

A* Algorithm for Multicore Graphics Processors

RAFIA INAM

Master's Thesis

Networks and Distr ibuted Systems Programme

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Computer Engineering
Göteborg 2009

2

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in
a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about
this agreement. If the Author has signed a copyright agreement with a third
party regarding the Work, the Author warrants hereby that he/she has
obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

A* Algorithm for Multicore Graphics Processors

RAFIA INAM,

© RAFIA INAM, Jul 2010.

Examiner: PHILIPPAS TSIGAS

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden July 2010

3

Abstract

Graphics processors are becoming more and more popular among many application
developers as commodity data-parallel coprocessors. As a consequence, general
purpose programming for graphics processors research is growing. A* is a well
known best-first shortest path finding algorithm, commonly used in computer
games and robotics, to quickly find a good path in real time. We have implemented
A* in CUDA, NVIDIA’s programming platform for graphics processors. Our graphics
processor A* implementation is faster and more efficient than a similar CPU version
of the same algorithm.

We have provided three improvements to the parallel A* algorithm to allow it to
work faster and on larger maps. The first improvement is the use of pre-calculated
paths for commonly used paths. Secondly, we allow multiple threads to work on the
same path and thirdly we have implemented a scheme for Hierarchical Breakdown.
Instead of computing the complete path as a whole, the path is calculated in many
segments. This makes it possible to calculate more paths concurrently on big maps
than was possible before. Very large maps are broken down into many clusters and
paths are computed at a higher level of abstraction using path abstraction. All the
segments of a path are then joined together to make a complete path using path
refinements.

4

ACKNOWLEDGEMENTS

First of all, I am grateful to Professor Philippas Tsigas for supervising my

master's thesis and for all the inspirational discussions. I am also thankful to

Daniel Cederman for the guidance in CUDA, and the time spent answering all my

questions and removing errors from my code and proof-reading my thesis.

Without both of them this thesis would not have been possible in this form.

Many thanks to all the members of the Department of Computer Science

and Engineering. My gratitude to Dr. Tomas Olovsson, Director of Networks and

Distributed Systems program, for his guidance, good discussions and writing a lot

of officially required letters for me. My special thanks go to all members of the

Distributed Computing and Systems Group from whom directly or indirectly I

learned a lot.

Finally, I would like to extend my deepest gratitude to my friends and

family. Many thanks go to my father, who always encouraged me in my studies

and to my mother for her great love for me. And to my husband Inam who is

always there in tough n rough, and to my daughters Youmna and Urwa I love the

most, cannot express how you have filled my life with joy and happiness, so I am

not trying.

Rafia Inam

5

CONTENTS

1 INTRODUCTION ... 9

1.1 BACKGROUND ... 9
1.2 CUDA ... 10
1.3 SEARCH ALGORITHMS ... 10
1.4 A* SEARCH ALGORITHM ... 11
1.5 SCOPE ... 11
1.6 OBJECTIVES .. 12

2 THE SYSTEM MODEL .. 14

2.1 THE SYSTEM MODEL .. 14
2.2 HETEROGENEOUS ARCHITECTURE ... 15
2.3 THE GRID AND BLOCK STRUCTURES .. 16
2.4 MEMORY MODEL .. 17
2.5 THREAD SYNCHRONIZATION ... 18
2.6 CONTROL FLOW .. 18
2.7 RESTRICTIONS ... 20

3 A* ALGORITHM ... 22

3.1 A* PATH FINDING ALGORITHM ... 22
3.2 IMPLEMENTING PARALLEL A* .. 23

3.2.1 Map Representation ... 23
3.2.2 The Nodes ... 23
3.2.3 Open List ... 24
3.2.4 Algorithm flow... 24
3.2.5 Storing the final path... 24
3.2.6 Structure ... 25

3.3 PRIORITY QUEUE AS BINARY HEAP .. 26
3.3.1 Inserting Items to the Priority Queue ... 26
3.3.2 Removing Items from the Priority Queue ... 27

3.4 PSEUDO CODE ... 28
3.5 ADMISSIBILITY AND OPTIMIZATION .. 29
3.6 DIFFERENT VARIATIONS OF THE ALGORITHM ... 30
3.7 PRE-STORED PATHS .. 30
3.8 MULTIPLE THREADS PER AGENT ... 31

3.8.1 Pseudo Code.. 32
3.9 HIERARCHICAL BREAKDOWN OF A* ... 32

3.9.1 Path Abstraction .. 33
3.9.2 Path Calculation .. 37

3.10 LITERATURE REVIEW .. 37

4 EXPERIMENTAL EVALUATION ... 40

4.1 GRAPHICS CARD USED .. 40
4.2 PARALLEL A* ALGORITHM ... 40
4.3 PRE-STORED PATHS AND MULTIPLE THREADS PER AGENT .. 43
4.4 HIERARCHICAL BREAKDOWN OF A* ... 44

4.4.1 Comparison of Parallel A* Results for Image 1 and for Image 2 46

6

4.4.2 Comparison of HBDn A* (20*20) Results for Image 1 and for Image 2 47
4.4.3 Suitable Cluster Sizes... 47
4.4.4 Calculating the Abstract Graph ... 51

4.5 MEMORY FOOTPRINTS.. 52
4.5.1 Parallel A* Implementation .. 53
4.5.2 PrePath A* Implementation .. 53
4.5.3 Multiple Threads/Agent A* Implementation .. 54
4.5.4 HBDn A* Implementation ... 54

5 CONCLUSIONS ... 56

5.1 SUMMARY OF CONTRIBUTIONS AND RESULTS .. 56
5.2 LIMITATIONS ... 57
5.3 FUTURE RECOMMENDATIONS .. 57

6 APPENDIX A .. 58

REFERENCES .. 62

7

List of Figures

FIGURE 1: THE CUDA SYSTEM MODEL. ... 14
FIGURE 2: HETEROGENEOUS ARCHITECTURE ... 15
FIGURE 3: THE CUDA GRID STRUCTURE AND BLOCK STRUCTURE. ... 17
FIGURE 4: AN EXAMPLE OF PROCESSING FLOW. .. 19
FIGURE 5: A* ALGORITHM SEARCH AREA IN LIGHT BLUE; GREEN IS START NODE; RED IS GOAL NODE; GRAY

REPRESENTS UNWALKABLE NODES. ... 23
FIGURE 6: ARROWS ARE POINTING TOWARDS PARENT NODES; FINAL PATH IS REPRESENTED USING CYAN ARROWS. .. 25
FIGURE 7: BINARY HEAP WITH (N-1) ELEMENTS ... 26
FIGURE 8: INSERTING NTH ELEMENT AT THE END OF HEAP. ... 27
FIGURE 9: COMPARING NTH ELEMENT WITH THE ELEMENT AT (N/2) POSITION. .. 27
FIGURE 10: COMPARING ELEMENT AT (N/2) WITH THE ITEM AT POSITION ((N/2)/2). 27
FIGURE 11: DELETING LOWEST F COST ELEMENT FROM POSITION 1. .. 28
FIGURE 12: MOVE NTH ELEMENT AT THE 1ST POSITION OF HEAP. .. 28
FIGURE 13: COMPARING IST ELEMENT WITH ITS TWO CHILDREN AT POSITIONS (CURRENT POSITION*2) AND (CURRENT

POSITION*2+1) AND THEN SWAPING WITH LOWER FCOST OF THE TWO CHILDREN. 28
FIGURE 14: COMPARING NEXT ELEMENT WITH ITS TWO CHILDREN AND SWAPPING WITH LOWER FCOST OF THE TWO

CHILDREN AND SO ON UNTIL LIST FINISHES. .. 28
FIGURE 15: GRID REPRESENTATION OF A MAP USED TO TAKE THE RESULTS. ... 34
FIGURE 16: ALL THE CLUSTERS WITH THE CONNECTING EXIT POINTS. .. 35
FIGURE 17: ILLUSTRATES INTRA-EDGES OF THE TOP LEFT CORNER OF THE MAP. .. 36
FIGURE 18: IMAGE 1 (LESS WALKABLE NODES) .. 44
FIGURE 19: IMAGE 2 (MORE WALKABLE NODES).. 44
FIGURE 20: ABSTRACT WEIGHTED GRAPH FOR IMAGE 1 AND IMAGE 2 .. 51
FIGURE 21: COMPLETE PATHS FOR 500 AGENTS ON IMAGE 1 AND IMAGE 2 ... 52
FIGURE 22: COMPLETE PATHS FOR 1000 AGENTS ON IMAGE 1 AND IMAGE 2 ... 52

file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251042
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251043
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251044
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251045
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251048
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251049
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251050
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251051
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251052
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251053
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251054
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251054
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251055
file:///D:/ResearchCourse/Report/Thesis-100717.docx%23_Toc267251055

8

List of Tables

TABLE 1: BENCHMARKS FOR PARALLEL A* ALGORITHM; DESCRIBES SIZE OF MAP ARRAY, NUMBER OF WALKABLE

NODES, NUMBER OF AGENTS (BLOCKS: 1 THREAD PER BLOCK), AND LAUNCHES.. 40
TABLE 2: EXPERIMENT RESULTS FOR PARALLEL A* ALGORITHM; DESCRIBES TIME (IN MILLI-SECONDS) FOR GPU AND

CPU (EMULATION MODE) .. 41
TABLE 3: COMPARISON OF GPU TIME OF PARALLEL A* TO PRE-STORED PATHS AND MULTIPLE THREADS PER AGENT.

 ... 43
TABLE 4: DIFFERENT CLUSTER SIZES... 48
TABLE 5: COMPARISON OF TIME TO CALCULATE ABSTRACT GRAPH FOR THREE IMAGES FOR DIFFERENT CLUSTER SIZES.

 ... 58
TABLE 6: COMPARISON OF HIERARCHICAL BREAKDOWN OF A* WITH SIMPLE PARALLEL A*FOR IMAGE 1. 58
TABLE 7: COMPARISON OF HIERARCHICAL BREAKDOWN OF A* WITH SIMPLE PARALLEL A*FOR IMAGE 2. 59
TABLE 8: COMPARISON OF PARALLEL A* FOR IMAGE 1 AND IMAGE 2. ... 59
TABLE 9: COMPARISON OF HBDN A* FOR IMAGE 1 AND IMAGE 2. ... 60
TABLE 10: RESULTS OF DIFFERENT CLUSTER SIZES ON IMAGE 1... 60
TABLE 11: RESULTS OF DIFFERENT CLUSTER SIZES ON IMAGE 2... 61

List of Graphs

GRAPH 1: COMPARATIVE PERFORMANCE OF A* FOR GPU AND CPU (EMULATION MODE). 41
GRAPH 2: COMPARATIVE PERFORMANCE OF A* ALGORITHM FOR GPU AND CPU USING LOGARITHMIC SCALE 42
GRAPH 3: COMPARATIVE PERFORMANCE OF PARALLEL A* TO PRE-STORED PATHS AND MULTIPLE THREADS PER

AGENT. .. 43
GRAPH 4: COMPARISON OF HBDN A*WITH PARALLEL A* FOR IMAGE 1 .. 45
GRAPH 5: COMPARISON OF HBDN A*WITH PARALLEL A* FOR IMAGE 2 .. 45
GRAPH 6: COMPARISON OF PARALLEL A* FOR IMAGE 1 AND IMAGE 2. .. 46
GRAPH 7: COMPARISON OF HBDN A* FOR IMAGE 1 AND IMAGE 2. .. 47
GRAPH 8: DIFFERENT CLUSTER SIZES. .. 48
GRAPH 9: RESULTS OF DIFFERENT CLUSTER SIZES ON IMAGE 1. .. 49
GRAPH 10: RESULTS OF DIFFERENT CLUSTER SIZES ON IMAGE 2. .. 50
GRAPH 11: COMPARISON OF 20*20 CLUSTER SIZE FOR THREE IMAGES ... 50
GRAPH 12: COMPARISON OF TIME TO CALCULATE ABSTRACT GRAPH FOR THREE IMAGES FOR DIFFERENT CLUSTER

SIZES. ... 51

9

1 Introduction

1.1 Background

At the start of multicore CPUs and GPUs the processor chips have become

parallel systems. But speed of the program will be increased if software exploits

parallelism provided by the underlying multiprocessor architecture [1]. Hence

there is a big need to design and develop the software so that it uses

multithreading, each thread running concurrently on a processor, potentially

increasing the speed of the program dramatically. To develop such a scalable

parallel applications, a parallel programming model is required that supports

parallel multicore programming environment.

NVIDIA‟s graphics processing units (GPUs) are very powerful and highly

parallel. GPUs have hundreds of processor cores and thousands of threads running

concurrently on these cores, thus because of intensive computing power they are

much faster than the CPU. At start, they were used for graphics purposes only.

But now GPUs are becoming more and more popular for a variety of general-

purpose, non-graphical applications too. For example they are used in the fields of

computational chemistry, sparse matrix solvers, physics models, sorting, and

searching etc. The algorithms designed for GPGPU (General Purpose GPU) run

on the multi processors using many threads concurrently. As a result, these

algorithms are extremely fast.

In this thesis we have used GPGPU in the field of searching. A* [2] is a

standard search algorithm that finds shortest paths. We have created an

implementation of the A* algorithm for multi-core graphics card to increase the

efficiency of the algorithm using CUDA architecture. Different techniques to

make this algorithm more optimal and fast are applied for different sized search

spaces and then compared with each other to find which works well on multicore

environment of graphics card. We have also found out the suitable sizes of search

areas for these techniques. The methods we tried are calculating some pre-paths

using waypoints, multiple threads helping each other per agent and the

hierarchical breakdown of the A* algorithm.

The thesis is organized as follows. The rest of section 1 introduces the

CUDA system model, search algorithms, A* algorithm and give the scope and

objectives of this work. Section 2 describes the details of A* algorithm and its

implementation. It further provides the three different methods used to improve

10

the algorithm. In section 3, the detailed description of the system model is given.

Related work is specified in section 4. Experimental results from the A*

implementations are found in section 5, followed by a discussion of the presented

work in section 6. The thesis is concluded in section 7.

1.2 CUDA

CUDA stands for Compute Unified Device Architecture. It is a parallel

programming paradigm released in 2007 by NVIDIA. It is used to develop

software for graphics processors and is used to develop a variety of general

purpose applications for GPUs that are highly parallel in nature and run on

hundreds of GPU‟s processor cores.

CUDA uses a language that is very similar to C language and has a high

learning curve. It has some extensions to that language to use the GPU-specific

features that include new API calls, and some new type qualifiers that apply to

functions and variables. CUDA has some specific functions, called kernels. A

kernel can be a function or full program invoked by the CPU. It is executed N

number of times in parallel on GPU by using N number of threads. CUDA also

provides shared memory and synchronization among threads.

CUDA is supported only on NVIDIA‟s GPUs based on Tesla architecture.

The graphics cards that support CUDA are GeForce 8-series, Quadro, and Tesla.

These graphics cards can be used easily in PCs, laptops, and servers. More details

about CUDA programming model are described in section 3.

1.3 Search Algorithms

Search algorithms are highly used in computer games, robotics, etc. They

are used to find a path from a given „start‟ node to a „target‟ node. It searches the

whole map area and finds each possible path from the start node to reach the

target node and then gives the shortest path. One way of doing it is uninformed

search algorithms also called brute-force search. These algorithms use the

simplest method of the searching through the search area. These are not very

efficient as a lot of time is required to search the whole map area.

Informed search algorithms are comparatively more efficient than

uninformed search methods. These algorithms try to reduce the amount of time

spent searching by using heuristic functions. Heuristic function means a method to

find a solution that is close to the best possible answer in less time. In search

algorithms, heuristic functions are used to calculate an estimate lowest path-cost

only towards the target node. In this way the whole search area is not searched,

11

rather search is made on only the selected portion of area. This reduces the time of

search dramatically. Some major informed search algorithms that work for graphs

include best-first search, and A*.

1.4 A* Search Algorithm

A* (pronounced "A star") [2] is an informed search algorithm. It is formally

defined as “best-first, graph search algorithm that finds the least-cost path from a

given initial node to one goal node (out of one or more possible goals)” [3]. This

algorithm is mainly used in computer games to find the shortest path at run time.

It is also used to find shortest routes among cities, and in robotics, etc.

It is like other graph-searching algorithms in that it can potentially be

required to search through a huge area of the map. The search space can be

reduced by the use of an efficient heuristic function. Without heuristic or when the

heuristic function equals to zero, A* becomes Dijkstra‟s path finding algorithm,

and on the other hand when it is extremely high, A* turns into BFS. Hence the

heuristic function plays an important role in controlling the behavior of A*. If

heuristic function gives a very low value, then A* will become slow to find the

shortest path. If heuristic evaluates to be a very high value, then A* will become

very fast but it will not calculate the shortest path. This reveals that the tradeoff

between speed and accuracy of the algorithm is dependent on heuristic. Therefore,

a heuristic should be chosen very carefully keeping in mind this tradeoff. A

heuristic that is specific to the problem should be used in algorithms.

We are using the Manhattan heuristic [4] [5] for path-finding on maps. More

details about A* algorithm and heuristic are described in next section.

1.5 Scope

Since multi-core technology is growing day by day, we wanted to develop

the algorithm so that it exploits the multi threaded nature of the hardware. The

intention of this project is the implementation of the A* shortest path finding

algorithm on a multi-core graphics card using CUDA architecture provided by

NVIDIA. Afterward different variations/optimizations of A* algorithm are

studied and are implemented to more increase the speed and efficiency of the

algorithm. These different optimizations done on A* are described as follow:

1. Pre-Path Calculations: Some way points are defined on the

search area and shortest paths are calculated for each pair of way

points and stored in the memory. These pre-stored paths are then

used during online searching new paths. When a new path search

12

will start, the algorithm will check whether any path (or a portion

of the path) is close to new search and already computed and

stored. If yes, then that pre-computed path or portion of the path

is simply added to the final path, and not searched online. This

will reduce the total search time and effort effectively. If no pre-

calculated path is matched with the new search, the new path will

be computed completely.

2. Threads Helping Each Other: Many are searching a path using

shared memory and thread synchronization. In our case, eight

threads are used to search the optimal path per agent (agent

characterizes a possible paths on the walkable nodes). Thread

synchronizations are used at different stages on the A* algorithm.

The purpose is to check the effects of using the shared memory

and thread synchronizations on the total search time of A*

algorithm.

3. Hierarchical Breakdown: Larger problems and big search

spaces take a lot of time, effort and memory to calculate very

long paths. One solution is to sub-divide the search space into

many smaller parts called clusters. These clusters are joined with

each other using some connection point called exit points, and a

weighted abstract graph is built in this way. Optimal paths

among the exit points per cluster are calculated and stored.

Hence, using the method of abstraction, the whole search space

is reduced into a small weighted abstracted graph that will be

used for all searches. A specific path is searched in three stages.

First the start and target points are connected to the abstract

graph. Then the complete path from start to target point is

searched on the abstracted graph. This path does not provide a

detailed path. In third stage, the process of path refinement is

used to make a detailed path. Already searched and stored paths

among the exit points of clusters are then placed together at

proper places, thus making the complete path.

1.6 Objectives

Since multi-core technology is growing day by day, we wanted to develop

the algorithm so that it exploits the multi threaded nature of the hardware and in

this way develop an implementation of the A* search algorithm that is very fast

and efficient. It was also intended to find balance between each thread's resource

usage and the number of simultaneously active threads.

13

We aim to adopt the simple A* algorithm for multicore platform running on

many threads concurrently, and to observe its efficiency, thread synchronizations,

and resource utilizations. Especially the memory requirement becomes very

important for large search areas. We want to find out the effect of increase in

search area on the efficiency and memory requirement of the algorithm. We want

to explore which optimizations to be done on A* algorithm running on GPU to get

efficient results for larger search spaces.

14

2 The System Model

2.1 The System Model

Graphics processors were mainly used only for graphics applications in the

past. But now modern GPUs are fully programmable, highly parallel architectures

that delivers high throughput and hence can be used very efficiently for a variety

of general purpose applications.

NVIDIA's graphics card is a new technology that is extremely multithreaded

computing architecture. It consists of a set of parallel multiprocessors, that are

Core 1

Shared Memory

Core M

. . .

Core M ...

Core 1 ...

Shared Memory

Device

Multiprocessor 1 Multiprocessor N

Constant Cache

Texture Cache

Constant Cache

Texture Cache

Device Memory: Global, Constant, and Texture Memories

Figure 1: The CUDA System Model.

15

further divided into many cores and each core executes instructions from one

thread at a time as described in Figure 1. Hence all those computations in which

many threads have to execute the same instruction concurrently, also called data-

parallel computations, are well-suited to run on GPU.

NVIDIA has designed a special C-based language CUDA to utilize this

massively parallel nature of GPU. CUDA contains a special C function called

kernel, which is simply a C code that is executed on graphics card on fixed

number of threads concurrently. For defining threads, CUDA uses a grid structure.

2.2 Heterogeneous Architecture

CUDA programming paradigm is a combination of serial and parallel

executions. Figure 2 shows an example of this heterogeneous type of

programming. The simple C code runs serially on CPU also called host [6].

Parallel execution is expressed by the kernel function that is executed on a

set of threads in parallel on GPU; GPU is also called device. This kernel code is a

Figure 2: Heterogeneous Architecture

16

C code for only one thread. The numbers of thread blocks, and the number of

threads within those blocks that execute this kernel in parallel are given explicitly

when this function is called.

The kernel function can only be invoked by serial code from CPU. To call

the kernel function, the execution configuration must be specified, i.e., the number

of threads in a thread block and number of threads within a grid. To declare grid

and thread blocks CUDA has a predefined data type dim3, an integer vector type

that specifies the dimensions of the grid and thread blocks. In the kernel function

call grid and block variables are written in three angular brackets <<< grid, block

>>> as shown in Figure 2Error! Reference source not found.. In this invocation,

grid and thread blocks are created dynamically. The value of this grid and block

variables must be less than the allowed sizes which are given in next section. The

threads are scheduled in hardware and not in software. Kernel function has always

a return type void. It has a qualifier __global__ that means this is a kernel function

to be executed on GPU. See Figure 3 for a graphical description of grid and thread

blocks.

2.3 The Grid and block structures

The Grid consists of one-dimensional, two-dimensional or three-

dimensional thread blocks. Each thread block is further divided into one-

dimensional or two-dimensional threads. A thread block is a set of threads

running on one processor. Figure 3 describes a two-dimensional grid structure and

a two-dimensional block structure. Within a thread block, threads are organized

together in warps. Normally 32 threads are grouped in one warp. All threads of a

warp are scheduled together for execution.

All threads of a single thread block can communicate with each other

through shared memory; therefore they are executed on the same multiprocessor.

In this way it becomes possible to synchronize these threads.

The CUDA paradigm provides some built-in variables to use this structure

efficiently. To access the id of a thread block the blockIdx variable (values from 0

to gridDim-1) is used and to access its dimension the blockDim variable is used

while gridDim gives the dimensions of the grid. Each individual thread is

identified by threadIdx variable, can have values from 0 to blockDim-1. WarpSize

specifies warp size in the threads. All these variables are built-in in kernel. The

maximum allowed sizes of each dimension of grid is 65535, and x, y, and z

dimensions of a thread block are 512, 512, and 64, respectively [1] [6].

17

The allocation of the number of thread blocks to each multiprocessor is

dependent on the necessity of the shared memory and registers by each thread

block. More memory and registers requirement by each thread block means

allocation of less thread blocks to each multiprocessor. In this case the remaining

thread blocks have to wait for their turn for execution.

All this threads creations, their execution, and termination are automatic and

handled by the GPU, and is invisible to the programmer. The user only needs to

specify the number of threads in a thread block and the number of thread blocks in

a grid.

2.4 Memory Model

 All multiprocessors access a large global device memory for both gather

and scatter operations. Memory model is described graphically in Figure 1. This

memory is relatively slow because it does not provide caching.

Block (0, 0) ...

 Grid

 Global Device Memory

Block (N, 0)

Block (N, M)

Block (0, M) ...

 Shared Memory

 Shared Memory Shared Memory

 Shared Memory

Block

Thread (0, 0) ...

Thread (N, 0)

 Registers

 Registers

 Registers

 Registers

Thread (0, M)

Thread (N, M) ...

Figure 3: The CUDA Grid Structure and Block Structure.

18

Shared memory is fast as compared to device memory and normally takes

the same amount of time as required to access registers. It is also called parallel

data cache (PDC). Shared memory is “local” to each multiprocessor unlike device

memory and allows more efficient local synchronization. It is divided into many

parts. Each thread block within multiprocessor accesses its own part of shared

memory and this part of shared memory is not accessible by any other thread

block of this multiprocessor or of some other multiprocessor. All threads within a

thread block that have the same life time as of the block, share this part of

memory for both read and write operations. As shared memory space is only

16KiB, so it must be used efficiently. To declare variables in shared memory

__shared__ qualifier is used and to declare in global memory __device__ qualifier

is used.

Each multiprocessor also has its own read only caches to speed up read

operation. These are constant cache and texture cache memories.

Each thread also contains its own local memory. Normally local variables of

the kernel functions are allocated here. Sometimes they are allocated on global

memory.

2.5 Thread Synchronization

For synchronization purpose among threads CUDA API provides a

hardware thread-barrier function syncthreads() that acts as synchronization point.

As threads are scheduled in hardware, this function is implemented in hardware.

The threads will wait at the synchronization point until all of the threads have

reached at this point. The communication among threads (if required) is possible

through per-block shared memory. Hence thread synchronization is possible only

at thread block level. Since threads of a thread block may communicate with each

other, these threads must execute on same processor. That is why thread block is

guaranteed to execute on one processor.

2.6 Control Flow

As the kernel function runs on the device, memory must be allocated on

device in advance before kernel function invocation and if the kernel function has

to execute on some data then the data must be copied from the host memory to the

device memory. Device memory can be allocated either as linear memory or as

CUDA arrays. Qualifier __device__ at the start of a variable specifies that space

for this variable is allocated on the device memory. CUDA API [6] also has

19

functions to allocate and de-allocate device memory at run time like

cudaMalloc(), cudaFree(), etc. Similarly, after the execution of kernel function,

data from device memory must be copied back to host memory in order to get

results. To copy data to and from the device to host CUDA API provides

functions for example cudaMemCpyToSymbol(), cudaMemCpyFromSymbol(),

cudaMemCpy(), etc. Keeping all this in view the processing flow is as follows:

1. Allocate memory on host and device separately. Device memory is

readable and writable by the host through the memory copy functions.

2. Copy data from host to device using CUDA API if required.

3. Kernel function executes parallel on each core.

4. Copy data back from device to host using CUDA API.

Figure 4 illustrates an example of processing flow of CUDA. In first step

two arrays of same size are declared, one on the host and one on the device. The

data from the host is copied to the device using CUDA API cudaMemCpy(). The

kernel function runs in parallel on the device and in last step the results are copied

back to the host using cudaMemCpy() function.

Figure 13: The CUDA Grid Structure and Block Structure

Device

Block (0, 0)

Block (N, 0)

Block (N, M)

Block (0, M)

RAM

1. int array[total];

__device__ int darray[total];

2. CudaMemCpy (darray,

array,…);

3. funcArray <<<grid,

block>>> (…);

4. CudaMemCpy (array,

darray,…);

1

1

2 4

3

...

...

 Figure 4: An example of processing flow.

20

2.7 Restrictions

To use general purpose GPU we must follow the restrictions of the CUDA

programming paradigm. Some of the restrictions are given below:

Simple C programming is supported by the CUDA compiler. It lacks the

use of object-oriented or C++ features in device code.

Heterogeneous architecture is used to make an interaction between CPU

and GPU programming models. Data may be copied from host memory to device

memory and the results are copied back to host from the device memory.

Heterogeneous programming is discussed in section 2.2 and described graphically

in Figure 2.

Kernel function invocation: The grid, thread blocks, and threads are

created by the kernel function invocation from the host. This is the only way to

create them. They cannot be created inside the kernel function. The grid, and

thread blocks are discussed in section 2.3 and Figure 3. Moreover the number of

grids and thread blocks must not exceed their maximum allowed values.

The kernel functions do not return any results, i.e. its return type is always

void. Further the kernel function call is asynchronous. It means that control

returns back before the completion of the kernel function on the device. More

information can be found in CUDA programming guide [1]. All functions with

the __device__ qualifier are by default inline.

Recursion is simply not allowed within kernel functions because of the

large amount of memory requirement for the thousands of thread.

The device memory allocation and de-allocation at run-time is possible

only when using host code and before calling the device code. It means that

within the device code, the device memory cannot be allocated nor de-allocated

using the functions like cudaMalloc(), cudaFree(), etc. All the allocations required

for a specific kernel function are done before calling that kernel function in the

host code and similarly all that allocated device memory is de-allocated after the

completion of that kernel function in the host code.

Shared memory is shared among the threads on the same thread block

only. Threads from different thread block cannot share it. This concept is

discussed in section 2.4 and graphically shown in Figure 3.

Built-in variables such as blockIdx, threadIdx, etc, cannot be assigned any

values. Further it is not possible to take their address.

21

The variables declared with __device__, __shared__, or __constant__

qualifiers also have some restrictions [1]. Address of a variable with any one of

these qualifiers can only be used within the device code.

Communication and synchronization among threads are only possible at

thread block level. Communication among thread blocks is not allowed. Section

2.5 explains the thread synchronization.

22

3 A* Algorithm

3.1 A* Path finding Algorithm

A real challenge for an agent in real time games is to find the route from the

start node to the goal node in presence of other agents and obstacles. In the

presence of obstacles, the path moves around the obstacle and reaches the goal.

This path should be of minimum cost or in other words it should be the shortest

possible distance.

A* is a shortest path finding algorithm that uses informed search technique

to find the least-cost path from the start node to the goal node. The classic

representation of the A* algorithm is as follow [7]:

“f(x) = g(x) + h(x)”

f(x): is called the distance-plus-cost heuristic function (or simply F cost) and it is

the sum of path-cost function g(x) and heuristic function h(x).

g(x): the path-cost function (or simply G cost) is the actual total cost of the path

to reach the current node x from the start node.

h(x): is the estimated cost (or simply H cost) of the path from current node x to

the goal node. An estimate is made that tells how far the goal node is from the

current node x. h(x) must be an admissible heuristic estimate. A heuristic function

is said to be admissible if the cost of path estimated by it never exceeds the

lowest-cost path. Since h(x) is part of f(x), f(x) is dependable on h(x) for the

lowest cost of path. It means when h(x) is admissible, A* algorithm is guaranteed

to give the shortest path if one exists. Therefore, h(x) must not overestimate the

cost.

There are many different heuristic functions used for the grid maps. Some

famous heuristics are Manhattan distance, diagonal distance, Euclidean distance.

We are using the Manhattan distance to estimate h(x) because it works better on

squared grids [4] [5]. It is the direct distance from current node to the goal node

without considering obstacles in the path. In this way h(x) is giving us the lowest

possible cost to reach the goal node.

23

3.2 Implementing Parallel A*

3.2.1 Map Representation

Generally computer games use grids for the world representation. We are

considering the map as a uniform two-dimensional grid that is subdivided into

small square shaped tiles, as shown in Figure 5. Map has walkable and non-

walkable tiles; the obstacles are represented as non-walkable tiles. In Figure

5Error! Reference source not found., the obstacles are represented by the gray

tiles. The algorithm searches only walkable tiles of the map. All non-walkable

tiles are simply ignored. Hence, each tile represents a node in the algorithm, and is

either walkable, or non-walkable.

Figure 5: A* algorithm search area in light blue; Green is start node; Red is goal

node; Gray represents unwalkable nodes.

Units can move to the adjacent tiles (eight adjacent tiles in our case)

including diagonals too. Cost to move straight to the adjacent tile is 10, while the

diagonal movement cost is kept 14.

3.2.2 The Nodes

A* search algorithm finds the optimal path in the presences of obstacles

depending on F cost value of nodes. The nodes with lower F cost values are

24

remembered and searched first. The nodes that have already been visited are also

remembered, so that they are not checked repeatedly. In this way each node gets

one of the following statuses, „not visited‟, „open‟, or „closed‟. All the visited

nodes to find a path from start node to the goal node are called search space and

they are represented in blue in Figure 6Error! Reference source not found..

3.2.3 Open List

The node that has been visited is called „open‟ and is placed on the open list.

When all neighbor nodes of an open node have been visited (means placed on

open list), its status is changed to „closed‟ and this node is removed from open

list. Hence on each pass, one node is removed from the open list and at maximum

eight neighbor nodes are placed on it.

The open list array is sorted using binary heap sort. It sorts the nodes

according to their F cost values. An optimized way to maintain this sorted list is

the use of priority queue [8].

3.2.4 Algorithm flow

Algorithm starts when the current node (start node at the beginning) is

placed on open list. Then its eight adjacent neighbor nodes are visited and are put

on the open list, their status becomes open, their G cost, H cost, and F cost values

are computed and G cost and F cost values are stored. The parent of all these

neighbor nodes is the current node. Therefore, current node‟s id is stored as Parent

of these neighbor nodes. The current node is done at this stage and its status is

changed to closed, and it is removed from the open list.

Using lowest F cost values, A* algorithm keeps on moving towards the goal

node and finds the shortest possible path in presence of obstacles (non-walkable

nodes).

3.2.5 Storing the final path

We are storing the parent of each node. It helps in retaining a path at the end

of the search, if a path exists. As the search starts from the start node, thus start

node has no parent. By visiting the walkable neighbor nodes of this start node,

these neighbors become child nodes of the start node, or in other words, all

walkable neighbor nodes has a parent that is the start node. In the next step, these

neighbor nodes become parent nodes of other visited nodes, and so on. In Figure

6, arrows point towards the parents.

25

Figure 6: Arrows are pointing towards parent nodes; final path is represented

using cyan arrows.

At the end of the search, if the path is found, the optimal path is retrieved by

moving backwards from the parent of target node towards the start node. This

optimal path is stored in the path array. In Figure 6 the optimal path is shown by

arrows of cyan color.

3.2.6 Structure

The structure used to represent a walkable node is C struct type named

“node”. It contains the following fields:

1. Status – store the status of current node. It can take one of these

three values, not-visited, open, or closed. At start all nodes have

status not-visited.

2. Parent – stores the parent node‟s id.

3. Gcost – stores the actual cost to travel from start node to the current

node.

4. Fcost – records the F cost value for node.

An array of node type is used in the algorithm for all nodes of the map. The

index of the array represents the unique id of each node.

26

3.3 Priority Queue as Binary Heap

A* algorithm needs a list to insert and remove elements/nodes/items

according to their F cost value that is f(x). A* generally removes one node on

every pass, and usually adds from zero to eight new nodes to the list. The node

with the lowest F cost value is removed first and the list should be rearranged

after insertion of every new node to it. This takes a lot of time, so some efficient

way should be used to maintain this list. Moreover, for larger maps it becomes

more essential. The use of a priority queue is well-suited in this situation [8]. We

are implementing a priority queue as a sorted list and are using binary heap to sort

the nodes according to the lowest F cost value.

The priority queue is maintained to fetch the node with the lowest F cost

value and to insert the node at its appropriate position in the queue according to its

F cost value. Binary heap is very fast in this situation of numerous insertions and

deletions to queue that are dependent on F cost. If priority queue has N number of

elements, then average efficiency to insert and remove the elements on the priority

queue is O (logN).

For example consider the heap with 1000 nodes on it. Using a binary heap,

an average of three comparisons are needed to insert it in the right place, starting

from the bottom of queue, and in worst case nine comparisons are required. And

an average of about nine comparisons is needed to remove an item from the open

list and reorder the heap appropriately. Worst case requires 18 comparisons.

3.3.1 Inserting Items to the Priority Queue

The priority queue is implemented as a sorted list using binary heap sort.

Figure 7 shows a simple queue containing n-1 elements. A new element is

inserted at the tail end of the queue. This shown is Figure 8Figure 8; total number

of elements is n now.

1 2 (n-1)

Figure 7: Binary heap with (n-1) elements

27

Now we need to place this element according to its priority, the F cost

value. So we start by comparing the F cost value of this element with its parent‟s

F cost value. If its F cost value is lower than its parent‟s F cost, the two elements

are swapped. This is described in Figure 9. The newly inserted element is now at

the position n/2. This element is again compared with its new parent (at position

n/2/2), and if its F cost value is lower than its parent‟s F cost, they are swapped as

described in Figure 10. This process continues until the item is not lower than its

parent, or until the element has reached to the top of array.

3.3.2 Removing Items from the Priority Queue

In A* path finding we need to delete the lowest F cost item. This element is

the top of the queue at position 1, shown in Figure 11. So first, the item in position

1 is removed, which then becomes empty. Now we need to resort the list to place

the element of lowest F cost value at first position. We start it by moving up the

last item of the heap to position 1 as given in Figure 12. Next we compare F cost

value of this element with its two children‟s F cost values. If its F cost is lower

than both the children‟s F cost values, the process finishes, otherwise it is

1 2 (n-1) n

1 2 ((n/2)/2) (n/2) n

1 2 (n/2) n

Figure 8: Inserting nth element at the end of heap.

Figure 9: Comparing nth element with the element at (n/2) position.

Figure 10: Comparing element at (n/2) with the item at position ((n/2)/2).

28

swapped with the lowest F cost value child. This is revealed in Figure 13 and

Figure 14. This process is continued until the list finishes.

3.4 Pseudo code

Summarizing everything the pseudo code is given here:

1. Generate the map with walkable and non-walkable nodes.

2. Create open list that is initially empty.

1 2 3 4 5 (n-1)

Figure 14: Comparing next element with its two children and swapping with lower Fcost of

the two children and so on until list finishes.

1 2 3 (n-1)

1 2 n

1 2 (n-1) n

Figure 12: Move nth element at the 1st position of heap.

Figure 11: Deleting lowest F cost element from position 1.

Figure 13: Comparing Ist element with its two children at positions (current

position*2) and (current position*2+1) and then swaping with lower FCost of

the two children.

29

3. Create start node and target node. Place start node on open list.

4. While open list does not become empty and path not found, do the following:

4.1. Remove the node with lowest F cost value from the open list. This node is

now called current node.

4.2. Change the status of current node as closed.

4.3. Do the following for each adjacent node (eight in our case) of the current

node:

4.3.1. If adjacent node is within the map boundaries and it is walkable

and its status is not closed then do the following:

4.3.2. If adjacent node is not on open list then place it on open list, make

current node as parent of this node, and store its G cost and F cost

values. Also change its status to open.

4.3.3. If adjacent node is on open list (means its status is already open)

then recalculate G cost value. If new G cost is less than already

computed G cost then change the parent node and store newly

computed G cost and F cost values and resort open list.

 4.4. When the target node‟s status becomes open, the path is found.

5. When open list becomes empty, it means path does not exist.

3.5 Admissibility and Optimization

“Any graph search algorithm is said to be admissible if it always returns an

optimal solution that is the one with the lowest cost, if a solution exists at all” [9].

However, A* is only admissible if the heuristic you use never over-

estimates the distance to the goal. To estimate h(x) we are using Manhattan rule

[4] [5]. It calculates the shortest possible distance between two nodes without

considering obstacles in the path and gives us the lowest possible cost to reach the

goal node. Hence A* is admissible and considers few nodes because it only

searches the nodes with lowest path costs to reach the target. When A* terminates

its search, it has found a shortest path or the path does not exist.

Some optimizations should be done to improve the performance of the

algorithm. Some optimizations done in the code of A* algorithm are given here.

1. The node with the lowest F cost is to delete always from the

open list in each search loop. A priority queue is used to keep

the nodes sorted according to the lowest F cost value. This

priority queue is implemented using binary heap whose

average efficiency O (logN). This enables the items be

removed efficiently always.

30

2. Another optimization is done in storing the path after A*

algorithm has found it. To store path, we need to backtrack it

from target node towards the start node. To make this

backtracking easy and efficient, the parent node‟s id of each

node along the path is stored. This parent id is used to retrieve

the final path at the end of the algorithm if the path is found.

3.6 Different Variations of the Algorithm

We have made the following three improvements to the parallel A*

algorithm to allow it to work faster and on larger maps.

 Pre-stored Paths: It is the use of pre-calculated paths for commonly

used paths.

 Multiple Threads per Agent: multiple threads work together on the

same path using shared memory and thread synchronization.

 Hierarchical Breakdown: It is path slicing and path putting together

activity. Instead of computing the complete path as a whole, the path is

calculated in many segments. This makes it possible to calculate more

paths concurrently on big maps than was possible before. Very large

maps are broken down into many clusters and paths are computed at a

higher level of abstraction using path abstraction. All the segments of a

path are then joined together to make a complete path using path

refinements.

All these three improvements are explained in details in the following

sections.

3.7 Pre-stored Paths

When many agents are finding paths in parallel on a search area, some

paths are repeated either fully or partially. So it is only waste of time and effort to

calculate all paths completely every time. One way to solve this is to compute

some paths in advance and store them. The algorithm will run in two phases: first

to find some paths and store them, and second to run all agents concurrently and

finding their respective paths with the usage of these pre-stored paths.

The first phase is very simple and includes only few paths to be computed.

In second phase, when a new agent starts to find a path, first it checks in pre-

31

stored paths whether this path has been already computed and stored. If yes then

there is no need to compute it again, hence the search is stopped and path is

simply copied. If no then agent will check for some partially pre-computed paths.

It will check whether any pre-stored path‟s end point and it‟s to be computed

path‟s target point are same. After this, agent starts calculating its path. Every

time at the selection of „current node‟ agent checks whether this current node

exists on the pre-stored path. Its existence means that the rest of the path has

already been computed, so path finding is stopped at this point. The first portion

of the final path is computed and the last portion of the path is simple taken from

the pre-stored path and appended with first one. In this way effort is put to

compute only a portion of the path. In case no pre-stored path is matched fully or

partially, the new path is computed completely.

3.8 Multiple Threads per Agent

To exploit the parallel hardware architecture in a true sense, the software

running on it should be adopted to run concurrently using multiple threads. The

software should be changed to utilize multithreading, shared memory access, and

achieve concurrency controls. For the adoption of A* using multiple threads,

some improvements are required in the basic algorithm. When many threads are

finding a particular path, and all these threads are accessing some shared memory,

thread synchronization becomes essential for correct execution of the algorithm.

For implementation of A* algorithm running with Multiple threads per

agents, I am using eight threads in parallel to find an optimal path. Eight threads

are used because the grid illustration is used for the map representation in which

each node has maximum eight neighbors. Now these eight threads work

concurrently on these neighbors of current node instead of one thread working in

a loop. A data structure called a „temporary list‟ on the CUDA shared memory is

used by these eight threads. It is an array of eight places; one place is accessible to

each thread.

In this new multiple threads implementation of the algorithm some

changes are made. One thread starts execution of the initial portion of algorithm

and executes until the current node is selected. Other threads remain in waiting

state. Thread synchronization is used here to accomplish this. After selecting

current node, all the eight threads run in parallel to work simultaneously on all the

eight neighbors of the current node. All these adjacent or neighbor nodes are

checked, their G cost and F cost values are calculated, their statuses are checked

and/or changed and they are put on the temporary list. Thread synchronization is

done here so that all the threads finish their execution before going further. After

32

this step only one thread runs for the remaining portion of the algorithm and

places all the values of temporary list onto the open list.

3.8.1 Pseudo Code

Summarizing all this, the modified algorithm is given below. Eight threads run

in parallel on portion of pseudo code written in italics.

1. Generate the map with walkable and non-walkable nodes.

2. Create open list that is initially empty.

3. Create start node and target node. Place start node on open list.

4. While open list does not become empty and path not found, do the following:

4.1. Remove the node with lowest F cost value from the open list. This node is

called now current node.

4.2. Change the status of current node as closed.

4.3. Thread Synchronization is done here. Eight threads run in parallel, each

works on one adjacent node of the current node.

4.3.1. If adjacent node is within the map boundaries and it is walkable

and its status is not closed then do the following:

4.3.2. If adjacent node is not on open list then place it on temporary list,

make current node as parent of this node, and store its G cost and

F cost values. Also change its status to open.

4.3.3. If adjacent node is on open list (means its status is already open)

then recalculate G cost value. If new G cost is less than already

computed G cost then change the parent node and store newly

computed G cost and F cost values and resort temporary list.

4.4. Thread Synchronization done here.

4.5. Temporary list is stored on open list.

4.6. When the target node‟s status becomes open, the path is found.

5. When open list becomes empty, it means path does not exist.

3.9 Hierarchical Breakdown of A*

Two improvements made on simple A* algorithm, i.e. Pre-path

calculations and Multiple threads per agents have shown significant

improvements in calculating many paths in less time. Simple A* algorithm and

these two improvements on it give good results only on small sized images. As

the size of the images increases, the memory requirements of the algorithm also

increases which results in less number of thread groups to run parallel on CUDA

33

architecture, hence not only the time required to find paths increases but also

limits the total number of threads that can run concurrently. Thus for larger maps

some techniques must be used to overcome the memory limitations of underlying

graphics card and CUDA architecture.

One way to solve this problem for large sized images is “finding A* path

hierarchically” [10]. It is finding paths in small parts or slices and then putting

those path slices together. We have implemented hierarchical path finding A* on

graphics card. The search space is divided into smaller portions called clusters.

Instead of applying search on whole map, search is applied on smaller portions of

the map, hence fulfilling the memory limitations of underlying graphics card and

CUDA architecture. The whole process of path finding is done in two steps; Path

Abstraction and Path Calculation.

Path Abstraction: also called path slicing, is a onetime activity in which

an abstract weighted graph is made from the grid map representation. This graph

is stored in memory and all the further path finding is done at a higher level of

abstraction using this weighted graph.

Path Calculation: All the actual paths are computed after path

abstraction. This is done in the following three steps:

1. In the first step all the start and target nodes are added to the abstract

weighted graph.

2. Complete abstract paths are computed on abstract weighted graph at a

higher abstraction level. Abstract paths do not include low-level path

details.

3. Third step is called path refinement in which all the abstract paths are

refined to the low level paths. Detailed paths are patched up to

abstract path to give a complete path.

Path abstraction and path calculation processes are discussed below in details.

3.9.1 Path Abstraction

Path Abstraction is the procedure to make an abstract weighted graph from

a grid representation of a map. Figure 15 shows grid representation of a map used

to take the results. The whole grid map is divided into smaller parts called

clusters. These clusters are connected to each other at specific points on the

borders of the clusters. These points are called the exit points. Clusters of sizes

20*20 pixels are given in Figure 16. Different clusters are shown in different

colors in and the exit points at borders of these clusters are shown in the red color.

These exit points are connected in the two following ways:

34

1. Exit point at the border of one cluster is connected to the adjacent exit points

at the border of adjacent cluster if both are walkable. In this way two adjacent

clusters get connected to one another and the cost/weight of this

connection/edge is 10. These exit points are not connected to the diagonal

clusters at the corners. This is called an inter-edge [10] as it connects two

different clusters together. One cluster can be connected to its adjacent cluster

at maximum three different places, at top, at bottom, and at the middle. If any

node at these places is unwalkable, then an adjacent place is considered for

the exit point and so on.

Figure 15: Grid representation of a map used to take the results.

For example consider the top left cluster of the Figure 16. It is adjacent to two

other clusters, one at its right and one at its bottom. Looking at top left cluster

35

and the cluster at its right, we see that the top eight adjacent nodes are

unwalkable therefore they cannot be considered for the exit points. The ninth

node at the border line of both clusters is walkable therefore they are taken as

the exit points. These two clusters are connected at two more exit points; in

the middle and at bottom of the clusters. Hence in this way each cluster can

be connected to maximum four adjacent clusters at maximum 12 exit points.

Figure 16 is generated from the system and displays all the clusters with the

connecting exit points.

Figure 16: All the clusters with the connecting exit points.

2. In the second step optimal paths among exit points of each cluster are

calculated using simple A* algorithm implementation on GPU and then

stored. Each exit point of a particular cluster is connected directly to all other

exit points in the same cluster. As these edges are connecting exit points

within the clusters, therefore, they are, called the intra-edges. Figure 17

36

illustrates intra-edges of the top left corner of the map. The actual costs of

these paths are computed. This cost becomes the weight of edge.

Figure 17: Illustrates intra-edges of the top left corner of the map.

Consequently an abstract weighted graph is made using all inter-edges and

intra-edges. An adjacency list is used to store this abstract weighted graph. In first

step, as both connecting exit points are adjacent to each other, therefore; there is

no need to calculate the path among them. Therefore, they are simply stored on

the adjacency list and the cost of edge between them is 10. In step 2, the simple

A* algorithm implementation for GPU is used to calculate the optimal paths

between exit points. All these paths are computed concurrently on GPU. The

algorithm searches for each path only on a small portion of the map, i.e. within

one cluster and this one-time activity is very fast. The actual costs of paths, i.e. G

costs are stored as weights of the edges on adjacency list. The paths are stored on

a separate list called path list.

37

3.9.2 Path Calculation

All the actual paths are computed in this step. It is accomplished in three

steps.

In first step all the start and target nodes are added to the abstract graph. It is

done by connecting each start and target point to all exit points of their respective

clusters. For example, if a start node lies on top left cluster, then this start node is

connected to all the exit points of that top left cluster. This start node, with the

cost to reach each exit point is appended to the adjacency list. In this way the start

node is attached to the abstract weighted graph. Paths from this start node to the

exit points are stored on the path list. The Simple A* algorithm implementation

for GPU is used to achieve this.

In second step the complete abstract paths are calculated on abstract

weighted graph at higher level of abstraction. A* search is made on adjacency list

instead of actual map. Paths found at this higher level are optimal and small. They

only include the high level moves, i.e. moving from one cluster to another cluster

until target node is reached without considering low-level detailed paths within

the clusters. The adjacency list is much smaller in size as compared to the actual

map size, therefore; the search is fast. Further the smaller size of adjacency list

also overcomes the memory limitations of GPU architecture.

Third step is the refinement of abstract paths. It just patches up all the low-

level paths already stored in path list to make a complete path. Paths at lower level

of abstraction are not optimal.

3.10 Literature Review

A* algorithm has been very famous for its reduced search space by the use

of heuristic function [2]. Further priority queue‟s implementation as binary heap

reduces complexity to O (logN) for N elements. It is fast but one problem with

this algorithm is the exponential growth of memory requirement. Iterative-

Deeping A*, IDA* [11] uses less memory as it does not remember the visited

nodes, but it needs exponential time to run and reach the goal node. Learning Real

Time Algorithm LRTA* [12] learns an exact heuristic function and presents better

results in both space and time complexities over the previous two algorithms, but

it can take a lot of time to learn an accurate heuristic function. [13] provide

different factors that affect the performance of Pathfinding especially in game

environment.

38

Hierarchical A* [14] is a technique represents space in an hierarchical

fashion. To reduce search space it uses a heuristic to create homomorphism

abstractions automatically. It uses algorithms for caching to reduce the number of

visited nodes. The method of graph abstraction and refinement used in

Hierarchical A* was designed by [15].

Hierarchical Pathfinding (HPA*) [10] divides the search space into sectors

with a limited numbers exit points connecting the sectors, instead of abstracting

the graph directly from search space. The path quality is improved by using path

smoothing. This method increases the performance at the cost of path optimality.

Hierarchical Annotated A* (HAA*) [16] is an extension of HPA* and provides a

hierarchical path finding using multi-size agents (agents can be of different sizes)

and using heterogeneous environment (terrain can be of different types, e.g. plain,

tree, water, hill, unwalkable).

Sturtevant and Buro provide a method of automatic state-space abstraction

called Partial Refinement A* (PRA*) [17] by which a multi-level graph

abstractions to reduce the search space. The complete abstract graph is made by

mapping one or more states to a single abstract state and mapping adjacent

vertices to adjacent or identical vertices at higher abstraction level. The paths are

computed at higher abstractions and then refined. The drawback is the loss of path

optimality. These abstractions can also be built dynamically or combined with

LRTA* [18]. [19] implements the Windowed Hierarchical Cooperative A*

(WHCA*) and Cooperative Partial-Refinement A* (CPRA*) algorithms where

path are found in eight directions instead of four, and the agents travel freely in

the environment and share information to avoid collisions. A comprehensive

empirical evaluation is performed [20] on 3000 problems using different map

sizes from 139 * 148 to 193 * 193. Experiments are performed using state-space

abstraction [17] and evaluating its effects on two real-time heuristic search

methods, Learning Real-Time Search (LRTS) which is an extension of LTRA*

and Path Refinement Learning Real-Time Search (PR LRTS). In [21] authors

present a technique reduce the number of collisions between agents through the

sharing their direction of movements with each other.

All of these algorithms and their results are implemented on single core

processor. Avi Bleiweiss [22] implemented the A* algorithm on the graphics card

and showed that the results are much faster than the CPU implementations. He

used graphs to represent the search space, and thousands of agents run in parallel

on GPU each finding one path. Our implementation of simple A* algorithm on

graphics card gives approximately same results as that of [22]. We have used

array for search space. The problem with running simple A* algorithm on GPU is

the increasing memory needs with the increase in map size (search space).

Moreover these two implementations do not utilize multithreading or shared

memory of the graphics processors.

39

To find path on bigger maps, we implemented HBDn A* on graphics

processors. For hierarchical breakdown we use the path abstraction and

refinement technique, very much influenced from [10]. We are dividing the search

space into clusters which are connected to each other at three different points as

compared to [10] where clusters are connected at only two points. As a

consequence the abstract weighted graph contains greater number of nodes than

[10]; hence helps in increasing the path optimality. We have used only two-level

graph abstraction to keep it simple on GPU.

40

4 Experimental Evaluation

The results taken for all the four implementations i.e. parallel A*, Pre-stored

Paths, Multiple threads per agent, and implementation of hierarchical breakdown

of A* are given in the following sections.

4.1 Graphics Card Used

The graphics card used to run the experiments was a NVIDIA‟s GeForce

GTX 260 with 24 multi-processors; each multiprocessor contains 8 processor

cores, so it becomes total 192 processor cores. It has 576 MHz Graphics Clock,

1242 MHz Processor Clock, 896 MB standard memory, and 36.9 (billion/sec)

Texture Fill Rate.

4.2 Parallel A* Algorithm

The experimental results for the simple A* implementation on GPU using

CUDA architecture are presented here. For benchmarking of simple A* algorithm

we used the following distributions which are done by Avi Bleiweiss [22] given in

Table 1.

Map

Size (Total no.

of nodes)

Walkable

Nodes Agents Launches

M0 3*3 8 64 1

M1 6*6 32 1024 1

M2 9*9 64 4096 1

M3 13*13 129 16641 1

M4 17*17 245 60025 1

M5 20*20 340 115600 2

Table 1: Benchmarks for parallel A* algorithm; Describes size of map array,

number of walkable nodes, number of agents (blocks: 1 thread per block), and

launches.

41

Size gives the size of the map used; nodes are the walkable nodes in the

array; agents are the number of all possible paths on walkable nodes, and launches

shows that the threads are divided into following number of launches to run. The

results of parallel A* algorithm are presented in Table 2.

Map GPU Time (ms)

CPU(Emulation mode)

Time (ms)

M0 0.2331 2.098

M1 3.7417 7.8273

M2 27.9296 41.1469

M3 236.227 315.993

M4 1908.219 2372.86

M5 4677.509 6458.94

Table 2: Experiment results for parallel A* algorithm; Describes time (in milli-

seconds) for GPU and CPU (Emulation mode)

Graph 1: Comparative performance of A* for GPU and CPU (Emulation mode).

Our implementation of the A* algorithm is different in a couple of ways

from that of Avi‟s. Avi is representing the map using a graph with nodes and

edges while we are representing it as a map of two-dimensional grid. For this

0

1000

2000

3000

4000

5000

6000

7000

M0 M1 M2 M3 M4 M5

Ti
m

e
 (

m
s)

Comparison of Parallel A* in GPU and CPU (Emulation Mode)

GPU

CPU(Emulation mode)

42

reason we are using the name Map instead of Graph as used in [22]; we name our

Maps as M0, M1, and so on, while Avi uses G0, G1, and so on. Further Avi

implemented the A* algorithm using adjacent lists while we have implemented

A* using arrays. In our implementation, the total number of nodes is equal to the

size of the map. This map contains walkable nodes and some obstacles or non-

walkable nodes. The number of walkable nodes in our benchmark is kept the same

as the nodes in Avi‟s [22] benchmark. Another difference is in the number of

launches for M4 and M5. Avi is using 2 launches for G4 and 3 launches for G5,

whereas we are running M4 in one launch and M5 in 2 launches. Moreover the

graphics card used by Avi is also different from us. He has used NVIDIA 8800

GT with 14 multiprocessors thus a total of 112 processor cores. We are using

NVIDIA‟s GeForce GTX 260 with 24 multi-processors so total 192 processor

cores.

Graph 2: Comparative performance of A* algorithm for GPU and CPU using

logarithmic scale

Despite of all these differences, we found that results of both

implementations are more or less the same. Graph 1 and Graph 2 represent the

results in graphical form.

0,1

1

10

100

1000

10000

M0 M1 M2 M3 M4 M5

Lo
gr

it
h

m
ic

 S
ca

le

Comparison of Parallel A* in GPU and CPU

(Emulation Mode) in Logrithmic Scale

GPU

CPU(Emulation mode)

43

4.3 Pre-stored Paths and Multiple Threads per Agent

We use the same benchmarks as presented in Table 1. Results are taken for

maps M0 till M4 for the Pre-stored paths and Multiple threads per agent. These

results are presented in Table 3 and also compared to the simple A*

implementation of A* algorithm on GPU.

Map
Parallel A*
Time(ms)

Pre-stored
Paths

Time(ms)

Multiple Threads
Time(ms)

M0 0.2331 0.188 0.26

M1 3.7417 2.66 3.15

M2 27.9296 6.62 7.35

M3 236.227 163.7 184.6

M4 1908.219 1279 1382.6

Table 3: Comparison of GPU time of Parallel A* to Pre-stored Paths and

Multiple Threads per Agent.

Graph 3: Comparative performance of Parallel A* to Pre-stored Paths

and Multiple Threads per Agent.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M0 M1 M2 M3 M4

T
im

e
 (

m
s

)

Comparison of Parallel A* with Pre-stored Paths and

Multiple Threads per Agent

Parallel A*

Pre-stored Paths

Multiple Threads

44

It is obvious from results that pre-stored paths and Multiple threads

implementation are much faster and efficient than the simple A* implementation

for GPU. These results are presented graphically in Graph 3 for five maps. Pre-

stored path implementation gives the most efficient results. It is because all the

paths are not computed fully or partially. Implementation of Multiple threads per

agent takes less time than simple A* algorithm, but a little more when compared

to pre-stored path. Binary heap becomes the bottle neck in Multiple thread

implementations. 8 threads run in parallel but when it comes to put values in

binary heap, only one thread remains active and all the other seven threads wait.

4.4 Hierarchical Breakdown of A*

The maps used to take results for parallel A*, Pre-stored paths and

Multiple Threads are very small in size. Small sized maps are not very practical.

As discussed in last chapter, for bigger sized maps, the memory limitations of

GPU architecture is an obstacle. Hierarchical breakdown (HBDn) of A* algorithm

is used and the results for it are presented here.

Figure 18: Image 1 (Less walkable

nodes)

Figure 19: Image 2 (More walkable

nodes)

The two main images used to take results for hierarchical breakdown of A*

algorithm are shown in Figure 18 and Figure 18. Image 1 has more black

(unwalkable) area than the Image 2; hence results are taken for both less walkable

and more walkable maps and its effect on the HBDn A* and parallel A* are

observed. A third image that is all white is used in few experiments just to check

the extreme conditions (all walkable) effect on the efficiency of HBDn of A*. All

the three maps are of the size 140 * 130 pixels.

45

Graph 4: Comparison of HBDn A*with Parallel A* for Image 1

In first step, results are taken for Parallel A* implementation and HBDn A*

implementation on both images (Image 1 and Image 2) and in second step, they

are compared with each other. The results for Image 1 and Image 2 are provided

in Table 6 and Table 7 respectively and shown graphically using Graph 4 and

Graph 5 respectively.

Graph 5: Comparison of HBDn A*with Parallel A* for Image 2

0

500

1000

1500

2000

2500

3000

3500

4000

200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s

)

Number of Agents

Parallel A* Compared to A* Hierarchical Breakdown

A* HBDn(20*20)

Parallel A*

0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

T
im

e
 (

m
s

)

Number of Agents

Parallel A* Compared to A* Hierarchical Breakdown

A* HBDn(20*20)

Parallel A*

46

For Image 1 (with less walkable area) both the implementations have

approximately same results as shown in Graph 4 except that the Parallel A*

implementation does not run for more than 1600 agents because of high memory

requirements.

For Image 2 (with more walkable area) the results reveal a drastic change in

the behavior of the Parallel A* implementation. It not only stops at 1600 agents

but also takes much more time to calculate the paths for the fewer number of

agents as compared to HBDn A* implementation. It is clear from the Graph 5.

Thus it demonstrates that the Parallel A* implementation has major variations

with the increase in the walkable area.

In the second step a comparison is made for the following:

 Parallel A* implementation for Image 1 and Image 2

 HBDn A* implementation for Image 1 and Image 2

4.4.1 Comparison of Parallel A* Results for Image 1 and for
Image 2

Parallel A* implementation provides irregular and changeable results for

both the images as shown in Graph 6. When the walkable area increases (for the

Image 2), the time for path calculation increases and at 1600 agents it becomes

almost double as compared to time of Image 1.

Graph 6: Comparison of Parallel A* for Image 1 and Image 2.

0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000 1200 1400 1600 1800

T
im

e
 (

m
s

)

Number of Agents

Parallel A* for Image 1 and Image 2

Image 1

Image 2

47

4.4.2 Comparison of HBDn A* (20*20) Results for Image 1 and
for Image 2

HBDn A* implementation provides more consistent and stable results for

both the images as shown in Graph 7. It is not affected by the increase in the

walkable area. Hence it is good for calculating paths on big images or images with

more walkable or white space.

Graph 7: Comparison of HBDn A* for Image 1 and Image 2.

All these results explains that for the bigger sized images HBDn A* works

much better than the Parallel A*. Moreover it gives very steady and consistent

results even when the walkable area increases.

4.4.3 Suitable Cluster Sizes

Next we wanted to figure out the suitable cluster size for the Hierarchical

breakdown A* implementation for GPU. We took results for these cluster sizes;

10*10, 15*15, 20*20, and 25*25. The total number of clusters for the Image 1,

Image 2, and white image are given in Table 4 and Graph 8.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s

)

Number of Agents

HBDn A* (20*20) for Image1 and Image2

Image 1

Image 2

48

Image 1 has less number of clusters because of less walkable area, as no

clusters are required on unwalkable areas. Image 2 is divided in more clusters as

compared to Image 1 because it has more walkable area than Image 1. White

Image (having all walkable area) is used to check the extreme values and to

decide about the most appropriate cluster size; it is divided into the maximum

possible number of clusters.

It is clear that the total number of clusters for the cluster size 10*10 is huge

as compared to the other sizes; for Image 2 and white image (whole apace is

walkable) it becomes more than double. The increase in the number of clusters

also increases the memory requirements to calculate the paths that further reduces

the number of agents that can run in parallel.

Image

No. of
Clusters for
Cluster Size

(10*10)

No. of
Clusters for
Cluster Size

(15*15)

No. of
Clusters for
Cluster Size

(20*20)

No. of
Clusters for
Cluster Size

(25*25)

Image 1 112 51 32 22

Image 2 174 71 42 25

White Image 182 81 46 30

Table 4: Different Cluster Sizes.

Graph 8: Different Cluster Sizes.

0

20

40

60

80

100

120

140

160

180

200

Image 1 Image 2 white

N
u

m
b

e
r

o
f

C
lu

s
te

rs

Number of Clusters

10*10

15*15

20*20

25*25

49

It is obvious from the Graph 9 (Table 10), and Graph 10 (Table 11) that the

cluster size 10*10 takes much more time than the other cluster sizes for both

Images 1 and 2. For Image 2 it cannot run for more than 1200 agents which mean

that with the increase in walkable (or white) area the memory requirements for

10*10 cluster size increases rapidly and execution of more than 1200 agents

becomes impossible.

The efficiency of the HBDn A* implementation is a tradeoff between speed

and optimality. Path at the abstract graph is optimal but path at the lower level of

hierarchy is sub-optimal. This sub-optimality increases with the increase in cluster

size. We want to calculate path that is more close to the optimal path and takes

less time to calculate. With the increased cluster size, the time to calculate path

reduces but it gives less optimal path. While decreasing the cluster size, increases

the optimality of the path but it also increases the time to calculate the path.

Graph 9: Results of Different Cluster Sizes on Image 1.

0

2000

4000

6000

8000

10000

200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s

)

Number of Agents

Different Cluster Sizes

(10*10)

(15*15)

(20*20)

(25*25)

50

Graph 10: Results of Different Cluster Sizes on Image 2.

Appropriate Cluster Size

Therefore, examining these results, we can say that the cluster size 20*20 is

appropriate. It takes less time to calculate paths than cluster sizes 10*10 and

15*15 and calculates more optimal paths than cluster size 25*25. Graph 11

presents the run of HBDn A* for the cluster size 20*20 for all the three images. It

gives the stable results and for increased walkable area (like Image 2) and also for

the white image the results are regular.

Graph 11: Comparison of 20*20 Cluster Size for three Images

0

2000

4000

6000

8000

10000

12000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

T
im

e
 (

m
s

)

Number of Agents

Different Cluster Sizes

(10*10)

(15*15)

(20*20)

(25*25)

0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s

)

Number of Agents

HBDn (20*20)

Image1

Image2

white Image

51

4.4.4 Calculating the Abstract Graph

Abstract path calculation is one time activity that is performed at the start of

the HBDn A*. The total amount of time to calculate the abstract graph for Image

1, Image 2, and white image for all cluster sizes is given in Table 5 and Graph 12.

Results indicate that it takes very less time to calculate. Further different cluster

sizes do not affect much the time required to calculate the abstract path.

Graph 12: Comparison of Time to Calculate Abstract Graph for three Images for

different Cluster Sizes.

Figure 20 shows graphically all the abstract weighted graphs for Image 1

and Image 2 with the cluster size 20*20. It is clear that no cluster and graph is

made for un-walkable area.

Figure 20: Abstract Weighted Graph for Image 1 and Image 2

0

200

400

600

800

1000

1200

1400

Image 1 Image 2 white

T
im

e
 (

m
s

)

Time to Calculate Abstract Graph

10*10

15*15

20*20

25*25

52

Figure 21and Figure 22 represents the complete paths computed on Image 1

and Image 2 using HBDn with 500 agents and 1000 agents respectively.

Figure 21: Complete paths for 500 Agents on Image 1 and Image 2

Figure 22: Complete paths for 1000 Agents on Image 1 and Image 2

4.5 Memory Footprints

Memory allocated on GPU for any A* implementation is actually the

memory required for the arrays. The same amount of memory is allocated on CPU

too. The arrays and their memory requirement for all implementations of the A*

algorithms are given below:

53

4.5.1 Parallel A* Implementation

The arrays used are given here; n is the total number of agents that run in

parallel.

Array Data type Memory

The Map Char mapWidth*mapHeight

Open list Short 2 * n * mapWidth*mapHeight

Node List Struct node 12 * n * mapWidth*mapHeight

Path list Short 2 * n * mapWidth*mapHeight

Path Length Short 2 * n

Start nodes Short 2 * n

Target nodes short 2 (ignoring constant)

Total memory allocated= ((16 * n +1)* mapWidth*mapHeight)) + (4 * n)

4.5.2 PrePath A* Implementation

The arrays used are given here, n is the total number of agents that run in

parallel to calculate complete paths, P is the total number of agents run in parallel

to compute pre paths.

Array Data type Memory

The Map Char mapWidth*mapHeight

Open list Short 2 * n * mapWidth*mapHeight

Node List Struct node 12 * n * mapWidth*mapHeight

Path list Short 2 * n * mapWidth*mapHeight

PreOpen list Short 2 * P * mapWidth*mapHeight

Pre list Short 12 * P * mapWidth*mapHeight

Pre Path list short 2 * P * mapWidth*mapHeight

Pre Path Lenth Short 2 * P

Path Length Short 2 * n

Pre start nodes short 2 * P

Pre target nodes short 2 * P

Start nodes Short 2 * n

Target nodes short 2 * n

Total memory allocated = ((16 * (n +P) + 1) * mapWidth*mapHeight) +

(6 *(n+P))

54

4.5.3 Multiple Threads/Agent A* Implementation

Array Data type Memory Requirement

The Map Char mapWidth*mapHeight

Open list Short 2 * n * mapWidth*mapHeight

Node List Struct node 12 * n * mapWidth*mapHeight

Path list Short 2 * n * mapWidth*mapHeight

Path Length Short 2 * n

Start nodes Short 2 * n

Target nodes short 2 * n

Total memory allocated = ((16 * n +1)* mapWidth*mapHeight)) + (6 * n)

4.5.4 HBDn A* Implementation

Path calculations are done in three steps; therefore, momory requirements

for these three steps are given separately. The variable bSIZE is the size of the

cluster. Each cluster has maximum 12 exit points. The variable startcount

provides the number of walkable nodes within a particular cluster. Ncluster

represents the total number of clusters.

1. Abstract Path Computation:

Array Data type Memory

The Map

(adjacency graph)

Struct listnode 18 * (bSIZE * bSIZE)

Open list Short 2 * startcount * (bSIZE * bSIZE)

Node List Struct node 12 * startcount * (bSIZE * bSIZE)

Path list Short 2 * (12*11) * (bSIZE*bSIZE)

Path cost int 4 * (12*11)

Path Length Short 2 * (12*11)

Start nodes Short 2 * (12*11)

Target nodes short 2 * (12*11)

Total memory allocated= 1320 + ((bSIZE
2
) * (282 + (14*startcount)))

55

2. Complete Path Computation:

First start and target nodes are added to the abstract graph.

Array Data type Memory

The Map

(adjacency graph)

Struct listnode 18 * Ncluster * (bSIZE * bSIZE)

Open list Short 2 * 24 * n * (bSIZE * bSIZE)

Node List Struct node 12 * 24 * n * (bSIZE * bSIZE)

Path list Short 2 * 24 * n * (bSIZE*bSIZE)

Path cost int 4 * 24 * n

Path Length Short 2 * 24 * n

Map Cluster Short Ncluster * (bSIZE*bSIZE)

Start nodes Short 2 * 24 * n

Target nodes short 2 * 24 * n

Total memory allocated = (240 * n) + (384 * n * bSIZE
2
) +

(19 * Ncluster * bSIZE
2
)

Then complete path is calculated on the abstract graph. Here adjCount gives

the total number of nodes on the abstract weighted graph.

Array Data type Memory

The Map (abstract

weighted graph)

Struct listnode 34 * Ncluster * 12 * n

Open list Short 2 * adjCount * n

Node List Struct node 12 * adjCount * n

Path list Short 2 * 12 * n

Path cost int 4 * n

Path Length Short 2 * n

Start nodes Short 34 * n

Target nodes short 34 * n

Total memory allocated = (98+ 14*adjCount + 408*Ncluster) * n

56

5 Conclusions

5.1 Summary of Contributions and Results

A* path-finding search algorithm is very famous in games for finding

shortest distance between two nodes. Today‟s games have thousands of agents

moving at a same time in the presence of obstacles. Thus it has become very

important to find shortest paths concurrently and in a speedy way. Making use of

GPU‟s highly parallel multi-threaded nature suits this scenario perfectly.

Implementing Simple A* algorithm using arrays (Parallel A*) has

approximately the same results as compared to A* implementation using adjacent

lists in [22]. Both implementations are greedy for space. Increase in the size of

map increases the memory requirements and thus decreases the speed of

algorithm.

To further increase the overall performance of algorithm, the memory

requirements must be reduced. One option is to use the fast, read-only constant

memory for storing the map. Pre-computing some paths and then sharing this

already computed information with other agents further increases the efficiency.

Another solution to this problem is to exploit the parallel hardware

architecture in a true sense. Some improvements are made in the basic A*

algorithm to calculate each path using multiple threads that run concurrently and

use shared memory and thread synchronization. It reduces the total search time of

A* algorithm as compared to the Parallel A* implementation. Binary heap is the

bottleneck for multiple threads, as only one thread can access the heap at a time

and all the other threads have to wait; thread synchronization is done to achieve

this.

 Hierarchical Breakdown of A* algorithm (HBDn) is faster and more

consistent solution for big-sized maps. It gives long paths on big search areas. To

overcome the high memory needs for the larger maps, the search space is divided

into smaller areas called clusters. The path is calculated using two levels of

hierarchy. At the higher level, an abstract weighted graph is made that connects

these clusters. Then multiple paths are computed on this abstract weighted graph

which is much smaller in size than the original map. And in the last, the complete

paths are found using path refinements. The abstract weighted graph calculation

is one time activity and takes very less time. Our results show that the most

appropriate cluster size using HBDn for the graphics processors is 20*20. There is

57

a trade-off between performance and optimality using HBDn. The path at abstract

graph level is optimal but the path at lower level of hierarchy is sub-optimal.

5.2 Limitations

The biggest overhead in implementing A* algorithm on graphics processor

is the memory requirements for the algorithm. Memory needs increase with the

increase of agents and with the increase in map size. To run more number of

agents in less time Pre-Path, Multiple threads, and HBDn techniques are adopted.

 Pre-Path uses already computed and stored paths, but gives static results. In

case of Multiple threads the binary heap becomes the bottleneck for the multiple

threads as only one thread at a time can access it. Both Pre-Path and Multiple

threads are feasible for small sized maps. HBDn is a good solution for large

search spaces. The limitation here is the compromise on path optimality. The path

calculated at lower level of hierarchy is sub-optimal.

5.3 Future Recommendations

Many ideas related to the efficient A* implementation on graphics cards can

be tried in future. Some of these ideas are discussed below.

 To overcome bottleneck of the binary heap while using multiple threads,

the Lock-free or wait-free implementations of the binary heap could be

done.

 Many levels of hierarchies could be used in Hierarchical breakdown

implementation of A* algorithm.

 Some heuristic method can be explored that is more suitable to calculate

the abstract weighted graph in HBDn.

 Pre-Paths can be combined with the Multiple threads and HBDn

implementation.

 Maps used only walkable or un-walkable. Maps with Heterogeneous

environment (of different weights) can be used.

58

6 Appendix A

We provide the actual results we have taken. For each value, we took at

least 20 results and calculated the average value of it. All the values in the

following tables are average of 20 results.

Image
10*10

Time (ms)

15*15

Time (ms)
20*20

Time (ms)
25*25

Time (ms)

Image 1 467.1384013 414.9552805 415.5135423 382.557685

Image 2 816.312173 702.9571197 716.256325 575.3688007

White Image 1339.498187 1234.609144 1235.187572 970.0900207

Table 5: Comparison of Time to Calculate Abstract Graph for three Images for

different Cluster Sizes.

No. of
Agents

A* HBDn(20*20)
Time (ms)

Parallel A*
Time (ms)

200 310.295697 419.492927

400 633.430503 786.2296727

600 981.5383923 1212.887928

800 1349.686914 1589.904878

1000 1726.962503 1878.784448

1200 2152.610175 2341.177945

1400 2591.491325 2719.14503

1600 3039.83062 3053.868284

1800 3477.315319 Cannot run

2000 3867.716315 Cannot run

Table 6: Comparison of Hierarchical Breakdown of A* with Simple Parallel

A*for Image 1.

59

No. of
Agents

A* HBDn(20*20)
Time (ms)

Parallel A*
Time (ms)

200 414.259284 793.1963873

400 693.5839555 1563.613424

600 1054.029649 2333.547868

800 1438.116202 3041.44362

1000 1850.667655 3609.353704

1200 2235.941427 4442.295688

1400 2663.860195 5162.952208

1600 3124.887066 5869.93564

1800 3560.26511 Cannot run

2000 4007.588992 Cannot run

2200 4430.429601 Cannot run

Table 7: Comparison of Hierarchical Breakdown of A* with Simple Parallel

A*for Image 2.

No. of

Agents

Time (ms) for

Image 1

Time (ms) for

Image 2

200 419.492927 793.1963873

400 786.2296727 1563.613424

600 1212.887928 2333.547868

800 1589.904878 3041.44362

1000 1878.784448 3609.353704

1200 2341.177945 4442.295688

1400 2719.14503 5162.952208

1600 3053.868284 5869.93564

Table 8: Comparison of Parallel A* for Image 1 and Image 2.

60

No. of

Agents

Time (ms) for

Image 1

Time (ms) for

Image 2

200 310.295697 414.259284

400 633.430503 693.5839555

600 981.5383923 1054.029649

800 1349.686914 1438.116202

1000 1726.962503 1850.667655

1200 2152.610175 2235.941427

1400 2591.491325 2663.860195

1600 3039.83062 3124.887066

1800 3477.315319 3560.26511

2000 3867.716315 4007.588992

Table 9: Comparison of HBDn A* for Image 1 and Image 2.

No. of Agents (10*10) (15*15) (20*20) (25*25)

200 1032.261977 358.0015175 310.295697 298.5838325

400 2082.390204 727.648158 633.430503 599.381222

600 3138.962177 1121.668306 981.5383923 930.538533

800 4201.372564 1524.015241 1349.686914 1258.350996

1000 5240.296618 1967.859478 1726.962503 1632.391788

1200 6326.44594 2386.658102 2152.610175 1992.89369

1400 7327.145975 2873.504065 2591.491325 2389.658523

1600 8606.622241 3346.890597 3039.83062 2785.949073

1800 9473.542007 3816.284394 3477.315319 3265.061032

2000 10678.64857 4283.857284 3867.716315 3601.496391

Table 10: Results of Different Cluster Sizes on Image 1.

61

No. of Agents (10*10) (15*15) (20*20) (25*25)

200 2006.904477 578.591651 414.259284 343.1814625

400 4015.2253 1162.843245 693.5839555 699.837726

600 6018.922134 1766.11961 1054.029649 1055.378761

800 8083.187373 2383.093149 1438.116202 1442.894864

1000 10135.05026 3022.72967 1850.667655 1842.208581

1200 12172.85929 3663.664697 2235.941427 2249.605382

1400 Can’t run 4313.022332 2663.860195 2687.098331

1600 Can’t run 5006.114418 3124.887066 3146.321965

1800 Can’t run 5555.239019 3560.26511 3607.322152

2000 Can’t run 6183.904121 4007.588992 4077.845432

2200 Can’t run 6761.307409 4430.429601 4583.212843

Table 11: Results of Different Cluster Sizes on Image 2.

62

References

 [1] NVIDIA CORPORATION, CUDA Programming Guide,

http://developer.nvidia.com/cuda

[2] P.E. Hart, N.J.Nilsson, and B. Raphael, "A formal basis for the heuristic

determination of minimum cost paths". IEEE Transactions on System

Science and Cybemetics. 4 pp 100-107, 1968.

[3] A* search algorithm, Wikipedia,

http://en.wikipedia.org/wiki/A*,

Last visited 11th Jan, 2009

[4] Amit's A* Pages

 http://theory.stanford.edu/~amitp/GameProgramming/,

 last visited 11th Jan, 2009

[5] Rina Dechter and Judea Pearl, “Generalized best-first search strategies and

the optimality of A*”, Journal of The ACM, Volume 32, Issue 3, Pages:

505 - 536, 1985.

[6] NVIDIA CORPORATION, CUDA Reference Manual,

http://developer.nvidia.com/cuda

[7] Path Finding - A* Algorithm

 http://www.edenwaith.com/products/pige/tutorials/a-star.php,

 last visited 11
th

 Jan, 2009

[8] T. Cazenave, “Optimizations of Data Structures, Heuristics, and

Algorithms for Path-Finding on Maps”. IEEE Symposium on

Computational Intelligence and Games, 2006

[9] A* algorithm tutorial

 http://www.geocities.com/jheyesjones/astar.html,

last visited 12th Feb, 2009

[10] A. Botea, M. Muller, and J. Schaeffer. “Near Optimal Hierarchical Path-

Finding”. Journal of Game Development, 1(1), pp. 7-28, 2004.

[11] R. E. Korf, “Depth First Iterative Deeping: An Optimal Admissible Tree

Search”, Journal of Artificial Intelligence, pp. 97-100, 1985

http://developer.nvidia.com/cuda
http://en.wikipedia.org/wiki/A*
http://theory.stanford.edu/~amitp/GameProgramming/
http://developer.nvidia.com/cuda
http://www.edenwaith.com/products/pige/tutorials/a-star.php
http://www.geocities.com/jheyesjones/astar.html

63

[12] R. E. Korf, “Real-time Heuristic Search”. Artificial Intelligence, 42(2-3),

pp. 189-211, 1990.

[13] B. Reese and B. Stout, “Finding a pathfinder”. Proceedings of the AAAI

Symposium on Artificial Intelligence and Computer Games, 1999.

[14] R. Holte, M. Perez, R. Zimmer, and A. MacDonald. “Hierarchical A*:

Searching Abstraction Hierarchies Efficiently”. In Proceedings AAAI-96,

pp. 530-535, 1996.

[15] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald. “Speeding Up

Problem-Solving by Abstraction: A Graph Oriented Approach”. Artificial

Intelligence Journal, 85(1-2), pp. 321-361, 1996.

[16] D. Harabor, A. Botea. “Hierarchical Path Planning for Multi-Size Agents

in Heterogeneous Environments”. IEEE Symposium on Computational

Intelligence and Games, 2008

[17] N. Sturtevant and M. Buro, “Partial Pathfinding Using Map Abstraction

and Refinement”, Proceedings of the National Conference on Artificial

Intelligence (AAAI), pp. 1392-1397, 2005.

[18] V. Bulitko, N. Sturtevant, and M. Kazakevich, “Speeding up learning in

real-time search via automatic state abstraction”. In Proceedings of the

National Conference on Artificial Intelligence (AAAI), 1349–1354. 2005

[19] N. Sturtevant, and M. Buro. “Improving Collaborative Pathfinding Using

Map Abstraction”. In AIIDE, pages 80--85, 2006

[20] V. Bulitko, N. Sturtevant, J. Lu, T. Yau. “Graph Abstraction in Real-Time

Heuristic Search”. Journal of Aritifial Intelligence, 30, pp. 51-100, 2007.

[21] R.Jansen, N. Sturent, “A new approach to cooperative pathfinding”.

Proceedings of the 7th conference on Autonomous agents and multiagent

systems. Pp. 1401-1404, 2008.

[22] GPU Accelerated Pathfinding, Avi Bleiweiss, In proceedings of Graphics

Hardware, 2008, Pages 65 – 74, 2008

