two alternatives. The TaskProgressInterface is a remnant of

the first of these ideas, which could be developed further. Another related

idea is to display a small progress bar, or some other loading indication, on

each graph image tile visible in the graph view during progressive updates

to better show the user that all data may not be visible as of yet. Absolute

positioning of such indicators would be ineffective since graph image tiles

should be rather large and few, as shown by chapter 5 RESULT, which

means that the user is unlikely to encounter more than one or two of these

indicators when panning during a progressive update. Such a progress bar

or loading indication would instead probably have to be a dynamic and

floating pop-up, much like a tool tip, which moves with the graph view to

make sure it stays visible to the user whenever a portion of a graph image

tile is seen in the graph view.

 Improved indication that a rendering process has been stopped;
Letting the reload button pulsate with color and setting displayed graph

view values to blank may be a good idea to better indicate the possible

mismatch of displayed and internal graph states. This could be further

indicated by using the graph image tile progress bars or loading indicators,

mentioned in the previous bullet point, to show which tiles are

mismatched. Additionally, making sure that the displayed state always

reflects the (potentially unfinished) internal state would of course be the

best solution.

 Support navigation with strict graph borders; Currently there are no

limitations on panning (other than reaching negative or positive infinity in

C++) and no indications for where the user can (usefully) go or what lies

beyond the displayed portion of the graph (see section 2.6.4.1

EXPLORATION AND INSIGHT THROUGH INTERACTION). Identifying the global

minimum and maximum for each dimension of the data, preferably only

once while initially reading the data, would make it possible to enforce

strict graph borders and edges that could not be panned across. Data range

searches could also be used in combination with graphical elements to

indicate the general direction in which there is more data available outside

the displayed portion of the graph to further support navigation.

6 Discussion

91

 Jump to coordinate tool button; The functionality for this already exists

in the frontend, but users currently have no way of utilizing it through the

GUI. We suggest adding a button with an appropriate icon, for example an

icon depicting four arrows pointing towards a dot in the center, that brings

up a simple modal dialog box with text edit fields for x- and y-coordinates

to center on, along with confirmation and cancel buttons. Adding such a

tool would also increase the need of an undo or go back functionality, as

recommended in section 2.7.3 DESIGN PATTERNS, HEURISTICS AND

GUIDELINES.

 Configurable tool switching hotkeys for expert users. Initially there

were some non-configurable hotkeys, but they were removed to not

interfere with application using the library implementation.

 Grid line style; for example adding an option for dashed or dotted line

style.

 More advanced group selections; Currently, the lasso select tool uses an

odd-even algorithm provided by Qt to close the path of the lasso tool to

create the selection polygon. This means that self-intersections will be

excluded from the selection, which could easily be fixed by using the

winding number algorithm, making it a true lasso selection by including

everything inside the outer borders of the selection. This was however not

prioritized, as Combine did not seem to mind the behaviour of the

common odd-even algorithm.

6.6.3 New modules

In general, any new graph type other than scatter plot and time series will at least

require a new renderer, and possibly also a new or modified GUI. 3D graphs, for

example would require both.

 OpenGL (or other hardware accelerated) renderer; Requires API

changes. See section 6.3.2 MODULES AND COMPONENTS and section 6.6.1

API AND BACKEND for more details.

 Memory manager with fast search; Either by finishing and using the

originally planned model partially analysed in section 4.2.2.1 MEMORY

MANAGER ANALYSIS AND DESIGN, or by using a regular database.

Experimenting with the possibilities and limitations of the HDF5 file

format would also be interesting, especially since Combine already use it.

According to The HDF Group (2011) their file format provides a versatile

data model capable of representing very complex data objects and a wide

variety of metadata, with no limit on the number or size of data objects in

the dataset. They also claim that it has many integrated performance

features that allow for access time and storage space optimizations among

other benefits, making it a possible candidate to be used in a database

based memory manager. Fast search could also improve performance

6 Discussion

92

when using many graph image tiles, as the current renderer would be able

to tell which graph image tiles to render (the sorted) data to rather than

having to go through all graph image tiles over and over again.

7 Conclusion

93

7 Conclusion

The development of the proposed library and API is a very large project, but feasible to

complete within a reasonable time frame for two hard-working persons with good

planning and good delimitations. Many interesting problems and solutions have been

considered and weighed against each other, even if not all of them were dealt with, and

many enhancements have thus been suggested in section 6.6 FUTURE WORK, ADDITIONS

AND EXTENSIONS.

The CCDVL library itself was semi-successful as it works quite well even if it is not

completely finished, and considering the results it is more usable for large datasets than

the libraries studied during the prestudy (see section 5.3 COMPARISON WITH PRESTUDY

RESULTS). The resulting library may not be faster at rendering than existing libraries, but

it allows interaction during loading of data and updates and avoids consuming all

system resources while doing so, although it may be a bit jerky depending on the

configuration, as seen in TABLE 4 in chapter 5 RESULT.

It is thus very possible to create an interactive graph widget that is capable of handling

very large datasets without crashing or making the computer unusable during rendering,

even when running on a low-end computer such as the test notebook specified in section

1.4 DELIMITATIONS, as shown with CCDVL. The potential and possible applications of

CCDVL are also promising within many areas, as discussed previously in section 6.4

RESULT DISCUSSION.

References

94

References

Aaronson, S. et al. (2012) Complexity Zoo. Qwiki.

http://qwiki.stanford.edu/index.php?title=Complexity_Zoo&oldid=24714 (29 Mar.

2012).

Adobe Systems Incorporated (2012) Adobe. http://www.adobe.com/ (4 May 2012).

Andrews, G. R. (1999) Foundations of Multithreaded, Parallel, and Distributed

Programing. Reading: Addison-Wesley Longman Inc..

Association for Computing Machinery (2012) ACM Digital Library. http://dl.acm.org/

(23 Apr. 2012).

Arora, S. and Barak, B. (2009) Computational Complexity: A modern approach.

Cambridge: Cambridge University Press.

Bertin, J. (1983) Semiology of graphics. Madison: University of Wisconsin Press.

Belady, L. (1966) A study of replacement algorithms for virtual storage computers.

IBM Systems Journal, vol. 5, nr 2, pp. 78-101.

Brath, R. K. (1999) Effective information visualization: guidelines and metrics for 3D

interactive representations of business data. Ottawa: National Library of Canada.

Chalmers Library (2012) Chalmers library – Chalmers University of Technology

library, Gothenburg, Sweden. http://www.lib.chalmers.se/ (23 Apr. 2012).

Chazelle, B. (1980) Computational Geometry and Convexity. New Haven, Connecticut:

Yale University.

Chazelle, B. (1991) Triangulating a Simple Polygon in Linear Time. Discrete

Computational Geometry, vol 6, nr 1, pp. 485-524.

Collins, W. J. (2005) Data structures and the Java collection framework. Second

Edition. New York: McGraw-Hill Companies, Inc..

Combine (2012) Enter the next level. http://www.combine.se/ (13 Mar. 2012).

Cooper, A., Reimann, R. and Cronin, D. (2007) About Face 3: The Essentials of

Interaction Design. Indianapolis: Wiley Publishing, Inc..

Dix, A. J. et al. (1998) Human-computer interaction. London: Prentice Hall Europé.

Enns, J. T. and Healey, C. G. (2011) Attention and Visual Memory in Visualization and

Computer Graphics. IEEE Transactions on Visualization and Computer Graphics. In

print.

http://qwiki.stanford.edu/index.php?title=Complexity_Zoo&oldid=24714
http://www.adobe.com/
http://dl.acm.org/
http://www.lib.chalmers.se/
http://www.combine.se/

References

95

Faylor, C. et al. (2012) Cygwin. http://www.cygwin.com/ (20 July 2012).

ffunction Inc. (2010) What is Data Visualization? http://blog.ffctn.com/ (24 May 2012).

Gmane (2004) vector-agg-general@lists.sourceforge.net Anti-Grain Geometry.

http://blog.gmane.org/gmane.comp.graphics.agg/month=20040801 (8 May. 2012).

Gnuplot homepage (2012) http://www.gnuplot.info/ (11 May. 2012).

Google Inc. (2011) Google Books. http://books.google.com/ (23 Apr. 2012).

Google Inc. (2012) Google Documents. https://docs.google.com/ (25 Apr. 2012).

Hewett, T. T. et al. (1996) ACM SIGCHI Curricula for Human-Computer Interaction.

[Electronic] New York: Association for Computing Machinery, Inc..

Hormann, K. and Agathos, A. (2001) The point in polygon problem for arbitrary

polygons. Computational geometry, vol. 20, nr 3, pp. 131-144.

Huang, C-W. and Sihi, T-Y. (1996) On the complexity of point-in-polygon algorithms.

Computers & Geosciences, vol. 23, nr 1, pp. 109-118.

Hunter, J. et al. (2011) matplotlib: python plotting - Matplotlib V1.1.0 documentation.

http://matplotlib.sourceforge.net/ (11 May. 2012).

IEEE (2008) IEEE Standard for Information Technology - Portable Operating System

Interface (POSIX) Base Specifications, Issue 7. IEEE Std 1003.1-2008 (Revision of

IEEE Std 1003.1-2004).

IEEE (2012) IEEE Xplore Digital Library. http://ieeexplore.ieee.org/ (23 Apr. 2012).

International Organization for Standardization/International Electrotechnical

Commission (2011) Information technology - Programming languages - C++. ISO/IEC

14882:2011. International Organization for Standardization, Geneva.

Kleinberg, J. and Tardos, É. (2005) Algorithm Design. Boston, Mass: Pearson

Education, Inc..

Larsson, A. et al. (2011) Dia - GNOME Live!. http://live.gnome.org/Dia (11 May 2012).

Lien, J-M. and Amato, N. M. (2004) Approximate convex decomposition of polygons. In

Proceedings of the twentieth annual symposium on Computational geometry (SCG '04);

June 8-11 2004, New York. pp. 17-26.

Microsoft Corporation (2012a) Memory Management Functions.

http://msdn.microsoft.com/ (20 July 2012).

http://www.cygwin.com/
http://blog.gmane.org/gmane.comp.graphics.agg/month=20040801
http://www.gnuplot.info/
http://books.google.com/
https://docs.google.com/
http://matplotlib.sourceforge.net/
http://ieeexplore.ieee.org/
http://live.gnome.org/Dia
http://msdn.microsoft.com/

References

96

Microsoft Corporation (2012b) Microsoft Office. http://office.microsoft.com/ (11 May

2012).

Metsker, S-J. and Wake, W-C. (2006) Design Patterns in Java. Second Edition.

Wokingham: Addison-Wesley Professional.

Musumeci, G-P. D. and Loukides, M. (2002) System Performance Tuning. Second

edition. [Electronic] Sebastopol: O’Reilly Media.

National Endowment for the Humanities, Office of Digital Humanities (2012)

Humanities High Performance Computing. http://www.neh.gov/ODH/ (15 Mar. 2012).

Nielsen, J. (1993) Usability Engineering. San Francisco: Morgan Kaufmann.

Nielsen, J. and Mack, R. L. (1994) Usability Inspection Methods. New York: John

Wiley & Sons, Inc..

Nokia Corporation (2012) Qt - A cross-platform application and UI framework.

http://qt.nokia.com/ (16 Mar. 2012).

Norman, D. A. (1988) The Design of Everyday Things. New York: Doubleday.

O'Rourke, J. (1998) Computational geometry in C. Second edition. Cambridge:

Cambridge University Press.

Oracle Corporation (2012) Welcome to NetBeans. http://netbeans.org/ (25 Apr. 2012).

Papadimitriou, C. H. (1994) Computational Complexity. Reading: Addison-Wesley.

PLplot developer community (2008) PLplot Home Page - Main.

http://plplot.sourceforge.net/ (13 May. 2012).

Preece, J. et al. (1994) Human-computer interaction. Wokingham: Addison-Wesley.

Pudov, A. (2011) Hard drive and RAM disk Comparison Report. Audry Pudov.

http://www.andreypudov.com/ (13 Mar. 2012).

Qt Project Hosting (2011) Threads and QObjects. http://qt-project.org/ (11 May 2012).

Rathmann, U. and Wilgen, J. (2011) Qwt User's Guide: Qwt - Qt Widgets for Technical

Applications. http://qwt.sourceforge.net/ (13 May 2012).

Rezakhanlou, F. et al. (2007) Lecture Notes in Mathematics - Entropy Methods for the

Boltzmann Equation: Lectures from a Special Semester at the Centre mile Borel, Institut

H. Poincar, Paris, 2001. [Electronic] Berlin: Springer.

Riverbank Computing Limited (2012) Riverbank Computing Limited.

http://www.riverbankcomputing.com/ (3 Apr. 2012).

http://office.microsoft.com/
http://www.neh.gov/ODH/
http://qt.nokia.com/
http://netbeans.org/
http://plplot.sourceforge.net/
http://www.andreypudov.com/
http://qt-project.org/
http://qwt.sourceforge.net/
http://www.riverbankcomputing.com/

References

97

Samet, H. (2006) Foundations of Multidimensional and Metric Data Structures. Boston:

Morgan Kaufmann.

Shemanarev, M. (2006) Anti-Grain Geometry. http://www.antigrain.com/ (8 Apr. 2012).

Silberschatz, A., Galivn, P. B. and Gagne, G. (2008) Operating System Concepts.

Eighth Edition. Hoboken: John Wiley & Sons, Inc..

Sotirovski, D. (2001) Heuristics for iterative software development. IEEE Software, vol.

18, nr 3, pp. 66-73.

Spence, R. (2007) Information Visualization: Design for Interaction. Second Edition.

Harlow: Pearson Education Limited.

The Code::Blocks Team (2011) Code::Blocks. http://www.codeblocks.org/ (25 Apr.

2012).

The GIMP Team (2012) GIMP - The GNU Image Manipulation Program.

http://www.gimp.org/ (4 May 2012).

The HDF Group (2011) HDF5. http://www.hdfgroup.org/ (24 Apr. 2012).

Tidwell, J. (2011) Designing Interfaces. Second Edition. Sebastopol: O’Reilly Media.

Tufte, R. E. (2001) The Visual Display of Quantitative Information. Second Edition.

Cheshire: Graphics Press LLC..

Valgrind Developers (2011) Valgrind Home. http://valgrind.org/ (7 May 2012).

Van Heesch, D. (2012) Doxygen. http://www.stack.nl/~dimitri/doxygen/ (24 Apr.

2012).

Weinberger, B. et al. (2011) Google C++ Style Guide (Revision 3.199). google-

styleguide – Style guides for Google-originated open-source projects.

http://code.google.com/p/google-styleguide/ (3 Apr. 2012).

Wiseman, Y. and Jiang, S. (2009) Advanced operating systems and kernel applications;

techniques and technologies. Portland: Book News, Inc.

yWorks (2012) yEd - Graph Editor. http://www.yworks.com/ (22 Jul. 2012).

Zverina, J. (2010) What’s Next for High-Performance Computing? University of

California, San Diego. http://www.ucsd.edu/ (15 Mar. 2012).

http://www.antigrain.com/
http://www.codeblocks.org/
http://www.gimp.org/
http://www.hdfgroup.org/
http://valgrind.org/
http://www.stack.nl/~dimitri/doxygen/
http://code.google.com/p/google-styleguide/
http://www.yworks.com/
http://www.ucsd.edu/

Appendix A – Initial requirements and requests

I

Appendices

Appendix A – Initial requirements and requests

This appendix contains the initial requirements and requests that emerged during the

first couple of meetings with Combine when the vision and goals of the proposed library

were also discussed. These are listed roughly in order of importance within each block

below, although some requirements were optional. Requirements and requests that fall

outside the delimitations, such as for 3D graphs, have been omitted.

A.1 Non-functional requirements

 The library should handle and visualize large amounts of data

efficiently.

 The library should minimize memory and I/O usage to maximize

performance and responsiveness of the operating system, widget and

GUI.

 The graph widget should have a responsive user interface with fast and

informative feedback, by having one GUI thread and one or more

background threads.

 The graph widget should be highly interactive.

 The library should be usable on most platforms.

 The API should be modular and extendable.

A.2 Functional requirements

 The widget should make single points discernible in the graph plot.

 The widget should use transparent points or color to indicate point

density in packed clusters in graph plots.

 The widget should provide a pannable view of the graph plot.

 The library should provide zoom functionality in the graph plot.

 The library should provide a lasso tool for selecting groups of points in

the graph plot.

 The widget should be resizable and maintain the GUI layout and

functionality on resize.

 The library should provide and be able to toggle a grid and other helper

lines in the graph plot.

Appendix A – Initial requirements and requests

II

 The widget should auto adjust graph axes units and text labels to fit the

current position, scale and zoom level of the graph plot.

 The widget should display large values in scientific notation on the

graph axes.

 The library should support for both linear and logarithmic scales in the

graph plot.

 The library should provide Python bindings.

 The widget should have an overview window with zoom box to show an

overview plus detail of the graph plot.

 The library should be able to save and manage groups of selected data.

 The widget should be able to toggle the visibility of saved groups in the

graph plot.

 The widget should support color coding of groups, points, signals and

plotted functions in the graph plot.

 The widget should be able to show both overlapping and separate

signals for easy comparison in time series graphs.

 The widget should have one shared (x-)axis for easy comparison in time

series graphs.

 The widget should have normalized y-axis in time series graphs.

 The widget should support selectable signals, showing the

corresponding unit of the y-axis when selected in time series graphs.

 The widget should show min and max values (“error bars”) based on the

given confidence interval around the signal in time series graphs.

 The library should have an abort mechanism to be able to stop rendering

if needed, allowing the operating system time to recover if pushed

beyond its limits or if a deadlock or infinite loop somehow occurs.

 The library should support hierarchical grouping (optional).

 The library should support configurable colors and toggle color coding

in graph plot (optional).

 The widget should be able to toggle lines connecting points to represent

the internal order of the data in graph plots on and off (optional).

 The widget should allow the user to add and manage custom helper

lines and plotted functions on the fly in the graph plot (optional).

Appendix B - Manual and user guide

I

Appendix B - Manual and user guide

The manual and user guide contains images and explanations of how the different parts

of the graphical user interface (GUI) and settings dialog work.

B.1 Main widget GUI

The main widget interface consists of the areas outlined and numbered in FIGURE B.1,

which are each described in more detail below.

Figure B.1. The different parts and areas of the GUI have been numbered and outlined as follows: (1)

axes variable and unit labels, (2) axes values, (3) plotted graph area with grid, (4) neighbourhood

overview, (5) empty group area, (6) stop/reload button, (7) toolbar buttons, (8) current graph view

values, and (9) status bar with settings button.

1. Axes labels containing the variable, a small arrow to indicate the direction

of the axes and the unit labels (see FIGURE B.2), specified by the settings.

(a) y-axis labels (b) x-axis labels

Figure B.2. Axes variable and unit labels.

2. Axes values corresponding to, and changing with, the current view and its

changes (see FIGURE B.3). The intervals between the steps and values can

Appendix B - Manual and user guide

II

be changed in the settings. If any of the values are too close to zero, too

large or too small they will be written in scientific notation divided over

two lines instead.

Figure B.3. Axis values for the x-axis with a step dash interval of 150.

3. The main graph view area, displaying a portion of the plotted graph (see

FIGURE B.4). The tools interact with this area, and there is also a grid that

can be toggled and modified in the settings. The origin lines are drawn a

bit thicker to make them easier to identify.

Figure B.4. Plotted graph area with grid.

4. The neighbourhood overview shows a scaled overview of the currently

loaded pannable portion of the plotted graph, or a loading message if the

graph portion is being rendered (see FIGURE B.5). The red outlined box

shows the current position of the main graph view area, and the outline

box can be used to move or pan the main graph view area by clicking, or

clicking and dragging, inside the neighbourhood overview area. To load a

new portion of the plotted graph, release the outline box close to an edge,

or use the panning tool in the main graph view area. The neighbourhood

overview uses a black-and-white mask, ignoring transparency and color,

which gives better contrast and a more useful overview.

(a) loading overview (b) showing overview

Figure B.5. Neighbourhood overview.

Appendix B - Manual and user guide

III

5. An area reserved for showing and managing saved groups of selected data.

6. A stop/reload button, which can be used to reload the current loaded

portion of the plotted graph, or to stop an on-going rendering process that

might have stalled (see FIGURE B.6). Stopping a rendering process will

most likely leave the main graph view and the loaded portion of the plotted

graph incomplete and out of sync. A reload is strongly recommended after

each use of the stop button.

(a) stop (b) reload

Figure B.6. The two states of the stop/reload button.

7. The toolbar containing the tools used to interact with the main graph view

area.

 (a) (b) (c) (d) (e) (f)

Figure B.7. The toolbar buttons; (a) point select, (b) rectangle rubber band select, (c) lasso select, (d)

pan, (e) zoom and (f) reset zoom.

They are, from left to right as seen in FIGURE B.7 above:

(a) Point select; left-click selects a point, right-click deselects. Double-

clicking the tool button toggles the mouse cursor between a crosshair and a

normal cursor.

(b) Rectangle rubber band select; left-click and drag brings up the rubber

band selection, right-click deselects. FIGURE B.8 shows an example of a

rectangle rubber band selection.

Figure B.8. An example of a rectangle rubber band selection.

Appendix B - Manual and user guide

IV

(c) Lasso select; left-click and drag brings up the lasso selection, right-click

deselects. Currently, the lasso tool uses and odd-even fill, meaning that

crossing the selection with itself will deselect the crossed areas FIGURE B.9

shows an example of a lasso selection.

Figure B.9. An example of a lasso selection.

(d) Pan; left-click and drag to pan the graph view area. Panning close to an

edge will cause the displayed portion of the plotted graph to be updated.

(e) Zoom; left-click to zoom in, option-left-click to zoom out, centering on

the clicked position. Left-click and drag or option-left-click and drag will

bring up a selection rubber band and zoom in or out to the selected area.

The escape button may be pressed before releasing the mouse button to

cancel the selection rubber band zoom action. Using the mouse scroll

wheel will zoom in or out depending on the direction of the wheel, keeping

the graph view centered on its current center position. Double clicking the

zoom tool button resets the zoom level to 100%.

(f) Reset zoom; resets the zoom level to 100%, keeping the graph view

centered on its current center position.

8. The values and parameters associated with the current graph view area

(see FIGURE B.10). These will change and update with graph view area

changes. The x- and y-coordinates change with the movements of the

cursor when it is positioned over the graph view area or the neighbourhood

overview area. If any of the values are too close to zero, too large or too

small they will be written in scientific notation divided over two lines

instead.

Figure B.10. Current graph view values from left to right: mouse-over coordinates, minimum coordinate

values, maximum coordinate values, scale-factors and zoom-factors.

Appendix B - Manual and user guide

V

9. A status bar displaying status messages and mouse over information about

the tools and stop/reload button, as well as a progress bar visible during

view updates (see FIGURE B.11). The settings button to the right is always

displayed, and opens the settings dialog.

Figure B.11. Status bar with settings button currently displaying the mouse-over message for the reset

zoom tool button, a message and progress bar informing the user that the view is currently updating, and

the settings dialog button.

B.2 Settings dialog

The setting dialog contains three tabs for configuring the graph view, window view and

advanced settings for the graph view cache. The graph view tab contains settings for the

point and line size, shape and color, as well as background clear color and scale settings

(see FIGURE B.12).

Figure B.12. The Graph View tab in the Settings dialog, allowing renderer and scale adjustments.

The window view tab, which is currently disabled, contains settings for the axes unit

labels, axes value step size, axes value dash distance and line/text color (see FIGURE

B.13). It also contains grid settings for determining the behaviour and color of the grid,

as well as settings for controlling the number of graph image tiles and tile size,

determining the size and shape of the pannable shown portion of the plotted graph that

is shown to scale in the neighbourhood overview.

Appendix B - Manual and user guide

VI

Figure B.13. The Window View tab in the Settings dialog, allowing axes, grid and neighbourhood

overview adjustments.

Finally, the advanced tab contains settings for deciding how many tiles the graph view

cache should contain (see FIGURE B.14). These tiles are used to render the shown

portion of the plotted graph, and speeds up rendering when returning to previously

visited portions, if the cache is large enough. A larger cache of course uses more

memory, and the currently used amount is shown. There is also an (irreversible) option

for emptying the cache.

Figure B.14. The Advanced tab in the Settings dialog, allowing graph image cache adjustments.

Appendix C - Prestudy results

I

Appendix C - Prestudy results

Three larger Python graph plotting libraries were studied; Matplotlib, Gnuplot and

PLplot. TABLE C.1 contains a compressed summary of the results, followed by more

detailed analyses and performance tests of each library in the sections below. The GUI

interactions were quantified, based on the observations of Cooper (2007), as fast; 100

milliseconds or less, responsive; up to 1 second, slow; 1-10 seconds, and unusable;

more than 10 seconds.

Table C.1. Prestudy summary.

 Matplotlib Gnuplot PLplot

License BSD compatible LGPL LGPL

Platform support

(Windows, Mac OS X,

Linux)

All All All

Scatter plot and time

series graphs
Both Both Both

Renderer Multiple Multiple Multiple

Interactive Yes Yes Yes

Memory management No No No

Compresses data No No No

API behaviour List of axis values List of axis values List of axis values

Python Pure Bindings Bindings

Linear scaling and

logarithmic scaling
Both Both Both

Preprocessing No Yes Yes

True multithreading No No N/A

Can handle large

datasets
No No No

Appendix C - Prestudy results

II

C.1 Matplotlib

Since Combine currently uses Matplotlib for graph rendering, it is one of the more

interesting libraries to examine. Hunter (2011) provides further information on

Matplotlib for the interested reader.

 Which license is used? Matplotlib is distributed under a BSD

compatible license.

 Which platforms are supported? Windows, Mac OS X and Linux are

supported.

 Are all graph types supported? Both scatter plots and time series

graphs (with error bars) are supported.

 Which rendering methods are supported? The following interactive

backends are supported: GTK, GTK-AGG, GTK-Cairo, Qt-AGG, Qt4-

AGG, WX, WX-AGG, TK-AGG, FLTK-AGG, Mac-OSX and Cocoa-

AGG.

 Is there any interactive functionality built into the GUI? At least one

of the GUIs from above were capable of zooming, changing scale and

saving the graph as an image.

 Are all data points stored in memory? Yes.

 Are data points compressed? No.

 How is basic library API usage? Window creation is straightforward

and data is passed to the library as a list of axis values.

 Are Python bindings provided? Yes, since it is a native Python

library.

 Which scaling methods are supported? Both linear and logarithmic

scaling methods are supported.

 Are there any preprocessing capabilities? None, users are

recommended to use third party numeric libraries.

 Is it Multithreaded? The library itself is not thread-safe nor is such

functionality provided. Although it is possible to render graphs

asynchronous with one thread for each figure and canvas using the

figure API. However, the cpython implementation can only use one

CPU core, which is suboptimal.

C.1.1 Matplotlib benchmarks

 GTK; The rendering results themselves contained graphical artefacts

and rendering the scatter plot was notably slower and required much

more memory than the time series. Therefore, only half of the generated

Appendix C - Prestudy results

III

test data was used to avoid crashes. The interactive operations were

unusably slow and depended on the amount of data visible.

 GTK-AGG; The AGG-render hit its complexity limit for line rendering

(line smoothing), which again meant that only half of the generated test

dataset could be used for the time series and the scatter plot due to the

high memory usage. While the rendering results have better quality than

plain GTK, the rendering time is slower and again depends on the

amount of data visible. As before, the GUI was unresponsive and slow

in addition to being unable to render the full test set.

 GTK-Cairo; Just like above, in order to obtain any useful test results

only half of the generated test data was used. Despite this, the GUI was

unusable and the time series graph still failed due to an even lower

rendering complexity limit than AGG and the scatter plot was much

slower than both plain GTK and GTK-AGG, which is interesting

considering that Cairo should use hardware acceleration whenever

available.

 Qt-AGG; Not tested since it is a legacy Qt support backend using

AGG.

 Qt4-AGG; Same limitations and similar performance as GTK-AGG

and is therefore also unusable

 TK-AGG; At this point it seems safe to conclude that Matplotlib uses a

different memory model or has a memory problem related to rendering

the scatter plot graph in comparison with the time series graph. Again

only half of the test data was used for the scatter plot and time series

graphs due to AGG limitations. Results are still unusable due to bad

responsiveness.

 WX; The WX backend is better known as wxWidgets and is also

unusably slow, even with only half of the test data, and as with previous

Matplotlib results the time series was significantly faster than the scatter

plot.

 WX-AGG; A rendering backend based on wxWidgets and AGG.

Unusable, with performance similar to previous AGG based

combinations.

 FLTK-AGG; A rendering backend based on Fast Light ToolKit and

AGG. Unusable, with performance similar to previous AGG based

combinations.

 Mac-OSX and Cocoa-AGG; Not tested as neither of the test computers

is a Mac.

Appendix C - Prestudy results

IV

C.2 Gnuplot

Gnuplot is a powerful free graph rendering library, with more information and

documentation found on the official Gnuplot homepage (2012).

 Which license is used? Gnuplot is distributed as-is, but the Python

bindings are distributed under LGPL.

 Which platforms are supported? Windows, Mac OS X and Linux are

supported, as well as even very old legacy systems are still supported.

 Are all graph types supported? Both scatter plots and time series

graphs (with error bars) are supported.

 Which rendering methods are supported? The following interactive

backends are supported: WXT-Cairo, Qt and X11.

 Is there any interactive functionality built into the GUI? Only

zooming and a few other interactive operations are supported.

 Are all data points stored in memory? Yes.

 Are data points compressed? No.

 How is basic library API usage? Window creation is straightforward

and data is passed to the library as a list of axis values. The API itself is

actually a script interpreter using a programing language that describes a

graph.

 Are Python bindings provided? Provided by a third party.

 Which scaling methods are supported? Both linear and logarithmic

scaling methods are supported.

 Are there any preprocessing capabilities? Various built-in splines,

curves and sums to process data

 Is it Multithreaded? No, since the WXT-Cairo backend is

unresponsive while rendering, however the plot method returns to

Python before closing the GUI, suggesting that it spawns a new process

separate from the Python interpreter to handle both rendering and user

input.

C.2.1 Gnuplot benchmark

 WXT-Cairo; A wxWidgets based GUI using the Cairo and Pango

libraries to render fonts. The tests were only performed with half of the

generated test dataset due to its high memory usage and slowness. It is

notable that this backend is pretty fast compared to Matplotlib’s

backend that used Cairo.

Appendix C - Prestudy results

V

 X11; The raw X11 backend had high memory usage, a low quality

rendering and almost no interactive functionality. Only half of generated

dataset was again used.

 Qt; The Qt backend is considered experimental and may not support all

features according to the documentation, which is why it was not tested.

C.3 PLplot

PLplot is a cross-platform graph rendering software for drawing scientific graphs

that has bindings for a wide variety of programing languages. Visit the PLplot

website (PLplot developer community, 2008) for more information

 Which license is used? PLplot is distributed under LGPL.

 Which platforms are supported? Windows, Mac OS X and Linux are

supported.

 Are all graph types supported? Both scatter plots and time series

graphs (with error bars) are supported.

 Which rendering methods are supported? The following interactive

backends are supported: Cairo, X11, Qt, wxWidgets and Aqua.

 Is there any interactive functionality built into the GUI? The

wxWidgets backend has slightly more functionality than the other

backends, allowing graphs to be saved and locating values.

 Are all data points stored in memory? Yes.

 Are data points compressed? No.

 How is basic library API usage? Window creation is straightforward

and data is passed to the library as a list of axis values.

 Are Python bindings provided? Yes, but there could be problems and

limited support for all of PLplot’s functionality according to the

documentation. Successfully installing this library with Python support

seems to be difficult. This could depend on the Linux distribution on the

test netbook, but the automated build script fails (with multiple

problems) to configure the Python bindings.

 Which scaling methods are supported? Both linear and logarithmic

scaling methods are supported.

 Are there any preprocessing capabilities? Interpolation.

 Is it Multithreaded? The library i not thread-safe and there is

otherwise virtually no information available

Appendix C - Prestudy results

VI

C.3.1 Tests

Performance is actually good and responsive after rendering for all backends, and it is

likely that PLplot only renders and displays an image representation of a graph.

 Cairo; Behaves similar to the Cairo backend of Gnuplot above, but it has

a responsive GUI interaction after rendering has finished.

 X11; It is interesting that the X11 backend appears to render graphs using

progressive updates, although it seems unlikely that this is intentional

since the other interactive backends do not support this functionality.

 Qt; Slower than the other backends of PLplot.

 wxWidgets; Similar behaviour to previously tested WX backends.

 Aqua; Not tested as neither of the test computers is a Mac.

Appendix D - Planning report

I

Appendix D - Planning report

Data Visualization

With a focus on visualizing large amounts of data
(preliminary title)

Background

To be able to analyse any amount of data it needs to be visualized in some

way, such as presenting it in a diagram or a graph. Currently there is no easily

available way to visualize large amounts of scientific data on ordinary

workstation personal computers, while satisfying response time requirements

and graphics quality requirements. In this case large amounts of scientific data

is considered to be millions of measurements or reference points stored in files

that are in the size range of a couple of gigabytes each. Such files are often too

large to be handled by existing plotting software running on workstations,

often causing these to crash due to assumptions such that all data will fit in

main memory, or seemingly freeze due to lack of responsiveness in the

software user interface.

Aim

The aim of this thesis is simplify analysis of large amounts of scientific data

by building a small graphics library of highly interactive plot graph widgets

using the graphics library OpenGL, the Qt framework or a combination of

these.

Delimitations

At the request of Combine, this thesis will only look at 2D-graphs, focusing on

scatter plot graphs and time series graphs.

Initial requests and requirements

Shared

 Minimize memory and I/O usage

 Responsive user interface with fast and informative feedback (one GUI

thread and one or more background threads)

 Lasso tool for selecting group

 Renaming groups

 Removing groups

Appendix D - Planning report

II

 Hierarchical grouping

 Toggle groups on or off

 Color coding of groups, points, signals and functions

 Configurable colors

 Toggle color coding in graph

 Zoom functionality

 Toggle grid and help lines

 Add and toggle straight lines and functions manually, such as

y=x

 Overview window with zoom box

 Auto adjusting axis units and text labels

 Resizable window

 Support for both linear and logarithmic scales

Scatter plot

 Make single points discernible

 Transparent points or color to indicate point density

 Toggle lines connecting points to represent the internal order of

the points

Time series graph

 Overlapping and separable ”uniformly distributed” signals

 One shared (x-)axis for easy comparison

 Normalized y-axis

 Selectable signals, showing the corresponding unit of the y-axis

when selected

 Show min and max values based of the confidence interval

(Error bars)

Appendix D - Planning report

III

Method

A prestudy and comparison of response time and functionality with similar

data visualization libraries, mainly matplotlib, for large amounts of data will

also be made to be able to compare the efficiency of the result of this thesis.

The prestudy is followed by incrementally building a library better suited for

such use than currently existing software. In order to obtain good performance

memory usage must be limited, data points will be rendered on image textures,

efficient interpolation of data must be used, I/O bottlenecks must be identified

and either avoided or handled carefully. Separate threads for plotting and

handling the user interface will be used to increase responsiveness and

minimize unnecessary delays. The library will be coded in C/C++ and called

from a Python environment, which means that Python bindings are also

required.

Time plan

05/2011 – meetings with Combine

06/2011 – preparations, contact Chalmers and check prerequisites

07/2011 – begin planning report and prestudy, check more details with

Combine, get to know Qt

08/2011 – fulfil requirements, register master’s thesis at Chalmers and begin

working on the thesis, retouch and submit planning report

09/2011 – work on thesis

10/2011 – work on thesis

11/2011 – start writing final report

12/2011 – finish work and final report, present result

Continuous work on the thesis, time plan and final report will be done

throughout the thesis.

Appendix E - CCDVL API documentation

I

Appendix E - CCDVL API documentation

This appendix contains the full CCDVL API documentation generated by Doxygen

(Van Heesch, 2012), which is over 250 pages long, includes a table of contents, seven

chapters with detailed type definition, class and function descriptions, as well as a

complete index of these.

CC Data Visualization Library
0

Generated by Doxygen 1.8.1.1

Wed Jul 4 2012 16:36:17

Contents

1 CC Data Visualization Library (CCDVL) 1

1.1 Introduction . 1

1.2 Compiling . 1

1.2.1 Dependencies . 1

1.3 Documentation . 1

1.4 Library Usage . 2

2 Todo List 3

3 Namespace Index 5

3.1 Namespace List . 5

4 Class Index 7

4.1 Class Hierarchy . 7

5 Class Index 9

5.1 Class List . 9

6 Namespace Documentation 13

6.1 ccdvl Namespace Reference . 13

6.1.1 Detailed Description . 14

6.2 ccdvl::frontend Namespace Reference . 15

6.2.1 Detailed Description . 17

6.2.2 Typedef Documentation . 17

6.2.2.1 GraphInt . 17

6.2.2.2 GraphPoint . 17

6.2.2.3 GraphPointF . 17

6.2.2.4 GraphPolygon . 17

6.2.2.5 GraphPolygonF . 18

6.2.2.6 GraphRect . 18

6.2.2.7 GraphRectF . 18

6.2.2.8 GraphSize . 18

6.2.2.9 GraphSizeF . 18

ii CONTENTS

6.2.2.10 SceneDouble . 18

6.2.2.11 SceneInt . 19

6.2.2.12 ScenePoint . 19

6.2.2.13 ScenePointF . 19

6.2.2.14 ScenePolygon . 19

6.2.2.15 ScenePolygonF . 19

6.2.2.16 SceneRect . 19

6.2.2.17 SceneRectF . 20

6.2.2.18 SceneSize . 20

6.2.2.19 SceneSizeF . 20

6.2.2.20 ViewDouble . 20

6.2.2.21 ViewInt . 20

6.2.2.22 ViewPoint . 20

6.2.2.23 ViewPointF . 21

6.2.2.24 ViewPolygon . 21

6.2.2.25 ViewPolygonF . 21

6.2.2.26 ViewRect . 21

6.2.2.27 ViewRectF . 21

6.2.2.28 ViewSize . 21

6.2.2.29 ViewSizeF . 22

6.3 ccdvl::memorymanager Namespace Reference . 22

6.3.1 Detailed Description . 22

6.4 ccdvl::renderer Namespace Reference . 22

6.4.1 Detailed Description . 22

7 Class Documentation 23

7.1 ccdvl::AbstractDataSet Class Reference . 23

7.1.1 Detailed Description . 24

7.1.2 Constructor & Destructor Documentation . 24

7.1.2.1 AbstractDataSet . 24

7.1.3 Member Function Documentation . 24

7.1.3.1 Accept . 24

7.1.3.2 GetCount . 24

7.1.3.3 GetDataSize . 24

7.1.3.4 GetTypeSize . 25

7.1.3.5 GetValue . 25

7.2 ccdvl::AbstractGroup Class Reference . 25

7.2.1 Detailed Description . 27

7.2.2 Constructor & Destructor Documentation . 27

7.2.2.1 AbstractGroup . 27

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS iii

7.2.3 Member Function Documentation . 27

7.2.3.1 begin . 27

7.2.3.2 end . 27

7.2.3.3 GetBoundingBox . 27

7.2.3.4 GetLeafs . 28

7.2.3.5 PointInGroup . 28

7.2.4 Member Data Documentation . 28

7.2.4.1 show_ . 28

7.3 ccdvl::AsynchronousResource< T > Class Template Reference 28

7.3.1 Detailed Description . 30

7.3.2 Constructor & Destructor Documentation . 30

7.3.2.1 AsynchronousResource . 30

7.3.3 Member Function Documentation . 30

7.3.3.1 AtomicWriteLock . 30

7.3.3.2 CancellationHandler . 30

7.3.3.3 GetResource . 30

7.4 ccdvl::CacheController Class Reference . 31

7.4.1 Detailed Description . 33

7.4.2 Member Enumeration Documentation . 33

7.4.2.1 CacheState . 33

7.4.3 Constructor & Destructor Documentation . 33

7.4.3.1 CacheController . 33

7.4.3.2 ∼CacheController . 34

7.4.4 Member Function Documentation . 34

7.4.4.1 AddObserver . 34

7.4.4.2 CacheControllerEnter . 34

7.4.4.3 Clear . 34

7.4.4.4 Enter . 34

7.4.4.5 FlushCache . 34

7.4.4.6 GetGraphTile . 35

7.4.4.7 GetMaxCacheSize . 35

7.4.4.8 GetMemoryUsage . 35

7.4.4.9 GraphTileStatus . 35

7.4.4.10 MemoryManagerCleared . 36

7.4.4.11 MemoryManagerUpdate . 36

7.4.4.12 NotifyObservers . 36

7.4.4.13 Remove . 36

7.4.4.14 RemoveAll . 36

7.4.4.15 SetMaxCacheSize . 37

7.4.4.16 StopRenderer . 37

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

iv CONTENTS

7.4.5 Member Data Documentation . 37

7.4.5.1 dimensions_ . 37

7.4.5.2 renderer_canceled_ . 37

7.5 ccdvl::CacheObserverInterface Class Reference . 38

7.5.1 Detailed Description . 38

7.5.2 Member Enumeration Documentation . 38

7.5.2.1 CacheEvent . 38

7.5.3 Member Function Documentation . 39

7.5.3.1 CacheObserverUpdate . 39

7.6 ccdvl::DataSetVisitorInterface Class Reference . 39

7.6.1 Detailed Description . 40

7.6.2 Member Function Documentation . 40

7.6.2.1 Visit . 40

7.6.2.2 Visit . 40

7.6.2.3 Visit . 40

7.6.2.4 Visit . 41

7.6.2.5 Visit . 41

7.6.2.6 Visit . 41

7.6.2.7 Visit . 41

7.6.2.8 Visit . 41

7.6.2.9 Visit . 41

7.6.2.10 Visit . 42

7.7 ccdvl::frontend::QtBaseTool Class Reference . 42

7.7.1 Detailed Description . 44

7.7.2 Constructor & Destructor Documentation . 44

7.7.2.1 QtBaseTool . 44

7.7.3 Member Function Documentation . 44

7.7.3.1 has_selection . 44

7.7.3.2 MapToRestrictedGraph . 45

7.7.3.3 MapToRestrictedScene . 45

7.7.3.4 OnEnter . 45

7.7.3.5 OnKeyPress . 45

7.7.3.6 OnKeyRelease . 46

7.7.3.7 OnLeave . 46

7.7.3.8 OnMouseMove . 46

7.7.3.9 OnMousePress . 47

7.7.3.10 OnMouseRelease . 47

7.7.3.11 OnWheel . 47

7.7.3.12 RestrictPosToView . 48

7.7.3.13 selection . 48

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS v

7.7.3.14 set_selection . 48

7.7.4 Member Data Documentation . 48

7.7.4.1 click_pos_ . 48

7.8 ccdvl::frontend::QtCoordinateAndAxesInfoFrame Class Reference 49

7.8.1 Detailed Description . 50

7.8.2 Constructor & Destructor Documentation . 50

7.8.2.1 QtCoordinateAndAxesInfoFrame . 50

7.8.3 Member Function Documentation . 50

7.8.3.1 FormattedNumberText . 50

7.8.3.2 Init . 50

7.8.3.3 SetRangesInfo . 51

7.8.3.4 SetXYCoordinates . 51

7.8.3.5 SetXYCoordinates . 51

7.9 ccdvl::frontend::QtGraphImageTile Class Reference . 51

7.9.1 Detailed Description . 52

7.9.2 Constructor & Destructor Documentation . 52

7.9.2.1 QtGraphImageTile . 52

7.9.2.2 QtGraphImageTile . 52

7.9.2.3 QtGraphImageTile . 53

7.9.2.4 QtGraphImageTile . 53

7.9.2.5 QtGraphImageTile . 53

7.9.3 Member Function Documentation . 53

7.9.3.1 drawn . 53

7.9.3.2 image . 54

7.9.3.3 set_drawn . 54

7.9.3.4 set_image . 54

7.10 ccdvl::frontend::QtGraphNeighbourhoodFrame Class Reference 54

7.10.1 Detailed Description . 56

7.10.2 Constructor & Destructor Documentation . 56

7.10.2.1 QtGraphNeighbourhoodFrame . 56

7.10.3 Member Function Documentation . 56

7.10.3.1 eventFilter . 56

7.10.3.2 Init . 56

7.10.3.3 OutlineRect . 56

7.10.3.4 ScaleFactor . 57

7.10.3.5 ShowLoadingMessage . 57

7.10.3.6 UpdateGraphViewOutlinePosition . 57

7.10.3.7 UpdateNeighbourhoodPixmap . 57

7.11 ccdvl::frontend::QtGraphSettings Class Reference . 57

7.11.1 Detailed Description . 59

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

vi CONTENTS

7.11.2 Member Enumeration Documentation . 59

7.11.2.1 GridType . 59

7.11.3 Constructor & Destructor Documentation . 59

7.11.3.1 QtGraphSettings . 59

7.11.4 Member Function Documentation . 60

7.11.4.1 ConvertClearColor . 60

7.11.4.2 EmitSettingsUpdated . 60

7.11.4.3 SettingsUpdated . 60

7.11.5 Member Data Documentation . 60

7.11.5.1 current_graph_scene_state_ . 60

7.11.5.2 image_tile_height_ . 61

7.11.5.3 image_tile_width_ . 61

7.11.5.4 next_graph_scene_state_ . 61

7.11.5.5 renderer_settings_ . 61

7.12 ccdvl::frontend::QtGraphSettings::AxesProperties Struct Reference 61

7.12.1 Detailed Description . 62

7.12.2 Member Data Documentation . 62

7.12.2.1 lower_scientific_bound . 62

7.12.2.2 upper_scientific_bound . 62

7.13 ccdvl::frontend::QtGraphSettings::GridProperties Struct Reference 62

7.13.1 Detailed Description . 63

7.14 ccdvl::frontend::QtGraphSettings::ZoomSettings Struct Reference 63

7.14.1 Detailed Description . 63

7.14.2 Member Data Documentation . 63

7.14.2.1 x_wheel_zoom_step_factor . 63

7.14.2.2 y_wheel_zoom_step_factor . 64

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference . 64

7.15.1 Detailed Description . 69

7.15.2 Constructor & Destructor Documentation . 70

7.15.2.1 QtGraphViewFrame . 70

7.15.3 Member Function Documentation . 70

7.15.3.1 AddGraphImageTilesOnResize . 70

7.15.3.2 AxesDashText . 70

7.15.3.3 BeginUpdate . 71

7.15.3.4 CacheObserverUpdate . 71

7.15.3.5 CancelUpdate . 71

7.15.3.6 ClearGraphImages . 71

7.15.3.7 ClearGraphImagesDrawnFlags . 72

7.15.3.8 CreateLabels . 72

7.15.3.9 CurrentCenterPosition . 72

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS vii

7.15.3.10 CurrentSceneHeight . 72

7.15.3.11 CurrentSceneRect . 72

7.15.3.12 CurrentSceneWidth . 73

7.15.3.13 CurrentViewRectToGraph . 73

7.15.3.14 CurrentViewRectToScene . 73

7.15.3.15 DrawAxesDashAndText . 73

7.15.3.16 DrawGraphFirstRedraw . 74

7.15.3.17 DrawGraphView . 74

7.15.3.18 DrawGrid . 74

7.15.3.19 FinishUpdate . 74

7.15.3.20 graph_glass_pane . 75

7.15.3.21 graph_image . 75

7.15.3.22 graph_settings . 75

7.15.3.23 GraphImagesColumns . 75

7.15.3.24 GraphImagesRows . 75

7.15.3.25 HideGrid . 76

7.15.3.26 Init . 76

7.15.3.27 LockGraphState . 76

7.15.3.28 PanTo . 76

7.15.3.29 PanTriggeredUpdate . 76

7.15.3.30 PanTriggerUpdateBorder . 77

7.15.3.31 ReloadUpdateButtonClicked . 77

7.15.3.32 SetAxesProperties . 77

7.15.3.33 SetGraphImageTileColumns . 78

7.15.3.34 SetGraphImageTileHeight . 78

7.15.3.35 SetGraphImageTileRows . 78

7.15.3.36 SetGraphImageTileRowsAndColumns . 78

7.15.3.37 SetGraphImageTileSize . 79

7.15.3.38 SetGraphImageTileWidth . 79

7.15.3.39 SetGridProperties . 79

7.15.3.40 SettingsChanged . 79

7.15.3.41 ShowGrid . 80

7.15.3.42 StartProgressiveGraphUpdates . 80

7.15.3.43 StartProgressiveGraphUpdates . 80

7.15.3.44 StopUpdateButtonClicked . 80

7.15.3.45 tool_graphics_view . 80

7.15.3.46 TryLockGraphState . 81

7.15.3.47 TryLockGraphState . 81

7.15.3.48 UnlockGraphState . 81

7.15.3.49 UpdateBegun . 82

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

viii CONTENTS

7.15.3.50 UpdateCanceled . 82

7.15.3.51 UpdateFinished . 82

7.15.3.52 UpdateGraphGlassPane . 82

7.15.3.53 UpdateGraphView . 82

7.15.3.54 UpdateGraphView . 82

7.15.3.55 UpdateGraphView . 83

7.15.3.56 UpdateGraphView . 83

7.15.3.57 updating_graph . 83

7.15.4 Member Data Documentation . 83

7.15.4.1 cancel_update_ . 83

7.15.4.2 graph_glass_pane_ . 84

7.15.4.3 graph_image_tiles_ . 84

7.15.4.4 graph_pixmap_item_ . 84

7.15.4.5 graph_state_mutex_ . 84

7.15.4.6 graph_update_timer_ . 85

7.15.4.7 kDefaultGraphUpdateInterval . 85

7.15.4.8 kDefaultPanHeight . 85

7.15.4.9 kDefaultPanWidth . 85

7.15.4.10 reload_update_button_ . 85

7.15.4.11 stop_update_button_ . 85

7.15.4.12 wait_for_renderer_ . 86

7.16 ccdvl::frontend::QtGraphWidget Class Reference . 86

7.16.1 Detailed Description . 87

7.16.2 Constructor & Destructor Documentation . 88

7.16.2.1 QtGraphWidget . 88

7.16.3 Member Function Documentation . 88

7.16.3.1 coordinate_and_axes_info_frame . 88

7.16.3.2 event . 88

7.16.3.3 graph_view_frame . 88

7.16.3.4 GroupSelection . 88

7.16.3.5 Init . 89

7.16.3.6 neighbourhood_frame . 89

7.16.3.7 resizeEvent . 89

7.16.3.8 show . 89

7.16.3.9 status_bar_frame . 89

7.16.3.10 toolbar_frame . 90

7.16.4 Member Data Documentation . 90

7.16.4.1 graph_neighbourhood_frame_ . 90

7.17 ccdvl::frontend::QtLassoSelectTool Class Reference . 90

7.17.1 Detailed Description . 92

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS ix

7.17.2 Constructor & Destructor Documentation . 92

7.17.2.1 QtLassoSelectTool . 92

7.17.3 Member Function Documentation . 92

7.17.3.1 OnMouseMove . 93

7.17.3.2 OnMousePress . 93

7.17.3.3 OnMouseRelease . 93

7.17.3.4 OnWheel . 94

7.17.3.5 ViewPixelColor . 94

7.17.4 Member Data Documentation . 94

7.17.4.1 kLassoCursor . 94

7.17.4.2 kLassoCursorInverted . 94

7.17.4.3 kMinLineLength . 94

7.17.4.4 prev_view_graph_rect_ . 95

7.17.4.5 prev_view_scene_rect_ . 95

7.17.4.6 view_image_ . 95

7.18 ccdvl::frontend::QtPanTool Class Reference . 95

7.18.1 Detailed Description . 96

7.18.2 Constructor & Destructor Documentation . 97

7.18.2.1 QtPanTool . 97

7.18.3 Member Function Documentation . 97

7.18.3.1 OnMouseMove . 97

7.18.3.2 OnMousePress . 97

7.18.3.3 OnMouseRelease . 98

7.18.3.4 OnWheel . 98

7.19 ccdvl::frontend::QtPointSelectTool Class Reference . 98

7.19.1 Detailed Description . 100

7.19.2 Constructor & Destructor Documentation . 100

7.19.2.1 QtPointSelectTool . 100

7.19.3 Member Function Documentation . 101

7.19.3.1 DrawHelperLines . 101

7.19.3.2 helper_lines . 101

7.19.3.3 mouse_cursor . 101

7.19.3.4 OnActivate . 101

7.19.3.5 OnDeactivate . 102

7.19.3.6 OnEnter . 102

7.19.3.7 OnLeave . 102

7.19.3.8 OnMouseMove . 102

7.19.3.9 OnMousePress . 103

7.19.3.10 OnWheel . 103

7.19.3.11 set_helper_lines . 103

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

x CONTENTS

7.19.3.12 set_mouse_cursor . 104

7.20 ccdvl::frontend::QtRectangleSelectTool Class Reference . 104

7.20.1 Detailed Description . 106

7.20.2 Constructor & Destructor Documentation . 106

7.20.2.1 QtRectangleSelectTool . 106

7.20.3 Member Function Documentation . 106

7.20.3.1 OnMouseMove . 106

7.20.3.2 OnMousePress . 106

7.20.3.3 OnMouseRelease . 107

7.20.3.4 OnWheel . 107

7.20.3.5 rubber_band . 107

7.21 ccdvl::frontend::QtSettingsDialog Class Reference . 108

7.21.1 Detailed Description . 112

7.21.2 Constructor & Destructor Documentation . 112

7.21.2.1 QtSettingsDialog . 112

7.21.3 Member Function Documentation . 112

7.21.3.1 ButtonClicked . 112

7.21.3.2 ColorButtonClicked . 112

7.21.3.3 GetButtonColor . 112

7.21.3.4 GetCacheMaxTileCount . 113

7.21.3.5 GetRendererClearColor . 113

7.21.3.6 GetRendererLineColor . 113

7.21.3.7 GetRendererLineWidth . 113

7.21.3.8 GetRendererPointColor . 114

7.21.3.9 GetRendererPointShape . 114

7.21.3.10 GetRendererPointSize . 114

7.21.3.11 GetScaleXMethod . 114

7.21.3.12 GetScaleXValue . 114

7.21.3.13 GetScaleYMethod . 115

7.21.3.14 GetScaleYValue . 115

7.21.3.15 SetButtonColor . 115

7.21.3.16 SetCacheMaxTileCount . 115

7.21.3.17 SetCacheUsed . 115

7.21.3.18 SetRendererClearColor . 116

7.21.3.19 SetRendererLineColor . 116

7.21.3.20 SetRendererLineWidth . 116

7.21.3.21 SetRendererPointColor . 116

7.21.3.22 SetRendererPointShape . 117

7.21.3.23 SetRendererPointSize . 117

7.21.3.24 SetScaleXMethod . 117

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS xi

7.21.3.25 SetScaleXValue . 117

7.21.3.26 SetScaleYMethod . 117

7.21.3.27 SetScaleYValue . 118

7.21.4 Member Data Documentation . 118

7.21.4.1 axis_line_color_ . 118

7.21.4.2 axis_x_spacer_ . 118

7.21.4.3 axis_x_step_ . 118

7.21.4.4 axis_x_type_ . 118

7.21.4.5 axis_y_spacer_ . 119

7.21.4.6 axis_y_step_ . 119

7.21.4.7 axis_y_type_ . 119

7.21.4.8 cache_empty_ . 119

7.21.4.9 cache_tile_count_ . 119

7.21.4.10 cache_used_ . 119

7.21.4.11 grid_line_color_ . 119

7.21.4.12 grid_type_ . 120

7.21.4.13 grid_x_step_ . 120

7.21.4.14 grid_y_step_ . 120

7.21.4.15 renderer_clear_color_ . 120

7.21.4.16 renderer_line_color_ . 120

7.21.4.17 renderer_line_width_ . 120

7.21.4.18 renderer_point_color_ . 120

7.21.4.19 renderer_point_shape_ . 121

7.21.4.20 renderer_point_size_value_ . 121

7.21.4.21 scale_x_method_ . 121

7.21.4.22 scale_x_value_ . 121

7.21.4.23 scale_y_method_ . 121

7.21.4.24 scale_y_value_ . 121

7.21.4.25 view_x_final_ . 121

7.21.4.26 view_y_final_ . 122

7.22 ccdvl::frontend::QtStatusBarFrame Class Reference . 122

7.22.1 Detailed Description . 123

7.22.2 Constructor & Destructor Documentation . 123

7.22.2.1 QtStatusBarFrame . 123

7.22.3 Member Function Documentation . 124

7.22.3.1 HideAndResetTaskProgress . 124

7.22.3.2 Init . 124

7.22.3.3 progress_bar . 124

7.22.3.4 SetTaskProgress . 124

7.22.3.5 SetTaskProgress . 124

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

xii CONTENTS

7.22.3.6 status_bar . 125

7.23 ccdvl::frontend::QtToolbarFrame Class Reference . 125

7.23.1 Detailed Description . 127

7.23.2 Constructor & Destructor Documentation . 127

7.23.2.1 QtToolbarFrame . 127

7.23.3 Member Function Documentation . 127

7.23.3.1 current_tool . 127

7.23.3.2 GetTool . 127

7.23.3.3 Init . 127

7.23.3.4 set_current_tool . 127

7.23.3.5 ToolButtonClicked . 128

7.23.3.6 ToolButtonDoubleClicked . 128

7.23.4 Member Data Documentation . 128

7.23.4.1 kNumberOfTools . 128

7.24 ccdvl::frontend::QtToolGraphicsView Class Reference . 128

7.24.1 Detailed Description . 130

7.24.2 Constructor & Destructor Documentation . 131

7.24.2.1 QtToolGraphicsView . 131

7.24.3 Member Function Documentation . 131

7.24.3.1 CalculateBottomLeftFromCenterPosition . 131

7.24.3.2 centerOn . 131

7.24.3.3 current_selection . 131

7.24.3.4 CurrentSelectionToStdVector . 132

7.24.3.5 enterEvent . 132

7.24.3.6 HideCurrentSelection . 132

7.24.3.7 Init . 132

7.24.3.8 keyPressEvent . 132

7.24.3.9 keyReleaseEvent . 133

7.24.3.10 leaveEvent . 133

7.24.3.11 mapFromGraph . 133

7.24.3.12 mapFromGraph . 133

7.24.3.13 mapFromGraph . 134

7.24.3.14 mapFromGraph . 134

7.24.3.15 mapFromGraph . 134

7.24.3.16 mapFromGraph . 134

7.24.3.17 mapToGraph . 135

7.24.3.18 mapToGraph . 135

7.24.3.19 mapToGraph . 135

7.24.3.20 mapToGraph . 136

7.24.3.21 mapToGraph . 136

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS xiii

7.24.3.22 mapToGraph . 136

7.24.3.23 mouseMoveEvent . 136

7.24.3.24 mousePressEvent . 137

7.24.3.25 mouseReleaseEvent . 137

7.24.3.26 set_current_selection . 137

7.24.3.27 ShowCurrentSelection . 137

7.24.3.28 wheelEvent . 138

7.25 ccdvl::frontend::QtZoomTool Class Reference . 138

7.25.1 Detailed Description . 140

7.25.2 Member Enumeration Documentation . 140

7.25.2.1 ZoomDirection . 140

7.25.3 Constructor & Destructor Documentation . 141

7.25.3.1 QtZoomTool . 141

7.25.4 Member Function Documentation . 141

7.25.4.1 DoZoom . 141

7.25.4.2 OnKeyPress . 141

7.25.4.3 OnKeyRelease . 141

7.25.4.4 OnMouseMove . 142

7.25.4.5 OnMousePress . 142

7.25.4.6 OnMouseRelease . 142

7.25.4.7 OnWheel . 143

7.26 ccdvl::GraphSceneState Class Reference . 143

7.26.1 Detailed Description . 144

7.26.2 Constructor & Destructor Documentation . 144

7.26.2.1 GraphSceneState . 144

7.27 ccdvl::GraphState Class Reference . 145

7.27.1 Detailed Description . 146

7.27.2 Member Enumeration Documentation . 146

7.27.2.1 ScaleMethod . 146

7.27.3 Constructor & Destructor Documentation . 146

7.27.3.1 GraphState . 146

7.27.4 Member Data Documentation . 146

7.27.4.1 bottom_left_ . 146

7.27.4.2 scale_ . 147

7.27.4.3 scale_method_ . 147

7.27.4.4 zoom_ . 147

7.28 ccdvl::GraphTile Class Reference . 147

7.28.1 Detailed Description . 149

7.29 ccdvl::GraphTileState Class Reference . 149

7.29.1 Detailed Description . 150

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

xiv CONTENTS

7.29.2 Constructor & Destructor Documentation . 150

7.29.2.1 GraphTileState . 150

7.29.2.2 GraphTileState . 150

7.29.3 Member Function Documentation . 151

7.29.3.1 LessThan . 151

7.29.3.2 operator= . 151

7.29.4 Member Data Documentation . 151

7.29.4.1 clear_color_ . 151

7.30 ccdvl::GraphTileState::functor_compare Struct Reference . 151

7.30.1 Detailed Description . 151

7.30.2 Member Function Documentation . 152

7.30.2.1 operator() . 152

7.31 ccdvl::Group2D Class Reference . 152

7.31.1 Detailed Description . 154

7.31.2 Constructor & Destructor Documentation . 154

7.31.2.1 Group2D . 154

7.31.3 Member Function Documentation . 154

7.31.3.1 AddSubGroup . 154

7.31.3.2 GetBoundingBox . 155

7.31.3.3 GetLeafs . 155

7.31.3.4 PointInGroup . 155

7.31.3.5 PointInPolygon . 155

7.31.4 Member Data Documentation . 155

7.31.4.1 group_leafs_ . 155

7.32 ccdvl::GroupSelectionIterator Class Reference . 156

7.32.1 Detailed Description . 157

7.32.2 Constructor & Destructor Documentation . 157

7.32.2.1 GroupSelectionIterator . 157

7.32.2.2 GroupSelectionIterator . 157

7.32.2.3 GroupSelectionIterator . 157

7.32.3 Member Function Documentation . 157

7.32.3.1 operator!= . 157

7.32.3.2 operator∗ . 158

7.32.3.3 operator++ . 158

7.32.3.4 operator++ . 158

7.32.3.5 operator= . 158

7.32.3.6 operator== . 158

7.33 ccdvl::List2D< type > Class Template Reference . 159

7.33.1 Detailed Description . 160

7.33.2 Constructor & Destructor Documentation . 160

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS xv

7.33.2.1 List2D . 160

7.34 ccdvl::MemoryManager Class Reference . 160

7.34.1 Detailed Description . 162

7.34.2 Member Enumeration Documentation . 162

7.34.2.1 MemoryManagerError . 162

7.34.3 Constructor & Destructor Documentation . 162

7.34.3.1 MemoryManager . 162

7.34.3.2 ∼MemoryManager . 163

7.34.4 Member Function Documentation . 163

7.34.4.1 AddData . 163

7.34.4.2 AddObserver . 163

7.34.4.3 begin . 163

7.34.4.4 Clear . 163

7.34.4.5 end . 164

7.34.4.6 GetRange . 164

7.34.4.7 NotifyNew . 164

7.35 ccdvl::memorymanager::CloneDataSet Class Reference . 165

7.35.1 Detailed Description . 166

7.35.2 Constructor & Destructor Documentation . 166

7.35.2.1 CloneDataSet . 166

7.35.3 Member Function Documentation . 167

7.35.3.1 SetCopyDestination . 167

7.35.3.2 Visit . 167

7.35.3.3 Visit . 167

7.35.3.4 Visit . 167

7.35.3.5 Visit . 167

7.35.3.6 Visit . 167

7.35.3.7 Visit . 168

7.35.3.8 Visit . 168

7.35.3.9 Visit . 168

7.35.3.10 Visit . 168

7.35.3.11 Visit . 168

7.35.3.12 Visit . 169

7.36 ccdvl::memorymanager::SequentialMemoryManager Class Reference 169

7.36.1 Detailed Description . 171

7.36.2 Constructor & Destructor Documentation . 171

7.36.2.1 SequentialMemoryManager . 171

7.36.3 Member Function Documentation . 171

7.36.3.1 AddData . 171

7.36.3.2 begin . 172

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

xvi CONTENTS

7.36.3.3 Clear . 172

7.36.3.4 end . 172

7.36.3.5 GetRange . 172

7.36.3.6 Init . 173

7.36.3.7 PageControlAllocate . 173

7.36.3.8 PageControlDeallocate . 173

7.36.3.9 PageControlDelete . 173

7.36.3.10 PageControlLoad . 173

7.36.3.11 PageControlUnload . 174

7.36.4 Member Data Documentation . 174

7.36.4.1 mapped_space_ . 174

7.37 ccdvl::memorymanager::SequentialMemoryManager::MappedMemory Struct Reference 174

7.37.1 Detailed Description . 175

7.37.2 Member Data Documentation . 175

7.37.2.1 dataset . 175

7.38 ccdvl::memorymanager::SequentialMemoryManagerIterator Class Reference 175

7.38.1 Detailed Description . 177

7.38.2 Constructor & Destructor Documentation . 177

7.38.2.1 SequentialMemoryManagerIterator . 177

7.38.3 Member Function Documentation . 177

7.38.3.1 Clone . 177

7.38.3.2 Equals . 177

7.38.3.3 Get . 178

7.39 ccdvl::memorymanager::StubMemoryManager Class Reference 178

7.39.1 Detailed Description . 180

7.39.2 Member Function Documentation . 180

7.39.2.1 AddData . 180

7.39.2.2 begin . 180

7.39.2.3 Clear . 181

7.39.2.4 end . 181

7.39.2.5 GetRange . 181

7.39.2.6 SwitchTo . 181

7.40 ccdvl::memorymanager::StubMemoryManagerIterator Class Reference 182

7.40.1 Detailed Description . 184

7.40.2 Constructor & Destructor Documentation . 184

7.40.2.1 StubMemoryManagerIterator . 184

7.40.3 Member Function Documentation . 184

7.40.3.1 Clone . 184

7.40.3.2 Equals . 184

7.40.3.3 Get . 184

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS xvii

7.41 ccdvl::MemoryManagerIterator Class Reference . 185

7.41.1 Detailed Description . 186

7.41.2 Constructor & Destructor Documentation . 186

7.41.2.1 MemoryManagerIterator . 186

7.41.2.2 MemoryManagerIterator . 187

7.41.2.3 MemoryManagerIterator . 187

7.41.3 Member Function Documentation . 187

7.41.3.1 operator!= . 187

7.41.3.2 operator∗ . 187

7.41.3.3 operator++ . 187

7.41.3.4 operator++ . 188

7.41.3.5 operator= . 188

7.41.3.6 operator== . 188

7.42 ccdvl::MemoryManagerIteratorInterface Class Reference . 188

7.42.1 Detailed Description . 189

7.42.2 Member Function Documentation . 189

7.42.2.1 Clone . 189

7.42.2.2 Equals . 189

7.42.2.3 Get . 190

7.43 ccdvl::MemoryManagerObserverInterface Class Reference . 190

7.43.1 Detailed Description . 191

7.43.2 Member Function Documentation . 191

7.43.2.1 MemoryManagerCleared . 191

7.43.2.2 MemoryManagerUpdate . 191

7.44 ccdvl::MessageQueue< T > Class Template Reference . 191

7.44.1 Detailed Description . 192

7.44.2 Member Function Documentation . 192

7.44.2.1 CancellationHandler . 192

7.44.2.2 GetAllMessages . 192

7.44.2.3 RemoveMessage . 193

7.44.2.4 SendMessage . 193

7.44.2.5 WaitForAllMessages . 193

7.44.2.6 WaitForMessage . 193

7.45 ccdvl::PyGroupSelectionIterator Class Reference . 193

7.45.1 Detailed Description . 194

7.45.2 Constructor & Destructor Documentation . 194

7.45.2.1 PyGroupSelectionIterator . 194

7.45.3 Member Function Documentation . 194

7.45.3.1 HasNext . 195

7.45.3.2 Next . 195

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

xviii CONTENTS

7.45.4 Member Data Documentation . 195

7.45.4.1 end_ . 195

7.46 ccdvl::PyMemoryManagerIterator Class Reference . 195

7.46.1 Detailed Description . 196

7.46.2 Constructor & Destructor Documentation . 197

7.46.2.1 PyMemoryManagerIterator . 197

7.46.3 Member Function Documentation . 197

7.46.3.1 HasNext . 197

7.46.3.2 Next . 197

7.46.4 Member Data Documentation . 197

7.46.4.1 end_ . 197

7.46.4.2 previous_ . 197

7.47 ccdvl::ReadersWriterLock< T > Class Template Reference . 197

7.47.1 Detailed Description . 199

7.47.2 Constructor & Destructor Documentation . 199

7.47.2.1 ReadersWriterLock . 199

7.47.3 Member Function Documentation . 199

7.47.3.1 AtomicReadLock . 199

7.47.3.2 AtomicWriteLock . 199

7.47.3.3 CancellationHandler . 200

7.48 ccdvl::Renderer Class Reference . 200

7.48.1 Detailed Description . 202

7.48.2 Constructor & Destructor Documentation . 202

7.48.2.1 Renderer . 202

7.48.3 Member Function Documentation . 202

7.48.3.1 Abort . 202

7.48.3.2 ClearDraw . 202

7.48.3.3 DrawAll . 203

7.48.3.4 DrawSet . 203

7.48.4 Member Data Documentation . 203

7.48.4.1 abort_ . 203

7.49 ccdvl::renderer::AggRenderer Class Reference . 203

7.49.1 Detailed Description . 205

7.49.2 Constructor & Destructor Documentation . 205

7.49.2.1 AggRenderer . 205

7.49.3 Member Function Documentation . 205

7.49.3.1 Abort . 205

7.49.3.2 ClearDraw . 206

7.49.3.3 DrawSet . 206

7.49.4 Friends And Related Function Documentation . 206

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

CONTENTS xix

7.49.4.1 AggRenderPoint . 206

7.49.5 Member Data Documentation . 206

7.49.5.1 abort_draw_ . 207

7.50 ccdvl::RendererConfig Class Reference . 207

7.50.1 Detailed Description . 208

7.50.2 Member Enumeration Documentation . 208

7.50.2.1 PointShape . 208

7.50.3 Member Function Documentation . 208

7.50.3.1 LessThan . 208

7.50.4 Member Data Documentation . 208

7.50.4.1 deviation_ . 208

7.50.4.2 deviation_color_ . 208

7.50.4.3 line_color_ . 208

7.50.4.4 line_width_ . 209

7.50.4.5 point_color_ . 209

7.50.4.6 point_shape_ . 209

7.50.4.7 point_size_ . 209

7.51 ccdvl::TaskProgressInterface Class Reference . 209

7.51.1 Detailed Description . 210

7.51.2 Member Function Documentation . 210

7.51.2.1 SetTaskProgress . 210

7.52 ccdvl::Transform2D Class Reference . 210

7.52.1 Detailed Description . 212

7.52.2 Member Enumeration Documentation . 212

7.52.2.1 FloatingpointClassification . 212

7.52.2.2 Outcome . 212

7.52.3 Constructor & Destructor Documentation . 212

7.52.3.1 Transform2D . 212

7.52.3.2 Transform2D . 213

7.52.4 Member Function Documentation . 213

7.52.4.1 CalculateBottomLeft . 213

7.52.4.2 ClassifyNumber . 213

7.52.4.3 FromGraphSpace . 213

7.52.4.4 IsDoubleInfinity . 214

7.52.4.5 IsDoubleNaN . 214

7.52.4.6 ToGraphSpace . 214

7.53 ccdvl::TypedDataSet< T > Class Template Reference . 214

7.53.1 Detailed Description . 216

7.53.2 Constructor & Destructor Documentation . 216

7.53.2.1 TypedDataSet . 216

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

xx CONTENTS

7.53.2.2 TypedDataSet . 216

7.53.2.3 TypedDataSet . 216

7.53.3 Member Function Documentation . 217

7.53.3.1 Accept . 217

7.53.3.2 GetBuffer . 217

7.53.3.3 GetTypeSize . 217

7.53.3.4 GetValue . 217

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Chapter 1

CC Data Visualization Library (CCDVL)

1.1 Introduction

The CC Data Visualization Library is a flexible library that aims for efficient graph redering. It is divided into three
primary modules each which can be found under its own namespace.

The three modules are memorymanagers, renderers and frontends. Memorymanagers handle data passed to this
library for rendering. Renderes render selected data onto image buffers for viewing. Frontends binds everything
thogether by accepting a renderer, a memorymanager and finally accepting user interaction for easy usage.

1.2 Compiling

Provided that all dependencies are met; run the following commands to compile:

cmake .

make

1.2.1 Dependencies

Required:

ccdvl::CacheController uses POSIX pthreads.

CMake or equivalent building tools.

Additionally at least one memory manager; renderer and frontend is needed.

Optional:

ccdvl::frontend::QtGraphWidget require Qt4.7 or newer.

ccdvl::renderer::AggRenderer uses the included AGG 2.4 (Anti-grain geometry) source code; which is lincensed
under a BSD lincese.

ccdvl::memorymanager::SequentialMemoryManager uses POSIX pthreads; POSIX mmap and friends for manual
page management.

Python bindings require Python, obviously.

1.3 Documentation

Regenerating documentation with Doxygen; provided that Doxygen is installed run the following commands:

2 CC Data Visualization Library (CCDVL)

cmake .

make doc

1.4 Library Usage

To use this library one instance of each module must be created, this is achived by first instantiate an appropriate
memory manager. Then running Init(), if present. Continue with a renderer and then a frontend.

Adding data for rendering can be done immediately after the memory manager has been instantiated and it should
be possible to do from a different thread while the user interface is running as the primary one. This ensures that
the GUI created by the frontend module is responsive even while loading massive amounts of data.

Usage examples can be found under src/qt_test∗ and python/examples/test∗.py for now.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Chapter 2

Todo List

Class ccdvl::AbstractDataSet
Possibly; move inlined code to a CC file.

Member ccdvl::CacheController::Remove (const GraphTileState ∗state)

Perhaps this method should return a boolean indicating if the state was destoyed or not.

Class ccdvl::frontend::QtGraphViewFrame

TODO(Max): this should be split into several classes and helper classes.

Class ccdvl::GraphTileState

3D require rotation of view. (quaternions)

Class ccdvl::Group2D

Implement proper set operations for groups.

Member ccdvl::MemoryManager::AddData (const AbstractDataSet ∗∗data)=0

Change parameter to std::vector<const AbstractDataSet∗>.

Member ccdvl::memorymanager::SequentialMemoryManager::mapped_space_

It is tempting to define SequentialMemoryManagerIterator a friend class, Alternatively provide the needed func-
tionality as methods which is already true for page control methods.

4 Todo List

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Chapter 3

Namespace Index

3.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

ccdvl . 13
ccdvl::frontend . 15
ccdvl::memorymanager . 22
ccdvl::renderer . 22

6 Namespace Index

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Chapter 4

Class Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ccdvl::AbstractDataSet . 23
ccdvl::TypedDataSet< T > . 214

ccdvl::AbstractGroup . 25
ccdvl::Group2D . 152

ccdvl::AsynchronousResource< T > . 28
ccdvl::CacheObserverInterface . 38

ccdvl::frontend::QtGraphViewFrame . 64
ccdvl::DataSetVisitorInterface . 39

ccdvl::memorymanager::CloneDataSet . 165
ccdvl::frontend::QtBaseTool . 42

ccdvl::frontend::QtLassoSelectTool . 90
ccdvl::frontend::QtPanTool . 95
ccdvl::frontend::QtPointSelectTool . 98
ccdvl::frontend::QtRectangleSelectTool . 104
ccdvl::frontend::QtZoomTool . 138

ccdvl::frontend::QtCoordinateAndAxesInfoFrame . 49
ccdvl::frontend::QtGraphImageTile . 51
ccdvl::frontend::QtGraphNeighbourhoodFrame . 54
ccdvl::frontend::QtGraphSettings . 57
ccdvl::frontend::QtGraphSettings::AxesProperties . 61
ccdvl::frontend::QtGraphSettings::GridProperties . 62
ccdvl::frontend::QtGraphSettings::ZoomSettings . 63
ccdvl::frontend::QtGraphWidget . 86
ccdvl::frontend::QtSettingsDialog . 108
ccdvl::frontend::QtToolbarFrame . 125
ccdvl::frontend::QtToolGraphicsView . 128
ccdvl::GraphState . 145

ccdvl::GraphSceneState . 143
ccdvl::GraphTileState . 149

ccdvl::GraphTile . 147
ccdvl::GraphTileState::functor_compare . 151
ccdvl::GroupSelectionIterator . 156
ccdvl::List2D< type > . 159
ccdvl::MemoryManager . 160

ccdvl::memorymanager::SequentialMemoryManager . 169
ccdvl::memorymanager::StubMemoryManager . 178

8 Class Index

ccdvl::memorymanager::SequentialMemoryManager::MappedMemory 174
ccdvl::MemoryManagerIterator . 185

ccdvl::PyMemoryManagerIterator . 195

ccdvl::MemoryManagerIteratorInterface . 188

ccdvl::memorymanager::SequentialMemoryManagerIterator . 175
ccdvl::memorymanager::StubMemoryManagerIterator . 182

ccdvl::MemoryManagerObserverInterface . 190

ccdvl::CacheController . 31

ccdvl::MessageQueue< T > . 191
ccdvl::PyGroupSelectionIterator . 193
ccdvl::ReadersWriterLock< T > . 197
ccdvl::Renderer . 200

ccdvl::renderer::AggRenderer . 203

ccdvl::RendererConfig . 207
ccdvl::TaskProgressInterface . 209

ccdvl::frontend::QtStatusBarFrame . 122

ccdvl::Transform2D . 210

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ccdvl::AbstractDataSet
Abstract dataset which can hold data of almost any numeric type 23

ccdvl::AbstractGroup
Generalization of hierarchical group selections . 25

ccdvl::AsynchronousResource< T >
Synchronization wrapper class which allows multiple readers 28

ccdvl::CacheController
A cache for graph image tiles . 31

ccdvl::CacheObserverInterface
Observer for CacheController changes of active graph . 38

ccdvl::DataSetVisitorInterface
Visitor interface for visitors accessing subtypes of AbstractDataSet 39

ccdvl::frontend::QtBaseTool
A base class for tools providing basic functionality and event handling functions to be overridden
by subclasses . 42

ccdvl::frontend::QtCoordinateAndAxesInfoFrame
The panel containing information and controls for displaying the x/y-coordinate for mouse over
and ranges in the graph . 49

ccdvl::frontend::QtGraphImageTile
A class representing a graph image tile; a QPixmap and a flag that keeps track of if the graph
image tile has been drawn onto the graph image . 51

ccdvl::frontend::QtGraphNeighbourhoodFrame
Shows a small overview image of the neighbourhood area of the current graph view with a
rectangle outlining the current view . 54

ccdvl::frontend::QtGraphSettings
Holds the configurable settings related to the Qt frontend, with public access to the setting mem-
ber variables, rather than using mutators, for convenience . 57

ccdvl::frontend::QtGraphSettings::AxesProperties
A struct to hold the axes properties . 61

ccdvl::frontend::QtGraphSettings::GridProperties
A struct to hold the grid properties . 62

ccdvl::frontend::QtGraphSettings::ZoomSettings
A struct to hold the zoom settings; x and y zoom steps, zoom step factors and mouse wheel
zoom step factors . 63

ccdvl::frontend::QtGraphViewFrame
A frame with the rendered plot graphics and axes . 64

http://doc.qt.nokia.com/4.7/qpixmap.html

10 Class Index

ccdvl::frontend::QtGraphWidget
The main widget for the graph GUI, responsible for creating, displaying and updating the GUI
components . 86

ccdvl::frontend::QtLassoSelectTool
Provides a reusable lasso select rubber band for the graphics scene of the given QtToolGraphics-
View . 90

ccdvl::frontend::QtPanTool
A small reusable pan tool class that pans in a QtToolGraphicsView 95

ccdvl::frontend::QtPointSelectTool
A reusable point selection tool class that selects "single points" in a QtToolGraphicsView . . . 98

ccdvl::frontend::QtRectangleSelectTool
A rectangle selection rubberband that keeps track of the start position to make it simpler to set
new geometry . 104

ccdvl::frontend::QtSettingsDialog
Graph view settings configuration dialog . 108

ccdvl::frontend::QtStatusBarFrame
A status bar displaying mouse-over information, the progress bar and the settings button . . . 122

ccdvl::frontend::QtToolbarFrame
The toolbar, containing the tools and tool buttons . 125

ccdvl::frontend::QtToolGraphicsView
A graphics view that handles mouse button, wheel and key events according to the currently
selected tool in the toolbar frame . 128

ccdvl::frontend::QtZoomTool
A small reusable zoom tool class that zooms in or out in a QtToolGraphicsView 138

ccdvl::GraphSceneState
A class that keeps track of a two dimensional graph scene state, i.e. the values associated with
a whole graph image composed of graph image tiles . 143

ccdvl::GraphState
A class that keeps track of a graph scene state, i.e. the values associated with a whole graph
image composed of graph image tiles . 145

ccdvl::GraphTile
Structure which composes a rendered graph tile . 147

ccdvl::GraphTileState
Holds configuration for rendering a graph tile . 149

ccdvl::GraphTileState::functor_compare
Functor to compare graph tile states . 151

ccdvl::Group2D
A 2D group selection of graph space; or simply a polygon . 152

ccdvl::GroupSelectionIterator
Generic group selection iterator which fetches points selected by a group 156

ccdvl::List2D< type >
A two dimensional standard C++ list template . 159

ccdvl::MemoryManager
Abstract class for arbitrary memory managers . 160

ccdvl::memorymanager::CloneDataSet
AbstractDataSet clone allocator for SequentialMemoryManager 165

ccdvl::memorymanager::SequentialMemoryManager
A regular memory manager which stores data to be accessed in sequence 169

ccdvl::memorymanager::SequentialMemoryManager::MappedMemory
Memory map structure, including matching datasets . 174

ccdvl::memorymanager::SequentialMemoryManagerIterator
An iterator used to iterate a SequentialMemoryManager . 175

ccdvl::memorymanager::StubMemoryManager
A MemoryManager which do not support add or clear . 178

ccdvl::memorymanager::StubMemoryManagerIterator
An iterator used it iterate data in a StubMemoryManager . 182

ccdvl::MemoryManagerIterator
Wrapper class used to create std::iterator like objects . 185

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

5.1 Class List 11

ccdvl::MemoryManagerIteratorInterface
A simple iterator interface for iterating various memory managers 188

ccdvl::MemoryManagerObserverInterface
Observer for MemoryManager dataset update events . 190

ccdvl::MessageQueue< T >
Simple message passing queue . 191

ccdvl::PyGroupSelectionIterator
Iterator used to wrap GroupSelectionIterator and provide Python like iterator methods 193

ccdvl::PyMemoryManagerIterator
Iterator used to wrap MemoryManagerIterator and provide Python like iterator methods 195

ccdvl::ReadersWriterLock< T >
Synchronization wrapper class which allows multiple readers 197

ccdvl::Renderer
Abstract class for renderers used to render a graph to image slices 200

ccdvl::renderer::AggRenderer
A simple 2D software renderer using Anti-grain Geometry (AGG) 203

ccdvl::RendererConfig
A class that holds group specific rendering configuration . 207

ccdvl::TaskProgressInterface
A simple interface that provides a function for sending information to a progress bar or similar
type of progress display . 209

ccdvl::Transform2D
Simple point transformation class for two dimensional data 210

ccdvl::TypedDataSet< T >
AbstractDataSet container . 214

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

12 Class Index

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Chapter 6

Namespace Documentation

6.1 ccdvl Namespace Reference

Namespaces

• namespace frontend
• namespace memorymanager
• namespace renderer

Classes

• class AbstractGroup

Generalization of hierarchical group selections.

• class CacheController

A cache for graph image tiles.

• class CacheObserverInterface

Observer for CacheController changes of active graph.

• class AbstractDataSet

Abstract dataset which can hold data of almost any numeric type.

• class DataSetVisitorInterface

Visitor interface for visitors accessing subtypes of AbstractDataSet.

• class TypedDataSet

AbstractDataSet container.

• class GraphSceneState

A class that keeps track of a two dimensional graph scene state, i.e. the values associated with a whole graph image
composed of graph image tiles.

• class GraphState

A class that keeps track of a graph scene state, i.e. the values associated with a whole graph image composed of
graph image tiles.

• class GraphTile

Structure which composes a rendered graph tile.

• class GraphTileState

Holds configuration for rendering a graph tile.

• class Group2D

A 2D group selection of graph space; or simply a polygon.

• class GroupSelectionIterator

Generic group selection iterator which fetches points selected by a group.

• class List2D

14 Namespace Documentation

A two dimensional standard C++ list template.

• class MemoryManager

Abstract class for arbitrary memory managers.

• class MemoryManagerIteratorInterface

A simple iterator interface for iterating various memory managers.

• class MemoryManagerIterator

Wrapper class used to create std::iterator like objects.

• class MemoryManagerObserverInterface

Observer for MemoryManager dataset update events.

• class Renderer

Abstract class for renderers used to render a graph to image slices.

• class RendererConfig

A class that holds group specific rendering configuration.

• class AsynchronousResource

Synchronization wrapper class which allows multiple readers.

• class MessageQueue

Simple message passing queue.

• class ReadersWriterLock

Synchronization wrapper class which allows multiple readers.

• class TaskProgressInterface

A simple interface that provides a function for sending information to a progress bar or similar type of progress display.

• class Transform2D

Simple point transformation class for two dimensional data.

• class PyGroupSelectionIterator

Iterator used to wrap GroupSelectionIterator and provide Python like iterator methods.

• class PyMemoryManagerIterator

Iterator used to wrap MemoryManagerIterator and provide Python like iterator methods.

Typedefs

• typedef std::map< const
GraphTileState ∗, GraphTile
∗, GraphTileState::functor_compare >
::iterator CacheIterator

An iterator type to iterate cached tiles.

• typedef double GraphDouble

Floating point type used internally for graph coordinates.

• typedef std::pair< GraphDouble,
GraphDouble > GraphPair

A pair of graph coordinates representing a double precision point.

• typedef std::vector< GraphPair > GraphPairVector

A series of graph points represented as a vector of pairs.

6.1.1 Detailed Description

The CCDVL namespace, everything related to this library can be found underneath this name.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

6.2 ccdvl::frontend Namespace Reference 15

6.2 ccdvl::frontend Namespace Reference

Classes

• class QtBaseTool

A base class for tools providing basic functionality and event handling functions to be overridden by subclasses.

• class QtCoordinateAndAxesInfoFrame

The panel containing information and controls for displaying the x/y-coordinate for mouse over and ranges in the
graph.

• class QtGraphImageTile

A class representing a graph image tile; a QPixmap and a flag that keeps track of if the graph image tile has been
drawn onto the graph image.

• class QtGraphNeighbourhoodFrame

Shows a small overview image of the neighbourhood area of the current graph view with a rectangle outlining the
current view.

• class QtGraphSettings

Holds the configurable settings related to the Qt frontend, with public access to the setting member variables, rather
than using mutators, for convenience.

• class QtGraphViewFrame

A frame with the rendered plot graphics and axes.

• class QtGraphWidget

The main widget for the graph GUI, responsible for creating, displaying and updating the GUI components.

• class QtLassoSelectTool

Provides a reusable lasso select rubber band for the graphics scene of the given QtToolGraphicsView.

• class QtPanTool

A small reusable pan tool class that pans in a QtToolGraphicsView.

• class QtPointSelectTool

A reusable point selection tool class that selects "single points" in a QtToolGraphicsView.

• class QtRectangleSelectTool

A rectangle selection rubberband that keeps track of the start position to make it simpler to set new geometry.

• class QtSettingsDialog

Graph view settings configuration dialog.

• class QtStatusBarFrame

A status bar displaying mouse-over information, the progress bar and the settings button.

• class QtToolGraphicsView

A graphics view that handles mouse button, wheel and key events according to the currently selected tool in the
toolbar frame.

• class QtToolbarFrame

The toolbar, containing the tools and tool buttons.

• class QtZoomTool

A small reusable zoom tool class that zooms in or out in a QtToolGraphicsView.

Typedefs

• typedef int SceneInt

Scene coordinate integer.

• typedef int ViewInt

View coordinate integer.

• typedef int GraphInt

Graph coordinate integer.

• typedef double SceneDouble

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://doc.qt.nokia.com/4.7/qpixmap.html

16 Namespace Documentation

Scene coordinate floating point value.

• typedef double ViewDouble

View coordinate floating point value.

• typedef QPoint ScenePoint

Scene coordinate (integer) point.

• typedef QPoint ViewPoint

View coordinate (integer) point.

• typedef QPoint GraphPoint

Graph coordinate (integer) point.

• typedef QPointF ScenePointF

Scene coordinate (floating point) point.

• typedef QPointF ViewPointF

View coordinate (floating point) point.

• typedef QPointF GraphPointF

Graph coordinate (integer) point.

• typedef QPolygon ScenePolygon

Scene coordinate (integer) polygon.

• typedef QPolygon ViewPolygon

View coordinate (integer) polygon.

• typedef QPolygon GraphPolygon

Graph coordinate (integer) polygon.

• typedef QPolygonF ScenePolygonF

Scene coordinate (floating point) polygon.

• typedef QPolygonF ViewPolygonF

View coordinate (floating point) polygon.

• typedef QPolygonF GraphPolygonF

Graph coordinate (floating point) polygon.

• typedef QRect SceneRect

Scene coordinate (integer) rectangle.

• typedef QRect ViewRect

View coordinate (integer) rectangle.

• typedef QRect GraphRect

Graph coordinate (integer) rectangle.

• typedef QRectF SceneRectF

Scene coordinate (floating point) rectangle.

• typedef QRectF ViewRectF

View coordinate (floating point) rectangle.

• typedef QRectF GraphRectF

Graph coordinate (floating point) rectangle.

• typedef QSize SceneSize

Scene coordinate (integer) size object.

• typedef QSize ViewSize

View coordinate (integer) size object.

• typedef QSize GraphSize

Graph coordinate (integer) size object.

• typedef QSizeF SceneSizeF

Scene coordinate (floating point) size object.

• typedef QSizeF ViewSizeF

View coordinate (floating point) size object.

• typedef QSizeF GraphSizeF

Graph coordinate (floating point) size object.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

6.2 ccdvl::frontend Namespace Reference 17

• typedef std::list
< QtGraphImageTile > GraphImageTileList

A standard list of graph image tiles.

• typedef List2D< QtGraphImageTile > GraphImageTile2DList

A two-dimensional list of graph image tiles.

6.2.1 Detailed Description

Namespace collection of GUI frontends and related components.

6.2.2 Typedef Documentation

6.2.2.1 typedef int ccdvl::frontend::GraphInt

Graph coordinate integer.

See also

ccdvl::GraphDouble, GraphPoint, GraphPointF, GraphPolygon, GraphPolygonF, GraphRect, GraphRectF,
GraphSize and GraphSizeF.

6.2.2.2 typedef QPoint ccdvl::frontend::GraphPoint

Graph coordinate (integer) point.

See also

GraphInt, ccdvl::GraphDouble, GraphPointF, GraphPolygon, GraphPolygonF, GraphRect, GraphRectF, Graph-
Size and GraphSizeF.

6.2.2.3 typedef QPointF ccdvl::frontend::GraphPointF

Graph coordinate (integer) point.

See also

GraphInt, ccdvl::GraphDouble, GraphPoint, GraphPolygon, GraphPolygonF, GraphRect, GraphRectF, Graph-
Size and GraphSizeF.

6.2.2.4 typedef QPolygon ccdvl::frontend::GraphPolygon

Graph coordinate (integer) polygon.

See also

GraphInt, ccdvl::GraphDouble, GraphPoint, GraphPointF, GraphPolygonF, GraphRect, GraphRectF, GraphSize
and GraphSizeF.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

18 Namespace Documentation

6.2.2.5 typedef QPolygonF ccdvl::frontend::GraphPolygonF

Graph coordinate (floating point) polygon.

See also

GraphInt, ccdvl::GraphDouble, GraphPoint, GraphPointF, GraphPolygon, GraphRect, GraphRectF, GraphSize
and GraphSizeF.

6.2.2.6 typedef QRect ccdvl::frontend::GraphRect

Graph coordinate (integer) rectangle.

See also

GraphInt, ccdvl::GraphDouble, GraphPoint, GraphPointF, GraphPolygon, GraphPolygonF, GraphRectF, Graph-
Size and GraphSizeF.

6.2.2.7 typedef QRectF ccdvl::frontend::GraphRectF

Graph coordinate (floating point) rectangle.

See also

GraphInt, ccdvl::GraphDouble, GraphPoint, GraphPointF, GraphPolygon, GraphPolygonF, GraphRect, Graph-
Size and GraphSizeF.

6.2.2.8 typedef QSize ccdvl::frontend::GraphSize

Graph coordinate (integer) size object.

See also

GraphInt, ccdvl::GraphDouble, GraphPoint, GraphPointF, GraphPolygon, GraphPolygonF, GraphRect, Graph-
RectF and GraphSizeF.

6.2.2.9 typedef QSizeF ccdvl::frontend::GraphSizeF

Graph coordinate (floating point) size object.

See also

GraphInt, ccdvl::GraphDouble, GraphPoint, GraphPointF, GraphPolygon, GraphPolygonF, GraphRect, Graph-
RectF and GraphSize.

6.2.2.10 typedef double ccdvl::frontend::SceneDouble

Scene coordinate floating point value.

See also

SceneInt, ScenePoint, ScenePointF, ScenePolygon, ScenePolygonF, SceneRect, SceneRectF, SceneSize and
SceneSizeF.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

6.2 ccdvl::frontend Namespace Reference 19

6.2.2.11 typedef int ccdvl::frontend::SceneInt

Scene coordinate integer.

See also

SceneDouble, ScenePoint, ScenePointF, ScenePolygon, ScenePolygonF, SceneRect, SceneRectF, Scene-
Size and SceneSizeF.

6.2.2.12 typedef QPoint ccdvl::frontend::ScenePoint

Scene coordinate (integer) point.

See also

SceneInt, SceneDouble, ScenePointF, ScenePolygon, ScenePolygonF, SceneRect, SceneRectF, SceneSize
and SceneSizeF.

6.2.2.13 typedef QPointF ccdvl::frontend::ScenePointF

Scene coordinate (floating point) point.

See also

SceneInt, SceneDouble, ScenePoint, ScenePolygon, ScenePolygonF, SceneRect, SceneRectF, SceneSize
and SceneSizeF.

6.2.2.14 typedef QPolygon ccdvl::frontend::ScenePolygon

Scene coordinate (integer) polygon.

See also

SceneInt, SceneDouble, ScenePoint, ScenePointF, ScenePolygonF, SceneRect, SceneRectF, SceneSize and
SceneSizeF.

6.2.2.15 typedef QPolygonF ccdvl::frontend::ScenePolygonF

Scene coordinate (floating point) polygon.

See also

SceneInt, SceneDouble, ScenePoint, ScenePointF, ScenePolygon, SceneRect, SceneRectF, SceneSize and
SceneSizeF.

6.2.2.16 typedef QRect ccdvl::frontend::SceneRect

Scene coordinate (integer) rectangle.

See also

SceneInt, SceneDouble, ScenePoint, ScenePointF, ScenePolygon, ScenePolygonF, SceneRectF, SceneSize
and SceneSizeF.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

20 Namespace Documentation

6.2.2.17 typedef QRectF ccdvl::frontend::SceneRectF

Scene coordinate (floating point) rectangle.

See also

SceneInt, SceneDouble, ScenePoint, ScenePointF, ScenePolygon, ScenePolygonF, SceneRect, SceneSize
and SceneSizeF.

6.2.2.18 typedef QSize ccdvl::frontend::SceneSize

Scene coordinate (integer) size object.

See also

SceneInt, SceneDouble, ScenePoint, ScenePointF, ScenePolygon, ScenePolygonF, SceneRect, SceneRectF
and SceneSizeF.

6.2.2.19 typedef QSizeF ccdvl::frontend::SceneSizeF

Scene coordinate (floating point) size object.

See also

SceneInt, SceneDouble, ScenePoint, ScenePointF, ScenePolygon, ScenePolygonF, SceneRect, SceneRectF
and SceneSize.

6.2.2.20 typedef double ccdvl::frontend::ViewDouble

View coordinate floating point value.

See also

ViewInt, ViewPoint, ViewPointF, ViewPolygon, ViewPolygonF, ViewRect, ViewRectF, ViewSize and ViewSizeF.

6.2.2.21 typedef int ccdvl::frontend::ViewInt

View coordinate integer.

See also

ViewDouble, ViewPoint, ViewPointF, ViewPolygon, ViewPolygonF, ViewRect, ViewRectF, ViewSize and View-
SizeF.

6.2.2.22 typedef QPoint ccdvl::frontend::ViewPoint

View coordinate (integer) point.

See also

ViewInt, ViewDouble, ViewPointF, ViewPolygon, ViewPolygonF, ViewRect, ViewRectF, ViewSize and View-
SizeF.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

6.2 ccdvl::frontend Namespace Reference 21

6.2.2.23 typedef QPointF ccdvl::frontend::ViewPointF

View coordinate (floating point) point.

See also

ViewInt, ViewDouble, ViewPoint, ViewPolygon, ViewPolygonF, ViewRect, ViewRectF, ViewSize and ViewSize-
F.

6.2.2.24 typedef QPolygon ccdvl::frontend::ViewPolygon

View coordinate (integer) polygon.

See also

ViewInt, ViewDouble, ViewPoint, ViewPointF, ViewPolygonF, ViewRect, ViewRectF, ViewSize and ViewSizeF.

6.2.2.25 typedef QPolygonF ccdvl::frontend::ViewPolygonF

View coordinate (floating point) polygon.

See also

ViewInt, ViewDouble, ViewPoint, ViewPointF, ViewPolygon, ViewRect, ViewRectF, ViewSize and ViewSizeF.

6.2.2.26 typedef QRect ccdvl::frontend::ViewRect

View coordinate (integer) rectangle.

See also

ViewInt, ViewDouble, ViewPoint, ViewPointF, ViewPolygon, ViewPolygonF, ViewRectF, ViewSize and View-
SizeF.

6.2.2.27 typedef QRectF ccdvl::frontend::ViewRectF

View coordinate (floating point) rectangle.

See also

ViewInt, ViewDouble, ViewPoint, ViewPointF, ViewPolygon, ViewPolygonF, ViewRect, ViewSize and ViewSize-
F.

6.2.2.28 typedef QSize ccdvl::frontend::ViewSize

View coordinate (integer) size object.

See also

ViewInt, ViewDouble, ViewPoint, ViewPointF, ViewPolygon, ViewPolygonF, ViewRect, ViewRectF and View-
SizeF.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

22 Namespace Documentation

6.2.2.29 typedef QSizeF ccdvl::frontend::ViewSizeF

View coordinate (floating point) size object.

See also

ViewInt, ViewDouble, ViewPoint, ViewPointF, ViewPolygon, ViewPolygonF, ViewRect, ViewRectF and View-
Size.

6.3 ccdvl::memorymanager Namespace Reference

Classes

• class CloneDataSet

AbstractDataSet clone allocator for SequentialMemoryManager.

• class SequentialMemoryManager

A regular memory manager which stores data to be accessed in sequence.

• class SequentialMemoryManagerIterator

An iterator used to iterate a SequentialMemoryManager.

• class StubMemoryManager

A MemoryManager which do not support add or clear.

• class StubMemoryManagerIterator

An iterator used it iterate data in a StubMemoryManager.

6.3.1 Detailed Description

Namespace collection of memory manager backends.

6.4 ccdvl::renderer Namespace Reference

Classes

• class AggRenderer

A simple 2D software renderer using Anti-grain Geometry (AGG).

Typedefs

• typedef std::map< const
AbstractGroup ∗, uint8_t ∗ >
::iterator GroupImageMapIterator

Group image iterator type.

6.4.1 Detailed Description

Namespace collection of renderer backends.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Chapter 7

Class Documentation

7.1 ccdvl::AbstractDataSet Class Reference

Abstract dataset which can hold data of almost any numeric type.

#include <abstract_data_set.h>

Inheritance diagram for ccdvl::AbstractDataSet:

ccdvl::AbstractDataSet

ccdvl::TypedDataSet< T >

Public Member Functions

• AbstractDataSet (size_t size)

Initialize constants for subclasses.

• virtual ∼AbstractDataSet ()

Destroys the object and frees any allocated resources.

• virtual void Accept (DataSetVisitorInterface ∗v)=0

Visitor accept method.

• virtual double GetValue (size_t index) const =0

Fetches a value as a double floating point.

• virtual size_t GetTypeSize () const =0

Get the type size in bytes.

• size_t GetCount () const

Get the number of elements in this set.

• size_t GetDataSize () const

Get the size of all elements.

24 Class Documentation

Protected Attributes

• const size_t size_

Number of elements in set.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (AbstractDataSet)

7.1.1 Detailed Description

Abstract dataset which can hold data of almost any numeric type.

Todo Possibly; move inlined code to a CC file.

7.1.2 Constructor & Destructor Documentation

7.1.2.1 ccdvl::AbstractDataSet::AbstractDataSet (size t size) [inline]

Initialize constants for subclasses.

Parameters
size The number of elements in a this dataset.

7.1.3 Member Function Documentation

7.1.3.1 virtual void ccdvl::AbstractDataSet::Accept (DataSetVisitorInterface ∗ v) [pure virtual]

Visitor accept method.

Parameters
in v Visitor to use.

Implemented in ccdvl::TypedDataSet< T >.

7.1.3.2 size t ccdvl::AbstractDataSet::GetCount () const [inline]

Get the number of elements in this set.

Returns

Number of elements.

7.1.3.3 size t ccdvl::AbstractDataSet::GetDataSize () const [inline]

Get the size of all elements.

Returns

Size of all elements in set.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.2 ccdvl::AbstractGroup Class Reference 25

Note

This doesn’t tell how much space is allocated for this dataset, only how much it uses. However the memory
manager used should know how much space was allocated for this dataset.

7.1.3.4 virtual size t ccdvl::AbstractDataSet::GetTypeSize () const [pure virtual]

Get the type size in bytes.

Returns

Number of bytes.

Implemented in ccdvl::TypedDataSet< T >.

7.1.3.5 virtual double ccdvl::AbstractDataSet::GetValue (size t index) const [pure virtual]

Fetches a value as a double floating point.

Parameters
index Index of the value to get.

Returns

The value at the provided index as a double floating point.

Implemented in ccdvl::TypedDataSet< T >.

The documentation for this class was generated from the following file:

• include/data_set/abstract_data_set.h

7.2 ccdvl::AbstractGroup Class Reference

Generalization of hierarchical group selections.

#include <abstract_group.h>

Inheritance diagram for ccdvl::AbstractGroup:

ccdvl::AbstractGroup

ccdvl::Group2D

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

26 Class Documentation

Collaboration diagram for ccdvl::AbstractGroup:

ccdvl::AbstractGroup

std::string

 name_

std::basic_string<
 char >

ccdvl::RendererConfig

 render_settings_

Public Types

• typedef std::vector< GraphDouble > GraphPoint

Datatype representing a single data point.

Public Member Functions

• AbstractGroup (int8_t dimensions)

Initialize constants for subclasses.

• virtual ∼AbstractGroup ()

Destroys the object and frees any allocated resources.

• virtual bool PointInGroup (const GraphPoint &point) const =0

Test if a point is within/selected by this group.

• virtual void GetBoundingBox (double ∗box) const =0

Compute selection polygon bounding box.

• virtual const std::list< const
AbstractGroup ∗ > & GetLeafs () const =0

Get the list of leaf group nodes.

• GroupSelectionIterator begin (MemoryManager ∗memorymanager)

Get an iterator returning points selected by this group from a specific memory manager.

• GroupSelectionIterator end (MemoryManager ∗memorymanager)

Get an iterator pointing past the end of points selected by this group from a specific memory manager.

Public Attributes

• RendererConfig render_settings_

Specific render settings for points in this group.

• bool show_

Display this group.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.2 ccdvl::AbstractGroup Class Reference 27

• std::string name_

Group name.

• const int8_t dimensions_

The number of dimensions.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (AbstractGroup)

7.2.1 Detailed Description

Generalization of hierarchical group selections.

7.2.2 Constructor & Destructor Documentation

7.2.2.1 ccdvl::AbstractGroup::AbstractGroup (int8 t dimensions) [explicit]

Initialize constants for subclasses.

Parameters
dimensions The number of dimensions. Must be positive and larger than zero.

7.2.3 Member Function Documentation

7.2.3.1 GroupSelectionIterator ccdvl::AbstractGroup::begin (MemoryManager ∗ memorymanager)

Get an iterator returning points selected by this group from a specific memory manager.

Parameters
in memorymanager Memory manager containing interesting data.

Returns

Memory manager iterator for this selection.

7.2.3.2 GroupSelectionIterator ccdvl::AbstractGroup::end (MemoryManager ∗ memorymanager)

Get an iterator pointing past the end of points selected by this group from a specific memory manager.

Parameters
in memorymanager Memory manager containing interesting data.

Returns

Memory manager iterator past the end of points.

7.2.3.3 virtual void ccdvl::AbstractGroup::GetBoundingBox (double ∗ box) const [pure virtual]

Compute selection polygon bounding box.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

28 Class Documentation

Parameters
out box The polygon bounding box. Array pointer given as x_start, y_start, ..., k_start,

x_end, y_end, ..., k_end
So its length is equal to dimensions_ times two.

Implemented in ccdvl::Group2D.

7.2.3.4 virtual const std::list<const AbstractGroup∗>& ccdvl::AbstractGroup::GetLeafs () const [pure
virtual]

Get the list of leaf group nodes.

Returns

The std::list of leafs.

Implemented in ccdvl::Group2D.

7.2.3.5 virtual bool ccdvl::AbstractGroup::PointInGroup (const GraphPoint & point) const [pure virtual]

Test if a point is within/selected by this group.

Parameters
in point A point of dimensions_ dimensions to test.

Returns

True iff the point is within/selected by this group.

Implemented in ccdvl::Group2D.

7.2.4 Member Data Documentation

7.2.4.1 bool ccdvl::AbstractGroup::show

Display this group.

This must be respected by the frontend when displaying the graph.

Note

Any renderer will still render the image buffer for this group. regardless of this setting.

The documentation for this class was generated from the following files:

• include/abstract_group.h
• src/abstract_group.cc

7.3 ccdvl::AsynchronousResource< T > Class Template Reference

Synchronization wrapper class which allows multiple readers.

#include <asynchronous_resource.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.3 ccdvl::AsynchronousResource< T > Class Template Reference 29

Collaboration diagram for ccdvl::AsynchronousResource< T >:

ccdvl::AsynchronousResource< T >

T

 resource_

Public Member Functions

• AsynchronousResource (T resource)

Initializes a new asynchronous resource.

• virtual ∼AsynchronousResource ()

Destroys the object and frees any allocated resources.

• const T & GetResource ()

Get wrapped resource for read access.

• T & AtomicWriteLock ()

Obtain exclusive write for wrapped resource.

• void AtomicWriteUnlock ()

Releases exclusive write access to wrapped resource previously obtained with AtomicWriteLock().

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (AsynchronousResource)

Static Private Member Functions

• static void CancellationHandler (void ∗mutex)

Cancellation handler.

Private Attributes

• T resource_

Protected resource.

• int32_t writer_count_

Number of writers waiting for, or accessing resource.

• pthread_mutex_t resource_mutex_

Resource mutex.

• pthread_cond_t writers_waiting_cond_

Writers wait on this condition.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

30 Class Documentation

7.3.1 Detailed Description

template<typename T>class ccdvl::AsynchronousResource< T >

Synchronization wrapper class which allows multiple readers.

This class wraps a resource and allows free read access while only one writer access the resource.

Template Parameters

T The type to wrap.

Note

It is strongly advised to avoid any kind of complex datatype which may change structure on write as this will be
very confusing to maintain. Rule of thumb, POD types only. Arrays are ok while lists are not.

7.3.2 Constructor & Destructor Documentation

7.3.2.1 template<typename T > ccdvl::AsynchronousResource< T >::AsynchronousResource (T resource)
[inline], [explicit]

Initializes a new asynchronous resource.

Parameters
resource The resource to wrap.

7.3.3 Member Function Documentation

7.3.3.1 template<typename T > T& ccdvl::AsynchronousResource< T >::AtomicWriteLock () [inline]

Obtain exclusive write for wrapped resource.

This guarantee that no other writer uses the wrapped resource. Blocks until exclusive write access is obtained. This
method is also a cancellation point.

Returns

The wrapped resource.

7.3.3.2 template<typename T > static void ccdvl::AsynchronousResource< T >::CancellationHandler (void ∗ mutex)
[inline], [static], [private]

Cancellation handler.

Unlocks mutex.

Parameters
in mutex Mutex to realese on cancel.

7.3.3.3 template<typename T > const T& ccdvl::AsynchronousResource< T >::GetResource () [inline]

Get wrapped resource for read access.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.4 ccdvl::CacheController Class Reference 31

Returns

Wrapped resource.

The documentation for this class was generated from the following file:

• include/synchronization/asynchronous_resource.h

7.4 ccdvl::CacheController Class Reference

A cache for graph image tiles.

#include <cache_controller.h>

Inheritance diagram for ccdvl::CacheController:

ccdvl::CacheController

ccdvl::MemoryManagerObserver
Interface

Collaboration diagram for ccdvl::CacheController:

ccdvl::CacheController

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements std::list< CacheObserver
Interface * > observers_

ccdvl::CacheObserverInterface elements

ccdvl::Renderer renderer_ccdvl::MemoryManager memory_manager_
 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile elements

std::map< const Abstract
Group *, uint8_t * > group_image_buffers

ccdvl::AbstractGroup

 keys

std::list< const Abstract
Group * >

 elements
std::map< const Abstract
Group *, RendererConfig >

 keysstd::string name_std::basic_string<
 char >

ccdvl::RendererConfig

 render_settings_ ccdvl::GraphTileState

 render_settings_

 elements

 keysccdvl::GraphState

 groups_

 group_render_settings_

Public Types

• enum CacheState { kInvalid = -1, kNotCached, kInProgress, kCached }

Enumeration of tile cache statuses.

Public Member Functions

• CacheController (Renderer ∗renderer, int32_t cache_size)

Cache constructor.

• ∼CacheController ()

Destroys the object and frees any allocated resources.

• virtual void MemoryManagerUpdate (MemoryManager &callee, const AbstractDataSet ∗∗new_data)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

32 Class Documentation

Update callback when more data is added.

• virtual void MemoryManagerCleared (MemoryManager &callee)

Update callback when a MemoryManager is cleared.

• void AddObserver (CacheObserverInterface ∗observer)

Adds an observer for changes to the active graph.

• void SetMaxCacheSize (int32_t cache_size)

Sets the number of tiles to cache.

• int32_t GetMaxCacheSize ()

Get the number of tiles to cache.

• size_t GetMemoryUsage ()

Get memory used by cached objects.

• bool StopRenderer ()

Stop renderer.

• void Clear ()

Attepts to remove all graph tiles.

• CacheState GraphTileStatus (const GraphTileState ∗state)

Check status of graph tile state.

• GraphTile ∗ GetGraphTile (const GraphTileState ∗state)

Request a tile from graph tile state.

Public Attributes

• const int8_t dimensions_

Number of dimensions supported.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (CacheController)

• void Enter ()

Internal entry method for new threads.

• void NotifyObservers (CacheObserverInterface::CacheEvent reason)

Notifies all observers.

• void FlushCache (size_t count)

Removes a number of cached states, starting with the oldest.

• void Remove (const GraphTileState ∗state)

Attempt to remove and free a single graph tile state.

• void RemoveAll (bool unsafe)

Removes all cached states.

Static Private Member Functions

• static void ∗ CacheControllerEnter (void ∗cachecontroller)

Internal start method for new threads.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.4 ccdvl::CacheController Class Reference 33

Private Attributes

• Renderer ∗ renderer_

Renderer used to render graph image slices.

• int32_t cache_size_

Maximum number of cached graph states.

• bool renderer_canceled_

True iff rendering is cancelled.

• pthread_t rendering_thread_

Rendering thread.

• pthread_mutex_t cache_mutex_

Cache mutex.

• std::map< const GraphTileState
∗, GraphTile
∗, GraphTileState::functor_compare > cache_

Tile cache.

• MessageQueue< std::pair< const
GraphTileState ∗, GraphTile ∗ > > message_queue_

Message queue of tiles to render.

• std::list
< CacheObserverInterface ∗ > observers_

List of registered observers.

7.4.1 Detailed Description

A cache for graph image tiles.

This class also automatically manages asychronous rendering.

7.4.2 Member Enumeration Documentation

7.4.2.1 enum ccdvl::CacheController::CacheState

Enumeration of tile cache statuses.

Enumerator:

kInvalid Invalid cache state.

kNotCached Graph tile not cached.

kInProgress Graph tile is being rendered.

kCached Graph tile is cached and ready.

7.4.3 Constructor & Destructor Documentation

7.4.3.1 ccdvl::CacheController::CacheController (Renderer ∗ renderer, int32 t cache size)

Cache constructor.

Initializes the cache and starts rendering threads. The renderer is kept internally and must not be destroyed before
this new instance.

Parameters
in renderer The renderer to use for rendering graph tiles.

cache_size Cache size.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

34 Class Documentation

7.4.3.2 ccdvl::CacheController::∼CacheController ()

Destroys the object and frees any allocated resources.

Rendering threads are stopped, all tiles created are destroyed and becomes invalid.

7.4.4 Member Function Documentation

7.4.4.1 void ccdvl::CacheController::AddObserver (CacheObserverInterface ∗ observer)

Adds an observer for changes to the active graph.

Parameters
in observer A new observer to inform.

7.4.4.2 static void∗ ccdvl::CacheController::CacheControllerEnter (void ∗ cachecontroller) [inline], [static],
[private]

Internal start method for new threads.

New threads enter a provided CacheController through this method.

Parameters
in cachecontroller The CacheController to enter.

See also

Enter().

7.4.4.3 void ccdvl::CacheController::Clear ()

Attepts to remove all graph tiles.

Only graph tiles that have the CacheState equal to kCached are removed.

7.4.4.4 void ccdvl::CacheController::Enter () [private]

Internal entry method for new threads.

Threads enter this instance through this method.

See also

CacheControllerEnter().

7.4.4.5 void ccdvl::CacheController::FlushCache (size t count) [private]

Removes a number of cached states, starting with the oldest.

Parameters
count The number of cached states to remove.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.4 ccdvl::CacheController Class Reference 35

7.4.4.6 GraphTile ∗ ccdvl::CacheController::GetGraphTile (const GraphTileState ∗ state)

Request a tile from graph tile state.

The method always returns a valid tile, as long as it is not called more then once in a row (tiles from previous calls
could then be deallocated) or StopRenderer() is invoked; which will invalidate any unfinnished tile.

Parameters
in state State used to generate new tile. It is used both for lookup and allocation, for

lookup state will be dereferenced and for allocation it will be copied.

Returns

The associated graph tile.

See also

GraphTileStatus().

7.4.4.7 int32 t ccdvl::CacheController::GetMaxCacheSize ()

Get the number of tiles to cache.

Returns

The maximum number of graph tiles to cache.

See also

SetMaxCacheSize().

7.4.4.8 size t ccdvl::CacheController::GetMemoryUsage ()

Get memory used by cached objects.

Returns

Amount of bytes allocated.

7.4.4.9 CacheController::CacheState ccdvl::CacheController::GraphTileStatus (const GraphTileState ∗ state)

Check status of graph tile state.

Parameters
in state State used to generate a tile.

Returns

Cache status for the tile related to the provided state.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

36 Class Documentation

See also

GetGraphTile().

7.4.4.10 void ccdvl::CacheController::MemoryManagerCleared (MemoryManager & callee) [virtual]

Update callback when a MemoryManager is cleared.

Parameters
in callee MemoryManager that caused this update.

Implements ccdvl::MemoryManagerObserverInterface.

7.4.4.11 void ccdvl::CacheController::MemoryManagerUpdate (MemoryManager & callee, const AbstractDataSet ∗∗
new data) [virtual]

Update callback when more data is added.

Parameters
in callee MemoryManager that caused this update.
in new_data The newly added dataset.

Implements ccdvl::MemoryManagerObserverInterface.

7.4.4.12 void ccdvl::CacheController::NotifyObservers (CacheObserverInterface::CacheEvent reason)
[private]

Notifies all observers.

Parameters
reason A cause for the notification.

7.4.4.13 void ccdvl::CacheController::Remove (const GraphTileState ∗ state) [private]

Attempt to remove and free a single graph tile state.

Parameters
in state The state to remove.

See also

RemoveAll() and FlushCache().

Todo Perhaps this method should return a boolean indicating if the state was destoyed or not.

7.4.4.14 void ccdvl::CacheController::RemoveAll (bool unsafe) [private]

Removes all cached states.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.4 ccdvl::CacheController Class Reference 37

Parameters
unsafe When set to true skip all thread and safety checks.

Note

Ensure that the cache mutex is locked before calling or that no other thread uses the cache.

7.4.4.15 void ccdvl::CacheController::SetMaxCacheSize (int32 t cache size)

Sets the number of tiles to cache.

Parameters
cache_size The maximum number of graph tiles to cache.

See also

GetMaxCacheSize().

7.4.4.16 bool ccdvl::CacheController::StopRenderer ()

Stop renderer.

Abort current rendering operation and wipe the state render queue. Beware that doing this will invalidate any
non-finnished image buffer held from earlier calls to GetGraphTile().

Returns

True if the renderer was stopped and trying to stop an idle renderer will return false.

7.4.5 Member Data Documentation

7.4.5.1 const int8 t ccdvl::CacheController::dimensions

Number of dimensions supported.

Note

This may become irrelevant later when 3D-graphs are finnished; for now it is set to two.

7.4.5.2 bool ccdvl::CacheController::renderer canceled [private]

True iff rendering is cancelled.

Used to send the correct notification to registered observers.

The documentation for this class was generated from the following files:

• include/cache_controller.h

• src/cache_controller.cc

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

38 Class Documentation

7.5 ccdvl::CacheObserverInterface Class Reference

Observer for CacheController changes of active graph.

#include <cache_observer_interface.h>

Inheritance diagram for ccdvl::CacheObserverInterface:

ccdvl::CacheObserverInterface

ccdvl::frontend::QtGraph
ViewFrame

Public Types

• enum CacheEvent { kRendererBegin, kRendererFinished, kRendererCanceled }

Enumeration of different cache events.

Public Member Functions

• virtual ∼CacheObserverInterface ()

Destroys the object and frees any allocated resources.

• virtual void CacheObserverUpdate (CacheController ∗callee, CacheEvent reason)=0

Cache observer update callback method.

7.5.1 Detailed Description

Observer for CacheController changes of active graph.

Template Parameters

kd Positive number of dimensions to support, should be two or larger.

7.5.2 Member Enumeration Documentation

7.5.2.1 enum ccdvl::CacheObserverInterface::CacheEvent

Enumeration of different cache events.

Enumerator:

kRendererBegin Rendering of tiles started.

kRendererFinished Rendering of tiles finished.

kRendererCanceled Rendering of tiles was cancelled.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.6 ccdvl::DataSetVisitorInterface Class Reference 39

7.5.3 Member Function Documentation

7.5.3.1 virtual void ccdvl::CacheObserverInterface::CacheObserverUpdate (CacheController ∗ callee, CacheEvent
reason) [pure virtual]

Cache observer update callback method.

This callback method may be invoked by threads running inside the calling CacheController and therefore the
implementation of this method must be threadsafe.

Parameters
in callee CacheController that caused this update.

reason The CacheEvent which caused this update.

Implemented in ccdvl::frontend::QtGraphViewFrame.

The documentation for this class was generated from the following file:

• include/cache_observer_interface.h

7.6 ccdvl::DataSetVisitorInterface Class Reference

Visitor interface for visitors accessing subtypes of AbstractDataSet.

#include <data_set_visitor_interface.h>

Inheritance diagram for ccdvl::DataSetVisitorInterface:

ccdvl::DataSetVisitorInterface

ccdvl::memorymanager
::CloneDataSet

Public Member Functions

• virtual void Visit (TypedDataSet< uint8_t > ∗uint8)=0

Callback for TypedDataSet holding uint8_t.

• virtual void Visit (TypedDataSet< int8_t > ∗int8)=0

Callback for TypedDataSet holding int8_t.

• virtual void Visit (TypedDataSet< uint16_t > ∗uint16)=0

Callback for TypedDataSet holding uint16_t.

• virtual void Visit (TypedDataSet< int16_t > ∗int16)=0

Callback for TypedDataSet holding int16_t.

• virtual void Visit (TypedDataSet< uint32_t > ∗uint32)=0

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

40 Class Documentation

Callback for TypedDataSet holding uint32_t.

• virtual void Visit (TypedDataSet< int32_t > ∗int32)=0

Callback for TypedDataSet holding int32_t.

• virtual void Visit (TypedDataSet< uint64_t > ∗uint64)=0

Callback for TypedDataSet holding uint64_t.

• virtual void Visit (TypedDataSet< int64_t > ∗int64)=0

Callback for TypedDataSet holding int64_t.

• virtual void Visit (TypedDataSet< float > ∗tfloat)=0

Callback for TypedDataSet holding regular floats.

• virtual void Visit (TypedDataSet< double > ∗tdouble)=0

Callback for TypedDataSet holding regular doubles.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (DataSetVisitorInterface)

7.6.1 Detailed Description

Visitor interface for visitors accessing subtypes of AbstractDataSet.

7.6.2 Member Function Documentation

7.6.2.1 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< uint8 t > ∗ uint8) [pure virtual]

Callback for TypedDataSet holding uint8_t.

Parameters
in,out uint8 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.2 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< int8 t > ∗ int8) [pure virtual]

Callback for TypedDataSet holding int8_t.

Parameters
in,out int8 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.3 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< uint16 t > ∗ uint16) [pure virtual]

Callback for TypedDataSet holding uint16_t.

Parameters
in,out uint16 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.6 ccdvl::DataSetVisitorInterface Class Reference 41

7.6.2.4 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< int16 t > ∗ int16) [pure virtual]

Callback for TypedDataSet holding int16_t.

Parameters
in,out int16 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.5 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< uint32 t > ∗ uint32) [pure virtual]

Callback for TypedDataSet holding uint32_t.

Parameters
in,out uint32 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.6 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< int32 t > ∗ int32) [pure virtual]

Callback for TypedDataSet holding int32_t.

Parameters
in,out int32 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.7 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< uint64 t > ∗ uint64) [pure virtual]

Callback for TypedDataSet holding uint64_t.

Parameters
in,out uint64 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.8 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< int64 t > ∗ int64) [pure virtual]

Callback for TypedDataSet holding int64_t.

Parameters
in,out int64 Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.9 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< float > ∗ tfloat) [pure virtual]

Callback for TypedDataSet holding regular floats.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

42 Class Documentation

Parameters
in,out tfloat Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

7.6.2.10 virtual void ccdvl::DataSetVisitorInterface::Visit (TypedDataSet< double > ∗ tdouble) [pure virtual]

Callback for TypedDataSet holding regular doubles.

Parameters
in,out tdouble Calling class instance.

Implemented in ccdvl::memorymanager::CloneDataSet.

The documentation for this class was generated from the following file:

• include/data_set/data_set_visitor_interface.h

7.7 ccdvl::frontend::QtBaseTool Class Reference

A base class for tools providing basic functionality and event handling functions to be overridden by subclasses.

#include <qt_base_tool.h>

Inheritance diagram for ccdvl::frontend::QtBaseTool:

ccdvl::frontend::QtBaseTool

ccdvl::frontend::QtLasso
SelectTool

ccdvl::frontend::QtPanTool

ccdvl::frontend::QtPoint
SelectTool

ccdvl::frontend::QtRectangle
SelectTool

ccdvl::frontend::QtZoomTool

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.7 ccdvl::frontend::QtBaseTool Class Reference 43

Collaboration diagram for ccdvl::frontend::QtBaseTool:

ccdvl::frontend::QtBaseTool

ccdvl::frontend::QtToolbar
Frame tools_

ccdvl::frontend::QtToolGraphicsView

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

ccdvl::frontend::QtGraph
Widget

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface

ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * > observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer renderer_ccdvl::MemoryManager memory_manager_
 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers
 keys

std::list< const Abstract
Group * > elements

 keys

ccdvl::Group2D

std::string name_std::basic_string<
 char >

 keys
 groups_

 group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_
 parent_

std::list< Group2D * > elements

 group_leafs_

 toolbar_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_std::list< std::list
< QtGraphImageTile > >T elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Public Member Functions

• QtBaseTool (QtToolGraphicsView ∗tool_graphics_view)

Constructs and initiates an abstract tool with the given QtToolGraphicsView.

• virtual void OnActivate ()

Should be called when the tool is activated or selected to take care of any initiations and such that may be needed.

• virtual void OnDeactivate ()

Should be called when the tool is deactivated or deselected to take care of any clean up and such that may be needed.

• virtual bool OnMousePress (QMouseEvent ∗event)

Handles forwarded mouse button press events.

• virtual bool OnMouseMove (QMouseEvent ∗event)

Handles forwarded mouse move events.

• virtual bool OnMouseRelease (QMouseEvent ∗event)

Handles forwarded mouse button release events.

• virtual bool OnWheel (QWheelEvent ∗event)

Handles forwarded mouse wheel events.

• virtual bool OnKeyPress (QKeyEvent ∗event)

Handles forwarded key press events.

• virtual bool OnKeyRelease (QKeyEvent ∗event)

Handles forwarded key release events.

• virtual bool OnEnter (QEvent ∗event)

Handles forwarded enter events.

• virtual bool OnLeave (QEvent ∗event)

Handles forwarded leave events.

• virtual bool has_selection ()

Checks if the tool has selection capabilities.

• virtual GraphPolygonF selection ()

The current selection made by the tool (in graph coordinates).

• virtual void set_selection (GraphPolygonF selection)

Sets the current selection made by the tool (in graph coordinates).

• virtual void SetDefaultCursor ()

Sets the cursor shown in the tool graphics view to default_cursor_.

Protected Member Functions

• ViewPoint RestrictPosToView (const ScenePoint &p)

Restricts (clamps) the given position p so that it lies within the currently displayed ranges of the graphics view.

• ScenePointF MapToRestrictedScene (const ViewPoint &p)

Converts a view position to scene coordinates that are within the current visible graphics view.

• GraphPointF MapToRestrictedGraph (const ViewPoint &p)

Converts a view position to graph coordinates that are within the current visible graphics view.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

44 Class Documentation

Protected Attributes

• QtToolGraphicsView ∗ tool_graphics_view_

The tool graphics view used with the tool.

• QCursor default_cursor_

The default mouse cursor of the tool.

• QPointF click_pos_

The point where the tool was first clicked.

• GraphPolygonF selection_

The last selection of the tool.

• bool has_selection_

States if the tool has selection capabilities.

7.7.1 Detailed Description

A base class for tools providing basic functionality and event handling functions to be overridden by subclasses.

Provides functions to be called on activation, deactivation, mouse button press, mouse move, mouse buton release,
wheel, key press and key release events, as well as enter and leave events regarding the QtToolGraphicsView. All
the events are ignored in this implementation.

Functions for storing a selection is also available, and tools with selection capabilities should make sure that has-
_selection() returns true. has_selection() should also always be checked before attempting to get or set the tool
selection. The selection of a tool without selection capabilities is undefined.

There are also some helper functions used to clamp and convert coordinates.

Note

The event handeling functions does not automatically catch the events, but must be explicitly forwarded from
the respective Qt event handlers. The return values from the event handling functions tells the caller if the event
was accepted or not.

7.7.2 Constructor & Destructor Documentation

7.7.2.1 ccdvl::frontend::QtBaseTool::QtBaseTool (QtToolGraphicsView ∗ tool graphics view) [explicit]

Constructs and initiates an abstract tool with the given QtToolGraphicsView.

Parameters
in tool_graphics_-

view
The tool graphics view used with the tool.

7.7.3 Member Function Documentation

7.7.3.1 bool ccdvl::frontend::QtBaseTool::has selection () [virtual]

Checks if the tool has selection capabilities.

Tools with selection capabilities have valid selections.

Returns

True if the tool has selection capabilities.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.7 ccdvl::frontend::QtBaseTool Class Reference 45

See also

selection() and set_selection(GraphPolygonF)

7.7.3.2 GraphPointF ccdvl::frontend::QtBaseTool::MapToRestrictedGraph (const ViewPoint & p) [protected]

Converts a view position to graph coordinates that are within the current visible graphics view.

Parameters
in p The position to restrict and convert.

Returns

The restricted and converted position.

7.7.3.3 ScenePointF ccdvl::frontend::QtBaseTool::MapToRestrictedScene (const ViewPoint & p) [protected]

Converts a view position to scene coordinates that are within the current visible graphics view.

Parameters
in p The position to restrict and convert.

Returns

The restricted and converted position.

7.7.3.4 bool ccdvl::frontend::QtBaseTool::OnEnter (QEvent ∗ event) [virtual]

Handles forwarded enter events.

Parameters
in event The enter event.

Returns

true if the event was accepted.

See also

OnLeave(QEvent∗)

Reimplemented in ccdvl::frontend::QtPointSelectTool.

7.7.3.5 bool ccdvl::frontend::QtBaseTool::OnKeyPress (QKeyEvent ∗ event) [virtual]

Handles forwarded key press events.

Parameters
in event The key event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

46 Class Documentation

Returns

true if the event was accepted.

See also

OnKeyRelease(QKeyEvent∗)

Reimplemented in ccdvl::frontend::QtZoomTool.

7.7.3.6 bool ccdvl::frontend::QtBaseTool::OnKeyRelease (QKeyEvent ∗ event) [virtual]

Handles forwarded key release events.

Parameters
in event The key event.

Returns

true if the event was accepted.

See also

OnKeyPress(QKeyEvent∗)

Reimplemented in ccdvl::frontend::QtZoomTool.

7.7.3.7 bool ccdvl::frontend::QtBaseTool::OnLeave (QEvent ∗ event) [virtual]

Handles forwarded leave events.

Parameters
in event The leave event.

Returns

true if the event was accepted.

See also

OnEnter(QEvent∗)

Reimplemented in ccdvl::frontend::QtPointSelectTool.

7.7.3.8 bool ccdvl::frontend::QtBaseTool::OnMouseMove (QMouseEvent ∗ event) [virtual]

Handles forwarded mouse move events.

Parameters
in event The mouse event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.7 ccdvl::frontend::QtBaseTool Class Reference 47

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented in ccdvl::frontend::QtLassoSelectTool, ccdvl::frontend::QtZoomTool, ccdvl::frontend::QtPointSelect-
Tool, ccdvl::frontend::QtRectangleSelectTool, and ccdvl::frontend::QtPanTool.

7.7.3.9 bool ccdvl::frontend::QtBaseTool::OnMousePress (QMouseEvent ∗ event) [virtual]

Handles forwarded mouse button press events.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented in ccdvl::frontend::QtLassoSelectTool, ccdvl::frontend::QtZoomTool, ccdvl::frontend::QtPointSelect-
Tool, ccdvl::frontend::QtPanTool, and ccdvl::frontend::QtRectangleSelectTool.

7.7.3.10 bool ccdvl::frontend::QtBaseTool::OnMouseRelease (QMouseEvent ∗ event) [virtual]

Handles forwarded mouse button release events.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseMove(QMouseEvent∗)

Reimplemented in ccdvl::frontend::QtLassoSelectTool, ccdvl::frontend::QtZoomTool, ccdvl::frontend::QtRectangle-
SelectTool, and ccdvl::frontend::QtPanTool.

7.7.3.11 bool ccdvl::frontend::QtBaseTool::OnWheel (QWheelEvent ∗ event) [virtual]

Handles forwarded mouse wheel events.

Parameters
in event The wheel event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

48 Class Documentation

Returns

true if the event was accepted.

Reimplemented in ccdvl::frontend::QtZoomTool, ccdvl::frontend::QtLassoSelectTool, ccdvl::frontend::QtPointSelect-
Tool, ccdvl::frontend::QtRectangleSelectTool, and ccdvl::frontend::QtPanTool.

7.7.3.12 ViewPoint ccdvl::frontend::QtBaseTool::RestrictPosToView (const ScenePoint & p) [protected]

Restricts (clamps) the given position p so that it lies within the currently displayed ranges of the graphics view.

Parameters
in p The position to restrict.

Returns

The restricted position.

7.7.3.13 GraphPolygonF ccdvl::frontend::QtBaseTool::selection () [virtual]

The current selection made by the tool (in graph coordinates).

Returns

The selection or an empty polygon if there is no selection.

See also

set_selection(GraphPolygonF) and has_selection()

7.7.3.14 void ccdvl::frontend::QtBaseTool::set selection (GraphPolygonF selection) [virtual]

Sets the current selection made by the tool (in graph coordinates).

Parameters
selection [in] The new selection.

See also

selection() and has_selection()

7.7.4 Member Data Documentation

7.7.4.1 QPointF ccdvl::frontend::QtBaseTool::click pos [protected]

The point where the tool was first clicked.

This point is used in different coordinate systems for convenience, depending on the implementation of the sub-
class.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_base_tool.h
• src/qt_frontend/qt_base_tool.cc

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.8 ccdvl::frontend::QtCoordinateAndAxesInfoFrame Class Reference 49

7.8 ccdvl::frontend::QtCoordinateAndAxesInfoFrame Class Reference

The panel containing information and controls for displaying the x/y-coordinate for mouse over and ranges in the
graph.

#include <qt_coordinate_and_axes_info_frame.h>

Public Member Functions

• QtCoordinateAndAxesInfoFrame (QWidget ∗parent=NULL)

Constructs and initiates a coordinate and axes information frame with the given parent.
• int Init ()

Initiates the GUI components used for displaying x/y-coordinates and the axes’ ranges (min, max and step values).
• void SetXYCoordinates (const GraphPointF &pos)

Sets the x and y coordinate mouse over label texts with three decimals precision.
• void SetXYCoordinates (GraphDouble x, GraphDouble y)

A overridden convenience function.
• void SetRangesInfo (GraphDouble x_min, GraphDouble x_max, GraphDouble y_min, GraphDouble y_max,

double x_scale, double y_scale, double x_zoom, double y_zoom)

Sets the displayed ranges info.
• QString FormattedNumberText (GraphDouble xy, double upper_sci_bound, double lower_sci_bound, int

normal_precision, int sci_precision)

Returns a formatted string of the given xy value with the given precision.

Private Member Functions

• void CreateLabels ()

Creates the labels.

Private Attributes

• QGridLayout ∗ main_layout_

The main layout containing all components of the object.
• QLabel ∗ x_coordinate_label_

The x coordinate label displaying the current mouse over graph position.
• QLabel ∗ y_coordinate_label_

The y coordinate label displaying the current mouse over graph position.
• QLabel ∗ x_min_label_

The label displaying the scene minimum X graph value.
• QLabel ∗ x_max_label_

The label displaying the scene maximum X graph value.
• QLabel ∗ x_scale_label_

The label displaying the graph X scale value.
• QLabel ∗ x_zoom_label_

The label displaying the graph X zoom value.
• QLabel ∗ y_min_label_

The label displaying the scene minimum Y graph value.
• QLabel ∗ y_max_label_

The label displaying the scene maximum Y graph value.
• QLabel ∗ y_scale_label_

The label displaying the graph Y scale value.
• QLabel ∗ y_zoom_label_

The label displaying the graph Y zoom value.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

50 Class Documentation

7.8.1 Detailed Description

The panel containing information and controls for displaying the x/y-coordinate for mouse over and ranges in the
graph.

This panel shows the current x- and y-coordinates under the mouse cursor in the graph view, the coordinates for
minimum, maximum and step values of the displayed view.

7.8.2 Constructor & Destructor Documentation

7.8.2.1 ccdvl::frontend::QtCoordinateAndAxesInfoFrame::QtCoordinateAndAxesInfoFrame (QWidget ∗ parent = NULL)
[explicit]

Constructs and initiates a coordinate and axes information frame with the given parent.

Parameters
in parent The parent widget.

7.8.3 Member Function Documentation

7.8.3.1 QString ccdvl::frontend::QtCoordinateAndAxesInfoFrame::FormattedNumberText (GraphDouble xy, double
upper sci bound, double lower sci bound, int normal precision, int sci precision)

Returns a formatted string of the given xy value with the given precision.

The returned string is an integer if the absolute value of xy is less than upper_sci_bound and more than lower_sci-
_bound, e.g. FormattedNumberText(5123, 10000, 0.01) returns 5123.

Otherwise it is written with scientific notation with a float followed by times 10 with the exponent in superscript, e.g.
FormattedNumberText(51234, 10000, 0.01) returns

5.123×10+03

and FormattedNumberText(0.051234, 10000, 0.01) returns

5.123×10-02 .

Parameters
in xy The coordinate value to be converted.
in upper_sci_-

bound
The upper bound over which scientific notation is to be used.

in lower_sci_bound The lower bound under which scientific notation is to be used.
in normal_-

precision
The precision to be used for normal notation.

in sci_precision The precision to be used for the scientidic notation.

Returns

The value of xy as a formatted string.

7.8.3.2 int ccdvl::frontend::QtCoordinateAndAxesInfoFrame::Init ()

Initiates the GUI components used for displaying x/y-coordinates and the axes’ ranges (min, max and step values).

Returns

0 if the initializiation was successfull.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.9 ccdvl::frontend::QtGraphImageTile Class Reference 51

7.8.3.3 void ccdvl::frontend::QtCoordinateAndAxesInfoFrame::SetRangesInfo (GraphDouble x min, GraphDouble x max,
GraphDouble y min, GraphDouble y max, double x scale, double y scale, double x zoom, double y zoom)

Sets the displayed ranges info.

The ranges are displayed with three decimals precision, and the scale and zoom levels are displayed as integral
percentage numbers.

Parameters
in x_min The minimum x value.
in x_max The maximum x value.
in y_min The minimum y value.
in y_max The maximum y value.
in x_scale The x scale value.
in y_scale The y scale value.
in x_zoom The x zoom level.
in y_zoom The y zoom level.

7.8.3.4 void ccdvl::frontend::QtCoordinateAndAxesInfoFrame::SetXYCoordinates (const GraphPointF & pos)

Sets the x and y coordinate mouse over label texts with three decimals precision.

Parameters
in pos The position as a point.

7.8.3.5 void ccdvl::frontend::QtCoordinateAndAxesInfoFrame::SetXYCoordinates (GraphDouble x, GraphDouble y)

A overridden convenience function.

Parameters
in x The x-coordinate of the position.
in y The y-coordinate of the position.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_coordinate_and_axes_info_frame.h
• src/qt_frontend/qt_coordinate_and_axes_info_frame.cc

7.9 ccdvl::frontend::QtGraphImageTile Class Reference

A class representing a graph image tile; a QPixmap and a flag that keeps track of if the graph image tile has been
drawn onto the graph image.

#include <qt_graph_image_tile.h>

Public Member Functions

• QtGraphImageTile ()

Constructs a graph image tile with a "null" image and the drawn flag set to false.

• QtGraphImageTile (const QtGraphImageTile &tile)

Constructs a copy of the given tile.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://doc.qt.nokia.com/4.7/qpixmap.html

52 Class Documentation

• QtGraphImageTile (const QPixmap &image)

Creates a graph image tile with the given image and the drawn flag set to false.

• QtGraphImageTile (bool drawn)

Constructs a graph image tile with a "null" image and sets the drawn flag to the given drawn state.

• QtGraphImageTile (const QPixmap &image, bool drawn)

Constructs a graph image tile and sets the image to the given image and the drawn flag to the given drawn state.

• const QPixmap & image ()

The image of the graph image tile, which may be "null" if not set or cleared.

• void set_image (const QPixmap &image)

Sets the image of the graph image tile.

• bool drawn ()

The drawn flag state, indicating if the graph image tile has been drawn to the graph image or not.

• void set_drawn (bool drawn)

Sets the state of the drawn flag.

• void Clear ()

Clears and resets the graph image tile image and drawn flag.

Private Attributes

• QPixmap image_

The image of the graph image tile.

• bool drawn_

States if the graph image tile has been drawn to the graph image.

7.9.1 Detailed Description

A class representing a graph image tile; a QPixmap and a flag that keeps track of if the graph image tile has been
drawn onto the graph image.

7.9.2 Constructor & Destructor Documentation

7.9.2.1 ccdvl::frontend::QtGraphImageTile::QtGraphImageTile ()

Constructs a graph image tile with a "null" image and the drawn flag set to false.

See also

QtGraphImageTile(const QtGraphImageTile&), QtGraphImageTile(const QPixmap&), QtGraphImageTile(bool)
and QtGraphImageTile(const QPixmap&, bool)

7.9.2.2 ccdvl::frontend::QtGraphImageTile::QtGraphImageTile (const QtGraphImageTile & tile)

Constructs a copy of the given tile.

Parameters
in tile The graph image tile to copy.

See also

QtGraphImageTile(), QtGraphImageTile(const QPixmap&), QtGraphImageTile(bool) and QtGraphImage-
Tile(const QPixmap&, bool)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://doc.qt.nokia.com/4.7/qpixmap.html

7.9 ccdvl::frontend::QtGraphImageTile Class Reference 53

7.9.2.3 ccdvl::frontend::QtGraphImageTile::QtGraphImageTile (const QPixmap & image)

Creates a graph image tile with the given image and the drawn flag set to false.

Parameters
in image The image to use.

See also

QtGraphImageTile(), QtGraphImageTile(const QtGraphImageTile&), QtGraphImageTile(bool) and QtGraph-
ImageTile(const QPixmap&, bool)

7.9.2.4 ccdvl::frontend::QtGraphImageTile::QtGraphImageTile (bool drawn) [explicit]

Constructs a graph image tile with a "null" image and sets the drawn flag to the given drawn state.

Parameters
in drawn The drawn flag state.

See also

QtGraphImageTile(), QtGraphImageTile(const QtGraphImageTile&), QtGraphImageTile(const QPixmap&) and
QtGraphImageTile(const QPixmap&, bool)

7.9.2.5 ccdvl::frontend::QtGraphImageTile::QtGraphImageTile (const QPixmap & image, bool drawn)

Constructs a graph image tile and sets the image to the given image and the drawn flag to the given drawn state.

Parameters
in image The image to use.
in drawn The drawn flag state.

See also

QtGraphImageTile(), QtGraphImageTile(const QtGraphImageTile&), QtGraphImageTile(const QPixmap&) and
QtGraphImageTile(bool)

7.9.3 Member Function Documentation

7.9.3.1 bool ccdvl::frontend::QtGraphImageTile::drawn ()

The drawn flag state, indicating if the graph image tile has been drawn to the graph image or not.

Returns

The state of the drawn flag.

See also

set_drawn(bool)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

54 Class Documentation

7.9.3.2 const QPixmap & ccdvl::frontend::QtGraphImageTile::image ()

The image of the graph image tile, which may be "null" if not set or cleared.

Returns

The tile image.

See also

set_image(QPixmap) and QPixmap::isNull()

7.9.3.3 void ccdvl::frontend::QtGraphImageTile::set drawn (bool drawn)

Sets the state of the drawn flag.

Parameters
in drawn The new state of the drawn flag.

See also

drawn()

7.9.3.4 void ccdvl::frontend::QtGraphImageTile::set image (const QPixmap & image)

Sets the image of the graph image tile.

Parameters
in image The new image.

See also

image()

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_graph_image_tile.h

• src/qt_frontend/qt_graph_image_tile.cc

7.10 ccdvl::frontend::QtGraphNeighbourhoodFrame Class Reference

Shows a small overview image of the neighbourhood area of the current graph view with a rectangle outlining the
current view.

#include <qt_graph_neighbourhood_frame.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://doc.qt.nokia.com/4.7/qpixmap.html#isNull

7.10 ccdvl::frontend::QtGraphNeighbourhoodFrame Class Reference 55

Collaboration diagram for ccdvl::frontend::QtGraphNeighbourhoodFrame:

ccdvl::frontend::QtGraph
NeighbourhoodFrame

ccdvl::frontend::QtGraph
ViewFrame

 graph_neighbourhood
frame

ccdvl::frontend::QtGraph
Widget

 graph_neighbourhood
frame

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtToolbar
Frame

 graph_view_frame_

ccdvl::frontend::QtToolGraphicsView

 graph_view_frame_

ccdvl::CacheObserverInterface

std::list< CacheObserver
Interface * >

 elements
 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface

ccdvl::frontend::QtGraph
Settings

 graph_settings_

 settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_
ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig > elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * > elements

 observers_

ccdvl::Renderer renderer_ccdvl::MemoryManager memory_manager_ observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers
 keys

std::list< const Abstract
Group * > elements

 keys

ccdvl::Group2D

std::string

 name_

std::basic_string<
 char >

 keys
 groups_

 group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_

 parent_

std::list< Group2D * > elements

 group_leafs_

 toolbar_frame_ccdvl::frontend::QtBaseTool
 tools_

 tool_graphics_view_
 tool_graphics_view_

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

ccdvl::List2D< QtGraphImage
Tile > graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >T elements

Public Member Functions

• QtGraphNeighbourhoodFrame (QtCoordinateAndAxesInfoFrame ∗coordinate_and_axes_info_frame, Q-
Widget ∗parent=NULL)

Constructs and initiates a graph neighbourhood frame with the given graph view frame and parent.

• int Init (QtGraphViewFrame ∗graph_view_frame)

Creates and initiates the neighbourhood image and neighbourhood group box.

• void ShowLoadingMessage ()

Changes the displayed image to show a loading message.

• void UpdateNeighbourhoodPixmap (QPixmap graph_image)

Updates the shown neighbourhood pixmap.

• void UpdateGraphViewOutlinePosition ()

Redraws the rectangle outline to correspond with the current graph view.

Protected Member Functions

• bool eventFilter (QObject ∗object, QEvent ∗event)

An event filter to capture mouse clicks.

Private Member Functions

• SceneSizeF ScaleFactor ()

The current scale factor of the neighbourhood / graph view.

• SceneRectF OutlineRect ()

Calculates the outline rect.

Private Attributes

• QtCoordinateAndAxesInfoFrame ∗ coordinate_and_axes_info_frame_

The coordinate and axes info frame used to update mouse over graph coordinates.

• QtGraphViewFrame ∗ graph_view_frame_

The graph view frame to show the neighbourhood of.

• QGridLayout ∗ main_layout_

The main layout containing all components of the object.

• QLabel ∗ neighbourhood_label_

The label showing the pixmap.

• QPixmap neighbourhood_pixmap_

The pixmap showing the neighbourhood image.

• bool loading_

Keeps track of if the neighbourhood label can be interacted with.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

56 Class Documentation

7.10.1 Detailed Description

Shows a small overview image of the neighbourhood area of the current graph view with a rectangle outlining the
current view.

Clicking in the neighbourhood image will recenter the graph view on the corresponding position. Clicking and
draging the putline rectangel will pan the view correspondingly.

7.10.2 Constructor & Destructor Documentation

7.10.2.1 ccdvl::frontend::QtGraphNeighbourhoodFrame::QtGraphNeighbourhoodFrame (QtCoordinate-
AndAxesInfoFrame ∗ coordinate and axes info frame, QWidget ∗ parent = NULL
)

Constructs and initiates a graph neighbourhood frame with the given graph view frame and parent.

Parameters
in coordinate_and-

_axes_info_-
frame

The coordinate and axes info frame used to update mouse over graph coordi-
nates.

in parent The parent widget.

7.10.3 Member Function Documentation

7.10.3.1 bool ccdvl::frontend::QtGraphNeighbourhoodFrame::eventFilter (QObject ∗ object, QEvent ∗ event)
[protected]

An event filter to capture mouse clicks.

Parameters
in object The watched object.
in event The event to filter.

Returns

true if the event was handled.

7.10.3.2 int ccdvl::frontend::QtGraphNeighbourhoodFrame::Init (QtGraphViewFrame ∗ graph view frame)

Creates and initiates the neighbourhood image and neighbourhood group box.

Parameters
in graph_view_-

frame
The graph view frame to show the neighbourhood of.

Returns

0 if the initializiation was successfull.

7.10.3.3 SceneRectF ccdvl::frontend::QtGraphNeighbourhoodFrame::OutlineRect () [private]

Calculates the outline rect.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.11 ccdvl::frontend::QtGraphSettings Class Reference 57

Returns

The current outline rect.

7.10.3.4 SceneSizeF ccdvl::frontend::QtGraphNeighbourhoodFrame::ScaleFactor () [private]

The current scale factor of the neighbourhood / graph view.

Returns

The scale factor used to resize the image and the outline.

7.10.3.5 void ccdvl::frontend::QtGraphNeighbourhoodFrame::ShowLoadingMessage ()

Changes the displayed image to show a loading message.

Can be used between updates of the neighbourhood pixmap.

See also

UpdateNeighbourhoodPixmap()

7.10.3.6 void ccdvl::frontend::QtGraphNeighbourhoodFrame::UpdateGraphViewOutlinePosition ()

Redraws the rectangle outline to correspond with the current graph view.

See also

UpdateNeighbourhoodPixmap()

7.10.3.7 void ccdvl::frontend::QtGraphNeighbourhoodFrame::UpdateNeighbourhoodPixmap (QPixmap graph image)

Updates the shown neighbourhood pixmap.

Resizes the provided graph image, making it fit the neighbourhood display area and masking out the points for
better contrast. It also calls UpdateGraphViewOutlinePosition().

Parameters
in graph_image The graph image to display as a neighbourhood overview.

See also

UpdateGraphViewOutlinePosition()

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_graph_neighbourhood_frame.h
• src/qt_frontend/qt_graph_neighbourhood_frame.cc

7.11 ccdvl::frontend::QtGraphSettings Class Reference

Holds the configurable settings related to the Qt frontend, with public access to the setting member variables, rather
than using mutators, for convenience.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

58 Class Documentation

#include <qt_graph_settings.h>

Collaboration diagram for ccdvl::frontend::QtGraphSettings:

ccdvl::frontend::QtGraph
Settings

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_
ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState
ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * > elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager
 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers
 keys

std::list< const Abstract
Group * > elements

 keys

std::string name_std::basic_string<
 char >

 keys
 groups_

 group_render_settings_

Classes

• struct AxesProperties

A struct to hold the axes properties.

• struct GridProperties

A struct to hold the grid properties.

• struct ZoomSettings

A struct to hold the zoom settings; x and y zoom steps, zoom step factors and mouse wheel zoom step factors.

Public Types

• enum GridType { kStatic, kRelativeToGraph, kRelativeToZoom }

The display behaviour of the grid.

Signals

• void SettingsUpdated (bool renderer, bool graph, bool grid, bool axes)

Signal emited whenever any of these settings change.

Public Member Functions

• QtGraphSettings (QObject ∗parent=NULL)

Constructs a graph settings object with the given parent and initiates the settings to default values.

• void ConvertClearColor (uint8_t color[3])

Convert clear color to RGB888.

• void EmitSettingsUpdated (bool renderer, bool graph, bool grid, bool axes)

Emits a settings updated signal.

Public Attributes

• GridProperties grid_properties_

Graph grid properties.

• AxesProperties axes_properties_

Graph axes properties.

• ZoomSettings zoom_tool_settings_

Zoom tool settings.

• RendererConfig renderer_settings_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.11 ccdvl::frontend::QtGraphSettings Class Reference 59

Default render configuration.

• CacheController ∗ cache_controller_

Currently used graph cache that caches graph images and render them as needed.

• int32_t image_tile_width_

The graph image tile width.

• int32_t image_tile_height_

The graph image tile height.

• int image_tile_rows_

The number of graph image tile rows.

• int image_tile_columns_

The number of graph image tile columns.

• GraphSceneState ∗ current_graph_scene_state_

Current graph scene state.

• GraphSceneState ∗ next_graph_scene_state_

Next graph scene state.

• QColor clear_color_

Clear color (graph background color).

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (QtGraphSettings)

7.11.1 Detailed Description

Holds the configurable settings related to the Qt frontend, with public access to the setting member variables, rather
than using mutators, for convenience.

Note that image_tile_width_ and image_tile_height_ should be changed using QtGraphViewFrame::SetGraph-
ImageTileWidth(int) and QtGraphViewFrame::SetGraphImageTileHeight(int) respectively to maintain a vaid graph
state.

7.11.2 Member Enumeration Documentation

7.11.2.1 enum ccdvl::frontend::QtGraphSettings::GridType

The display behaviour of the grid.

Enumerator:

kStatic The grid will be statically drawn at the same line intervals regardless of the current view position and
zoom level.

kRelativeToGraph The grid lines will follow the shown graph coordinates and zoom level. Beware of low
zoom levels and high scale values, as more grid lines will have to be drawn, slowing down the rendering
process (often noticeably).

kRelativeToZoom The grid lines are static, but follow the zoom level. That is, the grid line interval is multiplied
with the current zoom level, which is more or less identical to GridType::kRelativeToGraph when both the
x and y scales are 100%.

7.11.3 Constructor & Destructor Documentation

7.11.3.1 ccdvl::frontend::QtGraphSettings::QtGraphSettings (QObject ∗ parent = NULL) [explicit]

Constructs a graph settings object with the given parent and initiates the settings to default values.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

60 Class Documentation

Parameters
in parent The parent widget.

7.11.4 Member Function Documentation

7.11.4.1 void ccdvl::frontend::QtGraphSettings::ConvertClearColor (uint8 t color[3]) [inline]

Convert clear color to RGB888.

Parameters
out color Destination for the converted color.

7.11.4.2 void ccdvl::frontend::QtGraphSettings::EmitSettingsUpdated (bool renderer, bool graph, bool grid, bool axes)
[inline]

Emits a settings updated signal.

This method must be invoked whenever any settings are changed. It is also always done when user hits apply in
the settings dialog.

Parameters
renderer true iff any of the renderer settings changed. This includes point shape, line, scaling, etc.

graph true iff any graph view settings changed.
grid true iff any grid settings changed.

axes true iff any axis setting changed.

See also

SettingsUpdated()

7.11.4.3 void ccdvl::frontend::QtGraphSettings::SettingsUpdated (bool renderer, bool graph, bool grid, bool axes)
[signal]

Signal emited whenever any of these settings change.

Parameters
renderer True iff any of the renderer settings changed. This includes point shape, line, scaling, etc.

graph true iff any graph view settings changed.
grid true iff any grid settings changed.

axes true iff any axis setting changed.

Note

This signal could be emited without any parameters being true. This indicates that one of the settings that have
no indicator argument such as maximum number of cached tiles was changed.

7.11.5 Member Data Documentation

7.11.5.1 GraphSceneState∗ ccdvl::frontend::QtGraphSettings::current graph scene state

Current graph scene state.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.12 ccdvl::frontend::QtGraphSettings::AxesProperties Struct Reference 61

This object represents the current graph scene, is managed elsewhere, and should be replaced by next_graph_-
scene_state_ when updated.

See also

next_graph_scene_state_

7.11.5.2 int32 t ccdvl::frontend::QtGraphSettings::image tile height

The graph image tile height.

Use QtGraphViewFrame::SetGraphImageTileHeight(int) when changing this to keep a valid graph state.

See also

QtGraphViewFrame::SetGraphImageTileHeight(int)

7.11.5.3 int32 t ccdvl::frontend::QtGraphSettings::image tile width

The graph image tile width.

Use QtGraphViewFrame::SetGraphImageTileWidth(int) when changing this to keep a valid graph state.

See also

QtGraphViewFrame::SetGraphImageTileWidth(int)

7.11.5.4 GraphSceneState∗ ccdvl::frontend::QtGraphSettings::next graph scene state

Next graph scene state.

This object represents the unfinished graph scene, is managed elsewhere, and should be used to update current_-
graph_scene_state_ by replacing it.

See also

QtGraphViewFrame::UpdateGraphView() and current_graph_scene_state_

7.11.5.5 RendererConfig ccdvl::frontend::QtGraphSettings::renderer settings

Default render configuration.

Settings containing point and line color, size and shape.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_graph_settings.h
• src/qt_frontend/qt_graph_settings.cc

7.12 ccdvl::frontend::QtGraphSettings::AxesProperties Struct Reference

A struct to hold the axes properties.

#include <qt_graph_settings.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

62 Class Documentation

Public Attributes

• QColor line_color

Color of axis dashes.

• QString x_label

X name.

• QString y_label

Y name.

• GraphInt x_step

Distance between the big dashes on the x-axis.

• GraphInt y_step

Distance between the big dashes on the y-axis.

• SceneInt x_spacer

Distance between the small dashes in pixels.

• SceneInt y_spacer

Distance between the small dashes in pixels.

• int normal_precision

Number of decimals shown for non-sci numbers.

• int scientific_precision

Number of decimals shown for sci numbers.

• double upper_scientific_bound

• double lower_scientific_bound

7.12.1 Detailed Description

A struct to hold the axes properties.

7.12.2 Member Data Documentation

7.12.2.1 double ccdvl::frontend::QtGraphSettings::AxesProperties::lower scientific bound

Values between this or its negative counterpart and zero will be displayed with scientific notation.

7.12.2.2 double ccdvl::frontend::QtGraphSettings::AxesProperties::upper scientific bound

Values exceeding this (and lower then its negative counterpart) will be displayed with scientific notation.

The documentation for this struct was generated from the following file:

• include/qt_frontend/qt_graph_settings.h

7.13 ccdvl::frontend::QtGraphSettings::GridProperties Struct Reference

A struct to hold the grid properties.

#include <qt_graph_settings.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.14 ccdvl::frontend::QtGraphSettings::ZoomSettings Struct Reference 63

Public Attributes

• QColor line_color

The color of grid lines.

• double x_step

The step distance between X lines.

• double y_step

The step distance between Y lines.

• bool visible

Decides if the grid should be drawn or not.

• GridType type

Decides how step distance is interpreted.

7.13.1 Detailed Description

A struct to hold the grid properties.

The documentation for this struct was generated from the following file:

• include/qt_frontend/qt_graph_settings.h

7.14 ccdvl::frontend::QtGraphSettings::ZoomSettings Struct Reference

A struct to hold the zoom settings; x and y zoom steps, zoom step factors and mouse wheel zoom step factors.

#include <qt_graph_settings.h>

Public Attributes

• double x_zoom_step

The smallest zoom step in x.

• double y_zoom_step

The smallest zoom step in y.

• int x_zoom_step_factor

The number of x zoom steps done when zooming.

• int y_zoom_step_factor

The number of y zoom steps done when zooming.

• int x_wheel_zoom_step_factor
• int y_wheel_zoom_step_factor

7.14.1 Detailed Description

A struct to hold the zoom settings; x and y zoom steps, zoom step factors and mouse wheel zoom step factors.

7.14.2 Member Data Documentation

7.14.2.1 int ccdvl::frontend::QtGraphSettings::ZoomSettings::x wheel zoom step factor

The number of x zoom steps performed when zooming using the mouse scroll wheel.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

64 Class Documentation

7.14.2.2 int ccdvl::frontend::QtGraphSettings::ZoomSettings::y wheel zoom step factor

The number of y zoom steps performed when zooming using the mouse scroll wheel.

The documentation for this struct was generated from the following file:

• include/qt_frontend/qt_graph_settings.h

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference

A frame with the rendered plot graphics and axes.

#include <qt_graph_view_frame.h>

Inheritance diagram for ccdvl::frontend::QtGraphViewFrame:

ccdvl::frontend::QtGraph
ViewFrame

ccdvl::CacheObserverInterface

Collaboration diagram for ccdvl::frontend::QtGraphViewFrame:

ccdvl::frontend::QtGraph
ViewFrame

ccdvl::frontend::QtGraph
Widget

 graph_view_frame_

ccdvl::frontend::QtToolbar
Frame

 graph_view_frame_

ccdvl::frontend::QtToolGraphicsView

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::CacheObserverInterface

std::list< CacheObserver
Interface * > elements

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame status_bar_frame_

ccdvl::TaskProgressInterface

ccdvl::frontend::QtGraph
Settings

 graph_settings_

 settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState ccdvl::CacheController cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * > elements

 observers_

ccdvl::Renderer
 renderer_

ccdvl::MemoryManager
 memory_manager_ observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >
 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >
 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare > cache_

ccdvl::GraphTile elements

std::map< const Abstract
Group *, uint8_t * > group_image_buffers keys

std::list< const Abstract
Group * >

 elements

 keys

ccdvl::Group2D

std::string name_std::basic_string<
 char >

 keys

 groups_

 group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_ parent_

std::list< Group2D * > elements

 group_leafs_

 toolbar_frame_

ccdvl::frontend::QtBaseTool tools_

 tool_graphics_view_

 tool_graphics_view_

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >T elements

Public Slots

• void UpdateGraphView ()

Updates the graph states in the graph cache used by the graph image tiles with the current center position, zoom and
scale factors. Progressive graph updates are also started if needed.

• void UpdateGraphView (GraphPointF center_pos)

Updates the graph states in the graph cache used by the graph image tiles with the given center position and the
current zoom and scale factors. Progressive graph updates are also started if needed.

• void UpdateGraphView (GraphPointF center_pos, double x_zoom, double y_zoom)

Updates the graph states in the graph cache used by the graph image tiles with the given center position, zoom and
current scale factors. Progressive graph updates are also started if needed.

• void UpdateGraphView (GraphPointF center_pos, double x_zoom, double y_zoom, double x_scale, double
y_scale)

Updates the graph states in the graph cache used by the graph image tiles with the given center position, zoom and
scale factors. Progressive graph updates are also started if needed.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 65

• void StartProgressiveGraphUpdates ()

Starts the graph update timer that triggers progressive graph updates using the kDefaultGraphUpdateInterval.

• void StartProgressiveGraphUpdates (int update_interval)

Starts or restarts the graph update timer that triggers progressive graph updates using the given update_interval.

• void UpdateBegun ()

Sets the stop and reload button properties when an update begins.

• void UpdateCanceled ()

Sets the stop and reload button properties when an update is canceled, and stops the graph view update.

• void UpdateFinished ()

Sets the stop and reload button properties when an update finishes.

• void StopUpdateButtonClicked ()

Stops the current graph view update and the renderer if it is running.

• void ReloadUpdateButtonClicked ()

Reloads the graph view with the current graph state properties.

• void DrawGraphView ()

Progressively draws and shows the graph image composed of the graph image tiles fetched from the graph cache
state image buffers.

• void UpdateGraphGlassPane ()

Updates the graph glass pane and redraws the grid on it.

• bool AddGraphImageTilesOnResize ()

Expands the graph scene, if neccessary, by adding enough tiles to cover the current graph view.

• void SynchronizeViewAndAxes ()

Sets the axes scroll bar positions to the corresponding scroll bar positions of the tool graphics view.

• void SettingsChanged (bool renderer, bool graph, bool grid, bool axes)

Handles changes of the graph configuration class QtSettings.

Signals

• void BeginUpdate ()

Sending this signal indicates that an update has been started by the sender.

• void CancelUpdate ()

Sending this signal cancels any ongoing update of the graph view.

• void FinishUpdate ()

Sending this signal indicates that the current ongoing update is done and that the GUI should reflect this.

Public Member Functions

• QtGraphViewFrame (Renderer ∗renderer, int graph_cache_size, SceneInt image_tile_width, SceneInt
image_tile_height, QtGraphNeighbourhoodFrame ∗graph_neighbourhood_frame, QtGraphWidget ∗graph_-
widget)

Constructs and initiates a graph view frame with the given renderer, graph image tile size and graph widget parent.

• int Init (const QString &x_unit_label_text, const QString &y_unit_label_text, bool toolbar_on_top)

Initiats the labels, toolbar frame, render settings, the graph cache, the graphics scene, the graph axes and the tool
graphics view.

• QtToolGraphicsView ∗ tool_graphics_view ()

Returns the tool graphics view used by the graphics scene of the graph.

• QPixmap graph_image ()

The image displayed in the tool graphics view.

• QGraphicsPixmapItem ∗ graph_glass_pane ()

Returns the graph glass pane that can be used to display and draw anything on top of the graph view.

• QtGraphSettings ∗ graph_settings ()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

66 Class Documentation

The graph settings.

• SceneRectF CurrentViewRectToScene ()

The current viewport rectangle of the view in scene coordinates.

• GraphRectF CurrentViewRectToGraph ()

The current viewport rectangle of the view in graph coordinates.

• GraphPointF CurrentCenterPosition ()

The current graph view center position in graph coordinates.

• void LockGraphState ()

Locks the graph state mutex.

• bool TryLockGraphState ()

Attempts to lock the graph state mutex.

• bool TryLockGraphState (int timeout)

Attempts to lock the graph state mutex within the given timeout.

• void UnlockGraphState ()

Unlocks the graph state mutex.

• bool updating_graph ()

The update state of the graph view.

• virtual void CacheObserverUpdate (CacheController ∗callee, CacheEvent reason)

Recieves changes to the cache and renderer states.

• void PanTo (GraphPointF center_pos)

Pans to (centers graph view on) the given position.

• void PanTriggeredUpdate ()

Checks if the current center position is close enough to one edge of the scene to trigger a graph update.

• void UpdateDisplayedRangesInfo ()

Updates the displayed ranges info in the coordinate and axes info frame.

• void ClearGraphImages ()

Clears all graph image tiles used to compose the graph image.

• void SetGridProperties (QColor line_color, GraphDouble x_step, GraphDouble y_step, bool visible, QtGraph-
Settings::GridType type)

Sets the grid line color, grid line distances grid visiblity and grid type.

• void ShowGrid ()

Redraws the glass pane and shows the grid.

• void HideGrid ()

Updates the glass pane and hides the grid.

• void SetAxesProperties (QColor line_color, const QString &x_label, const QString &y_label, GraphInt x_step,
GraphInt y_step, GraphInt x_spacer, GraphInt y_spacer, double upper_sci_bound, double lower_sci_bound,
int normal_precision, int sci_precision)

Sets the axes line color, the x and y step values and spacers.

• void SetGraphImageTileWidth (int width)

Sets the graph image tile width in the graph settings, and updates the graph image and scene sizes, as well as the
graph state and view.

• void SetGraphImageTileHeight (int height)

Sets the graph image tile height in the graph settings, and updates the graph image and scene sizes, as well as the
graph state and view.

• void SetGraphImageTileSize (int width, int height)

Sets the graph image tile size in the graph settings, and updates the graph image and scene sizes, as well as the
graph state and view.

• void SetGraphImageTileRows (int rows)

Sets the number of graph image tile rows and updates the view, graph state and graph settings.

• void SetGraphImageTileColumns (int columns)

Sets the number of graph image tile columns and updates the view, graph state, and settings.

• void SetGraphImageTileRowsAndColumns (int rows, int columns)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 67

Sets the number of graph image tile rows and columns, and updates the view, graph state and settings.

• SceneDouble CurrentSceneWidth ()

Calculate the current graphics scene width.

• SceneDouble CurrentSceneHeight ()

Calculate the current graphics scene height.

• SceneRectF CurrentSceneRect ()

Calculates the current scene rectangle using CurrentSceneWidth() and CurrentSceneHeight().

Static Public Attributes

• static const SceneInt kDefaultPanWidth = 4

The factor of graphics view widths, to render for the graph image to allow smoother panning and better neighbourhood
overview.

• static const SceneInt kDefaultPanHeight = 4

The factor of graphics view heights, to render for the graph image to allow smoother panning and better neighbourhood
overview.

• static const int kDefaultGraphUpdateInterval = 1000

The interval for the graph update timer in milliseconds.

Protected Member Functions

• void DrawGrid (QPainter &painter)

Draws the grid according to the curent grid properties on the paint device associated with the painter.

Private Member Functions

• void CreateLabels ()
• void ClearGraphImagesDrawnFlags ()

Clears all the drawn flags of the graph image tiles used to compose the graph image.

• void SwapStopReloadUpdateButtons (bool show_stop_update_button)

Shows the stop update button and hides the reload update button if show_stop_update_button is true, otherwise the
stop update button is hidden and the reload update button is shown.

• void DrawGraphFirstRedraw ()

Takes care of updating the current graph state, the current view range data, glass pane and axes during the first graph
update timer call to DrawGraphView().

• void DrawGraphDone ()

Stops the graph update timer, updates the neighbourhood overview and resets the graph update parameters, pro-
gressbars and reload button.

• void DrawAxes ()

Draws the x- and y-axis in the corresponding axis views.

• bool DrawAxesDashAndText (QPainter &painter, ScenePointF curr_dash_start_pos, ScenePointF curr_dash-
_stop_pos, QStaticText &curr_text, ScenePointF curr_text_start_pos, SceneInt curr_text_start, SceneInt curr-
_text_stop, SceneInt prev_text_stop, SceneInt next_text_start, SceneInt text_spacer)

Tries to draw a dash and the given text at the given position on a graph axis, if there is enough available space (in
pixels).

• QString AxesDashText (GraphDouble xy, double upper_sci_bound, double lower_sci_bound, int normal_-
precision, int sci_precision)

Returns a formatted string of the given xy value with the given precision.

• SceneRectF PanTriggerUpdateBorder ()

The border, outside which panning should trigger updates of the graph view and graph image, due to being too close
to an edge of the graph image in the graphics scene.

• void SetGraphImageAndSceneSize (int width, int height)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

68 Class Documentation

Helper function to set the size of the graph image, graphics scene, graph axes and updates the next graph state.

• int GraphImagesRows ()

The current number of rows in the graph image tiles 2D list.

• int GraphImagesColumns ()

The current number of columns in the graph image tiles 2D list.

• void PrependRowToGraphImages ()

Prepends a row containing NULLs to the graph image tiles 2D list.

• void AppendRowToGraphImages ()

Appends a row containing NULLs to the graph image tiles 2D list.

• void PrependColumnToGraphImages ()

Prepends a column containing NULLs to the graph image tiles 2D list.

• void AppendColumnToGraphImages ()

Appends a column containing NULLs to the graph image tiles 2D list.

• void RemoveFirstGraphImagesRow ()

Removes the first (top) row from the graph image tiles 2D list.

• void RemoveLastGraphImagesRow ()

Removes the last (bottom) row from the graph image tiles 2D list.

• void RemoveFirstGraphImagesColumn ()

Removes the first (leftmost) column from the graph image tiles 2D list.

• void RemoveLastGraphImagesColumn ()

Removes the last column (rightmost) from the graph image tiles 2D list.

Private Attributes

• QtGraphSettings ∗ graph_settings_

Collection of all settings and other objects with specific configurations.

• QtGraphNeighbourhoodFrame ∗ graph_neighbourhood_frame_

The graph neighbourhood frame that shows the graph view neighbourhood and view outline.

• QtGraphWidget ∗ graph_widget_

The graph widget used to access the coordinate and axes info frame.

• QtToolGraphicsView ∗ tool_graphics_view_

The tool graphics view used by the graphics scene.

• QGraphicsView ∗ x_axis_view_

The graphics views used to show the x-axis.

• QGraphicsView ∗ y_axis_view_

The graphics views used to show the y-axis.

• QGraphicsPixmapItem ∗ graph_pixmap_item_

The graphics item used by the graphics scene to display the graph image.

• QGraphicsPixmapItem ∗ x_axis_pixmap_item_

The graphics item used by the graphics scene to display the x-axis.

• QGraphicsPixmapItem ∗ y_axis_pixmap_item_

The graphics item used by the graphics scene to display the y-axis.

• QGraphicsPixmapItem ∗ graph_glass_pane_

The graphics item used by the graphics scene to display the graph glass pane. The glass pane is an overlay used to
display the grid, and it can also be used to display more things if desired.

• QLabel ∗ x_plot_text_label_

The label used to display x-axis name.

• QLabel ∗ x_plot_arrow_label_

The label used to display the x-axis arrow.

• QLabel ∗ x_axis_unit_label_

The label used to display the x-axis unit type.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 69

• QLabel ∗ y_plot_text_label_

The label used to display y-axis name.

• QLabel ∗ y_plot_arrow_label_

The label used to display the y-axis arrow.

• QLabel ∗ y_axis_unit_label_

The label used to display the y-axis unit type.

• QPushButton ∗ stop_update_button_

The button used to stop an update and the rendering.

• QPushButton ∗ reload_update_button_

The button used to reload the current graph view.

• QPixmap graph_image_

The image generated by the graph image tiles and used by the graphics pixmap item displayed in the graphics scene.

• QGridLayout ∗ main_layout_

The main layout containing all components of the object.

• QTimer ∗ graph_update_timer_

A timer used to progressively render partial graph image tile states on update.

• QMutex ∗ graph_state_mutex_

The mutex that makes sure that multiple, possibly parallel, graph state cache updates do not interfere with each other.

• bool cancel_update_

Checked by graph updating functions to stop an update in progress.

• bool wait_for_renderer_

UpdateFinished() does nothing as long as this is true.

• bool updating_graph_

True if the graph view or renderer is currently updating the graph.

• bool draw_graph_init_

Used once to force centering on the center of the graphics scene during initialization when the scene size is uninitial-
ized.

• bool first_redraw_

Used to update current graph state and recenter view only once per call to DrawGraphView().

• GraphImageTile2DList graph_image_tiles_

A clipmap consisting of a 2D list coantaining the graph state image tiles, which are used to compose the currently
shown graph image.

Additional Inherited Members

7.15.1 Detailed Description

A frame with the rendered plot graphics and axes.

This class acts as a clipmap using a graph image tile cache. It prepares and composes smaller graph image tiles
into a larger graph image showing the plotted graph.

The composed graph image is larger than the actual view to allow panning. Panning to close to an edge or changing
the scale or zoom level causes the graph image offset to change and progressively updates the graph image by
adding graph image tiles along the closest edges and removing graph image tiles from the opposite edges to retain
the size of the panning area. Graph image tiles are also added as needed to make sure that there is enough space
to pan.

There are also functions for configuring a grid overlay and managing the graph axes.

Todo TODO(Max): this should be split into several classes and helper classes.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

70 Class Documentation

7.15.2 Constructor & Destructor Documentation

7.15.2.1 ccdvl::frontend::QtGraphViewFrame::QtGraphViewFrame (Renderer ∗ renderer, int graph cache size, SceneInt
image tile width, SceneInt image tile height, QtGraphNeighbourhoodFrame ∗ graph neighbourhood frame,
QtGraphWidget ∗ graph widget)

Constructs and initiates a graph view frame with the given renderer, graph image tile size and graph widget parent.

Parameters
in renderer The renderer used to draw the graph.
in graph_cache_-

size
The size of the graph image tile cache (the number of graph image tiles to hold).

in image_tile_width The width of a state image tile.
in image_tile_-

height
The height of a state image tile.

in graph_-
neighbourhood_-

frame

The graph neighbourhood frame.

in graph_widget The main widget used by the GUI.

7.15.3 Member Function Documentation

7.15.3.1 bool ccdvl::frontend::QtGraphViewFrame::AddGraphImageTilesOnResize () [slot]

Expands the graph scene, if neccessary, by adding enough tiles to cover the current graph view.

This function should be called on resize of the graphics view and also if the state width or state height change.

Returns

true if the any tiles were added.

7.15.3.2 QString ccdvl::frontend::QtGraphViewFrame::AxesDashText (GraphDouble xy, double upper sci bound, double
lower sci bound, int normal precision, int sci precision) [private]

Returns a formatted string of the given xy value with the given precision.

The returned string is an integer if the absolute value of xy is less than upper_sci_bound and more than lower_sci-
_bound, e.g. AxesDashText(5123, 10000, 0.01) returns 5123.

Otherwise it is written with scientific notation with a line break after the float followed by times 10 with the exponent
in superscript, e.g. AxesDashText(51234, 10000, 0.01) returns

5.123

×10+03

and AxesDashText(0.051234, 10000, 0.01) returns

5.123

×10-02 .

Parameters
in xy The coordinate value to be converted.
in upper_sci_-

bound
The upper bound over which scientific notation is to be used.

in lower_sci_bound The lower bound under which scientific notation is to be used.
in normal_-

precision
The precision to be used for normal notation.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 71

in sci_precision The precision to be used for the scientidic notation.

Returns

The value of xy as a formatted string.

7.15.3.3 void ccdvl::frontend::QtGraphViewFrame::BeginUpdate () [signal]

Sending this signal indicates that an update has been started by the sender.

Note

Sending this signal does not start an update, use UpdateGraphView() for this.

See also

UpdateGraphView(), CancelUpdate() and FinishUpdate()

7.15.3.4 void ccdvl::frontend::QtGraphViewFrame::CacheObserverUpdate (CacheController ∗ callee, CacheEvent
reason) [virtual]

Recieves changes to the cache and renderer states.

The cache and renderer states that are handled are: rendering begun, rendering canceled and rendereing finished.

Parameters
in callee Currently ignored as there is only one ache controller.
in reason The current state change.

Implements ccdvl::CacheObserverInterface.

7.15.3.5 void ccdvl::frontend::QtGraphViewFrame::CancelUpdate () [signal]

Sending this signal cancels any ongoing update of the graph view.

Note

This does not cancel any work being performed by the renderer.

See also

BeginUpdate() and FinishUpdate()

7.15.3.6 void ccdvl::frontend::QtGraphViewFrame::ClearGraphImages ()

Clears all graph image tiles used to compose the graph image.

Deletes all the images and sets the drawn flags to false. This will cause all image tiles to be repainted from the
graph cache buffers on the next graph view update, i.e. a call to UpdateGraph(), DrawGraph() or StartProgressive-
GraphUpdates().

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

72 Class Documentation

See also

UpdateGraph(), DrawGraph() and StartProgressiveGraphUpdates()

7.15.3.7 void ccdvl::frontend::QtGraphViewFrame::ClearGraphImagesDrawnFlags () [private]

Clears all the drawn flags of the graph image tiles used to compose the graph image.

This will cause the graph image tiles to be redrawn on the next graph view update.

See also

ClearGraphImages()

7.15.3.8 void ccdvl::frontend::QtGraphViewFrame::CreateLabels () [private]

Creates and initiates the labels of the graph view frame.

7.15.3.9 GraphPointF ccdvl::frontend::QtGraphViewFrame::CurrentCenterPosition ()

The current graph view center position in graph coordinates.

Returns

The current center position of the graph view.

7.15.3.10 SceneDouble ccdvl::frontend::QtGraphViewFrame::CurrentSceneHeight ()

Calculate the current graphics scene height.

The QGraphicsScene::height() may temporarily be invalid due to updates, resizes or transitions, and is thus more
accurately calculated by GraphImagesRows() ∗ StateHeight().

Returns

The height of the graphics scene used by the tool graphics view.

See also

CurrentSceneWidth() and CurrentSceneRect()

7.15.3.11 SceneRectF ccdvl::frontend::QtGraphViewFrame::CurrentSceneRect ()

Calculates the current scene rectangle using CurrentSceneWidth() and CurrentSceneHeight().

Returns

The scene rectangle of the graphics scene used by the tool graphics view.

See also

CurrentSceneWidth() and CurrentSceneHeight()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 73

7.15.3.12 SceneDouble ccdvl::frontend::QtGraphViewFrame::CurrentSceneWidth ()

Calculate the current graphics scene width.

The QGraphicsScene::width() may temporarily be invalid due to updates, resizes or transitions, and is thus more
accurately calculated by GraphImagesColumns() ∗ StateWidth().

Returns

The width of the graphics scene used by the tool graphics view.

See also

CurrentSceneHeight() and CurrentSceneRect()

7.15.3.13 GraphRectF ccdvl::frontend::QtGraphViewFrame::CurrentViewRectToGraph ()

The current viewport rectangle of the view in graph coordinates.

Returns

The currently shown graph rectangle.

7.15.3.14 SceneRectF ccdvl::frontend::QtGraphViewFrame::CurrentViewRectToScene ()

The current viewport rectangle of the view in scene coordinates.

Returns

The currently shown scene rectangle.

7.15.3.15 bool ccdvl::frontend::QtGraphViewFrame::DrawAxesDashAndText (QPainter & painter, ScenePointF
curr dash start pos, ScenePointF curr dash stop pos, QStaticText & curr text, ScenePointF
curr text start pos, SceneInt curr text start, SceneInt curr text stop, SceneInt prev text stop, SceneInt
next text start, SceneInt text spacer) [private]

Tries to draw a dash and the given text at the given position on a graph axis, if there is enough available space (in
pixels).

Parameters
in painter The painter to draw the dash and text with.
in curr_dash_start-

_pos
Dash start position on axis.

in curr_dash_stop-
_pos

Dash stop position on axis.

in curr_text The text to draw.
in curr_text_start_-

pos
Text position in relation to dash.

in curr_text_start Text start position on axis.
in curr_text_stop Text stop position on axis.
in prev_text_stop Previous text stop position on axis.
in next_text_start Next text start position on axis.
in text_spacer Minimum pixel distance between texts on axis.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

74 Class Documentation

Returns

true if the dash and text was drawn.

7.15.3.16 void ccdvl::frontend::QtGraphViewFrame::DrawGraphFirstRedraw () [private]

Takes care of updating the current graph state, the current view range data, glass pane and axes during the first
graph update timer call to DrawGraphView().

See also

DrawGraphView()

7.15.3.17 void ccdvl::frontend::QtGraphViewFrame::DrawGraphView () [slot]

Progressively draws and shows the graph image composed of the graph image tiles fetched from the graph cache
state image buffers.

It should continue to be called by the graph update timer, normally started by a call to UpdateGraphView(). It will
then stop the graph update timer when all graph image tile graph cache states are valid (fully rendered).

Note

This function should thus preferably not be called directly when the graph update timer is not running, as it will
potentially leave the dispalyed graph in a partially updated state if the graph cache does not have completely
rendered graph image tiles for the current view.

See also

UpdateGraphView()

7.15.3.18 void ccdvl::frontend::QtGraphViewFrame::DrawGrid (QPainter & painter) [protected]

Draws the grid according to the curent grid properties on the paint device associated with the painter.

It uses #next_graph_scene_state_ to determine the position of the grid lines. It first draws all grid lines with coordi-
nates larger than zero, and then all the grid lines with coordinates less than zero.

Vertical lines are drawn first and horizontal lines last.

Parameters
in painter The painter to draw the grid with.

See also

SetGridProperties(QColor, GraphDouble, GraphDouble, bool, GridType)

7.15.3.19 void ccdvl::frontend::QtGraphViewFrame::FinishUpdate () [signal]

Sending this signal indicates that the current ongoing update is done and that the GUI should reflect this.

Note

This does nothing if the renderer process is in the progress of being canceled/stopped/aborted.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 75

See also

BeginUpdate() and CancelUpdate()

7.15.3.20 QGraphicsPixmapItem ∗ ccdvl::frontend::QtGraphViewFrame::graph glass pane ()

Returns the graph glass pane that can be used to display and draw anything on top of the graph view.

By default the graph glass pane is only used to display the grid. Override UpdateGraphGlassPane() to change what
is shown.

Returns

The graph glass pane QGraphicsPixmapItem.

See also

UpdateGraphGlassPane()

7.15.3.21 QPixmap ccdvl::frontend::QtGraphViewFrame::graph image ()

The image displayed in the tool graphics view.

Returns

The graph image as a pixmap.

7.15.3.22 QtGraphSettings ∗ ccdvl::frontend::QtGraphViewFrame::graph settings ()

The graph settings.

Returns

The graph settings.

7.15.3.23 int ccdvl::frontend::QtGraphViewFrame::GraphImagesColumns () [private]

The current number of columns in the graph image tiles 2D list.

Returns

The number of columns of graph tile images.

7.15.3.24 int ccdvl::frontend::QtGraphViewFrame::GraphImagesRows () [private]

The current number of rows in the graph image tiles 2D list.

Returns

The number of rows of graph tile images.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

76 Class Documentation

7.15.3.25 void ccdvl::frontend::QtGraphViewFrame::HideGrid ()

Updates the glass pane and hides the grid.

See also

ShowGrid() and UpdateGraphGlassPane()

7.15.3.26 int ccdvl::frontend::QtGraphViewFrame::Init (const QString & x unit label text, const QString & y unit label text,
bool toolbar on top)

Initiats the labels, toolbar frame, render settings, the graph cache, the graphics scene, the graph axes and the tool
graphics view.

Parameters
in x_unit_label_text The label for the x-axis unit.
in y_unit_label_text The label for the y-axis unit.

toolbar_on_top Puts the toolbar frame on top of the graph view if true.

Returns

0 if the initializiation was successful.

7.15.3.27 void ccdvl::frontend::QtGraphViewFrame::LockGraphState ()

Locks the graph state mutex.

If another thread has locked the graph state mutex then this call will block until the graph state mutex is unlocked by
that thread with UnlockGraphState().

Note

This function must be called before using the current graph state in any way, otherwise the state is not thread
safe and it will have undefined behaviour.

See also

TryLockGraphState(), UnlockGraphState() and current_graph_state().

7.15.3.28 void ccdvl::frontend::QtGraphViewFrame::PanTo (GraphPointF center pos)

Pans to (centers graph view on) the given position.

Calls UpdateGraph(GraphPointF) if center_pos is outside the current graph view scene.

Parameters
in center_pos The position to recenter on.

7.15.3.29 void ccdvl::frontend::QtGraphViewFrame::PanTriggeredUpdate ()

Checks if the current center position is close enough to one edge of the scene to trigger a graph update.

Updates the graph view by calling UpdateGraph() if the center position is outside the rectangle formed by the

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 77

following points:

top left = scene width / tile columns, scene height / tile rows

bottom right = scene witdh ∗ (tile columns - 1) / tile columns, scene height ∗ (tile rows - 1) / tile rows

See also

UpdateGraph()

7.15.3.30 SceneRectF ccdvl::frontend::QtGraphViewFrame::PanTriggerUpdateBorder () [private]

The border, outside which panning should trigger updates of the graph view and graph image, due to being too
close to an edge of the graph image in the graphics scene.

The border rectangle is dependent on the current size of the graphics view in that it is formed by subtracting 1.5 ∗
width and 1.5 ∗ height of the graphics view from the width and height of the current scene rectangle respectively.

Returns

The current pan trigger update border rectangle.

7.15.3.31 void ccdvl::frontend::QtGraphViewFrame::ReloadUpdateButtonClicked () [slot]

Reloads the graph view with the current graph state properties.

See also

current_graph_state() and StopUpdateButtonClicked()

7.15.3.32 void ccdvl::frontend::QtGraphViewFrame::SetAxesProperties (QColor line color, const QString & x label, const
QString & y label, GraphInt x step, GraphInt y step, GraphInt x spacer, GraphInt y spacer, double
upper sci bound, double lower sci bound, int normal precision, int sci precision)

Sets the axes line color, the x and y step values and spacers.

DrawAxes() must be called for the changes to be applied.

Parameters
in line_color The new axes line color.
in x_label The x-axis unit label.
in y_label The y-axis unit label.
in x_step The new graph step distance along the x-axis.
in y_step The new graph step distance along the y-axis.
in x_spacer The scene spacer distance between steps and sub-steps along the x-axis.
in y_spacer The scene spacer distance between steps and sub-steps along the y-axis.
in upper_sci_-

bound
The upper bound over which scientific notation is to be used.

in lower_sci_bound The lower bound under which scientific notation is to be used.
in normal_-

precision
The precision to be used for normal notation.

in sci_precision The precision to be used for the scientidic notation.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

78 Class Documentation

See also

DrawAxes()

7.15.3.33 void ccdvl::frontend::QtGraphViewFrame::SetGraphImageTileColumns (int columns)

Sets the number of graph image tile columns and updates the view, graph state, and settings.

More tiles will automatically be added by the graph update to cover the view and panning space if needed.

Parameters
in columns The number of graph image tiles columns to use. Must be > 2.

See also

SetGraphImageTileRows(int) and SetGraphImageTileRowsAndColumns(int, int)

7.15.3.34 void ccdvl::frontend::QtGraphViewFrame::SetGraphImageTileHeight (int height)

Sets the graph image tile height in the graph settings, and updates the graph image and scene sizes, as well as the
graph state and view.

Parameters
in height The new graph image tile height. Must be > 0.

See also

SetGraphImageTileWidth(int) and SetGraphImageTileSize(int, int)

7.15.3.35 void ccdvl::frontend::QtGraphViewFrame::SetGraphImageTileRows (int rows)

Sets the number of graph image tile rows and updates the view, graph state and graph settings.

More tiles will automatically be added by the graph update to cover the view and panning space if needed.

Parameters
in rows The number of graph image tiles rows to use. Must be > 2.

See also

SetGraphImageTileColumns(int) and SetGraphImageTileRowsAndColumns(int, int)

7.15.3.36 void ccdvl::frontend::QtGraphViewFrame::SetGraphImageTileRowsAndColumns (int rows, int columns)

Sets the number of graph image tile rows and columns, and updates the view, graph state and settings.

More tiles will automatically be added by the graph update to cover the view and panning space if needed.

Parameters
in rows The number of graph image tiles rows to use. Must be > 2.
in columns The number of graph image tiles columns to use. Must be > 2.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 79

See also

SetGraphImageTileRows(int) and SetGraphImageTileColumns(int)

7.15.3.37 void ccdvl::frontend::QtGraphViewFrame::SetGraphImageTileSize (int width, int height)

Sets the graph image tile size in the graph settings, and updates the graph image and scene sizes, as well as the
graph state and view.

Parameters
in width The new graph image tile width. Must be > 0.
in height The new graph image tile height. Must be > 0.

See also

SetGraphImageTileWidth(int) and SetGraphImageTileHeight(int)

7.15.3.38 void ccdvl::frontend::QtGraphViewFrame::SetGraphImageTileWidth (int width)

Sets the graph image tile width in the graph settings, and updates the graph image and scene sizes, as well as the
graph state and view.

Parameters
in width The new graph image tile width. Must be > 0.

See also

SetGraphImageTileHeight(int) and SetGraphImageTileSize(int, int)

7.15.3.39 void ccdvl::frontend::QtGraphViewFrame::SetGridProperties (QColor line color, GraphDouble x step,
GraphDouble y step, bool visible, QtGraphSettings::GridType type)

Sets the grid line color, grid line distances grid visiblity and grid type.

UpdateGraphGlassPane() must be called for the changes to be applied.

Parameters
in line_color The new grid line color.
in x_step The new grid line distance along the x-axis.
in y_step The new grid line distance along the y-axis.
in visible Determines if the grid should be shown or not.
in type The type of the grid.

See also

UpdateGraphGlassPane()

7.15.3.40 void ccdvl::frontend::QtGraphViewFrame::SettingsChanged (bool renderer, bool graph, bool grid, bool axes)
[slot]

Handles changes of the graph configuration class QtSettings.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

80 Class Documentation

Parameters
renderer true iff any of the renderer settings changed. This includes point shape, line, scaling, etc.

graph true iff any graph view settings changed.
grid true iff any grid settings changed.

axes true iff any axis setting changed.

7.15.3.41 void ccdvl::frontend::QtGraphViewFrame::ShowGrid ()

Redraws the glass pane and shows the grid.

See also

HideGrid() and UpdateGraphGlassPane()

7.15.3.42 void ccdvl::frontend::QtGraphViewFrame::StartProgressiveGraphUpdates () [slot]

Starts the graph update timer that triggers progressive graph updates using the kDefaultGraphUpdateInterval.

See also

StartProgressiveGraphUpdates(int) and kDefaultGraphUpdateInterval

7.15.3.43 void ccdvl::frontend::QtGraphViewFrame::StartProgressiveGraphUpdates (int update interval) [slot]

Starts or restarts the graph update timer that triggers progressive graph updates using the given update_interval.

Parameters
in update_interval The update interval to be used, which must be larger than zero.

See also

StartProgressiveGraphUpdates()

7.15.3.44 void ccdvl::frontend::QtGraphViewFrame::StopUpdateButtonClicked () [slot]

Stops the current graph view update and the renderer if it is running.

Note

This may cause the shown and the current graph scene state to become out of sync. A reload or update of the
graph is required to make sure that they are in sync again.

See also

current_graph_state(), UpdateGraphView() and ReloadUpdateButtonClicked()

7.15.3.45 QtToolGraphicsView ∗ ccdvl::frontend::QtGraphViewFrame::tool graphics view ()

Returns the tool graphics view used by the graphics scene of the graph.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 81

Returns

The tool graphics view.

7.15.3.46 bool ccdvl::frontend::QtGraphViewFrame::TryLockGraphState ()

Attempts to lock the graph state mutex.

If the lock was obtained, the it must be unlocked with UnlockGraphState() before another thread can successfully
lock it.

Returns

true if the lock was obtained. If another thread has locked the graph state, this function returns false immediately.

See also

TryLockGraphState(int), LockGraphState(), UnlockGraphState() and current_graph_state().

7.15.3.47 bool ccdvl::frontend::QtGraphViewFrame::TryLockGraphState (int timeout)

Attempts to lock the graph state mutex within the given timeout.

If another thread has locked the graph state mutex, this function will wait for at most timeout milliseconds for the
graph state mutex to become available.

If it was obtained, the graph state mutex must be unlocked with UnlockGraphState() before another thread can
successfully lock it.

Note

Passing a negative number as the timeout is equivalent to calling LockGraphState(), i.e. this function will wait
forever until the graph state mutex can be locked if timeout is negative.

Parameters
in timeout The number of milliseconds to wait for the graph state mutex to become avail-

able.

Returns

true if the lock was successfully locked by this function within the given timeout.

See also

LockGraphState(), UnlockGraphState() and current_graph_state().

7.15.3.48 void ccdvl::frontend::QtGraphViewFrame::UnlockGraphState ()

Unlocks the graph state mutex.

Attempting to unlock the graph state mutex in a different thread to the one that locked it results in an error. Unlocking
the graph state mutex when it is not locked results in undefined behavior.

See also

LockGraphState(), TryLockGraphState() and current_graph_state().

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

82 Class Documentation

7.15.3.49 void ccdvl::frontend::QtGraphViewFrame::UpdateBegun () [slot]

Sets the stop and reload button properties when an update begins.

See also

UpdateCanceled() and UpdateFinished()

7.15.3.50 void ccdvl::frontend::QtGraphViewFrame::UpdateCanceled () [slot]

Sets the stop and reload button properties when an update is canceled, and stops the graph view update.

See also

UpdateBegun() and UpdateFinished()

7.15.3.51 void ccdvl::frontend::QtGraphViewFrame::UpdateFinished () [slot]

Sets the stop and reload button properties when an update finishes.

See also

UpdateBegun and UpdateCanceled()

7.15.3.52 void ccdvl::frontend::QtGraphViewFrame::UpdateGraphGlassPane () [slot]

Updates the graph glass pane and redraws the grid on it.

This function can be overriden in a sub class to allow more items than the grid to be shown on the glass pane.

See also

DrawGrid(QPainter&)

7.15.3.53 void ccdvl::frontend::QtGraphViewFrame::UpdateGraphView () [slot]

Updates the graph states in the graph cache used by the graph image tiles with the current center position, zoom
and scale factors. Progressive graph updates are also started if needed.

See also

UpdateGraph(GraphPointF), UpdateGraph(GraphPointF, double, double) and UpdateGraph(GraphPointF, dou-
ble, double, double, double).

7.15.3.54 void ccdvl::frontend::QtGraphViewFrame::UpdateGraphView (GraphPointF center pos) [slot]

Updates the graph states in the graph cache used by the graph image tiles with the given center position and the
current zoom and scale factors. Progressive graph updates are also started if needed.

Parameters
in center_pos The new center position to recenter on.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 83

See also

UpdateGraph(), UpdateGraph(GraphPointF, double, double) and UpdateGraph(GraphPointF, double, double,
double, double).

7.15.3.55 void ccdvl::frontend::QtGraphViewFrame::UpdateGraphView (GraphPointF center pos, double x zoom, double
y zoom) [slot]

Updates the graph states in the graph cache used by the graph image tiles with the given center position, zoom and
current scale factors. Progressive graph updates are also started if needed.

Parameters
in center_pos The new center position to recenter on.
in x_zoom The x (or width) zoom factor of the graph view.
in y_zoom The y (or height) zoom factor of the graph view.

See also

UpdateGraph(), UpdateGraph(GraphPointF) and UpdateGraph(GraphPointF, double, double, double, double).

7.15.3.56 void ccdvl::frontend::QtGraphViewFrame::UpdateGraphView (GraphPointF center pos, double x zoom, double
y zoom, double x scale, double y scale) [slot]

Updates the graph states in the graph cache used by the graph image tiles with the given center position, zoom and
scale factors. Progressive graph updates are also started if needed.

Parameters
in center_pos The new center position to recenter on.
in x_zoom The x (or width) zoom factor of the graph view.
in y_zoom The y (or height) zoom factor of the graph view.
in x_scale The x (or width) scale factor of the graph view.
in y_scale The y (or height) scale factor of the graph view.

See also

UpdateGraph(), UpdateGraph(GraphPointF) and UpdateGraph(GraphPointF, double, double, double, double).

7.15.3.57 bool ccdvl::frontend::QtGraphViewFrame::updating graph ()

The update state of the graph view.

Returns

true if the graph view is being updated.

7.15.4 Member Data Documentation

7.15.4.1 bool ccdvl::frontend::QtGraphViewFrame::cancel update [private]

Checked by graph updating functions to stop an update in progress.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

84 Class Documentation

See also

UpdateGraphView(), DrawGraphView(), CancelUpdate(), StopUpdateButtonClicked() and ReloadUpdate-
ButtonClicked()

7.15.4.2 QGraphicsPixmapItem∗ ccdvl::frontend::QtGraphViewFrame::graph glass pane [private]

The graphics item used by the graphics scene to display the graph glass pane. The glass pane is an overlay used
to display the grid, and it can also be used to display more things if desired.

See also

graph_glass_pane() and UpdateGraphGlassPane()

7.15.4.3 GraphImageTile2DList ccdvl::frontend::QtGraphViewFrame::graph image tiles [private]

A clipmap consisting of a 2D list coantaining the graph state image tiles, which are used to compose the currently
shown graph image.

The list contains rows, with each row represented by a list. begin()->begin() thus returns an iterator for the values
in the first row, and so on.

See also

GraphImagesRows(), GraphImagesColumns(), SetGraphImageTileRows(int), SetGraphImageTileColumns(int),
SetGraphImageTileRowsAndColumns(int, int), PrependRowToGraphImages(), AppendRowToGraph-
Images(), PrependColumnToGraphImages(), AppendColumnToGraphImages(), RemoveFirstGraphImages-
Row(), RemoveLastGraphImagesRow(), RemoveFirstGraphImagesColumn() and RemoveLastGraphImages-
Column().

7.15.4.4 QGraphicsPixmapItem∗ ccdvl::frontend::QtGraphViewFrame::graph pixmap item [private]

The graphics item used by the graphics scene to display the graph image.

See also

graph_image_

7.15.4.5 QMutex∗ ccdvl::frontend::QtGraphViewFrame::graph state mutex [private]

The mutex that makes sure that multiple, possibly parallel, graph state cache updates do not interfere with each
other.

Must be used when dealing with the graph cache or any kind of graph state. This makes sure that the #current_-
graph_scene_state_ remains valid and in sync with the displayed graph image during update.

See also

#current_graph_scene_state_, LockGraphState(), TryLockGraphState(), TryLockGraphState(int) and Unlock-
GraphState()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.15 ccdvl::frontend::QtGraphViewFrame Class Reference 85

7.15.4.6 QTimer∗ ccdvl::frontend::QtGraphViewFrame::graph update timer [private]

A timer used to progressively render partial graph image tile states on update.

Started by Init() and UpdateGraphView(). Stopped by DrawGraphView() when all image tile states are valid (fully
rendered).

See also

Init(), UpdateGraphView() and DrawGraphView()

7.15.4.7 const int ccdvl::frontend::QtGraphViewFrame::kDefaultGraphUpdateInterval = 1000 [static]

The interval for the graph update timer in milliseconds.

Setting this too low will slow down the response time of the interface, especially on computers with a slow or single
core processor. Setting this too high will make the graph updates real slow, but might lessen any potential jerkiness
of the GUI.

See also

graph_update_timer_ and StartProgressiveGraphUpdates()

7.15.4.8 const SceneInt ccdvl::frontend::QtGraphViewFrame::kDefaultPanHeight = 4 [static]

The factor of graphics view heights, to render for the graph image to allow smoother panning and better neighbour-
hood overview.

Note

This must be > 2 to work at all, but it is not usefull unless > 3.

7.15.4.9 const SceneInt ccdvl::frontend::QtGraphViewFrame::kDefaultPanWidth = 4 [static]

The factor of graphics view widths, to render for the graph image to allow smoother panning and better neighbour-
hood overview.

Note

This must be > 2 to work at all, but it is not usefull unless > 3.

7.15.4.10 QPushButton∗ ccdvl::frontend::QtGraphViewFrame::reload update button [private]

The button used to reload the current graph view.

See also

ReloadUpdateButtonClicked()

7.15.4.11 QPushButton∗ ccdvl::frontend::QtGraphViewFrame::stop update button [private]

The button used to stop an update and the rendering.

See also

StopUpdateButtonClicked()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

86 Class Documentation

7.15.4.12 bool ccdvl::frontend::QtGraphViewFrame::wait for renderer [private]

UpdateFinished() does nothing as long as this is true.

Is set to true by StopUpdateButtonClicked() if the renderer is not idle at the time. Is set to false when Cache-
ObserverUpdate() recieves a kRendererCanceled message, which also triggers a call to UpdateFinished().

See also

UpdateFinished(), StopUpdateButtonClicked() and CacheObserverUpdate()

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_graph_view_frame.h
• src/qt_frontend/qt_graph_view_frame.cc

7.16 ccdvl::frontend::QtGraphWidget Class Reference

The main widget for the graph GUI, responsible for creating, displaying and updating the GUI components.

#include <qt_graph_widget.h>

Collaboration diagram for ccdvl::frontend::QtGraphWidget:

ccdvl::frontend::QtGraph
Widget

ccdvl::frontend::QtToolGraphicsView graph_widget_

ccdvl::frontend::QtGraph
ViewFrame

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame status_bar_frame_

ccdvl::TaskProgressInterface

ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_ccdvl::frontend::QtGraph
Settings::ZoomSettings zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements
std::list< CacheObserver

Interface * >

 observers_

ccdvl::CacheObserverInterface
 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >
 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * > group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements

 keys

ccdvl::Group2D

std::string
 name_std::basic_string<

 char >

 keys

 groups_

 group_render_settings_ ccdvl::frontend::QtSettings
Dialog settings_dialog_

 group_selection_
 parent_

std::list< Group2D * >
 elements

 group_leafs_

ccdvl::frontend::QtToolbar
Frame

 toolbar_frame_

ccdvl::frontend::QtBaseTool tools_ tool_graphics_view_

 tool_graphics_view_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_
ccdvl::frontend::QtGraph

NeighbourhoodFrame
 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >T elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Public Slots

• void show ()

Displays a loading data message when showing the window.

• void ResizeGraphUpdate ()

Checks if the graph has to be updated due to resize events.

Public Member Functions

• QtGraphWidget (Renderer ∗renderer, bool mac_brushed_metal_look, QWidget ∗parent=NULL)

Constructs and initiates a graph widget with the given width, height, renderer and parent.

• int Init (const QString &window_title, const QString &x_unit_label_text, const QString &y_unit_label_text, int
width, int height, bool toolbar_on_top)

Initiates the GUI components and resize event timer.

• QtGraphViewFrame ∗ graph_view_frame ()

Returns the graph view frame of the widget.

• QtCoordinateAndAxesInfoFrame ∗ coordinate_and_axes_info_frame ()

Returns the coordinate and axes info frame of the widget.

• QtGraphNeighbourhoodFrame ∗ neighbourhood_frame ()

Returns the neighbourhood frame of the widget.

• QtStatusBarFrame ∗ status_bar_frame ()

Returns the status bar frame of the widget.

• QtToolbarFrame ∗ toolbar_frame ()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.16 ccdvl::frontend::QtGraphWidget Class Reference 87

Returns the toolbar frame of the widget.

• Group2D ∗ GroupSelection ()

Get selection as a group.

Protected Member Functions

• virtual bool event (QEvent ∗event)

Accepts status tip events and displays the status tips in the satus bar of the status bar frame. All other events are
ignored and passed on to the parent of the widget.

• virtual void resizeEvent (QResizeEvent ∗event)

Accepts and handles resize events.

Private Attributes

• bool init_done_

Disables multiple graph state updates during initiation.

• Group2D ∗ group_selection_

Current group.

• QTimer ∗ resize_event_graph_update_timer_

The resize event timer used to delay graph updates.

• QtGraphViewFrame ∗ graph_view_frame_

The graph view frame of the widget.

• QtCoordinateAndAxesInfoFrame ∗ coordinate_and_axes_info_frame_

The coordinate and axes info frame of the widget.

• QtGraphNeighbourhoodFrame ∗ graph_neighbourhood_frame_

• QtStatusBarFrame ∗ status_bar_frame_

The status bar frame of the widget.

• QtToolbarFrame ∗ toolbar_frame_

The toolbar frame of the widget.

• QHBoxLayout ∗ main_layout_

The main layout containing all components of the widget.

Related Functions

(Note that these are not member functions.)

• void CCDVLQtInitializeResources ()

Forces the resources (in a static library) to be initiated. See http://doc.qt.nokia.com/latest/resources.-
html for more information.

7.16.1 Detailed Description

The main widget for the graph GUI, responsible for creating, displaying and updating the GUI components.

See also

QWidget

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://doc.qt.nokia.com/latest/resources.html
http://doc.qt.nokia.com/latest/resources.html
http://doc.qt.nokia.com/4.7/qwidget.html

88 Class Documentation

7.16.2 Constructor & Destructor Documentation

7.16.2.1 ccdvl::frontend::QtGraphWidget::QtGraphWidget (Renderer ∗ renderer, bool mac brushed metal look, QWidget ∗
parent = NULL)

Constructs and initiates a graph widget with the given width, height, renderer and parent.

The mac_brushed_metal_look decides if the widget window should have the native brushed metal look when run-
ning on Mac OS X. This is not supported by other operating systems.

Parameters
in renderer The renderer to be usded by the main widget.
in mac_brushed_-

metal_look
Brushed metal look on Mac OS X.

in parent The parent widget.

7.16.3 Member Function Documentation

7.16.3.1 QtCoordinateAndAxesInfoFrame ∗ ccdvl::frontend::QtGraphWidget::coordinate and axes info frame ()

Returns the coordinate and axes info frame of the widget.

Returns

The coordinate and axes info frame.

7.16.3.2 bool ccdvl::frontend::QtGraphWidget::event (QEvent ∗ event) [protected], [virtual]

Accepts status tip events and displays the status tips in the satus bar of the status bar frame. All other events are
ignored and passed on to the parent of the widget.

Parameters
in event An event.

7.16.3.3 QtGraphViewFrame ∗ ccdvl::frontend::QtGraphWidget::graph view frame ()

Returns the graph view frame of the widget.

Returns

The graph view frame.

7.16.3.4 Group2D ∗ ccdvl::frontend::QtGraphWidget::GroupSelection ()

Get selection as a group.

Obtain the one and only supported group.

Returns

A group or NULL if there is no selection.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.16 ccdvl::frontend::QtGraphWidget Class Reference 89

7.16.3.5 int ccdvl::frontend::QtGraphWidget::Init (const QString & window title, const QString & x unit label text, const
QString & y unit label text, int width, int height, bool toolbar on top)

Initiates the GUI components and resize event timer.

Parameters
in window_title The title of the widget window.
in x_unit_label_text The label for the x-axis unit.
in y_unit_label_text The label for the y-axis unit.
in width Initial main widget width.
in height Initial main widget height.
in toolbar_on_top Decides if the toolbar frame should be on top of the graph view or not.

Returns

0 if the initializiation was successfull.

7.16.3.6 QtGraphNeighbourhoodFrame∗ ccdvl::frontend::QtGraphWidget::neighbourhood frame ()

Returns the neighbourhood frame of the widget.

Returns

The neighbourhood frame.

7.16.3.7 void ccdvl::frontend::QtGraphWidget::resizeEvent (QResizeEvent ∗ event) [protected], [virtual]

Accepts and handles resize events.

Delays the update of the graph view image to 0.5 seconds after the last recieved resize event to avoid unnecessary
repaints and heavy recalculations of the image while resizing the widget window. Multiple resize events may be
triggered during the resize depending on the behaviour of the OS window manager (at least Mac OS X does this).

Parameters
event A resize event.

7.16.3.8 void ccdvl::frontend::QtGraphWidget::show () [slot]

Displays a loading data message when showing the window.

See also

QWidget::show()

7.16.3.9 QtStatusBarFrame ∗ ccdvl::frontend::QtGraphWidget::status bar frame ()

Returns the status bar frame of the widget.

Returns

The status bar frame.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://doc.qt.nokia.com/4.7/qwidget.html#show

90 Class Documentation

7.16.3.10 QtToolbarFrame ∗ ccdvl::frontend::QtGraphWidget::toolbar frame ()

Returns the toolbar frame of the widget.

Returns

The toolbar frame.

7.16.4 Member Data Documentation

7.16.4.1 QtGraphNeighbourhoodFrame∗ ccdvl::frontend::QtGraphWidget::graph neighbourhood frame
[private]

The neighbourhood frame of the widget.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_graph_widget.h

• src/qt_frontend/qt_graph_widget.cc

7.17 ccdvl::frontend::QtLassoSelectTool Class Reference

Provides a reusable lasso select rubber band for the graphics scene of the given QtToolGraphicsView.

#include <qt_lasso_select_tool.h>

Inheritance diagram for ccdvl::frontend::QtLassoSelectTool:

ccdvl::frontend::QtLasso
SelectTool

ccdvl::frontend::QtBaseTool

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.17 ccdvl::frontend::QtLassoSelectTool Class Reference 91

Collaboration diagram for ccdvl::frontend::QtLassoSelectTool:

ccdvl::frontend::QtLasso
SelectTool

ccdvl::frontend::QtBaseTool

ccdvl::frontend::QtToolbar
Frame

 tools_

ccdvl::frontend::QtToolGraphicsView

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

ccdvl::frontend::QtGraph
Widget

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager

 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements keys

ccdvl::Group2D

std::string

 name_

std::basic_string<
 char >

 keys

 groups_ group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_

 parent_

std::list< Group2D * >

 elements group_leafs_

 toolbar_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >

T

 elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Public Member Functions

• QtLassoSelectTool (QtToolGraphicsView ∗tool_graphics_view)

Constructs and initiates a deactivated lasso select tool object with the given QtToolGraphicsView and image pointer.

• virtual bool OnMousePress (QMouseEvent ∗event)

Starts a new lasso selection.

• virtual bool OnMouseMove (QMouseEvent ∗event)

Adds a line between the previous position and the position given by the mouse event, and changes the mouse cursor
depending in the cursor background.

• virtual bool OnMouseRelease (QMouseEvent ∗event)

Deactivates and hides the lasso selection rubber band on left mouse button release if it is active.
Other mouse events are ignored.

• virtual bool OnWheel (QWheelEvent ∗event)

Accepts all wheel events to disable manual scrolling.

Public Attributes

• const QCursor kLassoCursor
• const QCursor kLassoCursorInverted

Static Public Attributes

• static const int kMinLineLength = 4

The minimum polygon line segment length in pixels.

Private Member Functions

• void UpdatePolygonPainterPath ()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

92 Class Documentation

Updates the polygon painter path used to display the lasso rubber band selection.

• void UpdateViewImage ()

Updates the view_image_ if necessary.

• QColor ViewPixelColor (ViewPoint point)

Does a color lookup of the pixel at the given point.

Private Attributes

• bool active_

Keeps track of if the lasso select tool is active.

• QGraphicsPolygonItem ∗ graphics_polygon_item_

The graphics polygon item used to display the lasso selection in the graphics scene.

• QPainterPath lasso_painter_path_

The current selection consisting of a series of connected lines.

• QPainterPath polygon_painter_path_

The final selection consisting of a series of connected lines.

• SceneRect prev_view_scene_rect_

The previous graphics view rectangle, in scene coordinates, used in combination with prev_view_graph_rect_ to
determine if the view of the graphics view has changed.

• GraphRect prev_view_graph_rect_

The previous graphics view rectangle, in graph coordinates, used in combination with prev_view_scene_rect_ to
determine if the view of the graphics view has changed.

• QImage view_image_

The current portion of the graphics scene as shown by the graphics view, represented as an image used for pixel
color lookup.

Additional Inherited Members

7.17.1 Detailed Description

Provides a reusable lasso select rubber band for the graphics scene of the given QtToolGraphicsView.

The mouse cursor icon color inverts when going to and from lighter and darker background in the graph image, to
allow better visability.

The rubber band is used in conjunction with mouse, wheel and key events.

7.17.2 Constructor & Destructor Documentation

7.17.2.1 ccdvl::frontend::QtLassoSelectTool::QtLassoSelectTool (QtToolGraphicsView ∗ tool graphics view)

Constructs and initiates a deactivated lasso select tool object with the given QtToolGraphicsView and image pointer.

Parameters
in tool_graphics_-

view
The tool graphics view that uses the lasso select tool.

7.17.3 Member Function Documentation

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.17 ccdvl::frontend::QtLassoSelectTool Class Reference 93

7.17.3.1 bool ccdvl::frontend::QtLassoSelectTool::OnMouseMove (QMouseEvent ∗ event) [virtual]

Adds a line between the previous position and the position given by the mouse event, and changes the mouse
cursor depending in the cursor background.

Only triggers if the lasso select tool is active, the left mouse button is pressed (other mouse events are ignored) and
if the length of the added line would be greater than QtLassoSelectTool::kMinLineLength.

It also always sets the cursor to either kLassoCursor or kLassoCursorInverted depending on the color of the pixel
below the cursor.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.17.3.2 bool ccdvl::frontend::QtLassoSelectTool::OnMousePress (QMouseEvent ∗ event) [virtual]

Starts a new lasso selection.

Only triggers on left mouse press and uses the position given by the mouse event, activates and shows the lasso
select rubber band.

Right mouse press cancels the selection and deactivates the lasso select rubber band.

Other mouse events are ignored.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMouseMove(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.17.3.3 bool ccdvl::frontend::QtLassoSelectTool::OnMouseRelease (QMouseEvent ∗ event) [virtual]

Deactivates and hides the lasso selection rubber band on left mouse button release if it is active.

Other mouse events are ignored.

Parameters
in event The mouse event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

94 Class Documentation

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseMove(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.17.3.4 bool ccdvl::frontend::QtLassoSelectTool::OnWheel (QWheelEvent ∗ event) [virtual]

Accepts all wheel events to disable manual scrolling.

Parameters
in event The wheel event.

Returns

true if the event was accepted.

Reimplemented from ccdvl::frontend::QtBaseTool.

7.17.3.5 QColor ccdvl::frontend::QtLassoSelectTool::ViewPixelColor (ViewPoint point) [private]

Does a color lookup of the pixel at the given point.

Parameters
in point The pixel position to lookup.

Returns

The color of the pixel if it is valid, otherwise an invalid color.

7.17.4 Member Data Documentation

7.17.4.1 const QCursor ccdvl::frontend::QtLassoSelectTool::kLassoCursor

The normal (black) lasso cursor used over lighter areas.

7.17.4.2 const QCursor ccdvl::frontend::QtLassoSelectTool::kLassoCursorInverted

The inverted (white) lasso cursor used over darker areas.

7.17.4.3 const int ccdvl::frontend::QtLassoSelectTool::kMinLineLength = 4 [static]

The minimum polygon line segment length in pixels.

This is used to decrease the number of lines making up the lasso selection polygon. Lower values make a smoother
polygon with a slower update rate and higher values make a sharper polygon with a faster update rate.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.18 ccdvl::frontend::QtPanTool Class Reference 95

7.17.4.4 GraphRect ccdvl::frontend::QtLassoSelectTool::prev view graph rect [private]

The previous graphics view rectangle, in graph coordinates, used in combination with prev_view_scene_rect_ to
determine if the view of the graphics view has changed.

See also

prev_view_scene_rect_ and OnMouseMove(QMouseEvent∗)

7.17.4.5 SceneRect ccdvl::frontend::QtLassoSelectTool::prev view scene rect [private]

The previous graphics view rectangle, in scene coordinates, used in combination with prev_view_graph_rect_ to
determine if the view of the graphics view has changed.

See also

prev_view_graph_rect_ and OnMouseMove(QMouseEvent∗)

7.17.4.6 QImage ccdvl::frontend::QtLassoSelectTool::view image [private]

The current portion of the graphics scene as shown by the graphics view, represented as an image used for pixel
color lookup.

See also

ViewPixelColor(ViewPoint) and OnMouseMove(QMouseEvent∗)

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_lasso_select_tool.h
• src/qt_frontend/qt_lasso_select_tool.cc

7.18 ccdvl::frontend::QtPanTool Class Reference

A small reusable pan tool class that pans in a QtToolGraphicsView.

#include <qt_pan_tool.h>

Inheritance diagram for ccdvl::frontend::QtPanTool:

ccdvl::frontend::QtPanTool

ccdvl::frontend::QtBaseTool

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

96 Class Documentation

Collaboration diagram for ccdvl::frontend::QtPanTool:

ccdvl::frontend::QtPanTool

ccdvl::frontend::QtBaseTool

ccdvl::frontend::QtToolbar
Frame

 tools_

ccdvl::frontend::QtToolGraphicsView

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

ccdvl::frontend::QtGraph
Widget

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager

 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements keys

ccdvl::Group2D

std::string

 name_

std::basic_string<
 char >

 keys

 groups_ group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_

 parent_

std::list< Group2D * >

 elements group_leafs_

 toolbar_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >

T

 elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Public Member Functions

• QtPanTool (QtGraphViewFrame ∗graph_view_frame, QtToolGraphicsView ∗tool_graphics_view)

Constructs and initiates a pan tool object with the given QtToolGraphicsView.
• virtual bool OnMousePress (QMouseEvent ∗event)

Starts panning on left mouse button press at the position given by the mouse event.
Other mouse events are ignored.

• virtual bool OnMouseMove (QMouseEvent ∗event)

Pans from the start position using the position given by the mouse event.
• virtual bool OnMouseRelease (QMouseEvent ∗event)

Resets the start position on left mouse button release.
Other mouse events are ignored.

• virtual bool OnWheel (QWheelEvent ∗event)

Accepts all wheel events to disable manual scrolling.

Private Attributes

• QtGraphViewFrame ∗ graph_view_frame_

The graph view frame.

Additional Inherited Members

7.18.1 Detailed Description

A small reusable pan tool class that pans in a QtToolGraphicsView.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.18 ccdvl::frontend::QtPanTool Class Reference 97

The pan tool is used in conjunction with mouse, wheel and key events.

7.18.2 Constructor & Destructor Documentation

7.18.2.1 ccdvl::frontend::QtPanTool::QtPanTool (QtGraphViewFrame ∗ graph view frame, QtToolGraphicsView ∗
tool graphics view)

Constructs and initiates a pan tool object with the given QtToolGraphicsView.

Parameters
in graph_view_-

frame
The graph view frame that uses the tool graphics view.

in tool_graphics_-
view

The tool graphics view that uses the pan tool.

7.18.3 Member Function Documentation

7.18.3.1 bool ccdvl::frontend::QtPanTool::OnMouseMove (QMouseEvent ∗ event) [virtual]

Pans from the start position using the position given by the mouse event.

Only triggers if the left mouse button is pressed.

Other mouse events are ignored.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.18.3.2 bool ccdvl::frontend::QtPanTool::OnMousePress (QMouseEvent ∗ event) [virtual]

Starts panning on left mouse button press at the position given by the mouse event.

Other mouse events are ignored.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

98 Class Documentation

See also

OnMouseMove(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.18.3.3 bool ccdvl::frontend::QtPanTool::OnMouseRelease (QMouseEvent ∗ event) [virtual]

Resets the start position on left mouse button release.

Other mouse events are ignored.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseMove(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.18.3.4 bool ccdvl::frontend::QtPanTool::OnWheel (QWheelEvent ∗ event) [virtual]

Accepts all wheel events to disable manual scrolling.

Parameters
in event The wheel event.

Returns

true to indicate that the event was accepted.

Reimplemented from ccdvl::frontend::QtBaseTool.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_pan_tool.h

• src/qt_frontend/qt_pan_tool.cc

7.19 ccdvl::frontend::QtPointSelectTool Class Reference

A reusable point selection tool class that selects "single points" in a QtToolGraphicsView.

#include <qt_point_select_tool.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.19 ccdvl::frontend::QtPointSelectTool Class Reference 99

Inheritance diagram for ccdvl::frontend::QtPointSelectTool:

ccdvl::frontend::QtPoint
SelectTool

ccdvl::frontend::QtBaseTool

Collaboration diagram for ccdvl::frontend::QtPointSelectTool:

ccdvl::frontend::QtPoint
SelectTool

ccdvl::frontend::QtBaseTool

ccdvl::frontend::QtToolbar
Frame

 tools_

ccdvl::frontend::QtToolGraphicsView

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

ccdvl::frontend::QtGraph
Widget

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager

 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements keys

ccdvl::Group2D

std::string

 name_

std::basic_string<
 char >

 keys

 groups_ group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_

 parent_

std::list< Group2D * >

 elements group_leafs_

 toolbar_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >

T

 elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Public Member Functions

• QtPointSelectTool (QtToolGraphicsView ∗tool_graphics_view)

Constructs and initiates a point select tool object with the given QtToolGraphicsView.

• virtual void OnActivate ()

Shows the cursor helper lines or mouse cursor if enabled.

• virtual void OnDeactivate ()

Hides the cursor helper lines.

• virtual bool OnMousePress (QMouseEvent ∗event)

Selects a point on left mouse button press at the position given by the mouse event. Right mouse press cancels the
selection.
Other mouse events are ignored.

• virtual bool OnMouseMove (QMouseEvent ∗event)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

100 Class Documentation

Updates the position of and redraws the cursor crosshair helper lines, originating from the position given by the mouse
event.

• virtual bool OnWheel (QWheelEvent ∗event)

Accepts all wheel events to disable manual scrolling.

• virtual bool OnEnter (QEvent ∗event)

Shows the cursor crosshair helper lines if enabled.

• virtual bool OnLeave (QEvent ∗event)

Hides the cursor crosshair helper lines if enabled.

• bool mouse_cursor ()

Tells if the mouse cursor is visible or not.

• void set_mouse_cursor (bool enabled)

Shows or hides the mouse cursor.

• bool helper_lines ()

Tells if the helper lines are visible or not.

• void set_helper_lines (bool enabled)

Shows or hides the helper lines.

Private Member Functions

• void DrawHelperLines (QPainter &painter, ViewPointF center_pos)

Draws the crosshair helper lines.

Private Attributes

• bool mouse_cursor_

Display mouse cursor.

• bool helper_lines_

Display helper lines.

• QGraphicsPixmapItem ∗ helper_lines_pixmap_item_

The graphics pixmap item used to show the cursor helper lines.

Additional Inherited Members

7.19.1 Detailed Description

A reusable point selection tool class that selects "single points" in a QtToolGraphicsView.

A small selection area is used to try and cover a point under it, since it is not possible to actually select a specific
point with the current graph image implementation.

Toggleable helper crosshair lines originating from and following the cursor points to the graph view edges for extra
visual support.

The point select tool is used in conjunction with mouse, wheel and key events.

7.19.2 Constructor & Destructor Documentation

7.19.2.1 ccdvl::frontend::QtPointSelectTool::QtPointSelectTool (QtToolGraphicsView ∗ tool graphics view)
[explicit]

Constructs and initiates a point select tool object with the given QtToolGraphicsView.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.19 ccdvl::frontend::QtPointSelectTool Class Reference 101

Parameters
in tool_graphics_-

view
The tool graphics view that uses the point select tool.

7.19.3 Member Function Documentation

7.19.3.1 void ccdvl::frontend::QtPointSelectTool::DrawHelperLines (QPainter & painter, ViewPointF center pos)
[private]

Draws the crosshair helper lines.

Parameters
in painter The painter to draw the lines with.
in center_pos The center position of the crosshair.

7.19.3.2 bool ccdvl::frontend::QtPointSelectTool::helper lines ()

Tells if the helper lines are visible or not.

Returns

True if the helper lines are shown.

See also

set_helper_lines()

7.19.3.3 bool ccdvl::frontend::QtPointSelectTool::mouse cursor ()

Tells if the mouse cursor is visible or not.

Returns

True if the mouse cursor is shown.

See also

set_mouse_cursor()

7.19.3.4 void ccdvl::frontend::QtPointSelectTool::OnActivate () [virtual]

Shows the cursor helper lines or mouse cursor if enabled.

See also

OnDeactivate()

Reimplemented from ccdvl::frontend::QtBaseTool.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

102 Class Documentation

7.19.3.5 void ccdvl::frontend::QtPointSelectTool::OnDeactivate () [virtual]

Hides the cursor helper lines.

See also

OnActivate()

Reimplemented from ccdvl::frontend::QtBaseTool.

7.19.3.6 bool ccdvl::frontend::QtPointSelectTool::OnEnter (QEvent ∗ event) [virtual]

Shows the cursor crosshair helper lines if enabled.

Parameters
in event The enter event.

Returns

true if the event was accepted.

See also

OnLeave(QEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.19.3.7 bool ccdvl::frontend::QtPointSelectTool::OnLeave (QEvent ∗ event) [virtual]

Hides the cursor crosshair helper lines if enabled.

Parameters
in event The leave event.

Returns

true if the event was accepted.

See also

OnEnter(QEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.19.3.8 bool ccdvl::frontend::QtPointSelectTool::OnMouseMove (QMouseEvent ∗ event) [virtual]

Updates the position of and redraws the cursor crosshair helper lines, originating from the position given by the
mouse event.

Parameters
in event The mouse event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.19 ccdvl::frontend::QtPointSelectTool Class Reference 103

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.19.3.9 bool ccdvl::frontend::QtPointSelectTool::OnMousePress (QMouseEvent ∗ event) [virtual]

Selects a point on left mouse button press at the position given by the mouse event. Right mouse press cancels the
selection.

Other mouse events are ignored.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMouseMove(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.19.3.10 bool ccdvl::frontend::QtPointSelectTool::OnWheel (QWheelEvent ∗ event) [virtual]

Accepts all wheel events to disable manual scrolling.

Parameters
in event The wheel event.

Returns

true if the event was accepted.

Reimplemented from ccdvl::frontend::QtBaseTool.

7.19.3.11 void ccdvl::frontend::QtPointSelectTool::set helper lines (bool enabled)

Shows or hides the helper lines.

Parameters
in enabled Sets the visibility of the helper lines.

See also

helper_lines()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

104 Class Documentation

7.19.3.12 void ccdvl::frontend::QtPointSelectTool::set mouse cursor (bool enabled)

Shows or hides the mouse cursor.

Parameters
in enabled Sets the visibility of the mouse cursor.

See also

mouse_cursor()

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_point_select_tool.h

• src/qt_frontend/qt_point_select_tool.cc

7.20 ccdvl::frontend::QtRectangleSelectTool Class Reference

A rectangle selection rubberband that keeps track of the start position to make it simpler to set new geometry.

#include <qt_rectangle_select_tool.h>

Inheritance diagram for ccdvl::frontend::QtRectangleSelectTool:

ccdvl::frontend::QtRectangle
SelectTool

ccdvl::frontend::QtBaseTool

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.20 ccdvl::frontend::QtRectangleSelectTool Class Reference 105

Collaboration diagram for ccdvl::frontend::QtRectangleSelectTool:

ccdvl::frontend::QtRectangle
SelectTool

ccdvl::frontend::QtBaseTool

ccdvl::frontend::QtToolbar
Frame

 tools_

ccdvl::frontend::QtToolGraphicsView

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

ccdvl::frontend::QtGraph
Widget

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager

 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements keys

ccdvl::Group2D

std::string

 name_

std::basic_string<
 char >

 keys

 groups_ group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_

 parent_

std::list< Group2D * >

 elements group_leafs_

 toolbar_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >

T

 elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Public Member Functions

• QtRectangleSelectTool (QtToolGraphicsView ∗tool_graphics_view)

Constructs and initiates a rectangle select tool with the given QtToolGraphicsView.

• virtual bool OnMousePress (QMouseEvent ∗event)

Starts a new rectangle selection.

• virtual bool OnMouseMove (QMouseEvent ∗event)

Expands the rectangle selection to position given by the mouse event.

• virtual bool OnMouseRelease (QMouseEvent ∗event)

Deactivates and hides the rectangle selection rubber band on left mouse button release if it is active.
Other mouse events are ignored.

• virtual bool OnWheel (QWheelEvent ∗event)

Accepts all wheel events to disable manual scrolling.

• QRubberBand ∗ rubber_band ()

Returns the underlying QRubberBand used for the selection.

Private Attributes

• bool active_

Keeps track of if the rectangle select tool is active.

• QRubberBand ∗ rubber_band_

The Qt rubber band used to make the selection.

• GraphRectF selection_rect_

The last selection of the rectangle select rubber band.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

106 Class Documentation

Additional Inherited Members

7.20.1 Detailed Description

A rectangle selection rubberband that keeps track of the start position to make it simpler to set new geometry.

The rubber band is used in conjunction with mouse, wheel and key events.

7.20.2 Constructor & Destructor Documentation

7.20.2.1 ccdvl::frontend::QtRectangleSelectTool::QtRectangleSelectTool (QtToolGraphicsView ∗ tool graphics view)
[explicit]

Constructs and initiates a rectangle select tool with the given QtToolGraphicsView.

Parameters
in tool_graphics_-

view
The tool graphics view that uses the rectangle select tool.

7.20.3 Member Function Documentation

7.20.3.1 bool ccdvl::frontend::QtRectangleSelectTool::OnMouseMove (QMouseEvent ∗ event) [virtual]

Expands the rectangle selection to position given by the mouse event.

Only triggers if the rectangle select tool is active and the left mouse button is depressed.

Right mouse press cancels the selection and deactivates the rubber band.

Other mouse events are ignored.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.20.3.2 bool ccdvl::frontend::QtRectangleSelectTool::OnMousePress (QMouseEvent ∗ event) [virtual]

Starts a new rectangle selection.

Only triggers on left mouse press and uses the position given by the mouse event, activates and shows the rectangle
select rubber band.

Other mouse events are ignored.

Parameters
in event The mouse event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.20 ccdvl::frontend::QtRectangleSelectTool Class Reference 107

Returns

true if the event was accepted.

See also

OnMouseMove(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.20.3.3 bool ccdvl::frontend::QtRectangleSelectTool::OnMouseRelease (QMouseEvent ∗ event) [virtual]

Deactivates and hides the rectangle selection rubber band on left mouse button release if it is active.

Other mouse events are ignored.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseMove(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.20.3.4 bool ccdvl::frontend::QtRectangleSelectTool::OnWheel (QWheelEvent ∗ event) [virtual]

Accepts all wheel events to disable manual scrolling.

Parameters
in event The wheel event.

Returns

true to indicate that the event was accepted.

Reimplemented from ccdvl::frontend::QtBaseTool.

7.20.3.5 QRubberBand ∗ ccdvl::frontend::QtRectangleSelectTool::rubber band ()

Returns the underlying QRubberBand used for the selection.

Returns

The rubber band used by the rectangle select tool.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_rectangle_select_tool.h
• src/qt_frontend/qt_rectangle_select_tool.cc

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

108 Class Documentation

7.21 ccdvl::frontend::QtSettingsDialog Class Reference

Graph view settings configuration dialog.

#include <qt_settings_dialog.h>

Signals

• void clearcache ()

Signal emitted when the empty cache button is clicked.

Public Member Functions

• QtSettingsDialog (QWidget ∗parent=NULL)

Creates a new graph settings dialog with the given parent.

• void SetRendererPointShape (RendererConfig::PointShape shape)

Set renderer point shape.

• RendererConfig::PointShape GetRendererPointShape ()

Get renderer point shape.

• void SetRendererPointSize (int16_t size)

Set renderer point size.

• int16_t GetRendererPointSize ()

Get renderer point size.

• void SetRendererLineWidth (int16_t width)

Set renderer line width.

• int16_t GetRendererLineWidth ()

Get renderer line width.

• void SetRendererPointColor (const QColor &color)

Set renderer point color.

• const QColor & GetRendererPointColor ()

Get renderer point color.

• void SetRendererLineColor (const QColor &color)

Set renderer line color.

• const QColor & GetRendererLineColor ()

Get renderer line color.

• void SetRendererClearColor (const QColor &color)

Set renderer clear color.

• const QColor & GetRendererClearColor ()

Get renderer clear color.

• void SetScaleXValue (double scale)

Set x-axis scale value.

• double GetScaleXValue ()

Get x-axis scale value.

• void SetScaleYValue (double scale)

Set y-axis scale value.

• double GetScaleYValue ()

Get y-axis scale value.

• void SetScaleXMethod (GraphState::ScaleMethod method)

Set x-axis scale method.

• GraphState::ScaleMethod GetScaleXMethod ()

Get x-axis scale method.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.21 ccdvl::frontend::QtSettingsDialog Class Reference 109

• void SetScaleYMethod (GraphState::ScaleMethod method)

Set y-axis scale method.

• GraphState::ScaleMethod GetScaleYMethod ()

Get y-axis scale method.

• void SetCacheMaxTileCount (int32_t max_count)

Set number of tiles to cache.

• int32_t GetCacheMaxTileCount ()

Set number of tiles to cache.

• void SetCacheUsed (size_t usage)

Set used cache information.

Private Slots

• void ButtonClicked (QAbstractButton ∗button)

Dialog button events. Apply, discard and restore.

• void ColorButtonClicked ()

Color selection button clicked.

• void ViewXPixelCountChanged ()

Update x pixel count for view.

• void ViewYPixelCountChanged ()

Update y pixel count for view.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (QtSettingsDialog)
• const QColor & GetButtonColor (QAbstractButton ∗button) const

Obtain the backgroud color from a button.

• void SetButtonColor (QAbstractButton ∗button, const QColor &color)

Sets the background color of a button.

Private Attributes

• QVBoxLayout ∗ main_layout_

View holding tabbed widget.

• QTabWidget ∗ tabbed_view_

Tabbed view of all settings.

• QWidget ∗ tab1_

Tab 1, used for basic graph settings.

• QVBoxLayout ∗ layout_tab1_

Dialog layout for the first tab.

• QWidget ∗ tab2_

Tab 2, used for view settings.

• QVBoxLayout ∗ layout_tab2_

Dialog layout for the second tab.

• QWidget ∗ tab3_

Tab 3, used for advanced controls.

• QVBoxLayout ∗ layout_tab3_

Dialog layout for the third tab.

• QGroupBox ∗ renderer_settings_group_

Renderer settings group.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

110 Class Documentation

• QHBoxLayout ∗ renderer_layout_

Renderer settings layout.

• QFormLayout ∗ renderer_layout_1_

Renderer settings layout part 1.

• QFormLayout ∗ renderer_layout_2_

Renderer settings layout part 2.

• QSpinBox ∗ renderer_point_size_value_

Renderer point size.

• QPushButton ∗ renderer_point_color_

Renderer point color.

• QComboBox ∗ renderer_point_shape_

Renderer point shape.

• QPushButton ∗ renderer_clear_color_

Tile clear color.

• QSpinBox ∗ renderer_line_width_

Renderer line width.

• QPushButton ∗ renderer_line_color_

Renderer line color.

• QGroupBox ∗ scale_settings_group_

Scale settings group.

• QHBoxLayout ∗ scale_layout_

Scale settings layout.

• QFormLayout ∗ scale_layout_1_

Scale settings layout part 1.

• QFormLayout ∗ scale_layout_2_

Scale layout part 2.

• QDoubleSpinBox ∗ scale_x_value_

X-axis scaling value.

• QDoubleSpinBox ∗ scale_y_value_

Y-axis scaling value.

• QComboBox ∗ scale_x_method_

X-axis scaling method.

• QComboBox ∗ scale_y_method_

Y-axis scaling method.

• QGroupBox ∗ axis_settings_group_

Axis setting group.

• QHBoxLayout ∗ axis_layout_

Axis settings layout.

• QFormLayout ∗ axis_layout_1_

Axis settings layout part 1.

• QFormLayout ∗ axis_layout_2_

Axis settings layout part 2.

• QLineEdit ∗ axis_x_type_

X-axis label.

• QLineEdit ∗ axis_y_type_

Y-axis label.

• QSpinBox ∗ axis_x_step_

Graph distance between every large X step.

• QSpinBox ∗ axis_y_step_

Graph distance between every large Y step.

• QSpinBox ∗ axis_x_spacer_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.21 ccdvl::frontend::QtSettingsDialog Class Reference 111

Number of pixels between every small X step.

• QSpinBox ∗ axis_y_spacer_

Number of pixels between every small Y step.

• QPushButton ∗ axis_line_color_

Color of drawn axis dashes.

• QGroupBox ∗ grid_settings_group_

Grid settings group.

• QHBoxLayout ∗ grid_layout_

Grid settings layout.

• QFormLayout ∗ grid_layout_1_

Grid settings layout part 1.

• QFormLayout ∗ grid_layout_2_

Grid settings layout part 2.

• QSpinBox ∗ grid_x_step_

Distance between x grid lines.

• QSpinBox ∗ grid_y_step_

Distance between y grid lines.

• QPushButton ∗ grid_line_color_

Color of grid lines.

• QComboBox ∗ grid_type_

Grid type.

• QGroupBox ∗ view_settings_group_

View settings group.

• QHBoxLayout ∗ view_layout_

View settings layout.

• QFormLayout ∗ view_layout_1_

View settings layout part 1.

• QFormLayout ∗ view_layout_2_

View settings layout part 2.

• QVBoxLayout ∗ view_layout_3_

View settings layout part 3.

• QSpinBox ∗ view_x_count_

View width, in tiles.

• QSpinBox ∗ view_x_size_

The width of a tile.

• QLabel ∗ view_x_final_

View x size in pixels.

• QSpinBox ∗ view_y_count_

View height in tiles.

• QSpinBox ∗ view_y_size_

The height of a tile.

• QLabel ∗ view_y_final_

View y size in pixels.

• QGroupBox ∗ cache_settings_group_

Cache settings view.

• QHBoxLayout ∗ cache_layout_

Cache settings layout.

• QFormLayout ∗ cache_layout_1_

Cache settings layout part 1.

• QVBoxLayout ∗ cache_layout_2_

Cache settings layout part 2.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

112 Class Documentation

• QSpinBox ∗ cache_tile_count_

Mamximum number of tiles to cache.

• QLabel ∗ cache_used_

Amount of memory used by cached tiles.

• QPushButton ∗ cache_empty_

Clear cached tiles.

• QColorDialog ∗ color_dialog_

Color selection popup dialog.

• QDialogButtonBox ∗ button_box_

Dialog buttons.

7.21.1 Detailed Description

Graph view settings configuration dialog.

7.21.2 Constructor & Destructor Documentation

7.21.2.1 ccdvl::frontend::QtSettingsDialog::QtSettingsDialog (QWidget ∗ parent = NULL) [explicit]

Creates a new graph settings dialog with the given parent.

Parameters
in parent The parent widget of the graph settings dialog.

7.21.3 Member Function Documentation

7.21.3.1 void ccdvl::frontend::QtSettingsDialog::ButtonClicked (QAbstractButton ∗ button) [private], [slot]

Dialog button events. Apply, discard and restore.

Excludes all set color buttons.

Parameters
in button The button clicked.

See also

ColorButtonClicked()

7.21.3.2 void ccdvl::frontend::QtSettingsDialog::ColorButtonClicked () [private], [slot]

Color selection button clicked.

See also

ButtonClicked(QAbstractButton∗)

7.21.3.3 const QColor & ccdvl::frontend::QtSettingsDialog::GetButtonColor (QAbstractButton ∗ button) const
[private]

Obtain the backgroud color from a button.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.21 ccdvl::frontend::QtSettingsDialog Class Reference 113

Parameters
in button Button.

Returns

Button background color.

See also

SetButtonColor(QAbstractButton∗, const QColor&)

7.21.3.4 int32 t ccdvl::frontend::QtSettingsDialog::GetCacheMaxTileCount ()

Set number of tiles to cache.

Returns

The maximum number of tiles to cache.

See also

SetCacheMaxTileCount(int8_t)

7.21.3.5 const QColor & ccdvl::frontend::QtSettingsDialog::GetRendererClearColor ()

Get renderer clear color.

Returns

Selected clear color.

See also

SetRendererClearColor(const QColor&)

7.21.3.6 const QColor & ccdvl::frontend::QtSettingsDialog::GetRendererLineColor ()

Get renderer line color.

Returns

Selected line color.

See also

SetRendererLineColor(const QColor&)

7.21.3.7 int16 t ccdvl::frontend::QtSettingsDialog::GetRendererLineWidth ()

Get renderer line width.

Returns

Selected line width.

See also

SetRendererLineWidth(int16_t)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

114 Class Documentation

7.21.3.8 const QColor & ccdvl::frontend::QtSettingsDialog::GetRendererPointColor ()

Get renderer point color.

Returns

Selected point color.

See also

SetRendererPointColor(const QColor&)

7.21.3.9 RendererConfig::PointShape ccdvl::frontend::QtSettingsDialog::GetRendererPointShape ()

Get renderer point shape.

Returns

Selected renderer point shape.

See also

SetRendererPointShape()

7.21.3.10 int16 t ccdvl::frontend::QtSettingsDialog::GetRendererPointSize ()

Get renderer point size.

Returns

Selected point size.

See also

SetRendererPointSize(int16_t)

7.21.3.11 GraphState::ScaleMethod ccdvl::frontend::QtSettingsDialog::GetScaleXMethod ()

Get x-axis scale method.

Returns

x scale method.

See also

SetScaleXMethod()

7.21.3.12 double ccdvl::frontend::QtSettingsDialog::GetScaleXValue ()

Get x-axis scale value.

Returns

x scale value.

See also

SetScaleXValue(double)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.21 ccdvl::frontend::QtSettingsDialog Class Reference 115

7.21.3.13 GraphState::ScaleMethod ccdvl::frontend::QtSettingsDialog::GetScaleYMethod ()

Get y-axis scale method.

Returns

y scale method.

See also

SetScaleYMethod()

7.21.3.14 double ccdvl::frontend::QtSettingsDialog::GetScaleYValue ()

Get y-axis scale value.

Returns

y scale value.

See also

SetScaleYValue(double)

7.21.3.15 void ccdvl::frontend::QtSettingsDialog::SetButtonColor (QAbstractButton ∗ button, const QColor & color)
[private]

Sets the background color of a button.

Parameters
in button Button.

color Color.

See also

GetButtonColor(QAbstractButton∗)

7.21.3.16 void ccdvl::frontend::QtSettingsDialog::SetCacheMaxTileCount (int32 t max count)

Set number of tiles to cache.

Parameters
max_count The maximum number of tiles to cache.

See also

GetCacheMaxTileCount()

7.21.3.17 void ccdvl::frontend::QtSettingsDialog::SetCacheUsed (size t usage)

Set used cache information.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

116 Class Documentation

Parameters
usage Memory used by cache, in bytes.

7.21.3.18 void ccdvl::frontend::QtSettingsDialog::SetRendererClearColor (const QColor & color)

Set renderer clear color.

Parameters
in color Current clear color.

See also

GetRendererClearColor()

7.21.3.19 void ccdvl::frontend::QtSettingsDialog::SetRendererLineColor (const QColor & color)

Set renderer line color.

Parameters
in color Current line color.

See also

GetRendererLineColor()

7.21.3.20 void ccdvl::frontend::QtSettingsDialog::SetRendererLineWidth (int16 t width)

Set renderer line width.

Parameters
width Current line width.

See also

GetRendererLineWidth()

7.21.3.21 void ccdvl::frontend::QtSettingsDialog::SetRendererPointColor (const QColor & color)

Set renderer point color.

Parameters
in color Current point color.

See also

GetRendererPointColor()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.21 ccdvl::frontend::QtSettingsDialog Class Reference 117

7.21.3.22 void ccdvl::frontend::QtSettingsDialog::SetRendererPointShape (RendererConfig::PointShape shape)

Set renderer point shape.

Parameters
in shape Current renderer point shape.

See also

GetRendererPointShape()

7.21.3.23 void ccdvl::frontend::QtSettingsDialog::SetRendererPointSize (int16 t size)

Set renderer point size.

Parameters
size Curent point size.

See also

GetRendererPointSize()

7.21.3.24 void ccdvl::frontend::QtSettingsDialog::SetScaleXMethod (GraphState::ScaleMethod method)

Set x-axis scale method.

Parameters
method X scale method.

See also

GetScaleXMethod()

7.21.3.25 void ccdvl::frontend::QtSettingsDialog::SetScaleXValue (double scale)

Set x-axis scale value.

Parameters
scale x scale value.

See also

GetScaleXValue()

7.21.3.26 void ccdvl::frontend::QtSettingsDialog::SetScaleYMethod (GraphState::ScaleMethod method)

Set y-axis scale method.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

118 Class Documentation

Parameters
method Y scale method.

See also

GetScaleYMethod()

7.21.3.27 void ccdvl::frontend::QtSettingsDialog::SetScaleYValue (double scale)

Set y-axis scale value.

Parameters
scale Y scale value.

See also

GetScaleYValue()

7.21.4 Member Data Documentation

7.21.4.1 QPushButton∗ ccdvl::frontend::QtSettingsDialog::axis line color [private]

Color of drawn axis dashes.

See also

QtGraphSettings::AxesProperties::line_color

7.21.4.2 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::axis x spacer [private]

Number of pixels between every small X step.

See also

QtGraphSettings::AxesProperties::x_spacer

7.21.4.3 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::axis x step [private]

Graph distance between every large X step.

See also

QtGraphSettings::AxesProperties::x_step

7.21.4.4 QLineEdit∗ ccdvl::frontend::QtSettingsDialog::axis x type [private]

X-axis label.

See also

QtGraphSettings::AxesProperties::x_label

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.21 ccdvl::frontend::QtSettingsDialog Class Reference 119

7.21.4.5 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::axis y spacer [private]

Number of pixels between every small Y step.

See also

QtGraphSettings::AxesProperties::y_spacer

7.21.4.6 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::axis y step [private]

Graph distance between every large Y step.

See also

QtGraphSettings::AxesProperties::y_step

7.21.4.7 QLineEdit∗ ccdvl::frontend::QtSettingsDialog::axis y type [private]

Y-axis label.

See also

QtGraphSettings::AxesProperties::y_label

7.21.4.8 QPushButton∗ ccdvl::frontend::QtSettingsDialog::cache empty [private]

Clear cached tiles.

See also

CacheController::Clear()

7.21.4.9 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::cache tile count [private]

Mamximum number of tiles to cache.

See also

CacheController::SetMaxCacheSize(), CacheController::GetMaxCacheSize(), CacheController::cache_size_

7.21.4.10 QLabel∗ ccdvl::frontend::QtSettingsDialog::cache used [private]

Amount of memory used by cached tiles.

See also

CacheController::GetMemoryUsage()

7.21.4.11 QPushButton∗ ccdvl::frontend::QtSettingsDialog::grid line color [private]

Color of grid lines.

See also

QtGraphSettings::GridProperties::line_color

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

120 Class Documentation

7.21.4.12 QComboBox∗ ccdvl::frontend::QtSettingsDialog::grid type [private]

Grid type.

See also

QtGraphSettings::GridProperties::type

7.21.4.13 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::grid x step [private]

Distance between x grid lines.

See also

QtGraphSettings::GridProperties::x_step

7.21.4.14 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::grid y step [private]

Distance between y grid lines.

See also

QtGraphSettings::GridProperties::y_step

7.21.4.15 QPushButton∗ ccdvl::frontend::QtSettingsDialog::renderer clear color [private]

Tile clear color.

See also

GraphTileState::clear_color_

7.21.4.16 QPushButton∗ ccdvl::frontend::QtSettingsDialog::renderer line color [private]

Renderer line color.

See also

RendererConfig::line_color_

7.21.4.17 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::renderer line width [private]

Renderer line width.

See also

RendererConfig::line_width_

7.21.4.18 QPushButton∗ ccdvl::frontend::QtSettingsDialog::renderer point color [private]

Renderer point color.

See also

RendererConfig::point_color_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.21 ccdvl::frontend::QtSettingsDialog Class Reference 121

7.21.4.19 QComboBox∗ ccdvl::frontend::QtSettingsDialog::renderer point shape [private]

Renderer point shape.

See also

RendererConfig::point_shape_

7.21.4.20 QSpinBox∗ ccdvl::frontend::QtSettingsDialog::renderer point size value [private]

Renderer point size.

See also

RendererConfig::point_size_

7.21.4.21 QComboBox∗ ccdvl::frontend::QtSettingsDialog::scale x method [private]

X-axis scaling method.

See also

GraphState::scale_method_

7.21.4.22 QDoubleSpinBox∗ ccdvl::frontend::QtSettingsDialog::scale x value [private]

X-axis scaling value.

See also

GraphState::scale_

7.21.4.23 QComboBox∗ ccdvl::frontend::QtSettingsDialog::scale y method [private]

Y-axis scaling method.

See also

GraphState::scale_method_

7.21.4.24 QDoubleSpinBox∗ ccdvl::frontend::QtSettingsDialog::scale y value [private]

Y-axis scaling value.

See also

GraphState::scale_

7.21.4.25 QLabel∗ ccdvl::frontend::QtSettingsDialog::view x final [private]

View x size in pixels.

See also

view_x_count_, view_x_size_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

122 Class Documentation

7.21.4.26 QLabel∗ ccdvl::frontend::QtSettingsDialog::view y final [private]

View y size in pixels.

See also

view_y_count_, view_y_size_

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_settings_dialog.h
• src/qt_frontend/qt_settings_dialog.cc

7.22 ccdvl::frontend::QtStatusBarFrame Class Reference

A status bar displaying mouse-over information, the progress bar and the settings button.

#include <qt_status_bar_frame.h>

Inheritance diagram for ccdvl::frontend::QtStatusBarFrame:

ccdvl::frontend::QtStatus
BarFrame

ccdvl::TaskProgressInterface

Collaboration diagram for ccdvl::frontend::QtStatusBarFrame:

ccdvl::frontend::QtStatus
BarFrame

ccdvl::TaskProgressInterface

ccdvl::frontend::QtGraph
Settings

 settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_
ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_
ccdvl::MemoryManagerObserver

Interface

std::list< MemoryManager
ObserverInterface * > elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager
 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers
 keys

std::list< const Abstract
Group * > elements

 keys

std::string name_std::basic_string<
 char >

 keys
 groups_

 group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

Public Member Functions

• QtStatusBarFrame (QtGraphSettings ∗settings, QWidget ∗parent=NULL)

Constructs and initiates a status bar frame with the given parent.

• int Init ()

Initiates the layout, status bar and progress bar.

• void HideAndResetTaskProgress ()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.22 ccdvl::frontend::QtStatusBarFrame Class Reference 123

Hides and resets the progress bar label and prograss bar.

• virtual void SetTaskProgress (QString text, int value, int max)

Overloaded function to support Qt translation of strings.

• virtual void SetTaskProgress (const char ∗text, int value, int max)

Sets the text of the progress bar label and updates the progress bar.

• QStatusBar ∗ status_bar ()

Returns the status bar used to display status tips.

• QProgressBar ∗ progress_bar ()

Returns the progress bar used to display task progress.

Private Slots

• void OpenSettingsDialog ()

Open a settings dialog.

• void ClearCache ()

Clears cache.

Private Attributes

• QtGraphSettings ∗ settings_

Qt frontend settings and graph configuration.

• QGridLayout ∗ main_layout_

Main widget layout.

• QHBoxLayout ∗ left_layout_

The left sub-layout of the status bar frame.

• QHBoxLayout ∗ right_layout_

The right sub-layout of the status bar frame.

• QStatusBar ∗ status_bar_

The status bar of the status bar frame.

• QProgressBar ∗ progress_bar_

The progress bar of the status bar frame.

• QLabel ∗ progress_bar_label_

The progress bar label of the status bar frame.

• QPushButton ∗ settings_button_

The settings button of the status bar frame that opens the settings dialog.

• QtSettingsDialog ∗ settings_dialog_

The settings dialog shown when the settings button is pushed.

7.22.1 Detailed Description

A status bar displaying mouse-over information, the progress bar and the settings button.

It also handles the settings dailog and clear cache signal emitted from said dialog.

7.22.2 Constructor & Destructor Documentation

7.22.2.1 ccdvl::frontend::QtStatusBarFrame::QtStatusBarFrame (QtGraphSettings ∗ settings, QWidget ∗ parent = NULL)
[explicit]

Constructs and initiates a status bar frame with the given parent.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

124 Class Documentation

Parameters
in settings Shared settings used for rendering graphs.
in parent The parent widget.

7.22.3 Member Function Documentation

7.22.3.1 void ccdvl::frontend::QtStatusBarFrame::HideAndResetTaskProgress ()

Hides and resets the progress bar label and prograss bar.

See also

SetTaskProgress(QString, int, int) and SetTaskProgress(constc char∗, int, int)

7.22.3.2 int ccdvl::frontend::QtStatusBarFrame::Init ()

Initiates the layout, status bar and progress bar.

Returns

0 if the initializiation was successfull.

7.22.3.3 QProgressBar ∗ ccdvl::frontend::QtStatusBarFrame::progress bar ()

Returns the progress bar used to display task progress.

Returns

The progress bar.

7.22.3.4 void ccdvl::frontend::QtStatusBarFrame::SetTaskProgress (QString text, int value, int max) [virtual]

Overloaded function to support Qt translation of strings.

See also

SetTaskProgress(const char∗, int, int)

7.22.3.5 void ccdvl::frontend::QtStatusBarFrame::SetTaskProgress (const char ∗ text, int value, int max) [virtual]

Sets the text of the progress bar label and updates the progress bar.

The progressbar is hidden if value and max is equal.

If max is not positive it is set to zero.

Parameters
in text The new label text.
in value The new value of the progress bar.
in max The maximum value of the progress bar.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.23 ccdvl::frontend::QtToolbarFrame Class Reference 125

See also

SetTaskProgress(QString, int, int)

Implements ccdvl::TaskProgressInterface.

7.22.3.6 QStatusBar ∗ ccdvl::frontend::QtStatusBarFrame::status bar ()

Returns the status bar used to display status tips.

Returns

The status bar.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_status_bar_frame.h
• src/qt_frontend/qt_status_bar_frame.cc

7.23 ccdvl::frontend::QtToolbarFrame Class Reference

The toolbar, containing the tools and tool buttons.

#include <qt_toolbar_frame.h>

Collaboration diagram for ccdvl::frontend::QtToolbarFrame:

ccdvl::frontend::QtToolbar
Frame

ccdvl::frontend::QtGraph
Widget

 toolbar_frame_

ccdvl::frontend::QtBaseTool

 tools_

ccdvl::frontend::QtToolGraphicsView

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager

 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements keys

ccdvl::Group2D

std::string

 name_

std::basic_string<
 char >

 keys

 groups_ group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_

 parent_

std::list< Group2D * >

 elements group_leafs_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >

T

 elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Public Types

• enum Tool {
kCurrent, kPointSelect, kRectangleSelect, kLassoSelect,
kPan, kZoom }

Keeps track of the different tools.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

126 Class Documentation

Public Member Functions

• QtToolbarFrame (QWidget ∗parent=NULL)

Constructs and initiates a toolbar frame with the given parent.

• int Init (QtGraphViewFrame ∗graph_view_frame)

Creates and initiates the toolbar buttons, tools and layout.

• QtBaseTool ∗ current_tool ()

The current tool selected through the tool buttons.

• void set_current_tool (Tool tool)

Sets the current tool as well as selecting the corresponding tool button.

• QtBaseTool ∗ GetTool (Tool tool)

Fetches the specified tool.

Static Public Attributes

• static const int kNumberOfTools = 6

The number of graph interaction tools.

Private Slots

• void ToolButtonClicked (int id)

Updates the currently selected tool when a tool button is clicked.

• void ResetZoomLevel ()

Resets the zoom level of the tool graphics view to 100%.

Private Member Functions

• void ToolButtonDoubleClicked (int id)

Perform a double click action for the specified tool.

• void CreateToolButtons ()

Creates and initiates the tool buttons of the toolbar frame.

• void CreateTools ()

Creates and initiates the tools of the toolbar frame.

Private Attributes

• QtGraphViewFrame ∗ graph_view_frame_

The graphics view used by the graphics scene.

• QtBaseTool ∗ tools_ [kNumberOfTools]

The graph interaction tools.

• QButtonGroup ∗ tool_button_group_

Keeps track of the currently selected tool button and makes sure that only one button is selected at a time.

• QHBoxLayout ∗ main_layout_

The main layout containing all components of the object.

• QPushButton ∗ tool_buttons_ [kNumberOfTools]

The tool buttons.

• QPushButton ∗ reset_zoom_button_

The reset zoom button.

• QTimer ∗ double_click_timer_

A timer for registering double clicks on the tool buttons.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.23 ccdvl::frontend::QtToolbarFrame Class Reference 127

7.23.1 Detailed Description

The toolbar, containing the tools and tool buttons.

7.23.2 Constructor & Destructor Documentation

7.23.2.1 ccdvl::frontend::QtToolbarFrame::QtToolbarFrame (QWidget ∗ parent = NULL) [explicit]

Constructs and initiates a toolbar frame with the given parent.

Parameters
in parent The parent widget.

7.23.3 Member Function Documentation

7.23.3.1 QtBaseTool ∗ ccdvl::frontend::QtToolbarFrame::current tool ()

The current tool selected through the tool buttons.

Returns

The currently selected tool.

7.23.3.2 QtBaseTool ∗ ccdvl::frontend::QtToolbarFrame::GetTool (Tool tool)

Fetches the specified tool.

Parameters
in tool The tool to be fetched.

Returns

A pointer to the specified tool.

7.23.3.3 int ccdvl::frontend::QtToolbarFrame::Init (QtGraphViewFrame ∗ graph view frame)

Creates and initiates the toolbar buttons, tools and layout.

Parameters
in graph_view_-

frame
The graph view frame that uses the tools.

Returns

0 if the initializiation was successfull.

7.23.3.4 void ccdvl::frontend::QtToolbarFrame::set current tool (Tool tool)

Sets the current tool as well as selecting the corresponding tool button.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

128 Class Documentation

Parameters
in tool The tool to be selected.

7.23.3.5 void ccdvl::frontend::QtToolbarFrame::ToolButtonClicked (int id) [private], [slot]

Updates the currently selected tool when a tool button is clicked.

Also checks for double clicks on the tool buttons, and calls ToolButtonDoubleClicked(int) if there a double click was
detected.

Parameters
in id The id corresponding to the clicked tool button.

7.23.3.6 void ccdvl::frontend::QtToolbarFrame::ToolButtonDoubleClicked (int id) [private]

Perform a double click action for the specified tool.

Parameters
in id The id corresponding to the double clicked tool button.

7.23.4 Member Data Documentation

7.23.4.1 const int ccdvl::frontend::QtToolbarFrame::kNumberOfTools = 6 [static]

The number of graph interaction tools.

This should be the number of tools inheriting QtBaseTool + 1 to also hold the currently selected tool.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_toolbar_frame.h

• src/qt_frontend/qt_toolbar_frame.cc

7.24 ccdvl::frontend::QtToolGraphicsView Class Reference

A graphics view that handles mouse button, wheel and key events according to the currently selected tool in the
toolbar frame.

#include <qt_tool_graphics_view.h>

Collaboration diagram for ccdvl::frontend::QtToolGraphicsView:

ccdvl::frontend::QtToolGraphicsView

ccdvl::frontend::QtBaseTool

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

ccdvl::frontend::QtGraph
Widget

 graph_widget_
 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface

ccdvl::frontend::QtGraph
Settings

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager
 memory_manager_ observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile
 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements

 keys

ccdvl::Group2D

std::string
 name_std::basic_string<

 char >

 keys

 groups_

 group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_
 parent_

std::list< Group2D * >
 elements

 group_leafs_

ccdvl::frontend::QtToolbar
Frame toolbar_frame_

 tools_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_std::list< std::list
< QtGraphImageTile > >T elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.24 ccdvl::frontend::QtToolGraphicsView Class Reference 129

Public Member Functions

• QtToolGraphicsView (QGraphicsScene ∗graphics_scene, QtGraphWidget ∗graph_widget, QtGraphView-
Frame ∗graph_view_frame)

Constructs and initiates a tool graphics view with the given graphics scene, graph widget and graph view frame.

• int Init ()

Initiates the object.

• void centerOn (const ScenePointF &pos)

Only recenters the view if pos is more than 1 pixel away from the current center position to avoid minor jerking due to
rounding errors.

• GraphPointF CalculateBottomLeftFromCenterPosition (const GraphPointF ¢er_pos, const GraphScene-
State &state)

Calculates the bottom left position for the given center position in the given graph scene state.

• GraphPointF mapToGraph (const ScenePointF &point, const GraphSceneState &state)

Translates the given point from graphics scene coordinates to graph coordinates with double precision.

• GraphPointF mapToGraph (const ScenePointF &point)

Overloaded function for convenience using the current graph scene state.

• ScenePointF mapFromGraph (const GraphPointF &point, const GraphSceneState &state)

Translates the given point from graph coordinates to graphics scene coordinates with double precision.

• ScenePointF mapFromGraph (const GraphPointF &point)

Overloaded function for convenience using the current graph scene state.

• GraphRectF mapToGraph (const SceneRectF &rect, const GraphSceneState &state)

Translates the given rectangle from graphics scene coordinates to graph coordinates with double precision.

• GraphRectF mapToGraph (const SceneRectF &rect)

Overloaded function for convenience using the current graph scene state.

• SceneRectF mapFromGraph (const GraphRectF &rect, const GraphSceneState &state)

Translates the given rectangle from graph coordinates to graphics scene coordinates with double precision.

• SceneRectF mapFromGraph (const GraphRectF &rect)

Overloaded function for convenience using the current graph scene state.

• GraphPolygonF mapToGraph (const ScenePolygonF &poly, const GraphSceneState &state)

Translates the given polygon from graphics scene coordinates to graph coordinates with double precision.

• GraphPolygonF mapToGraph (const ScenePolygonF &poly)

Overloaded function for convenience using the current graph scene state.

• ScenePolygonF mapFromGraph (const GraphPolygonF &poly, const GraphSceneState &state)

Translates the given polygon from graph coordinates to graphics scene coordinates with double precision.

• ScenePolygonF mapFromGraph (const GraphPolygonF &poly)

Overloaded function for convenience using the current graph scene state.

• GraphPairVector CurrentSelectionToStdVector ()

Converts the current selection polygon to a standard vector of standard pairs in graph coordinates with double preci-
sion.

• GraphPolygonF current_selection ()

The current selection polygon in graph coordinates.

• void set_current_selection (const GraphPolygonF &selection)

Sets the current selection polygon and updates the shown selection.

• void UpdateShownCurrentSelection ()

Updates the shown selection in the graphics scene to match the current selection.

• void HideCurrentSelection ()

Hides the current selection.

• void ShowCurrentSelection ()

Shows the intersection between the current selection and the scene.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

130 Class Documentation

Protected Member Functions

• virtual void mousePressEvent (QMouseEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

• virtual void mouseMoveEvent (QMouseEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

• virtual void mouseReleaseEvent (QMouseEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

• virtual void wheelEvent (QWheelEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

• virtual void keyPressEvent (QKeyEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

• virtual void keyReleaseEvent (QKeyEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

• virtual void enterEvent (QEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

• virtual void leaveEvent (QEvent ∗event)

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via the
graph widget).

Private Attributes

• QtGraphViewFrame ∗ graph_view_frame_

The parent graph view frame.

• QtGraphWidget ∗ graph_widget_

The graph widget GUI, used to access the toolbar frame.

• QGraphicsPolygonItem ∗ selection_polygon_item_

The graphics polygon item used to display the last selection in the graphics scene (or the intersecting part of the
selection).

• GraphPolygonF current_selection_

The current selection polygon (in graph coordinates).

• int wheel_event_restricted_

Used to restrict (ignore) two out of three wheel events to not trigger too many zoom updates.

7.24.1 Detailed Description

A graphics view that handles mouse button, wheel and key events according to the currently selected tool in the
toolbar frame.

It also manages the current selection made by the selection tools, and displays this as a semi-transparent overlay
polygon.

See also

QtToolbarFrame

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.24 ccdvl::frontend::QtToolGraphicsView Class Reference 131

7.24.2 Constructor & Destructor Documentation

7.24.2.1 ccdvl::frontend::QtToolGraphicsView::QtToolGraphicsView (QGraphicsScene ∗ graphics scene, QtGraphWidget ∗
graph widget, QtGraphViewFrame ∗ graph view frame)

Constructs and initiates a tool graphics view with the given graphics scene, graph widget and graph view frame.

Parameters
in graphics_scene The graphics scene used by the graph view frame.
in graph_widget The main widget of the GUI.
in graph_view_-

frame
The parent graph view frame.

7.24.3 Member Function Documentation

7.24.3.1 GraphPointF ccdvl::frontend::QtToolGraphicsView::CalculateBottomLeftFromCenterPosition (const GraphPointF
& center pos, const GraphSceneState & state)

Calculates the bottom left position for the given center position in the given graph scene state.

The calculated position is strictly relative to the given center position, not the graph image tile grid.

Parameters
in center_pos The center position of the new bottom left.
in state The graph scene state to calculate the bottom left position for.

Returns

The calculated bottom left position.

7.24.3.2 void ccdvl::frontend::QtToolGraphicsView::centerOn (const ScenePointF & pos)

Only recenters the view if pos is more than 1 pixel away from the current center position to avoid minor jerking due
to rounding errors.

Parameters
in pos The position to center the view on.

See also

QGraphicsView::centerOn()

7.24.3.3 GraphPolygonF ccdvl::frontend::QtToolGraphicsView::current selection ()

The current selection polygon in graph coordinates.

Returns

The current selection polygon.

See also

set_current_selection()

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://doc.qt.nokia.com/4.7/qgraphicsview.html#centerOn

132 Class Documentation

7.24.3.4 GraphPairVector ccdvl::frontend::QtToolGraphicsView::CurrentSelectionToStdVector ()

Converts the current selection polygon to a standard vector of standard pairs in graph coordinates with double
precision.

Returns

The current selection as a vector.

See also

current_selection()

7.24.3.5 void ccdvl::frontend::QtToolGraphicsView::enterEvent (QEvent ∗ event) [protected], [virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Parameters
in event The enter event.

See also

leaveEvent(QEvent∗)

7.24.3.6 void ccdvl::frontend::QtToolGraphicsView::HideCurrentSelection ()

Hides the current selection.

See also

ShowCurrentSelection(), current_selection() and set_current_selection(GraphPolygonF)

7.24.3.7 int ccdvl::frontend::QtToolGraphicsView::Init ()

Initiates the object.

Must be called diretly after object creation.

Returns

0 if the initializiation was successfull.

7.24.3.8 void ccdvl::frontend::QtToolGraphicsView::keyPressEvent (QKeyEvent ∗ event) [protected], [virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Parameters
in event The key event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.24 ccdvl::frontend::QtToolGraphicsView Class Reference 133

See also

OnKeyRelease(QKeyEvent∗)

7.24.3.9 void ccdvl::frontend::QtToolGraphicsView::keyReleaseEvent (QKeyEvent ∗ event) [protected],
[virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Parameters
in event The key event.

See also

OnKeyPress(QKeyEvent∗)

7.24.3.10 void ccdvl::frontend::QtToolGraphicsView::leaveEvent (QEvent ∗ event) [protected], [virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Also sets the displayed current coordinates under the mouse cursor to zero when leaving the graphics view.

Parameters
in event The leave event.

See also

enterEvent(QEvent∗)

7.24.3.11 ScenePointF ccdvl::frontend::QtToolGraphicsView::mapFromGraph (const GraphPointF & point, const
GraphSceneState & state)

Translates the given point from graph coordinates to graphics scene coordinates with double precision.

Parameters
in point The double precision point to be translated.
in state The graph scene state to be used in the calculations.

Returns

The translated point in graphics scene coordinates.

See also

MapFromGraph(GraphPointF), MapToGraph(ScenePointF) and MapToGraph(ScenePointF, const GraphTile-
State &)

7.24.3.12 ScenePointF ccdvl::frontend::QtToolGraphicsView::mapFromGraph (const GraphPointF & point)

Overloaded function for convenience using the current graph scene state.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

134 Class Documentation

See also

MapFromGraph(GraphPointF, &GraphSceneState), MapToGraph(ScenePointF) and MapToGraph(ScenePoint-
F, const GraphSceneState &)

7.24.3.13 SceneRectF ccdvl::frontend::QtToolGraphicsView::mapFromGraph (const GraphRectF & rect, const
GraphSceneState & state)

Translates the given rectangle from graph coordinates to graphics scene coordinates with double precision.

Parameters
in rect The double precision rectangle to be translated.
in state The graph scene state to be used in the calculations.

Returns

The translated rectangle in graphics scene coordinates.

See also

MapFromGraph(GraphRectF), MapToGraph(SceneRectF) and MapToGraph(SceneRectF, GraphTileState∗)

7.24.3.14 SceneRectF ccdvl::frontend::QtToolGraphicsView::mapFromGraph (const GraphRectF & rect)

Overloaded function for convenience using the current graph scene state.

See also

MapFromGraph(GraphRectF, const GraphSceneState &), MapToGraph(SceneRectF) and MapToGraph(Scene-
RectF, const GraphSceneState &)

7.24.3.15 ScenePolygonF ccdvl::frontend::QtToolGraphicsView::mapFromGraph (const GraphPolygonF & poly, const
GraphSceneState & state)

Translates the given polygon from graph coordinates to graphics scene coordinates with double precision.

Parameters
in poly The double precision polygon to be translated.
in state The graph scene state to be used in the calculations.

Returns

The translated polygon in graphics scene coordinates.

See also

MapFromGraph(GraphPolygonF), MapToGraph(ScenePolygonF) and MapToGraph(ScenePolygonF, const
GraphSceneState &)

7.24.3.16 ScenePolygonF ccdvl::frontend::QtToolGraphicsView::mapFromGraph (const GraphPolygonF & poly)

Overloaded function for convenience using the current graph scene state.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.24 ccdvl::frontend::QtToolGraphicsView Class Reference 135

See also

MapFromGraph(GraphPolygonF, const GraphSceneState &), MapToGraph(ScenePolygonF) and MapTo-
Graph(ScenePolygonF, const GraphSceneState &)

7.24.3.17 GraphPointF ccdvl::frontend::QtToolGraphicsView::mapToGraph (const ScenePointF & point, const
GraphSceneState & state)

Translates the given point from graphics scene coordinates to graph coordinates with double precision.

Parameters
in point The double precision point to be translated.
in state The graph scene state to be used in the calculations.

Returns

The translated point in graph coordinates.

See also

MapToGraph(ScenePointF), MapFromGraph(GraphPointF) and MapFromGraph(GraphPointF, &GraphScene-
State)

7.24.3.18 GraphPointF ccdvl::frontend::QtToolGraphicsView::mapToGraph (const ScenePointF & point)

Overloaded function for convenience using the current graph scene state.

See also

MapToGraph(ScenePointF, &GraphSceneState), MapFromGraph(GraphPointF) and MapFromGraph(Graph-
PointF, const GraphSceneState &)

7.24.3.19 GraphRectF ccdvl::frontend::QtToolGraphicsView::mapToGraph (const SceneRectF & rect, const
GraphSceneState & state)

Translates the given rectangle from graphics scene coordinates to graph coordinates with double precision.

Parameters
in rect The double precision rectangle to be translated.
in state The graph scene state to be used in the calculations.

Returns

The translated rectangle in graphics scene coordinates.

See also

MapToGraph(SceneRectF), MapFromGraph(GraphRectF) and MapFromGraph(GraphRectF, const Graph-
SceneState &)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

136 Class Documentation

7.24.3.20 GraphRectF ccdvl::frontend::QtToolGraphicsView::mapToGraph (const SceneRectF & rect)

Overloaded function for convenience using the current graph scene state.

See also

MapToGraph(SceneRectF, const GraphSceneState &), MapFromGraph(GraphRectF) and MapFrom-
Graph(GraphRectF, const GraphSceneState &)

7.24.3.21 GraphPolygonF ccdvl::frontend::QtToolGraphicsView::mapToGraph (const ScenePolygonF & poly, const
GraphSceneState & state)

Translates the given polygon from graphics scene coordinates to graph coordinates with double precision.

Parameters
in poly The double precision polygon to be translated.
in state The graph scene state to be used in the calculations.

Returns

The translated polygon in graphics scene coordinates.

See also

MapToGraph(ScenePolygonF), MapFromGraph(GraphPolygonF) and MapFromGraph(GraphPolygonF, const
GraphSceneState &)

7.24.3.22 GraphPolygonF ccdvl::frontend::QtToolGraphicsView::mapToGraph (const ScenePolygonF & poly)

Overloaded function for convenience using the current graph scene state.

See also

MapToGraph(ScenePolygonF, const GraphSceneState &), MapFromGraph(GraphPolygonF) and MapFrom-
Graph(GraphPolygonF, const GraphSceneState &)

7.24.3.23 void ccdvl::frontend::QtToolGraphicsView::mouseMoveEvent (QMouseEvent ∗ event) [protected],
[virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Parameters
in event The mouse event.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.24 ccdvl::frontend::QtToolGraphicsView Class Reference 137

See also

OnMousePress(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

7.24.3.24 void ccdvl::frontend::QtToolGraphicsView::mousePressEvent (QMouseEvent ∗ event) [protected],
[virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Parameters
in event The mouse event.

See also

OnMouseMove(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

7.24.3.25 void ccdvl::frontend::QtToolGraphicsView::mouseReleaseEvent (QMouseEvent ∗ event) [protected],
[virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Parameters
in event The mouse event.

See also

OnMousePress(QMouseEvent∗) and OnMouseMove(QMouseEvent∗)

7.24.3.26 void ccdvl::frontend::QtToolGraphicsView::set current selection (const GraphPolygonF & selection)

Sets the current selection polygon and updates the shown selection.

Parameters
in selection The new selection.

See also

current_selection()

7.24.3.27 void ccdvl::frontend::QtToolGraphicsView::ShowCurrentSelection ()

Shows the intersection between the current selection and the scene.

The current selection is only shown if the part of the selection that intersects the scene is non-empty.

See also

HideCurrentSelection(), current_selection() and set_current_selection(GraphPolygonF)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

138 Class Documentation

7.24.3.28 void ccdvl::frontend::QtToolGraphicsView::wheelEvent (QWheelEvent ∗ event) [protected], [virtual]

Forwards the event to the corresponding function in the currently selected tool (fetched from the toolbar frame via
the graph widget).

Parameters
in event The wheel event.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_tool_graphics_view.h

• src/qt_frontend/qt_tool_graphics_view.cc

7.25 ccdvl::frontend::QtZoomTool Class Reference

A small reusable zoom tool class that zooms in or out in a QtToolGraphicsView.

#include <qt_zoom_tool.h>

Inheritance diagram for ccdvl::frontend::QtZoomTool:

ccdvl::frontend::QtZoomTool

ccdvl::frontend::QtBaseTool

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.25 ccdvl::frontend::QtZoomTool Class Reference 139

Collaboration diagram for ccdvl::frontend::QtZoomTool:

ccdvl::frontend::QtZoomTool

ccdvl::frontend::QtBaseTool

ccdvl::frontend::QtToolbar
Frame

 tools_

ccdvl::frontend::QtRectangle
SelectTool

ccdvl::frontend::QtToolGraphicsView

 tool_graphics_view_

ccdvl::frontend::QtGraph
ViewFrame

 tool_graphics_view_

ccdvl::frontend::QtGraph
Widget

 graph_widget_

 graph_widget_

ccdvl::frontend::QtStatus
BarFrame

 status_bar_frame_

ccdvl::TaskProgressInterface ccdvl::frontend::QtGraph
Settings

 graph_settings_

 settings_

 graph_settings_

ccdvl::frontend::QtGraph
Settings::ZoomSettings

 zoom_tool_settings_

ccdvl::frontend::QtGraph
Settings::GridProperties

 grid_properties_

ccdvl::frontend::QtGraph
Settings::AxesProperties

 axes_properties_

ccdvl::RendererConfig

 renderer_settings_

ccdvl::AbstractGroup

 render_settings_

ccdvl::GraphTileState

 render_settings_

std::map< const Abstract
Group *, RendererConfig >

 elements

ccdvl::GraphSceneState

 next_graph_scene_state
_

current_graph_scene
state

ccdvl::GraphState

ccdvl::CacheController

 cache_controller_

ccdvl::MemoryManagerObserver
Interface

std::list< MemoryManager
ObserverInterface * >

 elements

std::list< CacheObserver
Interface * >

 observers_

ccdvl::CacheObserverInterface

 elements

ccdvl::Renderer

 renderer_

ccdvl::MemoryManager

 memory_manager_

 observers_

ccdvl::MessageQueue
< std::pair< const GraphTile

State *, GraphTile * > >

 message_queue_

std::list< std::pair
< const GraphTileState

 *, GraphTile * > >

 message_queue_

std::map< const GraphTile
State *, GraphTile *, GraphTile

State::functor_compare >

 cache_

ccdvl::GraphTile

 elements

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

 keys

std::list< const Abstract
Group * >

 elements keys

ccdvl::Group2D

std::string

 name_

std::basic_string<
 char >

 keys

 groups_ group_render_settings_

ccdvl::frontend::QtSettings
Dialog

 settings_dialog_

 group_selection_

 parent_

std::list< Group2D * >

 elements group_leafs_

 toolbar_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

 graph_view_frame_

ccdvl::frontend::QtGraph
NeighbourhoodFrame

 graph_view_frame_

ccdvl::List2D< QtGraphImage
Tile >

 graph_image_tiles_

std::list< std::list
< QtGraphImageTile > >

T

 elements

 graph_neighbourhood
frame

 graph_neighbourhood
frame

ccdvl::frontend::QtCoordinate
AndAxesInfoFrame

 coordinate_and_axes
_info_frame_

 coordinate_and_axes
_info_frame_ rectangle_select_tool_

Public Types

• enum ZoomDirection { kIn, kOut }

Represents the zoom level direction.

Public Member Functions

• QtZoomTool (QtGraphViewFrame ∗graph_view_frame, QtToolGraphicsView ∗tool_graphics_view)

Constructs and initiates a zoom tool object with the given graph view frame and tool graphics view.

Public Attributes

• const QCursor kZoomPlusCursor

A magnifying glass with a plus sign.

• const QCursor kZoomMinusCursor

A magnifying glass with a minus sign.

Protected Member Functions

• virtual bool OnMousePress (QMouseEvent ∗event)

Starts a new zoom selection and forwards the event to the internal zoom-select rectangle tool.

• virtual bool OnMouseMove (QMouseEvent ∗event)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

140 Class Documentation

Forwards the event to the internal zoom-select rectangle tool.

• virtual bool OnMouseRelease (QMouseEvent ∗event)

Zooms on left mouse button release at the position given by the mouse event if the zoom-select rectangle has not
been expanded, otherwise zoom is performed to fit all the contents of the zoom-select rectangle.
Other mouse events are ignored.

• virtual bool OnKeyPress (QKeyEvent ∗event)

Changes the cursor to kZoomMinusCursor (zoom out cursor) if the alt key is pressed.
Other key events are ignored.

• virtual bool OnKeyRelease (QKeyEvent ∗event)

Changes the cursor to kZoomPlusCursor (zoom in cursor) if the alt key is released.
Other key events are ignored.

• virtual bool OnWheel (QWheelEvent ∗event)

Zooms according to the wheel direction.

Private Member Functions

• void DoZoom (ZoomDirection zoom, int x_step_factor, int y_step_factor)

Perform the zoom operation.

Private Attributes

• QtGraphViewFrame ∗ graph_view_frame_

The graph view frame.

• QtGraphSettings ∗ graph_settings_

The graph settings.

• QtRectangleSelectTool ∗ rectangle_select_tool_

The rectangle select tool used to select-zoom.

• bool active_

Keeps track of if the zoom rectangle select is active.

Additional Inherited Members

7.25.1 Detailed Description

A small reusable zoom tool class that zooms in or out in a QtToolGraphicsView.

Left clicking zooms in, and alt-left clicking zooms out. Clicking and dragging zooms to the area shown by the drawn
selection rectangle on mouse button release. Everything inside the selection rectangle is zoomed to and fitted as
snuggly as possible.

The zoom tool is used in conjunction with mouse, wheel and key events.

7.25.2 Member Enumeration Documentation

7.25.2.1 enum ccdvl::frontend::QtZoomTool::ZoomDirection

Represents the zoom level direction.

Enumerator:

kIn Increase zoom level.

kOut Decrease zoom level.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.25 ccdvl::frontend::QtZoomTool Class Reference 141

7.25.3 Constructor & Destructor Documentation

7.25.3.1 ccdvl::frontend::QtZoomTool::QtZoomTool (QtGraphViewFrame ∗ graph view frame, QtToolGraphicsView ∗
tool graphics view)

Constructs and initiates a zoom tool object with the given graph view frame and tool graphics view.

Parameters
in tool_graphics_-

view
The tool graphics view that uses the zoom tool.

in graph_view_-
frame

The graph view frame that uses the tool graphics view.

See also

QtGraphSettings

7.25.4 Member Function Documentation

7.25.4.1 void ccdvl::frontend::QtZoomTool::DoZoom (QtZoomTool::ZoomDirection zoom, int x step factor, int
y step factor) [private]

Perform the zoom operation.

The zoom factors give the possibility to compose several operations into one.

Parameters
in zoom The zoom direction.
in x_step_factor The x zoom step factor.
in y_step_factor The y zoom step factor.

7.25.4.2 bool ccdvl::frontend::QtZoomTool::OnKeyPress (QKeyEvent ∗ event) [protected], [virtual]

Changes the cursor to kZoomMinusCursor (zoom out cursor) if the alt key is pressed.

Other key events are ignored.

Parameters
in event The key event.

Returns

true if the event was accepted.

See also

OnKeyRelease(QKeyEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.25.4.3 bool ccdvl::frontend::QtZoomTool::OnKeyRelease (QKeyEvent ∗ event) [protected], [virtual]

Changes the cursor to kZoomPlusCursor (zoom in cursor) if the alt key is released.

Other key events are ignored.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

142 Class Documentation

Parameters
in event The key event.

Returns

true if the event was accepted.

See also

OnKeyPress(QKeyEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.25.4.4 bool ccdvl::frontend::QtZoomTool::OnMouseMove (QMouseEvent ∗ event) [protected], [virtual]

Forwards the event to the internal zoom-select rectangle tool.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.25.4.5 bool ccdvl::frontend::QtZoomTool::OnMousePress (QMouseEvent ∗ event) [protected], [virtual]

Starts a new zoom selection and forwards the event to the internal zoom-select rectangle tool.

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMouseMove(QMouseEvent∗) and OnMouseRelease(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.25.4.6 bool ccdvl::frontend::QtZoomTool::OnMouseRelease (QMouseEvent ∗ event) [protected], [virtual]

Zooms on left mouse button release at the position given by the mouse event if the zoom-select rectangle has not
been expanded, otherwise zoom is performed to fit all the contents of the zoom-select rectangle.

Other mouse events are ignored.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.26 ccdvl::GraphSceneState Class Reference 143

Parameters
in event The mouse event.

Returns

true if the event was accepted.

See also

OnMousePress(QMouseEvent∗) and OnMouseMove(QMouseEvent∗)

Reimplemented from ccdvl::frontend::QtBaseTool.

7.25.4.7 bool ccdvl::frontend::QtZoomTool::OnWheel (QWheelEvent ∗ event) [protected], [virtual]

Zooms according to the wheel direction.

Parameters
in event The wheel event.

Returns

true if the event was accepted.

Reimplemented from ccdvl::frontend::QtBaseTool.

The documentation for this class was generated from the following files:

• include/qt_frontend/qt_zoom_tool.h

• src/qt_frontend/qt_zoom_tool.cc

7.26 ccdvl::GraphSceneState Class Reference

A class that keeps track of a two dimensional graph scene state, i.e. the values associated with a whole graph
image composed of graph image tiles.

#include <graph_scene_state.h>

Inheritance diagram for ccdvl::GraphSceneState:

ccdvl::GraphSceneState

ccdvl::GraphState

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

144 Class Documentation

Collaboration diagram for ccdvl::GraphSceneState:

ccdvl::GraphSceneState

ccdvl::GraphState

Public Member Functions

• GraphSceneState (int32_t width, int32_t height)

Constructs a default graph scene state.

• GraphSceneState (const GraphSceneState &instance)

Copy constructor.

• virtual ∼GraphSceneState ()

Destroys the object and frees any allocated resources.

Additional Inherited Members

7.26.1 Detailed Description

A class that keeps track of a two dimensional graph scene state, i.e. the values associated with a whole graph
image composed of graph image tiles.

The values that make up a graph scene state are the bottom left graph coordinates of the graph image, graph image
width and height, scale and zoom factors, scale method and number of dimensions.

See also

GraphTileState

7.26.2 Constructor & Destructor Documentation

7.26.2.1 ccdvl::GraphSceneState::GraphSceneState (int32 t width, int32 t height)

Constructs a default graph scene state.

Parameters
width The scene graph image width.

height The scene graph image height.

The documentation for this class was generated from the following files:

• include/graph_scene_state.h
• src/graph_scene_state.cc

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.27 ccdvl::GraphState Class Reference 145

7.27 ccdvl::GraphState Class Reference

A class that keeps track of a graph scene state, i.e. the values associated with a whole graph image composed of
graph image tiles.

#include <graph_state.h>

Inheritance diagram for ccdvl::GraphState:

ccdvl::GraphState

ccdvl::GraphSceneState ccdvl::GraphTileState

Public Types

• enum ScaleMethod { kInvalid = -1, kLinear, kLogarithmic }

Enumeration of scaling methods. kInvalid Indicate an unknown or invalid scaling method, rendered image result is
undefined with the exception of background color. kLinear Regular linear scaling, scaling constant is multiplied with
point. kLogarithmic Logarithmic scaling, scaling constant represent logarithm used.

Public Member Functions

• GraphState (int8_t dimensions, int32_t width, int32_t height)

Constructs a graph state.

• GraphState (const GraphState &instance)

Copy constructor.

• virtual ∼GraphState ()

Destroys the object and frees any allocated resources.

Public Attributes

• const int8_t dimensions_

Number of dimensions supported.

• int32_t width_

Scene graph image width.

• int32_t height_

Scene graph image height.

• double zoom_ [2]

Zoom value for graph image.

• GraphDouble ∗ bottom_left_

Start value for each axis in graph.

• double ∗ scale_

Scaling value for each axis.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

146 Class Documentation

• ScaleMethod ∗ scale_method_

Scaling method used for each axis.

Protected Member Functions

• void Allocate ()

Allocates memory for bottom_left_, scale_ and scale_method_.

7.27.1 Detailed Description

A class that keeps track of a graph scene state, i.e. the values associated with a whole graph image composed of
graph image tiles.

The values that make up a graph scene state are the bottom left graph coordinates of the graph image, graph image
width and height, scale and zoom factors, scale method and number of dimensions.

See also

GraphTileState

7.27.2 Member Enumeration Documentation

7.27.2.1 enum ccdvl::GraphState::ScaleMethod

Enumeration of scaling methods. kInvalid Indicate an unknown or invalid scaling method, rendered image result is
undefined with the exception of background color. kLinear Regular linear scaling, scaling constant is multiplied with
point. kLogarithmic Logarithmic scaling, scaling constant represent logarithm used.

Enumerator:

kInvalid Invalid scaling.

kLinear Linear scaling, scaling value is a multiplication constant.

kLogarithmic Logarithmic scaling, scaling value is the nth-logarithm.

7.27.3 Constructor & Destructor Documentation

7.27.3.1 ccdvl::GraphState::GraphState (int8 t dimensions, int32 t width, int32 t height)

Constructs a graph state.

Parameters
in dimensions The number of dimensions. Must be positive and larger then zero.

width The graph scene image width.
height The graph scene image height.

7.27.4 Member Data Documentation

7.27.4.1 GraphDouble∗ ccdvl::GraphState::bottom left

Start value for each axis in graph.

Its a point which points to the lower left corner of the graph image.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.28 ccdvl::GraphTile Class Reference 147

7.27.4.2 double∗ ccdvl::GraphState::scale

Scaling value for each axis.

The effect of this value depends on scale_method_.

See also

ScaleMethod for effects.

7.27.4.3 ScaleMethod∗ ccdvl::GraphState::scale method

Scaling method used for each axis.

See also

ScaleMethod for effects.

7.27.4.4 double ccdvl::GraphState::zoom [2]

Zoom value for graph image.

This setting is equal to scale iff scale method is set to linear, however in the case of other scaling methods the effect
of this will be applied after scaling and it will always be a linear transform. Finally in higher dimensions (or with
rotation) this value must be used to compute the data point search box.

The documentation for this class was generated from the following files:

• include/graph_state.h

• src/graph_state.cc

7.28 ccdvl::GraphTile Class Reference

Structure which composes a rendered graph tile.

#include <graph_tile.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

148 Class Documentation

Collaboration diagram for ccdvl::GraphTile:

ccdvl::GraphTile

std::map< const Abstract
Group *, uint8_t * >

 group_image_buffers

ccdvl::AbstractGroup

 keys

std::string

 name_

std::basic_string<
 char >

ccdvl::RendererConfig

 render_settings_

Public Member Functions

• GraphTile ()

Default constructor.

• virtual ∼GraphTile ()

Destroys the object and frees any allocated resources.

Public Attributes

• time_t last_used

Tile time-stamp for cache.

• bool completed

True iff the renderer has finished.

• uint8_t ∗ image_buffer

Raw pixelbuffer in the format used by the renderer.

• std::map< const AbstractGroup
∗, uint8_t ∗ > group_image_buffers

Raw pixelbuffer overlays with an alpha channel for groups.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.29 ccdvl::GraphTileState Class Reference 149

7.28.1 Detailed Description

Structure which composes a rendered graph tile.

The documentation for this class was generated from the following file:

• include/graph_tile.h

7.29 ccdvl::GraphTileState Class Reference

Holds configuration for rendering a graph tile.

#include <graph_tile_state.h>

Inheritance diagram for ccdvl::GraphTileState:

ccdvl::GraphTileState

ccdvl::GraphState

Collaboration diagram for ccdvl::GraphTileState:

ccdvl::GraphTileState

ccdvl::GraphState

std::list< const Abstract
Group * >

 groups_

ccdvl::AbstractGroup elements

std::map< const Abstract
Group *, RendererConfig >

 keys

std::string
 name_std::basic_string<

 char >

ccdvl::RendererConfig

 render_settings_

 render_settings_

 elements
 group_render_settings_

Classes

• struct functor_compare

Functor to compare graph tile states.

Public Member Functions

• GraphTileState (int8_t dimensions, int32_t width, int32_t height)

Constructs a default graph tile state.

• GraphTileState (const GraphSceneState &graph_scene_state)

Constructor that uses the values from the provided graph scene state.

• GraphTileState (const GraphTileState &instance)

Copy constructor.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

150 Class Documentation

• virtual ∼GraphTileState ()

Destructor.

• bool LessThan (const GraphTileState &graphstate) const

Less-than comparator for this class.

Public Attributes

• uint8_t clear_color_ [3]

Graph clear color.

• RendererConfig ∗ render_settings_

Default render settings, used iff point-in-polygon missed on all groups.

• std::list< const AbstractGroup ∗ > groups_

Groups.

• std::map< const AbstractGroup
∗, RendererConfig > group_render_settings_

Group render settings.

Private Member Functions

• void operator= (const GraphTileState &)

Assignment stub operatror.

Additional Inherited Members

7.29.1 Detailed Description

Holds configuration for rendering a graph tile.

It represents an arbitrary configuration for a graph image slice.

Todo 3D require rotation of view. (quaternions)

7.29.2 Constructor & Destructor Documentation

7.29.2.1 ccdvl::GraphTileState::GraphTileState (int8 t dimensions, int32 t width, int32 t height)

Constructs a default graph tile state.

Parameters
in dimensions The number of dimensions. Must be positive and larger then zero.

width The buffer image width.
height The buffer image height.

7.29.2.2 ccdvl::GraphTileState::GraphTileState (const GraphSceneState & graph scene state) [explicit]

Constructor that uses the values from the provided graph scene state.

Parameters
in graph_scene_-

state
The graph scene state to use.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.30 ccdvl::GraphTileState::functor_compare Struct Reference 151

7.29.3 Member Function Documentation

7.29.3.1 bool ccdvl::GraphTileState::LessThan (const GraphTileState & graphstate) const

Less-than comparator for this class.

Parameters
in graphstate Graph tile state to compare with.

Returns

True iff this graph tile state is "less-than" the argument.

7.29.3.2 void ccdvl::GraphTileState::operator= (const GraphTileState &) [private]

Assignment stub operatror.

Dissallows assignment of this class type.

7.29.4 Member Data Documentation

7.29.4.1 uint8 t ccdvl::GraphTileState::clear color [3]

Graph clear color.

Standard RGB888 color.

Note

Deviation from code standard, unsigned. Qt’s QColor accepts signed values while AGG expects unsigned 8bit
integers.
Keeping color as unsigned 8bit integers avoids using regular integers and extra typecasting.

The documentation for this class was generated from the following files:

• include/graph_tile_state.h
• src/graph_tile_state.cc

7.30 ccdvl::GraphTileState::functor compare Struct Reference

Functor to compare graph tile states.

#include <graph_tile_state.h>

Public Member Functions

• bool operator() (const GraphTileState ∗lhs, const GraphTileState ∗rhs) const

Less-than replacement operator.

7.30.1 Detailed Description

Functor to compare graph tile states.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

152 Class Documentation

7.30.2 Member Function Documentation

7.30.2.1 bool ccdvl::GraphTileState::functor compare::operator() (const GraphTileState ∗ lhs, const GraphTileState ∗
rhs) const

Less-than replacement operator.

Parameters
in lhs Argument on left hand side of operator.
in rhs Argument on right hand side of operator.

Returns

True iff lhs is less than rhs.

The documentation for this struct was generated from the following files:

• include/graph_tile_state.h

• src/graph_tile_state.cc

7.31 ccdvl::Group2D Class Reference

A 2D group selection of graph space; or simply a polygon.

#include <group_2d.h>

Inheritance diagram for ccdvl::Group2D:

ccdvl::Group2D

ccdvl::AbstractGroup

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.31 ccdvl::Group2D Class Reference 153

Collaboration diagram for ccdvl::Group2D:

ccdvl::Group2D parent_

std::list< Group2D * >

 elements

ccdvl::AbstractGroup

std::string

 name_

std::basic_string<
 char >

ccdvl::RendererConfig

 render_settings_

 group_leafs_

Public Member Functions

• Group2D ()

Construct a 2D selection group.

• Group2D (const GraphPairVector &vertices)

Construct a 2D selection group which operates in two dimensions.

• ∼Group2D ()

Destroys the object and frees any allocated resources.

• virtual bool PointInGroup (const GraphPoint &point) const

Test if a point is within/selected by this group.

• virtual void GetBoundingBox (double ∗box) const

Compute selection polygon bounding box.

• virtual const std::list< const
AbstractGroup ∗ > & GetLeafs () const

Get the list of leaf group nodes.

• int32_t AddSubGroup (Group2D ∗g)

Add a group selection within this group.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (Group2D)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

154 Class Documentation

• bool PointInPolygon (const double ∗vertex_x, const double ∗vertex_y, int32_t vertex_count, double test_x,
double test_y) const

Internal point-in-polygon algorithm.

Private Attributes

• std::list< Group2D ∗ > group_leafs_

List of group leafs.

• Group2D ∗ parent_

Group parent.

• int32_t vertex_count_

Number of vertices in selection polygon.

• GraphDouble ∗ vertex_x_

X-coordinates in selection polygon.

• GraphDouble ∗ vertex_y_

Y-coordinates in selection polygon.

Additional Inherited Members

7.31.1 Detailed Description

A 2D group selection of graph space; or simply a polygon.

Todo Implement proper set operations for groups.

7.31.2 Constructor & Destructor Documentation

7.31.2.1 ccdvl::Group2D::Group2D (const GraphPairVector & vertices) [explicit]

Construct a 2D selection group which operates in two dimensions.

Parameters
vertices The vertex vector representing a 2D polygon.

7.31.3 Member Function Documentation

7.31.3.1 int32 t ccdvl::Group2D::AddSubGroup (Group2D ∗ g)

Add a group selection within this group.

Sub-Groups may not overlap.

Returns

zero on success.

Note

Basically a stub implementation; avoid use and implement proper set operations for groups instead.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.31 ccdvl::Group2D Class Reference 155

7.31.3.2 void ccdvl::Group2D::GetBoundingBox (double ∗ box) const [virtual]

Compute selection polygon bounding box.

Parameters
out box The polygon bounding box. Array pointer given as x_start, y_start, ..., k_start,

x_end, y_end, ..., k_end
So its length is equal to dimensions_ times two.

Implements ccdvl::AbstractGroup.

7.31.3.3 const std::list< const AbstractGroup ∗> & ccdvl::Group2D::GetLeafs () const [virtual]

Get the list of leaf group nodes.

Returns

The std::list of leafs.

Implements ccdvl::AbstractGroup.

7.31.3.4 bool ccdvl::Group2D::PointInGroup (const GraphPoint & point) const [virtual]

Test if a point is within/selected by this group.

Parameters
in point A point of dimensions_ dimensions to test.

Returns

True iff the point is within/selected by this group.

Implements ccdvl::AbstractGroup.

7.31.3.5 bool ccdvl::Group2D::PointInPolygon (const double ∗ vertex x, const double ∗ vertex y, int32 t vertex count, double
test x, double test y) const [private]

Internal point-in-polygon algorithm.

Parameters
in vertex_x X-coordinates of vertices.
in vertex_y Y-coordinates of vertices.

vertex_count Number of vertices.
test_x X-coordinate of point to test.
test_y Y-coordinate of point to test.

7.31.4 Member Data Documentation

7.31.4.1 std::list<Group2D∗> ccdvl::Group2D::group leafs [private]

List of group leafs.

These leaf groups polygons which must not intersect, since they are hierarchical.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

156 Class Documentation

The documentation for this class was generated from the following files:

• include/group_2d.h
• src/group_2d.cc

7.32 ccdvl::GroupSelectionIterator Class Reference

Generic group selection iterator which fetches points selected by a group.

#include <group_selection_iterator.h>

Collaboration diagram for ccdvl::GroupSelectionIterator:

ccdvl::GroupSelectionIterator

ccdvl::MemoryManager
 memory_manager_

std::list< MemoryManager
ObserverInterface * >

 observers_ccdvl::MemoryManagerObserver
Interface

 elements

ccdvl::MemoryManagerIterator iterators_ccdvl::MemoryManagerIterator
Interface

 iterator_

ccdvl::AbstractGroup

 group_

std::string name_std::basic_string<
 char >

ccdvl::RendererConfig

 render_settings_

Public Member Functions

• GroupSelectionIterator ()

Constructs a new invalid group iterator.

• GroupSelectionIterator (MemoryManager ∗memory_manager, MemoryManagerIterator memory_manager_-
iterator, const AbstractGroup ∗group)

Constructs and initialize a new iterator.

• GroupSelectionIterator (const GroupSelectionIterator &instance)

Basic copy constructor.

• ∼GroupSelectionIterator ()

Destroys the object and frees any allocated resources.

• GroupSelectionIterator & operator= (const GroupSelectionIterator &iterator)

Basic assignment operator.

• GroupSelectionIterator & operator++ ()

Basic post-increment operator.

• GroupSelectionIterator operator++ (int32_t)

Basic pre-increment operator.

• bool operator== (const GroupSelectionIterator &rhs)

Equality test.

• bool operator!= (const GroupSelectionIterator &rhs)

Inequality test.

• std::vector< GraphDouble > operator∗ ()

Dereference operator.

Private Attributes

• int8_t dimensions_

Number of dimensions of data in memory manager.

• MemoryManager ∗ memory_manager_

The memory manager to search in.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.32 ccdvl::GroupSelectionIterator Class Reference 157

• const AbstractGroup ∗ group_

The group selection to search for.

• size_t at_

The data point location in dataset.

• MemoryManagerIterator ∗ iterators_

The memory manager iterator that point to the current dataset.

7.32.1 Detailed Description

Generic group selection iterator which fetches points selected by a group.

Changing the group or memory manager used is not supported. Adding data to the memorymanager could cause
data to be rearranged and the result may include double selection of data points or could case some data points to
be lost. This iterator is also meant to be similar to std:iterator.

7.32.2 Constructor & Destructor Documentation

7.32.2.1 ccdvl::GroupSelectionIterator::GroupSelectionIterator ()

Constructs a new invalid group iterator.

Intended to be assigned a real position.

7.32.2.2 ccdvl::GroupSelectionIterator::GroupSelectionIterator (MemoryManager ∗ memory manager,
MemoryManagerIterator memory manager iterator, const AbstractGroup ∗ group)

Constructs and initialize a new iterator.

Neither Memory manager; memory manager iterator or group instance should be destroyed before this iterator.

Parameters
in memory_-

manager
The memory manager to select from.

in memory_-
manager_-

iterator

The memory manager iterator to begin in.

in group The group to search from.

7.32.2.3 ccdvl::GroupSelectionIterator::GroupSelectionIterator (const GroupSelectionIterator & instance)

Basic copy constructor.

Creates a new copy of the provided group selection iterator.

Parameters
in instance The instance to copy.

7.32.3 Member Function Documentation

7.32.3.1 bool ccdvl::GroupSelectionIterator::operator!= (const GroupSelectionIterator & rhs)

Inequality test.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

158 Class Documentation

Test if two iterators references the same data location.

Returns

False iff both iterators point to the same data location.

7.32.3.2 AbstractGroup::GraphPoint ccdvl::GroupSelectionIterator::operator∗ ()

Dereference operator.

Returns

The data point at the current data location.

7.32.3.3 GroupSelectionIterator & ccdvl::GroupSelectionIterator::operator++ ()

Basic post-increment operator.

Increments the iterator to the next location.

Returns

The incremented iterator (this).

7.32.3.4 GroupSelectionIterator ccdvl::GroupSelectionIterator::operator++ (int32 t)

Basic pre-increment operator.

Increments the iterator to the next location.

Returns

The current (before it is incremented) iterator.

7.32.3.5 GroupSelectionIterator & ccdvl::GroupSelectionIterator::operator= (const GroupSelectionIterator & iterator)

Basic assignment operator.

Reassigns the internal state from the provided iterator.

Parameters
in iterator The iterator to copy from.

7.32.3.6 bool ccdvl::GroupSelectionIterator::operator== (const GroupSelectionIterator & rhs)

Equality test.

Test if two iterators references the same data location.

Returns

True iff both iterators point to the same data location.

The documentation for this class was generated from the following files:

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.33 ccdvl::List2D< type > Class Template Reference 159

• include/group_selection_iterator.h
• src/group_selection_iterator.cc

7.33 ccdvl::List2D< type > Class Template Reference

A two dimensional standard C++ list template.

#include <list_2d.h>

Inheritance diagram for ccdvl::List2D< type >:

ccdvl::List2D< type >

std::list< std::list
< type > >

Collaboration diagram for ccdvl::List2D< type >:

ccdvl::List2D< type >

std::list< std::list
< type > >

T

 elements

Public Member Functions

• List2D ()

Constructs an empty two dimensional list.
• List2D (int rows, int columns, const type &value=type())

Constructs a two dimensional list with the given number of rows and columns.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

160 Class Documentation

Additional Inherited Members

7.33.1 Detailed Description

template<typename type>class ccdvl::List2D< type >

A two dimensional standard C++ list template.

7.33.2 Constructor & Destructor Documentation

7.33.2.1 template<typename type> ccdvl::List2D< type >::List2D (int rows, int columns, const type & value =
type()) [inline]

Constructs a two dimensional list with the given number of rows and columns.

Parameters
in rows The number of rows.
in columns The number of columns.
in value Default fill value.

The documentation for this class was generated from the following file:

• include/list_2d.h

7.34 ccdvl::MemoryManager Class Reference

Abstract class for arbitrary memory managers.

#include <memory_manager.h>

Inheritance diagram for ccdvl::MemoryManager:

ccdvl::MemoryManager

ccdvl::memorymanager
::SequentialMemoryManager

ccdvl::memorymanager
::StubMemoryManager

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.34 ccdvl::MemoryManager Class Reference 161

Collaboration diagram for ccdvl::MemoryManager:

ccdvl::MemoryManager

std::list< MemoryManager
ObserverInterface * >

 observers_

ccdvl::MemoryManagerObserver
Interface

 elements

Public Types

• enum MemoryManagerError { kEUnkown = -1, kEOk = 0, kENotSupported, kEOutOfMemory }

Enumeration of error codes.

• typedef MemoryManagerIterator iterator

The iterator type for any memory manager.

Public Member Functions

• MemoryManager (int8_t dimensions, bool search_support)

Initialize constants for subclasses.

• virtual ∼MemoryManager ()

Destroys the object and frees any allocated resources.

• void AddObserver (MemoryManagerObserverInterface ∗observer)

Adds an observer for new data.

• virtual MemoryManagerError AddData (const AbstractDataSet ∗∗data)=0

Adds data.

• virtual MemoryManagerError Clear ()=0

Remove all managed data.

• virtual iterator begin ()=0

Get an iterator for the full dataset managed.

• virtual iterator GetRange (const std::vector< GraphDouble > &start, const std::vector< GraphDouble >
&stop)=0

Get an iterator for a managed data subset.

• virtual iterator end ()=0

Get an iterator pointing past the last element of the dataset.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

162 Class Documentation

Public Attributes

• const int8_t dimensions_

Number of dimensions supported.

• const bool search_support_

True iff GetRange is fully supported by this memory manager.

Protected Member Functions

• void NotifyCleared ()

Notifies all observers that all data was cleared.

• void NotifyNew (const AbstractDataSet ∗∗new_data)

Notifies all observers that a new dataset was added.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (MemoryManager)

Private Attributes

• std::list
< MemoryManagerObserverInterface ∗ > observers_

List of registered observers.

7.34.1 Detailed Description

Abstract class for arbitrary memory managers.

A memory manager manage memory allocation and storage for datasets.

7.34.2 Member Enumeration Documentation

7.34.2.1 enum ccdvl::MemoryManager::MemoryManagerError

Enumeration of error codes.

Enumerator:

kEUnkown An unknown error.

kEOk No error.

kENotSupported Operation not supported.

kEOutOfMemory An out-of-memory error occurred (possibly no enough virtual memory) or not enough disk
space.

7.34.3 Constructor & Destructor Documentation

7.34.3.1 ccdvl::MemoryManager::MemoryManager (int8 t dimensions, bool search support)

Initialize constants for subclasses.

Parameters
dimensions The number of dimensions. Must be positive and larger then zero.

search_support Flag which indicates if a memory manager support the GetRange method properly.
Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.34 ccdvl::MemoryManager Class Reference 163

7.34.3.2 ccdvl::MemoryManager::∼MemoryManager () [virtual]

Destroys the object and frees any allocated resources.

Invalidates all iterators using this memory manager. Excluding the data swap file; if used.

7.34.4 Member Function Documentation

7.34.4.1 virtual MemoryManagerError ccdvl::MemoryManager::AddData (const AbstractDataSet ∗∗ data) [pure
virtual]

Adds data.

This method will copy provided input.

Parameters
in data The data to manage, should be an array and its length must match dimensions-

_.

Returns

A MemoryManagerError code, kEOk iff the operation was successful.

Todo Change parameter to std::vector<const AbstractDataSet∗>.

Implemented in ccdvl::memorymanager::SequentialMemoryManager, and ccdvl::memorymanager::StubMemory-
Manager.

7.34.4.2 void ccdvl::MemoryManager::AddObserver (MemoryManagerObserverInterface ∗ observer)

Adds an observer for new data.

Observers can be safely destroyed as long as no additional data is added or Clear() is invoked.

Parameters
in observer A new observer to inform.

7.34.4.3 virtual iterator ccdvl::MemoryManager::begin () [pure virtual]

Get an iterator for the full dataset managed.

Returns

An iterator for all data managed.

Implemented in ccdvl::memorymanager::SequentialMemoryManager, and ccdvl::memorymanager::StubMemory-
Manager.

7.34.4.4 virtual MemoryManagerError ccdvl::MemoryManager::Clear () [pure virtual]

Remove all managed data.

Memory will also be freed.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

164 Class Documentation

Returns

A MemoryManagerError code, kEOk iff the operation was successful.

Implemented in ccdvl::memorymanager::SequentialMemoryManager, and ccdvl::memorymanager::StubMemory-
Manager.

7.34.4.5 virtual iterator ccdvl::MemoryManager::end () [pure virtual]

Get an iterator pointing past the last element of the dataset.

Returns

An iterator which is pointing past the last element.

Implemented in ccdvl::memorymanager::SequentialMemoryManager, and ccdvl::memorymanager::StubMemory-
Manager.

7.34.4.6 virtual iterator ccdvl::MemoryManager::GetRange (const std::vector< GraphDouble > & start, const
std::vector< GraphDouble > & stop) [pure virtual]

Get an iterator for a managed data subset.

Any memory manager fully supporting this must set search_support_ to true.

This will imply some restrictions on how data sets are ordered and it has not been decided how to address this.

Parameters
in start The start point of the bounding box for elements to iterate, its length must be

equal to the number of dimensions.
in stop The stop point of the bounding box for elements to iterate, its length must be

equal to the number of dimensions.

Returns

An iterator which iterates all elements within the provided bounding box.

Implemented in ccdvl::memorymanager::SequentialMemoryManager, and ccdvl::memorymanager::StubMemory-
Manager.

7.34.4.7 void ccdvl::MemoryManager::NotifyNew (const AbstractDataSet ∗∗ new data) [protected]

Notifies all observers that a new dataset was added.

Parameters
in new_data The newly added dataset.

The documentation for this class was generated from the following files:

• include/memory_manager.h

• src/memory_manager.cc

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.35 ccdvl::memorymanager::CloneDataSet Class Reference 165

7.35 ccdvl::memorymanager::CloneDataSet Class Reference

AbstractDataSet clone allocator for SequentialMemoryManager.

#include <clone_data_set.h>

Inheritance diagram for ccdvl::memorymanager::CloneDataSet:

ccdvl::memorymanager
::CloneDataSet

ccdvl::DataSetVisitorInterface

Collaboration diagram for ccdvl::memorymanager::CloneDataSet:

ccdvl::memorymanager
::CloneDataSet

ccdvl::DataSetVisitorInterface ccdvl::AbstractDataSet

 dataset_

Public Member Functions

• virtual void Visit (TypedDataSet< uint8_t > ∗uint8)

Callback for TypedDataSet holding uint8_t.

• virtual void Visit (TypedDataSet< int8_t > ∗int8)

Callback for TypedDataSet holding int8_t.

• virtual void Visit (TypedDataSet< uint16_t > ∗uint16)

Callback for TypedDataSet holding uint16_t.

• virtual void Visit (TypedDataSet< int16_t > ∗int16)

Callback for TypedDataSet holding int16_t.

• virtual void Visit (TypedDataSet< uint32_t > ∗uint32)

Callback for TypedDataSet holding uint32_t.

• virtual void Visit (TypedDataSet< int32_t > ∗int32)

Callback for TypedDataSet holding int32_t.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

166 Class Documentation

• virtual void Visit (TypedDataSet< uint64_t > ∗uint64)

Callback for TypedDataSet holding uint64_t.

• virtual void Visit (TypedDataSet< int64_t > ∗int64)

Callback for TypedDataSet holding int64_t.

• virtual void Visit (TypedDataSet< float > ∗tfloat)

Callback for TypedDataSet holding regular floats.

• virtual void Visit (TypedDataSet< double > ∗tdouble)

Callback for TypedDataSet holding regular doubles.

• CloneDataSet (void ∗∗destination)

Constructs a new AbstractDataSet cloning visitor.

• ∼CloneDataSet ()

Destroys the object and frees any allocated resources.

• void SetCopyDestination (AbstractDataSet ∗∗dataset)

Sets return location for new datasets.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (CloneDataSet)
• template<typename T >

void Visit (TypedDataSet< T > ∗t)

Template aggregation of the overloaded visit method.

Private Attributes

• void ∗∗ destination_

Pointer to memory allocation.

• ptrdiff_t written_

Bytes of memory already consumed.

• AbstractDataSet ∗∗ dataset_

Destination for new dataset.

7.35.1 Detailed Description

AbstractDataSet clone allocator for SequentialMemoryManager.

Copies AbstractDataSet objects into provided memory areas.

See also

SequentialMemoryManager and AbstractDataSet.

7.35.2 Constructor & Destructor Documentation

7.35.2.1 ccdvl::memorymanager::CloneDataSet::CloneDataSet (void ∗∗ destination) [explicit]

Constructs a new AbstractDataSet cloning visitor.

Parameters
out destination memory pointer.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.35 ccdvl::memorymanager::CloneDataSet Class Reference 167

7.35.3 Member Function Documentation

7.35.3.1 void ccdvl::memorymanager::CloneDataSet::SetCopyDestination (AbstractDataSet ∗∗ dataset)

Sets return location for new datasets.

Parameters
out dataset Destination pointer.

7.35.3.2 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< uint8 t > ∗ uint8) [virtual]

Callback for TypedDataSet holding uint8_t.

Parameters
in,out uint8 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.3 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< int8 t > ∗ int8) [virtual]

Callback for TypedDataSet holding int8_t.

Parameters
in,out int8 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.4 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< uint16 t > ∗ uint16) [virtual]

Callback for TypedDataSet holding uint16_t.

Parameters
in,out uint16 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.5 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< int16 t > ∗ int16) [virtual]

Callback for TypedDataSet holding int16_t.

Parameters
in,out int16 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.6 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< uint32 t > ∗ uint32) [virtual]

Callback for TypedDataSet holding uint32_t.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

168 Class Documentation

Parameters
in,out uint32 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.7 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< int32 t > ∗ int32) [virtual]

Callback for TypedDataSet holding int32_t.

Parameters
in,out int32 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.8 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< uint64 t > ∗ uint64) [virtual]

Callback for TypedDataSet holding uint64_t.

Parameters
in,out uint64 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.9 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< int64 t > ∗ int64) [virtual]

Callback for TypedDataSet holding int64_t.

Parameters
in,out int64 Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.10 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< float > ∗ tfloat) [virtual]

Callback for TypedDataSet holding regular floats.

Parameters
in,out tfloat Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

7.35.3.11 void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< double > ∗ tdouble) [virtual]

Callback for TypedDataSet holding regular doubles.

Parameters
in,out tdouble Calling class instance.

Implements ccdvl::DataSetVisitorInterface.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.36 ccdvl::memorymanager::SequentialMemoryManager Class Reference 169

7.35.3.12 template<typename T > void ccdvl::memorymanager::CloneDataSet::Visit (TypedDataSet< T > ∗ t)
[inline], [private]

Template aggregation of the overloaded visit method.

Template Parameters

T Numerical data type held by a TypedDataSet to handle.

Parameters
in t TypedDataSet to visit.

See also

TypedDataSet

Note

Reduces copy-paste code.

The documentation for this class was generated from the following files:

• include/sequential_memory_manager/clone_data_set.h
• src/sequential_memory_manager/clone_data_set.cc

7.36 ccdvl::memorymanager::SequentialMemoryManager Class Reference

A regular memory manager which stores data to be accessed in sequence.

#include <sequential_memory_manager.h>

Inheritance diagram for ccdvl::memorymanager::SequentialMemoryManager:

ccdvl::memorymanager
::SequentialMemoryManager

ccdvl::MemoryManager

Collaboration diagram for ccdvl::memorymanager::SequentialMemoryManager:

ccdvl::memorymanager
::SequentialMemoryManager

ccdvl::MemoryManager
std::list< MemoryManager

ObserverInterface * >
 observers_ccdvl::MemoryManagerObserver

Interface
 elements

std::list< MappedMemory * >

 mapped_space_

ccdvl::memorymanager
::SequentialMemoryManager

::MappedMemory

 elements
ccdvl::AbstractDataSet dataset

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

170 Class Documentation

Classes

• struct MappedMemory

Memory map structure, including matching datasets.

Public Types

• typedef std::list< MappedMemory ∗ > MemoryAllocationList

List type for allocated memory.
• typedef

MemoryAllocationList::iterator MemoryAllocationListIterator

Iterator type for allocated memory.

Public Member Functions

• SequentialMemoryManager (int8_t dimensions)

Constructs a new SequentialMemoryManager.
• SequentialMemoryManager::MemoryManagerError Init ()

Initializes this memory manager in anonymous swap mode.
• SequentialMemoryManager::MemoryManagerError Init (const char ∗file)

Initializes this memory manager in file swap mode.
• virtual ∼SequentialMemoryManager ()

Destroys the object and frees any allocated resources.
• virtual MemoryManagerError AddData (const AbstractDataSet ∗∗data)

Adds data.
• virtual MemoryManagerError Clear ()

Remove all managed data.
• virtual iterator begin ()

Get an iterator for the full dataset managed.
• virtual iterator end ()

Get an iterator pointing past the last element of the dataset.
• virtual iterator GetRange (const std::vector< GraphDouble > &start, const std::vector< GraphDouble >

&stop)

Get an iterator for a managed data subset.
• void PageControlLoad (MappedMemory &mm)

Informs OS that a certain MappedMemory area must be loaded.
• void PageControlUnload (MappedMemory &mm)

Informs OS that a certain MappedMemory area is no longer needed.

Public Attributes

• MemoryAllocationList mapped_space_

List of all data buckets, and their allocation if any.

Private Member Functions

• void PageControlAllocate (MappedMemory &mm)

Create a new MappedMemory area or acquire a new allocation for one.
• void PageControlDeallocate (MappedMemory &mm)

Deallocate a previously allocated MappedMemory area.
• void PageControlDelete (MappedMemory &mm)

Deletes a MappedMemory area.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.36 ccdvl::memorymanager::SequentialMemoryManager Class Reference 171

Private Attributes

• size_t page_size_

OS page size.

• bool anonymous_swap_

Memory swap mode.

• int32_t memory_map_flags_

mmap allocation flags.

• int32_t file_descriptor_

Descriptor for accessing the swap file, if any.

• pthread_mutex_t load_mutex_

Data load/unload mutex.

Additional Inherited Members

7.36.1 Detailed Description

A regular memory manager which stores data to be accessed in sequence.

It uses a reference counting iterator, this allows data to be (flushed to disk and) deallocated when its no longer
needed.

7.36.2 Constructor & Destructor Documentation

7.36.2.1 ccdvl::memorymanager::SequentialMemoryManager::SequentialMemoryManager (int8 t dimensions)
[explicit]

Constructs a new SequentialMemoryManager.

Remember to invoke one of the initialization methods.

Parameters
dimensions The number of dimensions. Must be positive and larger then zero.

See also

Init()

7.36.3 Member Function Documentation

7.36.3.1 SequentialMemoryManager::MemoryManagerError ccdvl::memorymanager::SequentialMemoryManager::-
AddData (const AbstractDataSet ∗∗ data) [virtual]

Adds data.

This method will copy provided input.

Parameters
in data The data to manage, should be an array and its length must match dimensions-

_.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

172 Class Documentation

Returns

A MemoryManagerError code, kEOk iff the operation was successful.

Todo Change parameter to std::vector<const AbstractDataSet∗>.

Implements ccdvl::MemoryManager.

7.36.3.2 SequentialMemoryManager::iterator ccdvl::memorymanager::SequentialMemoryManager::begin ()
[virtual]

Get an iterator for the full dataset managed.

Returns

An iterator for all data managed.

Implements ccdvl::MemoryManager.

7.36.3.3 SequentialMemoryManager::MemoryManagerError ccdvl::memorymanager::SequentialMemoryManager::-
Clear () [virtual]

Remove all managed data.

Memory will also be freed.

Returns

A MemoryManagerError code, kEOk iff the operation was successful.

Implements ccdvl::MemoryManager.

7.36.3.4 SequentialMemoryManager::iterator ccdvl::memorymanager::SequentialMemoryManager::end ()
[virtual]

Get an iterator pointing past the last element of the dataset.

Returns

An iterator which is pointing past the last element.

Implements ccdvl::MemoryManager.

7.36.3.5 SequentialMemoryManager::iterator ccdvl::memorymanager::SequentialMemoryManager::GetRange (const
std::vector< GraphDouble > & start, const std::vector< GraphDouble > & stop) [virtual]

Get an iterator for a managed data subset.

Any memory manager fully supporting this must set search_support_ to true.

This will imply some restrictions on how data sets are ordered and it has not been decided how to address this.

Parameters
in start The start point of the bounding box for elements to iterate, its length must be

equal to the number of dimensions.
in stop The stop point of the bounding box for elements to iterate, its length must be

equal to the number of dimensions.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.36 ccdvl::memorymanager::SequentialMemoryManager Class Reference 173

Returns

An iterator which iterates all elements within the provided bounding box.

This method return the same iterator as begin.

Implements ccdvl::MemoryManager.

7.36.3.6 SequentialMemoryManager::MemoryManagerError ccdvl::memorymanager::SequentialMemoryManager::Init
(const char ∗ file)

Initializes this memory manager in file swap mode.

Parameters
in file Swap filename.

7.36.3.7 void ccdvl::memorymanager::SequentialMemoryManager::PageControlAllocate (MappedMemory & mm)
[private]

Create a new MappedMemory area or acquire a new allocation for one.

Don’t bother with this, use the iterator instead.

Parameters
in,out mm MappedMemory to allocate.

7.36.3.8 void ccdvl::memorymanager::SequentialMemoryManager::PageControlDeallocate (MappedMemory & mm)
[private]

Deallocate a previously allocated MappedMemory area.

If possible, pages will be flushed to disk and then removed to free virtual memory. Don’t bother with this, use the
iterator instead.

Parameters
in,out mm MappedMemory area to deallocate.

7.36.3.9 void ccdvl::memorymanager::SequentialMemoryManager::PageControlDelete (MappedMemory & mm)
[private]

Deletes a MappedMemory area.

This will delete a MappedMemory area without disk flush, unlike PageControlDeallocate. Don’t bother with this, use
the iterator instead.

Parameters
in,out mm MappedMemory area to remove.

7.36.3.10 void ccdvl::memorymanager::SequentialMemoryManager::PageControlLoad (MappedMemory & mm)

Informs OS that a certain MappedMemory area must be loaded.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

174 Class Documentation

Don’t bother with this, use the iterator instead. This also increases the reference counter.

Parameters
in,out mm MappedMemory area to load.

7.36.3.11 void ccdvl::memorymanager::SequentialMemoryManager::PageControlUnload (MappedMemory & mm)

Informs OS that a certain MappedMemory area is no longer needed.

Don’t bother with this, use the iterator instead. This also decreases the reference counter.

Parameters
in mm MappedMemory area to unload.

7.36.4 Member Data Documentation

7.36.4.1 MemoryAllocationList ccdvl::memorymanager::SequentialMemoryManager::mapped space

List of all data buckets, and their allocation if any.

Note

This is public so that it can be accessed by the iterator.

Todo It is tempting to define SequentialMemoryManagerIterator a friend class, Alternatively provide the needed
functionality as methods which is already true for page control methods.

The documentation for this class was generated from the following files:

• include/sequential_memory_manager/sequential_memory_manager.h

• src/sequential_memory_manager/sequential_memory_manager.cc

7.37 ccdvl::memorymanager::SequentialMemoryManager::MappedMemory Struct Refer-
ence

Memory map structure, including matching datasets.

#include <sequential_memory_manager.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.38 ccdvl::memorymanager::SequentialMemoryManagerIterator Class Reference 175

Collaboration diagram for ccdvl::memorymanager::SequentialMemoryManager::MappedMemory:

ccdvl::memorymanager
::SequentialMemoryManager

::MappedMemory

ccdvl::AbstractDataSet

 dataset

Public Attributes

• void ∗ memory_pointer

Memory pointer for dataset.

• size_t allocated_bytes

Amount of bytes allocated for data.

• off_t cache_file_offset

Offset to data in cache file.

• size_t reference_count

Number of iterators using this dataset.

• AbstractDataSet ∗∗ dataset

7.37.1 Detailed Description

Memory map structure, including matching datasets.

7.37.2 Member Data Documentation

7.37.2.1 AbstractDataSet∗∗ ccdvl::memorymanager::SequentialMemoryManager::MappedMemory::dataset

Array of dataset instances stored in the managed memory area.

The documentation for this struct was generated from the following file:

• include/sequential_memory_manager/sequential_memory_manager.h

7.38 ccdvl::memorymanager::SequentialMemoryManagerIterator Class Reference

An iterator used to iterate a SequentialMemoryManager.

#include <sequential_memory_manager_iterator.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

176 Class Documentation

Inheritance diagram for ccdvl::memorymanager::SequentialMemoryManagerIterator:

ccdvl::memorymanager
::SequentialMemoryManagerIterator

ccdvl::MemoryManagerIterator
Interface

Collaboration diagram for ccdvl::memorymanager::SequentialMemoryManagerIterator:

ccdvl::memorymanager
::SequentialMemoryManagerIterator

ccdvl::MemoryManagerIterator
Interface

ccdvl::memorymanager
::SequentialMemoryManager

 sequential_manager_

ccdvl::MemoryManager
std::list< MemoryManager

ObserverInterface * >
 observers_ccdvl::MemoryManagerObserver

Interface
 elements

std::list< MappedMemory * >

 mapped_space_
ccdvl::memorymanager
::SequentialMemoryManager

::MappedMemory

 elements
ccdvl::AbstractDataSet dataset

std::list< T >::iterator

 bucket_iterator_

Public Types

• typedef
SequentialMemoryManager::MemoryAllocationListIterator MemoryAllocationListIterator

A shorter iterator type of memory managers in class scope.

Public Member Functions

• SequentialMemoryManagerIterator (SequentialMemoryManager ∗mit, MemoryAllocationListIterator dit)

Construct a new SequentialMemoryManagerIterator.

• virtual ∼SequentialMemoryManagerIterator ()

Destroys the object and frees any allocated resources.

• virtual
MemoryManagerIteratorInterface ∗ Clone () const

Creates a copy of this iterator.

• virtual void Next ()

Increment this iterator.

• virtual bool Equals (const MemoryManagerIteratorInterface ∗rhs) const

Test if this iterator is the same as the one provided.

• virtual const AbstractDataSet ∗ Get () const

Get current dataset.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (SequentialMemoryManagerIterator)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.38 ccdvl::memorymanager::SequentialMemoryManagerIterator Class Reference 177

Private Attributes

• SequentialMemoryManager ∗ sequential_manager_

Reference to the stub memory manager iterated.

• MemoryAllocationListIterator bucket_iterator_

Bucket iterator.

• int8_t at_

Current dimension.

7.38.1 Detailed Description

An iterator used to iterate a SequentialMemoryManager.

Uses reference counting to ensure access to data.

7.38.2 Constructor & Destructor Documentation

7.38.2.1 ccdvl::memorymanager::SequentialMemoryManagerIterator::SequentialMemoryManagerIterator (
SequentialMemoryManager ∗ mit, MemoryAllocationListIterator dit)

Construct a new SequentialMemoryManagerIterator.

Parameters
in mit Sequential memory manager to iterate.
in dit Data allocation iterator to start at.

7.38.3 Member Function Documentation

7.38.3.1 MemoryManagerIteratorInterface ∗ ccdvl::memorymanager::SequentialMemoryManagerIterator::Clone ()
const [virtual]

Creates a copy of this iterator.

Returns

Pointer to new instance.

Implements ccdvl::MemoryManagerIteratorInterface.

7.38.3.2 bool ccdvl::memorymanager::SequentialMemoryManagerIterator::Equals (const
MemoryManagerIteratorInterface ∗ rhs) const [virtual]

Test if this iterator is the same as the one provided.

Parameters
rhs [in] The iterator to compare with.

Returns

True if this iterator is equal to the one provided.

Implements ccdvl::MemoryManagerIteratorInterface.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

178 Class Documentation

7.38.3.3 const AbstractDataSet ∗ ccdvl::memorymanager::SequentialMemoryManagerIterator::Get () const
[virtual]

Get current dataset.

Returns

The current dataset.

Implements ccdvl::MemoryManagerIteratorInterface.

The documentation for this class was generated from the following files:

• include/sequential_memory_manager/sequential_memory_manager_iterator.h

• src/sequential_memory_manager/sequential_memory_manager_iterator.cc

7.39 ccdvl::memorymanager::StubMemoryManager Class Reference

A MemoryManager which do not support add or clear.

#include <stub_memory_manager.h>

Inheritance diagram for ccdvl::memorymanager::StubMemoryManager:

ccdvl::memorymanager
::StubMemoryManager

ccdvl::MemoryManager

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.39 ccdvl::memorymanager::StubMemoryManager Class Reference 179

Collaboration diagram for ccdvl::memorymanager::StubMemoryManager:

ccdvl::memorymanager
::StubMemoryManager

ccdvl::MemoryManager

std::list< MemoryManager
ObserverInterface * >

 observers_

ccdvl::MemoryManagerObserver
Interface

 elements

ccdvl::AbstractDataSet

 buff_x_
buff_y_

Public Member Functions

• virtual MemoryManagerError AddData (const AbstractDataSet ∗∗data)

Adds data.

• virtual MemoryManagerError Clear ()

Remove all managed data.

• virtual iterator begin ()

Get an iterator for the full dataset managed.

• virtual iterator end ()

Get an iterator pointing past the last element of the dataset.

• virtual iterator GetRange (const std::vector< GraphDouble > &start, const std::vector< GraphDouble >
&stop)

Get an iterator for a managed data subset.

• StubMemoryManager ()

Initializes a new StubMemoryManager instance.

• virtual ∼StubMemoryManager ()

Destroys the object and frees any allocated resources.

• void SwitchTo (size_t n)

Switch dataset held.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

180 Class Documentation

Public Attributes

• AbstractDataSet ∗ buff_x_

Active dataset x.

• AbstractDataSet ∗ buff_y_

Active dataset y.

• size_t current_

Index of active dataset.

Additional Inherited Members

7.39.1 Detailed Description

A MemoryManager which do not support add or clear.

Generates a static dataset for rederering tests.

7.39.2 Member Function Documentation

7.39.2.1 MemoryManager::MemoryManagerError ccdvl::memorymanager::StubMemoryManager::AddData (const
AbstractDataSet ∗∗ data) [virtual]

Adds data.

This method will copy provided input.

Parameters
in data The data to manage, should be an array and its length must match dimensions-

_.

Returns

A MemoryManagerError code, kEOk iff the operation was successful.

Todo Change parameter to std::vector<const AbstractDataSet∗>.

Note

This method is an empty stub.

Implements ccdvl::MemoryManager.

7.39.2.2 StubMemoryManager::iterator ccdvl::memorymanager::StubMemoryManager::begin () [virtual]

Get an iterator for the full dataset managed.

Returns

An iterator for all data managed.

Implements ccdvl::MemoryManager.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.39 ccdvl::memorymanager::StubMemoryManager Class Reference 181

7.39.2.3 MemoryManager::MemoryManagerError ccdvl::memorymanager::StubMemoryManager::Clear ()
[virtual]

Remove all managed data.

Memory will also be freed.

Returns

A MemoryManagerError code, kEOk iff the operation was successful.

Note

This method is an empty stub.

Implements ccdvl::MemoryManager.

7.39.2.4 StubMemoryManager::iterator ccdvl::memorymanager::StubMemoryManager::end () [virtual]

Get an iterator pointing past the last element of the dataset.

Returns

An iterator which is pointing past the last element.

Implements ccdvl::MemoryManager.

7.39.2.5 StubMemoryManager::iterator ccdvl::memorymanager::StubMemoryManager::GetRange (const std::vector<
GraphDouble > & start, const std::vector< GraphDouble > & stop) [virtual]

Get an iterator for a managed data subset.

Any memory manager fully supporting this must set search_support_ to true.

This will imply some restrictions on how data sets are ordered and it has not been decided how to address this.

Parameters
in start The start point of the bounding box for elements to iterate, its length must be

equal to the number of dimensions.
in stop The stop point of the bounding box for elements to iterate, its length must be

equal to the number of dimensions.

Returns

An iterator which iterates all elements within the provided bounding box.

This method return the same iterator as begin.

Implements ccdvl::MemoryManager.

7.39.2.6 void ccdvl::memorymanager::StubMemoryManager::SwitchTo (size t n)

Switch dataset held.

Parameters
n The dataset index.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

182 Class Documentation

The documentation for this class was generated from the following files:

• include/stub_memory_manager/stub_memory_manager.h

• src/stub_memory_manager/stub_memory_manager.cc

7.40 ccdvl::memorymanager::StubMemoryManagerIterator Class Reference

An iterator used it iterate data in a StubMemoryManager.

#include <stub_memory_manager_iterator.h>

Inheritance diagram for ccdvl::memorymanager::StubMemoryManagerIterator:

ccdvl::memorymanager
::StubMemoryManagerIterator

ccdvl::MemoryManagerIterator
Interface

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.40 ccdvl::memorymanager::StubMemoryManagerIterator Class Reference 183

Collaboration diagram for ccdvl::memorymanager::StubMemoryManagerIterator:

ccdvl::memorymanager
::StubMemoryManagerIterator

ccdvl::MemoryManagerIterator
Interface

ccdvl::memorymanager
::StubMemoryManager

 stub_manager_

ccdvl::MemoryManager

std::list< MemoryManager
ObserverInterface * >

 observers_

ccdvl::MemoryManagerObserver
Interface

 elements

ccdvl::AbstractDataSet

 buff_x_
buff_y_

Public Member Functions

• StubMemoryManagerIterator ()

Initializes an invalid iterator.

• StubMemoryManagerIterator (StubMemoryManager ∗mit)

Construct a new iterator.

• virtual ∼StubMemoryManagerIterator ()

Destroys the object and frees any allocated resources.

• virtual
MemoryManagerIteratorInterface ∗ Clone () const

Creates a copy of this iterator.

• virtual void Next ()

Increment this iterator.

• virtual bool Equals (const MemoryManagerIteratorInterface ∗rhs) const

Test if this iterator is the same as the one provided.

• virtual const AbstractDataSet ∗ Get () const

Get current dataset.

• void End ()

Sets the iterator to point past the last element.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

184 Class Documentation

Private Attributes

• StubMemoryManager ∗ stub_manager_

Reference to the stub memory manager iterated.

• size_t at_

Current dataset index.

7.40.1 Detailed Description

An iterator used it iterate data in a StubMemoryManager.

7.40.2 Constructor & Destructor Documentation

7.40.2.1 ccdvl::memorymanager::StubMemoryManagerIterator::StubMemoryManagerIterator (StubMemoryManager ∗ mit
) [explicit]

Construct a new iterator.

Parameters
in mit The Stub memory manager to iterate.

7.40.3 Member Function Documentation

7.40.3.1 MemoryManagerIteratorInterface ∗ ccdvl::memorymanager::StubMemoryManagerIterator::Clone () const
[virtual]

Creates a copy of this iterator.

Returns

Pointer to new instance.

Implements ccdvl::MemoryManagerIteratorInterface.

7.40.3.2 bool ccdvl::memorymanager::StubMemoryManagerIterator::Equals (const MemoryManagerIteratorInterface ∗
rhs) const [virtual]

Test if this iterator is the same as the one provided.

Parameters
rhs [in] The iterator to compare with.

Returns

True if this iterator is equal to the one provided.

Implements ccdvl::MemoryManagerIteratorInterface.

7.40.3.3 const AbstractDataSet ∗ ccdvl::memorymanager::StubMemoryManagerIterator::Get () const [virtual]

Get current dataset.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.41 ccdvl::MemoryManagerIterator Class Reference 185

Returns

The current dataset.

Implements ccdvl::MemoryManagerIteratorInterface.

The documentation for this class was generated from the following files:

• include/stub_memory_manager/stub_memory_manager_iterator.h
• src/stub_memory_manager/stub_memory_manager_iterator.cc

7.41 ccdvl::MemoryManagerIterator Class Reference

Wrapper class used to create std::iterator like objects.

#include <memory_manager_iterator.h>

Inheritance diagram for ccdvl::MemoryManagerIterator:

ccdvl::MemoryManagerIterator

ccdvl::PyMemoryManagerIterator

Collaboration diagram for ccdvl::MemoryManagerIterator:

ccdvl::MemoryManagerIterator

ccdvl::MemoryManagerIterator
Interface

 iterator_

Public Member Functions

• MemoryManagerIterator ()

Constructs a new invalid memory manager iterator.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

186 Class Documentation

• MemoryManagerIterator (const MemoryManagerIterator &mit)

Basic copy constructor.

• MemoryManagerIterator (MemoryManagerIteratorInterface ∗mit)

Wraps an existing memory manager iterator interface.

• ∼MemoryManagerIterator ()

Destroys the object and frees any allocated resources.

• MemoryManagerIterator & operator= (const MemoryManagerIterator &mit)

Basic assignment operator.

• MemoryManagerIterator & operator++ ()

Basic post-increment operator.

• MemoryManagerIterator operator++ (int32_t)

Basic pre-increment operator.

• bool operator== (const MemoryManagerIterator &rhs)

Equality test.

• bool operator!= (const MemoryManagerIterator &rhs)

Inequality test.

• const AbstractDataSet ∗ operator∗ ()

Dereference operator.

Private Attributes

• MemoryManagerIteratorInterface ∗ iterator_

The wrapped memory manager iterator interface.

7.41.1 Detailed Description

Wrapper class used to create std::iterator like objects.

Wraps a MemoryManagerIteratorInterface class to simplify usage and make them more like regular C++ iterators.

See also

MemoryManagerIteratorInterface.

Warning

Beware that memory managers may use reference counters and can therefore deallocate datasets as needed
when no iterators are pointing to them. This is both to prevent dangling iterators between threads and to improve
memory management, so all iterators to used datasets must persist.

7.41.2 Constructor & Destructor Documentation

7.41.2.1 ccdvl::MemoryManagerIterator::MemoryManagerIterator ()

Constructs a new invalid memory manager iterator.

Intended to be assigned a real position.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.41 ccdvl::MemoryManagerIterator Class Reference 187

7.41.2.2 ccdvl::MemoryManagerIterator::MemoryManagerIterator (const MemoryManagerIterator & mit)

Basic copy constructor.

Creates a new copy of the provided memory manager iterator.

Parameters
in mit The instance to copy.

7.41.2.3 ccdvl::MemoryManagerIterator::MemoryManagerIterator (MemoryManagerIteratorInterface ∗ mit)

Wraps an existing memory manager iterator interface.

Creates a newly wrapped instance of the provided memory manager iterator interface.

Parameters
in mit The instance to wrap.

See also

MemoryManagerIteratorInterface.

7.41.3 Member Function Documentation

7.41.3.1 bool ccdvl::MemoryManagerIterator::operator!= (const MemoryManagerIterator & rhs)

Inequality test.

Test if two iterators references the same data location.

Returns

False iff both iterators point to the same data location.

7.41.3.2 const AbstractDataSet ∗ ccdvl::MemoryManagerIterator::operator∗ ()

Dereference operator.

Returns

The dataset at the current location.

7.41.3.3 MemoryManagerIterator & ccdvl::MemoryManagerIterator::operator++ ()

Basic post-increment operator.

Increments the iterator to the next location.

Returns

The incremented iterator (this).

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

188 Class Documentation

7.41.3.4 MemoryManagerIterator ccdvl::MemoryManagerIterator::operator++ (int32 t)

Basic pre-increment operator.

Increments the iterator to the next location.

Returns

The current (before it is incremented) iterator.

7.41.3.5 MemoryManagerIterator & ccdvl::MemoryManagerIterator::operator= (const MemoryManagerIterator & mit)

Basic assignment operator.

Reassigns the internal state from the provided iterator.

Parameters
in mit The iterator to copy from.

7.41.3.6 bool ccdvl::MemoryManagerIterator::operator== (const MemoryManagerIterator & rhs)

Equality test.

Test if two iterators references the same data location.

Returns

True iff both iterators point to the same data location.

The documentation for this class was generated from the following files:

• include/memory_manager_iterator.h

• src/memory_manager_iterator.cc

7.42 ccdvl::MemoryManagerIteratorInterface Class Reference

A simple iterator interface for iterating various memory managers.

#include <memory_manager_iterator.h>

Inheritance diagram for ccdvl::MemoryManagerIteratorInterface:

ccdvl::MemoryManagerIterator
Interface

ccdvl::memorymanager
::SequentialMemoryManagerIterator

ccdvl::memorymanager
::StubMemoryManagerIterator

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.42 ccdvl::MemoryManagerIteratorInterface Class Reference 189

Public Member Functions

• virtual ∼MemoryManagerIteratorInterface ()

Destroys the object and frees any allocated resources.

• virtual
MemoryManagerIteratorInterface ∗ Clone () const =0

Creates a copy of this iterator.

• virtual void Next ()=0

Increment this iterator.

• virtual bool Equals (const MemoryManagerIteratorInterface ∗rhs) const =0

Test if this iterator is the same as the one provided.

• virtual const AbstractDataSet ∗ Get () const =0

Get current dataset.

7.42.1 Detailed Description

A simple iterator interface for iterating various memory managers.

This class is not meant to be used directly, rather it is supposed to be extended by the specific memory manager
iterator and wrapped by the MemoryManagerIterator helper class.

Note

If this iterator is destroyed, the dataset returned by the Get() method may no longer be valid. This allows
reference counters to be used for allocating and deallocating datasets as needed.

See also

MemoryManagerIterator

7.42.2 Member Function Documentation

7.42.2.1 virtual MemoryManagerIteratorInterface∗ ccdvl::MemoryManagerIteratorInterface::Clone () const [pure
virtual]

Creates a copy of this iterator.

Returns

Pointer to new instance.

Implemented in ccdvl::memorymanager::SequentialMemoryManagerIterator, and ccdvl::memorymanager::Stub-
MemoryManagerIterator.

7.42.2.2 virtual bool ccdvl::MemoryManagerIteratorInterface::Equals (const MemoryManagerIteratorInterface ∗ rhs)
const [pure virtual]

Test if this iterator is the same as the one provided.

Parameters
rhs [in] The iterator to compare with.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

190 Class Documentation

Returns

True if this iterator is equal to the one provided.

Implemented in ccdvl::memorymanager::SequentialMemoryManagerIterator, and ccdvl::memorymanager::Stub-
MemoryManagerIterator.

7.42.2.3 virtual const AbstractDataSet∗ ccdvl::MemoryManagerIteratorInterface::Get () const [pure virtual]

Get current dataset.

Returns

The current dataset.

Implemented in ccdvl::memorymanager::SequentialMemoryManagerIterator, and ccdvl::memorymanager::Stub-
MemoryManagerIterator.

The documentation for this class was generated from the following file:

• include/memory_manager_iterator.h

7.43 ccdvl::MemoryManagerObserverInterface Class Reference

Observer for MemoryManager dataset update events.

#include <memory_manager_observer_interface.h>

Inheritance diagram for ccdvl::MemoryManagerObserverInterface:

ccdvl::MemoryManagerObserver
Interface

ccdvl::CacheController

Public Member Functions

• virtual ∼MemoryManagerObserverInterface ()

Destroys the object and frees any allocated resources.

• virtual void MemoryManagerUpdate (MemoryManager &callee, const AbstractDataSet ∗∗new_data)=0

Update callback when more data is added.

• virtual void MemoryManagerCleared (MemoryManager &callee)=0

Update callback when a MemoryManager is cleared.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.44 ccdvl::MessageQueue< T > Class Template Reference 191

7.43.1 Detailed Description

Observer for MemoryManager dataset update events.

7.43.2 Member Function Documentation

7.43.2.1 virtual void ccdvl::MemoryManagerObserverInterface::MemoryManagerCleared (MemoryManager & callee)
[pure virtual]

Update callback when a MemoryManager is cleared.

Parameters
in callee MemoryManager that caused this update.

Implemented in ccdvl::CacheController.

7.43.2.2 virtual void ccdvl::MemoryManagerObserverInterface::MemoryManagerUpdate (MemoryManager & callee, const
AbstractDataSet ∗∗ new data) [pure virtual]

Update callback when more data is added.

Parameters
in callee MemoryManager that caused this update.
in new_data The newly added dataset.

Implemented in ccdvl::CacheController.

The documentation for this class was generated from the following file:

• include/memory_manager_observer_interface.h

7.44 ccdvl::MessageQueue< T > Class Template Reference

Simple message passing queue.

#include <message_queue.h>

Public Member Functions

• MessageQueue ()

Initializes a new instance.
• virtual ∼MessageQueue ()

Destroys the object and frees any allocated resources.
• void SendMessage (T &message)

Enqueue a message to the message queue.
• T & WaitForMessage ()

Wait for a message.
• void WaitForAllMessages (std::list< T > &messages)

Wait for atleast one message.
• void GetAllMessages (std::list< T > &messages)

Get all messages.
• bool RemoveMessage (T &message)

Remove a queued message.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

192 Class Documentation

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (MessageQueue)

Static Private Member Functions

• static void CancellationHandler (void ∗mutex)

Cancellation handler.

Private Attributes

• std::list< T > message_queue_

List of queued messages.

• pthread_mutex_t message_queue_mutex_

Message queue mutex.

• pthread_cond_t new_message_cond_

New message condition.

7.44.1 Detailed Description

template<typename T>class ccdvl::MessageQueue< T >

Simple message passing queue.

Template Parameters

T Message type.

7.44.2 Member Function Documentation

7.44.2.1 template<typename T> static void ccdvl::MessageQueue< T >::CancellationHandler (void ∗ mutex)
[inline], [static], [private]

Cancellation handler.

Unlocks mutex.

Parameters
in mutex Mutex to realese on cancel.

7.44.2.2 template<typename T> void ccdvl::MessageQueue< T >::GetAllMessages (std::list< T > & messages)
[inline]

Get all messages.

Get all messages currently in queue. This operation will not wait for any messages and return immediately, however
it must wait for exclusive queue access.

Parameters
messages [in, out] The list to hold dequeued messages.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.45 ccdvl::PyGroupSelectionIterator Class Reference 193

7.44.2.3 template<typename T> bool ccdvl::MessageQueue< T >::RemoveMessage (T & message) [inline]

Remove a queued message.

Remove a message if it exists.

Parameters
message The message to remove.

Returns

True iff a message was removed.

7.44.2.4 template<typename T> void ccdvl::MessageQueue< T >::SendMessage (T & message) [inline]

Enqueue a message to the message queue.

Parameters
message The message to enqueue.

7.44.2.5 template<typename T> void ccdvl::MessageQueue< T >::WaitForAllMessages (std::list< T > & messages)
[inline]

Wait for atleast one message.

Blocks until there is atleast one message queued, then dequeue all message and add them the provided list. This
method is also a cancellation point.

Parameters
messages [in, out] The list to hold dequeued messages.

7.44.2.6 template<typename T> T& ccdvl::MessageQueue< T >::WaitForMessage () [inline]

Wait for a message.

Blocks until a message is queued, then dequeue and return it. This method is also a cancellation point.

Returns

An enqueued message.

The documentation for this class was generated from the following file:

• include/synchronization/message_queue.h

7.45 ccdvl::PyGroupSelectionIterator Class Reference

Iterator used to wrap GroupSelectionIterator and provide Python like iterator methods.

#include <pyccdvl_group_selection_iterator.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

194 Class Documentation

Collaboration diagram for ccdvl::PyGroupSelectionIterator:

ccdvl::PyGroupSelectionIteratorccdvl::GroupSelectionIterator

 end_
current_

ccdvl::MemoryManager
 memory_manager_

std::list< MemoryManager
ObserverInterface * >

 observers_ccdvl::MemoryManagerObserver
Interface

 elements

ccdvl::MemoryManagerIterator iterators_ccdvl::MemoryManagerIterator
Interface

 iterator_

ccdvl::AbstractGroup

 group_

std::string name_std::basic_string<
 char >

ccdvl::RendererConfig

 render_settings_

Public Member Functions

• PyGroupSelectionIterator (const GroupSelectionIterator &start, const GroupSelectionIterator &end)

Constructs a new Python like iterator from a starting and stop iterator.

• bool HasNext ()

Checks if there are elements left.

• std::vector< GraphDouble > Next ()

Return the current point and increments the iterator.

Private Attributes

• GroupSelectionIterator ∗ current_

Current iterator.

• GroupSelectionIterator ∗ end_

Stop iterator.

7.45.1 Detailed Description

Iterator used to wrap GroupSelectionIterator and provide Python like iterator methods.

Combines both start and end iterator to create a safe iterator for sip and Python.

See also

GroupSelectionIterator

7.45.2 Constructor & Destructor Documentation

7.45.2.1 ccdvl::PyGroupSelectionIterator::PyGroupSelectionIterator (const GroupSelectionIterator & start, const
GroupSelectionIterator & end)

Constructs a new Python like iterator from a starting and stop iterator.

Since C++ iterators end method return a iterator pointing past the last element, only the interval [start, end) is
considered.

Parameters
in start Starting iterator.
in end Stop iterator.

7.45.3 Member Function Documentation

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.46 ccdvl::PyMemoryManagerIterator Class Reference 195

7.45.3.1 bool ccdvl::PyGroupSelectionIterator::HasNext ()

Checks if there are elements left.

Returns

True iff there is atleast one point left to iterate using the Next method.

7.45.3.2 std::vector< GraphDouble > ccdvl::PyGroupSelectionIterator::Next ()

Return the current point and increments the iterator.

Returns

The current point.

7.45.4 Member Data Documentation

7.45.4.1 GroupSelectionIterator∗ ccdvl::PyGroupSelectionIterator::end [private]

Stop iterator.

Used to track when the iterator has reached its end.

The documentation for this class was generated from the following files:

• python/src/pyccdvl_group_selection_iterator.h

• python/src/pyccdvl_group_selection_iterator.cc

7.46 ccdvl::PyMemoryManagerIterator Class Reference

Iterator used to wrap MemoryManagerIterator and provide Python like iterator methods.

#include <pyccdvl_memory_manager_iterator.h>

Inheritance diagram for ccdvl::PyMemoryManagerIterator:

ccdvl::PyMemoryManagerIterator

ccdvl::MemoryManagerIterator

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

196 Class Documentation

Collaboration diagram for ccdvl::PyMemoryManagerIterator:

ccdvl::PyMemoryManagerIterator

ccdvl::MemoryManagerIterator

 end_
previous_

ccdvl::MemoryManagerIterator
Interface

 iterator_

Public Member Functions

• PyMemoryManagerIterator (const MemoryManagerIterator &start, const MemoryManagerIterator &end)

Constructs a new Python like iterator from a starting and stop iterator.

• bool HasNext ()

Checks if there are elements left.

• const AbstractDataSet ∗ Next ()

Return the current dataset and increments the iterator.

Private Attributes

• MemoryManagerIterator ∗ previous_

Previous iterator.

• MemoryManagerIterator ∗ end_

Stop iterator.

7.46.1 Detailed Description

Iterator used to wrap MemoryManagerIterator and provide Python like iterator methods.

Combines both start and end iterator to create a safe iterator for sip and Python.

See also

MemoryManagerIterator

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.47 ccdvl::ReadersWriterLock< T > Class Template Reference 197

7.46.2 Constructor & Destructor Documentation

7.46.2.1 ccdvl::PyMemoryManagerIterator::PyMemoryManagerIterator (const MemoryManagerIterator & start, const
MemoryManagerIterator & end)

Constructs a new Python like iterator from a starting and stop iterator.

Since C++ iterators end method return a iterator pointing past the last element, only the interval [start, end) is
considered.

Parameters
in start Starting iterator.
in end Stop iterator.

7.46.3 Member Function Documentation

7.46.3.1 bool ccdvl::PyMemoryManagerIterator::HasNext ()

Checks if there are elements left.

Returns

True iff there is atleast one dataset left to iterate using the Next method.

7.46.3.2 const AbstractDataSet ∗ ccdvl::PyMemoryManagerIterator::Next ()

Return the current dataset and increments the iterator.

Returns

The current dataset.

7.46.4 Member Data Documentation

7.46.4.1 MemoryManagerIterator∗ ccdvl::PyMemoryManagerIterator::end [private]

Stop iterator.

Used to track when the iterator has reached its end.

7.46.4.2 MemoryManagerIterator∗ ccdvl::PyMemoryManagerIterator::previous [private]

Previous iterator.

There must exists a copy of the iterator or the data set aquired trough it is not guaranteed to presist. See Memory-
ManagerIterator.

The documentation for this class was generated from the following files:

• python/src/pyccdvl_memory_manager_iterator.h
• python/src/pyccdvl_memory_manager_iterator.cc

7.47 ccdvl::ReadersWriterLock< T > Class Template Reference

Synchronization wrapper class which allows multiple readers.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

198 Class Documentation

#include <readers_writer_lock.h>

Collaboration diagram for ccdvl::ReadersWriterLock< T >:

ccdvl::ReadersWriterLock< T >

T

 resource_

Public Member Functions

• ReadersWriterLock (T resource)

Initializes a new resource protected with a readers, writer lock.

• virtual ∼ReadersWriterLock ()

Destroys the object and frees any allocated resources.

• const T & AtomicReadLock ()

Obtain a read-only lock for wrapped resource.

• void AtomicReadUnlock ()

Releases read-only access previously obtained by AtomicReadLock().

• T & AtomicWriteLock ()

Obtain exclusive write for wrapped resource.

• void AtomicWriteUnlock ()

Releases exclusive access to wrapped resource previously obtained with AtomicWriteLock().

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (ReadersWriterLock)

Static Private Member Functions

• static void CancellationHandler (void ∗mutex)

Cancellation handler.

Private Attributes

• T resource_

Protected resource.

• int32_t reader_count_

Number of readers waiting for, or accessing resource.

• int32_t writer_count_

Number of writers waiting for, or accessing resource.

• pthread_mutex_t resource_mutex_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.47 ccdvl::ReadersWriterLock< T > Class Template Reference 199

Resource mutex.

• pthread_cond_t readers_waiting_cond_

Readers waits on this condition.

• pthread_cond_t writers_waiting_cond_

Writers wait on this condition.

7.47.1 Detailed Description

template<class T>class ccdvl::ReadersWriterLock< T >

Synchronization wrapper class which allows multiple readers.

This class wraps a resource and allows multithreaded read access while only blocking on write. Additionally write
has priority over read operations.

Template Parameters

T The object type to wrap.

7.47.2 Constructor & Destructor Documentation

7.47.2.1 template<class T > ccdvl::ReadersWriterLock< T >::ReadersWriterLock (T resource) [inline],
[explicit]

Initializes a new resource protected with a readers, writer lock.

Parameters
resource The resource to wrap.

7.47.3 Member Function Documentation

7.47.3.1 template<class T > const T& ccdvl::ReadersWriterLock< T >::AtomicReadLock () [inline]

Obtain a read-only lock for wrapped resource.

This guarantee that no writer uses the wrapped resource. Blocks until all writers are done. This method is also a
cancellation point.

Returns

The wrapped resource.

7.47.3.2 template<class T > T& ccdvl::ReadersWriterLock< T >::AtomicWriteLock () [inline]

Obtain exclusive write for wrapped resource.

This guarantee that no other writer and no readers uses the wrapped resource. Blocks until exclusive access is
obtained. This method is also a cancellation point.

Returns

The wrapped resource.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

200 Class Documentation

7.47.3.3 template<class T > static void ccdvl::ReadersWriterLock< T >::CancellationHandler (void ∗ mutex)
[inline], [static], [private]

Cancellation handler.

Unlocks mutex.

Parameters
in mutex Mutex to realese on cancel.

The documentation for this class was generated from the following file:

• include/synchronization/readers_writer_lock.h

7.48 ccdvl::Renderer Class Reference

Abstract class for renderers used to render a graph to image slices.

#include <renderer.h>

Inheritance diagram for ccdvl::Renderer:

ccdvl::Renderer

ccdvl::renderer::AggRenderer

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.48 ccdvl::Renderer Class Reference 201

Collaboration diagram for ccdvl::Renderer:

ccdvl::Renderer

ccdvl::MemoryManager

 memory_manager_

std::list< MemoryManager
ObserverInterface * >

 observers_

ccdvl::MemoryManagerObserver
Interface

 elements

Public Types

• typedef std::vector< const
AbstractDataSet ∗ > DataPoints

Type representing a set of data points.

Public Member Functions

• Renderer (int8_t dimensions, MemoryManager ∗memory_manager)

Initialize constant for subclasses.

• virtual ∼Renderer ()

Destroys the object and frees any allocated resources.

• virtual void ClearDraw (const GraphTileState &state, GraphTile ∗render_target)=0

Clear all graph tiles associated with a given state.

• virtual void DrawSet (const GraphTileState &state, const DataPoints &data, GraphTile ∗render_target)=0

Draw provided data onto graph tiles associated with a given state.

• virtual void DrawAll (std::list< std::pair< const GraphTileState ∗, GraphTile ∗ > > ∗tiles)

Draw a list of tiles as a batch operation.

• virtual void Abort ()

Abort current draw operation.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

202 Class Documentation

Public Attributes

• const int8_t dimensions_

Number of dimensions supported.

Protected Attributes

• MemoryManager ∗ memory_manager_

Memory manager holding the data to render.

• bool abort_

Quick termination control.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (Renderer)

7.48.1 Detailed Description

Abstract class for renderers used to render a graph to image slices.

7.48.2 Constructor & Destructor Documentation

7.48.2.1 ccdvl::Renderer::Renderer (int8 t dimensions, MemoryManager ∗ memory manager)

Initialize constant for subclasses.

Parameters
dimensions The number of dimensions. Must be positive and larger then zero.

in memory_-
manager

Memory manager to read data from.

7.48.3 Member Function Documentation

7.48.3.1 void ccdvl::Renderer::Abort () [virtual]

Abort current draw operation.

When called, drawing threads will be interrupted and return early. ClearDraw() excluded.

See also

abort_

Reimplemented in ccdvl::renderer::AggRenderer.

7.48.3.2 virtual void ccdvl::Renderer::ClearDraw (const GraphTileState & state, GraphTile ∗ render target) [pure
virtual]

Clear all graph tiles associated with a given state.

Parameters
in state Graph state for tile.

in,out render_target Graph tile to clear.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.49 ccdvl::renderer::AggRenderer Class Reference 203

Implemented in ccdvl::renderer::AggRenderer.

7.48.3.3 void ccdvl::Renderer::DrawAll (std::list< std::pair< const GraphTileState ∗, GraphTile ∗>> ∗ tiles)
[virtual]

Draw a list of tiles as a batch operation.

When completed the tiles will be marked as such.

Parameters
in,out tiles The list of graph tiles and their states to render.

See also

abort_, GraphTile::completed

7.48.3.4 virtual void ccdvl::Renderer::DrawSet (const GraphTileState & state, const DataPoints & data, GraphTile ∗
render target) [pure virtual]

Draw provided data onto graph tiles associated with a given state.

Parameters
in state Graph state for tile.
in data Data to draw.

in,out render_target Graph tile to update with provided data.

Implemented in ccdvl::renderer::AggRenderer.

7.48.4 Member Data Documentation

7.48.4.1 bool ccdvl::Renderer::abort [protected]

Quick termination control.

When set to true, rendering will be aborted causing an early return of DrawAll().

See also

Abort(), DrawAll()

The documentation for this class was generated from the following files:

• include/renderer.h

• src/renderer.cc

7.49 ccdvl::renderer::AggRenderer Class Reference

A simple 2D software renderer using Anti-grain Geometry (AGG).

#include <agg_renderer.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

204 Class Documentation

Inheritance diagram for ccdvl::renderer::AggRenderer:

ccdvl::renderer::AggRenderer

ccdvl::Renderer

Collaboration diagram for ccdvl::renderer::AggRenderer:

ccdvl::renderer::AggRenderer

ccdvl::Renderer

ccdvl::MemoryManager

 memory_manager_

std::list< MemoryManager
ObserverInterface * >

 observers_

ccdvl::MemoryManagerObserver
Interface

 elements

Public Types

• typedef MemoryManager::iterator MemoryManagerIterator

Memory manager iterator type.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.49 ccdvl::renderer::AggRenderer Class Reference 205

Public Member Functions

• AggRenderer (MemoryManager ∗memory_manager)

Constructs an AGG renderer.

• ∼AggRenderer ()

Destroys the object and frees any allocated resources.

• virtual void ClearDraw (const GraphTileState &state, GraphTile ∗render_target)

Clear all graph tiles associated with a given state.

• virtual void DrawSet (const GraphTileState &state, const DataPoints &data, GraphTile ∗render_target)

Draw provided data onto graph tiles associated with a given state.

• virtual void Abort ()

Abort current draw operation.

Private Attributes

• bool abort_draw_

Quick termination control.

Related Functions

(Note that these are not member functions.)

• template<class T >

void AggRenderPoint (const GraphTileState &state, const RendererConfig &settings, const std::vector< dou-
ble > &point, const std::vector< double > ∗next_point, agg::renderer_primitives< agg::renderer_base< T
> > ∗primitive_renderer)

Render a point from a two dimensional data set.

Additional Inherited Members

7.49.1 Detailed Description

A simple 2D software renderer using Anti-grain Geometry (AGG).

7.49.2 Constructor & Destructor Documentation

7.49.2.1 ccdvl::renderer::AggRenderer::AggRenderer (MemoryManager ∗ memory manager) [explicit]

Constructs an AGG renderer.

Parameters
in memory_-

manager
Memory manager to read data from.

7.49.3 Member Function Documentation

7.49.3.1 void ccdvl::renderer::AggRenderer::Abort () [virtual]

Abort current draw operation.

When called, drawing threads will be interrupted and return early. ClearDraw() excluded.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

206 Class Documentation

See also

abort_

Reimplemented from ccdvl::Renderer.

7.49.3.2 void ccdvl::renderer::AggRenderer::ClearDraw (const GraphTileState & state, GraphTile ∗ render target)
[virtual]

Clear all graph tiles associated with a given state.

Parameters
in state Graph state for tile.

in,out render_target Graph tile to clear.

Implements ccdvl::Renderer.

7.49.3.3 void ccdvl::renderer::AggRenderer::DrawSet (const GraphTileState & state, const DataPoints & data,
GraphTile ∗ render target) [virtual]

Draw provided data onto graph tiles associated with a given state.

Parameters
in state Graph state for tile.
in data Data to draw.

in,out render_target Graph tile to update with provided data.

Implements ccdvl::Renderer.

7.49.4 Friends And Related Function Documentation

7.49.4.1 template<class T > void AggRenderPoint (const GraphTileState & state, const RendererConfig & settings,
const std::vector< double > & point, const std::vector< double > ∗ next point, agg::renderer primitives<
agg::renderer base< T >> ∗ primitive renderer) [related]

Render a point from a two dimensional data set.

Template Parameters

T AGG pixel format class which must represent the used pixel format.

Parameters
state The graph tile to render.

settings Rendering settings for graph tile.
point The data point to render.

in next_point The next data point to render, NULL means that this it the last point.
in,out primitive_-

renderer
The AGG initialized buffer and renderer.

7.49.5 Member Data Documentation

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.50 ccdvl::RendererConfig Class Reference 207

7.49.5.1 bool ccdvl::renderer::AggRenderer::abort draw [private]

Quick termination control.

When set to true, rendering will be aborted causing an early return of DrawSet().

The documentation for this class was generated from the following files:

• include/agg_backend/agg_renderer.h

• src/agg_backend/agg_renderer.cc

7.50 ccdvl::RendererConfig Class Reference

A class that holds group specific rendering configuration.

#include <renderer_config.h>

Public Types

• enum PointShape { kInvalid = -1, kNone, kCricle, kSquare }

Enumeration of possible datapoint representations in a graph.

Public Member Functions

• RendererConfig ()

Create a new instance; with a default configuration.

• RendererConfig (const RendererConfig &instance)

Copy constructor.

• virtual ∼RendererConfig ()

Destroys the object and frees any allocated resources.

• bool LessThan (const RendererConfig &rhs) const

Less than comparison from renderer configurations.

Public Attributes

• PointShape point_shape_

Shape to draw for each point.

• int16_t point_size_

Size of datapoint shape.

• int16_t line_width_

Width of lines between points.

• double deviation_

Numeric deviation used to render error bars.

• uint8_t point_color_ [4]

Color of data point shapes.

• uint8_t line_color_ [4]

Color of lines between points.

• uint8_t deviation_color_ [4]

Color of error bars.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

208 Class Documentation

7.50.1 Detailed Description

A class that holds group specific rendering configuration.

7.50.2 Member Enumeration Documentation

7.50.2.1 enum ccdvl::RendererConfig::PointShape

Enumeration of possible datapoint representations in a graph.

Enumerator:

kInvalid Invalid shape.

kNone Nothing.

kCricle A cricle.

kSquare A square.

7.50.3 Member Function Documentation

7.50.3.1 bool ccdvl::RendererConfig::LessThan (const RendererConfig & rhs) const

Less than comparison from renderer configurations.

Parameters
in rhs Right hand side configuration to compare with.

Returns

true Iff this configuration is less than the provided one.

7.50.4 Member Data Documentation

7.50.4.1 double ccdvl::RendererConfig::deviation

Numeric deviation used to render error bars.

Values equal to or less then zero are invalid, this will cause any implemented renderer to skip rendering error bars.

7.50.4.2 uint8 t ccdvl::RendererConfig::deviation color [4]

Color of error bars.

Colors must be stored as RGBA.

Note

Deviation from code standard, unsigned. Qt’s QColor accepts signed values while AGG expects unsigned 8bit
integers.
Keeping color as unsigned 8bit integers avoids using regular integers and extra typecasting.

7.50.4.3 uint8 t ccdvl::RendererConfig::line color [4]

Color of lines between points.

Colors must be stored as RGBA.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.51 ccdvl::TaskProgressInterface Class Reference 209

Note

Deviation from code standard, unsigned. Qt’s QColor accepts signed values while AGG expects unsigned 8bit
integers.
Keeping color as unsigned 8bit integers avoids using regular integers and extra typecasting.

7.50.4.4 int16 t ccdvl::RendererConfig::line width

Width of lines between points.

Values equal to or less then zero are invalid, this will cause any implemented renderer to skip rendering of lines.

7.50.4.5 uint8 t ccdvl::RendererConfig::point color [4]

Color of data point shapes.

Colors must be stored as RGBA.

Note

Deviation from code standard, unsigned. Qt’s QColor accepts signed values while AGG expects unsigned 8bit
integers.
Keeping color as unsigned 8bit integers avoids using regular integers and extra typecasting.

7.50.4.6 PointShape ccdvl::RendererConfig::point shape

Shape to draw for each point.

Invalid values should be treated by any implemented renderer as kNone.

7.50.4.7 int16 t ccdvl::RendererConfig::point size

Size of datapoint shape.

Values equal to or less then zero are invalid, this will cause any implemented renderer to skip rendering of points.

The documentation for this class was generated from the following files:

• include/renderer_config.h

• src/renderer_config.cc

7.51 ccdvl::TaskProgressInterface Class Reference

A simple interface that provides a function for sending information to a progress bar or similar type of progress
display.

#include <task_progress_interface.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

210 Class Documentation

Inheritance diagram for ccdvl::TaskProgressInterface:

ccdvl::TaskProgressInterface

ccdvl::frontend::QtStatus
BarFrame

Public Member Functions

• virtual ∼TaskProgressInterface ()

Interfaces have destructors with empty bodies.

• virtual void SetTaskProgress (const char ∗text, int value, int max)=0

Updates the progress information for a task.

7.51.1 Detailed Description

A simple interface that provides a function for sending information to a progress bar or similar type of progress
display.

7.51.2 Member Function Documentation

7.51.2.1 virtual void ccdvl::TaskProgressInterface::SetTaskProgress (const char ∗ text, int value, int max) [pure
virtual]

Updates the progress information for a task.

Parameters
in text The name or description of the task.
in value The current value of the progress.
in max The maximum value of the progress.

Implemented in ccdvl::frontend::QtStatusBarFrame.

The documentation for this class was generated from the following file:

• include/task_progress_interface.h

7.52 ccdvl::Transform2D Class Reference

Simple point transformation class for two dimensional data.

#include <transform_2d.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.52 ccdvl::Transform2D Class Reference 211

Collaboration diagram for ccdvl::Transform2D:

ccdvl::Transform2D

ccdvl::GraphState

 state_

Public Types

• enum Outcome { kTransformSuccess, kTransformFaild }

Enumerations of return codes.

Public Member Functions

• Transform2D (const GraphTileState &state)

Initializes a new transformation.

• Transform2D (const GraphSceneState &state)

Initializes a new transformation.

• Outcome ToGraphSpace (std::vector< double > ∗vector)

Transform a scene coordinate to graph space.

• Outcome FromGraphSpace (std::vector< double > ∗vector)

Transform a graph coordinate to scene space.

• Outcome CalculateBottomLeft (std::vector< double > ∗vector)

Calculates the new bottom left position for the given center point in the graph state.

• bool IsDoubleInfinity (double n)

Test if a floating point value is infinite.

• bool IsDoubleNaN (double n)

Test if a floating point value is a not-a-number.

Private Types

• enum FloatingpointClassification { kFiniteValue, kInfinite, kMinusInfinite, kNotANumber }

Floating-point classification.

Private Member Functions

• FloatingpointClassification ClassifyNumber (double number) const

Classify a given number.

• void Precompute ()

Precompute parts of the transformation to reduce the number of required floating-point operations.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

212 Class Documentation

Private Attributes

• bool scene_transform_

Transform is a scene specific transform.

• const GraphState state_

The state to transform in.

• double zoom_scale_transform_ [2]

Precomputed transformation constants.

7.52.1 Detailed Description

Simple point transformation class for two dimensional data.

Assumes that the Y axis is flipped for scene, but not for tiles.

Note

While Outcome indicate success or failure, currently overflow is not handled correctly. It does catch (-)infinite
and NaN values but the FPU can also overflow without returning any of those.

7.52.2 Member Enumeration Documentation

7.52.2.1 enum ccdvl::Transform2D::FloatingpointClassification [private]

Floating-point classification.

Enumerator:

kFiniteValue Value is finite and valid.

kInfinite Value is infinity.

kMinusInfinite Value is negative infinity.

kNotANumber Value is invalid.

7.52.2.2 enum ccdvl::Transform2D::Outcome

Enumerations of return codes.

Enumerator:

kTransformSuccess Transformation successful.

kTransformFaild Transformation failed and the result is now invalid.

7.52.3 Constructor & Destructor Documentation

7.52.3.1 ccdvl::Transform2D::Transform2D (const GraphTileState & state) [explicit]

Initializes a new transformation.

Parameters
state The state to transform in.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.52 ccdvl::Transform2D Class Reference 213

7.52.3.2 ccdvl::Transform2D::Transform2D (const GraphSceneState & state) [explicit]

Initializes a new transformation.

Parameters
state The state to transform in.

7.52.4 Member Function Documentation

7.52.4.1 Transform2D::Outcome ccdvl::Transform2D::CalculateBottomLeft (std::vector< double > ∗ vector)

Calculates the new bottom left position for the given center point in the graph state.

The internal graph state is updated with the new bottom left coordinate for the provided center coordinate. Beware
that failure invalidates the internal graph state for this transformation instance.

In order to find the new bottom left base coordinate from a provided center point and the current view settings require
a small trick, first the center point is considered as the base coordinate; then the real base coordinated is computed
by converting the relative scene coordinate (-width/2, height∗1.5), which corresponds to the actual bottom left base
coordinate.

Parameters
in,out vector A vector containing the center point coordinates for the graph state.

Returns

The outcome of the computation; the result is stored directly to the given vector.

7.52.4.2 Transform2D::FloatingpointClassification ccdvl::Transform2D::ClassifyNumber (double number) const
[private]

Classify a given number.

See http://www.johndcook.com/IEEE_exceptions_in_cpp.html and FloatingpointClassification.
However a few tests show that a double can overflow like an integer if the operation adds too little to double max.
This will require activation of FPU signals.

Parameters
number The number to classify.

Returns

Classification.

7.52.4.3 Transform2D::Outcome ccdvl::Transform2D::FromGraphSpace (std::vector< double > ∗ vector)

Transform a graph coordinate to scene space.

Parameters
in,out vector The coordinate to transform.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

http://www.johndcook.com/IEEE_exceptions_in_cpp.html

214 Class Documentation

Returns

The outcome of the computation; the result is stored directly to the given vector.

7.52.4.4 bool ccdvl::Transform2D::IsDoubleInfinity (double n)

Test if a floating point value is infinite.

Note

Avoid use, if possible.

7.52.4.5 bool ccdvl::Transform2D::IsDoubleNaN (double n)

Test if a floating point value is a not-a-number.

Note

Avoid use, if possible.

7.52.4.6 Transform2D::Outcome ccdvl::Transform2D::ToGraphSpace (std::vector< double > ∗ vector)

Transform a scene coordinate to graph space.

Parameters
in,out vector The coordinate to transform.

Returns

The outcome of the computation; the result is stored directly to the given vector.

The documentation for this class was generated from the following files:

• include/transform_2d.h

• src/transform_2d.cc

7.53 ccdvl::TypedDataSet< T > Class Template Reference

AbstractDataSet container.

#include <typed_data_set.h>

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.53 ccdvl::TypedDataSet< T > Class Template Reference 215

Inheritance diagram for ccdvl::TypedDataSet< T >:

ccdvl::TypedDataSet< T >

ccdvl::AbstractDataSet

Collaboration diagram for ccdvl::TypedDataSet< T >:

ccdvl::TypedDataSet< T >

ccdvl::AbstractDataSet

Public Member Functions

• TypedDataSet (size_t size)

Constructs a self allocated data instance.

• TypedDataSet (T ∗base, size_t size)

Constructs a pre-allocated data instance.

• TypedDataSet (T ∗∗base, ptrdiff_t offset, size_t size)

Constructs a relocatable, pre-allocated data instance.

• virtual void Accept (DataSetVisitorInterface ∗v)

Visitor accept method.

• virtual double GetValue (size_t index) const

Fetches a value as a double floating point.

• virtual size_t GetTypeSize () const

Get the type size in bytes.

• T ∗ GetBuffer () const

Fetches current data buffer.

Private Member Functions

• DISSALLOW_COPY_AND_ASSIGN (TypedDataSet)

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

216 Class Documentation

Private Attributes

• T ∗ allocation_base_

Memory pointer to data allocated by this class.

• T ∗∗ base_

Pointer to shared allocation pointer.

• ptrdiff_t offset_

Byte offset to data in allocation.

Additional Inherited Members

7.53.1 Detailed Description

template<typename T>class ccdvl::TypedDataSet< T >

AbstractDataSet container.

Template Parameters

T Numeric data type to hold in a dataset.

7.53.2 Constructor & Destructor Documentation

7.53.2.1 template<typename T> ccdvl::TypedDataSet< T >::TypedDataSet (size t size) [inline],
[explicit]

Constructs a self allocated data instance.

Parameters
size Number of data elements.

7.53.2.2 template<typename T> ccdvl::TypedDataSet< T >::TypedDataSet (T ∗ base, size t size) [inline]

Constructs a pre-allocated data instance.

This constructor is intended to be used internally by MemoryManagerInterface classes. It will take ownership of the
allocated memory.

Parameters
in base Data base pointer to size number of elements.

size Number of data elements.

7.53.2.3 template<typename T> ccdvl::TypedDataSet< T >::TypedDataSet (T ∗∗ base, ptrdiff t offset, size t size)
[inline]

Constructs a relocatable, pre-allocated data instance.

This constructor is intended to be used internally by MemoryManager classes.

Parameters
in base Relocation base pointer.
in offset Byte offset from relocation base to data.

size Number of data elements.

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

7.53 ccdvl::TypedDataSet< T > Class Template Reference 217

7.53.3 Member Function Documentation

7.53.3.1 template<typename T> virtual void ccdvl::TypedDataSet< T >::Accept (DataSetVisitorInterface ∗ v)
[inline], [virtual]

Visitor accept method.

Parameters
in v Visitor to use.

Implements ccdvl::AbstractDataSet.

7.53.3.2 template<typename T> T∗ ccdvl::TypedDataSet< T >::GetBuffer () const [inline]

Fetches current data buffer.

Returns

Content data buffer.

Note

This buffer is not always valid, as it could be invalidated iff the instance was constructed using the relocatable
constructor.

7.53.3.3 template<typename T> virtual size t ccdvl::TypedDataSet< T >::GetTypeSize () const [inline],
[virtual]

Get the type size in bytes.

Returns

Number of bytes.

Implements ccdvl::AbstractDataSet.

7.53.3.4 template<typename T> virtual double ccdvl::TypedDataSet< T >::GetValue (size t index) const
[inline], [virtual]

Fetches a value as a double floating point.

Parameters
index Index of the value to get.

Returns

The value at the provided index as a double floating point.

Implements ccdvl::AbstractDataSet.

The documentation for this class was generated from the following file:

• include/data_set/typed_data_set.h

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

Index

∼CacheController
ccdvl::CacheController, 34

∼MemoryManager
ccdvl::MemoryManager, 163

Abort
ccdvl::Renderer, 202
ccdvl::renderer::AggRenderer, 205

abort_
ccdvl::Renderer, 203

abort_draw_
ccdvl::renderer::AggRenderer, 206

AbstractDataSet
ccdvl::AbstractDataSet, 24

AbstractGroup
ccdvl::AbstractGroup, 27

Accept
ccdvl::AbstractDataSet, 24
ccdvl::TypedDataSet, 217

AddData
ccdvl::MemoryManager, 163
ccdvl::memorymanager::SequentialMemory-

Manager, 171
ccdvl::memorymanager::StubMemoryManager,

180
AddGraphImageTilesOnResize

ccdvl::frontend::QtGraphViewFrame, 70
AddObserver

ccdvl::CacheController, 34
ccdvl::MemoryManager, 163

AddSubGroup
ccdvl::Group2D, 154

AggRenderPoint
ccdvl::renderer::AggRenderer, 206

AggRenderer
ccdvl::renderer::AggRenderer, 205

AsynchronousResource
ccdvl::AsynchronousResource, 30

AtomicReadLock
ccdvl::ReadersWriterLock, 199

AtomicWriteLock
ccdvl::AsynchronousResource, 30
ccdvl::ReadersWriterLock, 199

AxesDashText
ccdvl::frontend::QtGraphViewFrame, 70

axis_line_color_
ccdvl::frontend::QtSettingsDialog, 118

axis_x_spacer_
ccdvl::frontend::QtSettingsDialog, 118

axis_x_step_

ccdvl::frontend::QtSettingsDialog, 118
axis_x_type_

ccdvl::frontend::QtSettingsDialog, 118
axis_y_spacer_

ccdvl::frontend::QtSettingsDialog, 118
axis_y_step_

ccdvl::frontend::QtSettingsDialog, 119
axis_y_type_

ccdvl::frontend::QtSettingsDialog, 119

begin
ccdvl::AbstractGroup, 27
ccdvl::MemoryManager, 163
ccdvl::memorymanager::SequentialMemory-

Manager, 172
ccdvl::memorymanager::StubMemoryManager,

180
BeginUpdate

ccdvl::frontend::QtGraphViewFrame, 71
bottom_left_

ccdvl::GraphState, 146
ButtonClicked

ccdvl::frontend::QtSettingsDialog, 112

cache_empty_
ccdvl::frontend::QtSettingsDialog, 119

cache_tile_count_
ccdvl::frontend::QtSettingsDialog, 119

cache_used_
ccdvl::frontend::QtSettingsDialog, 119

CacheController
ccdvl::CacheController, 33

CacheControllerEnter
ccdvl::CacheController, 34

CacheEvent
ccdvl::CacheObserverInterface, 38

CacheObserverUpdate
ccdvl::CacheObserverInterface, 39
ccdvl::frontend::QtGraphViewFrame, 71

CacheState
ccdvl::CacheController, 33

CalculateBottomLeft
ccdvl::Transform2D, 213

CalculateBottomLeftFromCenterPosition
ccdvl::frontend::QtToolGraphicsView, 131

cancel_update_
ccdvl::frontend::QtGraphViewFrame, 83

CancelUpdate
ccdvl::frontend::QtGraphViewFrame, 71

CancellationHandler

INDEX 219

ccdvl::AsynchronousResource, 30
ccdvl::MessageQueue, 192
ccdvl::ReadersWriterLock, 199

ccdvl, 13
ccdvl::CacheController

kCached, 33
kInProgress, 33
kInvalid, 33
kNotCached, 33

ccdvl::CacheObserverInterface
kRendererBegin, 38
kRendererCanceled, 38
kRendererFinished, 38

ccdvl::GraphState
kInvalid, 146
kLinear, 146
kLogarithmic, 146

ccdvl::MemoryManager
kENotSupported, 162
kEOk, 162
kEOutOfMemory, 162
kEUnkown, 162

ccdvl::RendererConfig
kCricle, 208
kInvalid, 208
kNone, 208
kSquare, 208

ccdvl::Transform2D
kFiniteValue, 212
kInfinite, 212
kMinusInfinite, 212
kNotANumber, 212
kTransformFaild, 212
kTransformSuccess, 212

ccdvl::frontend::QtGraphSettings
kRelativeToGraph, 59
kRelativeToZoom, 59
kStatic, 59

ccdvl::frontend::QtZoomTool
kIn, 140
kOut, 140

ccdvl::AbstractDataSet, 23
AbstractDataSet, 24
Accept, 24
GetCount, 24
GetDataSize, 24
GetTypeSize, 25
GetValue, 25

ccdvl::AbstractGroup, 25
AbstractGroup, 27
begin, 27
end, 27
GetBoundingBox, 27
GetLeafs, 28
PointInGroup, 28
show_, 28

ccdvl::AsynchronousResource
AsynchronousResource, 30

AtomicWriteLock, 30
CancellationHandler, 30
GetResource, 30

ccdvl::AsynchronousResource< T >, 28
ccdvl::CacheController, 31

∼CacheController, 34
AddObserver, 34
CacheController, 33
CacheControllerEnter, 34
CacheState, 33
Clear, 34
dimensions_, 37
Enter, 34
FlushCache, 34
GetGraphTile, 34
GetMaxCacheSize, 35
GetMemoryUsage, 35
GraphTileStatus, 35
MemoryManagerCleared, 36
MemoryManagerUpdate, 36
NotifyObservers, 36
Remove, 36
RemoveAll, 36
renderer_canceled_, 37
SetMaxCacheSize, 37
StopRenderer, 37

ccdvl::CacheObserverInterface, 38
CacheEvent, 38
CacheObserverUpdate, 39

ccdvl::DataSetVisitorInterface, 39
Visit, 40–42

ccdvl::GraphSceneState, 143
GraphSceneState, 144

ccdvl::GraphState, 145
bottom_left_, 146
GraphState, 146
scale_, 146
scale_method_, 147
ScaleMethod, 146
zoom_, 147

ccdvl::GraphTile, 147
ccdvl::GraphTileState, 149

clear_color_, 151
GraphTileState, 150
LessThan, 151
operator=, 151

ccdvl::GraphTileState::functor_compare, 151
operator(), 152

ccdvl::Group2D, 152
AddSubGroup, 154
GetBoundingBox, 154
GetLeafs, 155
Group2D, 154
group_leafs_, 155
PointInGroup, 155
PointInPolygon, 155

ccdvl::GroupSelectionIterator, 156
GroupSelectionIterator, 157

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

220 INDEX

operator∗, 158
operator++, 158
operator=, 158
operator==, 158

ccdvl::List2D
List2D, 160

ccdvl::List2D< type >, 159
ccdvl::MemoryManager, 160

∼MemoryManager, 163
AddData, 163
AddObserver, 163
begin, 163
Clear, 163
end, 164
GetRange, 164
MemoryManager, 162
MemoryManagerError, 162
NotifyNew, 164

ccdvl::MemoryManagerIterator, 185
MemoryManagerIterator, 186, 187
operator∗, 187
operator++, 187
operator=, 188
operator==, 188

ccdvl::MemoryManagerIteratorInterface, 188
Clone, 189
Equals, 189
Get, 190

ccdvl::MemoryManagerObserverInterface, 190
MemoryManagerCleared, 191
MemoryManagerUpdate, 191

ccdvl::MessageQueue
CancellationHandler, 192
GetAllMessages, 192
RemoveMessage, 192
SendMessage, 193
WaitForAllMessages, 193
WaitForMessage, 193

ccdvl::MessageQueue< T >, 191
ccdvl::PyGroupSelectionIterator, 193

end_, 195
HasNext, 194
Next, 195
PyGroupSelectionIterator, 194

ccdvl::PyMemoryManagerIterator, 195
end_, 197
HasNext, 197
Next, 197
previous_, 197
PyMemoryManagerIterator, 197

ccdvl::ReadersWriterLock
AtomicReadLock, 199
AtomicWriteLock, 199
CancellationHandler, 199
ReadersWriterLock, 199

ccdvl::ReadersWriterLock< T >, 197
ccdvl::Renderer, 200

Abort, 202

abort_, 203
ClearDraw, 202
DrawAll, 203
DrawSet, 203
Renderer, 202

ccdvl::RendererConfig, 207
deviation_, 208
deviation_color_, 208
LessThan, 208
line_color_, 208
line_width_, 209
point_color_, 209
point_shape_, 209
point_size_, 209
PointShape, 208

ccdvl::TaskProgressInterface, 209
SetTaskProgress, 210

ccdvl::Transform2D, 210
CalculateBottomLeft, 213
ClassifyNumber, 213
FloatingpointClassification, 212
FromGraphSpace, 213
IsDoubleInfinity, 214
IsDoubleNaN, 214
Outcome, 212
ToGraphSpace, 214
Transform2D, 212

ccdvl::TypedDataSet
Accept, 217
GetBuffer, 217
GetTypeSize, 217
GetValue, 217
TypedDataSet, 216

ccdvl::TypedDataSet< T >, 214
ccdvl::frontend, 15

GraphInt, 17
GraphPoint, 17
GraphPointF, 17
GraphPolygon, 17
GraphPolygonF, 17
GraphRect, 18
GraphRectF, 18
GraphSize, 18
GraphSizeF, 18
SceneDouble, 18
SceneInt, 18
ScenePoint, 19
ScenePointF, 19
ScenePolygon, 19
ScenePolygonF, 19
SceneRect, 19
SceneRectF, 19
SceneSize, 20
SceneSizeF, 20
ViewDouble, 20
ViewInt, 20
ViewPoint, 20
ViewPointF, 20

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

INDEX 221

ViewPolygon, 21
ViewPolygonF, 21
ViewRect, 21
ViewRectF, 21
ViewSize, 21
ViewSizeF, 21

ccdvl::frontend::QtBaseTool, 42
click_pos_, 48
has_selection, 44
MapToRestrictedGraph, 45
MapToRestrictedScene, 45
OnEnter, 45
OnKeyPress, 45
OnKeyRelease, 46
OnLeave, 46
OnMouseMove, 46
OnMousePress, 47
OnMouseRelease, 47
OnWheel, 47
QtBaseTool, 44
RestrictPosToView, 48
selection, 48
set_selection, 48

ccdvl::frontend::QtCoordinateAndAxesInfoFrame, 49
FormattedNumberText, 50
Init, 50
QtCoordinateAndAxesInfoFrame, 50
SetRangesInfo, 50
SetXYCoordinates, 51

ccdvl::frontend::QtGraphImageTile, 51
drawn, 53
image, 53
QtGraphImageTile, 52, 53
set_drawn, 54
set_image, 54

ccdvl::frontend::QtGraphNeighbourhoodFrame, 54
eventFilter, 56
Init, 56
OutlineRect, 56
QtGraphNeighbourhoodFrame, 56
ScaleFactor, 57
ShowLoadingMessage, 57
UpdateGraphViewOutlinePosition, 57
UpdateNeighbourhoodPixmap, 57

ccdvl::frontend::QtGraphSettings, 57
ConvertClearColor, 60
current_graph_scene_state_, 60
EmitSettingsUpdated, 60
GridType, 59
image_tile_height_, 61
image_tile_width_, 61
next_graph_scene_state_, 61
QtGraphSettings, 59
renderer_settings_, 61
SettingsUpdated, 60

ccdvl::frontend::QtGraphSettings::AxesProperties, 61
lower_scientific_bound, 62
upper_scientific_bound, 62

ccdvl::frontend::QtGraphSettings::GridProperties, 62
ccdvl::frontend::QtGraphSettings::ZoomSettings, 63

x_wheel_zoom_step_factor, 63
y_wheel_zoom_step_factor, 63

ccdvl::frontend::QtGraphViewFrame, 64
AddGraphImageTilesOnResize, 70
AxesDashText, 70
BeginUpdate, 71
CacheObserverUpdate, 71
cancel_update_, 83
CancelUpdate, 71
ClearGraphImages, 71
ClearGraphImagesDrawnFlags, 72
CreateLabels, 72
CurrentCenterPosition, 72
CurrentSceneHeight, 72
CurrentSceneRect, 72
CurrentSceneWidth, 72
CurrentViewRectToGraph, 73
CurrentViewRectToScene, 73
DrawAxesDashAndText, 73
DrawGraphFirstRedraw, 74
DrawGraphView, 74
DrawGrid, 74
FinishUpdate, 74
graph_glass_pane, 75
graph_glass_pane_, 84
graph_image, 75
graph_image_tiles_, 84
graph_pixmap_item_, 84
graph_settings, 75
graph_state_mutex_, 84
graph_update_timer_, 84
GraphImagesColumns, 75
GraphImagesRows, 75
HideGrid, 75
Init, 76
kDefaultGraphUpdateInterval, 85
kDefaultPanHeight, 85
kDefaultPanWidth, 85
LockGraphState, 76
PanTo, 76
PanTriggerUpdateBorder, 77
PanTriggeredUpdate, 76
QtGraphViewFrame, 70
reload_update_button_, 85
ReloadUpdateButtonClicked, 77
SetAxesProperties, 77
SetGraphImageTileColumns, 78
SetGraphImageTileHeight, 78
SetGraphImageTileRows, 78
SetGraphImageTileRowsAndColumns, 78
SetGraphImageTileSize, 79
SetGraphImageTileWidth, 79
SetGridProperties, 79
SettingsChanged, 79
ShowGrid, 80
StartProgressiveGraphUpdates, 80

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

222 INDEX

stop_update_button_, 85
StopUpdateButtonClicked, 80
tool_graphics_view, 80
TryLockGraphState, 81
UnlockGraphState, 81
UpdateBegun, 81
UpdateCanceled, 82
UpdateFinished, 82
UpdateGraphGlassPane, 82
UpdateGraphView, 82, 83
updating_graph, 83
wait_for_renderer_, 85

ccdvl::frontend::QtGraphWidget, 86
coordinate_and_axes_info_frame, 88
event, 88
graph_neighbourhood_frame_, 90
graph_view_frame, 88
GroupSelection, 88
Init, 88
neighbourhood_frame, 89
QtGraphWidget, 88
resizeEvent, 89
show, 89
status_bar_frame, 89
toolbar_frame, 89

ccdvl::frontend::QtLassoSelectTool, 90
kLassoCursor, 94
kLassoCursorInverted, 94
kMinLineLength, 94
OnMouseMove, 92
OnMousePress, 93
OnMouseRelease, 93
OnWheel, 94
prev_view_graph_rect_, 94
prev_view_scene_rect_, 95
QtLassoSelectTool, 92
view_image_, 95
ViewPixelColor, 94

ccdvl::frontend::QtPanTool, 95
OnMouseMove, 97
OnMousePress, 97
OnMouseRelease, 98
OnWheel, 98
QtPanTool, 97

ccdvl::frontend::QtPointSelectTool, 98
DrawHelperLines, 101
helper_lines, 101
mouse_cursor, 101
OnActivate, 101
OnDeactivate, 101
OnEnter, 102
OnLeave, 102
OnMouseMove, 102
OnMousePress, 103
OnWheel, 103
QtPointSelectTool, 100
set_helper_lines, 103
set_mouse_cursor, 103

ccdvl::frontend::QtRectangleSelectTool, 104
OnMouseMove, 106
OnMousePress, 106
OnMouseRelease, 107
OnWheel, 107
QtRectangleSelectTool, 106
rubber_band, 107

ccdvl::frontend::QtSettingsDialog, 108
axis_line_color_, 118
axis_x_spacer_, 118
axis_x_step_, 118
axis_x_type_, 118
axis_y_spacer_, 118
axis_y_step_, 119
axis_y_type_, 119
ButtonClicked, 112
cache_empty_, 119
cache_tile_count_, 119
cache_used_, 119
ColorButtonClicked, 112
GetButtonColor, 112
GetCacheMaxTileCount, 113
GetRendererClearColor, 113
GetRendererLineColor, 113
GetRendererLineWidth, 113
GetRendererPointColor, 113
GetRendererPointShape, 114
GetRendererPointSize, 114
GetScaleXMethod, 114
GetScaleXValue, 114
GetScaleYMethod, 114
GetScaleYValue, 115
grid_line_color_, 119
grid_type_, 119
grid_x_step_, 120
grid_y_step_, 120
QtSettingsDialog, 112
renderer_clear_color_, 120
renderer_line_color_, 120
renderer_line_width_, 120
renderer_point_color_, 120
renderer_point_shape_, 120
renderer_point_size_value_, 121
scale_x_method_, 121
scale_x_value_, 121
scale_y_method_, 121
scale_y_value_, 121
SetButtonColor, 115
SetCacheMaxTileCount, 115
SetCacheUsed, 115
SetRendererClearColor, 116
SetRendererLineColor, 116
SetRendererLineWidth, 116
SetRendererPointColor, 116
SetRendererPointShape, 116
SetRendererPointSize, 117
SetScaleXMethod, 117
SetScaleXValue, 117

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

INDEX 223

SetScaleYMethod, 117
SetScaleYValue, 118
view_x_final_, 121
view_y_final_, 121

ccdvl::frontend::QtStatusBarFrame, 122
HideAndResetTaskProgress, 124
Init, 124
progress_bar, 124
QtStatusBarFrame, 123
SetTaskProgress, 124
status_bar, 125

ccdvl::frontend::QtToolGraphicsView, 128
CalculateBottomLeftFromCenterPosition, 131
centerOn, 131
current_selection, 131
CurrentSelectionToStdVector, 131
enterEvent, 132
HideCurrentSelection, 132
Init, 132
keyPressEvent, 132
keyReleaseEvent, 133
leaveEvent, 133
mapFromGraph, 133, 134
mapToGraph, 135, 136
mouseMoveEvent, 136
mousePressEvent, 137
mouseReleaseEvent, 137
QtToolGraphicsView, 131
set_current_selection, 137
ShowCurrentSelection, 137
wheelEvent, 137

ccdvl::frontend::QtToolbarFrame, 125
current_tool, 127
GetTool, 127
Init, 127
kNumberOfTools, 128
QtToolbarFrame, 127
set_current_tool, 127
ToolButtonClicked, 128
ToolButtonDoubleClicked, 128

ccdvl::frontend::QtZoomTool, 138
DoZoom, 141
OnKeyPress, 141
OnKeyRelease, 141
OnMouseMove, 142
OnMousePress, 142
OnMouseRelease, 142
OnWheel, 143
QtZoomTool, 141
ZoomDirection, 140

ccdvl::memorymanager, 22
ccdvl::memorymanager::CloneDataSet, 165

CloneDataSet, 166
SetCopyDestination, 167
Visit, 167, 168

ccdvl::memorymanager::SequentialMemoryManager,
169

AddData, 171

begin, 172
Clear, 172
end, 172
GetRange, 172
Init, 173
mapped_space_, 174
PageControlAllocate, 173
PageControlDeallocate, 173
PageControlDelete, 173
PageControlLoad, 173
PageControlUnload, 174
SequentialMemoryManager, 171

ccdvl::memorymanager::SequentialMemoryManager::-
MappedMemory, 174

dataset, 175
ccdvl::memorymanager::SequentialMemoryManager-

Iterator, 175
Clone, 177
Equals, 177
Get, 177
SequentialMemoryManagerIterator, 177

ccdvl::memorymanager::StubMemoryManager, 178
AddData, 180
begin, 180
Clear, 180
end, 181
GetRange, 181
SwitchTo, 181

ccdvl::memorymanager::StubMemoryManagerIterator,
182

Clone, 184
Equals, 184
Get, 184
StubMemoryManagerIterator, 184

ccdvl::renderer, 22
ccdvl::renderer::AggRenderer, 203

Abort, 205
abort_draw_, 206
AggRenderPoint, 206
AggRenderer, 205
ClearDraw, 206
DrawSet, 206

centerOn
ccdvl::frontend::QtToolGraphicsView, 131

ClassifyNumber
ccdvl::Transform2D, 213

Clear
ccdvl::CacheController, 34
ccdvl::MemoryManager, 163
ccdvl::memorymanager::SequentialMemory-

Manager, 172
ccdvl::memorymanager::StubMemoryManager,

180
clear_color_

ccdvl::GraphTileState, 151
ClearDraw

ccdvl::Renderer, 202
ccdvl::renderer::AggRenderer, 206

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

224 INDEX

ClearGraphImages
ccdvl::frontend::QtGraphViewFrame, 71

ClearGraphImagesDrawnFlags
ccdvl::frontend::QtGraphViewFrame, 72

click_pos_
ccdvl::frontend::QtBaseTool, 48

Clone
ccdvl::memorymanager::SequentialMemory-

ManagerIterator, 177
ccdvl::memorymanager::StubMemoryManager-

Iterator, 184
ccdvl::MemoryManagerIteratorInterface, 189

CloneDataSet
ccdvl::memorymanager::CloneDataSet, 166

ColorButtonClicked
ccdvl::frontend::QtSettingsDialog, 112

ConvertClearColor
ccdvl::frontend::QtGraphSettings, 60

coordinate_and_axes_info_frame
ccdvl::frontend::QtGraphWidget, 88

CreateLabels
ccdvl::frontend::QtGraphViewFrame, 72

current_graph_scene_state_
ccdvl::frontend::QtGraphSettings, 60

current_selection
ccdvl::frontend::QtToolGraphicsView, 131

current_tool
ccdvl::frontend::QtToolbarFrame, 127

CurrentCenterPosition
ccdvl::frontend::QtGraphViewFrame, 72

CurrentSceneHeight
ccdvl::frontend::QtGraphViewFrame, 72

CurrentSceneRect
ccdvl::frontend::QtGraphViewFrame, 72

CurrentSceneWidth
ccdvl::frontend::QtGraphViewFrame, 72

CurrentSelectionToStdVector
ccdvl::frontend::QtToolGraphicsView, 131

CurrentViewRectToGraph
ccdvl::frontend::QtGraphViewFrame, 73

CurrentViewRectToScene
ccdvl::frontend::QtGraphViewFrame, 73

dataset
ccdvl::memorymanager::SequentialMemory-

Manager::MappedMemory, 175
deviation_

ccdvl::RendererConfig, 208
deviation_color_

ccdvl::RendererConfig, 208
dimensions_

ccdvl::CacheController, 37
DoZoom

ccdvl::frontend::QtZoomTool, 141
DrawAll

ccdvl::Renderer, 203
DrawAxesDashAndText

ccdvl::frontend::QtGraphViewFrame, 73
DrawGraphFirstRedraw

ccdvl::frontend::QtGraphViewFrame, 74
DrawGraphView

ccdvl::frontend::QtGraphViewFrame, 74
DrawGrid

ccdvl::frontend::QtGraphViewFrame, 74
DrawHelperLines

ccdvl::frontend::QtPointSelectTool, 101
DrawSet

ccdvl::Renderer, 203
ccdvl::renderer::AggRenderer, 206

drawn
ccdvl::frontend::QtGraphImageTile, 53

EmitSettingsUpdated
ccdvl::frontend::QtGraphSettings, 60

end
ccdvl::AbstractGroup, 27
ccdvl::MemoryManager, 164
ccdvl::memorymanager::SequentialMemory-

Manager, 172
ccdvl::memorymanager::StubMemoryManager,

181
end_

ccdvl::PyGroupSelectionIterator, 195
ccdvl::PyMemoryManagerIterator, 197

Enter
ccdvl::CacheController, 34

enterEvent
ccdvl::frontend::QtToolGraphicsView, 132

Equals
ccdvl::memorymanager::SequentialMemory-

ManagerIterator, 177
ccdvl::memorymanager::StubMemoryManager-

Iterator, 184
ccdvl::MemoryManagerIteratorInterface, 189

event
ccdvl::frontend::QtGraphWidget, 88

eventFilter
ccdvl::frontend::QtGraphNeighbourhoodFrame, 56

FinishUpdate
ccdvl::frontend::QtGraphViewFrame, 74

FloatingpointClassification
ccdvl::Transform2D, 212

FlushCache
ccdvl::CacheController, 34

FormattedNumberText
ccdvl::frontend::QtCoordinateAndAxesInfoFrame,

50
FromGraphSpace

ccdvl::Transform2D, 213

Get
ccdvl::memorymanager::SequentialMemory-

ManagerIterator, 177
ccdvl::memorymanager::StubMemoryManager-

Iterator, 184
ccdvl::MemoryManagerIteratorInterface, 190

GetAllMessages

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

INDEX 225

ccdvl::MessageQueue, 192
GetBoundingBox

ccdvl::AbstractGroup, 27
ccdvl::Group2D, 154

GetBuffer
ccdvl::TypedDataSet, 217

GetButtonColor
ccdvl::frontend::QtSettingsDialog, 112

GetCacheMaxTileCount
ccdvl::frontend::QtSettingsDialog, 113

GetCount
ccdvl::AbstractDataSet, 24

GetDataSize
ccdvl::AbstractDataSet, 24

GetGraphTile
ccdvl::CacheController, 34

GetLeafs
ccdvl::AbstractGroup, 28
ccdvl::Group2D, 155

GetMaxCacheSize
ccdvl::CacheController, 35

GetMemoryUsage
ccdvl::CacheController, 35

GetRange
ccdvl::MemoryManager, 164
ccdvl::memorymanager::SequentialMemory-

Manager, 172
ccdvl::memorymanager::StubMemoryManager,

181
GetRendererClearColor

ccdvl::frontend::QtSettingsDialog, 113
GetRendererLineColor

ccdvl::frontend::QtSettingsDialog, 113
GetRendererLineWidth

ccdvl::frontend::QtSettingsDialog, 113
GetRendererPointColor

ccdvl::frontend::QtSettingsDialog, 113
GetRendererPointShape

ccdvl::frontend::QtSettingsDialog, 114
GetRendererPointSize

ccdvl::frontend::QtSettingsDialog, 114
GetResource

ccdvl::AsynchronousResource, 30
GetScaleXMethod

ccdvl::frontend::QtSettingsDialog, 114
GetScaleXValue

ccdvl::frontend::QtSettingsDialog, 114
GetScaleYMethod

ccdvl::frontend::QtSettingsDialog, 114
GetScaleYValue

ccdvl::frontend::QtSettingsDialog, 115
GetTool

ccdvl::frontend::QtToolbarFrame, 127
GetTypeSize

ccdvl::AbstractDataSet, 25
ccdvl::TypedDataSet, 217

GetValue
ccdvl::AbstractDataSet, 25

ccdvl::TypedDataSet, 217
graph_glass_pane

ccdvl::frontend::QtGraphViewFrame, 75
graph_glass_pane_

ccdvl::frontend::QtGraphViewFrame, 84
graph_image

ccdvl::frontend::QtGraphViewFrame, 75
graph_image_tiles_

ccdvl::frontend::QtGraphViewFrame, 84
graph_neighbourhood_frame_

ccdvl::frontend::QtGraphWidget, 90
graph_pixmap_item_

ccdvl::frontend::QtGraphViewFrame, 84
graph_settings

ccdvl::frontend::QtGraphViewFrame, 75
graph_state_mutex_

ccdvl::frontend::QtGraphViewFrame, 84
graph_update_timer_

ccdvl::frontend::QtGraphViewFrame, 84
graph_view_frame

ccdvl::frontend::QtGraphWidget, 88
GraphImagesColumns

ccdvl::frontend::QtGraphViewFrame, 75
GraphImagesRows

ccdvl::frontend::QtGraphViewFrame, 75
GraphInt

ccdvl::frontend, 17
GraphPoint

ccdvl::frontend, 17
GraphPointF

ccdvl::frontend, 17
GraphPolygon

ccdvl::frontend, 17
GraphPolygonF

ccdvl::frontend, 17
GraphRect

ccdvl::frontend, 18
GraphRectF

ccdvl::frontend, 18
GraphSceneState

ccdvl::GraphSceneState, 144
GraphSize

ccdvl::frontend, 18
GraphSizeF

ccdvl::frontend, 18
GraphState

ccdvl::GraphState, 146
GraphTileState

ccdvl::GraphTileState, 150
GraphTileStatus

ccdvl::CacheController, 35
grid_line_color_

ccdvl::frontend::QtSettingsDialog, 119
grid_type_

ccdvl::frontend::QtSettingsDialog, 119
grid_x_step_

ccdvl::frontend::QtSettingsDialog, 120
grid_y_step_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

226 INDEX

ccdvl::frontend::QtSettingsDialog, 120
GridType

ccdvl::frontend::QtGraphSettings, 59
Group2D

ccdvl::Group2D, 154
group_leafs_

ccdvl::Group2D, 155
GroupSelection

ccdvl::frontend::QtGraphWidget, 88
GroupSelectionIterator

ccdvl::GroupSelectionIterator, 157

has_selection
ccdvl::frontend::QtBaseTool, 44

HasNext
ccdvl::PyGroupSelectionIterator, 194
ccdvl::PyMemoryManagerIterator, 197

helper_lines
ccdvl::frontend::QtPointSelectTool, 101

HideAndResetTaskProgress
ccdvl::frontend::QtStatusBarFrame, 124

HideCurrentSelection
ccdvl::frontend::QtToolGraphicsView, 132

HideGrid
ccdvl::frontend::QtGraphViewFrame, 75

image
ccdvl::frontend::QtGraphImageTile, 53

image_tile_height_
ccdvl::frontend::QtGraphSettings, 61

image_tile_width_
ccdvl::frontend::QtGraphSettings, 61

Init
ccdvl::frontend::QtCoordinateAndAxesInfoFrame,

50
ccdvl::frontend::QtGraphNeighbourhoodFrame, 56
ccdvl::frontend::QtGraphViewFrame, 76
ccdvl::frontend::QtGraphWidget, 88
ccdvl::frontend::QtStatusBarFrame, 124
ccdvl::frontend::QtToolbarFrame, 127
ccdvl::frontend::QtToolGraphicsView, 132
ccdvl::memorymanager::SequentialMemory-

Manager, 173
IsDoubleInfinity

ccdvl::Transform2D, 214
IsDoubleNaN

ccdvl::Transform2D, 214

kCached
ccdvl::CacheController, 33

kCricle
ccdvl::RendererConfig, 208

kENotSupported
ccdvl::MemoryManager, 162

kEOk
ccdvl::MemoryManager, 162

kEOutOfMemory
ccdvl::MemoryManager, 162

kEUnkown

ccdvl::MemoryManager, 162
kFiniteValue

ccdvl::Transform2D, 212
kIn

ccdvl::frontend::QtZoomTool, 140
kInProgress

ccdvl::CacheController, 33
kInfinite

ccdvl::Transform2D, 212
kInvalid

ccdvl::CacheController, 33
ccdvl::GraphState, 146
ccdvl::RendererConfig, 208

kLinear
ccdvl::GraphState, 146

kLogarithmic
ccdvl::GraphState, 146

kMinusInfinite
ccdvl::Transform2D, 212

kNone
ccdvl::RendererConfig, 208

kNotANumber
ccdvl::Transform2D, 212

kNotCached
ccdvl::CacheController, 33

kOut
ccdvl::frontend::QtZoomTool, 140

kRelativeToGraph
ccdvl::frontend::QtGraphSettings, 59

kRelativeToZoom
ccdvl::frontend::QtGraphSettings, 59

kRendererBegin
ccdvl::CacheObserverInterface, 38

kRendererCanceled
ccdvl::CacheObserverInterface, 38

kRendererFinished
ccdvl::CacheObserverInterface, 38

kSquare
ccdvl::RendererConfig, 208

kStatic
ccdvl::frontend::QtGraphSettings, 59

kTransformFaild
ccdvl::Transform2D, 212

kTransformSuccess
ccdvl::Transform2D, 212

kDefaultGraphUpdateInterval
ccdvl::frontend::QtGraphViewFrame, 85

kDefaultPanHeight
ccdvl::frontend::QtGraphViewFrame, 85

kDefaultPanWidth
ccdvl::frontend::QtGraphViewFrame, 85

kLassoCursor
ccdvl::frontend::QtLassoSelectTool, 94

kLassoCursorInverted
ccdvl::frontend::QtLassoSelectTool, 94

kMinLineLength
ccdvl::frontend::QtLassoSelectTool, 94

kNumberOfTools

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

INDEX 227

ccdvl::frontend::QtToolbarFrame, 128
keyPressEvent

ccdvl::frontend::QtToolGraphicsView, 132
keyReleaseEvent

ccdvl::frontend::QtToolGraphicsView, 133

leaveEvent
ccdvl::frontend::QtToolGraphicsView, 133

LessThan
ccdvl::GraphTileState, 151
ccdvl::RendererConfig, 208

line_color_
ccdvl::RendererConfig, 208

line_width_
ccdvl::RendererConfig, 209

List2D
ccdvl::List2D, 160

LockGraphState
ccdvl::frontend::QtGraphViewFrame, 76

lower_scientific_bound
ccdvl::frontend::QtGraphSettings::AxesProperties,

62

mapFromGraph
ccdvl::frontend::QtToolGraphicsView, 133, 134

mapToGraph
ccdvl::frontend::QtToolGraphicsView, 135, 136

MapToRestrictedGraph
ccdvl::frontend::QtBaseTool, 45

MapToRestrictedScene
ccdvl::frontend::QtBaseTool, 45

mapped_space_
ccdvl::memorymanager::SequentialMemory-

Manager, 174
MemoryManager

ccdvl::MemoryManager, 162
MemoryManagerCleared

ccdvl::CacheController, 36
ccdvl::MemoryManagerObserverInterface, 191

MemoryManagerError
ccdvl::MemoryManager, 162

MemoryManagerIterator
ccdvl::MemoryManagerIterator, 186, 187

MemoryManagerUpdate
ccdvl::CacheController, 36
ccdvl::MemoryManagerObserverInterface, 191

mouse_cursor
ccdvl::frontend::QtPointSelectTool, 101

mouseMoveEvent
ccdvl::frontend::QtToolGraphicsView, 136

mousePressEvent
ccdvl::frontend::QtToolGraphicsView, 137

mouseReleaseEvent
ccdvl::frontend::QtToolGraphicsView, 137

neighbourhood_frame
ccdvl::frontend::QtGraphWidget, 89

Next
ccdvl::PyGroupSelectionIterator, 195

ccdvl::PyMemoryManagerIterator, 197
next_graph_scene_state_

ccdvl::frontend::QtGraphSettings, 61
NotifyNew

ccdvl::MemoryManager, 164
NotifyObservers

ccdvl::CacheController, 36

OnActivate
ccdvl::frontend::QtPointSelectTool, 101

OnDeactivate
ccdvl::frontend::QtPointSelectTool, 101

OnEnter
ccdvl::frontend::QtBaseTool, 45
ccdvl::frontend::QtPointSelectTool, 102

OnKeyPress
ccdvl::frontend::QtBaseTool, 45
ccdvl::frontend::QtZoomTool, 141

OnKeyRelease
ccdvl::frontend::QtBaseTool, 46
ccdvl::frontend::QtZoomTool, 141

OnLeave
ccdvl::frontend::QtBaseTool, 46
ccdvl::frontend::QtPointSelectTool, 102

OnMouseMove
ccdvl::frontend::QtBaseTool, 46
ccdvl::frontend::QtLassoSelectTool, 92
ccdvl::frontend::QtPanTool, 97
ccdvl::frontend::QtPointSelectTool, 102
ccdvl::frontend::QtRectangleSelectTool, 106
ccdvl::frontend::QtZoomTool, 142

OnMousePress
ccdvl::frontend::QtBaseTool, 47
ccdvl::frontend::QtLassoSelectTool, 93
ccdvl::frontend::QtPanTool, 97
ccdvl::frontend::QtPointSelectTool, 103
ccdvl::frontend::QtRectangleSelectTool, 106
ccdvl::frontend::QtZoomTool, 142

OnMouseRelease
ccdvl::frontend::QtBaseTool, 47
ccdvl::frontend::QtLassoSelectTool, 93
ccdvl::frontend::QtPanTool, 98
ccdvl::frontend::QtRectangleSelectTool, 107
ccdvl::frontend::QtZoomTool, 142

OnWheel
ccdvl::frontend::QtBaseTool, 47
ccdvl::frontend::QtLassoSelectTool, 94
ccdvl::frontend::QtPanTool, 98
ccdvl::frontend::QtPointSelectTool, 103
ccdvl::frontend::QtRectangleSelectTool, 107
ccdvl::frontend::QtZoomTool, 143

operator∗
ccdvl::GroupSelectionIterator, 158
ccdvl::MemoryManagerIterator, 187

operator()
ccdvl::GraphTileState::functor_compare, 152

operator++
ccdvl::GroupSelectionIterator, 158
ccdvl::MemoryManagerIterator, 187

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

228 INDEX

operator=
ccdvl::GraphTileState, 151
ccdvl::GroupSelectionIterator, 158
ccdvl::MemoryManagerIterator, 188

operator==
ccdvl::GroupSelectionIterator, 158
ccdvl::MemoryManagerIterator, 188

Outcome
ccdvl::Transform2D, 212

OutlineRect
ccdvl::frontend::QtGraphNeighbourhoodFrame, 56

PageControlAllocate
ccdvl::memorymanager::SequentialMemory-

Manager, 173
PageControlDeallocate

ccdvl::memorymanager::SequentialMemory-
Manager, 173

PageControlDelete
ccdvl::memorymanager::SequentialMemory-

Manager, 173
PageControlLoad

ccdvl::memorymanager::SequentialMemory-
Manager, 173

PageControlUnload
ccdvl::memorymanager::SequentialMemory-

Manager, 174
PanTo

ccdvl::frontend::QtGraphViewFrame, 76
PanTriggerUpdateBorder

ccdvl::frontend::QtGraphViewFrame, 77
PanTriggeredUpdate

ccdvl::frontend::QtGraphViewFrame, 76
point_color_

ccdvl::RendererConfig, 209
point_shape_

ccdvl::RendererConfig, 209
point_size_

ccdvl::RendererConfig, 209
PointInGroup

ccdvl::AbstractGroup, 28
ccdvl::Group2D, 155

PointInPolygon
ccdvl::Group2D, 155

PointShape
ccdvl::RendererConfig, 208

prev_view_graph_rect_
ccdvl::frontend::QtLassoSelectTool, 94

prev_view_scene_rect_
ccdvl::frontend::QtLassoSelectTool, 95

previous_
ccdvl::PyMemoryManagerIterator, 197

progress_bar
ccdvl::frontend::QtStatusBarFrame, 124

PyGroupSelectionIterator
ccdvl::PyGroupSelectionIterator, 194

PyMemoryManagerIterator
ccdvl::PyMemoryManagerIterator, 197

QtBaseTool
ccdvl::frontend::QtBaseTool, 44

QtCoordinateAndAxesInfoFrame
ccdvl::frontend::QtCoordinateAndAxesInfoFrame,

50
QtGraphImageTile

ccdvl::frontend::QtGraphImageTile, 52, 53
QtGraphNeighbourhoodFrame

ccdvl::frontend::QtGraphNeighbourhoodFrame, 56
QtGraphSettings

ccdvl::frontend::QtGraphSettings, 59
QtGraphViewFrame

ccdvl::frontend::QtGraphViewFrame, 70
QtGraphWidget

ccdvl::frontend::QtGraphWidget, 88
QtLassoSelectTool

ccdvl::frontend::QtLassoSelectTool, 92
QtPanTool

ccdvl::frontend::QtPanTool, 97
QtPointSelectTool

ccdvl::frontend::QtPointSelectTool, 100
QtRectangleSelectTool

ccdvl::frontend::QtRectangleSelectTool, 106
QtSettingsDialog

ccdvl::frontend::QtSettingsDialog, 112
QtStatusBarFrame

ccdvl::frontend::QtStatusBarFrame, 123
QtToolGraphicsView

ccdvl::frontend::QtToolGraphicsView, 131
QtToolbarFrame

ccdvl::frontend::QtToolbarFrame, 127
QtZoomTool

ccdvl::frontend::QtZoomTool, 141

ReadersWriterLock
ccdvl::ReadersWriterLock, 199

reload_update_button_
ccdvl::frontend::QtGraphViewFrame, 85

ReloadUpdateButtonClicked
ccdvl::frontend::QtGraphViewFrame, 77

Remove
ccdvl::CacheController, 36

RemoveAll
ccdvl::CacheController, 36

RemoveMessage
ccdvl::MessageQueue, 192

Renderer
ccdvl::Renderer, 202

renderer_canceled_
ccdvl::CacheController, 37

renderer_clear_color_
ccdvl::frontend::QtSettingsDialog, 120

renderer_line_color_
ccdvl::frontend::QtSettingsDialog, 120

renderer_line_width_
ccdvl::frontend::QtSettingsDialog, 120

renderer_point_color_
ccdvl::frontend::QtSettingsDialog, 120

renderer_point_shape_

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

INDEX 229

ccdvl::frontend::QtSettingsDialog, 120
renderer_point_size_value_

ccdvl::frontend::QtSettingsDialog, 121
renderer_settings_

ccdvl::frontend::QtGraphSettings, 61
resizeEvent

ccdvl::frontend::QtGraphWidget, 89
RestrictPosToView

ccdvl::frontend::QtBaseTool, 48
rubber_band

ccdvl::frontend::QtRectangleSelectTool, 107

scale_
ccdvl::GraphState, 146

scale_method_
ccdvl::GraphState, 147

scale_x_method_
ccdvl::frontend::QtSettingsDialog, 121

scale_x_value_
ccdvl::frontend::QtSettingsDialog, 121

scale_y_method_
ccdvl::frontend::QtSettingsDialog, 121

scale_y_value_
ccdvl::frontend::QtSettingsDialog, 121

ScaleFactor
ccdvl::frontend::QtGraphNeighbourhoodFrame, 57

ScaleMethod
ccdvl::GraphState, 146

SceneDouble
ccdvl::frontend, 18

SceneInt
ccdvl::frontend, 18

ScenePoint
ccdvl::frontend, 19

ScenePointF
ccdvl::frontend, 19

ScenePolygon
ccdvl::frontend, 19

ScenePolygonF
ccdvl::frontend, 19

SceneRect
ccdvl::frontend, 19

SceneRectF
ccdvl::frontend, 19

SceneSize
ccdvl::frontend, 20

SceneSizeF
ccdvl::frontend, 20

selection
ccdvl::frontend::QtBaseTool, 48

SendMessage
ccdvl::MessageQueue, 193

SequentialMemoryManager
ccdvl::memorymanager::SequentialMemory-

Manager, 171
SequentialMemoryManagerIterator

ccdvl::memorymanager::SequentialMemory-
ManagerIterator, 177

set_current_selection

ccdvl::frontend::QtToolGraphicsView, 137
set_current_tool

ccdvl::frontend::QtToolbarFrame, 127
set_drawn

ccdvl::frontend::QtGraphImageTile, 54
set_helper_lines

ccdvl::frontend::QtPointSelectTool, 103
set_image

ccdvl::frontend::QtGraphImageTile, 54
set_mouse_cursor

ccdvl::frontend::QtPointSelectTool, 103
set_selection

ccdvl::frontend::QtBaseTool, 48
SetAxesProperties

ccdvl::frontend::QtGraphViewFrame, 77
SetButtonColor

ccdvl::frontend::QtSettingsDialog, 115
SetCacheMaxTileCount

ccdvl::frontend::QtSettingsDialog, 115
SetCacheUsed

ccdvl::frontend::QtSettingsDialog, 115
SetCopyDestination

ccdvl::memorymanager::CloneDataSet, 167
SetGraphImageTileColumns

ccdvl::frontend::QtGraphViewFrame, 78
SetGraphImageTileHeight

ccdvl::frontend::QtGraphViewFrame, 78
SetGraphImageTileRows

ccdvl::frontend::QtGraphViewFrame, 78
SetGraphImageTileRowsAndColumns

ccdvl::frontend::QtGraphViewFrame, 78
SetGraphImageTileSize

ccdvl::frontend::QtGraphViewFrame, 79
SetGraphImageTileWidth

ccdvl::frontend::QtGraphViewFrame, 79
SetGridProperties

ccdvl::frontend::QtGraphViewFrame, 79
SetMaxCacheSize

ccdvl::CacheController, 37
SetRangesInfo

ccdvl::frontend::QtCoordinateAndAxesInfoFrame,
50

SetRendererClearColor
ccdvl::frontend::QtSettingsDialog, 116

SetRendererLineColor
ccdvl::frontend::QtSettingsDialog, 116

SetRendererLineWidth
ccdvl::frontend::QtSettingsDialog, 116

SetRendererPointColor
ccdvl::frontend::QtSettingsDialog, 116

SetRendererPointShape
ccdvl::frontend::QtSettingsDialog, 116

SetRendererPointSize
ccdvl::frontend::QtSettingsDialog, 117

SetScaleXMethod
ccdvl::frontend::QtSettingsDialog, 117

SetScaleXValue
ccdvl::frontend::QtSettingsDialog, 117

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

230 INDEX

SetScaleYMethod
ccdvl::frontend::QtSettingsDialog, 117

SetScaleYValue
ccdvl::frontend::QtSettingsDialog, 118

SetTaskProgress
ccdvl::frontend::QtStatusBarFrame, 124
ccdvl::TaskProgressInterface, 210

SetXYCoordinates
ccdvl::frontend::QtCoordinateAndAxesInfoFrame,

51
SettingsChanged

ccdvl::frontend::QtGraphViewFrame, 79
SettingsUpdated

ccdvl::frontend::QtGraphSettings, 60
show

ccdvl::frontend::QtGraphWidget, 89
show_

ccdvl::AbstractGroup, 28
ShowCurrentSelection

ccdvl::frontend::QtToolGraphicsView, 137
ShowGrid

ccdvl::frontend::QtGraphViewFrame, 80
ShowLoadingMessage

ccdvl::frontend::QtGraphNeighbourhoodFrame, 57
StartProgressiveGraphUpdates

ccdvl::frontend::QtGraphViewFrame, 80
status_bar

ccdvl::frontend::QtStatusBarFrame, 125
status_bar_frame

ccdvl::frontend::QtGraphWidget, 89
stop_update_button_

ccdvl::frontend::QtGraphViewFrame, 85
StopRenderer

ccdvl::CacheController, 37
StopUpdateButtonClicked

ccdvl::frontend::QtGraphViewFrame, 80
StubMemoryManagerIterator

ccdvl::memorymanager::StubMemoryManager-
Iterator, 184

SwitchTo
ccdvl::memorymanager::StubMemoryManager,

181

ToGraphSpace
ccdvl::Transform2D, 214

tool_graphics_view
ccdvl::frontend::QtGraphViewFrame, 80

ToolButtonClicked
ccdvl::frontend::QtToolbarFrame, 128

ToolButtonDoubleClicked
ccdvl::frontend::QtToolbarFrame, 128

toolbar_frame
ccdvl::frontend::QtGraphWidget, 89

Transform2D
ccdvl::Transform2D, 212

TryLockGraphState
ccdvl::frontend::QtGraphViewFrame, 81

TypedDataSet
ccdvl::TypedDataSet, 216

UnlockGraphState
ccdvl::frontend::QtGraphViewFrame, 81

UpdateBegun
ccdvl::frontend::QtGraphViewFrame, 81

UpdateCanceled
ccdvl::frontend::QtGraphViewFrame, 82

UpdateFinished
ccdvl::frontend::QtGraphViewFrame, 82

UpdateGraphGlassPane
ccdvl::frontend::QtGraphViewFrame, 82

UpdateGraphView
ccdvl::frontend::QtGraphViewFrame, 82, 83

UpdateGraphViewOutlinePosition
ccdvl::frontend::QtGraphNeighbourhoodFrame, 57

UpdateNeighbourhoodPixmap
ccdvl::frontend::QtGraphNeighbourhoodFrame, 57

updating_graph
ccdvl::frontend::QtGraphViewFrame, 83

upper_scientific_bound
ccdvl::frontend::QtGraphSettings::AxesProperties,

62

view_image_
ccdvl::frontend::QtLassoSelectTool, 95

view_x_final_
ccdvl::frontend::QtSettingsDialog, 121

view_y_final_
ccdvl::frontend::QtSettingsDialog, 121

ViewDouble
ccdvl::frontend, 20

ViewInt
ccdvl::frontend, 20

ViewPixelColor
ccdvl::frontend::QtLassoSelectTool, 94

ViewPoint
ccdvl::frontend, 20

ViewPointF
ccdvl::frontend, 20

ViewPolygon
ccdvl::frontend, 21

ViewPolygonF
ccdvl::frontend, 21

ViewRect
ccdvl::frontend, 21

ViewRectF
ccdvl::frontend, 21

ViewSize
ccdvl::frontend, 21

ViewSizeF
ccdvl::frontend, 21

Visit
ccdvl::DataSetVisitorInterface, 40–42
ccdvl::memorymanager::CloneDataSet, 167, 168

wait_for_renderer_
ccdvl::frontend::QtGraphViewFrame, 85

WaitForAllMessages
ccdvl::MessageQueue, 193

WaitForMessage

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

INDEX 231

ccdvl::MessageQueue, 193
wheelEvent

ccdvl::frontend::QtToolGraphicsView, 137

x_wheel_zoom_step_factor
ccdvl::frontend::QtGraphSettings::ZoomSettings,

63

y_wheel_zoom_step_factor
ccdvl::frontend::QtGraphSettings::ZoomSettings,

63

zoom_
ccdvl::GraphState, 147

ZoomDirection
ccdvl::frontend::QtZoomTool, 140

Generated on Wed Jul 4 2012 16:36:13 for CC Data Visualization Library by Doxygen

	Abstract
	Keywords
	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Problem
	1.3 Purpose
	1.4 Delimitations

	2 Theory
	2.1 Operating system memory management
	2.1.1 Virtual memory, swap and memory leaks

	2.2 Algorithmic problems
	2.2.1 Algorithms
	2.2.1.1 Algorithm complexity analysis
	2.2.1.2 Polynomial problems
	2.2.1.3 Nondeterministic polynomial problems
	2.2.1.4 Other complexity classes

	2.2.2 Binary search
	2.2.3 Cache
	2.2.4 Point in polygon

	2.3 Concurrent programing and multiprocessing
	2.4 Software engineering design patterns
	2.4.1 Observer
	2.4.2 Visitor and double dispatch
	2.4.3 Iterator
	2.4.4 Readers-writer lock
	2.4.5 Message queue

	2.5 Human-computer interaction
	2.6 Information visualization
	2.6.1 Examples of information visualization
	2.6.2 Representation
	2.6.2.1 Data types and data complexity
	2.6.2.2 Data encoding methods and guidelines

	2.6.3 Presentation of represented data
	2.6.3.1 Display limitation techniques
	2.6.3.2 Time limitation techniques

	2.6.4 Interaction with presented data
	2.6.4.1 Exploration and insight through interaction
	2.6.4.2 Information spaces and types of interactions
	2.6.4.3 The Action Cycle and human aspects of interaction

	2.7 Graphical User Interface
	2.7.1 User type and application posture
	2.7.2 Flow and excise
	2.7.3 Design patterns, heuristics and guidelines
	2.7.4 Gestalt grouping principles

	3 Method
	3.1 Research methods
	3.2 Prestudy methods
	3.3 Development method and software libraries
	3.3.1 Iterative development process
	3.3.2 Programming language and software libraries

	3.4 Tools and collaboration methods

	4 Development
	4.1 Planning and requirements
	4.2 Analysis and design
	4.2.1 API analysis and design
	4.2.1.1 Iterators analysis and design

	4.2.2 Backend analysis and design
	4.2.2.1 Memory manager analysis and design
	4.2.2.2 Renderer analysis and design

	4.2.3 Frontend and GUI analysis and design
	4.2.3.1 GUI overview and structure
	4.2.3.2 Grid and graph axes
	4.2.3.3 Graph interaction tools
	4.2.3.4 Neighbourhood overview
	4.2.3.5 Information labels
	4.2.3.6 Groups list
	4.2.3.7 Settings dialog

	4.3 Implementation
	4.3.1 API implementation
	4.3.1.1 Cache implementation
	4.3.1.2 Groups implementation
	4.3.1.3 Iterator implementions
	4.3.1.4 Mathematical transformations

	4.3.2 Backend implementation
	4.3.2.1 Memory manager implementation
	4.3.2.2 Renderer implementation

	4.3.3 Frontend and GUI implementation
	4.3.3.1 Graph interaction tools and settings
	4.3.3.2 Graph image clipmap and state objects
	4.3.3.3 Qt and graph coordinate systems
	4.3.3.4 Graph image clipmap position

	4.4 Testing and evaluation
	4.4.1 API and backend testing and evaluation
	4.4.1.1 Cache evaluation and alterations

	4.4.2 Frontend testing and evaluation
	4.4.2.1 GUI evaluation and alterations
	4.4.2.2 Graph interaction tools evaluation and alterations

	4.4.3 Initial performance and test results

	5 Result
	5.1 CCDVL library and API
	5.2 Performance and test results
	5.3 Comparison with prestudy results

	6 Discussion
	6.1 Method discussion
	6.2 Prestudy
	6.3 Development discussion
	6.3.1 API and library specification
	6.3.2 Modules and components
	6.3.3 Python bindings

	6.4 Result discussion
	6.5 Lessons learnt
	6.6 Future work, additions and extensions
	6.6.1 API and backend
	6.6.2 Frontend and GUI
	6.6.3 New modules

	7 Conclusion
	References
	Appendices
	Appendix A – Initial requirements and requests
	Appendix B - Manual and user guide
	Appendix C - Prestudy results
	Appendix D - Planning report
	Appendix E - CCDVL API documentation
	CCDVL API Documentation
	CC Data Visualization Library (CCDVL)
	Introduction
	Compiling
	Dependencies

	Documentation
	Library Usage

	Todo List
	Namespace Index
	Namespace List

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Namespace Documentation
	ccdvl Namespace Reference
	Detailed Description

	ccdvl::frontend Namespace Reference
	Detailed Description
	Typedef Documentation
	GraphInt
	GraphPoint
	GraphPointF
	GraphPolygon
	GraphPolygonF
	GraphRect
	GraphRectF
	GraphSize
	GraphSizeF
	SceneDouble
	SceneInt
	ScenePoint
	ScenePointF
	ScenePolygon
	ScenePolygonF
	SceneRect
	SceneRectF
	SceneSize
	SceneSizeF
	ViewDouble
	ViewInt
	ViewPoint
	ViewPointF
	ViewPolygon
	ViewPolygonF
	ViewRect
	ViewRectF
	ViewSize
	ViewSizeF

	ccdvl::memorymanager Namespace Reference
	Detailed Description

	ccdvl::renderer Namespace Reference
	Detailed Description

	Class Documentation
	ccdvl::AbstractDataSet Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	AbstractDataSet

	Member Function Documentation
	Accept
	GetCount
	GetDataSize
	GetTypeSize
	GetValue

	ccdvl::AbstractGroup Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	AbstractGroup

	Member Function Documentation
	begin
	end
	GetBoundingBox
	GetLeafs
	PointInGroup

	Member Data Documentation
	show_

	ccdvl::AsynchronousResource< T > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	AsynchronousResource

	Member Function Documentation
	AtomicWriteLock
	CancellationHandler
	GetResource

	ccdvl::CacheController Class Reference
	Detailed Description
	Member Enumeration Documentation
	CacheState

	Constructor & Destructor Documentation
	CacheController
	CacheController

	Member Function Documentation
	AddObserver
	CacheControllerEnter
	Clear
	Enter
	FlushCache
	GetGraphTile
	GetMaxCacheSize
	GetMemoryUsage
	GraphTileStatus
	MemoryManagerCleared
	MemoryManagerUpdate
	NotifyObservers
	Remove
	RemoveAll
	SetMaxCacheSize
	StopRenderer

	Member Data Documentation
	dimensions_
	renderer_canceled_

	ccdvl::CacheObserverInterface Class Reference
	Detailed Description
	Member Enumeration Documentation
	CacheEvent

	Member Function Documentation
	CacheObserverUpdate

	ccdvl::DataSetVisitorInterface Class Reference
	Detailed Description
	Member Function Documentation
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit

	ccdvl::frontend::QtBaseTool Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtBaseTool

	Member Function Documentation
	has_selection
	MapToRestrictedGraph
	MapToRestrictedScene
	OnEnter
	OnKeyPress
	OnKeyRelease
	OnLeave
	OnMouseMove
	OnMousePress
	OnMouseRelease
	OnWheel
	RestrictPosToView
	selection
	set_selection

	Member Data Documentation
	click_pos_

	ccdvl::frontend::QtCoordinateAndAxesInfoFrame Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtCoordinateAndAxesInfoFrame

	Member Function Documentation
	FormattedNumberText
	Init
	SetRangesInfo
	SetXYCoordinates
	SetXYCoordinates

	ccdvl::frontend::QtGraphImageTile Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtGraphImageTile
	QtGraphImageTile
	QtGraphImageTile
	QtGraphImageTile
	QtGraphImageTile

	Member Function Documentation
	drawn
	image
	set_drawn
	set_image

	ccdvl::frontend::QtGraphNeighbourhoodFrame Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtGraphNeighbourhoodFrame

	Member Function Documentation
	eventFilter
	Init
	OutlineRect
	ScaleFactor
	ShowLoadingMessage
	UpdateGraphViewOutlinePosition
	UpdateNeighbourhoodPixmap

	ccdvl::frontend::QtGraphSettings Class Reference
	Detailed Description
	Member Enumeration Documentation
	GridType

	Constructor & Destructor Documentation
	QtGraphSettings

	Member Function Documentation
	ConvertClearColor
	EmitSettingsUpdated
	SettingsUpdated

	Member Data Documentation
	current_graph_scene_state_
	image_tile_height_
	image_tile_width_
	next_graph_scene_state_
	renderer_settings_

	ccdvl::frontend::QtGraphSettings::AxesProperties Struct Reference
	Detailed Description
	Member Data Documentation
	lower_scientific_bound
	upper_scientific_bound

	ccdvl::frontend::QtGraphSettings::GridProperties Struct Reference
	Detailed Description

	ccdvl::frontend::QtGraphSettings::ZoomSettings Struct Reference
	Detailed Description
	Member Data Documentation
	x_wheel_zoom_step_factor
	y_wheel_zoom_step_factor

	ccdvl::frontend::QtGraphViewFrame Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtGraphViewFrame

	Member Function Documentation
	AddGraphImageTilesOnResize
	AxesDashText
	BeginUpdate
	CacheObserverUpdate
	CancelUpdate
	ClearGraphImages
	ClearGraphImagesDrawnFlags
	CreateLabels
	CurrentCenterPosition
	CurrentSceneHeight
	CurrentSceneRect
	CurrentSceneWidth
	CurrentViewRectToGraph
	CurrentViewRectToScene
	DrawAxesDashAndText
	DrawGraphFirstRedraw
	DrawGraphView
	DrawGrid
	FinishUpdate
	graph_glass_pane
	graph_image
	graph_settings
	GraphImagesColumns
	GraphImagesRows
	HideGrid
	Init
	LockGraphState
	PanTo
	PanTriggeredUpdate
	PanTriggerUpdateBorder
	ReloadUpdateButtonClicked
	SetAxesProperties
	SetGraphImageTileColumns
	SetGraphImageTileHeight
	SetGraphImageTileRows
	SetGraphImageTileRowsAndColumns
	SetGraphImageTileSize
	SetGraphImageTileWidth
	SetGridProperties
	SettingsChanged
	ShowGrid
	StartProgressiveGraphUpdates
	StartProgressiveGraphUpdates
	StopUpdateButtonClicked
	tool_graphics_view
	TryLockGraphState
	TryLockGraphState
	UnlockGraphState
	UpdateBegun
	UpdateCanceled
	UpdateFinished
	UpdateGraphGlassPane
	UpdateGraphView
	UpdateGraphView
	UpdateGraphView
	UpdateGraphView
	updating_graph

	Member Data Documentation
	cancel_update_
	graph_glass_pane_
	graph_image_tiles_
	graph_pixmap_item_
	graph_state_mutex_
	graph_update_timer_
	kDefaultGraphUpdateInterval
	kDefaultPanHeight
	kDefaultPanWidth
	reload_update_button_
	stop_update_button_
	wait_for_renderer_

	ccdvl::frontend::QtGraphWidget Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtGraphWidget

	Member Function Documentation
	coordinate_and_axes_info_frame
	event
	graph_view_frame
	GroupSelection
	Init
	neighbourhood_frame
	resizeEvent
	show
	status_bar_frame
	toolbar_frame

	Member Data Documentation
	graph_neighbourhood_frame_

	ccdvl::frontend::QtLassoSelectTool Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtLassoSelectTool

	Member Function Documentation
	OnMouseMove
	OnMousePress
	OnMouseRelease
	OnWheel
	ViewPixelColor

	Member Data Documentation
	kLassoCursor
	kLassoCursorInverted
	kMinLineLength
	prev_view_graph_rect_
	prev_view_scene_rect_
	view_image_

	ccdvl::frontend::QtPanTool Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtPanTool

	Member Function Documentation
	OnMouseMove
	OnMousePress
	OnMouseRelease
	OnWheel

	ccdvl::frontend::QtPointSelectTool Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtPointSelectTool

	Member Function Documentation
	DrawHelperLines
	helper_lines
	mouse_cursor
	OnActivate
	OnDeactivate
	OnEnter
	OnLeave
	OnMouseMove
	OnMousePress
	OnWheel
	set_helper_lines
	set_mouse_cursor

	ccdvl::frontend::QtRectangleSelectTool Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtRectangleSelectTool

	Member Function Documentation
	OnMouseMove
	OnMousePress
	OnMouseRelease
	OnWheel
	rubber_band

	ccdvl::frontend::QtSettingsDialog Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtSettingsDialog

	Member Function Documentation
	ButtonClicked
	ColorButtonClicked
	GetButtonColor
	GetCacheMaxTileCount
	GetRendererClearColor
	GetRendererLineColor
	GetRendererLineWidth
	GetRendererPointColor
	GetRendererPointShape
	GetRendererPointSize
	GetScaleXMethod
	GetScaleXValue
	GetScaleYMethod
	GetScaleYValue
	SetButtonColor
	SetCacheMaxTileCount
	SetCacheUsed
	SetRendererClearColor
	SetRendererLineColor
	SetRendererLineWidth
	SetRendererPointColor
	SetRendererPointShape
	SetRendererPointSize
	SetScaleXMethod
	SetScaleXValue
	SetScaleYMethod
	SetScaleYValue

	Member Data Documentation
	axis_line_color_
	axis_x_spacer_
	axis_x_step_
	axis_x_type_
	axis_y_spacer_
	axis_y_step_
	axis_y_type_
	cache_empty_
	cache_tile_count_
	cache_used_
	grid_line_color_
	grid_type_
	grid_x_step_
	grid_y_step_
	renderer_clear_color_
	renderer_line_color_
	renderer_line_width_
	renderer_point_color_
	renderer_point_shape_
	renderer_point_size_value_
	scale_x_method_
	scale_x_value_
	scale_y_method_
	scale_y_value_
	view_x_final_
	view_y_final_

	ccdvl::frontend::QtStatusBarFrame Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtStatusBarFrame

	Member Function Documentation
	HideAndResetTaskProgress
	Init
	progress_bar
	SetTaskProgress
	SetTaskProgress
	status_bar

	ccdvl::frontend::QtToolbarFrame Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtToolbarFrame

	Member Function Documentation
	current_tool
	GetTool
	Init
	set_current_tool
	ToolButtonClicked
	ToolButtonDoubleClicked

	Member Data Documentation
	kNumberOfTools

	ccdvl::frontend::QtToolGraphicsView Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	QtToolGraphicsView

	Member Function Documentation
	CalculateBottomLeftFromCenterPosition
	centerOn
	current_selection
	CurrentSelectionToStdVector
	enterEvent
	HideCurrentSelection
	Init
	keyPressEvent
	keyReleaseEvent
	leaveEvent
	mapFromGraph
	mapFromGraph
	mapFromGraph
	mapFromGraph
	mapFromGraph
	mapFromGraph
	mapToGraph
	mapToGraph
	mapToGraph
	mapToGraph
	mapToGraph
	mapToGraph
	mouseMoveEvent
	mousePressEvent
	mouseReleaseEvent
	set_current_selection
	ShowCurrentSelection
	wheelEvent

	ccdvl::frontend::QtZoomTool Class Reference
	Detailed Description
	Member Enumeration Documentation
	ZoomDirection

	Constructor & Destructor Documentation
	QtZoomTool

	Member Function Documentation
	DoZoom
	OnKeyPress
	OnKeyRelease
	OnMouseMove
	OnMousePress
	OnMouseRelease
	OnWheel

	ccdvl::GraphSceneState Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	GraphSceneState

	ccdvl::GraphState Class Reference
	Detailed Description
	Member Enumeration Documentation
	ScaleMethod

	Constructor & Destructor Documentation
	GraphState

	Member Data Documentation
	bottom_left_
	scale_
	scale_method_
	zoom_

	ccdvl::GraphTile Class Reference
	Detailed Description

	ccdvl::GraphTileState Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	GraphTileState
	GraphTileState

	Member Function Documentation
	LessThan
	operator=

	Member Data Documentation
	clear_color_

	ccdvl::GraphTileState::functor_compare Struct Reference
	Detailed Description
	Member Function Documentation
	operator()

	ccdvl::Group2D Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Group2D

	Member Function Documentation
	AddSubGroup
	GetBoundingBox
	GetLeafs
	PointInGroup
	PointInPolygon

	Member Data Documentation
	group_leafs_

	ccdvl::GroupSelectionIterator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	GroupSelectionIterator
	GroupSelectionIterator
	GroupSelectionIterator

	Member Function Documentation
	operator!=
	operator
	operator++
	operator++
	operator=
	operator==

	ccdvl::List2D< type > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	List2D

	ccdvl::MemoryManager Class Reference
	Detailed Description
	Member Enumeration Documentation
	MemoryManagerError

	Constructor & Destructor Documentation
	MemoryManager
	MemoryManager

	Member Function Documentation
	AddData
	AddObserver
	begin
	Clear
	end
	GetRange
	NotifyNew

	ccdvl::memorymanager::CloneDataSet Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	CloneDataSet

	Member Function Documentation
	SetCopyDestination
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit
	Visit

	ccdvl::memorymanager::SequentialMemoryManager Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	SequentialMemoryManager

	Member Function Documentation
	AddData
	begin
	Clear
	end
	GetRange
	Init
	PageControlAllocate
	PageControlDeallocate
	PageControlDelete
	PageControlLoad
	PageControlUnload

	Member Data Documentation
	mapped_space_

	ccdvl::memorymanager::SequentialMemoryManager::MappedMemory Struct Reference
	Detailed Description
	Member Data Documentation
	dataset

	ccdvl::memorymanager::SequentialMemoryManagerIterator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	SequentialMemoryManagerIterator

	Member Function Documentation
	Clone
	Equals
	Get

	ccdvl::memorymanager::StubMemoryManager Class Reference
	Detailed Description
	Member Function Documentation
	AddData
	begin
	Clear
	end
	GetRange
	SwitchTo

	ccdvl::memorymanager::StubMemoryManagerIterator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	StubMemoryManagerIterator

	Member Function Documentation
	Clone
	Equals
	Get

	ccdvl::MemoryManagerIterator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	MemoryManagerIterator
	MemoryManagerIterator
	MemoryManagerIterator

	Member Function Documentation
	operator!=
	operator
	operator++
	operator++
	operator=
	operator==

	ccdvl::MemoryManagerIteratorInterface Class Reference
	Detailed Description
	Member Function Documentation
	Clone
	Equals
	Get

	ccdvl::MemoryManagerObserverInterface Class Reference
	Detailed Description
	Member Function Documentation
	MemoryManagerCleared
	MemoryManagerUpdate

	ccdvl::MessageQueue< T > Class Template Reference
	Detailed Description
	Member Function Documentation
	CancellationHandler
	GetAllMessages
	RemoveMessage
	SendMessage
	WaitForAllMessages
	WaitForMessage

	ccdvl::PyGroupSelectionIterator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	PyGroupSelectionIterator

	Member Function Documentation
	HasNext
	Next

	Member Data Documentation
	end_

	ccdvl::PyMemoryManagerIterator Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	PyMemoryManagerIterator

	Member Function Documentation
	HasNext
	Next

	Member Data Documentation
	end_
	previous_

	ccdvl::ReadersWriterLock< T > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	ReadersWriterLock

	Member Function Documentation
	AtomicReadLock
	AtomicWriteLock
	CancellationHandler

	ccdvl::Renderer Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Renderer

	Member Function Documentation
	Abort
	ClearDraw
	DrawAll
	DrawSet

	Member Data Documentation
	abort_

	ccdvl::renderer::AggRenderer Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	AggRenderer

	Member Function Documentation
	Abort
	ClearDraw
	DrawSet

	Friends And Related Function Documentation
	AggRenderPoint

	Member Data Documentation
	abort_draw_

	ccdvl::RendererConfig Class Reference
	Detailed Description
	Member Enumeration Documentation
	PointShape

	Member Function Documentation
	LessThan

	Member Data Documentation
	deviation_
	deviation_color_
	line_color_
	line_width_
	point_color_
	point_shape_
	point_size_

	ccdvl::TaskProgressInterface Class Reference
	Detailed Description
	Member Function Documentation
	SetTaskProgress

	ccdvl::Transform2D Class Reference
	Detailed Description
	Member Enumeration Documentation
	FloatingpointClassification
	Outcome

	Constructor & Destructor Documentation
	Transform2D
	Transform2D

	Member Function Documentation
	CalculateBottomLeft
	ClassifyNumber
	FromGraphSpace
	IsDoubleInfinity
	IsDoubleNaN
	ToGraphSpace

	ccdvl::TypedDataSet< T > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	TypedDataSet
	TypedDataSet
	TypedDataSet

	Member Function Documentation
	Accept
	GetBuffer
	GetTypeSize
	GetValue

