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Abstract
Creep groan is a friction induced, low frequency instability problem that occurs
in automotive brakes at low speeds, such as when the car is moving from, or to a
complete stop. The vibration that is generated at the disc interface pollutes the car’s
interior and exterior space with unwanted noise that can be correlated with customer
dissatisfaction and attrition. To this end, this thesis is involved with developing a
computer model for accurate simulations of creep groan, by the prospect of virtual
testing and brake NVH verification. Creep groan measurements were conducted on
an experimental brake system rig in a laboratory environment which in addition to
vibration behaviour, also allowed for the retrieval of various operation parameters.
A multi-body model was then developed in ADAMS software using rigid and flexible
geometries. A regularized friction description is used to model the contact dynamics.
From analysing numeric and analytic solutions it could be demonstrated that the
computer models predictions were largely consistent with the measured vibrations
in terms of stick-slip, excited modes and overall spectral content.

Keywords: Automotive brake NVH, creep groan, stick-slip instability, ADAMS
modelling, friction regularization, numerical integration
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1
Introduction

Over the past decades, problems involving noise and vibration generated from the
brake system has become recognised as a steadily growing concern in the automotive
industry. These issues do not necessarily regard to vehicle safety, but of the cost
associated with customer complaints and warranty claims emanating from inade-
quate acoustic comfort and over-all driving impression. From a study in 2001, it
was suggested that warranty claims in the brake NVH category generates annual
costs of up to $1 billion US dollars[3] in North America alone. And today, given
the rising sales in automotives and ever-increasing customer expectations; warranty
related costs can be expected to be higher than ever to manufacturers.
The brake system is a critical component to a vehicles safety and performance.

Take in consideration its immediate component parts are numerous, the range of
braking conditions under which it operates and the large amounts of energy that
transmits on account of friction upon braking. It’s not difficult to understand that,
in effect, the brake become a kaleidoscope of sound and vibroacoustic phenomena.
Conceding that it’s impossible to categorise all sounds that may be produced, there
are some noise and vibration occurrences that are especially annoying and frequent-
ing in brake systems. These are the collectively labeled brake noises, all of which
associated with some unique triggering mechanism and/or psychoacoustic charac-
teristic.
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Figure 1.1: Brake noises by triggering mechanism and approx. annoyance rating.
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1. Introduction

1.1 Purpose and background

NVH verification of brakes have traditionally been based on physical prototyping,
however, today at VCC there is a strong drive to increase the virtual verification
capability for the brake functions in order to shorten the development time and
cost. In that spirit, this thesis is concerned with modelling creep groan, which is a
particular low frequency instability phenomenon occurring in automotive brakes.
Creep groan generally occurs as the brakes are activated and the vehicle is driving

at low speeds, such as when moving from, or to a complete stop. It involves stick-
slip phenomenon at the pad/disc interface and the resulting noise and vibration
highly influences the driver’s quality perception of the vehicle. Optimizing brake
and suspension designs to eliminate creep groan has been a persistent problem to
NVH engineers: Though some control factors have been identified, no non-interfering
and/or definitive design solutions have been found to date.

1.2 Aim

The aim of the project can be condensed to three main parts:

1. Design a experiment that produce creep groan in a lab environment

2. Develop a computer model to simulate the experiment

3. Validate and calibrate the simulations toward the experiment results

1.3 Limitations and assumptions

To gain accurate predictions by means of computer modelling and simulation re-
quires a large body of experimental data. Beyond measuring the vibrations upon
operation, there is a need to know various parameters that assisted to generate these
particular vibrations (as to reduce time spent on calibration and avoid guess-work).
In the main experiment for this thesis, some of these parameters could be obtained
directly using transducers, such as measuring instantaneous braking pressure, while
others are much more complex to obtain experimentally, given the equipments at
hand, time constraints, etc. And so, for some input parameters there is a need
for using nominal, calculated or estimated values when creating simulations. This
mainly concern operation values of bushings and the contact interface.
The other important aspect are the approaches on how to implement these values

into the computer model. For the purpose of this thesis, one assumption is that
damping does not need to be modelled with a frequency dependence given the low
frequency nature of creep groan. As for contact dynamics, Amonton’s laws of dry
friction with a regularization approach is used. The friction model will not include
a nonholonomic constraints for regime transitions.

2



1. Introduction

1.4 Outline of the report
The report provides a near-chronological narration of the entire project from start to
finish. The theory in Chapter 2 is committed to creep groan, leaving other theoret-
ical notions related with modelling, analysis, etc., to be introduced throughout the
report. Chapter 3 focuses on the implementation and functions of the experimental
rig while Chapter 4 display and analyse the results produced from the measure-
ments. The chapters 4 and 5 are related to the model development and simulation
evaluation.
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2
Friction-vibration interaction

For all dynamic mechanical systems, vibrations are developed between sliding sur-
faces by account of friction. The physical aspects of friction cover a wide range of
lengths and time scale[3]. At the microscopic level, friction acts to transfer kinetic
energy to thermal energy through subatomic interaction. On the other hand, at
macroscopic level, friction imposed on one subsystem will act to translate kinetic
energy and set other neighbouring bodies to motion.
For particular setups, the friction and the vibration it develop interacts and create

feedback loops that trigger oscillations in various unsteady and non-ergodic man-
ners. That is friction-vibration interaction, or, friction-excited vibrations, and an
array of acoustic phenomena are postulated to arise on this basis, including creep
groan. Additional examples are snow squelching underfoot, whiteboards squeaking,
creaking door hinges, brake squeal, rail-wheel noises and earthquakes[3],[11].

2.1 Theoretical background
The main concepts underlying creep groan are introduced in this section.

2.1.1 Friction and contact dynamics
Friction is a resistance force that act on an object as it slides along a surface or move
through a fluid. The friction coefficient, µ, is a dimensionless scalar that describes
a relation between two perpendicular forces

µ = Ff

Fn
, (2.1)

where Fn is the normal force, and Ff is the resulting friction force. The friction
coefficient at an interface is subject to change on account of an array of properties
that may vary over time, including, but not limited to: relative velocity, humidity,
temperature, deformation, and wear[15],[9]. An axiomatic derivation of friction is thus
impractical; all-encompassing analytical friction models do not exist and in lieu of
which, available friction models are established by phenomenological, or empirical
means[7]. In the following, we are considering a reduced friction model based on
Amontons’ laws of dry friction[4],[8] with a dependency on relative velocity:

1. The force of friction is directly proportional to the applied load. (Amontons’
1st Law)

4



2. Friction-vibration interaction

2. The force of friction is independent of the apparent area of contact. (Amon-
tons’ 2nd Law)

3. Kinetic friction is independent of the sliding velocity. (Coulomb’s Law)
It should be stressed how these laws only handle a narrow perspective of the ex-
tremely complicated nature of interface friction. They are constructs, helpful by
their approximation and simplicity in a limited range of conditions. For example,
in cases where adhesion is significant (e.g., sticky-tape, car tyres, etc.), Amontons
2nd law fails as contact area cannot be neglected.
On the topic of friction-vibration interaction, mainly two approaches are used

for modelling friction in literature. They are the regularization approach1 and the
non-smooth approach. These approaches offer different ways of mathematically de-
scribing the discontinuities of friction regimes and come with different strengths and
weaknesses.
A regularized friction law writes friction as a smooth function of relative velocity

(vrel), which allows for expressing the dynamic system in terms of some ordinary
differential equation (ODE). However, solving the resulting differential equation
analytically is not possible because of nonlinearities in friction forces, and calculating
the motion numerically is computationally ineffective as it requires integration of
extremely small timescale as owed by the ODE being stiff (numerically unstable).
The qualitative downsides with regularizing friction is that position and velocities
are smooth and in turn produce small, false, oscillations that may cause initial value
problems for larger systems. Formulating and choosing parameters that express the
regularization also bring uncertainty as it can be written in multiple forms, for
example[6]

µ(vrel) = µk

[
1− e−β|ε|vrel(1 +

(
µs

µk
− 1

)
e−α|εvrel|)

]
sgn(εvrel), (2.2)

where fr is the friction regime ratio µs/µk and β, α, ε are parameters related to the
rate of change. Another potential form could be[13]

µ(vrel) = α1e
α2v2

rel + α3vrel + α4, (2.3)
where α1-α4 are parameters to describe the friction curve. On the other hand, regu-
larizing friction is straight-forward and easy to implement, and can be advantageous
in cases where computation is not an issue (see further below). Furthermore, as these
systems can be expressed as a single ODE, it allows for linearization of friction curve
and ’interpretative’ complex eigenvalue analysis to study possible instabilities.
The switch approach writes the friction regimes as independent sets, meaning the

system is instead described by multiple non-stiff ODE’s which can reduce calculation
cost significantly[14].

µ(vrel) =


µk for vrel > 0
µs for vrel = 0+

−µs for vrel = 0−

−µk for vrel < 0

(2.4)

1Otherwise known as smooth or normalization approach.
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2. Friction-vibration interaction

Friction in Equation 2.4 changes at infinitesimal scale resulting in non-smooth
changes in forces and velocities. However such behaviour has been proven physi-
cally inaccurate; mechanical contact with a distributed mass and compliance cannot
instantaneously change its force vector[5].

µ
[–

]

vrel
m
s

0

0

µk

-µk

µs

-µs

Figure 2.1: Friction as a function of relative velocity with the regularized friction
law (—–) and the non-smooth friction law (- - -).

These friction models are further covered and compared in Stick-Slip Vibrations
Induced by Alternate Friction Models by R.I. Leine et al[14].

2.1.2 Friction regime effect on vibration
For friction profiles with a declining relation between static and kinetic friction
regime, the ’parent’ bodies holds a property akin to negative damping. Negative
damping can be described as an unbalanced mechanism where potential energy is
accumulated in one regime and released into another less constrained regime2. By
this manner, a basis for sustained self-excitation and instability is created for con-
tinuous systems. The described phenomenon is called stick-slip and make for quasi-
harmonic and sometimes chaotic vibration, it is recognized by sawtooth patterns in
time–displacement plots[11].
The occurrence of such instability in a system with respect to friction necessitates

negative damping, however it does not ensure it. While several different conditions
exist, the most direct and easily understood condition for instability is found by
comparing damping to negative damping:

γ − dµs→k
dvrel

Fn < 0 ⇒ Instability

γ − dµs→k
dvrel

Fn > 0 ⇒ Stability
(2.5)

2Negative damping can only be mathematically evaluated for smooth friction models and is a
strictly heuristic concept; it does not create vibration from heat.
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2. Friction-vibration interaction

where [dµs→k/dvrel]Fn is the linearized friction force at an interface (for some vrel in
the stick-to-slip transition) and γ represent the damping at the interface.
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2. Friction-vibration interaction

2.2 Mathematical modelling
As an effort in gaining insight of creep groan vibrations, this section offer physical
interpretations and mathematical modelling of a brake system. For convenience in
regards to calculation and transparency, the system is simplified and represented
on reduced order(s). In doing so, we may formulate preliminary assumptions and
weighting of brake system parameters with regard to instability. The first part of
this investigation focuses mainly on understanding stick-slip itself while the second
part introduces further conditions to simulate creep groan.

2.2.1 Friction in SDOF systems
The simplistic model for which stick-slip vibrations can be studied is presented here.
Consider a body with mass, m, riding on a belt that moves at a prescribed velocity,
v. The body is attached to inertial space by a spring, k, and loaded onto the belt
by a normal force, N .

Figure 2.2: SDOF model

Acceleration by gravity as well as damping is ignored and we are only interested in
the forces acting in the horizontal direction, designated x.
Studying Figure 2.2, the spring force increases over distance from its relaxed

position as Fk = kx. From Newton’s second law, the inertial force of the mass is
Fa = m [d2x/dt2]. Applied with equation (2.2), the friction force is Ff = µ(vrel)N ,
where vrel = v − dx/dt is the surface velocity between slider and belt and µ is
formulated by Equation (2.2).
By separation of forces we find Ff = Fk +Fa, and so the state equation governing

this system reads

0 = kx− µ(vrel)N +m
d2x

dt2
. (2.6)

From Equation (2.6) and Figure 7.2 we can observe that the system is nonlinear
due to frictions dependence on relative velocity. By the onset of relative movement
vrel = 0 → vrel 6= 0 the friction force declines in accordance to our friction model,
creating what can be described as negative damping. The occurrence of instability
is thus directly related to the difference and rate between friction regimes as implied
by equation (2.5). The system motion is found numerically with MATLAB software

8



2. Friction-vibration interaction

using build-in stiff ODE-solver ode15s for boundary conditionsx(t = 0)
dx

dt

∣∣∣∣
t=0

 =
[
0
v

]
. (2.7)

Here we may study the effect of different friction parametrizations. In Case A the
friction is dependent on relative velocity, whereas in Case B the friction is constant,
otherwise their parameters are identical with v = 1 m/s, m = 2 kg, k = 10 kN/m
and N = 10 kN.
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Figure 2.3: Mass displacement (—–), mass velocity (- - -) histories to the left and
friction as a function of relative velocity to the right.
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2. Friction-vibration interaction

x

t

0 0.2 0.4 0.6 0.8 1. . . .

0.1

0.2

0.3

stickstick slip

stick slip slip cont.

stickslip cont.

cx

λA
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AB

AA

Figure 2.4: Displacement over time for both cases with descriptions of states,
amplitudes and wavelengths.

For the initial phase of both cases, the mass sticks to and ride with the belt
with at a constant velocity of v as Ff > Fk. Then, as the system approaches critical
displacement Ff ≈ Fk, the mass lapses into slip (vrel 6= 0) and the differences appear.
For case A the friction coefficient drops from 0.5 to 0.4, meaning its effective

critical displacement is lowered, and thus it will rebound quickly. Stick between
mass and belt is then recovered and the process can repeat. For case B, friction
remains constant under vrel 6= 0, the system can be seen to instead steadily oscillate
around the critical displacement by account of its initial inertia.
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2. Friction-vibration interaction

2.2.2 Friction in MDOF systems
While the genesis of creep groan can be demonstrated with a SDOF model, addi-
tional freedoms needs to be introduced for further approximate dynamics. From
a qualitative standpoint, numerical solutions to MDOF systems goes a long way
for analysing creep groan, and similar models presented in this section has been
explored in the past by G. Chen[11], A.R. Crowther el al.[1], etc.
In Figure 2.5, a translational representation of a vehicle brake system is illus-

trated3. The setup includes masses for transmission (m1), disc (m2) and brake
(m3). The transmission and disc are coupled via the drive-axle (k1, c1) while the
brake and chassi is coupled via the suspension (k2, c2). Again, the friction between
disc and brake is described with Equation (2.2).

Figure 2.5: Translatory 3-DOF representation of the drivetrain.

Expanding on the same concepts as presented in section 2.2.1, but for multiple
masses and now also introducing viscous damping forces between masses, the equa-
tion of motion (established in Appendix A) for the system in Figure 2.5 can be
written as−Feµ(vrel)N

−µ(vrel)N

 =

−k1 k1 0
k1 −k1 0
0 0 −k3


x1
x2
x3

+

−c1 c1 0
c1 −c1 0
0 0 −c3


ẋ1
ẋ2
ẋ3

+ . . .

· · ·+

−m1 0 0
0 −m2 0
0 0 −m3


ẍ1
ẍ2
ẍ3


(2.8)

where vrel = ẋ2− ẋ3 and the regularization parametrization is the same as for SDOF
case A. The motion of this system is again numerically integrated using MATLAB
software (see Appendix B) and the simulation result for some arbitrary system
parameters can be found in Figure 2.6.

3If necessary, the rotatory disc and transmission position, inertia, etc. can be reformulated as
translational using Mi = Ji/r2

e and ẋ = re, Θ̇.
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2. Friction-vibration interaction
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2. Friction-vibration interaction

Note that, by account of friction coupling the system will now contain different
mode sets depending on stick or slip: I.e., as stick occurs, m3 and m2 are effectively
one combined mass whereas for slip they can have separate vibrations.
Formulating precise descriptions on parameters effect on behaviour for this kind

of unstable system is problematic, as between some parameter changes the system
can undergo abrupt vibrational transitions or simply start to behave chaotically[11].
However, it is still possible to gain a general understanding inside some vibrational
regime with a parametric study, by for example modifying ’suspension’ stiffness (k2)
and damping (d2) values as performed in Figure 2.6.
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Figure 2.7: Phase plots showing parameter effects on stick-slip vibration.

With Figure 2.7 it is demonstrated that from an increase in damping or stiffness
the slip amplitude will decrease. However, note that the decrease in amplitudes
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2. Friction-vibration interaction

occurs on different basis as for a stiffness increase the stick-to-slip transition is
accelerated whereas for damping the slip-to-stick transition is accelerated.
In figures 2.7 (a,c) an abrupt qualitative change in dynamics occurs from 2k2 →

4k2. The transition is the result of a stick not being gained until m3 has completed
one slip rotation. This manner of system branching to oscillatory states as displayed
in previous figures is called Hopf bifurcation and is caused by eigenvalues crossing
the complex plane imaginary axis.

Brief note on linearization
By linearizing the friction force (e.g., [dµs→k/dvrel]N) in Equation (2.8) the system
lends itself as the linear homogeneous differential equation

M
d2x

dt2
+ [C− Ff ]

dx

dt
+ Kx = 0 (2.9)

of which the eigenvalues and eigenvectors can be found by (Mλ2 + [C − Ff ]λ +
K)X = 0 using MATLAB’s QEP solver [X,EIG] = polyeig(K,C-Ff,M). Among
other things, this allows for visualizing the instabilities and occurring vibrations
with respect to some parameter.
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Figure 2.8: Complex eigenvalue of system
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3
Measurements

Experimental measurements of a creep groan rig are taken in a laboratory environ-
ment at VCC, with the intention of achieving accurate data for CAE model design
and its validation.

3.1 Creep groan
The rig setup includes a functioning brake system with suspension, mounted onto
a rigid steel frame by the suspension upper strut and control arm bushings. The
frame is in turn fastened onto a heavy steel beam table with four clamps. A linear
hydraulic cylinder animates the brake disc via wire whereby attaching it on the
disc’s tangent, the wire coils and rides along the perimeter, generating equal torque
over angular displacement. As opposed to a driveshaft that only produces torque,
the brake system in the experiment is subjected to a lateral force.

Figure 3.1: Photo of the rig showing the brake system etc. (to the right) and
hydraulic cylinder (to the left).

The rig is devised to operate under various controlled conditions as to make sure
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3. Measurements

creep groan is achieved. Adjustable parameters include braking pressure and con-
traction speed of the hydraulic cylinder where the former is controlled manually by
screwing a pin into the brake pipe and the latter is controlled by programming the
hydraulic cylinder.
A ceramic glue layer was used to attach 9 triaxial accelerometers at various posi-

tions of the brake, disc and suspension (see Table 3.1). The accelerometers, except
for the one attached to the disc, are placed pairwise on various components.

x

x(t)
Fx

a p

>_

Control computer

Wire

Hydraulic cylinder

Suspension

n

Brake pipe

Measurement computer

DAQ

Figure 3.2: Basic illustration of rig and variable control mechanisms.

Table 3.1: Measurement transducers

Class Transducer (PQ#) Signal Placement
AC coupled Accelerometer (a1) 1–3 Caliper top

Accelerometer (a2) 4–6 Caliper bottom
Accelerometer (a3) 7–9 Carrier top
Accelerometer (a4) 10–12 Carrier bottom
Accelerometer (a5) 13–15 Knuckle top
Accelerometer (a6) 16-18 Knuckle bottom
Accelerometer (a7) 19-21 UCA ball joint
Accelerometer (a8) 22-24 UCA arm
Accelerometer (a9) 25-27 Disc edge

DC coupled Load cell (p) 28 Brake pipe/cylinder
Load cell (F) 29 Hydraulic cylinder rod
Position sensor (x) 30 Hydraulic cylinder rod
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3. Measurements

3.2 Wire
A complimentary measurement was setup to calculate the properties of the wire used
in the rig through frequency response functions. As seen in see Figure 3.3, a mass
of 10 kg is suspended by the wire to a stiff beam, such as to conform to a vertical
mass-spring-damper system. The response is measured for different wire lengths,
whereby detecting the resonance shift in the frequency spectrum it is possible to
identify the fundamental of the wire for a particular wire length.

Figure 3.3: Picture of wire measurement.
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4
Measurement

Results and analysis

In this chapter, the main results of the measurements are presented and analysed.

4.1 Creep groan
All measurements developed sustained creep groan upon operation with a range of
stick-slip periodicity and amplitudes, depending on the operation parameters (i.e.
brake pressure and ramp speed).
The results produced from 4 mm/s and 8 bar are chosen as the central sample of

this thesis. This choice is not motivated by any particular quality, given that any
or all of the measurements containing creep groan could be used for validation.
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4. Measurement results and analysis
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Figure 4.1: Data signals measured during creep groan event.
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Figure 4.2: Acceleration spectra during creep groan event.
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Figure 4.3: Acceleration spectra during creep groan event (zoomed).
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4. Measurement results and analysis

4.2 Wire
In the frequency domain, system displacement amplitude for a spring-mass-damper
system is calculated from[12]

ξvisc(ω) = Fe(ω)
−mω2 + jωγ + k

(4.1)

where Fe designates excitation force, m is the mass, γ is the viscous damping, k
is the spring constant and ω is the angular velocity. The system eigenfrequencies
are solutions for Equation (4.1) that tend toward infinity for an arbitrary force i.e.,
where the denominator tend toward zero. The solution to −ω2m + jωγ + k = 0 is
found by employing the PQ-formula

ω0 = j
γ

2m ±
√
k

m
− γ2

4m2 . (4.2)

The viscous damping model has a complex impact on resonance frequencies, how-
ever, by considering k/m � γ2/(4m2) and ignoring the imaginary, equation (4.2)
can be reduced to ω0 =

√
k/m.

From Equation (4.2), the stiffness for one particular wire length can be found if
the natural frequency and mass is known. While the mass was simply weighted to
10 kg, the resonance is found from repeating the measurement with a different wire
length, and identifying shifted frequencies. The two measurements are plotted in
Figure 4.4, where the resonance increases in frequency between takes A and B from
f0,A = 26.5→ f0,B = 39.4 Hz and consequentially, kA and kB can be found.
In order to calculate the stiffness for a cable of any length, Lx, first consider that

the axial stiffness of the cable is defined as the ratio

kn ≡
AE

Ln
, (4.3)

where A is the cross-sectional area, E is the elastic modulus and L is the element
length. Granted that the wire only changes in length (the numerator in equation
(4.3) remain unchanged), a general expression for spring stiffness can be derived

kBLB = AE = kxLx ⇒ kx = kB
LB

Lx
= ω2

0,Bm
LB

Lx
. (4.4)

With ω0,B = {f0,B = 39.4} = 247.56 rad·s−1, m = 10 kg, LB = 0.33 m yields the
scaling equation

kx = (2.02× 105)L−1
x . (4.5)

In physical terms, damping is the irreversible process of energy dissipated from
oscillations by frictional or other resistive forces. It has the effect of reducing oscilla-
tion amplitude over time/rotation. As there is no direct mean for finding the viscous
damping, it will be derived from hysteretic damping theory. Note that hysteretic
damping models are noncausal (depends on future inputs) and cannot be used for
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4. Measurement results and analysis

simulations as it forbids integration over time. In the case of hysteretic damping,
system displacement amplitude in the frequency domain is

ξhyst(ω) = Fe(ω)
−mω2 + k(jη + 1) , (4.6)

where η is the hysteretic damping ratio, that is, the share of kinetic energy dissipated
in one complete rotation.
By the assumption that the damping only affect wire resonance frequencies by neg-

ligible amounts at low frequencies, equations (4.1) and (4.6) are combined ξvisc(ω0) =
ξhyst(ω0), so ηk = ω0γ ⇒ γ = η

√
k2
/
k
m
. Now arriving at

γ = η0
√
mk, (4.7)

where η0 is the hysteretic damping ratio at the fundamental, which can be found
from the measurement using the half-power bandwidth method:

η0 = ∆f
f0

= f2 − f1

f0
, (4.8)

where f0 is the fundamental frequency and ∆f is the half-power bandwidth. With
values f1,B = 38.5, f2,B = 40.7, f0,B = 39.4 equation (4.7) yields

γx = 25.08L−0.5
x (4.9)
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4. Measurement results and analysis

4.3 Rig analysis

4.3.1 Operating deflection shape
Operating deflection shape (ODS), is a method used for determining vibration pat-
terns of structures under unknown load or operating conditions. An ODS analysis
provides a means of identifying mode shapes and their eigenfrequencies, which is
necessary information when later verifying the computer model. It is achievable as
the acceleration measurements are performed at different positions and directions
on the brake rig. However, as the modal number increases, so does its complexity
and consequentially more measurement points are required. In the measurements,
the number of accelerometers used only allows for accurately representing the first
few modes, however, as creep groan is principally a low frequency phenomena the 9
accelerometers are expected to suffice.
A spectral ODS analyzer was programmed in MATLAB that utilize the data and

metadata from the measurements to animate the vibration of the structure at chosen
frequencies (see Appendix C for code).
With knowledge of the mechanics of stick-slip and by studying Figure 3.2 and/or ,

it is possible to make assumptions on what modes will receive the largest vibrations
upon operation. It is easy to see how during stick criterion, as the hydraulic cylinder
contracts, it will displace and create a translational tension for the whole structure
but also a rotational tension for the knuckle. Once the stick criterion fails and slip
occurs, these tensions will release and excite any such translational and rotational
modes in particular. The purpose of the ODS is to identify these ’primary modes’,
to later use their eigenfrequency as benchmarks for the computer model.

Table 4.1: Primary modes revealed from ODS.

Mode shape Hz
ODS mode A Translational 25 Hz
ODS mode B Rotational 41 Hz
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4. Measurement results and analysis

4.3.2 Static coefficient of friction
The geometry of the disc and brake is presented in Figure 4.7

r
d

r
e

r
p

Wire force

Friction force

Brake force

Brake force

Figure 4.7: Illustration and descriptions of disc/brake geometries.

Where the disc radius is rd = 0.18 m, the brake effective radius is re = 0.137 m,
piston pressure is p = 7.8 × 105 Pa and piston radius is rp = 30 × 10−3 and the
maximum force as seen in Figure 4.1 is F = 1100 N. From torque equilibrium we
can calculate the static friction coefficient

µk = 1
2

Frd
(r2
pπp)re

= 0.34 (4.10)
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5
Multi-body model

Using ADAMS, a multibody model is created that aims to replicate the brake system
rig as set-up in the experimental measurements in both design and function.

5.1 Geometry
The full geometry of the model is comprised of parts, assembled similarly as it was
in the experiment. The geometry (or bodies) imported into ADAMS falls into one
of two categories, that is, ’rigid bodies’ or ’flexible bodies’.

Table 5.1: Components included in ADMAS model.

Component Bodytype
Ground Ground
Caliper Rigid Lumped Mass
Outer back plate Rigid Lumped Mass
Inner back plate Rigid Lumped Mass
Outer pad Rigid Lumped Mass
Inner pad Rigid Lumped Mass
Disc Rigid Lumped Mass
Console A Flexible body
Console B Flexible body
Console C Flexible body
Upper control-arm Flexible body
Tierod Flexible body
Knuckle Flexible body
Lower control-arm Flexible body
Ball-joint bracket Flexible body
Fork Flexible body
Hydraulic piston Rigid Lumped Mass
Ghost connector 1 Rigid Lumped Mass
Ghost connector 2 Rigid Lumped Mass
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5. Multi-body model

5.1.1 Rigid bodies
In physics, a rigid body is an idealization defined as a body of which the distance
between any two points within the body remain constant; such as they cannot
deform. Rigid bodies hold mass and inertia properties and can only move relative
to other parts. In brief, rigid bodies are warranted by reducing the number of
calculations and should be used for parts that are expected to behave rigidly and/or
not strongly affect modes that are associated with creep groan.
The rigid bodies are imported from CAD geometries into ADAMS using file format

Initial Graphics Exchange Specification (IGES). IGES is a surface format and does
not contain volume information: upon import, ADAMS converts the shell to a solid
feature after which, each parts respective density is set and consequentially its mass
and inertia is applied. By the manner of comparing the real mass to the calculated
mass in ADAMS, each part is proof-checked to be correctly imported.





pad inner

pad outer

inner back plate

outer back plate

caliper

piston

disc

Figure 5.1: Rigid bodies of model.

Modelling the parts in Figure 5.1 as rigid pertain to their position and compact-
ness/heftiness relative to other parts in the model. The impact of primary mode
shapes and frequencies by account of these rigid bodies are expected to be negligible.

5.1.2 Flexible bodies
As shown from the acceleration spectra and ODS analysis, creep groan excite certain
structural modes. In order to capture the same behaviour in the computer model,
key parts are modelled as flexible bodies. Flexible bodies are described by Modal
Neutral File (MNF) contains a range of data blocks that describes the physics, e.g.,
geometry, mass and mode shapes for each individual component.
It should be acknowledged that this thesis project did not involve creating these

features, as they had been previously generated at VCC.
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5. Multi-body model

FLEX BODY CON1

FLEX BODY CON2

FLEX BODY CON3

FLEX BODY KNUCKLE

FLEX BODY UCA

FLEX BODY LCA

FLEX BODY FORK

FLEX BODY TIEROD

FLEX BODY BJB

Figure 5.2: Flexible bodies of model.

5.2 Topology
By default, each imported or created body into ADAMS can move freely within
six degrees of freedom and so the bodies are free to change spatially in any which
direction or rotation: up–down, forward–back, left–right, pitch, yaw, roll. In other
words, once all parts are imported and assembled into ADAMS the model must
also be constrained to mechanically represent the brake system. This is achieved by
constraining the model with joint connectors, flexible connectors, forces and motions:

• Joint connectors describes how two parts may move relative another.

• Flexible connectors governs the forces between two parts as they move relative
another.

• Forces is a vector that acts on an object

• Motions impose a change in position of an object
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5. Multi-body model

5.2.1 Joint connectors
Joints restrict relative movement between two parts and represent idealized physical
connections. Once a joint is added between two parts, particular DOF’s associated
with said joint are removed between the parts, forcing them to behave in the pre-
scribed manner regardless of any imposed force or motion. As a consequence, joints
tend to ’overvalue’ the structural stiffness to some degree.
Five types of joints were used in the model, they include: fixed, translational,

spherical, revolute and fixed. These can be understood by the type and number of
freedoms they remove, which is documented in Table 5.3.

Table 5.3: Number of DOF’s removed for joints.

Rotational
0 1 2 3

Tr
an

sla
tio

na
l 0

1
2 Cylindrical Translational
3 Spherical Revolute Fixed1

Cataloging the behaviour of every joint constraint used in the model would be
an overambitious and redundant effort. The reader is referred to cross-examining
tables 5.2 and 5.3.

5.2.2 Applied forces
Forces in ADAMS, much like in reality, can be defined as an interaction that brings
dynamic to a system. Forces can both act and react between parts and can be
utilized in many which ways depending on how they are programmed. In the model,
forces were used to describe the wire, suspension spring, bushings and braking force.
The wire is modelled as a damped spring, with properties following equations (4.5)

and (4.9) for a wire of length 0.57 m. The suspension spring was also modelled as a
damped spring, though in this case, values for stiffness and damping is retrieved from
the engineering department and set to 63.8 N/mm and 11.2 Ns/mm respectively.
Each bushing is modelled using the pre-defined bushing tool that apply springs and
dampers in all directions and rotations. Data of the nominal bushing parameters was
retrieved from the engineering department and is presented in Table 5.4. Braking
force is modelled as a constant force and is calculated from the pistons pressure and
area. Given a pressure of 8 bar and a piston radius of 30 mm, the braking force is
set to 2200 N.

1Parts fixed to the ground are completely locked in its inertial space.
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5. Multi-body model

Bushing_1

Bushing_2

Bushing_3

Bushing_4

Bushing_5

Figure 5.3: Bushing placements.
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5. Multi-body model

T
able

5.4:
N
om

inalbushing
param

eters

Translationalproperties
R
otationalproperties

Stiffness
[N

/m
m

]
(x,y,z)

D
am

ping
[N

s/m
m

]
(x,y,z)

Stiffness
[N

/rad]
(x,y,z)

D
am

ping
[N

s/rad]
(x,y,z)

Bushing_1
(5000,5000,900)

(0.232,0.232,0.041)
(3.437E+

5,3.437E+
5,1.145E+

5)
(0.001,0.001,0.001)

Bushing_2
(5000,5000,900)

(0.232,0.232,0.041)
(3.437E+

5,3.437E+
5,1.145E+

5)
(0.001,0.001,0.001)

Bushing_3
(45000,45000,1500)

(2.088,2.088,0.069)
(2.291E+

6,2.291E+
6,2.864E+

5)
(0.001,0.001,0.001)

Bushing_4
(4400,1080,500)

(0.204,0.050,0.023)
(2.291E+

5,8.594E+
5,2.291E+

5)
(0.001,0.001,0.001)

Bushing_5
(40000,40000,3000)

(1.856,1.856,0.139)
(3.437E+

6,3.437E+
6,3.437E+

5)
(0.001,0.001,0.001)
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5. Multi-body model

5.2.3 Contact
Bodies in ADAMS do not collision in simulations by default. One body may intersect
another without interacting as if they were made out of nothing. For ADAMS to
recognise a collision, such as the pad–disc interface(s), a contact constraint can be
applied between the parts.
ADAMS has two in-built algorithms for modelling contact normal forces, called

impact and restitution, of which the former was chosen. When modelling a stick-slip
contact interface the impact algorithm can be regarded favorable for its robustness
in numerical integration, as in comparison to restitution, it computes faster and is
more smooth[2]. Also, restitution is not particularly well-suited for modelling the
sustained types of contacts mostly occurring in creep groan2.
The impact algorithm functions by introducing a damped spring between the

bodies once they intersect, acting to undo and impede the collision. Specifically, the
damped spring is located between the closest points of the intersection’s center of
mass to each body’s surface and its force is governed by

Fn,impact =
0 if x1 < x

k(x1 − x)e − cmaxẋ · step(x, x1 − d, 1, x1, 0) if x1 ≥ x
. (5.1)

In equation (5.1), x and x1 are algorithmic values pertaining to the relations of the
bodies. The other parameters are user defined and explained in the paragraph below
along with how they were determined for the simulation(s).
Stiffness, k, describes the force required for each unit of penetration depth and

depends on both the materials elastic properties and their geometry. Consequen-
tially it can be troublesome determining an exact value of k. In this thesis, k was
approximated by running multiple equilibrium simulations with different values of
k to see what value grants realistic penetration depths. From the simulations, the
stiffness was decided and set to 1 × 105 N/mm. The force exponent, e, represent
a non-linearity option to the spring force where the force can be set to exponen-
tially increase by intersection depth. This is related to the materials resistance to
changing shape when a compressive force is applied. For hard metals such as the
disc, ADAMS recommends a value of e ' 2.2, however as the pad is expected to be
softer, the force exponent was lowered to e = 2.0. Maximum damping coefficient,
cmax, is the upper limit of the step function that rule how much damping is used.
It generally takes a value of 0.01 × k or lower, the value of cmax changed between
simulations3. Penetration depth, d, is the other limit to the step function that rule
at what depth maximum damping is applied. It should be lower than equilibrium
penetration depth, and so it is set to 0.1 mm.

2Restitution is preferably applied to ’transient contacts’ such as impulses.
3For reasons and implications unknown: It was noticed that the maximum damping parameter

influenced convergence significantly for some bushing values and regularization parameters, and so
it was changed (within the cmax < 0.01 × k bound) in some instances to avoid overwhelming run
times.
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5. Multi-body model

In addition to a mandatory normal force, contact constraints also feature a fric-
tion option. Similarly to the models presented in section 2.2, ADAMS also uses
a differentiable regularized friction curve, albeit modelled differently using smooth
step functions as opposed to a single expression. The friction coefficient in ADAMS
is written on the form

µ(v) =


−sgn(v) · µd for |v| > vd

−step(|v|, vd, µd, vs, µs) · sgn(v) for vs ≤ |v| ≤ vd

step(v,−vs, µs, vs,−µs) for − vs < v < vd

(5.2)

such as

• µ(−vs) = µs

• µ(vs) = −µs

• µ(0) = 0

• µ(−vd) = µd

• µ(vd) = −µd

where all the parameters are set by the user to create a contact interface that suits
the application.

µ

vrel

vs vd-vd -vs

0

0

µd

µs

-µd

-µs

Figure 5.4: Coefficient of friction vs relative velocity in ADAMS

The static friction coefficient (µs) is set to 0.34 as calculated from the measurement
and the dynamic friction coefficient (µd) is approximated to 0.26. Stiction friction
slip velocity (vs) is the relative velocity at which full static friction is applied and
dynamic friction transition velocity (vd) is the relative velocity at which friction has
fully transitioned into dynamic friction. In general, the closer vs and vd are to zero,
the more accurate the physical description becomes, however the ODE stiffness will
also increase meaning there has to be compromise between accuracy and numeric
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5. Multi-body model

instability (i.e. if vd assumes a very large value in relation to substrate speed the
dynamic friction will have no impact on dynamics, and on the other hand if it
assumes a very small value, it would increase numerical instability). Ultimately,
after running multiple simulations, stiction and dynamic transitions velocities are
set to vs = 6.0 × 10−2 mm/s and vd = 1.8 mm/s, at which point, lowering their
values did not bring noticeable change in dynamics.

5.2.4 Driving constraint
In the experiment, the brake system is put into motion by the hydraulic cylinder,
contracting the piston and pulling the end of the wire at a constant pace of 4 mm/s.
In the ADAMS model this is replicated by connecting spring force to a part that is
constrained to a translational joint, for which the remaining DOF is constrained to
a constant translational motion.

v = 4 mm/s

Figure 5.5: Driving constraint.

5.3 Solver settings
As the model contain more than one degrees of freedom and as forces affect vi-
brations, the model is solved dynamically, as opposed to kinematically. There are
different methods of solving dynamic systems and these methods are referred to as
integrators. The integrator in ADAMS has multiple options and lets you format
the numerical integration process for accuracy and efficiency relating to particular
motions and dynamics.
Taking into consideration the rapid change in friction coefficient at stick-slip tran-

sition means the system contain numerically unstable properties, thus a very small
stepsize is required for an accurate solution. However, the instability is mostly dor-
mant and it would be inefficient to solve the non-stiff regions with the same small
stepsize. Therefore, the system is solved using GSTIFF, which adapts integration
based on the highest current active frequency[2]. To avoid drift-off errors and for
further robustness, SI2 formulation is used in conjunction with the integrator.
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6
Model analysis and validation

The simulation results are tried qualitatively and quantitatively to the experimental
data. For the scope of this thesis, the model is deemed qualitatively analogous to
the experiment if it captures the same behaviour in terms of stick-slip and primary
modes.
Granted the behaviour is validated, a quantitative comparison occurs where the

accuracy of system response is evaluated. Model parameters are then calibrated
to try and improve model accuracy. This process of simulation, validation and
calibration repeats until sufficient model predictions are achieved.

Create model

Set initial values

Run 
simulation

Fin.

Vibration
analysis

Stick-slip
analysis

Identify and
calibrate parameters
or simulation settings

Is the model “accurate”?No

Yes

Figure 6.1: Modelling-simulation flowchart.
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6. Model analysis and validation

6.1 Stick-slip analysis
The presence of stick-slip within the simulation can be explicitly shown by plotting
the angular (relative wheel hub) velocities of the disc and caliper.
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(a) vcaliper (−−−), vdisc (——)

Time [s]

StickSlip
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10
StickSlip (etc)

(b) vrel = vcaliper − vdisc

Figure 6.2: Angular velocity time histories of ADAMS simulation during
stick-slip oscillation.

With Figure 6.2 (b), the presence of stick-slip within the simulation is clearly
demonstrated. During stick, the disc is essentially locked to the rest of the suspen-
sion. For slip however, the disc is no longer tangentially constrained with respect to
the wheel hub and can rotate semi-independently. As the system will assume two dif-
ferent mechanical configurations during operation it follows that it will contain two
different sets of modes. The relation between stick and slip duration approximately
follow 1-to-9 in favor of stick.
Upon each slip phase Figure 6.2 (a) shows how potential energy is perpetually

translating into kinetic energy and vibration of brake system. A means of evaluating
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6. Model analysis and validation

the excitation follows from idealizing the complete rig as a single x-directional spring
with force Fsp = kL and potential energy Esp = (kL2)/2, where k is the spring
stiffness and L is the displacement. Potential energy is released into the system
upon slip, which occurs once the spring force exceeds static friction force, Fs =
µsFn. As the slip phase is relatively short for each stick-slip cycle, displacement
can be approximated by vp/fss, where vp is the piston speed and fss is the stick-slip
frequency. The potential energy can be rewritten to

Esp = µsFnvp

2fss
. (6.1)

As the piston speed, braking normal force and static friction coefficient are known
from the measurement and implemented for the ADAMS model, the implication is
that excitation can be assessed in terms of stick-slip frequency

f sim
ss = fmeas

ss ⇒ Esim
sp = Emeas

sp . (6.2)

Consequentially, if the stick-slip cycles matches in frequency they can be assumed
to produce equal levels of excitation.
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(a) ADAMS simulation
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(b) Rig measurement

Figure 6.3: Vertical acceleration time histories of caliper during creep groan.

In terms of cycles, the simulation is found to be accurate toward the measurement
with a stick-slip frequency of f sim

ss ≈ 3.61 Hz compared to the measurements fmeas
ss ≈

3.49 Hz.
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6. Model analysis and validation

Similarly to the experimental results, the model shows some internal variance of
stick-slip length. For creep groan, small variance is expected by account of the brake
system vibrations which leads to a quickened or delayed slip state as the wire force
approaches static friction force limit (consider the wire force fluctuations in Figure
4.1 (c)). The cycle variance of the model is assumed to be primarily limited to this
factor, in the physical rig on the other hand there could be outside factors such
irregularities of the disc. Unlike the modelled disc, the physical counterpart can
for instance have different frictional properties for different angular positions. This
non-ergodic disposition inherent to complex stick-slip systems is clearly illustrated
with Figure 6.4.
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Stick
(t<1.8)

Stick
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Slip

t=1.81
t=2.1

t=2.36

Figure 6.4: Simulation phase plot of caliper displacement and relative velocity
with time, direction and state indicators.

The first three stick-slip cycles of the simulation are presented in Figure 6.4 as
phase plots where the caliper orbit paths are shown to deviate between different cy-
cles. Approximately, the static friction is overcome for caliper displacements around
15.5◦ degrees and re-stick occurs for 13.2◦ ∼ 14.0◦ degrees, indicating that slip phase
’rewinds’ the caliper 1.9◦ degrees on average.
Such metrics would be helpful to compare with the measured data for more in-

depth evaluations of overall system behaviour, but also stronger prediction estimates
on regularization descriptions and structure properties. However it is not possible
as mostly related to AC coupling and coherence: The measured signals are unsound
for f < 10 Hz and thus stick-slip displacements cannot be accurately integrated.
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6. Model analysis and validation

6.2 Vibration analysis
Figure 6.5 (a) shows the vertical acceleration results in the frequency domain pre-
dicted from the numerical simulation, and it can be observed that the accelerations
are mostly distributed in the low frequency range similarly as the results from the
rig measurement.
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(a) ADAMS simulation
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(b) Rig measurement

Figure 6.5: Caliper acceleration (Z) spectra of simulated creep groan event.

For any rigorous validation, the relationship of frequency content and modes must be
settled. More specifically it is necessary that it captures equivalent primary modes
as found in the ODS analysis, and that they are excited by proportionate amounts.
As opposed to determining mode shapes via ODS analysis, it is approached an-

alytically in ADAMS by linearizing the system at the state of static equilibrium
(where all velocities and accelerations are zero and all forces are equilibrated), then
solving the system matrices for the nullvector to obtain the eigenvectors and eigen-
frequencies.
Note that acceleration spectra is averaged over several stick-slip cycles and thus

contains both modal sets. As discovered in the stick-slip analysis: Stick dominates
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6. Model analysis and validation

over slip in terms of duration, and so the system is linearized for stick as it is
reasonable to assume that modes associated to that configuration most accurately
represent the resulting acceleration spectra.
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6. Model analysis and validation

Table 6.1: System eigenvalues at static equilibrium (stick).

Mode
number

Undamped
natural frequency

[Hz]

Damping
ratio
[c/cc]

Re Im

1 1.1194E−003 1.0000E+000 −1.1194E−003 +/− 0.0000E+000
2 1.2641E−001 1.0000E+000 −1.2641E−001 +/− 0.0000E+000
3 1.1907E+000 1.0000E+000 −1.1906E+000 +/− 0.0000E+000
4 1.7887E+000 1.0000E+000 −1.7887E+000 +/− 0.0000E+000
5 8.7890E+000 1.0000E+000 −8.7890E+000 +/− 0.0000E+000
6 1.3443E+001 1.0000E+000 −1.3443E+001 +/− 0.0000E+000
7 3.2186E+001 1.0000E+000 −3.2186E+001 +/− 0.0000E+000
8 1.5859E+002 1.0000E+000 −1.5859E+002 +/− 0.0000E+000
9 1.1541E+003 1.0000E+000 −1.1541E+003 +/− 0.0000E+000
10 5.2449E+004 1.0000E+000 −5.2449E+004 +/− 0.0000E+000
11 7.0687E+004 1.0000E+000 −7.0687E+004 +/− 0.0000E+000
12 2.3100E+005 1.0000E+000 −2.3100E+005 +/− 0.0000E+000
13 1.1919E+006 1.0000E+000 −1.1916E+006 +/− 0.0000E+000
14 1.8333E+006 1.0000E+000 −1.3330E+006 +/− 0.0000E+000
15 9.9012E+000 5.7900E−003 −5.7851E−002 +/− 9.9010E+000
16 2.6737E+001 1.4408E−002 −3.8525E−001 +/− 2.6734E+001
17 3.1066E+001 6.1722E−003 −1.9174E−001 +/− 3.1065E+001
18 4.6913E+001 6.5726E−003 −3.0834E−001 +/− 4.6912E+001
19 4.9364E+001 3.3015E−002 −1.6297E+000 +/− 4.9337E+001
20 8.5326E+001 1.2430E−003 −1.0606E−001 +/− 8.5326E+001
21 1.0733E+002 5.6653E−003 −6.0811E−001 +/− 1.0733E+002
22 1.5580E+002 5.9235E−002 −9.2292E+000 +/− 1.5553E+002
23 1.7399E+002 4.8493E−002 −8.4376E+000 +/− 1.7378E+002
24 1.8317E+002 6.3871E−003 −81.1699E+000 +/− 1.8316E+002
25 2.2741E+002 3.0828E−002 −87.0108E+000 +/− 2.2730E+002
26 2.4404E+002 1.2704E−002 −83.1005E+000 +/− 2.4402E+002
27 2.6391E+002 4.9231E−003 −81.2992E+000 +/− 2.6391E+002
28 2.8307E+002 5.1521E−002 −81.4584E+001 +/− 2.8270E+002
29 2.8673E+002 5.0303E−003 −81.4423E+000 +/− 2.8673E+002
30 3.1772E+002 2.3790E−002 −87.5589E+000 +/− 3.1763E+002
31 3.4643E+002 2.1642E−002 −87.4974E+000 +/− 3.4634E+002
32 3.9533E+002 1.5263E−002 −86.0342E+000 +/− 3.9528E+002
33 4.0819E+002 1.4912E−002 −86.0872E+000 +/− 4.0815E+002
34 4.1508E+002 1.2533E−002 −85.2025E+000 +/− 4.1505E+002
35 5.2271E+002 1.0400E−001 −85.4367E+001 +/− 5.198754E+002
... ... ... ... ...
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6. Model analysis and validation

(a
)
31

H
z,

M
od

e
17

(b
)
49

H
z,

M
od

e
19

F
ig
ur
e
6.
6:

Eq
ui
va
le
nt

m
od

es
to

th
e
pr
im

ar
y
m
od

es
fo
un

d
in

th
e
O
D
S
an

al
ys
is.

47



6. Model analysis and validation

The first 35 stick modes of the ADAMS model are listed in Table 6.1 (note that
mode numbers 1-15 are component rigid body modes and does not ’exist’ in the
numeric simulations). After the eigenvalues are produced, the shape of each suspect
low frequency modes is animated and visually compared to the ODS results. With
this method it could be found that the vibrations of ODS mode A is represented
by ADAMS Mode number 17, and ODS mode B is represented by ADAMS Mode
number 19.
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(a) ADAMS simulation
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(b) Rig measurement

Figure 6.7: Caliper acceleration spectra (Z) of simulated and measured creep
groan.

Studying the frequency content with knowledge of equivalent modes, it can be
confirmed that model predictions comply with measurement results in terms of
structural excitation.
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6. Model analysis and validation

6.3 Comments on calibration
Because reductions to geometry, the model is inherently limited in what it can
represent and how accurate it can be. The initial simulations predicted relatively
accurate results for stick-slip cycles, but the modes were skewed upward in frequency.
This shift can be explained from the reductions on model geometry, for example how
boundaries on FLEX_BODY_CON_1 and FLEX_BODY_CON_2 are fixated to inertial space
as opposed to being attached to a softer frame, but also from the non-represented
masses such as the ball bearings, bolts, brake fluids, etc. However, the initial bushing
parameters are also expected to be incorrect as they are presumably estimated from
a different load case. For this reason the model is primarily calibrated by modifying
bushing parameters.
Bushing parameters affect both stick-slip cycles and modes, meaning if all bush-

ings were lowered by some percentage it would correct the modes but disrupt the
cycles. Thus, calibration proceeded with taking into consideration how different
bushings contribute differently to stick-slip and/or primary modes e.g., a stiffness
change in Bushing_3’s Z-direction wouldn’t affect stick-slip cycles or Mode 17 es-
pecially but will affect vibration frequency of Mode 19. The calibrated bushing
parameters are found in Table 6.2.
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6. Model analysis and validation

T
able

6.2:
C
alibrated

bushing
param

eters

Translationalproperties
R
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Stiffness
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s/m
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]
(x,y,z)

Stiffness
[N

/rad]
(x,y,z)

D
am

ping
[N

s/rad]
(x,y,z)

Bushing_1
(4000,4000,800)

(0.32,0.32,0.062)
(6000,6000,2000)

(0.001,0.001,0.001)
Bushing_2

(4000,4000,800)
(0.32,0.32,0.062)

(6000,6000,2000)
(0.001,0.001,0.001)

Bushing_3
(41000,32000,900)

(3.00,3.00,0.10)
(40000,40000,5000)

(0.001,0.001,0.001)
Bushing_4

(4100,600,300)
(0.3,0.075,0.02)

(4000,15000,4000)
(0.001,0.001,0.001)

Bushing_5
(34000,34000,2800)

(2.8,2.8,0.18)
(60000,60000,6000)

(0.001,0.001,0.001)
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7
Discussion

The experimental measurement (or ADAMS model) does not attempt to recreate
in-situ creep groan found in automotives, instead the thesis approaches creep groan
from a phenomenological perspective. Meaning the created model cannot be ap-
plied directly for NVH verification ’as is’, however it can be used to gain valuable
understanding of creep groan through for example conducting a parametric study
on the model.
All things considered the simulation offer strong qualitative and quantitative pre-

dictions of the measured ’pseudo-creep groan’, though there are some potential short-
comings to acknowledge and discuss:
(A.) Several modes are unaccounted in the simulation, as evident when comparing

Figure 6.7 (a) and (b). This may not seem as an issue as vibration patterns are
usually regarded as orthogonal and decoupled from one another, however this does
not hold for the type of bifurcating vibrations in creep groan (where the ODE or
system equations are subject to change over time). It is speculated that stick-slip
patterns in the rig are more irregular than in the simulation, but not by so much
given the dominant primary modes.
(B.) The lack of representation in the model also causes it to be fundamentally

stiffer and have less weight than its physical counterpart. It follows that all equiva-
lent modes in the simulation should be of slightly higher eigenfrequency, but at the
same time, various parameters are calibrated to make a more accurate simulation.
Meaning there is a conflict where accurate frequencies corresponds to inaccurate
parameter descriptions and vice versa.
(C.) The disc/pad contact force distribution during operation is expected to be

hyperbolical[9] from ’wedging effects’ as shown in Figure 7.1.

LeadingTrailing

Pad normal distribution 

Brake force distribution Pad-to-disc centroid

Symmetry
Disc

Pad

v

Figure 7.1: Illustration of nonlinear force distribution of pad/disc contact.

The nonlinear normal distribution means the interface centroid line is acutely angled
toward the friction force which in turn constitute the basis for sprag-slip instability
to occur[9],[11]. In theory, sprag event causes the friction force to grow significantly
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7. Discussion

larger than what is predicted from the normal force due to geometric constraints[11].
In the model the brake pad surfaces are constrained to always be parallel in relation
to one another; the normal distribution must be linear and the force centroid is
thus perpendicular in relation to the contact. In other words, the model cannot ac-
commodate sprag-slip dynamics. Note however that the calculated µs must contain
influence from sprag (granted it occurred in the measurement), though the efficacy
of describing sprag-slip using stick-slip is unknown.
(D.) The friction vs. relative velocity curve is modelled without path dependence,

thus it does not correctly describe the slip-to-stick transition (i.e., an increase in
friction when transitioning from slip-to-stick is not reasonable).

µ
[–

]

vrel
m
s

0
0

µk

µ
stick-to-slip

slip-to-stick

s

Figure 7.2: Example of nonholonomic vrel constraint on friction.

It has been shown in a previous study that a path independent friction model ’pre-
dicts a sharp spike in acceleration at the onset of stick’[10] that was unaccounted
for in their test data. Such spikes should reasonably also be observed in Figure 6.2
(a), but on the contrary it appears that the rig measurement has sharper acceler-
ation spikes on stick transitions. This is possibly explained by re-stick incidentally
occurring at greater speeds in the measurement and/or sprag-slip phenomena.
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8
Conclusions

With a combination of rigid and flexible bodies, a multi-body model was developed in
ADAMS to reproduce measured creep groan dynamics developed in an experimental
rig. The rig measurements were conducted in a laboratory environment which, in
addition to vibration behaviour, also allowed for the retrieval of various operation
parameters and values that was implemented in the design process and considered
in evaluation.
From analysing numeric and analytic solutions of the model and comparing them

to the experimental results it could be demonstrated that the simulated predictions
are largely consistent with the measured vibrations in terms of stick-slip dynamics,
frequency content and vibration patterns. And in the broader perspective, the thesis
work has been able present effective methods for theoretically deconstructing, ex-
perimentally recreating and finally achieving qualitatively, as well as quantitatively
accurate simulations of creep groan phenomena using CAE software(s).
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A
MDOF stick-slip model

N

N
Ff

Ff

Fk,1

Fc,1

Fk,2

Fc,2

Fk,1

Fc,1

Fa,1 Fa,1

Fa,3

1 2

3

Figure A.1: Active-force diagram of Figure 2.5.

Separating the forces in Figure A.1 (with Fk,n = ki∆x, Fc,n = ci∆ẋ, Fa,n = mnẍn,
Ff = µ(vrel)N and vrel = ẋ2 − ẋ3):

1 →: 0 = Fe − Fk,1 − Fc,1 − Fa,1

⇒ −Fe = −k1(x1 − x2)− c1(ẋ1 − ẋ2)−m1ẍ1 (A.1)

2 →: 0 = − Ff + Fk,1 + Fc,1 − Fa,2

⇒ µ(vrel)N = k1(x1 − x2) + c1(ẋ1 − ẋ2)−m2ẍ2 (A.2)

3 →: 0 = Ff − Fk,2 − Fc,2 − Fa,3

⇒ −µ(vrel)N = −k2x3 − c2ẋ3 −m3ẍ3 (A.3)

Combined, the equations (A.1),(A.2) and (A.3) comprise the system equation of
motion (written as general system form in Equation (2.8)).
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B
MDOF stick-slip model

(MATLAB)

Main

1 % Vars
2 global m1 m2 m3 k1 k3 c1 c3 N a l f a beta f r mag ep s i
3
4 % Parameter i n i t i a l i z e
5 m1 = 200 ; % Mass [ kg ]
6 m2 = (2 .56615∗10^5)/ (140 .1540^2) ; % −
7 m3 = 9 . 7898 ; % −
8 k1 = (5E+005)/1000/0 .017/(0 .14^2) ; % S t i f f n e s s [Nm]
9 k3 = (3000)∗1000 ; % −
10 c1 =(50)/1000/0 .0174/(0 .14^2) ; % Damping [Nm/s ]
11 c3=(5.0E−002)∗1000; % −
12 N = 7200 ; % Normal [N]
13 a l f a =50;
14 beta=1000;
15 f r =1.2500;
16 mag=0.402;
17 ep s i =100;
18
19 %% Solve Non−l i n e a r s t i f f ODE
20 cond = zeros ( 1 , 6 ) ; % IC
21 tspan = linspace ( 0 , 1 , 100000 ) ;
22 opts=odeset ( ’ RelTol ’ , 1 . e−7, ’ AbsTol ’ , 1 . e−10);
23
24 [ t , Z ] = ode15s ( ’xprim3_3m ’ , tspan , cond , opts ) ;
25
26 %% Plo t s
27 . . .

ODE call function

1 function Zp = xprim3_3m( t , Z)
2
3 % Vars
4 global m1 m2 m3 k1 k3 c1 c3 N a l f a beta f r mag ep s i

II



B. MDOF stick-slip model (MATLAB)

5
6 v r e l = Z(5)−Z ( 6 ) ;
7
8 Q1=1−exp(−beta∗abs ( ep s i ∗ v r e l ) ) ;
9 Q2=1+(f r −1)∗exp(− a l f a ∗abs ( ep s i ∗ v r e l ) ) ;
10 Q3=sign ( ep s i ∗ v r e l ) ;
11 u=mag∗Q1∗Q2∗Q3 ;
12
13 Ff = u∗N;
14 Fe = 4310∗( sin (2∗pi∗ t / 1 ) . ∗ ( t <0.25)+( t >=0.25));
15 FF = [−Fe , Ff , −Ff , 0 , 0 , 0 ] ’ ;
16 KK = [ −k1 , +k1 , 0 ;
17 +k1 , −k1 , 0 ;
18 0 , 0 , −k3 ] ;
19 CC = [ −c1 , +c1 , 0 ;
20 +c1 , −c1 , 0 ;
21 0 , 0 , −c3 ] ;
22 MM = [ −m1, 0 , 0 ;
23 0 , −m2, 0 ;
24 0 , 0 , −m3 ] ;
25 AA = [KK,CC; zeros ( 3 , 3 ) , diag ( ones ( 1 , 3 ) ) ] ;
26 BB = [ zeros ( 3 , 3 ) ,MM;−diag ( ones ( 1 , 3 ) ) , zeros ( 3 , 3 ) ] ;
27 Zp = BB\(FF−AA∗Z ) ;
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C
ODS Analyser
(MATLAB)

Main

1 % Aquire s i g n a l s and coord ina t e s
2 dataFi l epath = ’ Acce l e r a t i on . txt ’ ;
3 aar = dlmread ( dataFi l epath ) ;
4
5 sy sF i l epa th = ’ Coordinates ␣ f o r ␣ODS. x l s ’ ;
6 [ val , ~ , ~ ] = x l s r e ad ( sy sF i l epa th ) ;
7 va l ( isnan ( va l ) ) = 0 ;
8
9 f s = 12500 ; % Sample ra t e [ Hz ]
10 t1 = 4 ; % Sample s t a r t [ s ]
11 t2 = 5 . 8 ; % Sample end [ s ]
12 fchosen = 25 ; % Frequency o f i n t e r e s t [ Hz ]
13 s = 12 ; % Sca l ing f a c t o r [ d im le s s ]
14 t s c = 1 ; % Time s c a l i n g f a c t o r [ d im le s s ]
15 drawNum = 1 ; % Draw numbers
16 drawLine = 1 ; % Draw l i n e s
17
18 % Ca l cu l a t e
19 aar = aar ( : , 1 : 2 4 ) ;
20 [ norg , ~ ] = s ize ( aar ) ; % n fo r number o f samples
21
22 dt = 1/ f s ;
23 t r = ( 0 : norg−1)∗dt ; % Time vec to r
24
25 % Define time matrix
26 t i=i n t e r s e c t ( find ( tr>t1 ) , find ( tr<t2 ) ) ; % Timeframe index
27 t = t r ( t i ) ;
28
29 aa = aar ( t i , : ) ;
30 [ n , k ] = s ize ( aa ) ;
31
32 % Hanning window
33 Hw = hanning (n ) ; % Window func t i on
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C. ODS Analyser (MATLAB)

34 Hwsc = sqrt (sum(Hw.^2)/ length (Hw) ) ; % Window s c a l i n g
35
36 % F i l t e r s p e c i f i c a t i o n
37 fmin = 20 ; % HP c u t o f f f requency
38 fmax = 4000 ; % LP c u t o f f f r equency
39 bpSpec = fd e s i gn . bandpass ( ’N, F3dB1 , F3dB2 ’ ,8 , fmin , fmax , f s ) ;
40 bp = des ign ( bpSpec , ’ butte r ’ ) ;
41
42 % Adopt ize and f o u r i e r transform a c c e l e r a t i o n matrix
43 nFFT = 2^nextpow2(n ) ;
44 f = f s /2∗ linspace (0 , 1 ,nFFT/2 ) ;
45 for i = 1 : k
46 yhw = aa ( : , i ) . ∗Hw/Hwsc ; % Apply window
47 yfhw = f i l t e r (bp , yhw ) ; % Apply f i l t e r
48 Yds = f f t ( yfhw ,nFFT)/10 ; % Take FFT, normal ize
49 AA( : , i ) = 2∗Yds ( 1 :nFFT/2 ) ; % Reshape & r e s c a l e
50 end
51
52 an=1;
53
54 % Accelerometer l o c a l coord ina te system
55 v = va l ( 2 : end , 5 ) ;
56 AAdir = vec2mat (v , 3 ) ;
57 AAorg = vec2mat (AA( find ( f > fchosen , 1 ) , : ) , 3 ) ;
58 for i = 1 :8
59 v = [ AAdir ( i , : ) ’ , AAorg( i , : ) ’ ] ; % Def . vec .
60 v ( : , 2 ) = v ( : , 2 ) . ∗ ( v ( : , 1 ) ) . / abs ( ( v ( : , 1 ) ) ) ; % Adjust d i r .
61 v = sort rows (v , abs ( 1 ) ) ; % Sort vec .
62 AAs( i , : ) = [ v ( : , 2 ) ] ’ ; % Restore
63 end
64
65 Ax = AAs ( : , 1 ) ;
66 Ay = AAs ( : , 2 ) ;
67 Az = AAs ( : , 3 ) ;
68
69 w=2∗pi∗ fchosen ; % Angular f requency
70
71 % Displacements
72 for i = 1 : length (Ax ) ;
73 ux ( i , : ) = real (Ax( i )∗exp(1 j ∗w∗ t )/(1 j ∗w)^2)∗ s ;
74 uy ( i , : ) = real (Ay( i )∗exp(1 j ∗w∗ t )/(1 j ∗w)^2)∗ s ;
75 uz ( i , : ) = real (Az( i )∗exp(1 j ∗w∗ t )/(1 j ∗w)^2)∗ s ;
76 end
77
78 % Globa l coord ina te system
79 na = 8 ;
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C. ODS Analyser (MATLAB)

80 for i_1 = 1 : na
81 coords ( i_1 , : ) = va l (2+(3∗( i_1−1)) ,6 :8)∗1 e−3;
82 end
83
84 lx = repmat ( coords ( : , 1 ) , 1 , n)+ux ;
85 ly = repmat ( coords ( : , 2 ) , 1 , n)+uy ;
86 l z = repmat ( coords ( : , 3 ) , 1 , n)+uz ;
87
88
89 % Accelerometer d i sp lacement
90 f igure (4 )
91 set (4 , ’ un i t s ’ , ’ p i x e l s ’ , ’ pos ’ , [ 0 0 426 426 ]∗3/2)
92 %t i t l e ( [ ’ Acce lerometer p o s i t i o n s at ’ num2str ( fchosen ) . . .
93 % ’ Hz ( wi th upsca l ed de format ions ) . ’ ] )
94 xlabel ( ’ x␣ [m] ’ ) , ylabel ( ’ y␣ [m] ’ ) , zlabel ( ’ z␣ [m] ’ )
95 %
96 grid on
97 hold on
98 axis ( [ 1 . 3 1 . 8 0 .4 1 0 .2 1 ] )
99 daspect ( [ 1 1 1 ] )
100
101 for i_3 = 1 :1
102 %s e t ( gca , ’ NextPlot ’ , ’ r ep laceCh i l d ren ’ ) ;
103 for i_9 = 1 :8
104 plot3 ( l x ( i_9 , i_3 ) , l y ( i_9 , i_3 ) , l z ( i_9 , i_3 ) , . . .
105 ’ or ’ , ’ Markers ize ’ , 4 , ’ MarkerFaceColor ’ , . . .
106 ’ k ’ , ’ Color ’ , ’ k ’ )
107 i f drawNum == 0
108 text ( l x ( i_9 , i_3 )−0.02 , l y ( i_9 , i_3 ) , l z ( i_9 , i_3 ) . . .
109 +0.02 , num2str( i_9 ) , ’ Color ’ , ’ k ’ ) ;
110 end
111 i f drawLine == 1
112 l ine ( [ l x ( 1 : 2 , i_3 ) ] , [ l y ( 1 : 2 , i_3 ) ] , . . .
113 [ l z ( 1 : 2 , i_3 ) ] , ’ Color ’ , [ 0 . 5 0 .5 0 . 5 ] )
114 l ine ( [ l x ( [ 4 3 ] , i_3 ) ] , [ l y ( [ 4 3 ] , i_3 ) ] , . . .
115 [ l z ( [ 4 3 ] , i_3 ) ] , ’ Color ’ , [ 0 . 5 0 .5 0 . 5 ] )
116 l ine ( [ l x ( [ 5 6 ] , i_3 ) ] , [ l y ( [ 5 6 ] , i_3 ) ] , . . .
117 [ l z ( [ 5 6 ] , i_3 ) ] , ’ Color ’ , [ 0 . 5 0 .5 0 . 5 ] )
118 l ine ( [ l x ( 7 : 8 , i_3 ) ] , [ l y ( 7 : 8 , i_3 ) ] , . . .
119 [ l z ( 7 : 8 , i_3 ) ] , ’ Color ’ , [ 0 . 5 0 .5 0 . 5 ] )
120 end
121 hold on
122 end
123 view ( [ 1 7 2 , 8 ] )
124 %pause ( dt ∗ t s c )
125 %mov( i_3 ) = get frame ( gcf , [ 0 0 1120 8 4 0 ] ) ;
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C. ODS Analyser (MATLAB)

126 end
127
128 %movie2avi (mov , ’Anim . avi ’ ) ;
129 camproj ( ’ p e r s p e c t i v e ’ )
130
131 % Plo t s
132 . . .

VII
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