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Sammanfattning

Syftet med detta examensarbete är att hitta en ny metodik för att
hitta mönster i candlestick-grafer som kan förutsäga en akties framtida
kursrörelse. Metoden ska kunna hitta s̊adana mönster utan n̊agon
fördefiniering av hur dessa ser ut. En algoritm som kombinerar particle
swarm optimization och self-organizing maps har implementerats och
utvärderats för att lösa detta problem. Icke-transformerade dagliga
öppnings, högsta, lägsta och stängningskurser har använts som in-
data. Denna algoritm hittade mönster som med statistisk signifikans
överträffade slumpvis handel. Vidare undersöktes flera intressanta
egenskaper hos de funna mönstren. Däribland längden p̊a mönstren,
prognostiseringshorisont samt kvantitativt hur lik indata ska vara ett
mönster.

Abstract

The purpose of this thesis is to find a new methodology for finding pre-
dictive patterns in candlestick charts without any predefining of how
these might look. An algorithm combining particle swarm optimiza-
tion and self-organizing map has been implemented and evaluated.
Non-transformed daily open, high, low and close data has been used
as input. The algorithm found predictive patterns that statistically
significant outperformed random trading. Moreover, interesting prop-
erties such as the optimal length of the pattern, target length and
similarity of input to found pattern are discussed.
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1 INTRODUCTION

1 Introduction

This section covers some background in finance from an academic perspective.
Moreover, the purpose of this thesis and how it is linked to previous studies
are explained.

1.1 Background

The efficient market hypothesis, EMH, were for a long time taken to be true
[1]. Since then the hypothesis has been refined into three different forms;
strong, semi-strong and weak [2]. Today a large portion of the trades world-
wide are automated by trading algorithms, but this contradicts even the weak
form of the EMH. The weak form of the EMH claims that the price of an
asset reflects all publicly available information. Therefore a trading system
that uses historical data that is publicly available can not give any prediction
on future prices. Another theory proposed by Bachelier [3] and later devel-
oped by Cootner [4] and Fama [5] claims that the stock price moves like a
random walk. If this is true no prediction on the direction of the price can
be made. But still there are many traders looking for patterns in historical
stock prices and using these for trading decisions. In other words it seems
that there are quite some disagreement between academia and practitioners.

There exist many findings that do contradict the EMH [6][7][8] and also
the random walk hypothesis, RWH [9][10]. In addition to this there exists
articles on trading systems using neural networks that are more profitable
than a buy-and-hold strategy [11][12].

How and why markets are not efficient has received a lot of attention in
the field of behavioral finance. They claim that the financial markets are
informationally inefficient. Further, they claim that this is partly due to
cognitive biases among investors. People are not fully rational, e.g. investors
are overconfident, stereotype certain stocks as winners, do not change their
perception enough on news, etc. Behavioral finance is not only interesting for
explaining how the financial markets work, but also for practitioners to gain
insights in how rational deviations can be used to create profitable trading
systems [13]. The so-called chartists are an example of this.

Chartists, also known as technical analysts, uses recurring patterns in
stock charts to make trading decisions. These patterns are claimed to be
created due to monetary, political and psychological forces [14]. Due to
the subjective nature of these patterns it is difficult to formalize these to
be backtested on historical data to examine their effectiveness. However,
by using a template grid predefined with a bull flag Leigh et al. [15][16]
and Wang et al. [17] found this pattern, frequently used by chartist, to be

1



1.2 Purpose 1 INTRODUCTION

systematic significant better than random trading. An illustration of the bull
flag can be seen in Figure 1.

Figure 1: An illustration of a bull flag. The formation is used by chartists to
make trading decisions. It consists of two parallel bearish trend lines. A buy signal
is created when the stock price breaks through the upper trend line.

Leigh et al. and Wang et al. showed that the technical analysis pattern
called bull flag was profitable, but what about all the other patterns used
by practitioners? One approach to answer this question would be to design
template grids for all known patterns and test them. This would imply a lot
of work and many difficulties, e.g. different chartists would disagree of the
definition of the patterns, how many days the pattern is made up of, the angle
of e.g. the flag, etc. This makes the ambiguity of this research high. This
thesis suggests an alternative approach to the template grid. The approach,
or methodology, is looking for patterns without the need to first describe
them, define their formation length or target horizon. In this way not only
known patterns will be found, but possibly also new patterns. Instead of
only using the close price, which seems to standard in research, the open,
high and low prices are also included.

1.2 Purpose

The purpose of this thesis is to find a methodology that can be used to find
patterns that carries predictive information in historical stock price data.
When used the patterns should perform better than random trading during
the same period. This would contradict all forms of the EMH because pub-
licly available historical data are used to make successful forecasts. Moreover,

2



1.3 Research Questions 1 INTRODUCTION

it would also contradict the RWH since these patterns carry predictive in-
formation in the part considered to be noise by the RWH. Moreover, if such
patterns are found explore variables that could be useful for practitioners.
Examples of such variables are how similar a formation has to be to a pattern
to be classified as the pattern and in what time scales the most predictive
information resides. In addition to this the possibility of finding profitable
patterns during the financial crises will also been examined.

The data used has not been transformed in any way, e.g. by computing
moving averages, Fourier transform or any other transformation. By doing
transformations noise could potentially be filtered out and better signals to
use for a trading system might be the result. The reason for not doing
any transformations is to restrict the patterns so that they potentially could
be spotted by a chartist by pure visual inspection in a candlestick chart.
The patterns found with this methodology can potentially be used both by
chartist and for automated trading systems.

1.3 Research Questions

1. Can predictive patterns be found using SOM and PSO on non-transformed
daily open, high, low and close data?

2. Are the mean of the returns from trading with the found patterns
statistically signifiant different from that of random trading during the
same period and how big is this difference?

3. Which time frames include the most predictive information?

4. Do nervous market conditions decrease the predictability of patterns?

1.4 Delimitations

The methodology suggested in this thesis is not a trading system. However,
the patterns found could be incorporated into a trading system, e.g. by
using an ensemble method. Ensemble methods are a group of algorithms
that combines weak predictors and combining them to one strong predictor.

No consideration of the cost of trading has been taken into account. By
including this, shorter formation would be punished and longer formations
favored. Including this cost is important when designing a trading system,
but not for the purpose of this thesis.

The focus of this thesis is to investigate if the suggested methodology can
be used to find patterns that outperform random trading. If patterns are
found the next thing to study is if these patterns resemble patterns used by

3



1.5 Outline of this Thesis 1 INTRODUCTION

chartists. By doing so existing patterns could be verified as predictive and
unseen patterns could possibly be incorporated into practitioners toolkit.
However, this did not find its place into the time frame of this thesis.

The resolution of the data was daily. Intraday series was too expensive
to be used. However, the same analysis could be applied to intraday data.

Computers with four giga bytes of random access memory were used to
run the simulations. Running simulations with more data than used in this
thesis a computer with more random access memory would be necessary.
Alternatively rewrite the algorithm to store temporal data on the hard drive.

1.5 Outline of this Thesis

The rest of this thesis is structured as follows. In Section 2, the necessary
theory lying behind our experiments is described. In Section 3, the algorithm
that was used for finding predictive patters are presented. Section 4 describes
the results generated from this algorithm. In Section 5 these results are
discussed. In Section 6 the conclusions made from this work is pointed out.
A graph of the Nasdaq Composite Index from 2002 to 2012 can be found in
Appendix A.
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2 THEORY

2 Theory

This section explain the theory needed to understand the rest of this thesis.
First the properties of the stock market are discussed. Then the reader will
get a refresher in statistics and finally the machine learning algorithms used
in this thesis are explained.

2.1 Properties of the Stock Market

How the dynamic of the stock markets work is something that is not fully
understood. Below are some different views on the topic.

2.1.1 The Efficient Market Hypothesis

When the term ”efficient market” was first introduced in economics it was
referring to markets which ”adjusts rapidly to new information” [18]. A more
modern definition is that asset prices in an efficient market ”fully reflect all
available information” [1]. This implies that the market is rational and there
exists no way to forecast future price movements. There are three different
versions of the efficient market hypothesis; the weak, the semi-strong and
the strong. The weak form claims that asset prices reflects past information,
the semi-strong additionally claims that the asset price is instantly adjusted
to new information and the strong version additionally claims that insider
information is reflected into the price as well [2]. Many studies confirms
the efficient market hypothesis, e.g. a study made by Cowles showed that
even market professionals in average did not perform better than the market
[19]. A similar study was made by Jensen [20]. He analyzed 114 funds over
the period 1955-64 and found that any advantage the funds might have was
consumed by the fees and expenses from owning such a fund.

2.1.2 Evidence Contradicting the Efficient Market Hypothesis

Fama wrote ”in short, the evidence in support of the efficient markets model
is extensive, and contradictory evidence is sparse” [1]. However, there are
several studies that do contradict the EMH. One such study was conducted
by Basu. By using the price/earnings ratio on 1400 stocks he found that the
stocks with a low ratio outperformed those with a high ratio with 7% per
year [6]. Another study made by Ball and Brown showed that there seems
to be a drift in the direction of a earnings surprise [7]. Ritter found that
there is tendency for new issues to perform negative on a long run. He found
this by looking on 1526 initial public offerings over the period 1975 to 1984

5



2.1 Properties of the Stock Market 2 THEORY

[8]. Shiller found that the stock market prices were fluctuating too much to
be justified by the change in expected future dividends. He found that the
magnitude of the fluctuations were as much as 5 to 13 times as high as they
ought to be [21].

2.1.3 The Stock Market as a Random Walk

In Pearson’s paper ”The problem of the random walk” he discusses what
would be an optimal search strategy to find a drunk. If the drunk walked
in a unpredictable and random fashion the place he most likely would be
is where he started [22]. This analogy has been used to financial time se-
ries when the successive returns are serially independent [5]. In the 1950s
researchers had for the first time access to computers that could perform
analysis on lengthy time series. Kendall found that if the long term trend
was removed the residuals seemed to fluctuate randomly and with almost
no autocorrelation [23]. Thus was the foundation for the stock market as a
random walk established.

To prove that the random walk hypothesis is wrong one needs to find
predictability in the part that is only considered to be noise. Several studies
have found positive autocorrelation in weekly and monthly returns while the
autocorrelation on several years is negative [9]. A study that has had a great
impact on practitioners was written by DeBondt and Thaler. They found
that the stocks that had underperformed the most during a period of 3-5
years average the highest performance during the following 3-5 year period
[10]. This was evidence that the market overreacted by undervalue stocks
that were considered to be bad and vice versa for good stocks.

2.1.4 Behavioral Finance

Behavioral finance is the study of how the psychology of the practitioners
effect their behavior and subsequent the financial markets. It tries to explain
why and how markets might be inefficient. In the EMH the market is sup-
posed to be rational and unbiased forecasts of the market can be performed.
Since the forecasts are unbiased every investor would agree on the price and
the asset price would change accordingly. Behavioral finance, however, as-
sumes that markets are informationally inefficient and therefore investors
potentially would not agree on the current asset price. Partly this is due to
people’s cognitive biases, see below [13].

Heuristics are rules of thumb and is often used in the decision process.
This can lead to biased decisions. An example of such a rule is the 1/N

6



2.1 Properties of the Stock Market 2 THEORY

rule, which claims that if you are faced with N alternatives to allocate
your resources you tend to split them in equal sizes [24].

Overconfidence means that people overestimate their abilities. This can
be expressed by too little diversification in portfolios [13]. It can also
be manifested in trading behavior. People that are more confident tend
to trade more. A study by Barber and Odean showed that the more
people traded the worse they performed on average [25].

Mental accounting is the act of making fictional accounts that really
ought to be combined. E.g. having one account for entertainment and
one for restaurant visits might lead to suboptimal decisions.

Representativeness is a common decision making bias that makes people
sort things into stereotypes and base their decision on that. E.g. a well
performing stock might be thought of as a winner and is expected to
continue to be a winner.

Conservatism, also known as anchoring, is the inability to change to new
conditions. Even though new information is provided, people anchor on
their old belief and do not adjust accordingly to the new information.
The consequence of this is that good news is often followed by more
good news, because people have not adjusted their beliefs enough on
the last piece of news.

Disposition effect describes the fact that traders are inclined not to real-
izing their losses. The losses are often hold until it reaches the buying
price [13].

2.1.5 Trading with Patterns

Trading with patterns is often referred to as technical analysis, or chartism.
By finding recurrent patterns in graphs that have predictive value and trading
with these the technical analyst hopes to make profits [26]. The idea is
that stock prices ”move in trends which are determined by the changing
attitudes of investors toward a variety of economic, monetary, political and
psychological forces” [14].

Using technical analysis on US dollar exchange rate has shown to create
significant excess returns, which as been shown by Levich and Thomas [27],
Osler and Chang [28] and Neely, Weller and Dittmar [29]. However, there
are studies that show that technical analysis does not perform better than a
simple buy and hold strategy, e.g. a study made by Allen and Karjalainen
[30].

7



2.2 Statistics 2 THEORY

2.2 Statistics

Statistics deal with understanding data. Below is an introduction to methods
used in this thisis.

2.2.1 Probability Density Function

A probability density function can be used to describe the probability distri-
bution of a random variable. If an interval is more likely to contain the value
of the random variable its probability density function will be higher [31]. An
example of a probability density function of a normal distribution with mean
µ = 0 and standard deviation σ = 1 can be seen in Figure 2. The density
has its highest point at zero, which indicates that for this random variable
values around zero are the most likely. If the underlying probability density

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Value

D
en

si
ty

Normal distribution

Figure 2: The density function from a normal distribution with mean µ = 0 and
standard deviation σ = 1.

function is not known it can be estimated using a kernel density estimation
[32][33]. Such an estimation can be seen in Figure 3.
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Figure 3: 1000 data points randomly generated from a N(0, 1) distribution. The
right figure shows the sample’s estimated probability density function compared to
a theoretical N(0, 1) distribution.

2.2.2 Quantile Quantile Plot

A quantile quantile plot, Q-Q plot, is a statistical visualization method that
plots the quantiles of one distribution against the quantiles of another distri-
bution [34]. If the two samples have the same distribution they will approxi-
mately follow a straight line, which can be seen in the Q-Q plot in Figure 4.
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Figure 4: A Q-Q plot comparing the theoretical quantiles with the quantiles of
random generated normal data with mean µ = 0 and standard deviation σ = 1.

9
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2.2.3 Test of Hypothesis

A statistical hypothesis is a claim about either one or several populations or
the distribution of these. The null hypothesis, often denoted H0, is the initial
stand point and is assumed to be true. The alternative hypothesis, Ha, is
the complement to H0 and therefore contradicts the null hypothesis. The
hypothesis test will test wether there exists statistically significant evidence
that the H0 should be rejected and the alternative hypothesis should be
accepted instead [35].

The two sample t-test, also known as Welch’s t-test [36], can be used for
comparing e.g. the means of two populations if the populations are normally
distributed. If the sample size is large the central limit theorem says that the
sample mean will follow a normal distribution. However, if the sample size is
small the sample mean will follow Student’s t-distribution. The t-distribution
is a symmetric and bell shaped continuous distribution. Let µi be the real
mean, ni number of observations, x̄i sample mean and s2

i the sample variance
of the ith population. The t statistic in Welch’s t-test is then calculated as
in Equation (1). This t value can be looked up in a t distribution table to
get the probability that the null hypothesis is true [35]. This value is often
referred to as the p-value.

t =
x̄1 − x̄2 − (µ1 − µ2)√

s21
n1

+
s22
n2

(1)

H. B. Mann and D. R. Whitney introduced a similar test to see whether
one random variable is stochastically larger than another. This test does not
require a normal distribution of the random variable as the Welch’s t-test
does. This test is called the Mann-Whitney-test after the authors [37].

2.3 Machine Learning

In machine learning a machine learns behaviors by exposing it to data. Below
are two such algorithms explained. Moreover, the problem of generalization
is discussed.

2.3.1 Particle Swarm Optimization

Many species have a tendency to form swarms. Swarming offers advantages
to individuals like less chance of being targeted from a predator, easier to
defend against predators, food gathering and more efficient reproduction.
The reason for swarming to inspire an optimization algorithm is due to the
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2.3 Machine Learning 2 THEORY

fact that many eyes have a greater chance of discovering food than just one
pair [38].

Particle swarm optimization is an optimization algorithm that is inspired
by swarms. Let xij and vij be the position and the velocity of particle i in

the dimension j out of n dimensions, xpbi is the best position for particle i
and xsb is the best position of all particles, r and q are random numbers in
[0, 1] and f(x) is the objective function to be maximized. The best position
refers to the x that yields the highest, or lowest if minimizing, value of f(x).
The PSO algorithm then looks as follows

1. Initialize random positions and velocities of the particles pi:

• xij = xj,min + r(xj,max − xj,min), i = 1, ..., N ; j = 1, ..., n

• vij = 1
∆t

(−xj,max−xj,min
2

+ q(xj,max − xj,min)), i = 1, ..., N, j =
1, ..., n

2. Evaluate each particle in the swarm, i.e. compute f(xi) for i = 1, ..., N .

3. Update the best position of each particle, and the global best position.
Thus, for all particles pi, i = 1, ..., N :

• if f(xi) > f(xpbi ) then xpbi ← xi.

• if f(xi) > f(xsb) then xsb ← xi.

4. Update particle velocities and positions:

• vij ← vij + c1q(
xpbij−xij

∆t
) + c2r(

xsbj −xij
∆t

), i = 1, ..., N, j = 1, ..., n

• Restrict velocities such that |vij| < vj,max =
xj,max−xj,min

∆t
, j =

1, ..., n.

• xij ← xij + vij∆t, i = 1, ..., N, j = 1, ..., n.

5. Return to step 2, unless the termination criterion has been reached [38].

The constants c1 and c2 are positive constants often set to two, N is the
number of particles and j the number of variables that is to be optimized.
∆t is often set to 1 for simplicity [38]. f(xpbi ) and f(xsb) are initialized as
very low numbers if the objective function should be maximized. To decrease
the risk of getting stuck at a local optima a craziness operator can be used.
This is applied with a given probability and changes the velocity of particle
i in direction j according to

vij = −vj,max + 2rvj,max, j = 1, ..., n, (2)

where r is a random number in [0, 1] [38].

11



2.3 Machine Learning 2 THEORY

2.3.2 Self-Organizing Maps

Self-organizing maps is an unsupervised neural network learning technique.
Its self-organizing process is based on the notion of competition. All neurons
compete and only one neuron is the winner, which is simply called the win-
ning neuron. The synaptic weights are then updated in the surroundings of
the winning neuron in the map. The self-organizing map is subject to three
different processes in its formation; competition, cooperation and synaptic
adaptation.

Competition
Let ξ = [x1, x2, ..., xm]T be an input pattern in a m-dimensional space,
wj = [w1, w2, ..., wm]T the synaptic weight vector with the same dimensions
as the input space and j = 1, 2, ..., l, where l is the number of neurons in
the map. The winning neuron is then found by the neuron, whose euclidean
distance to the input pattern is the smallest. This formalizes into Equation
(3).

i(ξ) = argmin
j
‖ξ −wj‖, j ∈ Ω (3)

where Ω is the lattice of neurons [39].

Cooperation
The winning neuron is the center in a topological neighborhood, hj,i(ξ) of
cooperating neurons. The gaussian function in Equation (4) can be chosen
as such a topological neighborhood with its apex at the winning neuron and
then the further away some neuron is from the winning neuron the less is the
cooperation.

hj,i(ξ) = e−
d2j,i

2σ2 , j ∈ Ω (4)

where dj,i is the distance from the winning neuron, i, to neuron j in the
lattice and σ determines the stretch of the function. This stretch is often
chosen such that the topological neighborhood shrinks with time. This is
achieved by choosing σ to dependent on the discrete time, n, and choosing
the function to exponentially decay with time as

σ(n) = σ0e
− n
τ1 n = 0, 1, 2, ..., (5)

where σ0 is the initial value of σ and τ1 is a time constant to be chosen. Since
σ(n) now depends on the time n, so will also the topological neighborhood
function, hj,i(ξ)(n) [39].

12



2.3 Machine Learning 2 THEORY

Synaptic Adaptation
Now when there is a winner and the topology neighborhood is determined
it is time define how the adaptation to the input pattern should work. The
adaptation for the synaptic weights are updated as

∆wj = ηhj,i(ξ)(ξ −wj) (6)

where i is the winning neuron, j the excited neuron and η is the learning
parameter. The updated synaptic-weight vector at time n + 1 is then given
by

wj(n+ 1) = wj(n) + ηhj,i(ξ)(n)(ξ(n)−wj(n)) (7)

Also the learning parameter η can be chosen to decrease as the algorithm
progresses. A suitable such function is

η(n) = η0e
− n
τ2 (8)

where η0 is the start value for η and τ2 is another time parameter that needs
to be chosen.

During the training of a SOM it experiencing two different phases. The
first phase is the ordering phase, where the lattice is ordering itself. The
second phase is the convergence phase in which the SOM converges to the
input patterns so that continuing training will almost not change the map
[39]. The two phases for a one dimensional map can be seen in Figure 5.

Figure 5: A SOM going through the ordering phase in the middle figure and then
the convergence phase in the right figure. The neurons were initiated randomly in
the unit square. The training points resides uniformly inside the triangle.

2.3.3 Generalization

A common problem in machine learning is the problem of generalization,
that is how well a model performs on unseen data. A frequent method for
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investigating the accuracy of unseen data is to divide the original data into
two sets; a training set and a test set. The model is then trained on the
training set and its generalization is then estimated by applying the model
to the test set . Typically both the performance on the training and test set
increases in the beginning of the learning procedure. However, after a while
the performance on the test set start to decrease. This is called overfitting
and an example of this can be seen in Figure 6 [40]. There are several reasons

Figure 6: An illustration of overfitting. The error on the training set continues
to decline, while the error on the test set start to increase.

why the performance on the test set might not be as good as on the training
set. Some common reasons are listed below.

Presence of Noise in Data. The learning algorithm will try to fit the train-
ing data as good as possible. However, if there is noise in the data the
algorithm will find a model that best describes this noisy data and not
the actual process.

Lack of Representative Samples. The data used for learning is just a
sample of the original population. Therefore there is a risk that the
data does not contain representative cases. In this case the learning
algorithm does not have any awareness of the missing cases.

Multiple Comparison Procedure. When the learning algorithm uses a
methodology of evaluating and selecting different well performing mod-
els or parameters there is a chance that these were purely coincidences.
This risk increases with the number of different models or parameters
that are evaluated at some point in time [40].
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2.4 Visualization of Stock Market Data

A common technique used for visualizing stock data is a candlestick chart. It
summarizes the price movements during a time period and shows the highest,
lowest, opening and closing price of the period. If the opening price is lower
than the closing price the color of the bar is typically set to green. In the
reverse situation the body is usually colored red. An example with two daily
bars can be seen in Figure 7 [41].

Low

Open

Close

High

Figure 7: Candlestick chart displaying two bars with daily data. The green color
indicates that the closing price is higher than the opening price. The yellow color
represents the other way around.
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3 Method

In the last section the theory needed to understand this thesis was explained.
How this theory was implemented is discussed in this section.

3.1 Terminology

This section will clarify terms that are specific for this thesis. The first thing
that needs to be clarified is the definition of a pattern. A pattern consists
of one or many days of open, high, low and closing prices for every day.
The length of a pattern is called window length, lwindow, which refers to the
number of days that the pattern is made up by. A pattern also has a target
length, ltarget, which is the number of days in the future the pattern is making
a prediction about. A pattern can thus be plotted as candlestick chart with
the length lwindow. An example of a pattern can be seen in Figure 8.
Since a pattern can be plotted as a candlestick chart it can also be compared

Figure 8: An example of a pattern with lwindow = 5 and thus 4·5 = 20 dimensions.

with other candlestick charts of the same length as the pattern measured in
days. Using a sliding window and computing the difference between this input
data and the pattern it can be decided if the data resembles the pattern. The
similarity threshold, d, is the maximum distance from an input vector, ξ, to
the j:th pattern, wj, for ξ to be classified as pattern j. The distance from
the input to pattern j is computed as

dj =

√√√√ n∑
i=1

(wj,i − ξi)2 (9)
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where n is the number of dimensions. If dj < d the input window is classified
as pattern j and a buying trade is done and held during the target length,
that is the stock is bought at this day’s closing price and sold in ltarget days for
the closing price of that day. The trade is then logged. This could possibly
mean that several neurons is found that are close enough to the input pattern
for that day.

Under the assumption that data just before the stock price increased
significantly would be good data to train the SOM on, the variable target
size, rtarget, was introduced. This was accomplished by filtering the training
sets to just include such time windows where the stock price after ltarget days
had increased above the threshold given by the target size. The target size,
window length and target length is illustrated in Figure 9.

Window Length

Target Length

Ta
rg
et
 S
iz
e

Figure 9: A daily candlestick chart of Apple’s stock price illustrating window
length, target length and target size.

The self-organizing map used is a square 2D map. The side length of this
map measured in number of neurons is referred to as the grid size, lgrid. The
total number of neurons is thus the grid size squared.

Every neuron in the SOM corresponds to a pattern. When the perfor-
mance of the SOM is evaluated it is not desirable to use all patterns. Instead
only a fraction, qused, is used. These are chosen to be the round(qusedl

2
grid)

patterns that performs best on the training set.

Return was for simplicity defined as r =
Pt+ltarget

Pt
, where Pt is the price

of the stock at time t. This measures the return during the ltarget period. To
make it easy to compare results from different target lengths the return was
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throughout this thesis recalculated to the daily return, rd, as

rd = r
1

ltarget . (10)

3.2 Data

Data refers to the financial data needed to perform the analysis. This sub-
section describes from where the data was gathered, how it was cleaned and
how it was normalized.

3.2.1 Resources

Intraday financial data is expensive, but there are several services on the
internet that provides historical daily stock market data for free. The data
used in this thesis contains the open, high, low and close prices of every day
and stock. This thesis used data from 2003 to 2011 of the 2796 stocks listed
on the Nasdaq Exchange in North America. The data was downloaded from
Yahoo!Finance.

3.2.2 Data Cleaning

Data from Yahoo!Finance is not always correct and is not compensating for
splits. A split is a decision that increase the number of stocks outstanding.
Practically this means that the price of the stock make a great change in
price during the night. It is not desirable to use this data points to test
the performance of a pattern therefore data previous to a point where the
fraction between two days closing price was larger than two or smaller than
0.5 was disregarded.

3.2.3 Data Normalization

To be able to compare patterns with one similarity threshold the data has to
be scaled in a good way. The scaling used in this thesis is done by dividing
opening, highest, lowest and closing price for every day with the last day’s
closing price. An example can be seen in Figure 10.
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Figure 10: The stock price of Apple before and after a normalization.

3.2.4 Training and Test Set

One way of splitting the data into a training and a test set would be to use
a portion of the stocks for training and the rest for testing. However, the
correlation between different stocks can be quite high and doing this split
would mean a risk that the model performs better on the test set than it
should have done on unseen data. With this in mind it is better to split the
data with respect to time. In this thesis the data is divided up in three equal
sized periods where the first two are training sets and the last is the test set.
The SOM is trained on the first and the optimization is carried out on the
second training set.

3.3 Infrastructure

To implement the code solving the research questions some design consid-
erations had to be made. Below follow a discussion of what was used and
why.

3.3.1 Overview

Using a document with all the symbols listed on the Nasdaq Exchange, the
stock data was downloaded using libcurl. Libcurl is a client side URL transfer
library for C++ [42]. The data was then permanently stored in a local
database. MongoDB is an open source NoSQL database implemented in
C++ and was used to store the data [43]. The main reason to store the data
locally was to avoid the network delay when running the simulations. As the
algorithms, implemented in C++, progressed it logged its results in comma
separated files, CSV-files. CSV-files are text files of data formatted so that
attributes are separated by a comma and each row corresponds to an object.
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These files were then imported in R for analysis. The infrastructure can be
seen in Figure 11.

Figure 11: The infrastructure used in this thesis. The computationally intensive
tasks were carried out in a C++ program. The analyses of the results were then
done in R due to its many convenient built in functions and plotting capabilities.

3.3.2 C++

C++ is an object oriented programming language that extends C. It is
portable and very performant [44] and was used in this thesis for the com-
putationally intensive tasks. However, it is fairly low level and inconvenient
to analyze and plot the results.

3.3.3 R-Project

R-Project is a free open source environment for statistical computing and
graphics. It is similar to the S language developed at Bell Laboratories [45].
In excess of the built in functions there is approximately 2000 community
supported packages at the Comprehensive R Archive Network, CRAN [46].
R was chosen as environment to analyze the results of the simulations due
to its ease of use and great visualization capabilities.

3.4 The Algorithm

The algorithm refers to the code that aims to find predictive buying patters in
the data. The algorithm used a combination of particle swarm optimization
and self-organizing maps, as explained below.

3.4.1 Overview

The central part of this thesis was to find patterns in historical OHLC data
that carries predictive information. This should be done without any predef-
inition on how the patterns might look. To accomplish this a self-organizing
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map trained on historical data was wrapped in a particle swarm optimization
algorithm. The SOM’s neurons each corresponded to a pattern. The benefit
of using a SOM instead of a random point is that there is no need to define
the area in space that the patterns should randomly be generated in. An-
other benefit is that areas that are denser with points will also be examined
closer by the SOM, due to the fact that more neurons will be present in that
area. In addition to this it is also convenient to make 2D plots of the map
used in the SOM to visually inspect if there are any clusters of neurons that
are predictive.

By using only a SOM we need to explicitly set several parameters, e.g.
window length, target length, etc. However, if the SOM is wrapped in an
optimization algorithm that optimizes over these variables and using the
patterns performance as its objective function, we will have an algorithm
that is searching for the most predictive patterns without predefining how
the patterns look or any other variables that are of interest. See Table 1 for
which variables that were optimized.

The reason to use PSO as the optimization algorithm is that it is a
stochastic optimization algorithm. Using a gradient optimization algorithm
would likely lead to a non optimal optima. Genetic algorithm is another
stochastic optimization algorithm, but since PSO has been shown to find its
solution faster and with the equivalent precision as the genetic algorithm it
was chosen [47].

As mentioned earlier the data was divided up in three equally sized parts.
The SOM was trained on the first of the two training sets. These patterns
were then used to trade on the second training set. By using a sliding window
with length equal to lwindow on every stock used under the whole period
buying signals were generated if the euclidean distance from the data in this
window to any of the patterns defined by any of the SOM’s neurons were
smaller than the similarity threshold, d. The returns from a fraction of the
best patterns, decided by qused, was logged. If the performance was better
than any other previous subset of patters the patterns were also used on the
test set and the performance was logged.

This logic was implemented in C++ and used approximately 2000 lines
of code. Simplified pseudocode of the algorithm follows below.
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1: particles = initPSO()
2: trainSet1 = getTrainingSet1()
3: trainSet2 = getTrainingSet2()
4: testSet = getTestSet()
5: while (1) do
6: for (p in particles) do
7: som = trainSOM(p, trainSet1)
8: testPerformance(p,som,trainSet2)
9: if (Performance is best so far) then

10: logParticleValues(p)
11: logPatternsUsed(p,som)
12: testAndLogPerformance(p,som,testSet)
13: end if
14: end for
15: updatePSO(particles)
16: end while

3.4.2 Implementation of SOM

The SOM algorithm was described in section 2.3.2. However, there are design
issues that have to be considered when used on the problem at hand. The
first problem that needs to be solved is how the input should be translated
into an input pattern ξ. This was done by simply assigning every day’s
open,high,low and close price to one dimension each, as follows

ξ = [O1, H1, L1, C1, ..., Olwindow , Hlwindow , Llwindow , Clwindow ]T (11)

where Oi, Hi, Li and Ci corresponds to the open, high, low, and close prices
at day i and lwindow is the length of the pattern. The number of dimension of
the input is thus four times the window length. Haykin has made suggestions
on suitable parameter values for the SOM algorithm [39]. He suggests that
η0 = 0.1 and τ2 = 1000 in Equation (8) and that τ1 in Equation (5) can be
set to τ1 = 1000

log(σ0)
. Haykin also recommends that the learning parameter η(n)

should not decrease below 0.01. Another recommendation made by Haykin
is to use 500 times the number of neurons iterations as stopping criteria.
These recommendations were used in the implementation. Moreover, σ0 in
Equation (5) was chosen so that

σ0 =

√
l2grid

2log(0.4)
,

which was derived from Equation (5) and Equation (4) setting hj,i(ξ) = 0.4,
n = 0 and dj,i = lgrid. Also σ(n) was lower bounded so that it would never
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be smaller than 0.01, so that the neighborhood function would not approach
zero as n→∞.

3.4.3 Implementation of PSO

The variables that were interesting to optimize were window length, target
length, target size, fraction of the neurons to use, similarity threshold and
grid size. These were inserted in a vector for each particle as can be seen in
Equation (12)

x[i] = [l
[i]
window, l

[i]
target, r

[i]
target, q

[i]
used, d

[i], l
[i]
grid]

T i = 1, ..., N (12)

where N is the number of particles. N = 20 and N = 40 were tested with
no significant difference in the result. Therefore N = 30 was used for the
remainder of the simulations. The constants c1 and c2 was set to 1.5 both
as recommended by Hassan et al. [47]. To decrease the chance of getting
stuck in a local minimum the craziness operator, defined in Equation (2),
was implemented with a probability of 1%.
The maximum and minimum values of the different variables can be seen
in Table 1. lwindow,ltarget and lgrid are integers and were therefore rounded
after they were updated. The PSO algorithm does put restrictions on the
velocities, but not the positions. Therefore restrictions on lwindow,ltarget and
lgrid to be greater than zero was implemented. However, upwards and for the
rest of the variables in Table 1 there are no restrictions on the values they
could take during the optimization process. The restrictions in the table are
used when the positions of the particles are initialized. The PSO uses an

Table 1: The minimum and maximum values of the variables to be optimized. The
optimized variables in the order of appearance below were window length, target
length, target size, fraction of the neurons to use, similarity threshold, and grid
size of the SOM.

Min Max
lwindow 1 12
ltarget 1 12
rtarget -0.2 0.5
qused 0.01 1
d 0.02 0.2
lgrid 1 15

objective function, f(x), to evaluate the performance of a position. Three
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different objective functions were used:

fmean(x) = Average Return (13)

ffrac(x) = Fraction Positive Trades (14)

fcomb(x) = Average Return · Fraction Positive Trades (15)

where Fraction Positive Trades are the fraction of trades that generated a
return larger than one. For statistical reasons f(x) was set to zero if the
total number of trades on the training set performed by a SOM was lower
than 2000. The effect of this was that these SOMs were discarded. By doing
so the risk of finding patterns that only worked by chance decreased. This
is due to the fact that if, e.g. three trades were done with excellent average
return it might have been by chance. If instead 100 trades were done with
the same average return the likelihood that the average return is closer to the
real one of the patterns are larger. The number 2000 was chosen somewhat
arbitrary based on the average number of trades per neuron it would yield.
The largest SOM has a lgrid = 15, which is equivalent to totally 225 neurons
in the SOM. The average number of trades per neuron would therefore be
at least 2000

225
≈ 8.9. Potentially excellent patterns with low frequency were

discarded using this approach, because the total number of trades could be
lower than 2000. However, the benefit of more trades, that could be used
for more reliable statistical analyses, were preferred for the purpose of this
thesis.

3.5 Random Trading

Random trading was performed on the same time period as the test set. This
algorithm was implemented as follows

1. A random stock was chosen with uniformly probability.

2. A date was randomly selected in the period.

3. A trade was then performed holding the stock ltarget number of days.

4. Return to step 1.

This was done for 20000 iterations and the return at each iteration was logged.

3.6 Analysis of Output

The algorithm implemented in C++ and described in section 3.4.1 logged
its process and data in csv-files. These were imported into a R environment
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using the R command read.table. To find patterns that were statistically
significant both the average return and number of trades were important to
analyze. A great amount of time were therefore spent examining different
patterns from different simulations. R has built in functions for Q-Q plots
and t-tests that were used. To be able to plot candlestick charts the package
quantmod [48] was used.

3.7 Simulations

There are several variables relating to the simulation that can be varied, e.g.
number of used stocks, number of particles in the PSO, the objective function
in the PSO and of course the time period. The first simulations were mostly
done to see if the written program was working. The period from the 13th
of January 2009 to the 13th of January 2011 was used, the number of stocks
was varied between 10 and 2900 and the number of particles from 20 to 40.
This phase showed that using 250 stocks and 30 particles generated good
results, so these values were used throughout the rest of the simulations.

Once it was verified that the program worked the following simulations
were carried out.

• Different Objective Functions. The time period was set to 13th
of January 2009 to the 13th of January 2011. For each of the three
different objective functions used by the SOM four different simulations
were carried out.

• Different Time Periods. To see if the algorithm performed better
in some periods than other four different periods were tested; Jan 13th
2003 to January 12th 2005, January 13th 2005 to January 12th 2007,
January 13th 2007 to January 12th 2009 and January 13th 2009 to
January 12th 2011. Fraction positive trades were used as objective
function. Four different simulations were performed during each period.

• Predictability over Time. To investigate whether the predictability
of patterns generally decreased with time a set of patterns were gen-
erated during 2003 and were then tested on data from January 13th
2004 to January 12th 2005, January 13th 2005 to January 12th 2007,
January 13th 2007 to January 12th 2009 and January 13th 2009 to
January 12th 2011.
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4 Results

This section outlines the results generated during the simulations. First the
performance of some found patterns are examined. After that the results from
using different objective functions are shown. Then the optimized variables
are explored. Finally the generality of the patterns found are examined.

4.1 A Typical Simulation

The progress of a typical simulation can be seen in Figure 12. The perfor-
mance on the test set indicates that several of the patterns found on the
test data carries predictive information and therefore performs better than
random trading. Up until iteration seven the performance on the test set

Figure 12: The black line represents the performance of the best known subset of
patterns found in the training data at that time. The green line is these patterns
used on a test set. The red is random trading during the same time interval. The
simulation is running with 250 stocks and 20 PSO-particles.
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follows the one of the training set. After this point the performance on the
test set declines while the algorithm continues to find better patterns on the
training set. What is seen is an example of overfitting.

The different patterns performance from one SOM in a simulation can
be examined studying a feature map of the SOM in Figure 13. The feature
map shows the performance of each neuron in the map. NA means that the
neuron was not used. For this subset of patterns the predictive information
seems to be gathered in one edge of the total data set.

Figure 13: Feature map of the 15x15 SOM found in iteration seven in Figure 12.
The feature to be displayed is the average return for the neuron. NA indicates that
the neuron was not used.

4.2 Performance

For statistical reasons it could be better to look on the performance of all used
patterns. The reason for this is simply that the more trades that are analyzed,
the greater is the chance of finding results of significance instead of statistical
abnormalities. Studying the probability density functions from trading with
the patterns compared to random trading gives deeper understanding of how
the patterns might distort their density function in a desirable way. This
can be seen in Figure 14. The difference does not seem to be dramatic.
However, comparing the different daily means and calculating the expected
yearly returns reveals another story. Average daily return using patterns is
rd,pattern = 1.00381 compared to random daily return of rd,random = 1.00157.
This would yield a yearly return of ry,pattern = r250

d,pattern = 2.59 for the pattern
compared to ry,random = r250

d,random = 1.48 for random trading, that is an
increase in price with 159% compared to 48%. 48% is still a very good return
and can be explained by the fact that the test period happened to be en the
last third of the period January 2009 to January 2011, which experienced a
very positive trend. The performance of the patterns is under the assumption
that a pattern could be found every day and that there are 250 trading days
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during a year. A Welch’s t-test explores whether the difference in mean

Figure 14: Probability density of trades using patterns compared to random trad-
ing.

is real or a statistical abnormality. Doing a Welch’s t-test comparing the
mean of returns generated from trading with the used neurons in the SOM
and the mean from random trading in the same period yielded a p-value of
4.383∗10−8. The probability that these mean would be the same is therefore
almost negligible. However, the Welch’s t-test assumes that the statistics
are normally distributed, but since the number of trades are relatively high,
> 5000, the mean of the returns should be very close to normal according to
the central limit theorem. Conducting a Mann-Whithney test, which doesn’t
assume normality, gave results very close to the Welch’s t-test. This confirms
that the mean of the returns are in fact close to normal. In the remainder of
this report the Welch’s t-test will be used for simplicity.

28



4.2 Performance 4 RESULTS

4.2.1 Examples of Patterns

The simulations generated hundreds of different patterns. This section is not
intended to analyze them all. Four of the patterns can be seen in Figures
15, 16, 17 and 18. Typically what the patterns do is that they decrease the
number and size of negative trades. This can be seen in the Q-Q plots as
a upwards curve in the left bottom away from the straight line. In Figures
15, 17 and 18 the best trades were actually done by random trading. This
assures that the patterns’ increased means are not due to a small number of
outliers.

The pattern in Figure 16 used ffrac as objective function. The pattern
increased fraction positive trades, ρ, from 66.2% to 84% compared to random
trading with the same lwindow. This can be visually confirmed in the Q-Q
plot as a shift upwards of the whole data set.

(Returns)

Figure 15: Left: An example of a pattern with lwindow = 2, ltarget = 1, d =
0.192, Npattern = 5760, µpattern = 1.00375, ρpattern = 57.9%, Nrandom = 20000,
µrandom = 1.00157, ρrandom = 54.9% and p = 2.7 ∗ 10−7. The pattern was in
average applicable on 15% of the days on every of the 250 stocks. The QQ plot to
the right plots the distribution of returns from random trading versus the returns
of trading with the pattern.
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(Returns)

Figure 16: Left: A slightly longer pattern with lwindow = 5, ltarget = 44, d = 0.409,
Npattern = 5703, µpattern = 1.00239, ρpattern = 84%, Nrandom = 20000,µrandom =
1.00119, ρpattern = 66.2% and p = 2.2∗10−16. The pattern was in average applica-
ble on 44% of the days on every of the 250 stocks. The QQ plot to the right plots
the distribution of returns from random trading versus the returns of trading with
the pattern.

(Returns)

Figure 17: Left: Another example of a pattern with lwindow = 2, ltarget = 1, d =
0.3499, Npattern = 11350, µpattern = 1.00345, ρpattern = 59.6%, Nrandom = 20000,
µrandom = 1.001612, ρrandom = 55.9% and p = 4.1 ∗ 10−8. The pattern was in
average applicable on 31% of the days on every of the 250 stocks. The QQ plot to
the right plots the distribution of returns from random trading versus the returns
of trading with the pattern.
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(Returns)

Figure 18: Even one day pattern was found to be performant. Here with lwindow =
1, ltarget = 1, d = 0.1197, Npattern = 38424, µpattern = 1.00256, ρpattern = 53.3%,
Nrandom = 20000, µrandom = 1.000125, ρrandom = 52.3% and p = 2.2 ∗ 10−16. The
pattern was in average applicable on 1.8% of the days on every of the 2000 stocks.
The QQ plot to the right plots the distribution of returns from random trading
versus the returns of trading with the pattern.

4.3 Different Objective Functions

To optimize with PSO you need to mathematically quantify which results
are better than others. Three different such objective functions were tried,
see section 3.4.3. These objective functions were used in four simulations
each during the same period. The performance on the test set can be seen
in Figure 19 and 20.

4.3.1 Effect on Average Return

The three different objective functions effect on the average return can be seen
in Figure 19. As is evident from the figure, using the mean as an objective
function gives better average returns. Second best is fcomb and worst is ffrac.
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Figure 19: Average return on the test set of the used patterns in the SOM as the
algorithm progresses. Three different objective functions for the PSO algorithm
were evaluated.

4.3.2 Effect on Fraction Positive Trades

The objective function makes a great impact on the metric of fraction pos-
itive trades. Using the fraction of positive trades and a combination of this
with mean profit yields a high predictability. Whilst using the mean is not
performing better than random trading in this metric.
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Figure 20: Fraction of positive trades on the test set made by the used patterns
in the SOM as the algorithm progresses. Three different objective functions for the
PSO algorithm has been evaluated.
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4.4 Optimized Variables

The same twelve, 4 · 3, datasets using the three different objective functions
four times each in the same time period, as in previous section, were used
also for this section. By studying how the optimized variables evolve as the
simulation progresses gives insights into where the most predictive informa-
tion resides. The parameters of interest are window length, target length,
return threshold, similarity threshold, grid size and fraction of neurons used.

4.4.1 Window length

Using fraction of positive trades as objective function tends to use a larger
window length, see Figure 21. That is using more historical data in general
than the others. With this as an exception there seems to be no other ap-
parent patterns. This means that predictive information has been found in
all window lengths examined.
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Figure 21: How the window length changes as the the algorithm finds new opti-
mums for the three different objective functions.
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4.4.2 Target Length

When it comes to target length the data is split into two clusters; one that
uses mean as objective function and the other fraction positive trades and a
combination of both. Using the mean favors a short time horizon, whilst the
other cluster favors a much longer time horizon. This can be seen in Figure
22.
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Figure 22: How the target length changes as the simulation progresses. The
different colors represent the three different objective functions used.

4.4.3 Target Size

By using a filter that removes the points that has a smaller return than the
threshold, rtarget, we get a skewed training set. Using this dataset to train
the SOM yields a better result when using the mean as an objective function,
which can be seen in Figure 23. However, it is the reverse case for the other
two objective functions. Here it seems that it is better to use all data.
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Figure 23: How the target size changes as the simulation progresses.

4.4.4 Similarity Threshold

How close a point must be to a used neuron to be classified as a pattern is
determined by the similarity threshold. Except for one case of combination
as objective function the value of the similarity threshold is quite uniformly
distributed between 0.2 and 0.7 after the fifth iteration, as can be seen in
Figure 24. However, the euclidean distance is not taking into account that
patterns with longer window length has a higher dimension and thus will
the distances also be longer. The window length is often longer when us-
ing fraction positive as objective function, but the similarity threshold is
still comparable with the others. This means that the differences in each
dimension on an average most be lower.
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Figure 24: The similarity threshold, d, of the euclidian distance from a point to
that of a matching pattern for the tree different objective functions.

4.4.5 Grid Size

The grid size is the number of neurons on one side of the square SOM. Thus
the total number of neurons is the grid size squared. In Figure 25 it is evident
the maximum grid size generated the best patterns. This is clear from the
fact that most patterns uses the predefined maximum of lgrid = 15.
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Figure 25: The length of the side, lgrid, of the SOM map measured in number of
neurons that was used.
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4.4.6 Fraction of Neurons Used

Not all neurons will be profitable patterns. Therefore only the best should
be used in the subset of patterns that are used for trading. This is the
reason behind why this variable needs to be optimized. Typical values range
between 1% to slightly above 20%, as can be seen in Figure 26.
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Figure 26: How big fraction of the neurons in the SOM that was used for trading.

4.5 Performance in Different Time Periods

For the sake of generality other periods have been tried as well. Three sim-
ulations per each two year period using 250 stocks and mean as objective
function were carried out. The difference between random trading on the
test set and using the patterns found in the training set but traded on the
test set for the same period can be seen in Figures 27 and 28. The results
indicate that profitable patterns can be found in all of the four periods. The
patterns found and used during the two first periods seems to be more sta-
ble than the other two periods. The higher volatility during the financial
crisis could be the reason for this. A monthly candlestick chart of Nasdaq
Composite can be found in appendix A for a reference.
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Figure 27: Difference in performance from trading with patterns and that of
random trading on the test set for four different periods. The first two thirds of the
data in the period have been used as training set to find patterns. The remaining
third was used as test set. 250 stocks were used and the fmean was chosen as
objective function.

1 2 5 10 20 50 100 200

−
0.

00
1

0.
00

1
0.

00
3

Iteration

In
cr

ea
se

d 
M

ea
n 

us
in

g 
P

at
te

rn
s

●
●
●

● ●

● ●
●

●

●

●

●

●
●

●

●

● ● ●

●
●

●● ●
●

●
● ●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

● ●

●

●

2003−2005
2005−2007
2007−2009
2009−2011

●

2003−2005
2005−2007
2007−2009
2009−2011

Figure 28: A zoomed in version of Figure 27.
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4.6 Predictive Power of a Pattern as a Function of
Time

To see how one subset of patterns’ predictability is affected by time ten SOMs
were trained on data from 2003. The performance of the ten SOMs is then
tested on different time periods. The performance can be seen in Figure 29.
The difference between the patters performance and random trading during
the same period can be seen in Figure 30. The performance of the patterns
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Figure 29: The performance of ten different SOMs and random trading in four
different time periods. The green SOM represents the SOM with significantly more
trades in all periods than the other SOMs. The red line is the average of random
trading.

outperformed the random trading for all ten SOMs. However, during 2009
and 2010 random trading performed better than six of the SOMs. Moreover,
five of the SOMs had a return below 1. This could be considered strange since
Nasdaq Composite was in a very positive trend during this period, as can be
seen in figure 31 in appendix A. This can be understood by looking on the
previous period from 2007 to 2008. Nasdaq Composite was performing very
good during 2007, but then the financial crisis struck and 2008 subsequently
showed a strong negative trend. It is tempting to make the conclusion that
the SOMs traded heavily during 2007 compared to 2008 and that this could
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Figure 30: The performance of ten different SOMs traded in four different time
periods compared to random trading.

explain the excellent performance during the period. However, the opposite
is true. More than 80% of the trades were done during 2008 in the strong
negative trend. A possible explanation to this could be that many of the
patterns in the SOMs is looking for reversal signals in short time trends, that
is a change in the trend from one direction to the other.

The green line in Figure 29 is a SOM which did significantly more trades
compared to the other SOMs and could therefore be seen as a more represen-
tative example from a statistical standpoint. The number of trades for the
four periods were 19539, 26782, 8465 and 32777, whilst for the other SOMs
the number of trades varied in the range of 500 to 3000. The four worst
SOMs in the last period all had a number of trades lower than 1500. The
number of trades for the random trading was set to 20000.
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5 Discussion

This section covers several discussion on the results in the previous chapter.
Strengths, weaknesses and future work are also discussed.

5.1 Successful Methodology or Not?

Many patterns were found that statistically significantly outperformed ran-
dom trading on the test set. This implies that the methodology suggested
in this thesis does work. However, the practical use for a chartist using the
patterns is arguable. Since the similarity threshold, d, often was relatively
high a satisfactory input for a pattern definition could vary quite much. Thus
it could potentially be difficult for a chartist by pure visual inspection to tell
if the input is close enough to the pattern. The relative high d might come
from the fact that a SOM needs to make at least 2000 trades to be consid-
ered. A higher d would make more trades, since the input does not to be as
close to the pattern, and therefore increase its chance to reach 2000 trades
and hence be evaluated. To mitigate from this, more stocks could be used
or a longer time period for the second training set and test set could have
been used. Alternatively an optimization around the parameters of the SOM
found could be used to make it better. However, the methodology works
unaltered for automated trading.

5.2 What Objective Function to Use?

What objective function to optimize is a subjective question. The simple
answer would be the one with the highest average return on the test set.
In that case one should use the mean return as the objective function to
maximize. However, using high leverage, that is trading partly with borrowed
money, one takes a significant risk, e.g. if only one third of the trades would
be profitable you will often lose much before your earn much. This can result
in serious liquidity issues. Then it might be a good idea to incorporate how
big fraction of trades that are positive. Using the fraction of positive trades as
objective function did show some problems in this thesis. Since the window
length was not in practice limited by the PSO and the training data showed
a positive trend, patterns with long window length was found. Also the test
set showed a positive trend, so by using a long window length almost every
trade was successful also on the test set. This pattern is obviously not a good
one if the test set would be in a downtrend. Even though this is simple to
understand in this case the same issue might arise elsewhere and where it is
not easily spotted.
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5.3 Generality of Patterns

The dynamics of the stock market is not the same at all times. For example
it might show a positive trend for many consecutive years and then abruptly
start decreasing. The dynamics can never be known in advance. Hence it is
important that a pattern either works for all kind of dynamics or the present
dynamics, in which the patterns are successful, is assumed to continue.

Section 4.6 showed that there exists patterns that, no matter what the
underlying dynamics is, still perform great. Section 4.5 used the other ap-
proach by first training the patterns on data and then used the resulting
patterns for the subsequent period. Later the patterns were then trained
again, so that the present dynamics would be incorporated and assumed to
be the same for the subsequent trading period, and so on. This approach
was also shown to be successful. However, the performance of some patterns
during the financial crisis varied.

5.4 Does Nervous Market Conditions Effect Predictabil-
ity?

As discussed in section 5.3 the performance of a pattern can vary with time.
The patterns in this section had its best performance during 2008 and its
worst the subsequent two years. All of these three years could be considered
to be a part of the financial crisis, with many unpredictable events with
great impact on price movements. 2008 was a part of the crisis and still the
patterns used had an excellent performance it seems that the crisis did not
affect the possibility of trading with patterns. However, this particular set
of patterns were better suited for a downtrend than in the following heavy
uptrend during 2009 and 2010. Several of the patterns, including the one
with most carried out trades, did perform well during this period as well.

5.5 Data Normalization

Stock data needs to be normalized to be comparable with other stocks and
also with itself at another point in time. The normalization used in this
thesis makes the last days of the pattern more forgiving than the first days,
since all patterns last day’s closing price are moved to exactly one. Thus, the
variation in price between patterns will be small for the last days and much
larger in the beginning days of the pattern. This might result in shorter
window lengths than if this problem could be mitigated.

42



5.6 Alternative Methods 5 DISCUSSION

5.6 Alternative Methods

Instead of PSO a genetic algorithm could have been used instead. One ad-
vantage of using the latter would be that a number of chromosomes could
be saved and used as starting points of generating new chromosomes. In
this way not only the current best will influence the search for optimas. Us-
ing the PSO there is a chance that there is too much focus on the swarms
best position. An alternative to the SOM would be to randomly generate
some pattern based on the position of the particle. However, using the SOM
avoids the process of how to generate patterns in a clever way. Moreover the
SOM’s neurons is placed around historical dense positions which implies that
these patterns also will be found in the future. Something that a random
generation has no notion of.

5.7 Future Work

There are some things that would be of interest to examine closer. One ob-
vious thing would be to introduce patterns that give selling signals. Perhaps
inverting the patterns giving buying signals could yield selling signals. Either
way, the same methodology used in this thesis could be used to find selling
signals as well.

After introducing a selling signal it would have been interesting to select
a portfolio of the best patterns and use some ensemble algorithm to create
a trading system. An ensemble algorithm combines weak predictors into one
stronger.

The algorithm presented in this thesis is quite sensitive to overfitting.
When a new global best pattern is found the PSO influence the direction of
the particles in that direction. However, there might be better solutions in
the vicinity of the old one that yet have not been explored. An approach to
fine tune this patterns would be to use them as starting points and perhaps
fixate some parameters. Alternatively a genetic algorithm could be used
saving the e.g. seven best chromosomes from which new chromosomes could
be generated.

Another thing that would be interesting to investigate would be if different
stocks is more suitable than other. It might be so that there are clusters of
stocks that have the similar dynamics and hence should be used to find
patterns. It would be interesting to then see how these patterns perform on
a test set of similar stocks compared to non-similar stocks.

43



6 CONCLUSIONS

6 Conclusions

This thesis has shown that an algorithm combining SOMs and PSO can be
used to find predictive patterns that statistically outperform random trad-
ing during the same time period. The increase in performance for a specific
subset of patterns showed that the annually return increased from a positive
return of 48% to 159%.

Moreover, predictive information was found in all window lengths examined.
This indicates that traders potentially could choose their preferred frequency
of trading and still be successful. When it comes to target length the most
useful information varies with the objective function of choice.

An important conclusion that every trading system developer should be aware
of is the patterns might yield good results through many years, but when the
market conditions change there is a risk that they will perform worse than
random trading. This puts stress on the developer to make clever decisions
when it comes to which data to train the algorithm with.

When dividing up the time from 2003 to 2011 into four different time peri-
ods, patterns that significantly outperformed random trading were found in
all periods. This implies that even in times like the financial crises, with many
non-predictable world events, it is still possible to make predictions using the
methodology suggested in this thesis. This is an important conclusion that
implies that the trader or trading system developer need to develop heuristics
to determine what market conditions are present and choose trading tools
accordingly.
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A CHART OF NASDAQ COMPOSITE 2002-2012

Appendix

A Chart of Nasdaq Composite 2002-2012

Figure 31: Monthly candlestick chart of Nasdaq Composite from 2002 to 2012.
The vertical lines represents the four different periods used in the thesis.
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