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Online Model Based Engine Calibration using Gaussian Process Regression
With Reference to Volvo Penta’s VIRTEC Project
Elias Hagentoft
Methisge Maheel Isanka Dabarera
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Engine Calibration is an important stage in the development phase of a new engine.
This is expensive, time consuming and requires expert knowledge.

This thesis presents the usage of Gaussian Process Regression (GPR) as a mod-
eling technique to mitigate the above drawbacks.

The GPR model uses operating points of the engine speed vs engine torque map
as a reference to conduct a Design of Experiments using Latin Hypercube Sampling
technique, for input parameters in order to predict Brake Specific Fuel Consump-
tion as the output parameter. Six input parameters are taken into consideration for
the thesis namely; engine speed, engine torque, injection timing, injection pressure,
throttle position and estimated EGR valve position.

The work concerns developing a methodology rather than a collection of final
models, hence an artificial neural network is used to generate data. The main find-
ing with regarding input data is that some operating points do not allow for any
variability, hence providing non-informative data for the regression methods.

One global model and three separate local models are created. The local models
are designed for the low torque, part load and high torque regions. The part load
and the low torque are the most accurate local models and the high torque local
model is the least accurate in terms of mean squared prediction error and fit.

These models are used to construct the main deliverable, which is a modelling
methodology for online engine calibration.

The Gaussian Process Regression is used in determining the importance of each
of the model parameters. The results from this contradicts some well known facts
and needs further investigation.

Keywords: Engine Calibration, Gaussian Process Regression, Virtual Test Cell,
Online Refinement, Latin Hypercube Sampling
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1
Introduction

This chapter gives a general introduction to the importance of engine calibration
and a motivation to why model based engine calibration is of interest. The chapter
also gives a framework to the methodology used in this thesis. The background and
motivation for the company Volvo Penta’s interest in engine calibration is mentioned
as well.

1.1 Background
In the development phase of new engines, an engine calibration is performed. En-
gine calibration is the process of adjusting engine control parameters to meet design
defined criteria. Meeting strict emission standards and continuously decreasing fuel
consumption are the main development targets for modern combustion engine de-
sign. To fulfill these demands, engine hardware and software architectures becomes
increasingly complex. With the rising number of actuators and software functions,
the number of parameters that need to be controlled and calibrated are increasing
drastically [1].

Traditional engine calibration is an expensive and time consuming process and is
usually conducted using physical test cells. Traditional calibration methods make
use of a combination of engine dynamometer and vehicle testing in a fashion that is
generally perceived as somewhat of an art.

The traditional procedure often requires expert knowledge and a high resource
allocation (for example numerous costly sensors) is needed in order to perform the
calibration on a real engine [2].

The need to reduce time and cost is driving the development of more advanced
calibration techniques. For years Design of Experiments (DoE), have been intro-
duced. This is a collection of techniques that can be used for efficiently structuring
the calibration of engines. This methodology offers several benefits, when the num-
ber of control parameters is high and the knowledge of input to output correlation
is relatively poor. The method of creating theoretical based engine models using
DoE has thus become popular in engine development [1].

Another approach to reduce physical testing is to develop a high fidelity model
instead of the plant. Also the final control system can be tested and validated on
this model, This is called Hardware-In-Loop (HIL).
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HIL simulation is a well-established technique used for model based calibration of
engines, which contains parts of hardware in the simulation loop during the process
of engine calibration. Thus, instead of testing the control algorithm on the mathe-
matical model, HIL simulation allows the usage of real hardware during simulation
[3]. Volvo Penta has developed a HIL simulation called Virtual Test Cell (VIRTEC)
under the Virtual Engine Calibration (VirCal) project. The VIRTEC is a system
which is a host for the mathematical engine model as well as the hardware (ECU
and actuators). In this way it is easy to simulate different models using the same
HIL.

The VIRTEC system aims to reduce the testing and calibration cost at Volvo
Penta by transferring at least 20% of the calibration activities from the physical test
cells to VIRTEC. This is done in order to increase the quality and to provide an
opportunity to test the entire domain of engine operation (see Section 1.4) before it
is delivered to the customers. The VIRTEC system is shown in Figure 1.1.

Figure 1.1: Volvo Penta Virtual Test Cell (VIRTEC) System.

A Volvo Penta diesel engine using Stage IV/Tier 4 Final technology is considered
for the thesis. The engine uses a Selective Catalytic Reduction (SCR) method in
combination with a light Exhaust Gas Re-circulation (EGR) system in order to meet
the emission regulations (especially NOx emissions). The Volvo Penta SCR solution
results in less maintenance for the customers, reducing maintenance costs and also
results in better productivity [4]. More corporate-related information about the
project is given in Section 6.

1.2 Data Generation
Data is generated using VIRTEC as a host for an existing Artificial Neural Network
(ANN) model which was fitted to the engine. It is assumed to represent the real
physical engine and to produce data.

There are six input parameters considered for the ANN model to generate output
data. (further definition are given in A.2):

• Engine Speed (ω)
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• Engine Torque (τ)
• Advance Angle/ Injection Timing
• Nozzle Opening Pressure (NOP) / Injection Pressure
• Throttle Position
• Estimated EGR Valve Position

Engine power is the product of the engine torque and engine speed:

P = τω (1.1)

where τ (Nm) is the engine torque and ω (rpm) is the engine speed.

The output from the ANN model is the mass fuel flow rate ṁ (g/s).

The mass fuel flow rate and the engine power constitute the Brake-Specific-Fuel-
Consumption (BSFC) which is defined as follows:

BSFC = ṁ

P
(1.2)

BSFC expresses how much fuel the engine uses in order to perform useful work [5].

1.3 Engine Model
The data described in Section 1.2 is an input for fitting the engine models, which is
the topic for the rest of the report.

Different types of models can be used that are based on the dataset generated by
the artificial neural network. Examples of modelling techniques are neural networks,
polynomial models, linear regression, local neuro fuzzy models and support vector
machines to name a few. In this thesis Gaussian Process Regression (GPR) is used,
which is a statistical nonlinear regression method. The model created using GPR is
called the GPR engine model. GPR is explained further in Section 2.2.

Figure 1.2 shows in a schematic manner, the relationship between inputs and
outputs of the ANN and GPR engine model.
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Figure 1.2: A schematic diagram of the ANN and GPR engine model with inputs
and output.

The GPR Engine Model predicts for the output generated by the ANN model.
ṁ is the mass fuel flow rate, P is the engine power and y is the output, which is the
BSFC and ŷ is the prediction of the BSFC from the GPR Engine model.

1.4 Engine Operating Region and Driving Cycles
In order to setup the engine calibration according to the given dataset from a physical
test cell, engine speed and torque are kept at different constant values while the other
four inputs are varied throughout. These constant values define an operating point
(OP). The operating region of an engine is described by a set of OPs (see Figure
1.3).

The goal of engine calibration depends on the considered operating region [6]. For
the full-load (engine torque) region, the goal of calibration is to maximize engine
torque and power. For the part-load region, it is to minimize fuel consumption and
emissions. For the idle region a good engine smoothness is achieved, in order to
realize the maximum driving comfort [7]. Since, most OPs lie on the part-load re-
gion, (see Section 3.1.1), the main goal of the engine calibration is to minimize BSFC.
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Figure 1.3: Schematic of engine operating regions with several OPs pointed out
as dots. Engine speed is on the x-axis. Engine load (torque) is on the y-axis.

A driving cycle is represented by a sequence of OPs, and is a test run for en-
gine calibration. It is represented by vehicle speed (m/s) versus time and contains
changes in vehicle speed corresponding to different driving scenarios. Usually, the
driving cycles are standardized in order to verify that the vehicle manufacturer
follows the legislation regarding BSFC and emissions [8]. There are two types of
driving cycles:

• Transient driving cycles which contains variations of engine speed and torque
similar to actual road conditions and driving.

• Steady-state driving cycles which only contains periods with constant engine
speed and torque. These constant periods correspond to the engine speed and
torque of each OP. At each period, a stationary behaviour is observed.

In this thesis, only steady-state driving cycles are considered.

1.5 Online Refinement Algorithm for Engine Model
By using online refinement, it is possible to enhance the accuracy of the GPR engine
model. This is carried out by first identifying the point in the six dimensional input
space which corresponds to the highest uncertainty of the output. This defines an
Update Point (UP) in the operating region at which new data is collected. The
algorithm used is shown in Figure 1.4.

The uncertainty defining the UP is easily obtained by the uncertainty estimates
of the GPR [10], [11].

The experiment for obtaining new data at the UP is defined as the Design of
Experiments (DoE), which is described further in Section 2.1.
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Figure 1.4: Refinement algorithm for a specific driving cycle. The loop represents
the online refinement of the GPR engine model.

The criterion for the accuracy of the model upon refinement depends on the
user requirements. The chosen criterion in this thesis is that the MSPE (Mean
Squared Prediction Error) shall not decrease significantly upon the final iterative
step of online refinement. Online Refinement is discussed further in Section 2.3 and
3.5. For illustrative purposes, the resulting decrease in MSPE is shown after two
consecutive online refinements (see Section 4.2).

´

1.6 Limitations
The following limitations were motivated previously and are stated here again for
clarity:

• Only steady-state driving cycles are considered during the project.
• For the real engine and the ANN model used, some OPs don’t have variabil-

ity in all input parameters. Thus those parameters were not varied at these
specific OPs. The issue is described further in Section 3.1.3.

1.7 Contributions
The main deliverable of the project is a GPR engine model that can be used for an
engine calibration. This calibration is intended to mainly minimize Brake Specific
Fuel Consumption (BSFC ). The model also has online capabilities as discussed in
Section 1.5.
The main contribution is achieved by accomplishing a number of smaller targets:
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• Incorporating an online refinement technique into the model, to improve the
model.

• Conducting a DoE, that captures the entire space for varying input parameters.
• Constructing a GPR engine model, based on the DoE.

1.8 Outline
In Chapter 1 Introduction, an overview and motivation is given into model based
engine calibration and engine models.

In Chapter 2 Theory, a theoretical framework of GPR is presented which is used
in the rest of the thesis. The performance of the GPR models are later evaluated in
Chapter 4.

Chapter 3 Methods, explains how the data used for GPR are prepared and treated
in order to address non-informative trends (OPs with no variability in all input pa-
rameters) in data and match with certain assumptions inherent of GPR. Information
regarding the implementation of DoE and the online refinement is also given. Local
GPR engine models, covering clusters of OP’s, are fitted to the data. The regions
for the local models are also explained thoroughly.

In Chapter 4 Results, the performance of the GPR models are assessed as well as
the implemented online refinement that come along with each GPR engine model.
The result of ARD (determines the importance of each input parameter for the re-
gression), which is a feature of GPR explained in Chapter 2 is also presented.

In Chapter 5 Future Work, possible future work for a more complete model based
engine calibration is discussed.

Chapter 6 Implementation, mentions practical aspects of the thesis work, such as
corporate information and the software tools.

Chapter 7 Conclusion, concludes the results of the thesis work.
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2
Theory

This chapter gives a theoretical background regarding DoE as well as fundamentals,
aspects and features of GPR. The chapter also explains the theoretical idea behind
the implemented online refinement, and how the results of the GPR are represented.
Finally a demonstration of GPR is presented.

2.1 Design of Experiments

2.1.1 Objective of Design of Experiments
A trained model can only represent the system behaviour provided by the infor-
mation within a training dataset. Thus, a DoE is necessary in the first place for a
proper covering or exploration of the system’s input space. A space filling design
is used for the DoE, see Section 2.1.3. A motivation for using a space filling de-
sign is described in Section 2.1.2. Details regarding implementation of the DoE are
described in Section 3.3.

For automotive systems, measuring often requires the usage of test cells which
leads to expensive measuring costs, thus the key concept of DoE schemes is to gather
as much information about the input-output behaviour using as few experiments as
possible.

However, optimally distributed training data strongly depend on the used regres-
sion algorithm for modeling after the data is collected. Hence, the type of model
should be clear, before generating a DoE plan [12].

2.1.2 Types of DoE
Generally, DoE methods can be divided into model-based and model-free approaches
(the latter is used in the thesis). If the model and its structure is known, so that a
model-based approach is suitable, statistics can be used to define an optimal DoE
plan, thus reducing the measuring effort. However, in this thesis no prior knowledge
of the model is given and therefore a model-free DoE approach is used. Further-
more, a so-called non parametric model will be used, where the distribution of data
is modelled instead of assuming a specific model structure. In essence, model-free
DoE implies a space filling design, which generally aims for covering the whole input
space uniformly by maximization of the minimal distance between each input point
[12].
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A nonlinear modeling technique as a GPR (see Section 2.2) is suitable in engine
calibration since it can adapt the degree of nonlinearity itself and because it does
not make as strict assumptions as a linear model with a fixed structure. Hence, it is
meaningful to use a measurement design which does not make strict assumptions on
the engine behavior as well, such as space fillings designs. A problem with optimal
DoE plans is that they are optimal only for a specific linear model and this model has
to be defined a priori before measurements in the test cell. Typically, a change of the
structure of the linear model, e.g., a change of the degree of the polynomial model,
is critical, and, in the worst case, not possible with such a design. Consequently,
if the a priori assumptions differ from the real engine behavior, then the areas, in
which the measurements are placed, are not optimal, and, in the worst case, new
measurements have to be made, which is obviously time- and cost-intensive [7].

2.1.3 Latin Hypercube Sampling
The chosen space filling design is a Latin Hypercube Sampling (LHS), since it guar-
antees an even distribution of measurements in the input space. LHS is used in
generating random sample values from a multi-dimensional distribution. LHS is the
most commonly used random sampling technique for Monte-Carlo methods. Monte-
Carlo methods are a computational algorithm used in different fields of engineering
and relies on random sampling in order to solve a numerical problem. [13]

In LHS DoE, the design space is subdivided into an orthogonal grid which has
N elements of the same length as the number of parameters. Within this multi-
dimensional grid, N sub-volumes are chosen so that in each row and column of the
grid only one sub-volume is selected. In each of the sub-volume, a random sam-
pling is conducted. When selecting sub-volumes it should be done avoiding any
non-existing correlations between dimensions and making sure that the samples are
spread along the design space diagonal satisfying the requirements of a LHS DoE.
There are different techniques employed when conducting a LHS DoE in order to
minimize any non-significant correlations. Further reading about the theoretical as-
pect of LHS can be done on [14]. The implemented LHS DoE is described in Section
3.3.

2.2 Gaussian Process Regression
In order to explain the working principles of GPR, a theoretical framework regard-
ing Bayesian inference and regression as well as Gaussian Processes needs to be
established first.

2.2.1 Gaussian Process
A Gaussian Process consists of a set of random variables, where every finite collection
of these variables has a multivariate normal distribution (all finite linear combina-
tions of the variables are normally distributed). The distribution corresponding to
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a Gaussian process is the joint distribution of infinitely many random variables, and
is therefore a distribution over functions. These stochastic processes are defined by
their mean and covariance functions,

k(xm, xn) = E[(f(xm)−m(xm))(f(xn)−m(xn))]
m(x) = E[f(x)]

(2.1)

where k(xm, xn) is the covariance function which captures how correlated, the input
xm are to the nearest input xn and how fast the correlation decreases as the distance
between the two points increases [15].

Covariance functions (also called kernels) are the key ingredient in using Gaus-
sian processes. They encode most assumptions about the form of function that we
are modeling. In general, covariance represents some form of distance or similarity.
Consider two input points (locations) xi and xj with corresponding observed values
yi and yj. If the inputs xi and xj are close to each other, we generally expect that yi

and yj will be close as well and vice versa. This measure of similarity is embedded
in the covariance function and is called ’smoothness’ [16].

The mean function specify how the mean, m(x) = E[f(x)] is calculated. In most
applications there is no prior knowledge about the mean behaviour and thus a popu-
lar choice is to assign m(x) = 0. This assignment expresses that the initial guess for
the function output at any input is zero. This assignment may sound restrictive, but
offsets and simple trends can be subtracted out before modeling by normalizing so
a zero mean is obtained (see Section 3.2.3), hence in practice it is not so restrictive.
Consequently, the covariance function is then of greater importance than the mean
function and is what really affects regression [17],[18].
In the implemented GPR, the mean function is assigned according to: m(x) = 0,
which in summary simplifies the modelling.

A Gaussian Process is denoted as:

f(x) ∼ GP (m(x), k(xm, xn)) (2.2)

A simple example of a Gaussian Process is the Bayesian linear regression model
f(x) = φ(x)Tw with prior w ∼ N (0,Σp). For the mean and covariance function, the
following is obtained:

E[f(x)] = φ(x)TE[w] = 0
E[f(xm)f(xn)] = φ(x)TE[wwT ]φ(xn) = φ(xm)T Σpφ(xn)

(2.3)

thus f(xm) and f(xn) are jointly Gaussian distributed with zero mean and covari-
ance given by φ(xm)T Σpφ(xn). A commonly used covariance function is the Squared
Exponential function (SE), which is described in (2.4).
It can be shown that the SE corresponds to a Bayesian linear regression model with
an infinite number of basis functions. This theoretical result motivates the popular
use of the SE and also illuminate the connection between a linear regression and a
regression based on a Gaussian Process [15].
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2.2.2 Modeling via concept of smoothness
In Figure 2.1 a theoretical example illustrates the core idea behind a GPR. The
kernel can produce numerous functions because of infinite combinations of different
values for the hyperparameters (see Section 2.2.3) inherent for the used kernel and
this will affect the assumed smoothness of the function. The prior functions are
shown in the left. An infinite amount of prior functions are available, but for prac-
tical reasons only a finite amount is shown here. After obtaining data, the posterior
probability can be calculated and as can be seen in the middle plot, the number of
probable functions decreases when the posterior is calculated.

A characteristic property of smoothness is that the uncertainty (2.12) increases
as the distance increases between each data point in the input domain. This is rea-
sonable, as a smooth function has very similar function values that are very close
to each other in the input domain, or in other words, they are highly correlated.
Respectively, function values are expected to be less similar the further away the
data points are in the input domain. To the right in Figure 2.1 the uncertainty esti-
mates are displayed for the predictions, these uncertainty estimates are described in
Section 2.2.7. A question that then arise is, how smooth is the true function? That
is what a GPR tries to answer in order to fit the data accurately.

The choice of covariance function is often based on some known property of the
function data. If the data is smooth then (2.4) is a suitable choice. If the data is
periodic, a periodic covariance function is best and if the data is very irregular there
are covariance functions that are more suited for this behaviour as well. For a more
detailed treatment regarding covariance functions see [15].

Figure 2.1: To the left five examples of prior functions are shown. On the x-
axis is the input and on the y-axis is the output or the function value. (Figure
reference: Wikimedia Commons, https://commons.wikimedia.org/wiki/File:
Gaussian_Process_Regression.png, 2018-07-12)

In the middle of Figure 2.1 the predictions after obtaining training data (black
dots), to the right the predictions are shown with corresponding uncertainty esti-
mates.

11

https://commons.wikimedia.org/wiki/File:Gaussian_Process_Regression.png
https://commons.wikimedia.org/wiki/File:Gaussian_Process_Regression.png


2. Theory

2.2.3 Hyperparameters
A very popular kernel due to its flexibility is the Squared-Exponential (SE), which
is defined by:

kSE(xm, xn) = σ2 exp
(
−(xm − xn)2

2l2

)
+ δmnσ

2
noise (2.4)

The hyperparameters are σ, l and σnoise. σ2 is the signal variance and determines
the average distance of the function away from its mean. A small value of the signal
variance characterize functions that stay close to their mean value, larger values
allow more variation, it can be seen as a scaling factor.
l2 is the length scale and describes how smooth the function is. A small length-

scale value implies that the function values can change quickly, hence a large value
characterize functions that change slowly. For example, a sine wave of low angular
frequency would have a small length-scale and sine wave with high angular frequency
would have a large length-scale. This is not related to transient or stationary be-
haviour, it’s only a description of how the function values changes. σ2

noise is the
noise variance and δmn is the Kronecker Delta, thus the noise variance is only ap-
plied when m = n. The noise variance allows GPR to model the noise present in
the training data [19].

In Figure 2.2 a theoretical example illustrates the effect of the hyperparameters
on the prior function.

Figure 2.2: Different combinations of values for the hyperparameters. On the
x-axis is the input and on the y-axis is the output or the function value. (Figure
reference: https://matthewdharris.com/2016/05/16/, 2018-07-14)
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It can be seen in Figure 2.2 that a bigger σ results in bigger amplitudes and a
bigger l results in greater wiggles of the function.

2.2.4 Training
The training of a GPR is based on selecting the optimal model structure according
to Bayesian inference. The inference consists of several levels. The lowest level con-
sists of parameters, for instance the weights in a Neural Network. The second level
is related to the hyperparameters, which affects the distribution of parameters at
the first level. An example of the second level is the occurrence of weight decay in a
Neural Network. Finally, the top level consists of a set of possible model structures
[15]. To execute the complete inference, posterior probabilities are calculated for
each level at a time.

The training involves a non-convex optimization task in minimizing the marginal
likelihood and usually gradient based optimization techniques are used. A sug-
gested technique is the iterative method of Conjugate Gradients (see [20]). In the
implemented GPR, the method of Conjugate Gradients is used. An interesting
trait of the marginal likelihood is that it incorporates a trade-off between model
complexity and fit. Because of this reason, the marginal likelihood is of great im-
portance for the training of GPR. For more information regarding training of GPR,
see http://www.gaussianprocess.org/gpml/chapters/RW5.pdf.

2.2.5 Automatic Relevance Determination
The SE kernel (2.4) can easily be adjusted to include several input variables in the
following manner:

kSE−ARD(xm, xn) = σ2 exp
(
−∑D

a=1(xma − xna)2

2l2a

)
+ δmnσ

2
noise (2.5)

where D is the number of input variables. The terms l2a are still length scales and
σ and σnoise are signal variance and noise variance as in (2.4). If a particular l2a be-
comes high, the function becomes relatively insensitive to the corresponding input
variable xma. Hence, it becomes possible to detect input variables that have little
or no effect on the regression (and vice versa) by looking at the absolute value of
la. A smaller absolute value of la indicate an input variable that is of importance
and a greater absolute value of la indicate an input variable that is less important.
This determination of the importance of a certain input is called Automatic Rele-
vance Determination (ARD), SE with ARD is abbreviated as SE-ARD [21]. In the
implemented GPR, SE-ARD is used due to its flexibility.

2.2.6 Prediction
After the GPR is trained, predictions are made. The joint distribution of the training
outputs Y and the function values f∗ at test locations under the prior (kernel) is
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given by: [
Y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

Ntrain
I K(X,X∗)

K(X∗, X) K(X∗, X∗

])
(2.6)

where X∗ contains all test inputs. K(X,X) is the resulting covariance matrix con-
sisting of all covariances between training inputs, this covariance matrix is generated
by (2.5) and has the following form:

K(X,X) =


k11 . . . k1Ntrain

... . . . ...
kNtrain1 . . . kNtrainNtrain

 (2.7)

If the training inputs are arranged in ascending order with respect to the distance
to the first training input, then kN1 and k1N will both tend to zero as this represent
the idea of smoothness, see Section 2.2.1. k11 and kNN are self correlations and thus
never zero. K(X,X∗) is the resulting covariance matrix consisting of all covariances
between training and test inputs (note that K(X,X∗) = K(X∗, X) caused by defi-
nition of a covariance matrix. This covariance is as well generated by (2.5) and has
the following form:

K(X,X∗) =


k11∗ . . . k1N∗
... ...

kN1∗ . . . kNN∗

 (2.8)

K(X∗, X∗) is the resulting covariance matrix of all covariances between test in-
puts and has in principle the same form as (2.7) [15].

The term σ2
Ntrain

I in (2.6) represents the noise term on the training inputs, the
noise is only present on the self correlations and this can be represented by multi-
plying the noise term with an identity matrix, I.

The predictive equations are given by:

f̄∗ , E[f∗|X, Y,X∗] = K(X∗, X)[K(X,X) + σ2
NtrainI]−1Y (2.9)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
Ntrain

I]−1K(X,X∗) (2.10)

(2.9-2.10) can be written in a more compact form by introducing K = K(X,X)
and K∗ = K(X,X∗) and only consider the case when there is only one test input
x∗, let k(x∗) = k∗ to denote the covariance between the test input and the Ntrain

training points. By this compact notation, the following is obtained:

f̄∗ = kT
∗ (K + σ2

Ntrain
I)−1Y (2.11)

V [f∗] = k(x∗, x∗)− kT
∗ (K + σ2

NtrainI)−1k∗ (2.12)
where V [f∗] is the predicted variance of the function value f∗. It can be noted that
the predicted mean f̄∗ can be seen as a linear combination of kernels according to:

f̄(x∗) =
Ntrain∑

i=1
αik(xi, x∗) (2.13)
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where α = (K + σ2
Ntrain

I)−1Y [15].

2.2.7 Uncertainty Estimates
One attractive feature of the GPR is the ability to obtain uncertainty estimates of
the regression model. These estimates comes from (2.12). Through (2.12-2.13) a
95% confidence interval (CI), can be created via the predicted variances according
to [22],[23]:

CI = f̄∗ ± 1.96
√
V [f∗] (2.14)

The appearance of the confidence interval from 2.14 can vary depending if noise is
present or not. When no noise is present, the prediction variances are thus very small
where measurements are taken. When noise is present, an uncertainty always exist
and consequently the confidence interval is on average broader than the noise-free
case.

2.2.8 Prediction Algorithm
Now it is possible to present the algorithm for calculating predictions via GPR. In
Figure 2.3 the algorithm is presented. In order to execute the algorithm some ob-
jects are needed. These are training inputs, training outputs, a chosen covariance
function, a predicted noise level (noise variance) and test inputs. If these objects are
provided, the GPR can be trained and afterwards predictions can be made according
to steps 1-7.

In (2.11) it can clearly be seen that a matrix inversion is required to make pre-
dictions. This matrix inversion is numerically cumbersome and therefore another
alternative is sought after that improves numerical stability and efficiency. A good
alternative is the Cholesky Decomposition, see Section A.1.
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Figure 2.3: Algorithm for predictions using GPR.

It is assumed in Figure 2.3 that the GPR is already trained before step 1. The
implementation in the algorithm addresses the issue with the matrix inversion de-
scribed in (2.12) and (2.13) by using a Cholesky decomposition (see Section A.1),
instead of directly inverting the matrices. The notation on line 4 denotes that v is
the solution to the system of linear equations Lv = k∗ and so forth. For multiple
test inputs, lines 3-5 are repeated.
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2.3 Online Refinement
The information from (2.14) can be used to construct uncertainty estimates in forms
of confidence intervals. These estimates can then be used to determine where to
place additional measurements in order to improve the model prediction according
to specifications mentioned in Section 1.5. The extra measurements should be placed
in the regions where the confidence interval is largest in width, here the uncertainty
of the model prediction is the biggest. The extra measurements are called Update
Points (UPs). In this way, a procedure can be developed that integrates modeling
and taking measurements in an online fashion. The suggested procedure is described
in Section 3.5.

2.4 Representation of Results
Here it is explained how the result of the GPR is represented.

2.4.1 Regression Plots
The regression data is split into training and test data. This is described in further
detail in Section 3.2.2. The training and test data corresponds to two sets of inputs
and outputs. The training data is denoted as: (xi, yi), i = 1, ...., Ntrain and test data
as (xj, yj), j = 1, ...., N∗. The prediction from GPR is denoted as: ŷ = GPR(xj)
where the prediction can be seen as a function of the test input where the function
is the GPR.
The test data is unseen data for the GPR during training, and thus constitute a
reasonable challenge for the GPR to be used as a measure of performance. Only
the training data is used to train the GPR. If the GPR is successful, the predictions
should approximately be equal to the test outputs yj, more equal the better. In
Figure 2.4 this information is shown in a regression plot.
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Figure 2.4: Regressionplot, the test output is on the x-axis, on the y-axis is the
prediction from GPR. This would be an ideal case where the predictions are exactly
equal to the test output.

It can be seen from Figure 2.4 it represents an ideal case where the regression is
perfect. The line that fits the predictions would have a fit of one.

2.4.2 Mean Squared Prediction Error
Another measure of the regression results is the Mean Squared Prediction Error
(MSPE), the MSPE is defined as:

MSPE = 1
N∗

N∗∑
j=1

(ŷj − yj)2 (2.15)

where N∗ is the number of samples of the test set. ŷj is the prediction from the
GPR and yj is the test data output.

The regression is deemed better the lower the MSPE is, which indicates that the
predictions and the test output are on average similar [25].
A regression is deemed successful if the fit of the regression plot is high and the
MSPE is low. It is difficult to say if the MSPE is low or not, however by comparing
the MSPE with respect to the MSPE of the training data (which would always be
lower), one gets an idea of the accuracy.

2.4.3 Demonstration of GPR
A short demonstration is presented that illustrates how a GPR works together with
an online refinement according to the overall mentioned procedure as a proof of
concept.

Consider the case where the function to be regressed is y = cos(x)2 ,x ∈ [0, 4π],
250 points are evenly taken from the interval. The function is also affected by an
additive stochastic noise with a standard deviation of 0.2. The function is plotted
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in Figure 2.5.

Figure 2.5: The function to be regressed together with additive stochastic noise
with a standard deviation of 0.2. On the x-axis is the input and on the y-axis is the
function value.

The goal of the regression is to the predict the function values despite the pres-
ence of noise.

The regression starts with a data preparation according to Section 3.2, the in-
put and output data are both normalized according to Section 3.2.3. The reason
for normalizing the inputs is because it ensures proper scalings of the covariance
matrices (2.7-2.8) and also preempts numerical issues related to the inversion of the
covariance matrix mentioned in Section 2.3. The reason for normalizing the output
is to obtain zero mean output data, which simplifies the choice of the mean function
for the Gaussian process as the mean function can reasonably be set to zero, see
Section 2.2.1. The histograms of the training and test outputs are shown in Fig-
ure 2.6 to indeed show that the outputs are normalized in a way that matches the
simplification regarding zero mean.

The histograms of the training and the test outputs are shown in Figure 2.6.
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Figure 2.6: Histogram of the values for the training and test outputs. The total
number of the different values (frequency) is on the y-axis and the output value on
the x-axis.

The prediction from the GPR is shown in Figure 2.7, this is shown as a regression
plot mentioned in Section 2.4.1. The GPR has the ability to account for noise via
the right term in (2.5), this term corresponds to the standard deviation of the noise
present. How the noise affects the predictions is embedded in (2.11), the estimated
noise standard deviation is obtained via the training of GPR.

Figure 2.7: Predictions from the GPR, test outputs (without noise) are on the
x-axis and predicted outputs on the y-axis.

In Figure 2.7 R is the slope of the resulting line that tries to fit all points. The
circles are the predictions. The MSPE is 0.0354. The estimated noise standard
deviation is 0.95.

After performing an online refinement according to Section 2.3, the new predic-
tions are shown in Figure 2.8. 50 UPs are added. The exact procedure of the online
refinement has been described in Section 3.5.
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Figure 2.8: Predictions from the GPR after adding UPS, test outputs (without
noise) are on the x-axis and predicted outputs on the y-axis.

In Figure 2.8 R is the slope of the resulting line that tries to fit all points. The
circles are the predictions. The MSPE is 0.0021. The estimated noise standard
deviation is 0.22.

It is seen that the predictions after adding UPs have improved and the estimated
noise standard deviation is close to the real value (0.2).

In order to more clearly illustrate how the predictions relate to the test tar-
gets, a histogram of the residuals (predictions-test target) is plotted. The residuals
should on average be zero, if the predictions are good. A histogram of the residuals
(prediction-test target) is shown in Figure 2.9.

Figure 2.9: The number of how frequent each residual value is occurring (fre-
quency) on the y-axis and the residual value on the x-axis. The residual is the
prediction-test output in scaled units.
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The uncertainty estimates from (2.12) and (2.13) can be used to get information
about the uncertainty of the regression. In Figure 2.10 confidence interval from
(2.14) is created before and after the online refinement. The training points are
shown and the predictions as well. The predictions are interpolated between every
predicted value. The appearance of the confidence intervals are discussed in Section
2.2.7.

Figure 2.10: The confidence intervals generated from the GPR. On top is the con-
fidence interval after the online refinement and on bottom is the confidence interval
before. Training points are shown along predictions. On the x-axis is the input and
on the y-axis is the output or function value.

It can be seen from Figure 2.10 that the confidence interval is more narrow in
width after adding UPs, this is as desired according to Section 2.3. The UPs are
placed in the regions where the confidence interval is the broadest. It can also be
seen that the predicted function looks a bit different after adding UPs.

The determined UPs are shown in Figure 2.11 which corresponds to the regions
with the greatest uncertainty (broadest confidence intervals). The confidence inter-
vals appear to be constant in width, this is because the prediction variances did not
differ much in numerical values. However a difference still exists which GPR acts
upon.
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Figure 2.11: Illustration of the placement of the UPs. The test inputs on the
x-axis and the predictions on the y-axis.

The UPs are indicated where more test inputs are placed, these regions are visible
by an increased color density (blue) in Figure 2.11. The rest of the UPs are used as
training data.

Finally, the comparison between the noise free function and the predictions is
shown in Figure 2.12.
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Figure 2.12: Comparison between the noise free function and the predictions. On
the x-axis is the input and on the y-axis is the output or function value. The function
is also shown with noise.
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3
Methods

This chapter presents the methodology used in the thesis. An insight into the given
data and how it is prepared to conduct the GPR is explained first.

3.1 Data
The dataset used is analyzed further in this section.

3.1.1 Operating Points
An OP is a point in the operating region defined by its engine speed and engine
torque. Since, the entire engine speed vs. engine torque map is considered in the
thesis there are 220 OPs in total including the repeating points, at which the engine
speed and engine torque value is repeated. In Figure 3.1 all the OPs are plotted on
a Speed vs Torque map.

Figure 3.1: OPs on a speed vs torque map. Engine speed [rpm] is on the x-axis
and engine torque [Nm] on the y-axis. There are 220 OPs in total.

The OPs can be categorized into different sections according to the torque values.
When separating the OPs, three main regions are identified: Low torque region, Part

25



3. Methods

Load region and the High torque region. Local models are developed for each of
these regions and the criteria for dividing into local models is described in Section
3.4.2.

3.1.2 Repeated Operating Points
There are 220 OPs in total and it can be seen in Figure 3.1 (Eg: Engine Speed 1400
rpm, Engine Torque 0 Nm; Engine Speed 600 rpm, Engine Torque 0 Nm; Engine
Speed 650 rpm, Engine Torque 500 NM) that there are OPs in the dataset that con-
tains repeated measurement values, since the counted total number of OPs in Figure
3.1 is not 220. At a repeated OP measurements are taken more than one round at
that specific OP. One measurement round corresponds to the measurements that
results in the data structure in Table 3.1.

The extra measurements are considered for modeling as they can provide extra
information about the engine behaviour at those OPs. The extra measurements
also ensure a more accurate modeling of any noise present, which is embedded in
the right term of (2.5).

3.1.3 Variability Requirement
In the dataset containing the OPs according to Figure 3.1, at some OPs, the allowed
actuator ranges for the varying four inputs (see Table 3.1) are not able to allow any
variability when using the LHS. As an example, if the EGR position is kept at either
0% or 100% at certain OPs as seen in Figure 3.2, it will result in all inputs generated
by LHS to be constant.

According to the discussion in Section 3.4 there needs to exist variability in the
generated LHS in order for the regression method to be successful. In Figure 3.2-3.5
the input variability is shown by presenting all LHS-samples at each OP according
to the data structure in Table 3.1.
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Figure 3.2: The variability of EGR position along the dataset. On the x-axis is
the sample number (the corresponding row number of the LHS over all OPs). On
the y-axis is the input value.

It can be seen in Figure 3.2 that there are several points with no variability along
the dataset, these are the regions with flat lines. Around the first 1000 samples
corresponds to the low torque region, between 1000 to around 4000 corresponds to
the part load region and the rest to the high torque region. The regions are described
in Section 3.4.2. The highlighted section shows the data samples with no variability.

Figure 3.3: The variability of throttle position along the dataset. On the x-axis is
the sample number (the corresponding row number of the LHS) over all OPs. On
the y-axis is the input value.

It can also be seen in Figure 3.3 that there are several points with no variability
along the dataset.
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Figure 3.4: The variability of advance angle (injection timing) along the dataset.
On the x-axis is the sample number (the corresponding row number of the LHS)
over all OPs. On the y-axis is the input value.

Figure 3.5: The variability of injection pressure (NOP angle) along the dataset.
On the x-axis is the sample number (the corresponding row number of the LHS)
over all OPs. On the y-axis is the input value.

Table 3.1 illustrates how the data was set up after the DoE.
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Table 3.1: Table explaining the data structure at every OP.

There are 220 OPs in total and at each of the OPs, the engine speed and torque
is kept constant while the other four inputs are varied according to LHS DoE. 23
samples are taken at each OP by LHS. For every OP, there are limits for the actua-
tors in which they are allowed to vary. This information about the actuator ranges
were obtained by examining the dataset that was used to create the ANN model.
The LHS is generated between these ranges for the four inputs at every OP.

The lack of input variability in the dataset at certain OPs contradicts with the
concept of GPR. A theoretical explanation shed light on the issue and is explained
further in Section 3.4.

The inputs need to have variability in order for the GPR to work correctly. In
Figure 3.6 the flat predictions (see Section 3.4) are discussed for a small dataset
example.
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Figure 3.6: The highlighted ’flat lines’ correspond to the OPs with no variability.
Predictions with the same color belongs to the same OP.

When investigating further into the properties of these flat lines; the value at
each of these flat lines corresponded to the mean output value at each of these OPs.
Occurrence of these ’flat lines’ is also a reason for the development of local models
which is described in Section 3.4.2.

In order to solve this data issue, OPs which resulted in no input variability are
removed. However the number of these OPs are few. In the real application this
issue needs to be addressed, but due to time constraints, it was needed to omit these
OPs. The treatment of these OPs will be a task for future investigations.

3.1.4 Artificial Neural Network
As mentioned in Section 1.2, an ANN model is assumed to represent the real physical
engine and is used to generate output data.

The ANN was trained by the Neural Network toolbox in MATLAB. The data is
split into a training (70%), test (15%) and validation (15%) set. The dataset for
the ANN was provided by Volvo Penta and it was obtained from a physical test cell
run. The ANN has ten hidden layers, seven inputs nodes and one output node. The
inputs and outputs for the ANN are the same parameters used in generating the
model using GPR.

In Figure 3.7-3.9, the performance of the ANN is represented.
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Figure 3.7: Regression plots for the training, validation, test data and all of them
combined in the last plot. ’Target’ on the x-axis is the known output. On the y-axis
is the prediction. The resulting straight line that go through the predictions is also
shown.
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Figure 3.8: Residual histogram for the training, validation and test data.

Typically, the training set for the ANN is fixed. Training the ANN on each item
of the set once is an epoch. By having 153 epochs as the case here, each element on
the dataset would have 153 individual training trials when training. The algorithm
used for training is the Levenberg-Marquardt.

Figure 3.9: The decrease of MSE as a function of epochs for the training, validation
and test set.

3.1.5 Output Data
All data originates from OPs, where the engine torque and speed are fixed, thus only
fuel flow affects the BSFC (see (1.2)) at each OP. Hence, considering fuel flow in
this context is equivalent to looking at BSFC at each OP. When looking at (1.2) it
is seen that the denominator in the equation for BSFC consists of the engine power
(product of the engine speed and torque). When considering BSFC at OPs in the
low torque region (where the torque is close to zero), the BSFC consequently tend
towards infinity. Hence, it is more practical to look at the fuelflow, which is in the
numerator of the equation for BSFC.

In a histogram it is seen that the distribution of the data for the fuel flow is not
evenly distributed, see Figure 3.10.
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Figure 3.10: Histogram of fuel flow data. The frequency of fuel flow is on the
y-axis. The range of fuel flow [g/s] is on the x-axis. The fuel flow values are hidden
for confidentiality.

The distribution of fuel flow data for all LHS samples, over all OPs is illustrated
in Figure 3.11.

Figure 3.11: Fuel flow [g/s] is on the y-axis. On the x-axis is the sample number
(the corresponding row number of the LHS) over all OPs.

The upper red box in Figure 3.11 correspond to the high torque region and the
lower to the low torque region. The region between the red boxes correspond to the
part load region. It can be seen from both Figure 3.10 and Figure 3.11 that there
are a high frequency of fuel flow around 0-5 g/s and 80-90 g/s.

In Figure 3.12 fuel flow is plotted against engine torque.
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Figure 3.12: Fuel flow [g/s] on the y-axis and engine torque [Nm] on the x-axis.
Vertical bars (constant engine torque) exist due to the LHS-samples for the respec-
tive OPs.Flow Fuel Diesel values are hidden for confidentiality.

The predictions over the test set for the data in Figure 3.12 is shown in Figure
4.1.

3.1.6 Data Constraints
There are certain restrictions and constraints existing in the dataset that affects the
model.

The maximum number of inputs that can be considered with the current dataset
is limited to 4 and at every OP, each varying input parameter; injection timing,
injection pressure, throttle position and EGR valve position are bounded by a min-
imum and a maximum value. Hence, when generating data the LHS needs to be
carried out within these ranges.

Engine speed and engine torque are constant at each OP by definition. Hence
they are not taken into consideration for LHS.

As mentioned in Section 3.1.3, some input parameters do not have variability in
some OPs thus creating constraints for LHS. These limitations in input data affects
the GPR modeling process.

3.2 Data Preparation
The methods used for data preparation are presented. The data preparation is
performed before executing the GPR.

34



3. Methods

3.2.1 Randomization
All the data (input-output) in its current sequence is randomized before conducting
the GPR. The randomization shuffles the order between different OPs (not the data
within each OP).

Randomization is a commonly used technique in data science and prevents bias.
Randomization techniques eliminate the bias by using the probability theory [26].

It should be noted that four inputs at each OP from LHS (see Table 3.1) are
already randomized. The randomization is done with a specific end goal to dis-
tribute the data throughout the whole range of the speed vs torque map in Figure
3.1. Hence, this will result in a good representation of the entire dataset in both the
training and testing dataset (see Section 3.2.2). In this way the regression problem is
set up in terms of an interpolation instead of a extrapolation, thus the entire region
of the dataset will be modelled. This is preferred since models for entire regions are
created for local models, see Section 3.4.2.

The randomization will make each training round of GPR unique, and thus its
predictions. However, the predictions from the GPR will not differ significantly
between training rounds. The similarity between training rounds can be seen by
considering the marginal likelihood which is maximized during the training of GPR
(see Section 2.2.4).

In Table 3.2 the marginal likelihoods are presented that resulted from some train-
ing rounds of the GPR for the global model (see Section 4.1.1) as an example.

Fit Marginal Likelihood
0.99973 6.545458 · 103

0.99967 6.571981 · 103

0.99977 6.516765 · 103

Table 3.2: The fit of different global model runs along with marginal likelihood in
each of them. It is seen that the values of the marginal likelihood are very similar,
implying similar predictions.

3.2.2 Division of Training/Validation Data
The randomized data is split into a training and a testing set. The training is set to
80% and the testing for 20%. The training set is denoted by: (xi, yi), i = 1, ....Ntrain

and test set by: (xj, yj), j = 1, ....N∗. 80/20 is a commonly occurring ratio and this
is also referred to as the Pareto principle. Usually, it is a good starting point to
use these values as the ratio. The fraction of patterns reserved for the testing set
is inversely proportional to the number of free adjustable parameters. Hence, it is
concluded that roughly 1/6 of the total dataset should be reserved for testing and
the rest should be reserved for training [27].
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3.2.3 Normalization
The normalization is performed according to:

yitrain,norm = yi − µytrain

sytrain

, i = 1, .....Ntrain (3.1)

yjtest,norm = yj − µytrain

sytrain

, j = 1, ...., N∗ (3.2)

where yitrain is the ith output from the training set, µytrain
is the mean of the output

data from the training set and sytrain
is the standard deviation of the output data

from the training set.
yjtest is the jth output from the test set. Accordingly, yitrain,norm and yjtest,norm

are the normalized output from respective sets at each OP.

The training and test inputs are normalized as well:

xitrain,norm = xi − µxtrain

sxtrain

, i = 1, .....Ntrain (3.3)

xjtest,norm = xj − µxtrain

sxtrain

, j = 1, ...., N∗ (3.4)

where the notation is the same as (3.1-3.2) but with inputs instead of outputs.

Both the training and testing sets are normalized relative to the mean and stan-
dard deviation of the training set (µytrain

, µxtrain
and sytrain

, sxtrain
). Samples from

the test set are normalized relative to the mean and standard deviation of the train-
ing set, instead of the test set in order to place the samples from the test set on the
same scale as the samples from the training set. Scaling samples from test set to
the training set’s mean and standard deviation may eliminate differences that could
be present in the training and testing sets [28].
Normalization is explained further in Section 2.4.3.

3.3 Design of Experiments
For each OP of the engine speed vs. engine torque map, a number of samples from
a LHS has been implemented and follows (3.5). LHS has been presented more in
detail in Section 2.1.3.

N = Ntot

Nop

(3.5)

where N is the number of samples from LHS at each OP, Ntot is the total number of
samples, and NOP is the number of OP:s. The number of samples are restricted in
order to achieve online capabilities. A dataset of 5000 is considered resulting in 23
samples at each of the 220 OPs. Although 23 is a coarse number for the DoE, this
number was used due to practical reasons such as time and computational capabil-
ity. Upon, conducting an online refinement the initial dataset is increased with the
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addition of the UPs. Online Refinement is explained in Section 3.5.

When conducting the DoE, appropriate boundaries for the inputs at each OP are
obtained by analyzing the data provided by Volvo Penta. In the dataset, the limits
for the inputs at each OP are provided. The range is calculated by subtracting the
minimum value from the maximum value at every OP for each DoE input. The LHS
will be scaled at every OP according to these ranges.

The DoE plots for each of the inputs; injection timing (advance angle) Figure
3.13, injection pressure (NOP angle) Figure 3.14, EGR position Figure 3.15 and
throttle position in Figure 3.16. In these plots the engine speed and torque are on
the x and y-axis in order to illustrate the spread of the input values over the speed vs
torque map in Figure 3.1. It can be seen from these plots that the spread is indeed
space filling in the input space as the LHS is presented to be in Section (2.1.2-2.1.3).

Figure 3.13: LHS DoE performed for advance angle (injection timing). On the
x-axis, engine speed [rpm]. Engine torque [Nm] is on the y-axis. On the z-axis
advance angle (injection timing) is represented. Each circle represents a point.
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Figure 3.14: LHS DoE performed for NOP angle. On the x-axis, engine speed
[rpm]. Engine torque [Nm] is on the y-axis. On the z-axis NOP angle (injection
pressure) is represented. Each circle represents a point.

Figure 3.15: LHS DoE performed for EGR position. On the x-axis, engine speed
[rpm]. Engine torque [Nm] is on the y-axis. On the z-axis EGR position is repre-
sented. Each circle represents a point.
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Figure 3.16: LHS DoE performed for throttle position. On the x-axis, engine
speed [rpm]. Engine torque [Nm] is on the y-axis. On the z-axis throttle position is
represented. Each circle represents a point.

3.4 Gaussian Process Regression

3.4.1 Covariance Consideration
The covariance function used (2.5) assumes a smooth covariance. What is meant by
smoothness is explained in Section 2.2.1. A disadvantage with the usage of a smooth
covariance function although commonly used, is that the resulting covariance matrix
(2.7) is usually poorly conditioned, which therefore tends to make the covariance
matrix non-invertible.

A smooth covariance requires the two nearby points in range to be strongly cor-
related. Thus, the row/columnn in the covariance matrix (2.7) corresponding to the
point will tend towards autocovariance. If the two points become gradually closer,
the covariance matrix (2.7) will tend towards singularity.

The predictions from the GPR is dependent on the matrix containing the covari-
ance between training and test data as well as the inverse of the covariance matrix
of training data (see (2.11)). If these covariance matrices (2.7-2.8) are close to being
singular, the predictions will be constant or flat, (see Figure 3.6).

However, a smooth covariance can be treated in a way that greatly increases the
numerical stability see Figure (2.3). Instead of calculating the inverse of the co-
variance matrix of training data, the computation of its Cholesky Decomposition is
performed (see Section A.1).
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3.4.2 Local Models
It is concluded that the values (see Table 3.3 and Figure 3.10, 3.12) in between 0-
5g/s corresponded to OPs at low engine torque and in between 80-90g/s correspond
to high engine torque. In Figure 3.12 the fuel flow is plotted against the engine
torque and the existence of the regions with high and low engine torque can be
distinguished according to Table 3.3.

This insight motivated the investigation of three different local models, for the
low and high engine torques and for the part load region.

The three local models are based on different engine torque regions as it is men-
tioned in Section 3.1.1. These local models are developed due to prediction clusters
(see Section 4.1.1) existing in certain regions of the global model. Table 3.3 repre-
sents the criteria upon which the local models are created.

Local Model Engine Speed
[rpm]

Engine Torque
[Nm]

No. of OPs

Low Torque 600-2000 0 - 8.8 47
Part Load 600-2000 165-1400 138

High Torque 1000-1900 1500-2650 35

Table 3.3: Criteria for local models.

The three local models are created based on torque characteristics. The distri-
bution of OPs in each local model is not uniform and as it could be seen more OPs
are present in the part load region.

3.5 Online Refinement

3.5.1 Algorithm
The purpose of an online refinement is to improve the accuracy of regression by
usage of additional measurements. For more information see Section 2.3. The im-
provement of the model by Online Refinement is represented by the increase of the
fit of the model and by the decrease of the MSPE of the model. In Figure 3.17 the
implemented algorithm for Online Refinement is presented.
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ALGORITHM: ONLINE REFINEMENT

1. Select the M output predictions with the highest predicted variance
according to (2.12). The overall process that generates predictions is
described in Section 2.3.
2. Identify the inputs that correspond to these predictions.
3. A linear interpolation is conducted in between data samples with highest
predicted variance in order to obtain more measurements. – Update Points
(UPs).
4. Add the UPs to input data and obtain new output data.
5. Train and run the GPR for the new dataset, the newly formed input and
output data is split into training and test data according to Section 3.2.2.

During refinement, the new data set including the UPs is randomized again
between OPs and then divided into training and testing dataset.

Figure 3.17: Algorithm 2. Description of the implemented algorithm for online
refinement.
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4
Results and Discussion

This chapter presents the results and findings of the thesis. A discussion explaining
the reasons for the results is also included. It is then followed by the results from
global and local models. Findings specific to the GPR method are presented finally.

4.1 Gaussian Process Regression

4.1.1 Global Model
As mentioned in Chapter 3 under Section 3.2, the original dataset is prepared before
running the GPR. As it is mentioned earlier in Section 3.1.3, OPs with no variabil-
ity are removed. Also, as discussed in Section 3.2, 6 input parameters have been
considered for the final model. A justification for the use of 6 inputs is given in
Section 4.3. The GPR model is constructed by having BSFC as output and engine
speed, engine torque, injection pressure (NOP angle), injection timing (advance an-
gle), EGR position and throttle position as inputs. The regression plots (see Section
2.4.1) are shown below.

An important factor to note here is that due to the complexity of the model by
having multiple inputs, representation of the results from online refinement using
confidence interval is not possible as in Figure 2.10. Although, confidence inter-
vals is used as a method of representing results in the demonstration (see Section
2.4.3), it’s not possible here since the confidence interval should be plotted against
all inputs and this would result in a seven-dimensional plot (6 inputs and 1 output).
Thus, in Figure 4.2 prediction variance is shown instead in order to represent the
uncertainty estimate of the global model.

Figure 4.1 presents the predicted fuel flow values by GPR. It should be noted that
only 20% of the dataset is considered for testing and 80% for training (see Section
3.2.2). Hence only the test set of Figure 3.12 is predicted.
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4. Results and Discussion

Figure 4.1: The predicted fuel flow against engine torque. On the x-axis is engine
torque [Nm] and on the y-axis is the predicted fuel flow [g/s]. Vertical bars (constant
engine torque) exist due to the LHS-samples for the respective OPs.

Figure 4.2: The prediction variance of fuel flow against the engine torque. On the
x-axis is engine torque [Nm] and on the y-axis is the predicted variance. Vertical
bars (constant engine torque) exist due to the LHS-samples for the respective OPs.

As it can be seen by comparing Figure 3.12 with Figure 4.1, the predicted fuel
flow is accurate in modeling the actual fuel flow data in the regions considered. Since
20% of the entire dataset is used for testing, Figure 3.12 is not replicated entirely
in Figure 4.1.
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4. Results and Discussion

In the Figure 4.2, the variance of the predictions are shown and these values are
at the highest in the high torque region (after 1500 Nm, see Section 3.4.2) and lowest
in the part load region (165-1400 Nm). The small spike seen around 0 Nm and the
points up to 165 Nm corresponds to the low torque region.

Figure 4.3: Predictions from the GPR for the initial dataset for the global model.
Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.3 R is the slope of resulting line that tries to fit all points. The circles
are the predictions. Each colour correspond to an OP of the test dataset. The
MSPE is 3.3873 · 10−4.
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4. Results and Discussion

Figure 4.4: Residual plot for the global model. The number of how frequent
each residual value is occurring (frequency) on the y-axis and the residual value
(prediction-test output) in scaled units on the x-axis.

The predictions from the GPR is shown in Figure 4.3 and the residual plot is
shown in Figure 4.4. In the residual plot it can be seen that the errors are mostly
centered around small values, which is positive.
Since, the entire global model is considered, 220 OPs are taken into account when
constructing the model. The MSPE of BSFC (predicted-actual) for the initial
dataset is 3.3873 · 10−4. In order to improve the results from this model, an on-
line refinement is carried out. The procedure of the online refinement is discussed
in Section 3.5. The results from an online refinement is also discussed further below
in Section 4.2.
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4. Results and Discussion

Figure 4.5: Predictions from the GPR after the first online refinement for the
global model. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.5 R is slope of the resulting line that tries to fit all points. The circles
are the predictions. Each colour correspond to an OP of the test dataset. It can
be seen that the fit increases after the first refinement and the MSPE decreases to
3.0004 · 10−4 from 3.3873 · 10−4.
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4. Results and Discussion

Figure 4.6: Residual plot for the global model after the first online refinement.
The number of how frequent each residual value is occurring (frequency) on the
y-axis and the residual value (prediction-test output) in scaled units on the x-axis.

The MSPE value of BSFC (predicted-actual) of the model after the first online
refinement decreased to 3.0004 · 10−4. The predictions from the online refinement is
shown in Figure 4.5 where a slight increase in the fit can be observed. The residual
value plot is shown in Figure 4.6, the residual plot mostly look similar to the resid-
ual plot before refinement, but with more samples around smaller residuals but that
still resulted in lower MSPE.

The UPs can be placed at existing OPs, which can then be seen by an increased
number of predictions of the same color in comparison to the initial GPR. At a
closer look, it can be seen that UPs are placed in the upper right corner of Figure
4.3 in comparison to Figure 4.5. These UPs are of the same color, which indicate
that UPs are placed at some OPs. These phenomena is even more clear between
Figure 4.9 and Figure 4.11. UPs can also be placed at new OPs, which would then
be indicated by predictions of new colors that are not present in the initial GPR.
This can be seen in comparison between Figure 4.21 and Figure 4.23.

It is visible by careful inspection that the predictions looks very similar between
Figure 4.3 and Figure 4.5 where no UPs have been placed. This consequently indi-
cate that the training of the GPR also tends to be similar between runs, given the
same data (where there are no UPs). The similarity between training rounds can be
seen by considering the marginal likelihood which is maximized during the training
of GPR (see Section 2.2.4). In Table 3.2 the marginal likelihoods are presented that
resulted from some training rounds of the GPR.

Another online refinement is done to further improve the model. The same pro-
cedure as the first refinement is used here.
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4. Results and Discussion

Figure 4.7: Predictions from the GPR after the second online refinement for the
global model. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.7 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset. It
can be seen that the fit increases after the second refinement compared to the first
refinement and the MSPE decreases to 2.9895 · 10−4 from 3.0004 · 10−4.
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4. Results and Discussion

Figure 4.8: Residual plot for the global model after the second online refinement.
The number of how frequent each residual value is occurring (frequency) on the
y-axis and the residual value (predictions-test output) in scaled units on the x-axis.

The MSPE value of BSFC (predicted-actual) after the second online refinement
has further reduced and is now at 2.9895 ·10−4 in scaled units, the fit have increased
slightly as well. The predictions from the second online refinement is shown in Fig-
ure 4.7 and the residual value plot is shown in Figure 4.8. In the residual plot it can
be seen that the previous spike around residual value −0.02 is now gone but another
spike has instead appeared around −0.016, the frequency around some smaller val-
ues has also increased. This occurrence is deemed as more positive.

Thus, it can be concluded that the objective of conducting an online refinement:
to improve the model prediction and to decrease the MSPE have been achieved.

Even though, the results look quite convincing in the global model, when looking
more closely at the predictions, it could be seen that there are a cluster of datapoints
in certain regions of the model. When zoomed in, the fit of these clusters is worse,
which suggest that the model predictions are worse at certain OPs. The fit of the
global model is still high due to the large number of datapoints at better predicted
regions. These points heavily influence the overall fit to become high. Hence, it is
decided to look into local models. For more background information see 3.4.2.

4.1.2 Low Torque Region
The Low Torque region contains 47 OPs. These OPs have an engine speed of
600-2000 rpm and engine torque between 0-8.8 Nm. The initial regression model is
presented first and then the model is shown after two consecutive online refinements.

49



4. Results and Discussion

Figure 4.9: Predictions from the GPR for the initial dataset of the low torque
region. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.9 R is slope of the resulting line that tries to fit all points. The circles
are the predictions. Each colour correspond to an OP of the test dataset. The
MSPE is 0.0161.
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Figure 4.10: Residual plot for the low torque-model. The number of how frequent
each residual value is occurring (frequency) on the y-axis and the residual value
(prediction-test output) in scaled units on the x-axis.

The MSPE for BSFC (predicted-actual) in scaled units is 0.0161 for the initial
model. The predictions from the initial regression is shown in Figure 4.9 and the
residual value plot is shown in Figure 4.10. The residual plot is mostly centered
around small residual values. An online refinement is done to improve the existing
model.
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Figure 4.11: Predictions from the GPR after the first online refinement for the low
torque-model. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.11 R is slope of the resulting line that tries to fit all points. The
circles are the points. Each colour correspond to an OP of the test dataset. It can
be seen that the fit increases after the first refinement and the MSPE decreases to
0.0093 from 0.0161.
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Figure 4.12: Residual plot for the low torque-model after one online refinement.
The number of how frequent each residual value is occurring (frequency) on the
y-axis and the residual value (predictions-test output) in scaled units on the x-axis.

The MSPE for BSFC (predicted-actual) after the first refinement decreased to
0.0093, the fit has also increased slightly. The predictions after the first refine-
ment is shown in Figure 4.11 and the residual plot is shown in Figure 4.12. In the
residual plot, more staples can be seen in comparison to the initial GPR, this is
suspected due to addition of UPs. The residuals mostly have the same distribution
as before, but with a small increase in the frequency around the residual value 0.05.
In order to improve the local model further, a second online refinement is performed.
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Figure 4.13: Predictions from the GPR after the second online refinement for the
low torque-model. Test outputs are on the x-axis and predicted outputs on the
y-axis.

In Figure 4.13 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset. It
can be seen that the fit increases after the second refinement compared to the first
refinement and the MSPE decreases to 0.0091 from 0.0093.
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Figure 4.14: Residual plot for the low torque-model after the second online re-
finement. The number of how frequent each residual value is occurring (frequency)
on the y-axis and the residual value (predictions-test output) in scaled units on the
x-axis.

The MSPE for BSFC (predicted-actual) in scaled units after the second online
refinement further decreased to 0.0091. The predictions from the second refinement
is shown in Figure 4.13 and the residual plot is shown in Figure 4.14. The residual
plot look similar to the residual plot in Figure 4.12.

In the low torque region the fit of the model is improving too and the MSPE is
decreasing with successive online refinement rounds. However, in comparison with
the global model, it could be noted that the MSE values of the local model are
higher. Also, the fit of the model is slightly less fit than the global model. This is
due to the distribution of OPs in the local model and due to the variability of OPs
in the local model. The importance of variability in OPs is discussed in Section 3.1.3.
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4.1.3 Part Load Region
138 OPs out of the total 220 OPs are located in the part load region. The engine
speed in this region varies from 600-2000 rpm and the engine torque varies from
165-1400 Nm. The initial regression model is presented first and then the model is
shown after two consecutive online refinements.

Figure 4.15: Predictions from the GPR for the initial dataset of the part load
region. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.15 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset.
The MSPE is 4.5400 · 10−4.
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Figure 4.16: Residual plot for the part load model. The number of how frequent
each residual value is occurring (frequency) on the y-axis and the residual value
(prediction-test output) in scaled units on the x-axis.

The MSPE for BSFC (predicted-actual) for the initial regression is 4.5400 · 10−4.
The prediction from the initial regression is in Figure 4.15 and the residual value
plot is shown in Figure 4.16. In the residual plot, it can be seen that there are a
high and sharp frequency around small residual values and very much less around
higher values. This is a favorable residual distribution. An online refinement is done
in order to improve the model even further and to reduce the MSPE.
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Figure 4.17: Predictions from the GPR after the first online refinement for the
part load model. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.17 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset. It
can be seen that the fit increases after the first refinement and the MSPE decreases
to 4.0808 · 10−4 from 4.5400 · 10−4.
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Figure 4.18: Residual plot for the part load model after one online refinement.
The number of how frequent each residual value is occurring (frequency) on the
y-axis and the residual value (predictions-test output) in scaled units on the x-axis.

The MSPE for BSFC (predicted-actual) after one online refinement decreased to
4.0808 · 10−4, the fit barely increased. The prediction from the online refinement
is shown in Figure 4.17 and the residual value plot is shown in Figure 4.18. In
the residual plot, an increased frequency around the smallest residual values can be
observed, which is positive. A second online refinement is done in order to improve
the model even further.
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Figure 4.19: Predictions from the GPR after the second online refinement for the
part load model. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.19 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset. It
can be seen that the fit increases after the second refinement compared to the first
refinement and the MSPE decreases to 3.9825 · 10−4 from 4.0808 · 10−4.
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Figure 4.20: Residual plot for the part load model after the second online re-
finement. The number of how frequent each residual value is occurring (frequency)
on the y-axis and the residual value (prediction-test output) in scaled units on the
x-axis.

The MSPE for BSFC (predicted-actual) after the second online refinement further
decreased to 3.9825 · 10−4, the fit also increased barely. The prediction from the
second online refinement is shown in Figure 4.19 and the residual value plot is shown
in Figure 4.20. The residual plot look similar to Figure 4.18. Due to having large
number of OPs, the part load region has the biggest effect on the global model. This
is clear when looking at the fit of the local model in the part load region and the
MSPE values. These values are almost identical to the values of the global model.
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4.1.4 High Torque Region
35 OPs are present in the High Torque region. The engine speed in the high torque
region varies within 1000-1900 rpm and the engine torque between 1500-2650 Nm.
The initial regression model is presented first and then the model is shown after two
consecutive online refinements.

Figure 4.21: Predictions from the GPR for the initial dataset of the High Torque
region. Test outputs are on the x-axis and predicted outputs on the y-axis.

In Figure 4.21 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset.
The MSPE in scaled units is 0.2092.
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Figure 4.22: Residual plot for the high torque-model. The number of how frequent
each residual value is occurring (frequency) on the y-axis and the residual value
(prediction-test output) in scaled units on the x-axis.

The MSPE for BSFC (predicted-actual) for the initial regression is 0.2092, higher
than the other models shown. The prediction from the regression model is in Figure
4.21 and the residual value plot is in Figure 4.22. In the residual plot it can be seen
that the residuals are mostly centered around the residual values 0 to 0.25, which
is considerably higher than the residual values for the other models. In fact all
residuals in the distribution are of higher values than the previously showed models.
An online refinement is performed to increase the performance of the model.
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Figure 4.23: Predictions from the GPR for the high torque-model after the first
online refinement. Test outputs are on the x-axis and predicted outputs on the
y-axis.

In Figure 4.23 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset. It
can be seen that the fit increases after the first refinement and the MSPE decreases
to 0.1851 from 0.2092.
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Figure 4.24: Residual plot for the high torque-model after one online refinement.
The number of how frequent each residual value is occurring (frequency) on the
y-axis and the residual value (prediction-test output) in scaled units on the x-axis.

The MSPE for BSFC (predicted-actual) after the first online refinement decreased
to 0.1851, the fit also increased. The predictions from the refinement is shown in
Figure 4.23 and the residual value plot is shown in Figure 4.24. In the residual plot
it can be seen that the residual distribution look similar to Figure 4.22 but with an
increased frequency at some of the smaller residual values.

A second online refinement is done to improve the results even further.
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Figure 4.25: Predictions from the GPR for the high torque-model after the second
online refinement. Test outputs are on the x-axis and predicted outputs on the
y-axis.

In Figure 4.25 R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset. It
can be seen that the fit increases after the second refinement compared to the first
refinement and the MSPE decreases to 0.1756 from 0.1851.
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Figure 4.26: Residual plot for the high torque-model after the second online re-
finement. The number of how frequent each residual value is occurring (frequency)
on the y-axis and the residual value (prediction-test output) in scaled units on the
x-axis.

The MSPE for BSFC (predicted-actual) after the second online refinement fur-
ther decreased to 0.1756, the fit slightly increased also. The predictions from the
second online refinement is shown in Figure 4.25 and the residual value plot is shown
in Figure 4.26. The residual plot look similar to Figure 4.24 but with an increase of
the frequency at some of the smaller residual values.

A conclusion that could be drawn from the results is that a GPR for the region
with high engine torque is not as successful as other models in predicting the out-
puts. A possible reason is maybe due to the difference in the ranges of inputs in
the high torque region than the low torque and part load region. The OPs in the
high torque region are spread across a larger region (see Figure 3.1 from 1500 Nm
and upwards) and also sometimes multiple OPs are placed closer to each other. The
number of OPs in the high torque region is also less than the other regions (see
Table 3.3).

It can now be understood why all the UPs are placed in the upper right corner of
the regressionplots for the global model in Figure 4.5 and 4.7, they correspond to the
high-torque region. As the high torque model is the hardest and most uncertain to
predict, the predicted variance (2.12) is at the highest in that region, thus the UPs
will be placed there according to the online refinement method (see Figure 3.17).
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4.2 Online Refinement
The objective of conducting an online refinement is to improve the model online.
As it could be seen for instance in Figure 4.5 and Figure 4.7, the fit of the model
improves after the online refinement. Also, the MSPE which is another measure of
the model is reduced by conducting the online refinement. The reduction of MSPE
values for the above models is summarized in Table 4.1.

Global Model Low Torque Part Load High Torque
Initial Model 3.3873 · 10−4 0.0161 4.5400 · 10−4 0.2092

First Refinement 3.0004 · 10−4 0.0093 4.0808 · 10−4 0.1851
Second Refinement 2.9895 · 10−4 0.0091 3.9825 · 10−4 0.1756

Table 4.1: The MSPE reduction in scaled units upon online refinement for the
Global model as well as for the Low, Part load and High torque region-models.

The unscaled MPSE for all the initial models are shown in Table 4.2.

Global Model Low Torque Part Load High Torque
Initial Model 0.303 0.001 0.205 0.68

Table 4.2: The unscaled MPSE for all the initial models.

The decrease in the scaled MSPE can be more visually represented by looking at
the Figures 4.27, 4.28, 4.29 and 4.30.

Figure 4.27: The decrease in scaled MSPE for the Global model. Number of GPR
runs are on the x-axis, and MSPE on the y-axis.
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Figure 4.28: The decrease in scaled MSPE for the Low Torque region-model.
Number of GPR runs are on the x-axis, and MSPE on the y-axis.

Figure 4.29: The decrease in scaled MSPE for the part load region-model. Number
of GPR runs are on the x-axis, and MSPE on the y-axis.
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Figure 4.30: The decrease in scaled MSPE for the High Torque region-model.
Number of GPR runs are on the x-axis, and MSPE on the y-axis.

The MSPE values of the global and the three local models are decreasing with
the refinement runs. This, in combination with improved fit indicate that the model
gets better at predicting the system due to refinement. This is an desired result as
the objective of an online refinement is to improve the model online. When looking
more closely at the MSPE decrease it could be seen that, the decrease in MSPE is
smaller from the first refinement to second refinement in comparison from the initial
model to the first refinement. This trend is least apparent in the high torque region,
but true for all models.

4.3 Automatic Relevance Determination
ARD is a feature in GPR that allows the user to determine the relative importance
of different parameters used for the model. The theoretical background of the ARD
is described in the theory chapter under the Section 2.2.5. As mentioned, ARD
enables the possibility to determine which input variables have little effect as well
as those who have a significant effect on regression, by looking at the absolute value
of the lengthscale l for each input parameter. Table 4.3 shows the results of ARD
by showing the values of the lengthscales for the Global, Low torque, Part load and
High torque-models.

In Table 4.3 corresponding values of the lengthscale for each input parameter is
listed for every model. A smaller absolute value of the lengthscale indicate an input
parameter of greater importance for regression (and vice versa).

As it could be seen from Table 4.3, a justification for the selection of two extra
inputs can be understood. The two initial inputs, injection timing (advance angle)
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Global
Model

Low
Torque

Part Load High
Torque

Engine Speed 1.3840 0.6917 1.3531 2.9382
Engine Torque −0.4556 4.4551 0.2607 1.4265

Injection Timing (Advance Angle) 7.0540 5.0650 8.3570 4.7413
Injection Pressure (NOP) 6.1166 5.1650 8.7849 6.6663

Throttle Position 2.0854 −0.3440 1.8109 1.1426
EGR Position 2.4016 1.2072 2.6278 1.1846

Table 4.3: The ARD results for the four models after refinement.

and injection pressure (NOP angle) have the highest absolute values of the length-
scales, which suggests that they are the two most irrelevant inputs when modeling
the system. This finding is contrary to the well known fact that injection pressure
and timing are important parameters for modelling engines, thus further investiga-
tion is needed. Both throttle position and EGR position have much less absolute
values of the lengthscales in comparison, which in return means that they are much
more relevant parameters for the model.

4.4 Noise Standard Deviation
As explained in the demonstration in Section 2.4.3 the GPR accommodates for noise
apparent in the data. A measure of the noise in each of the separate models can be
obtained by looking at the noise hyperparameter σnoise (noise standard deviation)
in (2.5) achieved from training.

Model Noise
Standard
Deviation
(σnoise)

Global Model 8.0 · 10−5

Low Torque 3.22 · 10−2

Part Load 3.025 · 10−4

High Torque 5.26 · 10−1

Table 4.4: Values of the noise hyperparameter (noise standard deviation) in scaled
units for each of the separate models after refinement.

It can be seen in Table 4.4 that the highest noise standard deviation is at the
high torque region local model. The lowest noise standard deviation is at the global
model. This is an expected result as the global model is the most successful model
seen over its whole range in terms of MSPE and fit (but not necessarily when zoomed
in into certain regions) and the high torque model, the least successful model. The
noise in the high torque region is significantly higher than the noise in the global
model and will consequently make the high torque region more difficult to predict.
Although the GPR can accommodate for the noise in the data, the GPR will still
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encounter greater difficulty predicting with noisy data than compared to noise-free
data.
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5
Future Work

There are a few inquiries concerning the thesis work that stayed unanswered and
are hence proposed as future research questions.

Only the modeling aspect of a model based engine calibration is considered for
this thesis. The second step, which consists of optimization, needs to be considered
in the future. However, a basic foundation is laid into the optimization below in
Section A.3.

For now, only BSFC is considered as an output to the system. Even though,
NOx emission are considered as well, further investigation needs to be carried out
into the usage of different output parameters.

The addition of more input parameters would be interesting to examine in order
to see if the performance of GPR would increase, thus enabling capture of more
input-output behaviour. It’s also interesting to see if this improvement would stop
after a certain number of added input parameters.

The addition of more DoE samples at every OP is also interesting to investi-
gate further, the models should improve further by adding more DoE samples. A
preliminary investigation is shown for the high torque model in Section A.5.

Alternative approaches for online refinement can be looked into in future. One
alternative is for instance to use the predicted variance (2.12) in a different fashion.
Instead of looking at the predicted variance of the outputs (observations), it may be
possible to optimize and search for the test input that would maximize the predicted
variance and then obtain new measurements at those corresponding regions. Those
regions should correspond to areas where more measurements are needed in order
to decrease the uncertainty of the model with the least measurements possible. For
more information see [29].

Interesting opportunities exist for an online optimization when a GPR is used
for the modeling, some promising optimization approaches are described further in
detail in [7].
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6
Implementation

This chapter discusses practical aspects of the thesis work. The chapter also gives
a background to the software used throughout the work.

The thesis was performed mainly at Volvo Penta (Gropegårdsgatan 11), since the
VIRTEC system is located here. A significant part of the thesis was also performed
at the Chalmers University of Technology, in order to get direct feedback from the
supervisors and the examiner. The thesis was carried out as a part of the bigger
VIRTEC/VIRCAL project, which aims to build a virtual in-house solution for the
test cells. Ethan Faghani, Project Manager at Volvo Penta and a supervisor of
the thesis has a good knowledge about the limitations and scope of the thesis and
about the expected results from the thesis. Since the thesis is aimed at solving an
industrial problem, it was decided to spend as much time as possible within the
industry, and develop a solution that suits the requirements of the industry.

Jonas Sjöberg, professor in Mechatronics and attached to the Electrical Engineer-
ing department at Chalmers, was the examiner for the thesis while Jonas Sjöblom
and Ali Ghanaati from the Automotive Engineering Department along with Ethan
Faghani, from Volvo Penta were the other supervisors for the project.

The entire project was conducted using MATLAB/Simulink software. A final
code consisting approximately of 700 lines was developed for this thesis. The En-
gine Open Loop Simulink block (Black box model for the engine) was incorporated
into the code. The project can be easily expanded to include more parameters as
suggested in Future Work by expanding the code.

Running the Global model with online refinement takes in average 1.5 hours. All
the local models will consume less time than the Global model to run. The timings
for the execution are in reference to a Intel(R) Core(TM) i5-6600K 3.5 GHz with
16GB RAM. The LHS DoE was implemented via the lhsdesign function in MAT-
LAB.

The GPR (http://www.gaussianprocess.org/gpml/code/matlab/doc/) was
implemented using the Gaussian Processes for Machine Learning (GPML) Toolbox
in MATLAB by Carl Edward Rasmussen (Department of Engineering, University of
Cambridge) and Hannes Nickisch (Max Planck Institute for Biological Cybernetics).
The toolbox is well known in the field of Machine Learning and is free to download.
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7
Conclusion

This chapter discusses conclusions of the results.

The main deliverable from the thesis is an online model for engine calibration. A
model is constructed for 6 inputs and one output. Measurements are taken from 220
OPs along the entire engine speed vs, engine torque map used for engine calibration.

A discovery is that some OPs do not contain any input variability, hence pro-
viding non-informative data for any regression method. These OPs are not modelled.

The model covers different torque regions: low torque, part load and high torque.
The part load and low torque are the most accurate and the high torque region the
least accurate. The OPs are scattered throughout the high torque region, thus cre-
ating a greater challenge for the GPR. There are also more repeated OPs in the high
torque region as well. This data is also more noisy than data for the other torque
regions. Although GPR can accommodate for noisy data, in comparison noise free
data is modelled better.

The part load region consisted of the greatest number of OPs with a tight spread
and this data is also less noisy. These traits aids the GPR in making good predic-
tions.

A flexible and a transparent model is developed using GPR, that has the features
of uncertainty estimates of the output parameters in order to add UPs where the
confidence interval is at the highest width. An online refinement results in a refined
model with a better fit and lesser MSPE.

A feature of GPR is ARD, which distinguish how relevant each of the input pa-
rameter are to the model. Injection timing and injection pressure are the input
parameters having the least effect on the model. The ability of GPR to handle
noisy data, can be seen when looking at the noise standard deviations in each of the
models.

The application developed synchronizes the execution of DoE, GPR and online
refinement into a single code.
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A
Appendix

A.1 Cholesky Decomposition
The Cholesky decomposition of a symmetric and positive definite matrix A decom-
poses A into a product of a lower triangular matrix L and its transpose according
to:

LLT = A (A.1)

where L is called the Cholesky factor. The Cholesky decomposition is useful for solv-
ing linear systems with symmetric, positive definite coefficient matrix A. In order to
solve Ax = b for x, the triangular system, Ly = b is first solved by forward substitu-
tion and then the triangular system LTx = y by back substitution. The solution is
denoted as x = ( b/L )/LT where the notation b/A is the vector x which solves Ax = b.
Both the forward and backward substitution steps require n2

2 operations, when A is
of size n× n. The computation of the Cholesky factor L is considered to be numer-
ically extremely stable and takes n3

6 time, so it is the preferred method whenever it
can be applied. Note that the determinant of a positive definite symmetric matrix
can be now be efficiently calculated by:

det(A) =
n∏

i=1
L2

ii or log(det(A)) = 2
n∑

i=1
log(Lii) (A.2)

where L is the Cholesky factor from matrix A [15].

A.2 All Inputs
The full list of inputs:

1. Engine Speed - Revolutions Per Minute (RPM) of the crankshaft.
2. Engine Torque - Crankshaft torque.
3. Injection Advance Angle - Crank angle degrees relative to Top Dead Center

(TDC) of the compression stroke. TDC is the highest point of the piston
during a compression stroke. It is related to the injection timing. The fuel
should be injected close to TDC.

4. Nozzle Opening Pressure (NOP) - Pressure inside the unit injectors are con-
trolled by the nozzle for fuel injection. The nozzle covers the holes through
which diesel flows out from. The pressure which lifts up the nozzle is called
the Nozzle Opening Pressure.
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5. EGR Valve Position - Exhaust Gas Re-circulation (EGR) is a way of reducing
the NOx emissions through re-circulation of the exhaust gases into the engine
cylinders. The formation of NOx is highly dependent on higher temperatures,
and it is then desired to limit the temperatures during the combustion. By
recirculating the exhaust gases, which consist of inert gases, the oxygen con-
centration becomes diluted and the combustion process is slowed down. This
results in lowered local temperatures and thus decrease the formation of NOx.
EGR is mostly used when the NOx concentration is reaching the maximum
permitted level. The NOx concentration is measured by the NOx sensor,
which is located at the exhaust gas outlet.

6. Throttle Position - For diesel engines, the throttle regulates the air flow into
the engine and hence is a mean of controlling the engine power. Throttle
Position Sensor (TPS) is used in measuring the throttle position of the engine.
TPS is controlled by the ECU in Electronic Throttle Control (ETC).

7. Waste Gate Position - The air pressure that is too high inside the turbocharger
is relieved via the waste gate valve, in order to prevent damage to the turbine
blades. This valve is mostly controlled when the engine torque is high.
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A.3 Optimization
The optimization can be described as a mapping problem that consists of mapping
the control inputs to the optimal outputs that minimizes an objective function at
each OP. A local optimization at each OP can be implemented [7].

Initially, the objective function will be the BSFC and control inputs (within the
allowable range for each OP) are injection timing, injection pressure, EGR position
and throttle position. The optimization problem is briefly described in Figure A.1.

Figure A.1: Graphical representation of the optimization problem.

At each OP along the engine speed vs engine torque map in Figure A.1, an
optimization is carried out to minimize the fuel flow at each OP. Thus, for each
input on every OP along the speed vs torque map, a value of each input parame-
ter that minimizes BSFC can be found. The solution (input values) corresponds to
the global optima of BSFC at each OP. The resulting surface is called an engine map.

The optimization problem can be described according to:

min{BSFC((τ, ω)i, IP, IT, EGR, Throttle)}
i = 1, ..., Nop

s.t IPmini ≤ IP ≤ IPmaxi

ITmini ≤ IT ≤ ITmaxi

EGRmini ≤ EGR ≤ EGRmaxi

Throttlemini ≤ Throttle ≤ Throttlemaxi

(A.3)

where IP is the injection pressure, IT is the injection timing and fuel flow is sim-
ply the flow of fuel. Fuel flow is a function of engine speed (ω) and torque(τ),
these variables are fixed at every OP while the other variables can be varied at
each OP. EGR refers to the EGR position and Throttle refers to the throttle posi-
tion. IPmini, ITmini, EGRmini, Throttlemini, IPmaxi, ITmaxi, EGRmaxi and
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Throttlemaxi contains the boundaries for the control inputs at each OP. The solu-
tion consists of the collection of input parameter values (IP, IT, EGR and Throttle)
at each OP that combined will minimize BSFC.

There are numerous different optimization techniques available to solve the op-
timization problem. For an introduction into these techniques and the basics of
optimization for engine calibration, see [7]. Note that there can be other objective
functions than BSFC and there can also be multi-objective functions (for instance
BSFC and NOx emissions), this would lead to a multi-objective optimization. A
single objective-optimization can only optimize one objective, while all other objec-
tives have to be integrated into constraints. (A.3) could for instance integrate NOx
emissions by adding additional constraints.

A.4 The Complete Online Calibration Process
An online model based engine calibration process consists of three major compo-
nents. The first two components are considered in the thesis but with the addition
of the optimization component, the entire engine calibration process can be repre-
sented as:

• Design of Experiments (DoE).
• Modeling (system identification) of the system using GPR with online refine-

ment.
• Online Optimization of input parameter settings.

The process also has a minor fourth step, which consists of generating engine
maps of the solution from optimization (A.1), these engine maps will be stored on
the Engine Control Unit (ECU) of the vehicle [7].
The three components are related to each other in the way described by Figure A.2.

Figure A.2: The entire online model based engine calibration process.

In Figure A.2, stage 1 first starts with a DoE that is formulated on the computer
which is then followed by measurements in the test cell. Stage 2 consists of an
iterative loop between modeling, online refinement and measurements in the test
cell. After one online refinement, additional measurements are taken at regions
of interests. Stage 3 consists of the online optimization which tries to solve the
optimization problem described in Section A.3. The online optimization is then
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followed by the generation of the ECU maps which are illustrated in Figure A.1.
Blue boxes occurs in the computer and white boxes in the test cell (but in this thesis
executed by an ANN engine model).

A.5 Added DoE samples for the high torque model
An extra run was executed for the high torque model where more DoE samples
was taken at each OP (no refinement was performed). The number of samples was
23× 5 = 115. The resulting regression is shown in Figure A.3.

Figure A.3: Predictions from the GPR for the High Torque region with 115 DoE
samples at each OP. Test outputs are on the x-axis and predicted outputs on the
y-axis.

In Figure A.3, R is slope of the resulting line that tries to fit all points. The
circles are the predictions. Each colour correspond to an OP of the test dataset.

The MSPE in scaled units is 0.2166. An improvement can be seen in the fit,
however the MPSE has increased, but more samples are taken which may affects
the spread of data and hence the MPSE.

Unscaled MPSE (115 DoE samples at each OP): 0.7398
Unscaled MPSE (23 DoE samples at each OP): 0.68
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