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Abstract 
 
 
 
Model Based Control of Air and EGR into a Diesel Engine 
 
Helena Andersson 
Martin Hedvall 
 
Department of Signals and Systems 
Division of Automatic Control, Automation and Mechatronics 
Chalmers University of Technology 
 
 
Due to environmental pollution, the automotive industry is forced to meet with lowered 
emission demands legislated by the government. Improved technologies for engine 
control are essential. The use of a Variable Geometry Turbine (VGT) and Exhaust Gas 
Recirculation (EGR) can make the fulfilment of the emission demands possible. The 
purpose of this thesis was to control the VGT and the EGR valve with a multivariable 
controller. Such a controller was necessary in order to handle cross coupling effects 
between control signals and output signals. Several model based linear controllers were 
used to handle the nonlinear behaviour of the VGT and the EGR valve. Dynamic data 
was crucial for the model design in order to describe the complex behaviour of the 
actuators, with adequate accuracy. The measurements in this thesis were performed on a 
13 litre Volvo diesel engine with a VGT and a short EGR route implementation. 
 
System identification was used to estimate models for the control purpose. These 
models consisted of fourth order subspace models. An LQG-controller was used in 
order to control an engine model. The investigated control design consisted of a 
proportional controller, both with and without additional integral action implemented. 
The results of simulations with these designs, made it clear that feed forward of 
measurable disturbance signals was essential for an acceptable control. Two different 
interpolation methods were used in order to go from one state-space model to another. 
The best control design was achieved with an LQG-controller with feed forward, 
additional integral action and a linear fraction based interpolation strategy.  
 
 
Keywords: model based control, VGT, EGR, linear models, LQG 
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1 
Introduction 

 
 
 
 
 
 
 
 
 
 
 
This chapter gives an introduction to the subject of the master thesis and also a 
description of its purpose. Problem formulation, methods and limitations of the task are 
found in this part, as well as disposition of the thesis. 
 
 
1.1 Background and purpose 
 
Due to global warming effects and environmental pollution, a lot of attention has been 
focused on the automotive industry. Emissions from diesel engines have been a 
common topic in the climate debate. The heavy duty industry is therefore forced to meet 
with lower emission demands legislated by the government. In order to fulfil these harsh 
demands, improved technologies for engine control are crucial. Such techniques that 
make it possible to fulfil these restrictions are EGR and the use of a VGT.  
 
When the exhaust gas is re-circulated back into the engine, NOx emissions are reduced. 
The EGR rate also influences the particle matter formation and the fuel consumption of 
the engine. As NOx is reduced through EGR, more particles are formed due to 
deteriorated combustion. A trade-off between NOx and soot has to be made in order to 
fulfil legislation standards. Air and EGR flow into the engine have to be controlled 
during both stationary and transient conditions in order to fulfil the demands of low 
emissions and fuel consumption.  
 
The two actuators used to control air and EGR flow into the engine are the VGT and the 
EGR valve. A change in the VGT position will affect both the EGR rate and the amount 
of air into the engine. In a similar way a change in the EGR valve position affects both 
inlets to the engine. During transients the behaviour is even more complex, especially 
since the exhaust pressure is not measured in a production engine. The characteristics of 
the actuators are also very nonlinear and depend on the working conditions of the 
engine. A more detailed description of the VGT and EGR is found in Chapter 2. 
 
The purpose of this master thesis was to control air and EGR flow into a diesel engine 
during both stationary and transient behaviour. A set of linear model based controllers 
was used for this mission. 
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1.2 Problem analysis 
 
The work in this thesis has been divided into three different parts. The first part consists 
of measurements made in engine test cell and data analysis. In the second part 
modelling work performed on data from an engine test cell is addressed. Finally, the 
third part concerns the actual VGT and EGR control. 
 
 
1.2.1 The measurement problem 
 
Dynamic data was needed in order to design models describing the complex behaviour 
of the VGT and the EGR valve. Therefore, a test experiment had to be prepared in order 
to run an engine in a test cell. Data collection was made with a number of different VGT 
and EGR valve positions for a set of different speed and torque combinations in the 
areas of interest.  
 
 
1.2.2 The modelling problem 
 
Models were necessary when designing model based controllers for the system. The 
main issue was to design as few linear models as possible describing the nonlinear 
behaviour of the VGT and EGR valve with sufficient accuracy. The purpose was to 
develop a method that needed as little data from an engine test cell as possible and was 
easy to implement and optimize. The estimated models are dynamical multivariable 
models.  
 
 
1.2.3 The control problem 
 
The aim was to use the parameter settings developed from modelling to design a set of 
linear controllers. Given a specific working point, the VGT and EGR actuators were to 
be controlled in order to reach the desired reference values.  
 
 
1.3 Method and limitations 
 
This project has been carried out as follows: 
 

• A literature survey was made on the VGT and the EGR valve. Also, a study of 
system identification and control theory was performed.   

 
• Experiments for data collection were thoroughly designed and carried out.  

 
• Data was analyzed and linear models were identified and represented as state-

space models. The tool used for identifying models was System Identification 
Toolbox in MATLAB. 

 
• Control algorithms were designed and implemented in MATLAB/SIMULINK.  
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• Preliminary sets of state-space models were evaluated with control algorithms. 
The work with model design was performed in parallel to control design.  

 
• The chosen set of models was implemented in the final control design and 

evaluated on a modelled engine. 
 
Some limitations had to be made in order to agree with the time aspect of the project as 
well as the complexity of the task. 
 

• The system identification theory only concentrates on ARX models and 
subspace models using a subspace method. This decision was made in order to 
limit the number of different model estimations.  

 
• Due to problems finding a proper engine model for simulation matters, the 

engine operating region was dramatically restrained.  
 
 
1.4 Disposition 
 
The outline of every chapter in this thesis is based on the same principles as the work 
has been executed in, please refer to Section 1.2.  
 

• Chapter 2  includes an overview of the VGT and EGR and their function. 
 

• Chapter 3 gives the theory for system identification and model evaluation.  
 

• Chapter 4 describes the theory for control design and control loops are 
graphically visualized. 

 
• Chapter 5 explains how engine test experiments for transient data collection are 

designed and further on in the chapter it is also described how data from 
measurements are processed. 

 
• Chapter 6 describes the work of model estimation and validation made on data 

from measurements.  
 
• Chapter 7 includes information about the engine model used for simulation. 

 
• Chapter 8 describes the implemented control algorithm in SIMULINK. 

 
• Chapter 9 includes how validation of the control design in the engine model is 

made and analyzed. 
 
• Chapter 10 includes a discussion about the results presented in the previous 

chapters. 
 
• Chapter 11 gives the conclusions made in this thesis. 
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2 
 Description of VGT and EGR Valve 

 
 
 
 
 
 
 
 
 
 
 
In this chapter a short description of the functionality of the VGT and the EGR is 
presented. Schematic figures of the two components are also viewed. 
 
 
2.1 The Variable Geometry Turbine 
 
The purpose of a turbocharger in general is increasing the produced torque from the 
engine, by increasing the amount of inlet air. This way a smaller engine in combination 
with a turbocharger can be used instead of a larger engine in order to achieve the same 
torque. The turbocharger consists of a turbine and a compressor joined together, see 
Figure 2.1. 
 

 
Figure 2.1: An orientation view of a variable geometry turbine. 

 
The turbine with its rotor produces torque from exhaust gases and the compressor uses 
the torque to increase the air pressure into the engine. A variable geometry gives the 
ability to control how much of the exhausts that will produce torque in the turbine. This 
is done by opening or closing a damper. In this way, the turbine can be used in an 
effective way for every engine operating speed. As a bonus, the higher pressure in the 
exhaust manifold can be used for EGR. This pressure becomes significantly higher 
when the VGT is not fully opened. Thus, the VGT can never be fully closed, since this 
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totally blocks the exhaust gases from leaving the engine. The behaviour of the VGT is 
strongly nonlinear due to its vanes in the damper. The vanes do not have a uniform 
shape and therefore the area, through which the exhaust gases flow, changes in a 
nonlinear way. As a consequence of this, the exhaust manifold pressure has a very 
nonlinear behaviour. A change in the VGT position affects the pressure more when the 
VGT is almost closed, than when it is fully opened. 
 
 
2.2 Exhaust Gas Re-circulation 
 
EGR is a way of re-circulating exhaust gases back into the cylinders. The purpose of 
this is reducing the NOx emissions from the engine. NOx particles are created at high 
temperatures when oxygen is available. The exhaust gases contain almost no oxygen 
compared to fresh air. Replacing fresh air with exhaust gases means less oxygen to the 
cylinders. The amount of exhaust gases that are re-circulated is controlled by a valve, 
see Figure 2.2. The valve has a nonlinear behaviour, but not as nonlinear as the VGT. 
The nonlinearity originates from the construction of the valve. A very small valve 
opening means that the gases can only flow through a small area of the pipe. By 
opening the valve just slightly, the flow area increases considerably. The shape of the 
valve gives rise to a significantly higher flow difference for a small change of the valve 
in the almost closed region, than changing the valve position the same distance in a 
more opened one. This effect originates from the fact that the EGR flow becomes 
saturated. The valve also causes whirls in the gases that flow through it, which 
contributes to the nonlinearity. These whirls appear when the gas leaves the valve, and 
enters a space with a bigger cross section area. 
 

 
 

 

   

 
 

Figure 2.2: Schematic picture of gas and air flow in a modern diesel engine. 
 
Figure 2.2 describes a short EGR route configuration, where gas is re-circulated from 
the exhaust manifold and passed through a cooler. To make the EGR process work, the 
pressure in the exhaust manifold must be higher than the pressure in the intake 
manifold. Without a VGT, this happens only at short time intervals, at the same instant 
as the exhaust gases are being pushed out of the cylinders. Since a VGT gives the 
possibility to build up a higher pressure in the exhaust manifold, EGR can be used to a 
greater extent. 
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3 
 System Identification Theory 

 
 
 
 
 
 
 
 
 
 
 
Theories and methods for experiment design, data processing, model estimation and 
validation are presented in this chapter. System identification is the powerful way of 
identifying data in order to estimate a useful model. The procedure for this work can be 
summarized in Figure 3.1. 
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Figure 3.1: The circle of system identification. 

 
 
3.1 Experiment design 
 
The design of a system identification experiment includes many important choices. First 
the designer has to decide which signals to measure. Inputs and outputs for the system 
have to be considered thoroughly. When these have been defined the next issue is to 
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decide the sampling frequency. The rate is determined from the dynamic properties in 
the input and output signals. To be able to identify this behaviour, the sampling rate has 
to be fast enough to get all the wanted dynamics, but not so fast as to generate 
unnecessarily large amounts of data.   
 
 
3.2 Data processing 
 
When data is collected from experiment, immediate usages in identification algorithms 
are often not possible. First the data has to be pre-processed in several ways in order to 
eliminate low- and high-frequency disturbances, outliers, missing data, drifts and offsets 
etc.  
 
Removal of offsets such as drifts and trends are especially important when output error 
models are used as estimation output. If this is not considered, difference in amplitude 
will dominate the fit criterion and the dynamic behaviour will be of less importance. For 
methods that use flexible noise models, removal of offsets is not as crucial, since this 
approach, by design, means de-emphasis of drifts and trends. One such method is the 
least-squares method, see Ljung (1999).  
 
The data measurement equipment is not faultless. Therefore, the data will most likely 
include bad values due to obvious measurement error. Such data are called outliers. 
These types of values may have negative effect on the estimate and it is recommended 
to remove such data from the experiment. Residual analysis is good for identifying 
outliers and bad data. For further reading, see Ljung (1999). 
 
As discussed earlier in this section, bad data might be included in measurements and 
other data might be missing for any reason. One reason to merge data sets might be that 
an experiment has been repeated for a number of times and it is desired to design only 
one model, based on the data from all experiments. Whatever the reason might be, it is 
desired to exclude parts of bad data and concatenate other parts. As good as it might 
sound; it is not possible to simply connect data segments together, since the joining 
points would cause transient behaviour that might destroy the estimate. Therefore 
merging data sets can be done with statistical methods, using covariance matrices. For 
more details about how this is done, see Ljung (1999) and The MATLAB Users Guide 
(2006). 
 
 
3.3 Model estimation 
 
There are a number of different model structures to choose between when describing a 
system. First the user has to decide upon whether to use linear or nonlinear models, 
black-box or physically parameterized state-space models etc. In this master thesis the 
focus is to design linear models for MIMO systems. Not all model structures can handle 
multivariable systems. ARX models and state-space models using a subspace method 
are two models useful for this purpose. 
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3.3.1 ARX models 
 
A discrete multivariable ARX model with nu inputs and ny outputs is described by 
(3.1). 
 

( ) [ ] ( ) [ ] [ ]kenkkuqBkyqA +−=    (3.1) 
 
A(q) is an ny-by-ny matrix whose entries are polynomials in the delay operator q-1, B(q) 
is an ny-by-nu matrix and e[k] is white noise, see (3.2). 
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1
10

1
1

   (3.2) 

 
e

 
Figure 3.2: The ARX model structure. 

 
Figure 3.2 gives a graphical description of (3.1). Hence, the number of parameters in the 
A(q) or B(q) polynomials increases with higher orders, i.e. na and nb. The delay from 
input to output is determined by nk. Parameters are estimated using the linear least 
squares method. For further reading, see Ljung and Glad (2004) and The MATLAB 
Users Guide (2006). 
 
The ARX model is the simplest model to estimate due to its estimation algorithm. For 
this reason, it is preferred to try ARX models as a first attempt to estimate a model 
structure. The disadvantages with using an ARX model, is that the noise model is 
described using the same poles as the rest of the system, see (3.1). Higher orders of the 
A and B polynomials might therefore be needed, which is not of such big importance for 
good signal-to-noise conditions. For references, see Ljung and Glad (2004). Note that 
an ARX model has to be transformed into a state-space model, before implementation in 
the control algorithm intended for use in this thesis, see (3.3) for a state-space 
representation. 
 
 
3.3.2 State-space models using a subspace method 
 
Mathematically, a discrete state-space model is described by (3.3). Measured inputs 
sampled at time k are denoted as u and outputs as y. The number of inputs is nu and the 
number of outputs is ny. The vector x is the state vector and contains numerical values 
of n states. w and v are immeasurable signals, assumed to be white noise.   
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[ ] [ ] [ ] [ ]
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In (3.3) A is an n-by-n matrix, which describes the dynamics of the system. B is an n-by-
nu matrix and it describes the linear transformation by which the inputs influence the 
next state. C is an ny-by-n matrix, which represents how the internal state is transferred 
to the output y. D is an ny-by-nu matrix, which is the direct feed through term. Complex 
behaviour in the measured outputs can be captured by choosing n high enough in the 
model estimation. For further reading, see van Overschee and De Moor (1996). In 
Figure 3.3 a graphical representation of a state-space model is made. 
 

v w

 
Figure 3.3: The state-space model structure. 

 
Subspace identification algorithms identify input-state-output models. If the states of the 
system are known and input and output data are measured, it would be possible to solve 
(3.3) for the four matrices. The equation would be a linear regression and the C and D 
matrices can be found by applying the least squares method. Hence, the other unknown 
matrices in the equation can then be determined. The problem is thus to find the states. 
In (3.3) the states can be described as linear combinations of the k-step-ahead predicted 
output. Once these predictors are found the problem is solved. This can be achieved by 
using a subspace method. These methods determine the predictors by projections 
directly on the measured data sequences in a satisfactory way. For more details, see 
Ljung (1999).  
 
Unlike ARX models, subspace models have full freedom in the noise model. Therefore, 
a lower order can be used for subspace models compared to ARX models. Subspace 
models are also very easy to implement in control algorithms, since the system matrices 
are directly known. 
 
 
3.4 Model validation 
 
Model validation is made in order to determine if an estimated model is good enough 
for describing certain behaviour. The validation part of the system identification process 
is of big importance for finding an estimated model with good qualifications. 
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3.4.1 Stability analysis and pole-zero cancellation 
 
When validating a model, stability is an important factor. A stable discrete system 
means that all the system poles are located inside the unit circle. If the purpose is to 
control the system, it is also important that the system is minimum phase. For further 
reading, see Glad and Ljung (2003). For a system on state-space form, the poles appear 
as the eigenvalues in the A-matrix. Another way of illustrating this is making a pole-
zero plot, to make sure no poles or zeros are outside the unit circle. A minor drawback 
with this type of plot is if more than one pole or zero are located at the same position, 
then the multiplicity can not be seen. If a pole and a zero are positioned very close to 
each other, it might be reasonable to make a pole-zero cancellation, which results in a 
lower model order. Thus, the greater distance between the pole and the zero, the more 
dynamics will be lost in the cancellation. 

 
 
3.4.2 Residual analysis 
 
A way of validating the estimated model is calculating the residuals, known as 
prediction errors.  The measurements can then be compared to the model outputs. The 
residuals are defined as the predicted errors between measured output and the estimated 
model output for a specific input signal, see (3.4). 
 

[ ] [ ] [ ]kykyk )−=ε     (3.4) 
 

Applying simple statistics to (3.4) introduces the concept of quality factors. These 
factors can be used for comparing different estimated models describing the same 
system. Often used statistics are the largest and the average residual. Unfortunately, just 
using these simple statistics has a major drawback and is therefore not enough. The 
quality factors will only be valid as long as the model input signals are the same as the 
input signals used for data collection. Part of this limitation is removed by calculating 
the covariance matrix between residuals and previous input signals. Small values 
indicate that the model is also relevant when other inputs are applied. The covariance 
matrix can also be used for making decisions regarding model order. Traces of the past 
inputs in the residuals show that all dynamics have not been picked up by the model, 
and therefore a higher model order may be a better choice. For more details, see Ljung 
(1999) and The MATLAB Users Guide (2006). 
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4 
 Control Theory 

 
 
 
 
 
 
 
 
 
 
 
In this Chapter theories and methods for control design are presented. The control 
design described in this chapter utilizes a multivariable optimal linear control theory; 
LQG with additional integral action and feed forward. 
 
 
4.1 Linear Quadratic control 
 
A multivariable controller is needed in order to control cross dependent signals 
simultaneously. It is especially important if the signals have essential cross coupling 
effects on each other. The LQ-control strategy uses negative feedback of the system 
states in order to create control signals. Since it is a model based controller, the system 
to be controlled must be represented as a state space model, see Section 3.3.2 and (3.3). 
It is also required that the pair (A,B) is stabilizable and that the pair (A,Q) is detectable. 
Q is to be explained in the next section. For further reading, see Glad and Ljung (2003). 
 
The LQ-control problem consists of minimizing a loss function, denoted J. This loss 
function includes the control signals and the system states, see Åström and Wittenmark 
(1997). The loss function also includes adjustable parameters, Q and R, which gives the 
possibility to put weights on each state and each control signal, see (4.1). It is also 
possible to put weights on the cross coupling effects between states and/or control 
signals. For example, small weights on control signals would give fast control, however 
the control signal activity would be high. 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∑
=

++
∞→

=
k

n

TTT nuRnunuNnxnxQnx
kk

kJ
0

1lim  (4.1) 

 
( ) ( )kxLku −=     (4.2) 

 
Applying (4.2) to (4.1) and minimizing the resulting equation will give the optimal gain 
matrix L. From this, together with the negative feedback of the states, the control law 
can be calculated. 
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In order to follow a given reference vector, the reference signals must be included in the 
control law, see (4.3). 
 

( ) ( ) ( )kxLkrLku r −=     (4.3) 
  
In (4.3), Lr is a gain matrix that ensures the static gain of the closed system is equal to 
one. The controller is now able to reach the desired references, assuming that the state 
space model is perfectly describing the real system. See Figure 4.1 for a schematic 
picture of the control setup. 
 

 
Figure 4.1: Visualization of a system controlled by an LQ-controller. 

 
In Figure 4.1 the inputs, the outputs and the control signals can be either scalars or 
vectors with an arbitrary number of elements. 
 
 
4.2 Kalman filter design 
 
In order to implement a model based controller for a system, all states in the model must 
be known. If the number of states differs from the number of measured outputs, the 
states cannot be directly calculated. Thus, an observer is necessary to predict states. A 
Kalman filter has been proved to give an optimal balance between the sensitivity to 
measurement noise and the prediction of states. For more details, see Glad and Ljung 
(2003). The covariance matrices for the process disturbances, denoted R1, and for the 
measurement noise, denoted R2, are adjustable parameters. All known noise behaviour 
should be included in these parameters in order to perform a good prediction. There is 
also an adjustable matrix for the cross coupling effects between the process disturbances 
and the measurement noise, denoted R12. The Kalman filter requires that the matrix R2 is 
symmetric and that the matrix  TRRRRR 12

1
21211

~ −−=  is positive definite. It also requires 
that (A,C) is detectable and that ( 1

1
212

~, RCRRA −− ) is stabilizable. The Kalman matrix K 
is then calculated by solving the Riccati equation, in which all mentioned covariance 
matrices are included, see Glad and Ljung (2003). The predicted states are calculated by 
solving the state-space model in (4.4). A schematic picture of the control setup with the 
Kalman estimator is seen in Figure 4.2. 
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Figure 4.2: Visualization of a system controlled by an LQG-controller. 

 
As seen in Figure 4.2, the Kalman filter uses both control signals and output signals 
from the system to make a good prediction of the states. 
 
 
4.3 Implementation of additional integral action 
 
A model can never be a perfect match of a real system. One reason is that disturbances 
and measurement noise will affect the measurements. Therefore, an LQ-controller will 
result in stationary errors in the system output signals. The amplitude of the errors 
depends on how much the model differs from the real system. Implementing additional 
integral action to the controller solves this problem. In practice, this is carried out by 
adding integrator states, which become part of the control signal, see (4.3) and (4.5). 
Thus, the control signal will change until the control error is zero. One extra state for 
each output signal is therefore needed. For further reading, see Schmidtbauer (1999). 
 

( ) ( ) ( ) ( )kykrkxkx −+=+ intint 1    (4.5) 
  

Adding integral states results in an increased state space model, see (4.6). See also 
Figure 4.3 for a schematic figure of the control setup. 
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The optimal gain matrix must be recalculated minimizing the loss function again, with 
the integral states added.  
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Figure 4.3: Visualization of a system controlled by an LQG-controller with additional 

integral action. 
 
Due to (4.6), the inputs to the Kalman estimator have to be augmented with the 
reference vector, when implementing additional integral action. 
 
 
4.4 Feed forward of additional input signals 
 
Integral action compensates for stationary errors in the output signals, but on the other 
hand integral action is relatively slow. If the controlled system has measurable 
disturbances, feed forward of these signals will give rise to a faster controlling. The 
simplest way of doing this is multiplying the disturbance signals with a static gain 
matrix, denoted Lff in Figure 4.4. This matrix should be designed in such way that the 
control signal contribution from feed forward will compensate for the model output 
contribution from the disturbance signals. The static gain matrix is received by solving 
(4.7) if Guy is a square matrix with a determinant different from zero. 
 

( ) ( ) ( ) ( ) 000 =+ kvGkvLG vyffuy    (4.7) 
 

Applying the static gain matrix from (4.7) in (4.8) gives the total control signal u from 
both feedback and feed forward. 
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ˆ
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v(k) is a vector including all the additional inputs, and Lff is the gain matrix. 
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Figure 4.4: Visualization of a system controlled by an LQG-controller with additional 

integral action and feed forward. 
 
Since the feed forward is free from dynamics and directly operates on the control 
signals, the control speed of the system increases dramatically. 
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5 
Measurements and Data Processing  

 
 
 
 
 
 
 
 
 
 
 
This chapter gives a description of how the test experiments for measurement collection 
in an engine test cell are designed and how data are processed. The measurements are 
performed on a 13 litre Volvo diesel engine with a VGT and a short EGR route 
implementation. 
 
 
5.1 Design of engine test experiment 
 
Since the controller should be able to produce satisfactory control signals, data from 
transient driving conditions for the engine had to be used. A diesel engine can not run 
with any random combinations of VGT and EGR valve positions. Therefore, each 
driving condition must be carefully selected. Dynamic data needed for model and 
control design had not been measured. For that reason a transient engine test experiment 
had to be designed. 
 
From static measurements, it was possible to find proper combinations of VGT and 
EGR valve positions for different speeds and loads. Both the VGT and the EGR valve 
have nonlinear behaviour in some regions. In these regions the actuators can not be 
adjusted too rapidly in order to get all dynamic information. To avoid turbo over-
speeding the VGT also has a lower limit for each operating point. 
 
Three different engine speeds were chosen and two different loads for each speed in 
order to design the engine test sequences. The combinations of load and engine speed 
are common operating points for the type of engine used in the experiment. For each of 
the combinations, the VGT and the EGR valve positions have been varied within 
acceptable operating ranges, see Figure 5.1. 
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Figure 5.1: Engine test experiment for interesting operating regions. 

 
The engine test experiment has been designed in a way that makes each ”VGT” and 
”EGR” combination jump back and forth between two different levels for a constant 
amount of time, see Figure 5.2. 
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Figure 5.2: An engine test sequence for jumps in the VGT and EGR valve positions. 

 
The jumps are done in order to maximize the number of different transient behaviours. 
One such data part as in Figure 5.2 is referred to as a sequence. Different frequencies at 
which transients occur are implemented by randomizing all time delays between jumps 
in each sequence. Therefore, the number of transients does also become randomized. 
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5.2 Measurements in engine test cell 
 
For simplification, all data has been measured with the same sampling frequency of 
10 Hz. Since all dynamics of the interesting measurement signals are relatively slow, 
this was considered to be fast enough. In Figure 5.3 data from measurements in the 
engine test cell is viewed. Outliers have been removed from the data sequences. In this 
thesis the decision was made not to remove offsets such as drifts and trends, as 
described in Section 3.2. One of the purposes of this thesis was to design a small 
number of linear state-space models that capture the significant part of the nonlinearities 
of the two actuators. The idea was to merge several data sequences and describe all of 
these small models with only one model. If offsets were removed from each sequence 
before they were merged with another sequence, it would be complicated to add these 
offsets back again. Therefore, removals of offsets have not been made in this thesis.  
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Figure 5.3: Data from engine test cell with all outliers removed. 

 
In Figure 5.3 it is also possible to see that “Torque” and “Speed” are not equal to the 
demanded signals viewed in Figure 5.1. One reason for this is different engine functions 
limiting the demanded signals from reaching their target level. Another reason is, of 
course, disturbances such as measurement noise.   
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Figure 5.4: Two measured data signals used for model estimation from engine test cell, 

outliers are removed.  
 
In Figure 5.4 two measured data signals, ”EGR content” and ”Boost pressure”, are 
shown. The output signals in this figure are a result from the engine test cell, where the 
engine have been run with the input signals shown in Figure 5.3. These two signals have 
been used for model estimation since they are proportional to NOx and soot, and thus 
give a good indication of the emission levels. The “EGR content” is defined as a relative 
measure of the EGR amount in the inlet manifold.  
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6 
Model Estimation and Validation 

 
 
 
 
 
 
 
 
 
 
 
This chapter presents the results of system identification modelling using different 
methods and model parameters. In the first section the model design and parameter 
estimation is addressed. After that, the models are validated in various steps according 
to Section 6.2. In the last section merged models are examined. 
 
 
6.1 Model design and parameter estimation 
 
Since both the VGT and the EGR valve have nonlinear behaviour, it appeared to be too 
hard to predict any optimal model order directly from using their physics. In order to get 
satisfactory results, some different model orders were tested and the model that best 
described the reality was chosen. To determine the best model; model errors, time 
delays and model overshoots were considered. Different model orders were tested for 
both ARX and subspace models. The number of different transient behaviours that can 
occur for one data sequence was quite small. Also, the working region for one data 
sequence was very narrow and the behaviour of the “EGR content” and the “Boost 
pressure” was expected to be linear. Therefore, a fairly low order linear model was 
reasonable to expect as the best one.  
 
For ARX models, the time delay could be found using the trial and error method. With 
this method, the time delay nk was determined to be equal to one. In contrast to ARX 
models, the time delays for subspace models were estimated automatically by the 
subspace method. Therefore, only one parameter, the model order n, had to be adjusted 
in order to find an optimal model. For ARX models, both na and nb remained adjustable 
after the time delay was found. 
 
The measurement data and ranges for input signals used for model estimation are shown 
in Table 6.1. Even though more measurement data was obtained, see Section 5.2, this is 
the only data used for model estimation presented in this thesis. This is due to problems 
in finding a proper engine model, further discussed in Section 10.2. 
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 Model 1 Model 2 Model 3 Model 4 

Original data sequence 1 2 3 4 
Number of samples 1400 1375 1100 1549 
Speed [rpm] 1200 1200 1200 1200 
Torque [Nm] 1500 1500 1500 1500 
VGT range [%] 40-45 40-45 45-50 45-50 
EGR range [%] 50-60 60-70 50-60 60-70 

 
Table 6.1: Measurement data used for model estimation. 

 
The accuracy of the model estimation depending on “Speed” and “Torque” is 
unreliable; as only disturbances have contributed to the output dynamics, see Figure 5.3.    
 
 
6.2 Model validation 
 
Each estimated model was validated in order to find the best one for the control 
purpose. Since an ARX model produced a worse output than a subspace model with the 
same number of states, this master thesis will focus on subspace models. ARX models 
contributed to a high number of states even for low order models. 
 
 
6.2.1 Verification of model behaviour 

 
In order to make sure that the significant dynamics have been captured by the model, 
verification has been performed. Thus, the model behaviour was compared to the 
physical reality using MATLAB. The influence of the model order was investigated 
using a trial and error method, by starting off with a low order model and increasing the 
order step by step until the most reasonable output signals were reached. A fourth order 
subspace model was found to be the best one. Results from some ARX models can be 
found in Appendix A.1. 
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Figure 6.1: A first order subspace model compared with data from measurements. 
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It is clear that great parts of the dynamic behaviour were lost during the estimation of a 
first order subspace model, see Figure 6.1. Especially the model output of the ”EGR 
content” lost almost all dynamics and even got a non physical behaviour at some 
operating regions. 
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Figure 6.2: A fourth order subspace model compared with data from measurements. 

 
The fourth order subspace model followed the output dynamics with satisfaction. The 
model output for this order is also smooth compared to the noisy measured output, see 
Figure 6.2. 
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Figure 6.3: A tenth order subspace model compared with data from measurements. 

 
Increasing the model order above four resulted in a more noisy behaviour of the output 
signal, especially for the ”EGR content”, see Figure 6.3. The prediction error did not 
improve significantly considering that more states requires more computer power to 
calculate during control operation.  
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6.2.2 Stability check and pole zero cancellation 
 
The stability of all models was tested since this is crucial for a model based control 
system. In this test, all absolute distances between the origin and the poles and zeros 
were calculated. The calculation revealed the stability of the models and whether the 
models were minimum phase or not. To be able to do a proper stability check, each 
model has been split into two different two-by-two transfer functions, one from the 
“Speed” and “Torque” signals to the output signals and one from the control signals to 
the output signals. See Figure 6.4 and Figure 6.5 for visualization of the system poles 
and zeros for a fourth order subspace model. Similar figures for an ARX model are 
found in Appendix A.2. 
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Figure 6.4: Pole-zero visualization of the multidimensional transfer function from 
“Speed” and “Torque” to ”EGR content” and ”Boost pressure” for a fourth order 

subspace model. 
 
In Figure 6.4, some poles are located close to the boundary of the unit circle, but the 
distance calculation based on eigenvalues revealed that all poles are stable. The distance 
calculation for the zeros exposed that the system was minimum phase.  
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Figure 6.5: Pole-zero visualization of the multidimensional transfer function from 
”VGT” and “EGR”  to ”EGR content” and ”Boost pressure” for a fourth order 

subspace model. 
 
The transfer function from ”VGT” and “EGR” to ”EGR content” and ”Boost pressure” 
contains both zeros and poles close to the boundary of the unit circle, see Figure 6.5. 
Calculation of the distance from the origin to the poles and zeros revealed that all poles 
were stable and that the system was minimum phase. 
  
No pole-zero-cancellations were performed in any of the transfer functions since the 
shortest distance between a pole and a zero were considered too large. Therefore, a 
cancellation would have resulted in too much loss of dynamics in the model. 
 
 
6.2.3 Model residual analysis 
 
Residual analysis was performed as a final verification tool to make sure no dynamics 
were lost when the models were estimated. This was accomplished by the study of cross 
correlation functions between the input signals and the residuals of the output signals, 
see Figure 6.6 and Figure 6.7. The cross correlation functions from ”Speed” and 
“Torque” have been left out of this section and are located in Appendix A.3. The reason 
for this exclusion is that the experiment design of the measurements was such that no 
dynamics were allowed in these signals.  
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Figure 6.6: Cross correlation functions between “VGT” and “EGR” inputs and 

residuals from ”EGR content” for a fourth order subspace model. 
 
In Figure 6.6, the correlation function is consistently very close to zero. Therefore, it 
becomes clear that all relevant influences on ”EGR content” from ”VGT” and “EGR” 
inputs have been captured by the model. Refer to Section 3.4.2 for theory regarding 
covariance between input signals and output residuals. 
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Figure 6.7: Cross correlation functions between ”VGT” and “EGR” inputs and 

residuals from ”Boost pressure” for a fourth order subspace model. 
 
Figure 6.7 reveals that all relevant influence on ”Boost pressure” from “VGT” and 
“EGR” has been captured by the model also. 
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6.3 Merging of models 
 
The idea of merging models developed in order to decrease the number of different 
state-space models. By comparing models with each other it is possible to find models 
with similar behaviour. To determine if a model is appropriate to merge with another 
one, a chi-square distributed value is used. If this value is too high, merging is not 
preferable. In Table 6.2 the relative chi-square distributed values between the 
investigated subspace models are shown. The models are of order four.  
 

 Model 1 Model 2 Model 3 Model 4 
Model 1 0 1697 592 2732 
Model 2 1697 0 1970 1831 
Model 3 592 1970 0 1275 
Model 4 2732 1831 1275 0 

 
Table 6.2: Relative chi-square distributed values for fourth order subspace models. 

 
All simulations in this section have been visualized for a shorter period than the number 
of samples in the input signals. This is simply because the results of these plots are only 
interesting after the settling time is reached. 
 
In Figure 6.8 and Figure 6.9 outputs from “Model 1” and “Model 3”, together with the 
merged model outputs from these two models are shown. Input data from “Data 
sequence 1” is used for the simulation in Figure 6.8 and input data from “Data sequence 
3” is used for Figure 6.9. 
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Figure 6.8: Model outputs from fourth order subspace models, input data from “Data 

sequence 1” is used.   
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Figure 6.9: Model outputs from fourth order subspace models, input data from “Data 

sequence 3” is used. 
 

In Figure 6.8 the merged model outputs are supposed to have the same behaviour as the 
outputs from “Model 1”. This is seen in the figure; both outputs seem to follow the 
behaviour acceptably well. In Figure 6.9 the merged model is supposed to generate 
outputs with the same appearance as “Model 3”. This is also verified in the figure. The 
merged model of “Data sequence 1” and “Data sequence 2” has the lowest chi-square 
distributed value in Table 6.2. From the analysis of the two figures it is seen that a 
merge between these two data sequences is preferable. 
  
All four data sequences that have been used for simulation of the control loop have also 
been merged together as one model. Visualizations of this are shown in Figure 6.10 to 
Figure 6.13. The input data for the model estimates have been varied in the four figures. 
The input data in Figure 6.10 are from “Data sequence 1”, in Figure 6.11 from “Data 
sequence 2”, in Figure 6.12 from “Data sequence 3” and in Figure 6.13 from “Data 
sequence 4”.  
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Figure 6.10: Model outputs from fourth order subspace models, input data from “Data 

sequence 1” is used.    
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Figure 6.11: Model outputs from fourth order subspace models, input data from “Data 

sequence 2” is used.    
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Figure 6.12: Model outputs from fourth order subspace models, input data from “Data 

sequence 3” is used.    
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Figure 6.13: Model outputs from fourth order subspace models, input data from “Data 

sequence 4” is used.    
 
In each one of Figure 6.10 to Figure 6.13, the merged model outputs are supposed to 
have the same behaviour as the outputs generated from the model with the same 
number, as the input data sequence used for the simulation. The results of the 
simulations show that the behaviour of the merged model outputs in Figure 6.11 are not 
the same as the outputs from “Model 2”, which was supposed to be obtained. In all the 
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other figures, the aimed behaviour is considered to be within acceptable margins. 
Hence, merging of all four data sequences might not be preferable.  
 
To further investigate if merging of models is appropriate, it is recommended to study 
the appearance of Bode diagrams. If the appearance of both the amplitude and the phase 
are about the same for the models intended to merge, then merging is preferable. In 
Figure 6.14 and Figure 6.15 the Bode plots for outputs from “Model 1”, “Model 3” and 
a merged model of these two are shown. Figure 6.14 visualizes the Bode diagram of the 
transfer function from ”VGT” to the model outputs, whilst Figure 6.15 shows the 
transfer function from “EGR” to the outputs instead. Analogous Bode diagrams for 
”Speed” and “Torque” are found in Appendix A.4 
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Figure 6.14: Bode diagram of the transfer function from ”VGT” to ”EGR content” 
(left) and ”Boost pressure” (right). The plots are for outputs from “Model 1” and 

“Model 3”, together with a merged model, for fourth order estimates. 
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Figure 6.15: Bode diagram of the transfer function from “EGR” to burned fraction 
(left) and ”Boost pressure” (right). The plots are for outputs from “Model 1” and 

“Model 3”, together with a merged model, for fourth order estimates. 
 
In Figure 6.14 and Figure 6.15 it is seen that the frequency response have the same 
appearance for both models and also the merged model. Since the sampling frequency 
was 10 Hz, it is only relevant to compare the behaviour for frequencies under 5 Hz.  5 
Hz is half the sampling frequency, which is also the same as the Nyquist frequency. The 
figures also confirm that merging of “Model 1” and “Model 3” is beneficial.   
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7 
The Combined Engine Model 

 
 
 
 
 
 
 
 
 
 
 
In this chapter a description of the combined engine model used for simulation is given. 
First, a description of the model design is presented and secondly, a validation of the 
combined engine model is made. 
 
 
7.1 Design of the combined engine model using linear 

interpolation 
 
When designing the combined engine model, the aspiration was to obtain a model that 
was as similar to the real engine as possible. This means a huge number of state-space 
models were needed in order to describe the complete engine. Only six different speed 
and torque combinations were examined when data was obtained in the engine test cell. 
Such a small number of different working areas would be inadequate to describe the 
total engine. Therefore, such a realization was unachievable and the limitation was 
made to focus on merely a very small working region. That region is defined by the 
state-space models estimated from the data sequences in Table 6.1. Thus, no data 
sequences are merged together since this would impair the result. The combined engine 
model consists of a maximum of four different state-space models.  
 
 
7.1.1 Fraction based interpolation method 
 
When implementation of the state-space models were made in SIMULINK, a strategy to 
choose the proper model was necessary. Linear interpolation was used to smoothly go 
from the output signals of one set of state-space models to another. Depending on speed, 
torque, VGT and EGR valve positions, the most suitable state-space models were 
selected. A four dimensional look-up system was therefore required. The interpolation 
strategy was such that four state-space models were always selected. The four models 
represent corners in a quadrate. Each quadrate represents a very small working area in 
the VGT and EGR valve position regions for a fixed combination of “Speed” and 
“Torque”. All quadrates that represent the same “Speed” and “Torque” combination 
were merged together in a table, with VGT positions on the x-axis and EGR valve 
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positions on the y-axis, see Figure 7.1. Since this thesis only focuses on one 
combination of “Speed” and “Torque”, only one table was required. 
 

1 3

2 4
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VGT
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Figure 7.1: Two extracted quadrates from the engine model table. 

 
Since the control signals can vary continuously, the possible working region of the 
engine covers the whole area of the quadrates. Therefore, a linear weight distribution 
depending on where in the current quadrate the engine is working was introduced. In 
(7.1) the weight is denoted w and the VGTspan and EGRspan are the interpolation 
intervals. The VGTdiff and EGRdiff are the absolute distances from the operating point, to 
the upper left corner in the quadrate.     
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The output signals from each model were multiplied with the weight for the specific 
model. The resulting output signals were calculated as the sum of the four weighted 
signals. In this way, a smooth transition from one region to another was achievable.  
 
 
7.1.2 Time and fraction based interpolation method 
 
This method is an extended version of the fraction based interpolation method. The 
method was developed as the fraction based interpolation method could not handle large 
steps in the input signals. Therefore, a step detector was introduced which could trig a 
time based interpolation from one set of weights and models to another. The time based 
interpolation uses a fixed time constant. No time interpolation was allowed until the 
previous time interpolation was finished. 
 
 
7.2 Validation of engine model switch behavior  
 
As the combined engine model consists of several subspace models gained from data 
sequences, their individual behavior have already been validated in Section 6.2. 
Therefore, in this section the focus is concentrated to investigate the combined engine 
model behavior when the engine switches from one set of state-space models to another. 
In Figure 7.2 the inputs to the state-space models are described. The models consist of 
fourth order subspace models. Speed and torque are kept constant. The VGT and EGR 
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valve positions are kept constant at three different levels and are ramped in between. All 
input signals are in the operating range for at least one subspace model at all times.  
This thesis focuses on the fraction based interpolation method for the engine. Though, a 
comparison between the two different methods is found in the end of this section. The 
simulations visualized in Figure 7.2 to Figure 7.5 use the fraction based interpolation 
method. 
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Figure 7.2: Input signals for fourth order state-space models. 

 
In Figure 7.3 the output signals from the combined engine model are visualized. From 
the figure it is possible to see the smoothness in the outputs resulting from changes in 
the inputs and the interpolation strategy. 
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Figure 7.3: Output signals from the combined engine model.  
 

The four subplots in Figure 7.4 represent the corners in the floating quadrate, found in 
the engine model table. In each subplot, one of the state-space models currently in use is 
shown and also a weight to indicate how much of its outputs that are used in the 
combined engine model. During the first 10 seconds the combined engine model is 
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based on only “Model 1”. After the first change in VGT and EGR valve position have 
occurred, the combined engine model consists of the maximum number of four different 
state-space models. As a consequence of the input signals, each model output is used 
with 25 percent at this period. The tweaks in the weight fraction after 10 and 21 seconds 
are a result from the interpolation strategy when the input signals are changed. 
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Figure 7.4: Model numbers and weights for fourth order subspace models, each subplot 

represents the corners in the floating quadrate, found in the engine model table. 
 
For the input signals shown in Figure 7.2, simulations have been done with only using 
one of the four subspace models at a time. The results from the four models are found in 
Figure 7.5. It is the output result from these individual models that have been 
interpolated. The outcome of the interpolation for the combined engine model depends 
on the weights and model numbers shown in Figure 7.4. 
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Figure 7.5: Output signals from fourth order subspace models.  
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Figure 7.6 shows a comparison between the two different interpolation methods 
described in Section 7.1. In order to do a relevant comparison, the first ramp in both 
control signals was replaced by a step; since the time based interpolation method needs 
to be triggered.  
 

0 5 10 15 20 25 30
7

8

9

10

11

Time [s]

EG
R 

co
nt

en
t [

%
]

 

 
Fraction based interpolation method
Time and fraction based interpolation method

0 5 10 15 20 25 30
235

240

245

250

255

Bo
os

t p
re

ss
ur

e 
[k

Pa
]

Time [s]
 

Figure 7.6: Comparison between different interpolation methods in the combined 
engine model. 

 
As the fraction based interpolation method can not interpolate during steps in the input 
signals, a bump occurs when a step is applied. The time and fraction based interpolation 
method prevented this bump, but in trade, the control system is slightly slower. As the 
result from the two different interpolation methods in Figure 7.6 was similar, only the 
fraction based interpolation method was used in the validation of the control algorithm. 
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8 
Implementation of Control Design 

 
 
 
 
 
 
 
 
 
 
 
This chapter gives a deep presentation of the model based control design. All control 
designs in this chapter use a fourth order subspace model created from “Data sequence 
1” for both the controller and the engine model.  
 
 
8.1 Control algorithm  
 
A model based LQG-control design has been chosen in order to control the diesel 
engine. The choice was made since this type of linear controller can handle MIMO 
systems including cross coupling effects between the control signals and the outputs, 
see Section 4.1. This control design requires that all system states are known and 
therefore, a Kalman filter was implemented in order to predict the unknown states. The 
controller was also improved with additional integral action and feed forward of the 
“Speed” and “Torque” signals. Finally, the feed forward path was slightly slowed down 
using time constants in order to give smoother control signals. 
 
 
8.1.1 Kalman filter design 
 
Each model created from the data sequences contains more states than system outputs 
and therefore, an observer had to be implemented in order to predict the states. The 
identified systems were observable. An optimal Kalman filter was used for the state 
prediction, see Section 4.2. The adjustable parameters in the R1 matrix were chosen to 
be smaller than the parameters in the R2 matrix, because measurement noise was 
expected to be larger than process disturbances from the engine. An assumption was 
made that no cross correlation between measurement noise and process disturbances 
existed, and therefore the matrix R12 was chosen to be zero. Since each model includes 
the input signals “Speed” and “Torque” in addition to the control signals, these signals 
had to be treated as measurable disturbances by the Kalman filter. If not, it would have 
been impossible to predict the states that depend on “Speed” and “Torque” correctly. 
See Figure 8.1 for a comparison between actual states and predicted states for a fourth 
order subspace model. 
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Figure 8.1: Visualization of all states for a fourth order subspace model together with 

the Kalman predicted states. 
 
Figure 8.1 shows that the actual state curves are totally covered by the curves for the 
predicted states, therefore it is concluded that the observer works properly. In order to 
make sure that no mismatch in time delay has occurred, a zoomed part of the curves for 
“State 1” is visualized in the subplot to the right. The state prediction has also been 
tested with a disturbance added to the output signals. This resulted as expected in a 
slightly worse state prediction, but the Kalman filter adjusted the states in the correct 
direction, see Figure 8.2. The subplot to the right shows that no time delay exists 
between the predicted states and the actual states. 
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Figure 8.2: Visualization of all states for a fourth order subspace model, together with 

states predicted from noisy output signals. 
 
The noise signal used in Figure 8.2 is normal distributed with zero mean and standard 
deviation equal to one. The output signals have different noise signals, but the same 
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distribution. The Kalman parameters used in this simulation were 
IR 2.01 = and IR 5.02 = .  

 
 
8.1.2 Implementation of basic LQG-control 
 
The requirements for calculating the optimal gain matrix were fulfilled, since the matrix 
(A,B) was found to be stabilizable and the matrix (A,Q) was detectable. The weight 
parameters on the control signals were adjusted in order to receive a proper control 
signal contribution from the feedback. The goal was to approximately give the feedback 
the same order of magnitude as the contribution from the reference signals. However, 
without both additional integral action and feed forward of “Speed” and “Torque”, the 
requested output signals could not be followed correctly, see Figure 8.3. 
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Figure 8.3: Output responses from steps in the reference signals for LQG-control of 

“Model 1”. 
 
In Figure 8.3 it is clearly visible that the control signals have very non physical levels 
since feed forward of “Speed” and “Torque” is missing. Though, it is also clear that the 
controller works properly, since it reacts in the correct direction when steps are applied 
in the reference signals.  
 
 
8.1.3 Stability margins of the closed loop system 
 
All models created from the data sequences were already found to be stable. The 
stability margins of each control setup were examined by calculating all poles for the 
closed loop system. The simulations confirmed that all poles were located within the 
unit circle, but not with too significant margins, see Figure 8.4. 
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Figure 8.4: Poles in the closed loop system for a fourth order subspace model. 

 
 
8.1.4 Implementation of additional integral action  
 
In order to reach the desired reference signals, additional integral action was 
implemented. As the models have two control signals, two integral states were 
necessary to add. The increased amount of states required that the optimal gain matrix 
was increased with as many columns as added states. The new columns could not be 
chosen arbitrarily due to the cross coupling effects on the outputs from the control 
signals. Instead, the optimal gain matrix had to be recalculated for the increased number 
of states, in order to receive the new columns. The new optimal gain matrix could either 
be used directly, or the new columns could be extracted and inserted in the previous 
optimal gain matrix. This thesis includes both methods, but focuses on the second 
method. Implementing additional integral action using the second method required two 
different R and Q matrices with adjustable parameters. The matrices used without 
integral states are denoted as RNoInt and QNoInt and the matrices used with integral states 
included are denoted R and Q.  
 
The stationary errors in Figure 8.3 are very large and therefore a strong control signal 
contribution from the integral states was needed. Though, too much integral action 
made the closed loop system unstable. The contribution was adjusted by changing the 
relevant parameters in the Q matrix. Figure 8.5 shows the result from additional integral 
action applied to the controller described in 8.1.2. 
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Figure 8.5: Output responses from steps in the reference signals for LQG-control of 

“Model 1” with additional integral action. 
 
The controller used in Figure 8.5 can follow the reference signals, but the closed loop 
system is close to unstable. It is also clear that the controller is slow, since the integral 
action has to compensate for very large stationary errors. The settling time after each 
step in the reference signals arises because of the high strength of the integral action. 
 
 
8.1.5 Implementation of feed forward  
 
In order to increase the control speed, feed forward of “Speed” and “Torque” was 
implemented. Both “Speed” and “Torque” are constant in the models, except for 
disturbances such as measurement noise and different process disturbances. The 
dynamics of the disturbances could not be inverted, since zeros outside the unit circle 
were discovered in the transfer function from “Speed” and “Torque” to “EGR content” 
and “Boost pressure”, see Section 6.2.2. Therefore, feed forward was implemented as a 
static gain matrix, denoted Lff. 
 
As the same model is used for both the controller and the engine in Figure 8.6, the 
stationary result is zero without any use of integral action. Integral action is 
implemented anyway, since it will take care of stationary errors which might occur if 
the engine model is replaced by either a real engine or non perfect model. The slow rise 
and fall times in “Boost pressure” originate from the physics of the real engine.  
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Figure 8.6: Output responses from steps in the reference signals for LQG-control of 

“Model 1” with feed forward and additional integral action. 
 

 
8.1.6 Implementation of time constants in the feed forward of the 

reference signals 
 
A feed forward transfer function that consists of only a static gain matrix made the 
control signals react instantly for a change in the reference signals. The instant response 
was not wanted, since it gave rise to a very bumpy behaviour of the control signals. Due 
to the engine dynamics, this behaviour was totally unnecessary since the control signals 
do not need to change faster than the engine can react. Therefore, time constants were 
estimated and implemented as filters on the control signal contribution from the feed 
forward of the reference signals. The time constants were found from step responses in 
“EGR content” and “Boost pressure” in the open loop system, see Figure 8.7. 
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Figure 8.7: Step responses from “Model 1” for estimating time constants. 
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The time constants were calculated in MATLAB as the time from a step in either “VGT” 
or “EGR” occurred to the 63 percent level in the output signals was reached. The 
calculated result is presented in Table 8.1. 
 

 VGT to EGR 
content 

VGT to Boost 
pressure 

EGR to EGR 
content 

EGR to Boost 
pressure 

Time constant [s] 0,1075 0,97 0,0875 0,93 
 

Table 8.1: Time constants from control signals to output signals for “Model 1”. 
 
All time constants in Table 8.1 were implemented in SIMULINK as digital filters. Which 
time constant that currently should be used was determined by a trigger circuit that 
located changes in the reference signals. The trigger signal controlled a switch that 
routed the feed forward signal through the correct filter. The resulting step responses 
and control signals is visualized in Figure 8.8. 
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Figure 8.8: Output responses from steps in the reference signals for LQG-control of 

“Model 1” with delayed feed forward and additional integral action. 
 

A comparison between Figure 8.6 and Figure 8.8 reveals that the control system has 
become slightly slower due to the time constants, but in return the new behaviour of the 
control signals is significantly smoother. The reason for the slower behaviour in “EGR 
content” 50 seconds from start, is that the slower time constant is automatically chosen 
when both reference signals change at one instant. 
 
 
8.2 Interpolation strategy between control models 
 
The control system consists of an arbitrary number of small model based linear 
controllers; each created using the methods in Section 8.1. As the control system was 
supposed to switch between different controllers, it was obvious that an interpolation 
strategy was essential. Directly switching between different controllers resulted in a 
bumpy behavior, since the control signals from different controllers differ too much at 
the same time instant. Validations of the interpolation strategies are found in Chapter 9. 
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8.2.1 Time based interpolation method 
 
To smoothly go from one controller to another, a time based interpolation strategy was 
developed. A look-up table with VGT on the x-axis and EGR on the y-axis was used in 
order to decide the preferred model to use by the controller at all time instants. A 
memory circuit was used in order to remember the previous model when the demand 
model changed. Changes in the demand signal did also trig an interpolation between the 
demanded model output signals and the previous model outputs. The interpolation 
lasted for a fixed amount of time. In order to prevent bumps, the interpolation method 
was not allowed to switch control model before the previous interpolation was finished. 
Therefore, the actual model might not always be equal to the demanded model. 
 
To prevent wind-up of the integral states, the control error signals to the integral action 
were linearly weighted during the interpolation process. The weight for one model was 
equal to one when only that model was used, and zero when purely the other model was 
used. The integral states were adjusted to zero in all control models when their 
corresponding weight was zero.  
 
 
8.2.2 Fraction based interpolation method 
 
The fraction based interpolation strategy was such that up to four different controllers 
could operate at the same time. In the interpolation strategy for the combined engine 
model, the four models were chosen from the control signals. This method was not 
preferable in the controller interpolation strategy, since it resulted in an algebraic loop. 
In order to prevent this loop, the control signals had to be delayed, which resulted in 
oscillations in the closed loop system. Therefore, the controllers currently in use were 
chosen to depend on the reference signals instead and the operating point in “Speed” 
and “Torque”. 
 
To find out which controllers to currently use, one table was created in MATLAB for 
each combination of “Speed” and “Torque” with “EGR content” on the x-axis and 
“Boost pressure” on the y-axis. Only one table was required, since this thesis focuses on 
just one combination of “Speed” and “Torque”. The table was built from quadrates with 
controller numbers in the same way as for the combined engine model, see Section 7.1. 
In order to prevent wind-up of the integral states, the control error signals to the integral 
action were always weighted with the model weights. Adjustment of the integral states 
in all control models that were not currently in use was made in the same way as for the 
time based interpolation method. 
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9 
Validation of Control Algorithm using 

the Combined Engine Model 
 
 
 
 
 
 
 
 
 
 
 
In this chapter a validation of the control design using the combined engine model is 
presented. All simulations in this chapter have been performed with the same reference 
sequence. The sequence was such that the reference signals have been varied within the 
operating regions of the combined engine in both step changes and ramps. The speed 
signal was kept constant at 1200 rpm and the torque was 1500 Nm. In all simulations, 
the combined engine model used the fraction based interpolation strategy. No merged 
models were used as engine models. All the validated models are described by fourth 
order subspace estimates. 
 
 
9.1 Interpolation strategies for control models 
 
To know whether the control interpolation strategies in Section 8.2 are satisfactory, 
verification of these methods was essential. Therefore, different validations have been 
performed with control models estimated from the four data sequences described in 
Table 6.1. Also, validations have been done with models estimated from merged data 
sequences. The sequences used for this purpose are presented in Table 9.1.  
 

 Model 5 Model 6 
Original data 
sequences 1, 3 1, 2, 3, 4 

Speed [rpm] 1200 1200 
Torque [Nm] 1500 1500 
VGT range [%] 40-50 40-50 
EGR range [%] 50-60 50-70 

 
Table 9.1: Measurement data used for model estimation. 

 
In Figure 9.1 only “Control model 1” has been used for simulation. The figure verifies 
that the control of the two reference signals could work better. In particular, the control 
of ”Boost pressure” is not fulfilled. The same conclusions are made from similar figures 
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with the other three control models. Results from these simulations are found in 
Appendix B.  
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Figure 9.1: LQG-controller with feed forward, only “Model 1” is used in simulation. 

 
 
9.1.1 Time based interpolation method 
 
Figure 9.2 shows the output signals and the control signals from an LQG-controller with 
feed forward of “Speed” and “Torque”. The time based interpolation method described 
in Section 8.2.1 was used in order to gain a smooth switching between the controllers. 
Figure 9.3 shows the control models used in the simulation and Figure 9.4 shows the 
engine models used. 
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Figure 9.2: LQG-controller with feed forward and time based interpolation. 

 
In Figure 9.2, it is clearly visible that both “EGR content” and “Boost pressure” follows 
the reference signals better than in the simulation without any interpolation. Though, 
especially “Boost pressure” is slower due to the time interpolation. 
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Figure 9.3: Control models used in simulation for an LQG-controller with feed forward 

and time based interpolation. 
 

The demanded signal in Figure 9.3 represents the preferred control model to use in that 
specific operating region. The actual signal represents the models used by the control 
algorithm. As seen in the figure, the demanded signal is not always the same as the 
actual one. The reason for this is that the time based interpolation strategy prevents a 
switch of control model before the previous interpolation is finished. 
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Figure 9.4: Engine models used in simulation for an LQG-controller with feed forward 

and time based interpolation.  
 
In Figure 9.4 the engine models used for the simulation are shown. The four subplots 
represent the corners in the quadrate described in Section 7.1.1. In each subplot, the 
current engine model for that specific corner is showed and also the fraction which 
describes how much of that model that is used for interpolation. 
 
 
9.1.2 Fraction based interpolation method 
 
In Figure 9.5 the output and the control signals from an LQG-controller with feed 
forward of “Speed” and “Torque” is seen. The interpolation control strategy uses all 
four individual state-space models. The control models used during simulation are 
visualized in Figure 9.6 and the different engine models are shown in Figure 9.7.  
 
An acceptable output as a result of the control interpolation approach is verified in 
Figure 9.5. The gain of the control strategy, which means usage of different control 
models for different operating regions, is clearly seen. The control signals appear to be 
smooth except for the spikes in the “EGR” signal. These spikes are thus identified to be 
a result of the output from the engine models. In Figure 7.5, an overshoot is seen after 
10 s for all four models. This is due to the same phenomena as the one that occur in this 
simulation. The resulting overshoot from the engine models in “EGR content” affects 
the control in such way that spikes occur in the “EGR” signal.   
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Figure 9.5: LQG-controller with feed forward and fraction based interpolation.  
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Figure 9.6: Control models used in simulation for an LQG-controller with feed forward 

and fraction based interpolation. 
 
In Figure 9.6, the four subplots represent the corners in the model quadrate for the 
control models. The reference signals have been chosen in such way that the 
interpolation strategy for the control models operated at the boundary of the model 
quadrate, in the upper left corner. Therefore, the weights of the other corners are equal 
to zero in steady state operation. 



 
54 

0 50 100 150 200 250 300 350
0

2

4

 

 
Fraction
Model

0 50 100 150 200 250 300 350
0

2

4

   
En

gi
ne

 m
od

el
 n

um
be

r

 

 
Fraction
Model

0 50 100 150 200 250 300 350
0

2

4

En
gi

ne
 m

od
el

 fr
ac

tio
n,

 

 
Fraction
Model

0 50 100 150 200 250 300 350
0

2

4

Time [s]

 

 
Fraction
Model

 
Figure 9.7: Engine models used in simulation for an LQG-controller with feed forward 

and fraction based interpolation.  
  

The engine models used for the simulation are seen in Figure 9.7. This figure is almost 
the same as Figure 9.4, which is natural since the same reference signals are used in 
both simulations. The reason why they are not identical is because the “VGT” and 
“EGR” signals differ, due to different control strategies.  
 
As the engine models are chosen from a slightly different strategy than the control 
models, Figure 9.6 and Figure 9.7 are different from each other. Which control model 
that is chosen depends on the reference signals, while the choice of engine model 
depends on the “VGT” and “EGR” signals. 
 
 
9.2 Validation of merged control models 
 
An effort to merge the two most suitable data sequences, “Data sequence 1” and “Data 
sequence 3”, and estimate a merged model from the data sets has been made. The 
merged model is called “Model 5”. A verification of the merging strategy is presented 
in Figure 9.8. The fraction based interpolation strategy is used for all simulations in 
Section 9.2 to Section 9.4, since this approach resulted in significantly better control. 
 



 
55

0 50 100 150 200 250 300 350
0

5

10

15

EG
R 

co
nt

en
t [

%
]

 

 
Actual
Demanded

0 50 100 150 200 250 300 350
230

240

250

260

Bo
os

t p
re

ss
ur

e 
[k

Pa
]

 

 
Actual
Demanded

0 50 100 150 200 250 300 350
30

40

50

60

V
G

T 
[%

]

0 50 100 150 200 250 300 350
40

60

80

EG
R 

[%
]

Time [s]  
Figure 9.8: LQG-controller with feed forward and fraction based interpolation; 

“Model 2”, “Model 4” and “Model 5” are used in simulation.   
 
Figure 9.8 shows that the control signals are in acceptable ranges and have an 
acceptable behaviour. The plot of the output signals also verifies a smooth behaviour. 
The reason for the larger model errors shown in this figure compared to Figure 9.5 is 
because the control models for the two simulations differ. The control models used for 
the simulation in Figure 9.8 are shown in Figure 9.9. 
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Figure 9.9: Control models used in simulation for an LQG-controller with feed forward 

and fraction based interpolation. 
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In Figure 9.9 it is seen that the merged model estimated from “Data sequence 1” and 
“Data sequence 3” has been used for the periods where the larger model errors are 
observed. It is clear that “Model 5” does not capture the engine dynamics as good as 
“Model 1” and “Model 3” does when they are used instead.    
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Figure 9.10: Engine models used in simulation for an LQG-controller with feed 

forward and fraction based interpolation.  
 
Figure 9.10 shows the engine models used for the simulation in Figure 9.8. It is seen 
that the used engine models differ slightly from the simulation with no merged control 
models in Figure 9.7.  
 
An attempt to merge all four data sequences and estimate one model from these data has 
been made. The estimate is named “Model 6”. The output result from simulation with 
an LQG-controller with feed forward of “Speed” and “Torque” is seen in Figure 9.11. 



 
57

0 50 100 150 200 250 300 350
0

5

10

15

EG
R 

co
nt

en
t [

%
]

 

 
Actual
Demanded

0 50 100 150 200 250 300 350
230

240

250

260

Bo
os

t p
re

ss
ur

e 
[k

Pa
]

 

 
Actual
Demanded

0 50 100 150 200 250 300 350
30

40

50

60

V
G

T 
[%

]

0 50 100 150 200 250 300 350
40

60

80

EG
R 

[%
]

Time [s]  
Figure 9.11: LQG-controller with feed forward and fraction based interpolation; 

“Model 6” is used in simulation.   
 
The figure shows reasonably good behaviour for the output signals and the control 
signals. ”EGR content” follows the reference signal better than “Boost pressure” does.  
 
 
9.3 LQG-control with feed forward 
 
The best results from simulations using a design consisting of an LQG-controller with 
feed forward of “Speed” and “Torque” are presented in Figure 9.5. Control models and 
engine models used in this simulation are shown in Figure 9.6 and Figure 9.7. The LQ-
parameters used are IQ = and IR 210−= . In Figure 9.5 it is possible to see that the 
control of “EGR content” is reasonably good. The reference signal “Boost pressure” 
appears not to be followed quite as well though. One reason for this is that the dynamics 
of a change in the boost pressure is relatively slow in reality. Therefore, the result from 
the simulation might seem worse than it actually is. The dynamics of “EGR content” is 
rather fast and hence, the reference signal seems to be followed quite well.  
 
The reason why the controlled signals do not reach their reference values at all times is 
a consequence of the control design. The controller used for this simulation does not 
compensate for remaining errors. Thus, it is obvious that the reference values are not 
reached if the control models are not completely perfect.  
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9.4 LQG-control with feed forward and additional  
integral action 

 
In this section the complete control design described in this master thesis is validated. 
The results from simulation presented in Figure 9.12 are obtained for an LQG-controller 
with feed forward of “Speed” and “Torque” and additional integral action. The LQ-
parameters used for the control design are found in (9.1). 
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Figure 9.12 shows that the reference signals are followed quite well, especially “EGR 
content” seems to be at a good level most of the time. “Boost pressure” seems to have 
greater overshoots and the reference is not always followed. It is important to keep in 
mind that the relative overshoots are not huge compared to the changes in the reference 
signals. The overshoots are a result of the integral action. When the control signal 
contribution from the additional integral action is increased, the trade off is a greater 
overshoot. Both control signals are at acceptable levels and have a smooth behavior.  
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Figure 9.12: Simulation using an LQG-controller with feed forward, additional integral 

action and fraction based interpolation. 
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Figure 9.13: Control models used in simulation for an LQG-controller with feed 

forward, additional integral action and fraction based interpolation.  
 
In Figure 9.13 the control models for the simulation are shown. This figure is very 
similar to Figure 9.6. The few differences that can be observed are a result of the 
additional integral action.  
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Figure 9.14: Engine models used in simulation for an LQG-controller with feed 

forward, additional integral action and fraction based interpolation.  
 



 
60 

Figure 9.14 presents the engine models used for the simulation. A comparison between 
this figure and Figure 9.7 confirms that the two figures are different. The differences in 
engine models are due to slightly different control signals used for the two simulations. 
This is thus a result of the additional integral action. 
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10 
Discussion 

 
 
 
 
 
 
 
 
 
 
 
This chapter includes a discussion about the working procedure and the results 
presented in this master thesis. Some suggestions for future work are also given. 
 
 
10.1   Measurements and modeling 
 
Since the focus of this master thesis was to design a control method using linear state-
space models, satisfactory measurement data was crucial. Due to various software 
problems with some engine functions, parts of the data had to be measured twice in the 
engine test cell. Another problem with the measurement data was that bumps were 
located in the measured “VGT” signal, which is seen in Figure 6.10 and Figure 6.11. 
This was first discovered after implementing the estimated models in the combined 
engine model. In the figures it is seen that the bumps impact the estimation of the output 
signals, especially the “EGR content”. This unwanted behaviour could much so have 
impacted the output results of the control validation. Unfortunately, limitations of time 
and test cell availability did not allow these extra measurements to be done. 
 
As the control system was never tested on a real engine, it was hard to determine if the 
measured data included all relevant dynamics from the engine. If the engine test 
sequences would have been longer, the chance to include as much dynamics as 
necessary would have been better. On the other hand, longer test sequences require 
more time in an engine test cell, which was not available. It might also have been better 
to use only one determined randomized sequence for the time delays when jumps in the 
“VGT” and “EGR” signals occur. This sequence should have been examined thoroughly 
in order to make sure that all different transient combinations occur. 
 
No dynamics in speed or torque have been captured during the measurements except for 
disturbances. As these signals were kept constant during the measurements, it might 
have been better not to include them as input signals in the models. If models with 
different operating regions in speed or torque, or both, are to be merged, transient 
dynamics in these signals need to be measured. This was unfortunately not considered at 
the time for the data collection.  
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Merging models with satisfactory result was much harder than expected. A merge of 
models with slightly different dynamics resulted in poor reproduction of the measured 
engine output signals. In order to merge models with different speed and/or torque, 
dynamics for these signals is necessary. It would probably also be required to measure 
data for more than just six combinations of speed and torque due to nonlinearities. 
 
 
10.2   The Combined engine model 
 
At start for this project all parts involved believed that there was a proper engine model 
at hand for simulation matters. However, this was to be a great issue later on in the 
project. In order to thoroughly evaluate the state-space models described in Chapter 6, 
the realization was that the control design had to be implemented in SIMULINK. To 
achieve this, a proper engine model was necessary. When reaching this far in the 
process it was obvious that no proper engine model was available at this stage. A 
physical engine model was about to be designed, but it was not yet calibrated for the 
same type of engine used when collecting data from the real test cell. Also, the model in 
itself was not verified or tested and it came clear that it had some issues to be dealt with, 
before it could be applied in any work at all.  
 
In order to move forward with the project, the decision was made to use system 
identification as a tool for designing an engine model. However, this was to be a huge 
limitation of the future process. The operating region of the engine was dramatically 
minimized and therefore the state-space models could never be fully validated. In order 
to do a better validation, several more measurements from an engine test cell would 
have been necessary.  
 
The simple time interpolation method presented in Section 8.2.1 for the control design, 
was never applied to the combined engine model. The reasons for this were both lack of 
time and also that this method was already validated in the control algorithm, where it 
caused significantly worse result than the fraction based interpolation method. Using the 
time and fraction based interpolation method gave rise to slightly better results than the 
fraction based interpolation method. Though, dual interpolation methods require 
significantly more computer power and therefore, the enhancement was probably not 
beneficial and was never tested in the combined engine model. 
 
 
10.3   Control design 
 
An LQG-controller was chosen in order to control the combined engine. Of course, 
there are other linear multivariable model based controllers available. Though, two 
separate one dimensional controllers would not have been able to follow the reference 
signals, due to large cross coupling effects on the outputs from the control signals. 
 
When implementing additional integral action in the control algorithm, direct use of the 
new optimal gain matrix resulted in very large control signal contributions from the 
integral action. This problem could probably have been solved by adjusting the 
parameters in the R and Q matrices, something which was not done. Instead, the method 
described in Section 8.1.4 was used and it gave a better result with less time spent, since 
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the parameters regarding additional integral action could be adjusted independently of 
the rest of the control system. 
 
Other interpolation methods than described in Section 8.2, such as polynomial 
interpolation for instance, are of course available. Though, the intended regions were 
considered small enough for linear interpolation to be sufficient. 
 
 
10.4   Validation of control algorithm on engine model 
 
From Section 8.1.2, it was obvious that feed forward of “Speed” and “Torque” was 
required in order to follow the reference signals sufficiently well. Though, it is not that 
obvious that additional integral action is desired for control of a real engine. It did 
improve the controller, but the result was not significantly better than with just feed 
forward of “Speed” and “Torque”. Additional integral action requires slightly more 
computer power due to calculation of the integral states. However, if the integral action 
is not implemented, stationary errors might not be handled. Stationary errors will for 
example occur due to dissimilarities between the models and the real engine. A merge 
of many models will probably also result in bad control due to model errors, if integral 
action is missing. 
 
When both additional integral action and feed forward of speed and torque were used in 
the control algorithm, some spikes were still left in the output signals, see Figure 9.12. 
This behavior was found to originate from the engine model, and it was not caused by 
the engine interpolation strategy. Since the control algorithm have not been validated on 
a real engine, it was hard to know if this behavior was to be expected or not.  
 
The time and fraction based interpolation method described in Section 7.1.2, could 
probably have been applied to the control system as well. It was thus never tried in this 
thesis work, mainly due to lack of time. If this method was to be implemented, anti-
wind-up of the additional integral action during time interpolation would probably have 
been needed. 
 
 
10.5   Future work 
 
In order to proceed with the multidimensional model based control of air and EGR into 
a diesel engine, designing a proper engine model is essential. Otherwise, the only way 
of fully validating the control algorithm is applying it to the real engine. 
 
New measurements in the engine test cell, including speed and torque dynamics, are 
crucial in order to increase the operating region for the control system. This would 
probably allow models from different speed and/or torque regions to be merged with 
satisfactory result. Better designed test sequences for the jumps in the VGT and EGR 
valve positions are preferred, in order to make sure that all dynamics will be caught. 
 
An LQ-controller is one of many multidimensional controllers. Other model based 
controllers might also be tested and compared to the LQ-controller. Since both control 
signals have nonlinear influence on the output signals, a nonlinear model and a 
nonlinear controller could probably provide good results. 
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11 
Conclusions 

 
 
 
 
 
 
 
 
 
 
 
The VGT and EGR actuators can be controlled using a model based control design, 
consisting of several linear controllers. As the VGT and the EGR valve both have very 
non linear physics, a huge amount of linear models was needed in order to give a good 
representation of the engine. Though, no proper engine model was available for 
validation and therefore, only a small part of the working region was examined. 
Measured data from experiments in the engine test cell was satisfactory for the small 
operating region. If the operating region is to be enlarged, new data including variations 
in speed and/or torque is essential. Linear subspace models of order four were 
considered to be the best choice. Merging of models could be done with satisfactory 
result if the models had similar dynamics. However, merging of models with different 
dynamics resulted in bad representation of the real engine. 
  
To control the engine model, a multivariable LQG controller with additional feed 
forward of “Speed” and “Torque” was required before any satisfactory results were 
achieved. This control system was sufficient as long as no model errors were 
introduced. If the controller used a model that differed significantly from the engine 
model, additional integral action was required in order to compensate for stationary 
errors. Model errors occurred during interpolation between different models in the 
controller and in the combined engine model, since different fraction based interpolation 
methods were used. Fraction based interpolation methods were considered to be the best 
choice for both the combined engine model and for the control strategy. 
 
The LQG-controller gave the best results of the control of the combined engine model 
when both feed forward of speed and torque and additional integral action was 
implemented. The control of the combined engine model was considered to be 
satisfactory for this control setup, especially when the control models were created from 
single data sequences. Though, merging two similar models resulted in sufficiently 
good control. Merging of all four investigated models resulted in significantly worse 
control, since the model dynamics differed too much. In order to compensate for these 
model errors, a stronger integral action would have been required. Thus, this was hard 
to achieve, since stronger integral action resulted in oscillations. 
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A 
System Identification Validation 

 
 
  
 
 
 
 
 
 
 
 
In this appendix results from the system identification validation is found.   
 
 
A.1 Different orders of ARX models 
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Figure A.1: ARX model with 6 states, (na,nb,nk) = (1,1,1), compared with data from 

measurements. 
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Figure A.2: ARX model with 12 states, (na,nb,nk) = (2,2,1), compared with data from 

measurements. 
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Figure A.3: ARX model with 20 states, (na,nb,nk) = (4,3,1), compared with data from 

measurements. 
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A.2 Pole zero visualization 
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Figure A.4: Pole-zero visualization of the transfer function from ”Speed” and 

“Torque” to ”EGR content” and ”Boost pressure” for an ARX model of order (2,2,1). 
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Figure A.5: Pole-zero visualization of the transfer function from ”VGT” and “EGR” to 

”EGR content” and ”Boost pressure” for an ARX model of order (2,2,1). 
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A.3 Residual analysis 
 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

-0.1

0

0.1

0.2

Time lag [s]

Cr
os

s c
or

re
la

tio
n

 

 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

-0.1

0

0.1

0.2

Time lag [s]

Cr
os

s c
or

re
la

tio
n

 

 

99% confidence interval
Cross correlation between Speed and residuals from Burned fraction

99% confidence interval
Cross correlation between Torque and residuals from Burned fraction

 
Figure A.6: Cross correlation functions between ”Speed” and “Torque” inputs and 

residuals from ”EGR content” for a fourth order subspace model. 
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Figure A.7: Cross correlation functions between ”Speed” and “Torque” inputs and 

residuals from ”Boost pressure” for a fourth order subspace model. 
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A.4 Merging of models 
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Figure A.8: Bode diagram of the transfer function from ”Speed” to ”EGR content” 
(left) and ”Boost pressure” (right). The plots are for outputs from “Model 1” and 

“Model 3”, together with a merged model, for fourth order estimates. 
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Figure A.9: Bode diagram of the transfer function from “Torque” to ”EGR content” 

(left) and ”Boost pressure” (right). The plots are for outputs from “Model 1” and 
“Model 3”, together with a merged model, for fourth order estimates. 
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B 
Control design validation 

 
 
 
 
 
 
 
 
 
 
 
Results from the validation of the control design, using the combined engine model, are 
found in this appendix. The simulations are done for an LQG-controller with feed 
forward. 
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Figure B.1: LQG-controller with feed forward, only “Model 2” is used in simulation. 
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Figure B.2: LQG-controller with feed forward, only “Model 3” is used in simulation. 
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Figure B.3: LQG-controller with feed forward, only “Model 1” is used in simulation. 

 


