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Abstract 
 

 
 

Graphics processors are becoming more and more popular among many application 
developers as commodity data-parallel coprocessors. As a consequence, general 
purpose programming for graphics processors research is growing. A* is a well 
known best-first shortest path finding algorithm, commonly used in computer 
games and robotics, to quickly find a good path in real time. We have implemented 
A* in CUDA, NVIDIA’s programming platform for graphics processors. Our graphics 
processor A* implementation is faster and more efficient than a similar CPU version 
of the same algorithm.  
 
We have provided three improvements to the parallel A* algorithm to allow it to 
work faster and on larger maps. The first improvement is the use of pre-calculated 
paths for commonly used paths. Secondly, we allow multiple threads to work on the 
same path and thirdly we have implemented a scheme for Hierarchical Breakdown. 
Instead of computing the complete path as a whole, the path is calculated in many 
segments. This makes it possible to calculate more paths concurrently on big maps 
than was possible before. Very large maps are broken down into many clusters and 
paths are computed at a higher level of abstraction using path abstraction. All the 
segments of a path are then joined together to make a complete path using path 
refinements.  
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1 Introduction 

 

 

1.1 Background    

 

At the start of multicore CPUs and GPUs the processor chips have become 

parallel systems. But speed of the program will be increased if software exploits 

parallelism provided by the underlying multiprocessor architecture [1]. Hence 

there is a big need to design and develop the software so that it uses 

multithreading, each thread running concurrently on a processor, potentially 

increasing the speed of the program dramatically. To develop such a scalable 

parallel applications, a parallel programming model is required that supports 

parallel multicore programming environment.  

 

NVIDIA‟s graphics processing units (GPUs) are very powerful and highly 

parallel. GPUs have hundreds of processor cores and thousands of threads running 

concurrently on these cores, thus because of intensive computing power they are 

much faster than the CPU. At start, they were used for graphics purposes only. 

But now GPUs are becoming more and more popular for a variety of general-

purpose, non-graphical applications too. For example they are used in the fields of 

computational chemistry, sparse matrix solvers, physics models, sorting, and 

searching etc. The algorithms designed for GPGPU (General Purpose GPU) run 

on the multi processors using many threads concurrently. As a result, these 

algorithms are extremely fast.  

 

In this thesis we have used GPGPU in the field of searching. A* [2] is a 

standard search algorithm that finds shortest paths. We have created an 

implementation of the A* algorithm for multi-core graphics card to increase the 

efficiency of the algorithm using CUDA architecture. Different techniques to 

make this algorithm more optimal and fast are applied for different sized search 

spaces and then compared with each other to find which works well on multicore 

environment of graphics card. We have also found out the suitable sizes of search 

areas for these techniques. The methods we tried are calculating some pre-paths 

using waypoints, multiple threads helping each other per agent and the 

hierarchical breakdown of the A* algorithm.  

 

The thesis is organized as follows. The rest of section 1 introduces the 

CUDA system model, search algorithms, A* algorithm and give the scope and 

objectives of this work. Section 2 describes the details of A* algorithm and its 

implementation. It further provides the three different methods used to improve 
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the algorithm. In section 3, the detailed description of the system model is given. 

Related work is specified in section 4. Experimental results from the A* 

implementations are found in section 5, followed by a discussion of the presented 

work in section 6. The thesis is concluded in section 7. 

 

1.2 CUDA 

 

CUDA stands for Compute Unified Device Architecture. It is a parallel 

programming paradigm released in 2007 by NVIDIA. It is used to develop 

software for graphics processors and is used to develop a variety of general 

purpose applications for GPUs that are highly parallel in nature and run on 

hundreds of GPU‟s processor cores.  

 

CUDA uses a language that is very similar to C language and has a high 

learning curve. It has some extensions to that language to use the GPU-specific 

features that include new API calls, and some new type qualifiers that apply to 

functions and variables. CUDA has some specific functions, called kernels. A 

kernel can be a function or full program invoked by the CPU. It is executed N 

number of times in parallel on GPU by using N number of threads. CUDA also 

provides shared memory and synchronization among threads.  

 

CUDA is supported only on NVIDIA‟s GPUs based on Tesla architecture. 

The graphics cards that support CUDA are GeForce 8-series, Quadro, and Tesla. 

These graphics cards can be used easily in PCs, laptops, and servers. More details 

about CUDA programming model are described in section 3. 

 

1.3 Search Algorithms 

 

Search algorithms are highly used in computer games, robotics, etc. They 

are used to find a path from a given „start‟ node to a „target‟ node. It searches the 

whole map area and finds each possible path from the start node to reach the 

target node and then gives the shortest path. One way of doing it is uninformed 

search algorithms also called brute-force search. These algorithms use the 

simplest method of the searching through the search area. These are not very 

efficient as a lot of time is required to search the whole map area.  

 

Informed search algorithms are comparatively more efficient than 

uninformed search methods. These algorithms try to reduce the amount of time 

spent searching by using heuristic functions. Heuristic function means a method to 

find a solution that is close to the best possible answer in less time. In search 

algorithms, heuristic functions are used to calculate an estimate lowest path-cost 

only towards the target node. In this way the whole search area is not searched, 
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rather search is made on only the selected portion of area. This reduces the time of 

search dramatically. Some major informed search algorithms that work for graphs 

include best-first search, and A*.   

 

1.4 A* Search Algorithm 

 

A* (pronounced "A star") [2] is an informed search algorithm. It is formally 

defined as “best-first, graph search algorithm that finds the least-cost path from a 

given initial node to one goal node (out of one or more possible goals)” [3]. This 

algorithm is mainly used in computer games to find the shortest path at run time. 

It is also used to find shortest routes among cities, and in robotics, etc.  

 

It is like other graph-searching algorithms in that it can potentially be 

required to search through a huge area of the map. The search space can be 

reduced by the use of an efficient heuristic function. Without heuristic or when the 

heuristic function equals to zero, A* becomes Dijkstra‟s path finding algorithm, 

and on the other hand when it is extremely high, A* turns into BFS. Hence the 

heuristic function plays an important role in controlling the behavior of A*. If 

heuristic function gives a very low value, then A* will become slow to find the 

shortest path. If heuristic evaluates to be a very high value, then A* will become 

very fast but it will not calculate the shortest path. This reveals that the tradeoff 

between speed and accuracy of the algorithm is dependent on heuristic. Therefore, 

a heuristic should be chosen very carefully keeping in mind this tradeoff. A 

heuristic that is specific to the problem should be used in algorithms.  

 

We are using the Manhattan heuristic [4] [5] for path-finding on maps. More 

details about A* algorithm and heuristic are described in next section.  

 

1.5 Scope 

 

Since multi-core technology is growing day by day, we wanted to develop 

the algorithm so that it exploits the multi threaded nature of the hardware. The 

intention of this project is the implementation of the A* shortest path finding 

algorithm on a multi-core graphics card using CUDA architecture provided by 

NVIDIA. Afterward different variations/optimizations of A* algorithm are 

studied and are implemented to more increase the speed and efficiency of the 

algorithm.  These different optimizations done on A* are described as follow: 

 

1. Pre-Path Calculations: Some way points are defined on the 

search area and shortest paths are calculated for each pair of way 

points and stored in the memory. These pre-stored paths are then 

used during online searching new paths. When a new path search 
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will start, the algorithm will check whether any path (or a portion 

of the path) is close to new search and already computed and 

stored. If yes, then that pre-computed path or portion of the path 

is simply added to the final path, and not searched online. This 

will reduce the total search time and effort effectively. If no pre-

calculated path is matched with the new search, the new path will 

be computed completely. 

 

2. Threads Helping Each Other: Many are searching a path using 

shared memory and thread synchronization. In our case, eight 

threads are used to search the optimal path per agent (agent 

characterizes a possible paths on the walkable nodes). Thread 

synchronizations are used at different stages on the A* algorithm. 

The purpose is to check the effects of using the shared memory 

and thread synchronizations on the total search time of A* 

algorithm.   

 

3. Hierarchical Breakdown: Larger problems and big search 

spaces take a lot of time, effort and memory to calculate very 

long paths. One solution is to sub-divide the search space into 

many smaller parts called clusters. These clusters are joined with 

each other using some connection point called exit points, and a 

weighted abstract graph is built in this way. Optimal paths 

among the exit points per cluster are calculated and stored. 

Hence, using the method of abstraction, the whole search space 

is reduced into a small weighted abstracted graph that will be 

used for all searches.  A specific path is searched in three stages. 

First the start and target points are connected to the abstract 

graph. Then the complete path from start to target point is 

searched on the abstracted graph. This path does not provide a 

detailed path. In third stage, the process of path refinement is 

used to make a detailed path. Already searched and stored paths 

among the exit points of clusters are then placed together at 

proper places, thus making the complete path. 

 

1.6 Objectives  

 

Since multi-core technology is growing day by day, we wanted to develop 

the algorithm so that it exploits the multi threaded nature of the hardware and in 

this way develop an implementation of the A* search algorithm that is very fast 

and efficient. It was also intended to find balance between each thread's resource 

usage and the number of simultaneously active threads. 
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We aim to adopt the simple A* algorithm for multicore platform running on 

many threads concurrently, and to observe its efficiency, thread synchronizations, 

and resource utilizations. Especially the memory requirement becomes very 

important for large search areas. We want to find out the effect of increase in 

search area on the efficiency and memory requirement of the algorithm. We want 

to explore which optimizations to be done on A* algorithm running on GPU to get 

efficient results for larger search spaces. 
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2 The System Model 

 

2.1 The System Model 

Graphics processors were mainly used only for graphics applications in the 

past. But now modern GPUs are fully programmable, highly parallel architectures 

that delivers high throughput and hence can be used very efficiently for a variety 

of general purpose applications. 

 

 
NVIDIA's graphics card is a new technology that is extremely multithreaded 

computing architecture. It consists of a set of parallel multiprocessors, that are 

 

 
Core 1 

Shared Memory 

 
Core M 

. . . 

 
Core M ... 

 
Core 1 ... 

Shared Memory 

Device 

Multiprocessor 1 Multiprocessor N 

Constant Cache 

Texture Cache 

Constant Cache 

Texture Cache 

Device Memory: Global, Constant, and Texture Memories 

Figure 1: The CUDA System Model. 
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further divided into many cores and each core executes instructions from one 

thread at a time as described in Figure 1. Hence all those computations in which 

many threads have to execute the same instruction concurrently, also called data-

parallel computations, are well-suited to run on GPU.  

 

NVIDIA has designed a special C-based language CUDA to utilize this 

massively parallel nature of GPU. CUDA contains a special C function called 

kernel, which is simply a C code that is executed on graphics card on fixed 

number of threads concurrently. For defining threads, CUDA uses a grid structure.  

 

 

2.2 Heterogeneous Architecture 

 

CUDA programming paradigm is a combination of serial and parallel 

executions. Figure 2 shows an example of this heterogeneous type of 

programming. The simple C code runs serially on CPU also called host [6].  
 

 

 
 

 

 

Parallel execution is expressed by the kernel function that is executed on a 

set of threads in parallel on GPU; GPU is also called device. This kernel code is a 

Figure 2: Heterogeneous Architecture 
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C code for only one thread. The numbers of thread blocks, and the number of 

threads within those blocks that execute this kernel in parallel are given explicitly 

when this function is called.     

 

The kernel function can only be invoked by serial code from CPU. To call 

the kernel function, the execution configuration must be specified, i.e., the number 

of threads in a thread block and number of threads within a grid. To declare grid 

and thread blocks CUDA has a predefined data type dim3, an integer vector type 

that specifies the dimensions of the grid and thread blocks. In the kernel function 

call grid and block variables are written in three angular brackets <<< grid, block 

>>> as shown in Figure 2Error! Reference source not found.. In this invocation, 

grid and thread blocks are created dynamically. The value of this grid and block 

variables must be less than the allowed sizes which are given in next section. The 

threads are scheduled in hardware and not in software. Kernel function has always 

a return type void. It has a qualifier __global__ that means this is a kernel function 

to be executed on GPU. See Figure 3 for a graphical description of grid and thread 

blocks. 

 

 

2.3 The Grid and block structures 

 

The Grid consists of one-dimensional, two-dimensional or three-

dimensional thread blocks. Each thread block is further divided into one-

dimensional or two-dimensional threads. A thread block is a set of threads 

running on one processor. Figure 3 describes a two-dimensional grid structure and 

a two-dimensional block structure. Within a thread block, threads are organized 

together in warps. Normally 32 threads are grouped in one warp. All threads of a 

warp are scheduled together for execution.    

 

All threads of a single thread block can communicate with each other 

through shared memory; therefore they are executed on the same multiprocessor. 

In this way it becomes possible to synchronize these threads.  

 

The CUDA paradigm provides some built-in variables to use this structure 

efficiently. To access the id of a thread block the blockIdx variable (values from 0 

to gridDim-1) is used and to access its dimension the blockDim variable is used 

while gridDim gives the dimensions of the grid. Each individual thread is 

identified by threadIdx variable, can have values from 0 to blockDim-1. WarpSize 

specifies warp size in the threads. All these variables are built-in in kernel. The 

maximum allowed sizes of each dimension of grid is 65535, and x, y, and z 

dimensions of a thread block are 512, 512, and 64, respectively [1] [6].  
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The allocation of the number of thread blocks to each multiprocessor is 

dependent on the necessity of the shared memory and registers by each thread 

block. More memory and registers requirement by each thread block means 

allocation of less thread blocks to each multiprocessor. In this case the remaining 

thread blocks have to wait for their turn for execution.  

 

 

 
 

 

All this threads creations, their execution, and termination are automatic and 

handled by the GPU, and is invisible to the programmer. The user only needs to 

specify the number of threads in a thread block and the number of thread blocks in 

a grid. 

 

2.4 Memory Model 

 

 All multiprocessors access a large global device memory for both gather 

and scatter operations. Memory model is described graphically in Figure 1. This 

memory is relatively slow because it does not provide caching.  

 
Block (0, 0) ... 

 
 Grid 

 Global Device Memory 

 
Block (N, 0) 

 
Block (N, M) 

 
Block (0, M) ... 

 Shared Memory 

 Shared Memory  Shared Memory 

 Shared Memory 

Block 

 

Thread (0, 0) ... 
 

Thread (N, 0) 

 Registers 

 Registers 

 Registers 

 Registers 

 

Thread (0, M) 

 

Thread (N, M) ... 

Figure 3: The CUDA Grid Structure and Block Structure. 
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Shared memory is fast as compared to device memory and normally takes 

the same amount of time as required to access registers. It is also called parallel 

data cache (PDC). Shared memory is “local” to each multiprocessor unlike device 

memory and allows more efficient local synchronization. It is divided into many 

parts. Each thread block within multiprocessor accesses its own part of shared 

memory and this part of shared memory is not accessible by any other thread 

block of this multiprocessor or of some other multiprocessor. All threads within a 

thread block that have the same life time as of the block, share this part of 

memory for both read and write operations. As shared memory space is only 

16KiB, so it must be used efficiently. To declare variables in shared memory 

__shared__ qualifier is used and to declare in global memory __device__ qualifier 

is used. 

 

Each multiprocessor also has its own read only caches to speed up read 

operation. These are constant cache and texture cache memories.  
 

Each thread also contains its own local memory. Normally local variables of 

the kernel functions are allocated here. Sometimes they are allocated on global 

memory. 

 

 

2.5 Thread Synchronization 

 

For synchronization purpose among threads CUDA API provides a 

hardware thread-barrier function syncthreads() that acts as synchronization point. 

As threads are scheduled in hardware, this function is implemented in hardware. 

The threads will wait at the synchronization point until all of the threads have 

reached at this point. The communication among threads (if required) is possible 

through per-block shared memory. Hence thread synchronization is possible only 

at thread block level. Since threads of a thread block may communicate with each 

other, these threads must execute on same processor. That is why thread block is 

guaranteed to execute on one processor.  

 

 

2.6 Control Flow 

 

As the kernel function runs on the device, memory must be allocated on 

device in advance before kernel function invocation and if the kernel function has 

to execute on some data then the data must be copied from the host memory to the 

device memory. Device memory can be allocated either as linear memory or as 

CUDA arrays. Qualifier __device__ at the start of a variable specifies that space 

for this variable is allocated on the device memory. CUDA API [6] also has 
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functions to allocate and de-allocate device memory at run time like 

cudaMalloc(), cudaFree(), etc.  Similarly, after the execution of kernel function, 

data from device memory must be copied back to host memory in order to get 

results. To copy data to and from the device to host CUDA API provides 

functions for example cudaMemCpyToSymbol(), cudaMemCpyFromSymbol(), 

cudaMemCpy(), etc. Keeping all this in view the processing flow is as follows: 

 

1. Allocate memory on host and device separately. Device memory is 

readable and writable by the host through the memory copy functions. 

2. Copy data from host to device using CUDA API if required. 

3. Kernel function executes parallel on each core.  

4. Copy data back from device to host using CUDA API. 

 

 

 

 

Figure 4 illustrates an example of processing flow of CUDA. In first step 

two arrays of same size are declared, one on the host and one on the device. The 

data from the host is copied to the device using CUDA API cudaMemCpy(). The 

kernel function runs in parallel on the device and in last step the results are copied 

back to the host using cudaMemCpy() function. 

Figure 13: The CUDA Grid Structure and Block Structure 

Device 

 
Block (0, 0) 

 
Block (N, 0) 

 
Block (N, M) 

 

Block (0, M) 

 

RAM 

 

1.  int array[total]; 

__device__ int darray[total]; 

2. CudaMemCpy (darray,                                                                               

array,…); 

3. funcArray <<<grid, 

block>>> (…); 

4. CudaMemCpy (array,                                                                               

darray,…); 

1 

1 

2 4 

3 

... 

... 

 Figure 4: An example of processing flow. 
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2.7 Restrictions 

 

To use general purpose GPU we must follow the restrictions of the CUDA 

programming paradigm. Some of the restrictions are given below: 

 

Simple C programming is supported by the CUDA compiler. It lacks the 

use of object-oriented or C++ features in device code. 

 

Heterogeneous architecture is used to make an interaction between CPU 

and GPU programming models. Data may be copied from host memory to device 

memory and the results are copied back to host from the device memory. 

Heterogeneous programming is discussed in section 2.2 and described graphically 

in Figure 2.  

 

Kernel function invocation: The grid, thread blocks, and threads are 

created by the kernel function invocation from the host. This is the only way to 

create them. They cannot be created inside the kernel function. The grid, and 

thread blocks are discussed in section 2.3 and Figure 3. Moreover the number of 

grids and thread blocks must not exceed their maximum allowed values.   

 

The kernel functions do not return any results, i.e. its return type is always 

void. Further the kernel function call is asynchronous. It means that control 

returns back before the completion of the kernel function on the device. More 

information can be found in CUDA programming guide [1]. All functions with 

the __device__ qualifier are by default inline. 

 

Recursion is simply not allowed within kernel functions because of the 

large amount of memory requirement for the thousands of thread.  

 

The device memory allocation and de-allocation at run-time is possible 

only when using host code and before calling the device code. It means that 

within the device code, the device memory cannot be allocated nor de-allocated 

using the functions like cudaMalloc(), cudaFree(), etc. All the allocations required 

for a specific kernel function are done before calling that kernel function in the 

host code and similarly all that allocated device memory is de-allocated after the 

completion of that kernel function in the host code.  

 

Shared memory is shared among the threads on the same thread block 

only. Threads from different thread block cannot share it. This concept is 

discussed in section 2.4 and graphically shown in Figure 3. 

 

Built-in variables such as blockIdx, threadIdx, etc, cannot be assigned any 

values. Further it is not possible to take their address. 
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The variables declared with __device__, __shared__, or __constant__ 

qualifiers also have some restrictions [1]. Address of a variable with any one of 

these qualifiers can only be used within the device code.   

 

Communication and synchronization among threads are only possible at 

thread block level. Communication among thread blocks is not allowed. Section 

2.5 explains the thread synchronization. 
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3  A* Algorithm 

 

3.1 A* Path finding Algorithm 

 

A real challenge for an agent in real time games is to find the route from the 

start node to the goal node in presence of other agents and obstacles. In the 

presence of obstacles, the path moves around the obstacle and reaches the goal. 

This path should be of minimum cost or in other words it should be the shortest 

possible distance.  

 

A* is a shortest path finding algorithm that uses informed search technique 

to find the least-cost path from the start node to the goal node. The classic 

representation of the A* algorithm is as follow [7]: 

 

“f(x) = g(x) + h(x)” 

 

f(x):  is called the distance-plus-cost heuristic function (or simply F cost) and it is 

the sum of path-cost function g(x) and heuristic function h(x). 

 

g(x):  the path-cost function (or simply G cost) is the actual total cost of the path 

to reach the current node x from the start node.  

 

h(x): is the estimated cost (or simply H cost) of the path from current node x to 

the goal node. An estimate is made that tells how far the goal node is from the 

current node x. h(x) must be an admissible heuristic estimate. A heuristic function 

is said to be admissible if the cost of path estimated by it never exceeds the 

lowest-cost path. Since h(x) is part of f(x), f(x) is dependable on h(x) for the 

lowest cost of path. It means when h(x) is admissible, A* algorithm is guaranteed 

to give the shortest path if one exists. Therefore, h(x) must not overestimate the 

cost.  

 

There are many different heuristic functions used for the grid maps. Some 

famous heuristics are Manhattan distance, diagonal distance, Euclidean distance.  

We are using the Manhattan distance to estimate h(x) because it works better on 

squared grids [4] [5]. It is the direct distance from current node to the goal node 

without considering obstacles in the path. In this way h(x) is giving us the lowest 

possible cost to reach the goal node. 
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3.2 Implementing Parallel A* 

 

3.2.1 Map Representation   

 

Generally computer games use grids for the world representation. We are 

considering the map as a uniform two-dimensional grid that is subdivided into 

small square shaped tiles, as shown in Figure 5. Map has walkable and non-

walkable tiles; the obstacles are represented as non-walkable tiles. In Figure 

5Error! Reference source not found., the obstacles are represented by the gray 

tiles. The algorithm searches only walkable tiles of the map. All non-walkable 

tiles are simply ignored. Hence, each tile represents a node in the algorithm, and is 

either walkable, or non-walkable.  

 

 

 

 

Figure 5: A* algorithm search area in light blue; Green is start node; Red is goal 

node; Gray represents unwalkable nodes. 

 

 

Units can move to the adjacent tiles (eight adjacent tiles in our case) 

including diagonals too. Cost to move straight to the adjacent tile is 10, while the 

diagonal movement cost is kept 14. 

 

3.2.2 The Nodes 

 

A* search algorithm finds the optimal path in the presences of obstacles 

depending on F cost value of nodes. The nodes with lower F cost values are 
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remembered and searched first. The nodes that have already been visited are also 

remembered, so that they are not checked repeatedly. In this way each node gets 

one of the following statuses, „not visited‟, „open‟, or „closed‟. All the visited 

nodes to find a path from start node to the goal node are called search space and 

they are represented in blue in Figure 6Error! Reference source not found..  

 

3.2.3 Open List 

 

The node that has been visited is called „open‟ and is placed on the open list. 

When all neighbor nodes of an open node have been visited (means placed on 

open list), its status is changed to „closed‟ and this node is removed from open 

list. Hence on each pass, one node is removed from the open list and at maximum 

eight neighbor nodes are placed on it.  

 

The open list array is sorted using binary heap sort. It sorts the nodes 

according to their F cost values. An optimized way to maintain this sorted list is 

the use of priority queue [8]. 

 

3.2.4 Algorithm flow 

 

Algorithm starts when the current node (start node at the beginning) is 

placed on open list. Then its eight adjacent neighbor nodes are visited and are put 

on the open list, their status becomes open, their G cost, H cost, and F cost values 

are computed and G cost and F cost values are stored. The parent of all these 

neighbor nodes is the current node. Therefore, current node‟s id is stored as Parent 

of these neighbor nodes. The current node is done at this stage and its status is 

changed to closed, and it is removed from the open list. 

 

Using lowest F cost values, A* algorithm keeps on moving towards the goal 

node and finds the shortest possible path in presence of obstacles (non-walkable 

nodes). 

 

3.2.5 Storing the final path 

 

We are storing the parent of each node. It helps in retaining a path at the end 

of the search, if a path exists. As the search starts from the start node, thus start 

node has no parent. By visiting the walkable neighbor nodes of this start node, 

these neighbors become child nodes of the start node, or in other words, all 

walkable neighbor nodes has a parent that is the start node. In the next step, these 

neighbor nodes become parent nodes of other visited nodes, and so on. In Figure 

6, arrows point towards the parents. 
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Figure 6: Arrows are pointing towards parent nodes; final path is represented 

using cyan arrows. 

 

 

At the end of the search, if the path is found, the optimal path is retrieved by 

moving backwards from the parent of target node towards the start node. This 

optimal path is stored in the path array. In Figure 6 the optimal path is shown by 

arrows of cyan color. 

 

3.2.6 Structure 

 

The structure used to represent a walkable node is C struct type named 

“node”. It contains the following fields: 

1. Status – store the status of current node. It can take one of these 

three values, not-visited, open, or closed. At start all nodes have 

status not-visited. 

2. Parent – stores the parent node‟s id. 

3. Gcost  – stores the actual cost to travel from start node to the current 

node. 

4. Fcost –  records the F cost value for node. 

 

An array of node type is used in the algorithm for all nodes of the map. The 

index of the array represents the unique id of each node.  
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3.3 Priority Queue as Binary Heap  

 

A* algorithm needs a list to insert and remove elements/nodes/items 

according to their F cost value that is f(x). A* generally removes one node on 

every pass, and usually adds from zero to eight new nodes to the list. The node 

with the lowest F cost value is removed first and the list should be rearranged 

after insertion of every new node to it. This takes a lot of time, so some efficient 

way should be used to maintain this list. Moreover, for larger maps it becomes 

more essential. The use of a priority queue is well-suited in this situation [8]. We 

are implementing a priority queue as a sorted list and are using binary heap to sort 

the nodes according to the lowest F cost value. 

 

The priority queue is maintained to fetch the node with the lowest F cost 

value and to insert the node at its appropriate position in the queue according to its 

F cost value. Binary heap is very fast in this situation of numerous insertions and 

deletions to queue that are dependent on F cost.  If priority queue has N number of 

elements, then average efficiency to insert and remove the elements on the priority 

queue is O (logN). 

For example consider the heap with 1000 nodes on it.  Using a binary heap, 

an average of three comparisons are needed to insert it in the right place, starting 

from the bottom of queue, and in worst case nine comparisons are required. And 

an average of about nine comparisons is needed to remove an item from the open 

list and reorder the heap appropriately. Worst case requires 18 comparisons.  

 

3.3.1 Inserting Items to the Priority Queue 

The priority queue is implemented as a sorted list using binary heap sort. 

Figure 7 shows a simple queue containing n-1 elements. A new element is 

inserted at the tail end of the queue. This shown is Figure 8Figure 8; total number 

of elements is n now.  

 

 

 

1      2                               (n-1)

  
 

Figure 7: Binary heap with (n-1) elements 
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Now we need to place this element according to its priority, the F cost 

value. So we start by comparing the F cost value of this element with its parent‟s 

F cost value. If its F cost value is lower than its parent‟s F cost, the two elements 

are swapped. This is described in Figure 9. The newly inserted element is now at 

the position n/2. This element is again compared with its new parent (at position 

n/2/2), and if its F cost value is lower than its parent‟s F cost, they are swapped as 

described in Figure 10. This process continues until the item is not lower than its 

parent, or until the element has reached to the top of array.  

 

3.3.2 Removing Items from the Priority Queue  

In A* path finding we need to delete the lowest F cost item. This element is 

the top of the queue at position 1, shown in Figure 11. So first, the item in position 

1 is removed, which then becomes empty. Now we need to resort the list to place 

the element of lowest F cost value at first position. We start it by moving up the 

last item of the heap to position 1 as given in Figure 12. Next we compare F cost 

value of this element with its two children‟s F cost values. If its F cost is lower 

than both the children‟s F cost values, the process finishes, otherwise it is 

1      2                                    (n-1)     n  

 

1      2   ((n/2)/2)            (n/2)                              n  

 

1      2              (n/2)                              n  

 

Figure 8: Inserting nth element at the end of heap. 

Figure 9: Comparing nth element with the element at (n/2) position. 

Figure 10: Comparing element at (n/2) with the item at position ((n/2)/2). 
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swapped with the lowest F cost value child. This is revealed in Figure 13 and 

Figure 14. This process is continued until the list finishes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Pseudo code 

Summarizing everything the pseudo code is given here: 

1. Generate the map with walkable and non-walkable nodes.  

2. Create open list that is initially empty.  

1      2 3     4 5                             (n-1)

  
Figure 14: Comparing next element with its two children and swapping with lower Fcost of 

the two children and so on until list finishes. 

1      2 3                              (n-1)

  

1      2                                                 n  
 

1      2                                    (n-1)     n  

 
Figure 12: Move nth element at the 1st position of heap. 

 

 

Figure 11: Deleting lowest F cost element from position 1. 

Figure 13: Comparing Ist element with its two children at positions (current 

position*2) and (current position*2+1) and then swaping with lower FCost of 

the two children. 
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3. Create start node and target node. Place start node on open list.  

4. While open list does not become empty and path not found, do the following: 

4.1. Remove the node with lowest F cost value from the open list. This node is 

now called current node. 

4.2. Change the status of current node as closed.  

4.3. Do the following for each adjacent node (eight in our case) of the current 

node: 

4.3.1. If adjacent node is within the map boundaries and it is walkable 

and its status is not closed then do the following: 

4.3.2. If adjacent node is not on open list then place it on open list, make 

current node as parent of this node, and store its G cost and F cost 

values. Also change its status to open. 

4.3.3. If adjacent node is on open list (means its status is already open) 

then recalculate G cost value. If new G cost is less than already 

computed G cost then change the parent node and store newly 

computed G cost and F cost values and resort open list.  

 4.4. When the target node‟s status becomes open, the path is found.  

5. When open list becomes empty, it means path does not exist.  

 

 

3.5 Admissibility and Optimization 

 

“Any graph search algorithm is said to be admissible if it always returns an 

optimal solution that is the one with the lowest cost, if a solution exists at all” [9]. 

However, A* is only admissible if the heuristic you use never over-

estimates the distance to the goal. To estimate h(x) we are using Manhattan rule 

[4] [5]. It calculates the shortest possible distance between two nodes without 

considering obstacles in the path and gives us the lowest possible cost to reach the 

goal node. Hence A* is admissible and considers few nodes because it only 

searches the nodes with lowest path costs to reach the target. When A* terminates 

its search, it has found a shortest path or the path does not exist. 

Some optimizations should be done to improve the performance of the 

algorithm. Some optimizations done in the code of A* algorithm are given here.  

1. The node with the lowest F cost is to delete always from the 

open list in each search loop. A priority queue is used to keep 

the nodes sorted according to the lowest F cost value. This 

priority queue is implemented using binary heap whose 

average efficiency O (logN). This enables the items be 

removed efficiently always.  
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2. Another optimization is done in storing the path after A* 

algorithm has found it. To store path, we need to backtrack it 

from target node towards the start node. To make this 

backtracking easy and efficient, the parent node‟s id of each 

node along the path is stored. This parent id is used to retrieve 

the final path at the end of the algorithm if the path is found.  

 

3.6 Different Variations of the Algorithm 

 

We have made the following three improvements to the parallel A* 

algorithm to allow it to work faster and on larger maps. 

 

 Pre-stored Paths: It is the use of pre-calculated paths for commonly 

used paths. 

 

 Multiple Threads per Agent: multiple threads work together on the 

same path using shared memory and thread synchronization.  

 

 Hierarchical Breakdown: It is path slicing and path putting together 

activity. Instead of computing the complete path as a whole, the path is 

calculated in many segments. This makes it possible to calculate more 

paths concurrently on big maps than was possible before. Very large 

maps are broken down into many clusters and paths are computed at a 

higher level of abstraction using path abstraction. All the segments of a 

path are then joined together to make a complete path using path 

refinements.  

 

All these three improvements are explained in details in the following 

sections. 

 

3.7 Pre-stored Paths 

When many agents are finding paths in parallel on a search area, some 

paths are repeated either fully or partially. So it is only waste of time and effort to 

calculate all paths completely every time. One way to solve this is to compute 

some paths in advance and store them. The algorithm will run in two phases: first 

to find some paths and store them, and second to run all agents concurrently and 

finding their respective paths with the usage of these pre-stored paths.  

The first phase is very simple and includes only few paths to be computed. 

In second phase, when a new agent starts to find a path, first it checks in pre-
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stored paths whether this path has been already computed and stored. If yes then 

there is no need to compute it again, hence the search is stopped and path is 

simply copied. If no then agent will check for some partially pre-computed paths. 

It will check whether any pre-stored path‟s end point and it‟s to be computed 

path‟s target point are same. After this, agent starts calculating its path. Every 

time at the selection of „current node‟ agent checks whether this current node 

exists on the pre-stored path. Its existence means that the rest of the path has 

already been computed, so path finding is stopped at this point. The first portion 

of the final path is computed and the last portion of the path is simple taken from 

the pre-stored path and appended with first one. In this way effort is put to 

compute only a portion of the path. In case no pre-stored path is matched fully or 

partially, the new path is computed completely. 

 

3.8 Multiple Threads per Agent 

 

To exploit the parallel hardware architecture in a true sense, the software 

running on it should be adopted to run concurrently using multiple threads. The 

software should be changed to utilize multithreading, shared memory access, and 

achieve concurrency controls. For the adoption of A* using multiple threads, 

some improvements are required in the basic algorithm. When many threads are 

finding a particular path, and all these threads are accessing some shared memory, 

thread synchronization becomes essential for correct execution of the algorithm. 

 

For implementation of A* algorithm running with Multiple threads per 

agents, I am using eight threads in parallel to find an optimal path. Eight threads 

are used because the grid illustration is used for the map representation in which 

each node has maximum eight neighbors. Now these eight threads work 

concurrently on these neighbors of current node instead of one thread working in 

a loop. A data structure called a „temporary list‟ on the CUDA shared memory is 

used by these eight threads. It is an array of eight places; one place is accessible to 

each thread.  

 

In this new multiple threads implementation of the algorithm some 

changes are made. One thread starts execution of the initial portion of algorithm 

and executes until the current node is selected. Other threads remain in waiting 

state. Thread synchronization is used here to accomplish this. After selecting 

current node, all the eight threads run in parallel to work simultaneously on all the 

eight neighbors of the current node. All these adjacent or neighbor nodes are 

checked, their G cost and F cost values are calculated, their statuses are checked 

and/or changed and they are put on the temporary list. Thread synchronization is 

done here so that all the threads finish their execution before going further. After 
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this step only one thread runs for the remaining portion of the algorithm and 

places all the values of temporary list onto the open list. 

 

 

3.8.1 Pseudo Code 

 

Summarizing all this, the modified algorithm is given below. Eight threads run 

in parallel on portion of pseudo code written in italics. 

 

1. Generate the map with walkable and non-walkable nodes.  

2. Create open list that is initially empty.  

3. Create start node and target node. Place start node on open list.  

4. While open list does not become empty and path not found, do the following: 

4.1. Remove the node with lowest F cost value from the open list. This node is 

called now current node. 

4.2. Change the status of current node as closed.  

 

4.3. Thread Synchronization is done here. Eight threads run in parallel, each 

works on one adjacent node of the current node. 

4.3.1. If adjacent node is within the map boundaries and it is walkable 

and its status is not closed then do the following: 

4.3.2. If adjacent node is not on open list then place it on temporary list, 

make current node as parent of this node, and store its G cost and 

F cost values. Also change its status to open. 

4.3.3. If adjacent node is on open list (means its status is already open) 

then recalculate G cost value. If new G cost is less than already 

computed G cost then change the parent node and store newly 

computed G cost and F cost values and resort temporary list.  

4.4. Thread Synchronization done here. 

 

4.5. Temporary list is stored on open list. 

4.6. When the target node‟s status becomes open, the path is found. 

5. When open list becomes empty, it means path does not exist.  

 

3.9 Hierarchical Breakdown of A* 

Two improvements made on simple A* algorithm, i.e. Pre-path 

calculations and Multiple threads per agents have shown significant 

improvements in calculating many paths in less time. Simple A* algorithm and 

these two improvements on it give good results only on small sized images. As 

the size of the images increases, the memory requirements of the algorithm also 

increases which results in less number of thread groups to run parallel on CUDA 



33 

 

architecture, hence not only the time required to find paths increases but also 

limits the total number of threads that can run concurrently. Thus for larger maps 

some techniques must be used to overcome the memory limitations of underlying 

graphics card and CUDA architecture. 

One way to solve this problem for large sized images is “finding A* path 

hierarchically” [10]. It is finding paths in small parts or slices and then putting 

those path slices together. We have implemented hierarchical path finding A* on 

graphics card. The search space is divided into smaller portions called clusters. 

Instead of applying search on whole map, search is applied on smaller portions of 

the map, hence fulfilling the memory limitations of underlying graphics card and 

CUDA architecture. The whole process of path finding is done in two steps; Path 

Abstraction and Path Calculation. 

 

Path Abstraction: also called path slicing, is a onetime activity in which 

an abstract weighted graph is made from the grid map representation. This graph 

is stored in memory and all the further path finding is done at a higher level of 

abstraction using this weighted graph.  

 

Path Calculation: All the actual paths are computed after path 

abstraction. This is done in the following three steps: 

1. In the first step all the start and target nodes are added to the abstract 

weighted graph. 

2. Complete abstract paths are computed on abstract weighted graph at a 

higher abstraction level. Abstract paths do not include low-level path 

details.   

3. Third step is called path refinement in which all the abstract paths are 

refined to the low level paths. Detailed paths are patched up to 

abstract path to give a complete path. 

Path abstraction and path calculation processes are discussed below in details. 

 

3.9.1 Path Abstraction 

 

Path Abstraction is the procedure to make an abstract weighted graph from 

a grid representation of a map. Figure 15 shows grid representation of a map used 

to take the results. The whole grid map is divided into smaller parts called 

clusters. These clusters are connected to each other at specific points on the 

borders of the clusters. These points are called the exit points. Clusters of sizes 

20*20 pixels are given in Figure 16. Different clusters are shown in different 

colors in and the exit points at borders of these clusters are shown in the red color. 

These exit points are connected in the two following ways:  
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1. Exit point at the border of one cluster is connected to the adjacent exit points 

at the border of adjacent cluster if both are walkable. In this way two adjacent 

clusters get connected to one another and the cost/weight of this 

connection/edge is 10. These exit points are not connected to the diagonal 

clusters at the corners. This is called an inter-edge [10] as it connects two 

different clusters together. One cluster can be connected to its adjacent cluster 

at maximum three different places, at top, at bottom, and at the middle. If any 

node at these places is unwalkable, then an adjacent place is considered for 

the exit point and so on.  

 

 

 

Figure 15: Grid representation of a map used to take the results. 

 

 

For example consider the top left cluster of the Figure 16. It is adjacent to two 

other clusters, one at its right and one at its bottom. Looking at top left cluster 
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and the cluster at its right, we see that the top eight adjacent nodes are 

unwalkable therefore they cannot be considered for the exit points. The ninth 

node at the border line of both clusters is walkable therefore they are taken as 

the exit points. These two clusters are connected at two more exit points; in 

the middle and at bottom of the clusters. Hence in this way each cluster can 

be connected to maximum four adjacent clusters at maximum 12 exit points. 

Figure 16 is generated from the system and displays all the clusters with the 

connecting exit points. 

 

 

 

Figure 16: All the clusters with the connecting exit points. 

 

 

2. In the second step optimal paths among exit points of each cluster are 

calculated using simple A* algorithm implementation on GPU and then 

stored. Each exit point of a particular cluster is connected directly to all other 

exit points in the same cluster. As these edges are connecting exit points 

within the clusters, therefore, they are, called the intra-edges. Figure 17 
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illustrates intra-edges of the top left corner of the map. The actual costs of 

these paths are computed. This cost becomes the weight of edge.  

 

 

Figure 17: Illustrates intra-edges of the top left corner of the map. 

 

Consequently an abstract weighted graph is made using all inter-edges and 

intra-edges. An adjacency list is used to store this abstract weighted graph. In first 

step, as both connecting exit points are adjacent to each other, therefore; there is 

no need to calculate the path among them. Therefore, they are simply stored on 

the adjacency list and the cost of edge between them is 10. In step 2, the simple 

A* algorithm implementation for GPU is used to calculate the optimal paths 

between exit points. All these paths are computed concurrently on GPU. The 

algorithm searches for each path only on a small portion of the map, i.e. within 

one cluster and this one-time activity is very fast. The actual costs of paths, i.e. G 

costs are stored as weights of the edges on adjacency list. The paths are stored on 

a separate list called path list.  
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3.9.2 Path Calculation 

All the actual paths are computed in this step. It is accomplished in three 

steps.  

In first step all the start and target nodes are added to the abstract graph. It is 

done by connecting each start and target point to all exit points of their respective 

clusters. For example, if a start node lies on top left cluster, then this start node is 

connected to all the exit points of that top left cluster. This start node, with the 

cost to reach each exit point is appended to the adjacency list. In this way the start 

node is attached to the abstract weighted graph. Paths from this start node to the 

exit points are stored on the path list. The Simple A* algorithm implementation 

for GPU is used to achieve this.  

In second step the complete abstract paths are calculated on abstract 

weighted graph at higher level of abstraction. A* search is made on adjacency list 

instead of actual map. Paths found at this higher level are optimal and small. They 

only include the high level moves, i.e. moving from one cluster to another cluster 

until target node is reached without considering low-level detailed paths within 

the clusters. The adjacency list is much smaller in size as compared to the actual 

map size, therefore; the search is fast. Further the smaller size of adjacency list 

also overcomes the memory limitations of GPU architecture.  

Third step is the refinement of abstract paths. It just patches up all the low-

level paths already stored in path list to make a complete path. Paths at lower level 

of abstraction are not optimal. 

 

 

3.10  Literature Review 

 

A* algorithm has been very famous for its reduced search space by the use 

of heuristic function [2]. Further priority queue‟s implementation as binary heap 

reduces complexity to O (logN) for N elements. It is fast but one problem with 

this algorithm is the exponential growth of memory requirement.  Iterative-

Deeping A*, IDA* [11] uses less memory as it does not remember the visited 

nodes, but it needs exponential time to run and reach the goal node. Learning Real 

Time Algorithm LRTA* [12] learns an exact heuristic function and presents better 

results in both space and time complexities over the previous two algorithms, but 

it can take a lot of time to learn an accurate heuristic function. [13] provide 

different factors that affect the performance of Pathfinding especially in game 

environment.  
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Hierarchical A* [14] is a technique represents space in an hierarchical 

fashion. To reduce search space it uses a heuristic to create homomorphism 

abstractions automatically. It uses algorithms for caching to reduce the number of 

visited nodes. The method of graph abstraction and refinement used in 

Hierarchical A* was designed by [15].   

 

Hierarchical Pathfinding (HPA*) [10] divides the search space into sectors 

with a limited numbers exit points connecting the sectors, instead of abstracting 

the graph directly from search space. The path quality is improved by using path 

smoothing. This method increases the performance at the cost of path optimality. 

Hierarchical Annotated A* (HAA*) [16] is an extension of HPA* and provides a 

hierarchical path finding using multi-size agents (agents can be of different sizes) 

and using heterogeneous environment (terrain can be of different types, e.g. plain, 

tree, water, hill, unwalkable).    

 

Sturtevant and Buro provide a method of automatic state-space abstraction 

called Partial Refinement A* (PRA*) [17] by which a multi-level graph 

abstractions to reduce the search space. The complete abstract graph is made by 

mapping one or more states to a single abstract state and mapping adjacent 

vertices to adjacent or identical vertices at higher abstraction level.  The paths are 

computed at higher abstractions and then refined. The drawback is the loss of path 

optimality. These abstractions can also be built dynamically or combined with 

LRTA* [18]. [19] implements  the Windowed Hierarchical Cooperative A* 

(WHCA*) and Cooperative Partial-Refinement A* (CPRA*) algorithms where 

path are found in eight directions instead of four, and the agents travel freely in 

the environment and share information to avoid collisions. A comprehensive 

empirical evaluation is performed [20] on 3000 problems using different map 

sizes from 139 * 148 to 193 * 193. Experiments are performed using state-space 

abstraction [17] and evaluating its effects on two real-time heuristic search 

methods, Learning Real-Time Search (LRTS) which is an extension of LTRA* 

and Path Refinement Learning Real-Time Search (PR LRTS). In [21] authors 

present a technique reduce the number of collisions between agents through the 

sharing their direction of movements with each other.     

 

All of these algorithms and their results are implemented on single core 

processor. Avi Bleiweiss [22] implemented the A* algorithm on the graphics card 

and showed that the results are much faster than the CPU implementations. He 

used graphs to represent the search space, and thousands of agents run in parallel 

on GPU each finding one path. Our implementation of simple A* algorithm on 

graphics card gives approximately same results as that of [22]. We have used 

array for search space. The problem with running simple A* algorithm on GPU is 

the increasing memory needs with the increase in map size (search space). 

Moreover these two implementations do not utilize multithreading or shared 

memory of the graphics processors.   
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To find path on bigger maps, we implemented HBDn A* on graphics 

processors. For hierarchical breakdown we use the path abstraction and 

refinement technique, very much influenced from [10]. We are dividing the search 

space into clusters which are connected to each other at three different points as 

compared to [10] where clusters are connected at only two points. As a 

consequence the abstract weighted graph contains greater number of nodes than 

[10]; hence helps in increasing the path optimality. We have used only two-level 

graph abstraction to keep it simple on GPU. 
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4 Experimental Evaluation 

 

 

The results taken for all the four implementations i.e. parallel A*, Pre-stored 

Paths, Multiple threads per agent, and implementation of hierarchical breakdown 

of A* are given in the following sections. 

 

4.1 Graphics Card Used 

 

The graphics card used to run the experiments was a NVIDIA‟s GeForce 

GTX 260 with 24 multi-processors; each multiprocessor contains 8 processor 

cores, so it becomes total 192 processor cores. It has 576 MHz Graphics Clock, 

1242 MHz Processor Clock, 896 MB standard memory, and 36.9 (billion/sec) 

Texture Fill Rate. 

 

4.2 Parallel A* Algorithm 

 

The experimental results for the simple A* implementation on GPU using 

CUDA architecture are presented here. For benchmarking of simple A* algorithm 

we used the following distributions which are done by Avi Bleiweiss [22] given in 

Table 1.  

 
 

Map  

Size (Total no. 

of nodes) 

Walkable 

Nodes Agents Launches 

M0 3*3  8 64 1 

M1 6*6 32 1024 1 

M2 9*9 64 4096 1 

M3 13*13 129 16641 1 

M4 17*17 245 60025 1 

M5 20*20 340 115600 2 

Table 1: Benchmarks for parallel A* algorithm; Describes size of map array, 

number of walkable nodes, number of agents (blocks: 1 thread per block), and 

launches. 
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Size gives the size of the map used; nodes are the walkable nodes in the 

array; agents are the number of all possible paths on walkable nodes, and launches 

shows that the threads are divided into following number of launches to run. The 

results of parallel A* algorithm are presented in Table 2. 
 

 

Map GPU Time (ms) 

CPU(Emulation mode) 

Time (ms) 

M0 0.2331 2.098 

M1 3.7417 7.8273 

M2 27.9296 41.1469 

M3 236.227 315.993 

M4 1908.219 2372.86 

M5 4677.509 6458.94 

 

Table 2: Experiment results for parallel A* algorithm; Describes time (in milli-

seconds) for GPU and CPU (Emulation mode) 
 
 
 

 
 

Graph 1: Comparative performance of A* for GPU and CPU (Emulation mode). 

 
 

Our implementation of the A* algorithm is different in a couple of ways 
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reason we are using the name Map instead of Graph as used in [22]; we name our 

Maps as M0, M1, and so on, while Avi uses G0, G1, and so on.  Further Avi 

implemented the A* algorithm using adjacent lists while we have implemented 

A* using arrays. In our implementation, the total number of nodes is equal to the 

size of the map. This map contains walkable nodes and some obstacles or non-

walkable nodes. The number of walkable nodes in our benchmark is kept the same 

as the nodes in Avi‟s [22] benchmark. Another difference is in the number of 

launches for M4 and M5. Avi is using 2 launches for G4 and 3 launches for G5, 

whereas we are running M4 in one launch and M5 in 2 launches. Moreover the 

graphics card used by Avi is also different from us. He has used NVIDIA 8800 

GT with 14 multiprocessors thus a total of 112 processor cores. We are using 

NVIDIA‟s GeForce GTX 260 with 24 multi-processors so total 192 processor 

cores. 

 

 

 
 

Graph 2: Comparative performance of A* algorithm for GPU and CPU using 

logarithmic scale 

 

 

Despite of all these differences, we found that results of both 

implementations are more or less the same. Graph 1 and Graph 2 represent the 

results in graphical form. 
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4.3 Pre-stored Paths and Multiple Threads per Agent 

 

We use the same benchmarks as presented in Table 1. Results are taken for 

maps M0 till M4 for the Pre-stored paths and Multiple threads per agent. These 

results are presented in Table 3 and also compared to the simple A* 

implementation of A* algorithm on GPU.  

 

 

Map 
Parallel A* 
Time(ms) 

Pre-stored 
Paths 

Time(ms) 

Multiple Threads 
Time(ms) 

M0 0.2331 0.188 0.26 

M1 3.7417 2.66 3.15 

M2 27.9296 6.62 7.35 

M3 236.227 163.7 184.6 

M4 1908.219 1279 1382.6 

Table 3: Comparison of GPU time of Parallel A* to Pre-stored Paths and 

Multiple Threads per Agent. 

 

 

 
 

Graph 3: Comparative performance of Parallel A* to Pre-stored Paths 

and Multiple Threads per Agent. 
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It is obvious from results that pre-stored paths and Multiple threads 

implementation are much faster and efficient than the simple A* implementation 

for GPU. These results are presented graphically in Graph 3 for five maps. Pre-

stored path implementation gives the most efficient results. It is because all the 

paths are not computed fully or partially. Implementation of Multiple threads per 

agent takes less time than simple A* algorithm, but a little more when compared 

to pre-stored path. Binary heap becomes the bottle neck in Multiple thread 

implementations. 8 threads run in parallel but when it comes to put values in 

binary heap, only one thread remains active and all the other seven threads wait.  

 

 

4.4 Hierarchical Breakdown of A* 

 

The maps used to take results for parallel A*, Pre-stored paths and 

Multiple Threads are very small in size. Small sized maps are not very practical. 

As discussed in last chapter, for bigger sized maps, the memory limitations of 

GPU architecture is an obstacle. Hierarchical breakdown (HBDn) of A* algorithm 

is used and the results for it are presented here. 

 

 

 
 

Figure 18: Image 1 (Less walkable 

nodes) 

 
 

Figure 19: Image 2 (More walkable 

nodes) 

 

The two main images used to take results for hierarchical breakdown of A* 

algorithm are shown in Figure 18 and Figure 18. Image 1 has more black 

(unwalkable) area than the Image 2; hence results are taken for both less walkable 

and more walkable maps and its effect on the HBDn A* and parallel A* are 

observed. A third image that is all white is used in few experiments just to check 

the extreme conditions (all walkable) effect on the efficiency of HBDn of A*. All 

the three maps are of the size 140 * 130 pixels.  
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Graph 4: Comparison of HBDn A*with Parallel A* for Image 1  

 

In first step, results are taken for Parallel A* implementation and  HBDn A* 

implementation on both images (Image 1 and Image 2) and in second step, they 

are compared with each other. The results for Image 1 and Image 2 are provided 

in Table 6 and Table 7 respectively and shown graphically using Graph 4 and 

Graph 5 respectively.  

 

 

 
 

Graph 5: Comparison of HBDn A*with Parallel A* for Image 2 
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For Image 1 (with less walkable area) both the implementations have 

approximately same results as shown in Graph 4 except that the Parallel A* 

implementation does not run for more than 1600 agents because of high memory 

requirements.  

 

For Image 2 (with more walkable area) the results reveal a drastic change in 

the behavior of the Parallel A* implementation. It not only stops at 1600 agents 

but also takes much more time to calculate the paths for the fewer number of 

agents as compared to HBDn A* implementation. It is clear from the Graph 5. 

Thus it demonstrates that the Parallel A* implementation has major variations 

with the increase in the walkable area. 

 

In the second step a comparison is made for the following: 

 Parallel A* implementation for Image 1 and Image 2  

 HBDn A* implementation for Image 1 and Image 2 

 

4.4.1 Comparison of Parallel A* Results for Image 1 and for 
Image 2 

 

Parallel A* implementation provides irregular and changeable results for 

both the images as shown in Graph 6. When the walkable area increases (for the 

Image 2), the time for path calculation increases and at 1600 agents it becomes 

almost double as compared to time of Image 1.  

 

 

 

Graph 6: Comparison of Parallel A* for Image 1 and Image 2. 
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4.4.2 Comparison of HBDn A* (20*20) Results for Image 1 and 
for Image 2 

 

HBDn A* implementation provides more consistent and stable results for 

both the images as shown in Graph 7. It is not affected by the increase in the 

walkable area. Hence it is good for calculating paths on big images or images with 

more walkable or white space.  

 

 

 

Graph 7: Comparison of HBDn A* for Image 1 and Image 2. 
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Image 1 has less number of clusters because of less walkable area, as no 

clusters are required on unwalkable areas. Image 2 is divided in more clusters as 

compared to Image 1 because it has more walkable area than Image 1. White 

Image (having all walkable area) is used to check the extreme values and to 

decide about the most appropriate cluster size; it is divided into the maximum 

possible number of clusters. 

 

It is clear that the total number of clusters for the cluster size 10*10 is huge 

as compared to the other sizes; for Image 2 and white image (whole apace is 

walkable) it becomes more than double. The increase in the number of clusters 

also increases the memory requirements to calculate the paths that further reduces 

the number of agents that can run in parallel. 

 

 

Image 

No. of 
Clusters for 
Cluster Size 

(10*10) 

No. of 
Clusters for 
Cluster Size 

(15*15) 

No. of 
Clusters for 
Cluster Size 

(20*20) 

No. of 
Clusters for 
Cluster Size 

(25*25) 

Image 1 112 51 32 22 

Image 2 174 71 42 25 

White Image 182 81 46 30 

Table 4: Different Cluster Sizes. 

 

 

 

Graph 8: Different Cluster Sizes. 
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It is obvious from the Graph 9 (Table 10), and Graph 10 (Table 11) that the 

cluster size 10*10 takes much more time than the other cluster sizes for both 

Images 1 and 2. For Image 2 it cannot run for more than 1200 agents which mean 

that with the increase in walkable (or white) area the memory requirements for 

10*10 cluster size increases rapidly and execution of more than 1200 agents 

becomes impossible. 

   

The efficiency of the HBDn A* implementation is a tradeoff between speed 

and optimality. Path at the abstract graph is optimal but path at the lower level of 

hierarchy is sub-optimal. This sub-optimality increases with the increase in cluster 

size. We want to calculate path that is more close to the optimal path and takes 

less time to calculate. With the increased cluster size, the time to calculate path 

reduces but it gives less optimal path. While decreasing the cluster size, increases 

the optimality of the path but it also increases the time to calculate the path.  

 

 

 

Graph 9: Results of Different Cluster Sizes on Image 1. 
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Graph 10: Results of Different Cluster Sizes on Image 2. 

 

Appropriate Cluster Size 

 

Therefore, examining these results, we can say that the cluster size 20*20 is 

appropriate. It takes less time to calculate paths than cluster sizes 10*10 and 

15*15 and calculates more optimal paths than cluster size 25*25. Graph 11 

presents the run of HBDn A* for the cluster size 20*20 for all the three images. It 

gives the stable results and for increased walkable area (like Image 2) and also for 

the white image the results are regular.  

 

 

 

Graph 11: Comparison of 20*20 Cluster Size for three Images 
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4.4.4 Calculating the Abstract Graph 

 

Abstract path calculation is one time activity that is performed at the start of 

the HBDn A*. The total amount of time to calculate the abstract graph for Image 

1, Image 2, and white image for all cluster sizes is given in Table 5 and Graph 12. 

Results indicate that it takes very less time to calculate. Further different cluster 

sizes do not affect much the time required to calculate the abstract path.   

 

 

 
 

Graph 12: Comparison of Time to Calculate Abstract Graph for three Images for 

different Cluster Sizes. 

 

 

Figure 20 shows graphically all the abstract weighted graphs for Image 1 

and Image 2 with the cluster size 20*20. It is clear that no cluster and graph is 

made for un-walkable area. 

 

 

           

Figure 20: Abstract Weighted Graph for Image 1 and Image 2 
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Figure 21and Figure 22 represents the complete paths computed on Image 1 

and Image 2 using HBDn with 500 agents and 1000 agents respectively. 

 

 

   

Figure 21: Complete paths for 500 Agents on Image 1 and Image 2 

 

 

 

   

Figure 22: Complete paths for 1000 Agents on Image 1 and Image 2 

 

 

4.5 Memory Footprints 

 

Memory allocated on GPU for any A* implementation is actually the 

memory required for the arrays. The same amount of memory is allocated on CPU 

too. The arrays and their memory requirement for all implementations of the A* 

algorithms are given below: 
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4.5.1   Parallel A* Implementation 

 

The arrays used are given here; n is the total number of agents that run in 

parallel. 

 

Array Data type Memory 

The Map Char mapWidth*mapHeight 

Open list Short 2 * n * mapWidth*mapHeight 

Node List Struct node 12 * n * mapWidth*mapHeight 

Path list Short 2 * n * mapWidth*mapHeight 

Path Length Short 2 * n 

Start nodes Short 2 * n 

Target nodes short 2 (ignoring constant) 

 

Total memory allocated= ( (16 * n +1)* mapWidth*mapHeight)) + (4 * n)  

 

4.5.2   PrePath A* Implementation  

 

The arrays used are given here, n is the total number of agents that run in 

parallel to calculate complete paths, P is the total number of agents run in parallel 

to compute pre paths. 

 

Array Data type Memory 

The Map Char mapWidth*mapHeight 

Open list Short 2 * n * mapWidth*mapHeight 

Node List Struct node 12 * n * mapWidth*mapHeight 

Path list Short 2 * n * mapWidth*mapHeight 

PreOpen list Short 2 * P * mapWidth*mapHeight 

Pre list Short 12 * P * mapWidth*mapHeight 

Pre Path list short 2 * P * mapWidth*mapHeight 

Pre Path Lenth  Short 2 * P 

Path Length Short 2 * n 

Pre start nodes short 2 * P 

Pre target nodes short 2 * P 

Start nodes Short 2 * n 

Target nodes short 2 * n 

 

Total memory allocated = (  (16 * (n +P) + 1) * mapWidth*mapHeight)  +           

(6 *( n+P))  
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4.5.3   Multiple Threads/Agent A* Implementation 

 

Array Data type Memory Requirement 

The Map Char mapWidth*mapHeight 

Open list Short 2 * n * mapWidth*mapHeight 

Node List Struct node 12 * n * mapWidth*mapHeight 

Path list Short 2 * n * mapWidth*mapHeight 

Path Length Short 2 * n 

Start nodes Short 2 * n 

Target nodes short 2 * n 

 

Total memory allocated = ( (16 * n +1)* mapWidth*mapHeight)) + (6 * n)  

 

4.5.4   HBDn A* Implementation 

 

Path calculations are done in three steps; therefore, momory requirements 

for these three steps are given separately. The variable bSIZE is the size of the 

cluster. Each cluster has maximum 12 exit points. The variable startcount 

provides the number of walkable nodes within a particular cluster. Ncluster 

represents the total number of clusters. 

 

1. Abstract Path Computation: 

 

Array Data type Memory 

The Map 

(adjacency graph) 

Struct listnode 18 * (bSIZE * bSIZE) 

Open list Short 2 * startcount * (bSIZE * bSIZE) 

Node List Struct node 12 * startcount * (bSIZE * bSIZE) 

Path list Short 2 * (12*11) * (bSIZE*bSIZE) 

Path cost int 4 * (12*11)  

Path Length Short 2 * (12*11)  

Start nodes Short 2 * (12*11) 

Target nodes short 2 * (12*11) 

 

Total memory allocated= 1320 + ((bSIZE
2
) * (282 + (14*startcount)))  
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2. Complete Path Computation: 

 

First start and target nodes are added to the abstract graph. 

 

Array Data type Memory 

The Map 

(adjacency graph) 

Struct listnode 18 * Ncluster * (bSIZE * bSIZE) 

Open list Short 2 * 24 * n * (bSIZE * bSIZE) 

Node List Struct node 12 * 24 * n * (bSIZE * bSIZE) 

Path list Short 2 * 24 * n * (bSIZE*bSIZE) 

Path cost int 4 * 24 * n  

Path Length Short 2 * 24 * n 

Map Cluster Short Ncluster * (bSIZE*bSIZE) 

Start nodes Short 2 * 24 * n 

Target nodes short 2 * 24 * n 

 

Total memory allocated = (240 * n) + (384 * n * bSIZE
2
 ) +                               

(19 * Ncluster * bSIZE
2
) 

 

Then complete path is calculated on the abstract graph. Here adjCount gives 

the total number of nodes on the abstract weighted graph. 

 

 

Array Data type Memory 

The Map (abstract 

weighted graph) 

Struct listnode 34 * Ncluster * 12 * n 

Open list Short 2 * adjCount * n  

Node List Struct node 12 * adjCount * n  

Path list Short 2 * 12 * n  

Path cost int 4 * n  

Path Length Short 2 * n 

Start nodes Short 34 * n 

Target nodes short 34 * n 

 

Total memory allocated = ( 98+ 14*adjCount + 408*Ncluster)  * n 
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5 Conclusions 

 

5.1  Summary of Contributions and Results  

 

A* path-finding search algorithm is very famous in games for finding 

shortest distance between two nodes. Today‟s games have thousands of agents 

moving at a same time in the presence of obstacles. Thus it has become very 

important to find shortest paths concurrently and in a speedy way. Making use of 

GPU‟s highly parallel multi-threaded nature suits this scenario perfectly.   

 

Implementing Simple A* algorithm using arrays (Parallel A*) has 

approximately the same results as compared to A* implementation using adjacent 

lists in [22]. Both implementations are greedy for space. Increase in the size of 

map increases the memory requirements and thus decreases the speed of 

algorithm. 

 

To further increase the overall performance of algorithm, the memory 

requirements must be reduced. One option is to use the fast, read-only constant 

memory for storing the map. Pre-computing some paths and then sharing this 

already computed information with other agents further increases the efficiency.  

 

Another solution to this problem is to exploit the parallel hardware 

architecture in a true sense.  Some improvements are made in the basic A* 

algorithm to calculate each path using multiple threads that run concurrently and 

use shared memory and thread synchronization. It reduces the total search time of 

A* algorithm as compared to the Parallel A* implementation. Binary heap is the 

bottleneck for multiple threads, as only one thread can access the heap at a time 

and all the other threads have to wait; thread synchronization is done to achieve 

this.   

 

 Hierarchical Breakdown of A* algorithm (HBDn) is faster and more 

consistent solution for big-sized maps. It gives long paths on big search areas. To 

overcome the high memory needs for the larger maps, the search space is divided 

into smaller areas called clusters. The path is calculated using two levels of 

hierarchy. At the higher level, an abstract weighted graph is made that connects 

these clusters. Then multiple paths are computed on this abstract weighted graph 

which is much smaller in size than the original map. And in the last, the complete 

paths are found using path refinements.  The abstract weighted graph calculation 

is one time activity and takes very less time. Our results show that the most 

appropriate cluster size using HBDn for the graphics processors is 20*20. There is 
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a trade-off between performance and optimality using HBDn.  The path at abstract 

graph level is optimal but the path at lower level of hierarchy is sub-optimal. 

 

5.2 Limitations  

 

The biggest overhead in implementing A* algorithm on graphics processor 

is the memory requirements for the algorithm. Memory needs increase with the 

increase of agents and with the increase in map size. To run more number of 

agents in less time Pre-Path, Multiple threads, and HBDn techniques are adopted. 

 

 Pre-Path uses already computed and stored paths, but gives static results. In 

case of Multiple threads the binary heap becomes the bottleneck for the multiple 

threads as only one thread at a time can access it. Both Pre-Path and Multiple 

threads are feasible for small sized maps. HBDn is a good solution for large 

search spaces. The limitation here is the compromise on path optimality. The path 

calculated at lower level of hierarchy is sub-optimal. 

 

5.3 Future Recommendations 

 

Many ideas related to the efficient A* implementation on graphics cards can 

be tried in future. Some of these ideas are discussed below. 

 

 To overcome bottleneck of the binary heap while using multiple threads, 

the Lock-free or wait-free implementations of the binary heap could be 

done.  

 

 Many levels of hierarchies could be used in Hierarchical breakdown 

implementation of A* algorithm.  

 

 Some heuristic method can be explored that is more suitable to calculate 

the abstract weighted graph in HBDn.  

 

 Pre-Paths can be combined with the Multiple threads and HBDn 

implementation. 

 

 Maps used only walkable or un-walkable. Maps with Heterogeneous 

environment (of different weights) can be used. 
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6 Appendix A 

 

We provide the actual results we have taken. For each value, we took at 

least 20 results and calculated the average value of it. All the values in the 

following tables are average of 20 results.  

 

 

 

Image 
10*10 

Time (ms) 

15*15 

Time (ms) 
20*20 

Time (ms) 
25*25 

Time (ms) 

Image 1 467.1384013 414.9552805 415.5135423 382.557685 

Image 2 816.312173 702.9571197 716.256325 575.3688007 

White Image 1339.498187 1234.609144 1235.187572 970.0900207 

Table 5: Comparison of Time to Calculate Abstract Graph for three Images for 

different Cluster Sizes. 

 

 

 

 

No. of 
Agents 

A* HBDn(20*20) 
Time (ms) 

Parallel A* 
Time (ms) 

200 310.295697 419.492927 

400 633.430503 786.2296727 

600 981.5383923 1212.887928 

800 1349.686914 1589.904878 

1000 1726.962503 1878.784448 

1200 2152.610175 2341.177945 

1400 2591.491325 2719.14503 

1600 3039.83062 3053.868284 

1800 3477.315319 Cannot run 

2000 3867.716315 Cannot run 

Table 6: Comparison of Hierarchical Breakdown of A* with Simple Parallel 

A*for Image 1. 
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No. of 
Agents 

A* HBDn(20*20) 
Time (ms) 

Parallel A* 
Time (ms) 

200 414.259284 793.1963873 

400 693.5839555 1563.613424 

600 1054.029649 2333.547868 

800 1438.116202 3041.44362 

1000 1850.667655 3609.353704 

1200 2235.941427 4442.295688 

1400 2663.860195 5162.952208 

1600 3124.887066 5869.93564 

1800 3560.26511 Cannot run 

2000 4007.588992 Cannot run 

2200 4430.429601 Cannot run 

Table 7: Comparison of Hierarchical Breakdown of A* with Simple Parallel 

A*for Image 2. 

 

 

 

No. of 

Agents 

Time (ms) for 

Image 1 

Time (ms) for 

Image 2 

200 419.492927 793.1963873 

400 786.2296727 1563.613424 

600 1212.887928 2333.547868 

800 1589.904878 3041.44362 

1000 1878.784448 3609.353704 

1200 2341.177945 4442.295688 

1400 2719.14503 5162.952208 

1600 3053.868284 5869.93564 

Table 8: Comparison of Parallel A* for Image 1 and Image 2. 
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No. of 

Agents 

Time (ms) for 

Image 1 

Time (ms) for 

Image 2 

200 310.295697 414.259284 

400 633.430503 693.5839555 

600 981.5383923 1054.029649 

800 1349.686914 1438.116202 

1000 1726.962503 1850.667655 

1200 2152.610175 2235.941427 

1400 2591.491325 2663.860195 

1600 3039.83062 3124.887066 

1800 3477.315319 3560.26511 

2000 3867.716315 4007.588992 

Table 9: Comparison of HBDn A* for Image 1 and Image 2. 

 

 

 

 

No. of Agents (10*10) (15*15) (20*20) (25*25) 

200 1032.261977 358.0015175 310.295697 298.5838325 

400 2082.390204 727.648158 633.430503 599.381222 

600 3138.962177 1121.668306 981.5383923 930.538533 

800 4201.372564 1524.015241 1349.686914 1258.350996 

1000 5240.296618 1967.859478 1726.962503 1632.391788 

1200 6326.44594 2386.658102 2152.610175 1992.89369 

1400 7327.145975 2873.504065 2591.491325 2389.658523 

1600 8606.622241 3346.890597 3039.83062 2785.949073 

1800 9473.542007 3816.284394 3477.315319 3265.061032 

2000 10678.64857 4283.857284 3867.716315 3601.496391 

Table 10: Results of Different Cluster Sizes on Image 1. 
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No. of Agents (10*10) (15*15) (20*20) (25*25) 

200 2006.904477 578.591651 414.259284 343.1814625 

400 4015.2253 1162.843245 693.5839555 699.837726 

600 6018.922134 1766.11961 1054.029649 1055.378761 

800 8083.187373 2383.093149 1438.116202 1442.894864 

1000 10135.05026 3022.72967 1850.667655 1842.208581 

1200 12172.85929 3663.664697 2235.941427 2249.605382 

1400 Can’t run 4313.022332 2663.860195 2687.098331 

1600 Can’t run 5006.114418 3124.887066 3146.321965 

1800 Can’t run 5555.239019 3560.26511 3607.322152 

2000 Can’t run 6183.904121 4007.588992 4077.845432 

2200 Can’t run 6761.307409 4430.429601 4583.212843 

Table 11: Results of Different Cluster Sizes on Image 2. 
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