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Deploying processing functions on a many-core grid:
Mathematical optimization modelling and methodology
NILS FREDRIKSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

When hardware platforms with over 1000 logical cores are used for signal processing, the
optimization of latency and core utilization is key for efficient processing. To describe sig-
nal processing software, a consistent tool is that of a processing graph, where each node
represents a data processing function. The problem of optimally deploying such processing
functions from a graph, onto a many-core platform in the form of a grid, is considered
in this thesis. A mathematical optimization model in the form of a mixed-binary linear
programming model is proposed by decomposing the processing graph using a function se-
quence framework. A case processing graph is then deployed to two different grids by using
the branch-and-bound method to solve the models to optimality. To cope with the compu-
tational complexity of branch-and-bound for large grids and processing graphs with many
nodes, a column generation approach is taken. To this end, two different Dantzig-Wolfe de-
compositions of the model are made, each dividing the original model formulation into one
master and one subproblem. In the first decomposition, the subproblem constraint matrix
is block-diagonal. The second decomposition lacks this property. The column generation
method is then applied to each of the two decompositions to search for approximately opti-
mal solutions to the test cases. Column generation is then compared to branch-and-bound
in terms of resulting binary solutions, objective values, and computational running time.
The results indicate that the column generation can be used to search for improvements in
an initial feasible solution. But the improvements were very small for the current proposed
model and decompositions. To further develop the method it is suggested that constraints
or costs that reduce symmetries within the model, are introduced. Compared to branch-
and-bound, the running time shows that column generation has the potential to be a viable
alternative method to solve the deployment problem.

Keywords: signal processing, processing graph, mixed-integer linear optimization, mathe-
matical modelling, branch-and-bound, column generation, Dantzig-Wolfe decomposition.
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1
Introduction

Hardware platforms for signal processing have during the last decades evolved towards
grids of digital signal processors (DSPs) connected by a transport network. Today, chips
with 1000 cores exist and the trend suggests that this number will increase further [1]. Each
DSP is designed to process data using configurable filters and algorithms. The possibility
to program user-defined functions onto the hardware layout results in great flexibility and
is one of the advantages of this network. This configurability also opens up for optimizing
of DSP utilization and processing speed. For the application considered in this work, there
is a continuous flow of data through the grid of DSPs and a given software layout will
therefore be static. The minimization of latency is then especially important.

From a software perspective, a consistent description of signal processing is to use an
acyclic directed graph [2], where each node represents a data processing function. The
transport network structure on the chip corresponds to edges which connect the nodes.
Several parallel graphs can be deployed on a chip with DSPs and interconnected through
the transport network. In simpler cases this means that each node is associated with a
unique DSP, but depending on the complexity of the configuration, nodes belonging to
different graphs can share a DSP.

The task investigated in this thesis is to optimize the deployment of graphs with nodes onto
the grid of DSPs, in order to minimize the latency of processing. This problem is often
referred to as task mapping. Communication between cores comes with a cost, since the
length of a data transport path affects said latency. Furthermore, the network transport
connections between DSPs are point-to-point, meaning that when a communication path
is established it cannot be shared freely with other DSPs. Thus, longer paths use more of
the available connections and might severely reduce the utilization of cores.

The problem described above is so-called NP -complete, meaning that the number of fea-
sible (i.e., possible) solutions is exponential in the number of graphs and nodes. To search
for every possible solution is therefore not computationally feasible. One possible solution
method is to use heuristics, such as simulated annealing [3]. This method could provide
feasible solutions that yield upper bounds on the value of an optimal solution. However, to
quantitatively measure the quality of a solution—as compared to an optimal solution—a
concise mathematical modelling is needed. To tackle the computational complexity of the
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1. Introduction

problem, an approach using so-called column generation [4], will be made in this work.
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2
Problem Formulation and

Specification

We present a detailed description of the aspects of the problem components that will be
taken into account in the optimization model. Limitations regarding the signal processing
functions and the processor elements on the grid network, are presented. We also introduce
function sequence structures to describe the function dependencies in the processing graphs.
These structures will form a basis for the formulation of decision variables and constraints,
and will thus aid in the construction of the mathematical optimization model in Chapter
4. The specifics and limitations formulated in this section will make up the scope of this
work.

2.1 Processing Graph Decomposition

A simple example of a processing graph is presented in Figure 2.1. The graph consists of a
set of nodes, indicated by circles and squares, and a set of directed arcs, which interconnect
the nodes. The square nodes represent the input and output of data (I/O), while the circles
represent the processing functions. Each circular node is associated with a signal processing
function, e.g., a Discrete Fourier transform (DFT), that will act on the flow of data packages
sent through the platform of DSPs. We will denote these processing functions s1,s2, . . ., but
we will not consider the actual function actions or their effect on the data. Therefore the
processing graph simply describes the order of processing and the dependencies between
the processing functions. The rectangular nodes representing I/O, will in this approach be
treated in the same manner as the processing functions, in the sense that there is a decision
to be made regarding their assignment to a DSP on the grid network. However, there is
no actual processing done in these ”functions”. A restriction on the I/O functions is that
they should be assigned to DSPs residing on the top/bottom rows on the grid, respectively.
In Figure 2.1, node 1 has arcs to both nodes 2 and 3. The interpretation of this is that
after data has been processed by the function s1 in node 1, the resulting data should be
distributed to the processing functions s2 and s3. In the case of processing parallelism, i.e.,
that s2 = s3, the data will be distributed evenly between the nodes. If s2 6= s3 then the
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2. Problem Formulation and Specification

Figure 2.1: Example of a processing graph.

distribution can be weighed differently. In any case, the distribution of the resulting data
between processing functions is assumed to be determined beforehand by the system and
will not be taken into account in the optimization model. The relations between the nodes
4, 5, and 6 are analogous. Nodes such as 1 and 6, which have more than one directed arc
to and/or from it, will be called connection nodes. These nodes will be important when
defining sequences of processing functions.

We will now define the function sequence framework which will aid in the construction
of the optimization model. A function sequence is a grouping of the nodes, and thus
processing functions, in the processing graph. Each sequence consists of a number of
consecutive processing functions, which follow the order as given by the processing graph.
The sequences are constructed such that they always start and/or end in a connection node.
Specifically, the sequences containing the I/O functions end/start in a connection node,
respectively, while the intermediate sequences both start and end in connection nodes.
Further, a sequence is defined by a set of consecutive nodes, with a directed arc between
any two adjacent nodes. In Figure 2.2 function sequences for the processing graph in Figure
2.1 are visualized. The line patterns of the arcs between the pairs of nodes indicates the
consecutive processing functions in the same function sequence. All nodes connected by
arcs of identical pattern belong to one sequence. In the figure there are thus four sequences,
visualized by full line (nodes I, 1), dashed line (1, 2, 4, 6), dotted line (1, 3, 5, 6), and
dash-dotted line (6, O).

As illustrated in Figure 2.2, these rules for the construction of function sequences mean
that any processsing function st associated with a connection node t will belong to multiple
function sequences. To enable referencing functions in sequences and modelling, some new
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2. Problem Formulation and Specification

Figure 2.2: Function sequences in a processing graph.

notation is needed. We will denote the set of sequences in a graph byM := {1, 2, . . . ,M}
and denote the functions in sequence m by fm,n, n ∈ Nm, where Nm := {1, 2, . . . , Nm},
denotes the ordered set of functions in sequence m ∈ M. The set of connection nodes in
the processing graph will be denoted by T . This notation means that we can separate the
processing functions s1, s2, . . ., associated with the nodes in the processing graph, from the
abstract functions fm,n in the function sequences. For example, let’s say that the function
sequence represented by dashed arcs in Figure 2.2 is numbered m = 2. This sequence
contains the nodes 1, 2, 4, and 6, and they are denoted f2,1, f2,2, f2,3 and f2,4. Similarly,
the sequence represented by dotted arcs, say m = 3, contains the functions f3,1, f3,2, f3,3
and f3,4. Denoting the sequence represented by full line arcs by m = 1, then the node 1 in
the processing graph is represented in the sequences 1, 2, and 3, and associated with the
functions f1,2, f2,1 and f3,1.

It is not uncommon to have the nodes of several processing graphs mapped to a single
many-core platform. This may include multiples of identical graphs or a mix of different
graphs. Using the sequence structure defined above, these cases can be covered in the same
manner as with a single graph and the model created in Section 4 allows for these scenarios
as well. However, they are not part of the tests in this work.

2.2 DSP Grid

Each node in a processing graph, such as the one in Figure 2.1, corresponds to a com-
putational task that should be carried out by a processor element. In this work, the
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2. Problem Formulation and Specification

overall application is signal processing, so therefore the DSPs constitute the processor el-
ements. These DSPs are positioned on a rectangular grid and connected through a data
transportation network. We denote the ordered set of rows and columns on the grid by
I := {1, 2, . . . , I} and J := {1, 2, . . . , J}, respectively. On every position (i, j) ∈ I × J
is a DSP, to which there is a possibility to assign a processing function from the graph.
In general, the number of processing functions mapped to a DSP depends on the com-
putational capacity of the DSP and the required effort to complete the processing. For
example, one could choose to assign a single highly computationally demanding task to a
DSP, or several less demanding tasks. However, in this work we will limit the task mapping
so that every processing function mapped to a DSP will demand the entire computational
capacity; hence DSPs are not shared by multiple processing functions from the graph.

Each DSP has a number of connections to its horizontal and vertical neighbouring DSPs,
through which data can be sent and recieved. Depending on the system architecture, the
number of connections between neighbours and the directions of the connections, may vary.
For example there could be two connections between vertical neighbours and four between
horizontal ones, where half of the connections on each side can be used for transmitting
data, and half for receiving data. In this work we consider equal numbers of connections
in all directions, although the number is varied between test instances, and the directions
of the connections are not pre-defined by the system. This means that the result of the
mapping decides the direction of each connection, but there is a limited number of con-
nections to choose from. Figure 2.3 visualizes a set of DSPs on a grid network with two
connections between each pair of neighbours.

Figure 2.3: Example of a DSP grid with two connections between each neighbour.

Elaborating on the above, each position on the grid serves two purposes. The first is as a
DSP location, and by that as a potential candidate for a processing assignment. The second
is as a connection switch. Thus, a DSP’s connections constitute part of a collective pool of
network paths that can be used to transport data between any DSPs associated with any
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2. Problem Formulation and Specification

processing functions. The connections of a DSP are thereby not restricted to the transport
of data associated with the processing assigned to that DSP. In Figure 2.4 the DSPs
positioned at (1, 1) and (1, 3) have been assigned two consecutive processing functions,
e.g., nodes I and 1 in the full line sequence (m = 1) in Figure 2.2, and there is a need to
transport data from position (1, 1) to position (1, 3). Similarly, the DSPs positioned at (1, 2)
and (2, 2) were assigned nodes 2 and 4, respectively, and are communicating analogously.
As depicted in Figure 2.4, position (2, 2) is also used to transport data between (1, 1) and
(1, 3), without being part of their processing chain. With this logic, a position on the grid
can also be used solely as a connection switch.

Figure 2.4: Data transport through switches.

Like the processing functions of the graph are to be assigned to a DSP on the grid, the
arcs between the processing functions are to be assigned to a path made up by connection
segments between the DSPs on the grid. When an arc has been assigned to a connection
segment, this segment cannot be used by arcs in other chains of processing functions, and is
thus occupied. This characteristic sets a significant limitation on the mapping possibilities.

2.3 Problem Statement and Limitations

Having specified the problem components we can more closely formulate the problem state-
ment and summarize some of the limitations made above. The goal of this work is to find
a mapping of processing functions from a given graph to a grid of DSPs, such that the
quality of the solution can be quantitatively measured with regard to optimality fulfilment.
Communication between cores comes with a cost, since the length of a data transport path
affects the latency of processing. Furthermore, the network transport connections between
DSPs are point-to-point, meaning that when a communication path is established it cannot
be shared freely with other DSPs. Thus, longer paths use more of the available connections
and might severely reduce the utilization of cores. To this end, we will create a mathemat-
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2. Problem Formulation and Specification

ical model of the problem and, within the framework of mathematical optimization, use
methods to search for optimal and/or approximately optimal solutions to this problem.

Seeing to the apparent network structure of this problem we will create a mixed-binary
linear programming (MBLP) model, using binary decision variables and formulating con-
straints representing the characteristics described in Sections 2.1–2.2. The objective will
be to minimize the number of connection segments needed for each processing step to
achieve operational signal processing. The initial MBLP model can be solved using the
branch-and-bound method. However, when analyzing the computational complexity of this
algorithm, it will be clear that an alternative method is needed as the sizes of the problem
instances grow. For the task mapping problem that could mean the mapping of additional
graphs or more complex ones, larger grid of DSPs, or a combination of the two. To tackle
this issue we will adapt a column generation approach. A transformation of the MLBP
model into a Dantzig-Wolfe decomposition with a master and subproblem structure will be
made to fit this approach. Finally, the results of the different methods will be compared
with regards to optimality and computational running time.

As a final remark, we recapture the limitations mentioned in this chapter. Below follows a
list of problem characteristics that will narrow the scope of this work.

• Processing functions mapped to a DSP will fully occupy it and hence no other func-
tions can be mapped to it. That is, different processing functions cannot utilize the
same processor.

• The distribution of data between nodes will be determined by the system and its
graph, and not by the mapping.

• Optimization will consider the ordering of processing functions and not their actual
functionality. Hence their altering of the data flow will be ignored.

• Computational effort required by individual processing functions will not be taken
into account. Thus processing running times and scheduling aspects will not be
considered.

• The DSPs on the grid are homogeneous. Every processor has the same capability to
carry out a processing task.

• Nodes corresponding to I/O will also be treated as processing functions and will in
a feasible solution be assigned to a DSP on the grid. Also, the I/O functions should
be assigned to DSPs residing on the top and bottom rows on the grid, respectively.
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3
Optimization Modelling and

Methodology

In this chapter the necessary theory and methods on the subject of mathematical opti-
mization is introduced. A mixed-binary linear programming (MBLP) model will be the
approach for investigating the problem defined in the previous chapter, and to that end a
number of topics need to be covered.

The starting point will be to go over the topics concerning the fundamental optimization
techniques applied. These topics include an introduction to linear programming (LP), the
simplex method and LP duality, which are central to all methods used in this work. This
part will be based on chapters 3, 6, 8, 9 and 10 in [5].

Based on the works of Sierksma [6], we will then cover how logical constraints in an op-
timization problem are translated into equalities and inequalites using binary variables
corresponding to boolean statements. These types of constraints are typical for problems
with network structures, like the problem formulated in this work. Therefore some meth-
ods and examples for modelling networks are included in this section. Further, we will
introduce MBLP and the branch-and-bound algorithm used to solve these problems.

To motivate our column generation approach to the optimization problem, some computa-
tional complexity aspects regarding MBLP, will be covered. This includes a discussion of
the NP -completeness of the branch-and-bound algorithm. Most of this is a summary of
concepts discussed by Schriejver and Sierksma in [7] and [6], respectively. Finally, follow-
ing that of [4], a thorough description of the column generation method and how it can be
embedded in a branch-and-bound framework using Dantzig-Wolfe decomposition, will be
given. This will include how duality theory is used to calculate bounds to measure conver-
gence of the column generation algorithm, and how to take advantage of a block-diagonal
structure in the constraint matrix.

9



3. Optimization Modelling and Methodology

3.1 Linear Programming

A general optimization problem can be stated as the problem to find

min
x

f(x),

subject to x ∈ X.
(3.1)

where X ⊆ Rn and f : Rn 7→ R is some function.

A linear programming (LP) model is a special case of an optimization model where the
objective function is linear and the feasible region is defined by linear equalities and in-
equalites. Let’s consider the case of n decision variables x = (x1, x2, . . . , xn)>. This means
that in the problem (3.1), we can write the objective function f(x) as a linear function
z = c>x, with c ∈ Rn, and define the feasible region X by a convex polyhedron

X = {x ∈ Rn | Ax ≤ b; x ≥ 0}, (3.2)

where the matrix A ∈ Rm×n and the vector b ∈ Rm. For the purposes of this work, it is
sufficient to consider bounded polyhedra X. An example of such a polyhedron in R2 is
shown in Figure 3.1. The extreme points of the region are also shown. These points are of
great importance when solving LP problems, as will be seen in Section 3.1.1.

Figure 3.1: The feasible region in LP. Extreme points are represented with dots.

Definition 1 (Extreme points). Let C be a convex set with x1, x2 ∈ C, and let λ ∈ (0, 1).
A point v of C is called an extreme point if the relation v = λx1 + (1 − λ)x2 implies the
equalities v = x1 = x2.

10



3. Optimization Modelling and Methodology

The extreme points of a bounded polyhedron can be thought of as the points defining the
polyhedra, since using only convex combinations of the extreme points, every point in the
polyhedron can be defined.

Continuing with the LP formulation, the complete minimization problem now reads

min
x

z = c>x, (3.3a)

subject to Ax ≤ b, (3.3b)

x ≥ 0. (3.3c)

In this representation we have chosen non-negative decision variables x and an inequality
of the type ”≤” for the constraints, with a constraint matrix A and a right-hand side b.
Given variables and inequalities one can always transform a linear program into (3.3) by
changing signs in the constraints corresponding to (3.3b) and/or (3.3c). Similarly, one can
transform a maximization problem into a minimization problem by changing the sign of
the objective function.

3.1.1 Simplex Method

One of the most common methods of solving LP models is the simplex algorithm. The
algorithm relies on the geometry of linear programs, more specifically the equivalence
between optimal solution candidates and extreme points of the polyhedron that defines
the feasible region.

To apply the simplex method, one must first transform the LP model into a so-called stan-
dard form. There are versions of standard forms for both minimization and maximization
problems, but for our purposes the minimizing form is more suitable:

min
x

z = c>x, (3.4a)

subject to Ax = b, (3.4b)

x ≥ 0. (3.4c)

We can transform the model (3.3) into standard form by adding slack variables s ∈ Rm to
the inequality constraints Ax ≤ b. That is, for each inequality in (3.3b) we add a variable
si ≥ 0 according to

aix+ si = bi,

where ai ∈ Rn and bi ∈ R.

The next step in the simplex algorithm involves a partitioning of the problem to fit the
concept of basic and non-basic variables, as well as basic feasible solutions (BFS). If for an
LP model in standard form it holds that rank A = m, n > m and b ≥ 0, then x̃ ≥ 0 is a
BFS if

11



3. Optimization Modelling and Methodology

1. Ax̃ = b,

2. columns of a A corresponding to non-zero components of x̃ are linearly independent.

We will now partition x and A to fit the above description:

x =
(
xB
xN

)
, A = (B,N), (3.5)

where xB ∈ Rm, xN ∈ Rn−m are called basic and non-basic variables, respectively, and
B ∈ Rm×m, N ∈ Rm×(n−m). Using this partitioning we can now write

Ax = BxB +NxN = b. (3.6)

This partitioning comes naturally since rank A = m, yielding the possibility to solve
the system Ax = b with only m elements of the n-vector x corresponding to linearly
independent columns of A. Hence, those m variables are found in xB and the other n−m
variables, found in xN , can be set to 0. By the same logic, the independent columns of
A corresponding to the m variables in xB are placed in the basis B and the remaining
columns are placed in N . A BFS to (3.4) is now given by

x =
(
xB
xN

)
=
(
B−1b

0

)
. (3.7)

Having a BFS x and a corresponding partitioning as above, we can express xB and the
objective c>x according to

xB = B−1b−B−1NxN , (3.8a)

c>x = c>BxB + c>NxN (3.8b)

= c>B(B−1b−B−1NxN) + c>NxN

= c>BB
−1b+ (c>N − c>BB−1N)xN .

As outlined in more detail in [5, Ch. 8–9], the idea behind the simplex method is now to
use the fact that a BFS is actually equivalent to an extreme point to the feasible region
defined by the constraints (3.4b)–(3.4c), and that the global optimum of the same problem
is found among the extreme points. Starting at a BFS x, one uses the simplex method to
move between adjacent extreme points and search for improvements in the objective.

The optimality criteria involves the reduced costs for the non-basic variables xN derived in
(3.8). The reduced cost c̃j for a non-basic variable xj, j = 1, 2, . . . , n−m, in xN is defined
by

c̃j = (c>N − c>BB−1N)j, (3.9)

corresponding to the j:th element in the vector c>N − c>BB−1N . If c̃j < 0 for at least one of
the variables in xN , then the column in N corresponding to the largest decrease, per unit
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3. Optimization Modelling and Methodology

increase in the corresponding variable xj, in the objective will be swapped into the basis
B, replacing the column corresponding to the basic variable that first reaches the value 0
when the value on xj increases, and a new extreme point is identified. When c̃j ≥ 0 holds
for all j, the current basis B is optimal and we have found an optimal solution x to (3.4).

3.1.2 Duality Theory

An important concept in optimization theory is that of duality and dual problems. For
every optimization problem (here called the primal problem) there exists a dual problem,
and the properties and solutions of the dual problem can in many cases provide information
about the primal problem. The approach in this work is in many ways reliant on duality
theory, more specifically linear programming duality, and the most important concepts are
outlined in this subsection.

The fundamental starting point for duality theory is the relaxation theorem. A relaxation
is a reformulation of a general optimization problem

min
x

f(x),

subject to x ∈ X,
(3.10)

where X ⊆ Rn is closed and bounded with f : X 7→ R, into a related problem

min
x

fR(x),

subject to x ∈ XR,
(3.11)

where X ⊆ XR and fR ≤ f, for x ∈ X. The relaxation theorem then formulates some
basic properties of a relaxation.

Theorem 1 (Relaxation Theorem). For a relaxation as defined in (3.11) the following
holds:

1. For an optimal solution x̂R to (3.11) and an optimal solution x̂ to (3.10) we have
that fR(x̂R) ≤ f(x̂).

2. If (3.11) is infeasible, then so is (3.10).

3. If the optimal solution x̂R to (3.11) satisfies x̂R ∈ X, and fR(x̂R) = f(x̂R), then x̂R
is optimal in (3.10) as well.

A simple proof of Theorem 1 can be found in [5, pp. 157–158]. This result plays a key role
in the branch-and-bound method formulated in Section 3.5.

Moving on, a natural relaxation of an optimization problem is the Lagrangian relaxation.
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Consider a more specific optimization problem of the form

min
x

f(x), (3.12a)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m, (3.12b)

x ∈ X, (3.12c)

with f and X defined as above and gi : Rn 7→ R, i = 1, 2, . . . ,m, being functions. The
Lagrangian relaxation can now be formulated.

Definition 2 (Lagrangian Relaxation). Consider the function L : Rn×m 7→ R, defined by

L(x, µ) := f(x) +
m∑
i=1

µigi(x), and let 0 ≤ µi, for i = 1, 2, . . . ,m. A Lagrangian relaxation

of (3.12) with respect to the constraints (3.12b), is given by

q(µ) := min
x

L(x, µ),

subject to x ∈ X.
(3.13)

The function L is referred to as the Lagrange function. Since 0 ≤ µi and gi(x) ≤ 0 for all
i = 1, 2, . . . ,m by definition, the Lagrangian relaxation (3.13) of (3.12) is a relaxation in
terms of (3.11), above.

Taking a step closer to duality and dual problems, the Lagrangian dual problem can now
be formulated as

max
µ≥0

q(µ) := min
x∈X

L(x, µ), (3.14)

where the function q : Rm 7→ R. Thus, the dual problem of a minimization problem is a
maximization problem, and for every constraint i = 1, 2, . . . ,m in the primal problem, a
decision variable µi is included in the dual problem. The dual variables µi determines a
penalty of violating the relaxed constraints gi ≤ 0. In (3.13) feasibility still holds if these
constraints are violated, but it would be costly.

As stated in the introduction of this section, the dual problem provides important infor-
mation about the original primal problem. Next is a very important result relating the
dual to the primal problem.

Theorem 2 (Weak Duality). For any x and µ feasible in (3.12) and (3.14), respectively,
we have that

q(µ) ≤ f(x).

Proof. Let µ ∈ Rm and x ∈ X ⊆ Rn, with 0 ≤ µ and g(x) ≤ 0, where g : Rn 7→ Rm. This
gives

q(µ) = min
v∈X

L(v, µ) ≤ f(x) + µ>g(x) ≤ f(x),

14
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where the equality holds by the definition of the function q in (3.14), the first inequality
holds by the definition of the function L, and the second inequality holds since µ ≥ 0 and
g(x) ≤ 0. Especially for optimal solutions x̂ to (3.12) and µ̂ to (3.14), we have

q(µ̂) = max
µ≥0

q(µ) ≤ min
x∈X:g(x)≤0

f(x) = f(x̂). (3.15)

Thus the dual problem yields a lower bound on the optimal value of any primal problem.
This result is referred to as weak duality, and is a general result in optimization. However,
for some (i.e., convex) problems the inequality in (3.15) can be replaced by equality, giving
so-called strong duality. This is the case for linear optimization problems.

So far a general approach to duality theory has been presented. For linear programming
the conventions introduced in Section 3.1.1 are used to formulate the dual problem, and
the weak and strong duality theorems. Consider (3.4), an LP problem in standard form.
Following the rules stated above to form the dual problem formulation, the dual of (3.4) is

max
y∈Rm

q = b>y,

subject to A>y ≤ c.
(3.16)

The weak duality theorem can now be stated for LP problems.

Theorem 3 (Weak Duality for Linear Programming). If x is feasible in (3.4) and y is
feasible in (3.16), then the inequality b>y ≤ c>x holds.

Proof. Using the relations A>y ≤ c, 0 ≤ x, and Ax = b we have that

b>y = y>b = y>Ax = (A>y)>x ≤ c>x,

and the claim is proved.

The final step is to show strong duality for linear programming, that is, that the objective
values of (3.4) and (3.16) are equal when both problems are solved to optimality. For this
we use the following lemma from [5, pp. 232–234].

Lemma 1. Let P := {x ∈ Rn | Ax = b, x ≥ 0} be a convex polyhedron and V :=
{v1, . . . , vk} be the extreme points of P, see definition 1.

Now consider the linear program

min
x

z = c>x,

subject to x ∈ P.
(3.17)

Then,
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1. (3.17) has a finite optimal solution if and only if P is nonempty and z is bounded
from below on P.

2. If (3.17) has a finite optimal solution, then there exists an optimal solution among
the extreme points to P .

Proof. See [5, pp. 233–234].

This result ensures the existence of optimal solutions for LP problems of interest to this
work, that is, for finite objective values.

Strong duality for linear programming now follows:

Theorem 4. If there exists feasible solutions x and y to (3.4) and (3.16), respectively, then
there exists optimal solutions x̂ and ŷ to the respective problems and c>x̂ = b>ŷ holds.

Proof. Since y is feasible in (3.16) it follows from Theorem 3 that the objective z in (3.4)
is bounded from below. By Lemma 1 we then have that there exists an optimal solution
to (3.4) among the extreme points of its feasible region. Since the extreme points are
equivalent to a BFS, the optimal solution is then x̂ = (x̂>B, x̂>N)>, where B and N determine
a BFS given by the solution x̂.

Let (3.5) define a partitioning of the primal problem (3.4) with the associated optimal basis
B. Now set

ŷ> = c>BB
−1. (3.18)

Since x̂ is optimal in (3.4), the reduced costs corresponding to the (optimal) basis B, are
non-negative. That is,

c>N − c>BB−1N = c>N − ŷ>N ≥ 0. (3.19)

Also, c>B − ŷ>B = c>B − c>BB−1B = 0 holds, giving

c> − ŷ>A ≥ 0⇐⇒ A>ŷ ≤ c.

Thus, ŷ as defined in (3.18) is feasible in (3.16). Finally, by (3.7), we conclude that

b>ŷ = b>(B−1)>cB = c>BB
−1b = c>Bx̂B = c>Bx̂B + c>N x̂N = c>x̂,

which by Theorem 3 yields that ŷ is optimal in (3.16).

This result will be used to compute bounds on the optimal objective value in the MBLP
model to be formulated in later Section 4; such bounds are important aspects of many
solution strategies, e.g., column generation (see Section 3.8).
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3.2 Logical Constraints

In an optimization problem it is sometimes necessary to make a decision regarding quan-
tities that need to be whole units. For example, if workers are to be assigned jobs at a
station in a manufacturing plant, then it does not make sense to assign the two halves of
one worker to two different stations. For LP problems the feasible region is made up of
constraints in the form of inequalities (and equalities) expressed as

a11x1 + a12x2 + . . . a1nxn ≤ b1,
...

am1x1 + am2x2 + . . . amnxn ≤ bm.

(3.20)

In a feasible solution, the decision variable x ∈ Rn can take any real number, as long as
x ≥ 0 is fulfilled together with the m linear inequalities in (3.20). But to make ”yes” or ”no”
decisions there is a need for introducing additional constraints that utilize binary variables
w ∈ {0,1}, such that

w =
{

1, if a positive decision is to be made,
0, if a negative decision is to be made.

To formulate logical constraints using this type of variables, boolean algebra is a powerful
tool. In Table 3.1, some logical connectives and translations into affine constraints are
presented. Using these logical connectives makes it is easier to formulate combinatorical

Logical expression Interpretation Constraint
E1 ∧ E2 both E1 and E2 δ1 + δ2 = 2
E1 ∨ E2 E1 or E2 or both δ1 + δ2 ≥ 1
E1∨̄E2 exactly one of E1 and E2 δ1 + δ2 = 1
(E1∨̄E2)∨̄¬(E1 ∨ E2) one of E1, E2 or none δ1 + δ2 ≤ 1
E1 ⇒ E2 if E1 then E2 δ1 − δ2 ≤ 0
E1 ⇔ E2 E1 if and only if E2 δ1 − δ2 = 0

Table 3.1: Logical forms with constraints. Here, E1 and E2 are events that can be
realized by binary decision variables δ1 and δ2.

constraints of type ”if E1 then E2” for events E1 and E2. A typical case could be if a vehicle
routing schedule is to be made and one wishes to prohibit multiple vehicles from taking
the same route. For more details and examples of binary variables and logical forms, see
[6, Section 6.3].
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3.3 Network Flow Modelling

Typical applications of integer or binary variables in optimization modelling, are network
models. Some problems can be formulated in terms of a graph with nodes and arcs. The
assignment problem is an example of this. The nodes are then associated with either a
task or a resource to perform the task (worker/machine/processor etc). The arcs between
tasks and resources are associated with the cost that it takes for the specific resource to
perform the task. The problem is to find an assignment of resources to tasks, such that
the cost is minimized. The restriction on the assignment is that every task is to be carried
out, but only by one of the resources and that each resource is to perform exactly one
task. Figure 3.2 shows the network graph of an assignment problem, with the costs left
out. If we consider a more general assignment problem where all tasks i = 1, 2, . . . , N,

Figure 3.2: Assignment problem graph.

can be carried out by any resource j = 1, 2, . . . , N , the following notations can be used to
formulate a model of the assignment problem. Let the costs for a resource i to perform
task j be ci,j and introduce yi,j as

yi,j =
{

1, if resource i is assigned to task j,
0, otherwise.

18
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A model of the assignment problem can then be stated as

min
y

N∑
i=1

N∑
j=1

ci,jyi,j,

subject to
N∑
i=1

yi,j = 1, j = 1, 2, . . . , N,

N∑
j=1

yi,j = 1, i = 1, 2, . . . , N,

yi,j ∈ {0, 1}, i = 1, 2, . . . , N,
j = 1, 2, . . . , N.

(3.21)

The first constraint ensures that each task is carried out by exactly one resource, and the
second constraint requires every resource to carry out precisely one task.

Another example of a problem with a more obvious network structure is the minimum
cost network flow problem. This problem is typical in, for example, delivery routing, where
a commodity is to be delivered from a source to a depot, while minimizing the cost of
delivery. The nodes represents stops on the route and each arc has an associated cost and
a capacity. The problem is to find a flow of the commodity from a source node to a sink
node, such that capacities and flow conservation restrictions are met, while minimizing the
total cost of the flow. Figure 3.3 shows an example of a network flow graph with costs and
capacities on the arcs, denoted by (cost, capacity).

Figure 3.3: A network flow graph with costs and capacities on the arcs.

For a general problem with N nodes, denote the amount of flow from node i to j, by xi,j.
The costs are, similar to the assignment problem, ci,j and the capacities ki,j. An initial
flow from the source node 1 is denoted f0, which is to be received by the sink node N . The
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model can now be formulated as

min
x

N∑
i=1

N∑
j=1

ci,jxi,j,

subject to
N∑
j=1

x1,j = f0,

−
N∑
i=1

xi,N = −f0,

−
N∑
j=1

xi,j +
N∑
j=1

xj,i = 0, i = 2, . . . , N − 1,

0 ≤ xi,j ≤ ki,j, i, j = 1, 2, . . . , N,
xi,j ∈ Z, i, j = 1, 2, . . . , N.

(3.22)

The first and second constraint require that the entire flow of the commodity originates
from the source and is received by the sink. The third constraint is a flow-conservation
constraint. It ensures that for every intermediate node i that sends a flow of the commodity,
it is required that the corresponding node j receives the same amount. The final constraint
is to prohibit the flow from exceeding the capacity of the links between nodes.

A more general version of the above flow problem, is when there are multiple commodities
that should be sent through the network. In that case a third index is added to the
flow variables xi,j in (3.22), specifying the type of commodity, and denoted xi,j,q, where q
denotes the commodity. The above flow constraints should then hold for all commodities.
The capacity constraint should then limit the sum of all commodities, i.e., it should read∑
q∈Q xi,j,q ≤ ki,j. In some cases the integrality constraints are dropped and the commodity

flows are allowed to take on fractional values.

The problem attacked in this work is more or less a combination of the above mentioned
problems. Signal processing functions are to be assigned to a DSP that should carry out
a computational task, and the connections between DSPs can be interpreted as possessing
flow-conservation properties, where there is a capacity limitation on the number of con-
nections that can be used per DSP. Hence, many of the constraints formulated in Section
4 will resemble the constraints in (3.21)–(3.22).

3.4 Mixed-Binary Linear Programming

The differences between a general MBLP model and an LP model can, in the aspects
relevant to this work, be summarized by those between ILP models (integer linear pro-
gramming models) and LP models. More precisely, the geometric properties of the feasible
region of an ILP model and an MBLP model are similar, as compared to an LP model.
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Adding to that, the method of solving these models, the branch-and-bound method, is used
for both MBLP- and ILP models. To facilitate the presentation of notations and figures,
the contents of this section will therefore focus on ILP models.

A general ILP model can be formulated as

min
x

z = c>x, (3.23a)

subject to Ax ≤ b, (3.23b)

x ≥ 0, (3.23c)

x ∈ Zn+ (3.23d)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Using the same example region as in Figure 3.1,
with the integrality constraints added, the new feasible region is shown in Figure 3.4. Note
that the uppermost extreme point in Figure 3.1 is not feasible in the corresponding ILP
problem. This is generally the case when the integrality constraints (3.23d) are added.
When the decision variables are required to be integers, the convexity of the feasible region
is lost, and extreme points, as defined in Definition 1, do not exist. This is one of the
reasons why the simplex method cannot be used to solve general ILP problems.
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2

Figure 3.4: The feasible region of an ILP. Filled grey circles represents the feasible
points.

The models presented in Section 3.3, are both cases of ILP models, and the model created
for the mapping of processing functions in this work, will also be of this kind. The feasible
region will therefore be similar to the one presented in Figure 3.4, but in higher dimensions.
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Removing the integrality constraints (3.23d) would yield its LP-relaxation. The LP model
can be solved efficiently using the simplex method and an optimal value with corresponding
decision variables can be found. An intuitive method of finding a feasible solution to the ILP
model would then be to round the decision variables down to integer numbers. However,
this solution may very well be far from optimal in the ILP model. In [6, pp. 211–210],
Sierksma outlines why this procedure can fall short and motivates why other methods are
needed.

3.5 Branch-and-Bound Method

The LP-relaxation of an ILP model is a relaxation in terms of (3.10) and (3.11). By
Theorem 1, solving the LP-relaxation of an ILP model produces a lower bound on the
optimal objective value of the ILP. This fact is the main building block of the branch-
and-bound (BnB) method. Roughly, the method searches the feasible region of the ILP, by
solving instances of LP-relaxations and comparing the change in the objective value at each
iteration. At every iteration the algorithm solves an LP-relaxation of the current parent
model and divides it into submodels with smaller feasible regions by adding constraints
on the decision variables taking non-integer values. The dividing of the feasible region is
called branching, and the comparing with the objective value of the LP-relaxation is called
bounding.

The algorithm starts with solving the LP-relaxation of the original ILP formulation, giving
a lower bound on the optimal objective value of the ILP model. If all the decision variables
take on integer-values, the current solution is optimal (again by the Relaxation Theorem).
If this is not the case, every non-integer valued variable starts a branching (sub-)tree. The
first nodes in each branch consist of two submodels for each variable that initialized the
branch.

For example, we start by solving an initial parent model, the LP-relaxation of some ILP
formulation. Assume that in this solution, one of the variables x = 10.2. Then two
submodels of the original formulation are created, where the constraints

x ≥ 11,

and

x ≤ 10,

are added to the respective submodel. A branching on the variable x has been made. In
the case of binary variables, the branching will instead be to restrict non-binary valued
variables to 1 or 0.

The next step is to choose one of these submodels as the new parent model, solve the LP-
relaxation of this submodel and calculate the objective value. If a submodel is infeasible

22



3. Optimization Modelling and Methodology

or if the solution happens to be integer, no further branching will be made on that model.
If the solution to a submodel is feasible with non-integer valued variables, a new branching
tree is rooted for one of these variables, where constraints are added on the variables as
above.

By repeating this procedure, the feasible region shrinks further down the tree. This means
that in every branch created, the objective values of previously calculated solutions, can
be used to conclude that some branching will be unnecessary, and the branch can be ”cut”.
E.g, a non-integer solution with larger objective value than an integer solution in the same
branch, does not need to branched upon further.

An example of a branch-and-bound tree is given in Figure 3.5. The submodels are denoted
by S and the branching is made on the two variables x and y in this case. The remaining
variables are not shown. At every node Si one can choose to branch on any non-integer
valued variable, and therefore the trees can grow very large, very quickly.

S
x = 10.2z = 100

S1

x = 9z = 140

x ≤ 10

S2

y = 15.6z = 120

S2,1

y = 13.3z = 134

y ≤ 15

S2,2

y = 17z = 129

y ≥ 16

x ≥ 11

Figure 3.5: A branch-and-bound tree. Bars below the nodes indicate integer solutions.

In the node S1 every variable is integer in the LP-relaxation of the submodel, so no further
branching is done. The branching in S2,1 is also stopped, since the integer solution in S2,2
has a better (lower) objective value, and by the Relaxation Theorem, the objective in S2,1
will not improve as more constraints are added to this submodel. A general description of
the algorithm, complete with selection rules for branching and examples of solving MILP
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models by the algorithm, can be found in [6, Section 6.2.2].

The branch-and-bound algorithm is highly parallelizable, since all submodels can be solved
independently. Modern multicore-processors have therefore lead to a significant decrease
in computational running time for ILP-programs. Also, the simplex method, which is often
used to solve the submodels, is an efficient algorithm. However, the computational com-
plexity of the branch-and-bound algorithm indicates that for large-scale MILP problems
an alternative method is needed.

3.6 Computational Complexity

When choosing the solution method of an optimization problem, it is important to consider
the computational complexity of the method. In this section a brief summary of some of
the key concepts and theory introduced by Schrijver [7], will be presented. This will give
incentive to the column generation approach made in this work.

The most basic concepts in computational complexity theory are problems and size,
algorithms, and running time. There are different ways of defining a problem, but an
intuitive form is that of a question. A BLP problem can be formulated as:

Given a rational matrix A ∈ Rm×n and a rational vector b ∈ Rm,
does Ax = b have a solution x ∈ {0, 1}n?

(3.24)

Formally, this question is called a decision problem. The parameters A and b of the problem
are the input to an algorithm which will, if possible, produce an output x that answers the
question. An algorithm itself is defined through a computing model, in most cases a variant
of a Turing Machine. A Turing Machine is informally an abstract machine that executes
operations depending on the input that it currently reads. Theoretically, it resembles a
computer. Simply put, an algorithm is a list of instructions to solve a problem. How the
number of operations—that the machine needs to execute to complete the instructions—
scales with the problem size is measured by the running time of the algorithm. The problem
size is thus defined through the number of instructions needed to solve a problem and these
instructions are made up of elementary arithmetic operations such as adding, subtracting,
multiplying, dividing, and comparing numbers. The number of such elementary operations
n, will be referred to as the problem size. The running time is then given by a function
f(n).

To compare and classify running times, big-O notation is most commonly used.

Definition 3. (big-O) Let f : S 7→ R and g : S 7→ R be functions, with S ⊆ R+ being
unbounded and g(x) ≥ 0 for x ∈ S, then

lim
x→∞

f(x) = O(g(x)),
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if and only if there exists M ≥ 0 and x0 ∈ S such that

|f(x)| ≤Mg(x), for x ≥ x0.

One says that ”f(x) is O(g(x))” if it is upper bounded by the function g(x). In terms of
running time f(n) and problem size n ∈ Z+, one says an algorithm runs in O(g(n))-time.

3.7 NP -Completeness

Problems, such as (3.24), are classified by the running time of the the algorithm used to
solve them. Running times can be compared in a worst-case sense or in an average sense.
Worst-case would refer to the largest running time possible for a given problem size n. It is
in general accepted to estimate times by worst-case [6, pp. 218–219], since this is in general
a simpler procedure.

The two classes which will be the focus here, are P and NP . Problems that belong to P
are solved in polynomial running time. That is, the running time f(n) is upper bounded
by a polynomial g(n). These problems are considered being ”easy” and efficient algorithms
can solve them ”quickly”. A classic example of a problem in P is the dot product of two
vectors a, b ∈ Rn. To solve this problem, n multiplications and n− 1 additions are needed.
Thus, f(n) = n+ n− 1 = 2n− 1, which is O(n).

For the problems in NP , no known algorithm exists by which they can be solved in poly-
nomial time. An example of a problem in NP is the 0-1 knapsack problem (with unit cost
coefficients):

max
x

z =
n∑
i=1

xi,

subject to
n∑
i=1

aixi ≤ K,

x ∈ {0, 1}

(3.25)

Solving this problem using the branch-and-bound algorithm can result in a running time
which is exponential in n. Sierksma [6, pp. 326–328], shows that for an example similar to
(3.25) (with K ≥ 3 and odd, and ai = 2 for all i) yields that the number of submodels in

the branch-and-bound tree becomes 2n+1
2 , in a worst-case scenario. Bare in mind that this

is just the number of submodels, and to solve them many further instructions are needed.
The problems in NP are therefore considered hard to solve.

In NP there are subgroups of problems considered the hardest in the class. These are
called NP -complete problems. A problem Q is called NP -complete if it belongs to NP
and there exists an algorithm for which any other problem in NP can be reduced (see the
definition of Karp-reduction [7, pp. 20–21]) to Q in polynomial time. This means that any
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algorithm that solves an NP -complete problem can be used to solve any problem in NP .
This also implies that if there exists an algorithm which solves an NP -complete problem in
polynomial time, then all problems in NP can be solved in polynomial time and P = NP .
However, such an algorithm is yet to be found.

Schrijver [7, Section 18] gives extensive proofs that the problem (3.24), along with a number
of combinatorial and ILP problems, are all NP -complete problems. These include the
integer (or 0-1) Knapsack problem and the Travelling Salesperson problem. For large-scale
mapping of processing functions, this becomes a practical issue. An attempt at resolving
this is through column generation.

3.8 Problem Decomposition and Column Generation

Column generation is a method applied to optimization problems when the number of
feasible solutions is too large for a search-based method, such as the branch-and-bound
algorithm. The idea behind it is to consider only a smaller subset of the solutions, i.e,
columns, at a time. The method is designed for LP problems, when it is too expensive (in
terms of computational running time) to calculate the reduced costs (see Section 3.1.1) for
all the non-basic variables. When using the method for ILP problems (or MBLP problems
in this case) it is therefore necessary to first decompose the problem into an ILP part
and an LP part. This is called Dantzig-Wolfe decomposition and will be the first step to
applying the column generation method. Most of this section will follow that of [4], where
more details and variants of implementations can be found.

3.8.1 Dantzig-Wolfe Decomposition

Consider a BLP with two sets of constraints

min
x

z = c>x, (3.26a)

subject to Ax ≤ b, (3.26b)

Dx ≤ d, (3.26c)

x ∈ {0, 1}n, (3.26d)

where c ∈ Rn, A ∈ Rm×n, D ∈ Rl×n and d ∈ Rl. This will be referred to as the Original
Formulation. Let

X := {x ∈ {0, 1}n | Dx ≤ d} 6= ∅. (3.27)

Moving on, we will use results from [7, Section 7.1–7.2], regarding the decomposition of
polyhedral sets, such as X. The Minkowski-Weyl theorems state that a polyhedron H can
be expressed as a convex combination of the extreme points and extreme rays of its convex
hull, conv(H).
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Definition 4 (Convex Hull). The convex hull of a set H ⊆ Rn, conv(H), is the smallest
convex set containing the set H.

No further attention will be given to extreme rays of polyhedra, since for x binary, X can
be expressed through the extreme points xp of conv(X) alone. Thus,∑

p∈P
λpxp = x,

∑
p∈P

λp = 1,

λp ≥ 0, for p ∈ P ,

(3.28)

where P is the set indexing the extreme points. Using this representation of x in (3.26)
yields the equivalent formulation

min
x

zIMP :=
∑
p∈P

λp(c>xp), (3.29a)

subject to
∑
p∈P

λp(Axp) ≤ b, (3.29b)

∑
p∈P

λp = 1, (3.29c)

λp ≥ 0, for p ∈ P , (3.29d)

x =
∑
p∈P

λpxp, (3.29e)

x ∈ {0, 1}n. (3.29f)

The formulation (3.29) is called the Integer Master Problem (IMP). The constraints (3.29c)–
(3.29d) are called the convexity constraints. Relaxing the integrality constraint on x in

(3.29f), gives the LP model suitable for column generation. The columns
(
c>xp, (Axp)>

)
,

are then defined through the extreme points xp to the set X as defined in (3.27). When
the integrality constraints are no longer present, the constraint (3.29e) is neither needed.
The LP-relaxed IMP is then given by

min
λ

zMP :=
∑
p∈P

λp(c>xp), (3.30a)

subject to
∑
p∈P

λp(Axp) ≤ b, (3.30b)

∑
p∈P

λp = 1, (3.30c)

λp ≥ 0, for p ∈ P . (3.30d)

This formulation will be referred to as the Master Problem (MP). It is the LP part of the
original problem (3.26), and depends only on the variables λp, of which there is one for
every column.
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3.8.2 Column Generation

For X large enough, it is impractical to enumerate all extreme points xp, in order to solve
(3.30). Instead, one can apply column generation, and only consider a limited number
of variables at a time. The restricted subset of columns which are considered is denoted
P ′ ⊆ P and the task is now to optimize the Restricted Master Problem (RMP)

min
λ

zRMP :=
∑
p∈P ′

λp(c>xp), (3.31a)

subject to
∑
p∈P ′

λp(Axp) ≤ b, (3.31b)

∑
p∈P ′

λp = 1, (3.31c)

λp ≥ 0, for p ∈ P ′. (3.31d)

In column generation, like in the simplex method, promising variables are searched for to
enter an optimal basis; see Section 3.1.1. But as opposed to using the simplex method,
where the reduced costs are calculated for all non-basic variables, one searches for a single
variable λp, p ∈ P \ P ′, which still has a negative reduced cost. If there exists such a

variable, it is added to the RMP, together with its corresponding column
(
c>xp, (Axp)>

)
.

The updated RMP is then re-optimized, using, e.g., the simplex method.

As shown in the proof of Theorem 4, the calculation of reduced costs for non-basic variables
can be done through the dual variables. The reduced cost for a variable λp, can therefore
be expressed as

c̃p := (c> − π>A)xp − π0,

where π ∈ Rm and π0 ∈ R are the dual variable values calculated from the solution of the
current RMP, corresponding to constraints (3.31b) and (3.31c), respectively. The search
for a variable λp with the most negative reduced cost then takes the form of solving a
subproblem

min
p

(c> − π>A)xp − π0,

subject to p ∈ P ,
(3.32)

or equivalently
min
x

(c> − π>A)x− π0,

subject to x ∈ X,
(3.33)

which can be solved by the branch-and-bound method. If c̃p ≥ 0 in the current iteration
of the subproblem, then the RMP and the MP are optimal and equivalent, and no further
columns need to be added. The integer constraints can then be reinstated on the convexity
variables λp in the RMP (forming the integer RMP, or IRMP), and a feasible solution
among the generated columns can then be searched for, again by branch-and-bound. In
general, however, there might not exist a feasible solution to the original problem among
the columns.
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To summarize, an iteration of the column generation algorithm involves optimizing the
current RMP (using the simplex method) to compute dual variable values which can be
used to search for a new column via the subproblem. When optimizing the subproblem
through branch-and-bound, the variable with the most negative reduced cost is found and
added to the RMP, together with its associated column. The RMP is then re-optimized,
and the process starts over. When the reduced cost c̃p ≥ 0, the MP is optimal and a
feasible solution to the original formulation can be searched for among the columns.

The process can be initiated with a feasible solution to the original problem, as the first
column. An artificial variable with a large cost can then be used to find a first feasible
solution to the RMP, and corresponding dual variable values can be calculated. With
this initiation, one is guaranteed a feasible solution (however, bad it might be) when the
column generation is complete, i.e., the first column. An improvement to the original
feasible solution might then exist in the the columns generated.

3.8.3 Block-Diagonal Structure

For certain problems, a block-diagonal structure can be present in the matrix D in (3.27).
That is, the constraints (3.26c) can be expressed as



D1

D2
0

. . .

0 DK−1

DK





x1

x2

...
xK−1

xK

 =



d1

d2

...
dK−1

dK

 .

The feasible set of the subproblem can then be divided intoK subsets, belonging to different
subspaces, as

Xk := {xk ∈ {0, 1}|dk| | Dkxk ≤ dk},

with k ∈ K = {1, 2, . . . , K}, and one instead solves K subproblems

min
xk

(c>k − π>Ak)xk − πk0 ,

subject to xk ∈ Xk.

Depending on the distribution of constraints among the K subproblems, they might differ
in complexity and required computational effort.

In the RMP, variables λkp, with p ∈ P ′k, k ∈ K, are added when the reduced cost c̃kp < 0 for
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any of the subproblems k, i.e.,

min
λ

zRMP =
∑
k∈K

∑
p∈P ′

k

λkp(c>xkp),

subject to
∑
k∈K

∑
p∈P ′

k

λkp(Axkp) ≤ b,

∑
p∈P ′

k

λkp = 1, for k ∈ K,

λkp ≥ 0, for p ∈ P ′k, k ∈ K.

(3.34)

This gives rise to K convexity constraints, and associated dual variables πk0 , in the sub-
problems. The column generation ends when c̃kp ≥ 0 for all k ∈ K. An advantage of
this structure is that the subproblems can be solved independently, giving the option to
parallelize the implementation of the column generation algorithm.

3.8.4 Lagrangian Bounds

A convenient fact about the column generation method is that upper and lower bounds on
the optimal value can be calculated for the MP (3.30), every time the RMP is optimized.
Hence, the quality of the solution and the progress of the algorithm, can be evaluated in
each iteration.

The number of extreme points to the set X considered in the RMP is restricted, and so
the feasible region is smaller compared to the MP. By the Relaxation Theorem, this gives
an upper bound on the optimal value ẑMP of the MP, using the optimal value ẑRMP of the
current instance of the RMP, according to

ẑMP ≤ ẑRMP.

This upper bound will decrease monotonically as the column generation progresses, and
the above inequality will be fulfilled with equality when all necessary columns have been
generated. This is because at every iteration only variables with negative reduced costs
are added to the RMP, and consequently the optimal objective value decreases. Since the
dual variables from the RMP are used to solve the subproblem, strong duality for linear
programs can be used to compute this bound. Consider the dual problem of the RMP,

max
(π,π0)

b>π + π0, (3.35a)

subject to (Axp)>π + π0 ≤ c>xp, p ∈ P ′, (3.35b)

π ≤ 0, (3.35c)

with optimal solution (π̂, π̂0). This gives

ẑMP ≤ b>π̂ + π̂0 = ẑRMP.
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A lower bound on the MP can be found by considering the optimal λ̂p in the MP and the
above calculated bound, according to

0 ≥ ẑMP − b>π̂ − π̂0 =
∑
p∈P

λ̂p(c>xp)− b>π̂ − π̂0 (3.36a)

≥
∑
p∈P

λ̂p(c>xp)−
∑
p∈P

λ̂p(Axp)>π̂ −
∑
p∈P

λ̂pπ̂0 (3.36b)

=
∑
p∈P

λ̂p
[
c>xp − (Axp)>π̂ − π̂0

]
(3.36c)

≥ min
p∈P

[
c>xp − (Axp)>π̂ − π̂0

]
(3.36d)

= min
x∈X

(c> − π>A)x− π0, (3.36e)

where
∑
p∈P λ̂p = 1 (3.30c) was used as the coefficient for π̂0 in (3.36b), and the constraint∑

p∈P λ̂p(Axp)> ≤ b> (3.30b) was used together with π̂ ≤ 0 (3.35c) to get the inequality in

(3.36b). The inequality in (3.36d) is also due to the constraint
∑
p∈P λ̂p = 1 in (3.30c). The

last equality can be recognized as the minimal reduced cost from the subproblem (3.33).

Thus, ẑMP is bounded from above and below by the inequalities

ẑRMP + min
x∈X

(c> − π>A)x− π0 ≤ ẑMP ≤ ẑRMP. (3.37)

In the case of a block-diagonal structure, the lower bound instead becomes

ẑRMP +
∑
k∈K

min
xk∈Xk

{
(c> − π>A)xk − πk0

}
≤ ẑMP. (3.38)

Since the integer master problem (3.29) is restricted to binary variables, the inequality
ẑMP ≤ ẑIMP holds and the lower bound in (3.37) for the MP, is also a lower bound for the
IMP. But the upper bound only holds when the constraints (3.29f) and (3.29e) holds in
the RMP, as well. These bounds can now be calculated in each iteration of the column
generation, and a termination criterion can be set using the difference between the upper
and lower bound, i.e., the optimal objective value of the subproblem. Thus, the progress
of the algorithm can be evaluated at each iteration.
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4
Formulation of Models

In Chapter 2 the specifics of the problem at hand are given. This includes the function
sequence framework to describe the processing graph, and some details around the many-
core grid to which the processing functions should be mapped. In this chapter, some of
the modelling techniques presented in Section 3.2 will be used to form a MBLP model of
the problem, which can then be solved by the branch-and-bound algorithm. The MBLP
model will then serve as the original formulation (see (3.26)) for two different Dantzig-
Wolfe decompositions from which approximately optimal solutions can be found through
the column generation method.

4.1 MBLP Model

First, the variables of the problem will be defined. These will then be used to formulate
the objective subject to minimization, and the problem restrictions in terms of logical
constraints.

Define the following sets:

I : an ordered set of rows on the grid; |I| = I

J : an ordered set of columns on the grid; |J | = J

M : the set of function sequences; |M| = M

Nm : the ordered set of functions in sequence m ∈M; |Nm| = Nm

T : the set of connection nodes in the processing graph

MN
t : the set of sequences ending in connection node t ∈ T ; MN

t ⊆M
M1

t : the set of sequences starting in connection node t ∈ T ; M1
t ⊆M

Minput : the set of function sequences containing input functions; Minput ⊂M
Moutput : the set of function sequences containing output functions; Moutput ⊂M

Initially, a BLP model will be formulated, where two sets of binary variables are being
defined to describe the mapping of, and the coupling between, functions. Thus, define the
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assignment variables for functions as

ym,n,(i,j) :=


1, if the function fm,n is

assigned to position (i, j),
0, otherwise,

(i, j) ∈ I × J ,
n ∈ Nm, m ∈M,

and the coupling variables

xm,n,(i,j),(q,r) :=
{

1, if the coupling (fm,n, fm,n+1), passes link ((i, j), (q, r)),
0, if not,

(4.1)

where (q, r) ∈ {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)} ∩ I × J := V(i, j). The set
V(i, j) restricts the coupling variables to use only horizontal and vertical links between
neighbouring DSPs on the grid. Defining V(i, j) through the intersection as above results
in that the elements corresponding to the missing neighbour positions on the edges of the
grid are not present in the set. The coupling variables describe the network connection
path between DSPs used by sequential functions. Each variable xm,n,(i,j),(q,r), defined in
(4.1), is associated with the locations (i, j) and (q, r), since these positions also constitute
switches which can be used to route data.

The objective to minimize is the number of couplings between the functions mapped to
the grid, resulting in the objective function

z :=
∑
m∈M

∑
n∈Nm

∑
(i,j)∈I×J

∑
(q,r)∈V(i,j)

xm,n,(i,j),(q,r). (4.2)

The constraints of the model can now be formulated. First off, we want to map every
processing function in the graph to the DSPs on the grid by the constraints∑

(i,j)∈I×J
ym,n,(i,j) = 1, n ∈ Nm, m ∈M, (4.3)

which force all functions to be mapped.

As mentioned in Section 2.1, the function sequence framework allows for multiple functions
fm,n to represent the same processing function in the connection nodes of the graph. For
this reason there is need for constraints on functions in these nodes. Once again, it is
assumed that the sequences are constructed such that only initial and final functions can
be common, which yields the constraints

ym,Nm,(i,j) − ym̃,1,(i,j) = 0, (m, m̃) ∈MN
t ×M1

t , t ∈ T , (i, j) ∈ I × J , (4.4)

whereMN
t ×M1

t is the product of sets of sequences ending and starting in the connection
node t ∈ T ; MN

t ⊆ M and M1
t ⊆ M, respectively. That is, for a fixed t we have for

(m, m̃) ∈ MN
t ×M1

t that fm,Nm = fm̃,1. The constraints (4.4) also imply that sequences
having initial or final functions in common, will be placed on the same position on the grid,
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i.e., if m, m̂ ∈ MN
t then fm,Nm = fm̂,Nm̂

, and if m, m̂ ∈ M1
t then fm,1 = fm̂,1. If the input

(or the output) is represented by a connection node t ∈ T in the processing graph, then
the corresponding sequence m ∈Minput ⊂MN

t (or m ∈Moutput ⊂M1
t ) is defined to be a

sequence with only the input (or output) function, which implies that Nm = 1.

In the case considered in this work, a satisfying mapping should not assign multiple pro-
cessing functions to the same DSP. Hence, constraints to restrict the number of functions
assigned to a postion (i, j) are needed. Thus, for all (i, j) ∈ I × J ,

∑
t∈T

1
|M1

t |+ |MN
t |

( ∑
m∈M1

t

ym,1,(i,j) +
∑

m∈MN
t

ym,Nm,(i,j)

)

+
∑
m∈M

∑
n∈Nm\{1,Nm}

ym,n,(i,j) +
∑

m∈M+
input

ym,1,(i,j) +
∑

m∈M+
output

ym,Nm,(i,j) ≤ 1,
(4.5)

where M+
input ⊆ Minput and M+

output ⊆ Moutput are the sets of input/output sequences
containing more than just the input/output functions. The sets M+

input and M+
output are

needed when the input, or the output, is represented by a connecting node in the pro-
cessing graph; otherwise the constraints (4.5) and (4.4) would contradict each other. The
constraints (4.5) make sure that we do not assign more than one processing function on
each position. If the function is common to multiple sequences they allow the correspond-
ing y variables to take the value 1 on the same position. If the function is not common to
multiple sequences then only one y variable can take the value 1.

Assuming that one can interpret input/output as functions to be assigned to DSPs on the
grid, they should be assigned to positions on the top and bottom rows, respectively. The
constraints are formulated as∑

j∈J
ym,1,(1,j) = 1, m ∈Minput, (4.6)

and ∑
j∈J

ym,Nm,(I,j) = 1, m ∈Moutput. (4.7)

There is a maximum number of links that can be used between neighouring DSPs, so a
constraint to limit function coupling from exceeding this number is needed. Letting L ∈ Z+
be the link capacity, these constraints are then formulated as∑

m∈M

∑
n∈Nm

(
xm,n,(i,j),(q,r) + xm,n,(q,r),(i,j)

)
≤ L, (q, r) ∈ V(i, j), (i, j) ∈ I × J . (4.8)

The coupling of function sequences can be interpreted as a commodity flow between DSPs.
Each sequence corresponds to a commodity, so it is reminiscent to a multicommodity flow
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constraint. When determining a path between a pair of functions, it is therefore necessary
to retain continuity in the flow, so that no ”commodity” flow xm,n,(i,j),(.,.) is lost in any
of the positions (i,j). The constraints to conserve multicommodity flow in the positions
where functions are assigned read as

∑
(k,l)∈V(i,j)

(
xm,n,(i,j),(k,l) − xm,n,(k,l),(i,j)

)
= ym,n,(i,j) − ym,n+1,(i,j), (4.9)

for (i, j) ∈ I × J and n ∈ Nm \ {Nm}, m ∈ M. For an intermediate DSP position
(i, j), there will be no functions assigned (i.e., ym,n,(i,j) = 0) and the in- and out-flows
to neighbouring DSPs are therefore equal. If a DSP position (i, j) is the source of data
transmission between a pair of functions, i.e., a function fm,n has been assigned to it, then
there is a unit surplus of couplings to the neighbouring DSPs. For sinks fm,n+1, the converse
holds. The constraints (4.9) imply implicitly that the coupling variables x, interpreted as
commodity flow variables, are binary. Hence, when implementing the model, it suffices to
restrict the variables xm,n,(i,j),(k,l), defined in (4.1), to the interval [0, 1], making the model
type MBLP.

4.2 Dantzig-Wolfe Formulation

In making the decomposition into sub- and master problem, it is common to analyze if
there is any apparent or natural partitioning of the constraints. For example, if the model
is similar to some well-studied problem, with a few additional simple constraints; see [4,
Section 1]. It could then be beneficial to form a more extensive master problem with the
complicating constraints from the studied problem, and put the simple constraints in the
subproblem. However, it is hard to know beforehand which is the best decomposition.
For the above MBLP model, two different decompositions will be made, both having an
intuitive interpretation.

4.2.1 Decomposition with Separated Sequences - Block Struc-
ture

The constraints in (4.3), (4.6), (4.7), and (4.9), all contains sums over positions, but not
over different sequences. Hence a block-diagonal structure can be achieved in the matrix D,
by placing these constraints in the subproblem. Thereby, a subproblem is formed for each
sequence m ∈ M. The remaining constraints are left to the master problem. Roughly
speaking, the process of column generation would then amount to assigning separated
sequences with corresponding links individually, via the subproblems, and then connect
them through the RMP.
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4.2.1.1 Restricted Master Problem for Separated Sequences

Denote the feasible solutions from the subproblems by (y>p , x>p ), where y>p = (ymp )m∈M
and x>p = (xmp )m∈M, and variables by λmp , p ∈ P ′m, m ∈ M. The indices m and p then
indicate subproblem and column, respectively. Having a block structure in the subproblem,
the solutions to each subproblem m generate ”part-columns” defined through ymp and xmp .
Elements in the solutions will be denoted yp,m,n,(i,j) and xp,m,n,(i,j),(k,l).

Formulate the constraints of the RMP using (4.4), (4.5), and (4.8). The connection node
constraints (4.4) become

∑
p∈P ′

m

(
λmp · yp,m,Nm,(i,j) − λm̃p · yp,m̃,1,(i,j),

)
= 0, (m, m̃) ∈MN

t ×M1
t ,

(i, j) ∈ I × J , t ∈ T . (4.10a)

The function assignment restriction constraints (4.5), become, for all (i, j) ∈ I × J ,

∑
t∈T

1
|M1

t |+ |MN
t |

( ∑
m∈M1

t

∑
p∈P ′

m

λmp · yp,m,1,(i,j) +
∑

m∈MN
t

∑
p∈P ′

m

λmp · yp,m,Nm,(i,j)

)
+

∑
m∈M

∑
p∈P ′

m

∑
n∈Nm\{1,Nm}

λmp · yp,m,n,(i,j)+

∑
m∈M+

input

∑
p∈P ′

m

λmp · yp,m,1,(i,j) +
∑

m∈M+
output

∑
p∈P ′

m

λmp · yp,m,Nm,(i,j) ≤ 1.

(4.10b)

The link capacity constraints (4.8) are formulated for (q, r) ∈ V(i, j), (i, j) ∈ I × J , as∑
m∈M

∑
p∈P ′

m

∑
n∈Nm

λmp ·
(
xp,m,n,(i,j),(q,r) + xp,m,n,(q,r),(i,j)

)
≤ L, (4.10c)

A Dantzig-Wolfe reformulation with a block-diagonal structure also adds a convexity con-
straint for each subproblem. In this case there is a subproblem for each function sequence
m and thus we add the constraints∑

p∈P ′
m

λmp = 1, λmp ≥ 0, p ∈ P ′m, m ∈M. (4.10d)

Finally, the objective function of the RMP reads

zRMP =
∑
m∈M

∑
p∈P ′

m

∑
n∈Nm

∑
(i,j)∈I×J

∑
(q,r)∈V(i,j)

λmp · xp,m,n,(i,j),(q,r). (4.10e)

4.2.1.2 Subproblems for Separated Sequences

The subproblems are defined in the same variable domain as the complete model in Section
4.1, with constraints as in (4.3), (4.6), (4.7) and (4.9).
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Again, the constraints are for each subproblem m ∈M,∑
(i,j)∈I×J

ym,n,(i,j) = 1, n ∈ Nm.

For m ∈Minput and m ∈Moutput the constraints are∑
j∈J

ym,1,(1,j) = 1,

and ∑
j∈J

ym,Nm,(|I|,j) = 1,

respectively, and for (i, j) ∈ I × J and n ∈ Nm \ {Nm},∑
(k,l)∈V(i,j)

(
xm,n,(i,j),(k,l) − xm,n,(k,l),(i,j)

)
= ym,n,(i,j) − ym,n+1,(i,j).

In the subproblems we update the objective by penalizing the violation of constraints in the
RMP, using the dual variable values computed from the solution to the RMP. Since each
subproblem is associated with a sequence m, the terms of a subproblems objective will be
connected to constraints and dual variables involving that particular sequence. Therefore,
the terms necessary to formulate the objective of all subproblems will be stated below.

Firstly, the unpenalized objective function is the same as in the original formulation (4.2).
For a specific subproblem m the share of the objective function is therefore

zm :=
∑
n∈Nm

∑
(i,j)∈I×J

∑
(q,r)∈V(i,j)

xm,n,(i,j),(q,r). (4.11a)

To penalize the violation of constraints in the RMP, dual variables corresponding to the
constraints are used. Denote dual variables corresponding to (4.10a), (4.10b), (4.10c),
(4.10d) with αt,(m,m̃),(i,j), β(i,j), γ(i,j),(q,r), δm, respectively. Beginning with the penalizing
of (4.10a), there will be terms for sequences m ∈ MN

t and m̃ ∈ M1
t , for all t ∈ T . For

the corresponding constraints in (4.10a), optimal dual variable values α̂t,(m,m̃),(i,j), will be
computed. Thus, for sequences m ∈MN

t , t ∈ T , add the term

−
∑

m∈MN
t

∑
m̃∈M1

t

∑
(i,j)∈I×J

α̂t,(m,m̃),(i,j) · ym,Nm,(i,j) (4.11b)

to the objective. Analogously, for sequences m̃ ∈M1
t , t ∈ T , add the term

∑
m̃∈M1

t

∑
m∈MN

t

∑
(i,j)∈I×J

α̂t,(m,m̃),(i,j) · ym̃,1,(i,j). (4.11c)
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Penalizing the assignment restriction constraint (4.10b), there are several terms to be

added. Here, the optimal dual variable value is β̂(i,j). For sequence m ∈MN
t , add the term

−
∑
t∈T

∑
(i,j)∈I×J

1
|M1

t |+ |MN
t |
β̂(i,j) · ym,Nm,(i,j). (4.11d)

For sequence m ∈M1
t , add the term

−
∑
t∈T

∑
(i,j)∈I×J

1
|M1

t |+ |MN
t |
β̂(i,j) · ym,1,(i,j). (4.11e)

For m ∈M, add the term

−
∑

(i,j)∈I×J

∑
n∈Nm\{1,Nm}

β̂(i,j) · ym,n,(i,j). (4.11f)

For m ∈M+
input add the term

−
∑

(i,j)∈I×J
β̂(i,j) · ym,1,(i,j). (4.11g)

For m ∈M+
output add the term

−
∑

(i,j)∈I×J
β̂(i,j) · ym,Nm,(i,j). (4.11h)

To penalize the link capacity constraint (4.10c) with dual variables γ(i,j),(q,r), add for m ∈
M, the term

−
∑

(i,j)∈I×J

∑
(q,r)∈V(i,j)

γ̂(i,j),(q,r) ·
( ∑
n∈Nm

(
xm,n,(i,j),(q,r) + xm,n,(q,r),(i,j)

))
(4.11i)

to the objective.

Finally, to penalize the convexity constraints (4.10d), add −δ̂m to the objective of sub-
problem m ∈M.

The optimal objective values zm from the M subproblems are reduced costs for variables
λmp which are to be added to the RMP. These minimized reduced costs will be denoted c̃mp
and will also be used to compute lower bounds on the MP in each iteration, through the
inequality

ẑRMP +
∑
m∈M

c̃mp ≤ ẑMP, (4.12)

for the current generated full column p ∈ P ′.
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4.2.2 Decomposition with Connected Sequences

The second decomposition of the original formulation in Section 4.1 is similar to the first.
The difference is that the connection node constraints (4.4) are moved to the subproblem,
making it harder to solve. A consequence of this decomposition is that the block-diagonal
structure in the matrix D is lost, and hence there is only one subproblem. Thus, in this
decomposition the column generation amounts to assigning the entire processing graph via
the subproblem, and the RMP enforces the assignment restriction (4.5) and link capacity
(4.8).

4.2.2.1 Restricted Master Problem for Connected Sequences

In this decomposition, denote the feasible solutions to the subproblem, defining the full
columns, by (y>p , x>p ), and variables by λp, where p ∈ P ′. Similar to (4.10b) and (4.10c)
above, the function assignment constraints are now

∑
p∈P ′

λp ·
(∑
t∈T

1
|M1

t |+ |MN
t |

[ ∑
m∈M1

t

yp,m,1,(i,j) +
∑

m∈MN
t

yp,m,Nm,(i,j)

]
+

∑
m∈M

∑
n∈Nm\{1,Nm}

yp,m,n,(i,j) +
∑

m∈M+
input

yp,m,1,(i,j) +
∑

m∈M+
output

yp,m,Nm,(i,j)

)
≤ 1,

(4.13a)

for all (i, j) ∈ I × J , and the link capacity constraints are formulated for (q, r) ∈
V(i, j), (i, j) ∈ I × J , as∑

p∈P ′
λp ·

∑
m∈M

∑
n∈Nm

(
xp,m,n,(i,j),(q,r) + xp,m,n,(q,r),(i,j)

)
≤ L. (4.13b)

Since the block-diagonal structure is lost, there is now only one convexity constraint in the
RMP, ∑

p∈P ′
λp = 1. (4.13c)

The objective function of the RMP now reads,

zRMP =
∑
p∈P ′

λp ·
∑
m∈M

∑
n∈Nm

∑
(i,j)∈I×J

∑
(q,r)∈V(i,j)

xp,m,n,(i,j),(q,r). (4.13d)

4.2.2.2 Subproblem for Connected Sequences

In this decomposition there is only one subproblem to solve. The constrains in the single
subproblem are the same as above, (4.3), (4.6), (4.7) and (4.9), with the addition of the
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connection node constraints in (4.4). The constraints are thus∑
(i,j)∈I×J

ym,n,(i,j) = 1, n ∈ Nm, m ∈M,

ym,Nm,(i,j) − ym̃,1,(i,j), = 0, (m, m̃) ∈MN
t ×M1

t , t ∈ T , (i, j) ∈ I × J ,
∑
j∈J

ym,1,(1,j) = 1, m ∈Minput,

∑
j∈J

ym,Nm,(|I|,j) = 1, m ∈Moutput,

and for (i, j) ∈ I × J and n ∈ Nm \ {Nm}, m ∈M,∑
(k,l)∈V(i,j)

(
xm,n,(i,j),(k,l) − xm,n,(k,l),(i,j)

)
= ym,n,(i,j) − ym,n+1,(i,j).

The single unpenalized objective function is now

z =
∑
m∈M

∑
n∈Nm

∑
(i,j)∈I×J

∑
(q,r)∈V(i,j)

xm,n,(i,j),(q,r). (4.14)

For the penalization of violation of the constraints (4.13a) and (4.13b) in the RMP, the
terms (4.11d)–(4.11i) can be used. All terms should be added to the objective function.

To penalize the convexity constraint (4.13c) the dual variable δ is used, and the term −δ̂
with the optimal dual variable value, should be added to the objective.

4.2.3 Implementation Strategies

In this section, a couple of implementation strategies for the column generation method
are briefly described. For generality, the notation introduced in Section 3.8 will be used.
First, the approach used to initiate the RMP, will be covered. The concept of ”Hot Start”
(also referred to as warm start) is then introduced, as a method of improving the running
time of the column generation algorithm. Finally, a procedure to improve the convergence
rate of the method, is given.

4.2.3.1 Initialization of the RMP

The first iteration step of the column generation algorithm is to optimize the RMP to
compute dual variable values. For this an initial column

(
c>xp, (Axp)>

)
is needed. It

suffices that the solution xp is feasible in the subproblem, but to guarantee feasible solutions
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when the column generation algorithm finalizes, an initial solution feasible in the original
formulation, can be used to define the first column. This solution can be found by means of
branch-and-bound and terminating the algorithm when the first feasible solution is found.
The RMP can then be initiated using an artificial convexity variable λ0 ≥ 0, with a high
cost M in the objective function [4, Section 1.2], forming the initial objective function

zRMP := Mλ0.

For a block-diagonal structure the initial objective becomes

zRMP := M
∑
m∈M

λm0 .

Optimizing the RMP now yields optimal values for a set of dual variables that can be used
in the subproblem, and the column generation can commence.

4.2.3.2 Hot Start

The RMP is a linear program which can be solved by the simplex method. Thus, when an
optimal solution is found, a corresponding optimal basis B has also been computed; see
Section 3.1.1. With the current basis comes a set of basic and non-basic convexity variables
λBp and λNp , respectively, in the partitioning

λp =
(
λBp

λNp

)
, p ∈ P ′.

When using the simplex method to optimize the next RMP instance (i.e., the instance of
the RMP in the next column generation iteration), the basis status of the previous optimal
variable values can be used as an initial BFS in the optimization of the new RMP; see
[8], [9]. Since it is possible that the basis status for many of the variables in the previous
iteration remains unchanged when a new variable is added to the RMP, this procedure
can speed up the search for the next optimal BFS. It is therefore a good idea to save the
basis B at each iteration of the column generation algorithm. For large problem instances,
however, the number of entries in B can be huge and the computation of the inverse B−1,
which is needed for the computation of reduced costs in the simplex algorithm, is expensive.
To further speed up the running time of the column generation, it is therefore essential
that the basis inverse is saved in each iteration.

4.2.3.3 Suboptimal Columns

The minimization of the subproblem amounts to finding a single column
(
c>xp, (Axp)>

)
,

p ∈ P \ P ′, with the most negative reduced cost c̃p = (c> − π>A)xp − π0 in the current
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optimal basis. However, there might exist other columns with negative reduced costs, which
are not minimal. Since the subproblem is solved by branch-and-bound, these non-minimal
negative reduced costs can be found as an intermediate solution in the BnB-tree. These
suboptimal columns

(
c>xp̃, (Axp̃)>

)
, p̃ ∈ P \ P ′, can therefore be saved and added to the

RMP, with a corresponding convexity variable λp̃, together with the optimal column. This
procedure might improve the convergence speed of the column generation algorithm, since
additional promising variables are added to the RMP in each iteration [4, Sec. 2.3].

For the case of a block-diagonal structure, each subproblem has potential suboptimal so-
lutions in their respective branching tree. Since the subproblems can be differently hard
to solve, the number of explored nodes in the BnB-tree might differ among the subprob-
lems. Therefore, each subproblem may contribute with different numbers of suboptimal
part-columns.

43



4. Formulation of Models

44



5
Tests and Results

Below follows tests and results on the three model formulations in Chapter 4. The orig-
inal formulation in Section 4.1 was solved to optimality by means of branch-and-bound.
In an effort to improve computational running time, approximately optimal solutions to
the original formulation were found through the Dantzig-Wolfe reformulations in Sections
4.2.1–4.2.2, and column generation as presented in Section 3.8.

Softwares and strategies used to implement the methods are presented, together with spec-
ifications of hardware that was used to run the implementations. Further, the different
problem instances are presented in terms of a processing graph and problem parameters.
The results from the problem instances, regarding the convergence of the column genera-
tion algorithm, a comparison of resulting integer solutions and the computational running
times, are then discussed.

5.1 Implementation and Hardware

To implement the methods used, the models were developed in the high-level modelling
language JuMP (v.0.19) [10], [11], and the optimization software Gurobi (v.8.1) was used
as a solver [12], [13]. The JuMP modelling language is a package in the Julia (v.1.1)
programming language [14], [15], which was also used during code development.

Gurobi is an optimization solver which was used to solve the original formulation in Sec-
tion 4.1, and for solving the subproblems and RMPs in the reformulations in Sections
4.2.1–4.2.2. For the original formulation and subproblems, the branch-and-bound solver
was used, and for the RMPs the simplex solver was used. Gurobi utilizes a parallelization
framework when possible, and distributes computational tasks on the available processing
cores. Especially the branch-and-bound solver takes advantage of this. Hence, to compare
running times for different problem instances, the CPU time was measured. For the re-
formulation with a block-diagonal structure, each subproblem is solved sequentially and
Gurobi then parallelizes the computation of the current subproblem instance.

To initiate the RMPs, the original formulation was processed by Gurobis branch-and-bound
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solver until the first feasible solution was found. The cost of the artificial variable was
chosen to M = 1000, in all implemented variants of the column generation. A form of hot
start initiations was used for the RMPs, i.e., the basis status of the variables in the RMPs
was saved after each iteration and the previous basis B was given as input to the simplex
solver at the next iteration. However, the basis inverse B−1 still needed to be computed at
each iteration. For some problem instances of the reformulations, intermediate solutions
were saved in the branch-and-bound solver used for the subproblems. A specification of
the maximal number of saved intermediate solutions per iteration Pmax

s , was then given
as input to the branch-and-bound solver. A tolerance level for the reduced costs were
set to 1e-9, i.e., if c̃p > −1e-9 (or if c̃mp > −1e-9, for all m ∈ M, for the cases with a
block-diagonal structure), the column generation was terminated.

The hardware used was an Intel Xeon CPU E5-2683 v3 @ 2.00GHz processor [16], with
125 GiB RAM. To create figures MATLAB (v.R2018b), was used.

5.2 Tests on the Task Mapping Problem

In this section the problem instances are presented together with results on the task map-
ping problem. Each problem instance is defined by the method used and a case graph,
together with a specific problem parameter combination. The results presented regard
convergence of the column generation algorithm, the integer solutions to the instances,
and computational aspects of the methods.

5.2.1 Test Settings

The methods implemented were tested on a number of different problem instances, as
specficied in Table 5.1. The processing graph, which functions was to be mapped to, were
in all cases the case graph illustrated in Figure 5.1. Two grid cases were tested, specified
by the parameters L, I and J . Using the case graph and the function sequence framework,
the problem was specified in terms of the model (4.2)–(4.9), presented in Section 4.1, which
could therein be used for the DW-reformulations presented in Sections 4.2.1–4.2.2. Each
formulation corresponds to a certain implemented method. For the instances where column
generation was used, the maximal number of suboptimal solutions found when solving the
subproblems are specified by the number Pmax

s .

The grid parameter values were tested according to the settings

• L = 10, I = 8, J = 8, and

• L = 4, I = 4, J = 10.
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These settings were chosen in order to investigate the effect of decreasing the number of
degrees of freedom for the task mapping. When decreasing the grid size and the link
capacity, it is harder to find a feasible solution, and the number of optimal solutions are
reduced. Effectively, the size of the feasible region is reduced by reducing the degrees of
freedom.

The different methods used are branch-and-bound (Gurobi-BnB), and column generation
with and without a block structure, i.e., CG-Block and CG, respectively. The instances
solved by branch-and-bound were used as a benchmark for the column generation method,
in terms of objective function value and computational running time. The column gener-
ation methods will be compared in terms of the RMPs convergence to the MP, resulting
integer solutions to the corresponding IRMP and computational running times. How the
process of saving suboptimal solutions in the subproblem affects the results, will also be
investigated.

Instance name Method L I J Pmax
s

B-10-8-8-1 CG-Block 10 8 8 1
NB-10-8-8-1 CG 10 8 8 1
B-10-8-8-100 CG-Block 10 8 8 100
NB-10-8-8-100 CG 10 8 8 100
G-10-8-8 Gurobi-BnB 10 8 8 -
B-4-4-10-1 CG-Block 4 4 10 1
NB-4-4-10-1 CG 4 4 10 1
B-4-4-10-100 CG-Block 4 4 10 100
NB-4-4-10-100 CG 4 4 10 100
G-4-4-10 Gurobi-BnB 4 4 10 -

Table 5.1: Problem instances. An instance is defined by the solution method used and
the problem parameters. Each method corresponds to one of the problem formulations,
i.e., the original formulation (Gurobi-BnB), reformulation with a block structure
(CG-Block) and reformulation without a block structure (CG). The parameters are the
link capacity L, the grid size specified by I and J , and the maximum number of saved
suboptimal columns per iteration in the column generation, Pmax

s .
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Figure 5.1: The case graph with processing functions and their dependencies.
Input/Output are denoted by circles at the top/bottom, respectively. The graph consists
of 37 processing functions (nodes), 28 function sequences and eleven connection nodes,
i.e., | ∪m∈M Nm| = 37, M = 28 and |T | = 11.

5.2.2 Convergence of the RMP

The convergence of the column generation algorithm is measured through the bounds on
the optimal value of the (integer) master problem; see (3.37) and (3.38). In Figure 5.2 the
convergence of the algorithm is shown for the 8× 8 grid with a block-diagonal structure in
the reformulation. In subfigures (a) and (d) it is evident that the upper bound converges
much faster than the lower bound. It can also be seen that during most of the iterations, the
bounds are relatively close, making it difficult to know if the algorithm is near termination.
This could complicate the use of bounds as a termination criterion, since there is then a
chance that the algorithm is terminated prematurely by a criterion using a large gap in
the bounds and many iterations might be lost this way.

Initially, however, the magnitudes of the upper and lower bounds differ significantly. Since
the lower bound is in the large negatives, and it is obvious that a feasible integer solution
is positive, the lower bound is of no particular use as a lower bound to the MP (or the
IMP), at least not until later iterations as seen in subfigures (c) and (f). The initially
large negative value on the lower bound, is due to the cost of violating the constraints in
the RMP. After a couple of iterations, sufficiently good columns have entered the RMP
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(in an LP sense), which do not violate the constraints to the same extent. Comparing (a)
and (d), it is seen that using suboptimal columns in the RMP does not seem to improve
the usefulness of the lower bound as a bound for the MP, but it reduced the number of
iterations needed for termination. This could be explained by the fact that adding more
columns in each iteration means that the set of extreme points, indexed by p ∈ P , is being
depleted at a faster rate.
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(a) Progress of the upper
and lower bounds for the
instance B-10-8-8-1.
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(b) A close-up of the upper
bound progress for the
instance B-10-8-8-1.
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(c) A close-up of the final
convergence of the bounds
for the instance B-10-8-8-1.
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(d) Progress of the upper
and lower bounds for the
instance B-10-8-8-100.
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(e) A close-up of the upper
bound progress for the
instance B-10-8-8-100.
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(f) A close-up of the final
convergence of the bounds
for the instance
B-10-8-8-100.

Figure 5.2: Upper and lower bounds on the optimal value of the MP using a block
structure for the subproblems. The grid is specified by L = 10, I = 8 and J = 8.
’iteration’ denotes the iteration in the column generation algorithm, and thereby also the
current number of columns, corresponding to optimal solutions in the subproblems, in the
RMP. The upper and lower bounds are given by the inequalities in (3.37) and (3.38).

In Figure 5.2, (b) and (e), magnifications of the upper bounds are shown. Also in this
scale the bounds are relatively close for a larger part of the algorithm. The initially large
positive value of the upper bound is explained by the initial high cost M , for the artificial
variables λm0 . After a couple of iterations this cost will be entirely dimished, since newer
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columns will be cheaper in the objective. In (b) and (e) it becomes clear that the upper
and lower bounds start to close in on the true value of ẑMP (the bounds are confined to
the interval [−5, 5] × 1000), around the same iteration, ca P = 75 for (b) and P = 40 for
(e). However, the upper bound reaches the final value faster, as seen in both (c) and (f).

Figure 5.3 shows the convergence for the 8× 8 grid for the case without a block structure.
Compared to using a block structure, the convergence is faster, in terms of iterations, and
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(a) Progress of the upper and lower
bounds for the instance NB-10-8-8-1.
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(b) A close-up of the final
convergence of the bounds for the
instance NB-10-8-8-1.

0 10 20 30 40 50

-2000

-1500

-1000

-500

0

500

1000

(c) Progress of the upper and lower
bounds for the instance
NB-10-8-8-100.
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(d) A close-up of the final
convergence of the bounds for the
instance NB-10-8-8-100.

Figure 5.3: Upper and lower bounds on the optimal value of the MP without using a
block structure for the subproblems. The grid is specified by L = 10, I = 8 and J = 8.
’iteration’ denotes the iteration in the column generation algorithm, and thereby also the
current number of columns, corresponding to optimal solutions in the subproblems, in the
RMP. The upper and lower bounds are given by the inequalities in (3.37).
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the upper and lower bounds are more similar in size. The faster convergence, could be
explained by the fact that the subproblems are now harder to solve, since the constraints
(4.4) were transfered to them. Thus, there are not as many constraints to comply with in
the RMP, making the number of columns with negative reduced cost smaller. For this case
the bounds provide a better indication of when the algorithm is near termination. When the
bounds are relatively near each other, i.e., the bounds are confined to the interval [−5, 10],
the algorithm is about to terminate, as made clear by subfigures (b) and (d). These
subfigures show that there are only a few iterations, ca 10 in (b) and 15 in (d), where the
bounds are this close to each other, whereas for the case with a block structure in Figure
5.2, the corresponding numbers are ca 120 for (c) and 130 for (f). Comparing (a) and (c) in
Figure 5.3, it is clear that saving suboptimal columns from the subproblem solution process
did not improve the convergence rate of the algorithm. In fact, the number of optimal
columns from the subproblems needed in the RMP, i.e., the number of iterations, increased
when suboptimal columns from the subproblems were added to the RMP. However, it did
decrease the upper bound on the optimal value of the MP, at an earlier stage of the
algorithm.

Moving on, the results for the instance with the 4 × 10 grid and with a block structure,
illustrated in Figure 5.4, is similar to that in Figure 5.2, in terms of bounds. The bounds
are still relatively close to each other for a long duration of the algorithm, making it hard
to distinguish whether or not the algorithm is close to terminating. However, the number
of iterations where the bounds are confined to the interval [−5, 10] is somewhat reduced
as compared to 5.2, but so is the total number of iterations. As expected, the number of
columns needed for the RMP to converge to the MP (again, the total number of iterations),
was decreased for the 4× 10 grid. It seems that adding suboptimal columns still increased
the convergence rate in this case.

Finally, for the 4 × 10 grid without a block structure, see Figure 5.5, not much changed
as compared to the 8× 8 grid. The most distinct difference, as compared to Figure 5.3, is
that the lower bound is lower in early iterations. To note is that the number of iterations
needed for the convergence of the column generation algorithm is very similar to that of
the 8× 8 grid. The process of saving suboptimal columns did not improve the convergence
in this case either. But more testing on grid sizes should be done in order to find out
whether this is generally the case.
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(a) Progress of the upper
and lower bounds for the
instance B-4-4-10-1.
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(b) A close-up of the upper
bound progress for the
instance B-4-4-10-1.
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(c) A close-up of the final
convergence of the bounds
for the instance B-4-4-10-1.
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(d) Progress of the upper
and lower bounds for the
instance B-4-4-10-100.
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(e) A close-up of the upper
bound progress for the
instance B-4-4-10-100.
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(f) A close-up of the final
convergence of the bounds
for the instance
B-4-4-10-100.

Figure 5.4: Upper and lower bounds on the optimal value of the MP using a block
structure for the subproblems. The grid is specified by L = 4, I = 4 and J = 10.
’iteration’ denotes the iteration in the column generation algorithm, and thereby also the
current number of columns, corresponding to optimal solutions in the subproblems, in the
RMP. The upper and lower bounds are given by the inequalities in (3.37) and (3.38).
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(a) Progress of the upper and lower
bounds for the instance NB-4-4-10-1.
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(b) A close-up of the final
convergence of the bounds for the
instance NB-4-4-10-1.
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(c) Progress of the upper and lower
bounds for the instance
NB-4-4-10-100.
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(d) A close-up of the final
convergence of the bounds for the
instance NB-4-4-10-100.

Figure 5.5: Upper and lower bounds on the optimal value of the MP without using a
block structure for the subproblems. The grid is specified by L = 4, I = 4 and J = 10.
’iteration’ denotes the iteration in the column generation algorithm, and thereby also the
current number of columns, corresponding to optimal solutions in the subproblems, in the
RMP. The upper and lower bounds are given by the inequalities in (3.37).
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In Table 5.2, the termination data is shown for the column generation instances, together
with the optimal objective values. It is evident that ẑRMP is not a good indication of the
objective value of the corresponding binary solution, in any of the instances. With this
information one can also conclude that the final RMP, did not fulfill integer restrictions on
the columns. This was however expected and there might still exist feasible improvements
to the initial feasible solution, among the columns generated.

The final number of generated optimal and suboptimal columns are also presented here.
An indication of the complexity of the subproblems can be given by the quotient Ps

P
. For

large values of the quotient, the subproblems are more complex. For a block structure, the
number of suboptimal part-columns found can differ for each subproblem. Therefore the
number of saved suboptimal part-columns is averaged over the subproblems for compar-
isons. This average represents the number of full suboptimal columns found. For both the
large and small grid with a block structure formulation, the number of optimal columns
needed for the RMP to converge was reduced when suboptimal columns were used. One
can also see that for each optimal column found roughly 3 suboptimal columns are found,
on average. This is the case for both the large and small grid.

Instance ẑRMP ẑ P Ps
Ps

P

B-10-8-8-1 7.00 82 449 - -
B-10-8-8-100 7.00 82 404 1286.60 3.18
NB-10-8-8-1 7.00 82 47 - -
NB-10-8-8-100 7.00 82 55 284 5.16
B-4-4-10-1 3.00 85 191 - -
B-4-4-10-100 3.00 85 136 346.57 2.55
NB-4-4-10-1 3.00 85 50 - -
NB-4-4-10-100 3.00 85 49 162 3.31

Table 5.2: Termination data for the column generation algorithm. ẑRMP is the objective
value in the final iteration of the RMP, and thus also the objective value for the MP, i.e.,
ẑMP = ẑRMP. ẑ is the optimal objective value of the problem instance. P denotes the
number of columns in the final iteration of the RMP. Ps denotes the number of
suboptimal solutions found in the subproblems. In the case of a block structure, Ps is the
average number of suboptimal solutions found among the separated subproblems.

Without a block structure, the number of suboptimal subproblem solutions found per
optimal subproblem solution differs for the large and small grid, from ca five to three. The
quotient is higher than for the case with a block structure for both the large and small
grid, which is to be expected since the subproblem is then more constrained. The larger
decrease in the quotient between NB-10-8-8-100 and NB-4-4-10-100, could intuitively be
explained by the fact that it should be harder to find an optimum for the mapping of the
entire graph for the large grid, since there are more possibilities to choose from. When
the grid is smaller and/or more restricted by the link capacity, the number of possibilities
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for the entire graph to be mapped, decreases heavily. In the case of a block structure
individual, separated sequences are assigned. These sequences might not be as affected by
the grid size, since each one of them represent relatively few nodes in the processing graph.
Thus, the quotient should not decrease as significantly between grid sizes for the instances
with a block structure, which seems to be the case here.

5.2.3 Binary solutions to the RMP

The final objective values to the binary restricted RMP are shown in Table 5.3. Only
for the case of a block structure with the large grid, improvements to the initial feasible
solution could be found. The improvement is increased slightly when suboptimal columns
are used. However, the difference between optimal and approximately optimal objective
value is significant. This shows that it is difficult to find separated sequences and link
them together to create a feasibly assigned processing graph. But that it is possible, if
enough part-columns are generated before termination of the algorithm. Without a block
structure, no improvements were made. This suggests that assigning entire graphs in an
LP sense is very different from employing binary constraints.

Instance zinit ẑIRMP ẑ

B-10-8-8-1 455.0 447.0 82.0
B-10-8-8-100 455.0 443.0 82.0
NB-10-8-8-1 455.0 455.0 82.0
NB-10-8-8-100 455.0 455.0 82.0
B-4-4-10-1 127.0 127.0 85.0
B-4-4-10-100 127.0 127.0 85.0
NB-4-4-10-1 127.0 127.0 85.0
NB-4-4-10-100 127.0 127.0 85.0

Table 5.3: Final objective function values. zinit is the objective function value for the
feasible solution used to initiate the RMP. ẑIRMP is the optimal objective value of the
final RMP when the convexity variables are restricted to binary values. ẑ is the optimal
objective value for the instance.

To investigate the cause of improvements in the instances B-8-8-10-1 and B-8-8-10-100, it
is of interest to see which part-columns were chosen in the solution of the IRMP. Figure
5.6 shows for which subproblems an improving part-column was found. A comparison of
(a) and (b) is consistent with the results in Table 5.3. In the case without suboptimal part-
columns, three improving part-columns are found. When saving suboptimal part-columns,
five improvements are found. Note that in (b), all improvements are found among the
suboptimal part-columns, giving incentive for this implementation. In (b) one can also
see that a suboptimal part-column found in the later stage of the algorithm was chosen,

55



5. Tests and Results

0 5 10 15 20 25 30

0

5

10

15

(a) B-10-8-8-1.

0 5 10 15 20 25 30

0

2000

4000

6000

8000

(b) B-10-8-8-100.

Figure 5.6: Part-columns chosen in the IRMP. On the horizontal axis, m denotes the
subproblem associated with an individual sequence. The characters p and ps denote
enumeration of optimal and suboptimal part-columns generated, respectively. Each dot
represents the part-column for which the corresponding convexity variable λmp = 1 in the
IRMP. In (a), the enumerations on the vertical axis represent optimal part-columns only.
In (b), the enumerations on the vertical axis represent both optimal and suboptimal
part-columns. In (b), all improving part-columns chosen were from suboptimal solutions.

indicating that improvements can be found at any stage of the algorithm. It should be
mentioned that an improving part-column chosen in the IRMP could be equivalent in cost
to the corresponding initial part-column (in the initial feasible solution) in terms of the
resulting connections mapped to the grid. In that case the apparently improving part-
column is simply cheaper than the cost for the artificial variable corresponding to the
initial part-column.

Common to both (a) and (b) in Figure 5.6, is that the first and last subproblems, i.e.,
m = 1, m = 28, generated improvements. In Figure 5.7 the distribution of the suboptimal
part-columns found can be seen for the instances with a block structure. For both the small
and large grid, it can be seen that the subproblems m ∈ {1, 28} had significantly more
intermediate solutions in the branch-and-bound tree, indicating that they were harder to
solve. This is likely because of the additional constraints (4.6) and (4.7), concerning input
and output, put on the corresponding sequences. The consequence is that, in the IRMP,
there is a larger number of possibly improving combinations to choose from involving these
two sequences, compared to the others. From this figure it also is clear that the average
number of suboptimal columns found is not a particularly representative quantity. Most
of the sequences generate only 1–2 suboptimal part-columns per iteration, indicating that
the individual subproblems are very easy to solve. This suggests that restricting the task
mapping problem through constraints on, e.g., the assignment of specific functions, could
improve the resulting integer solution produced through column generation. The model
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Figure 5.7: Distribution of number of suboptimal part-columns for the subproblems. m
denotes the subproblem, and Ps denotes the amount of found suboptimal part-columns
for the corresponding subproblem.

created for this problem is to some degree full of symmetries, making a large number of
feasible solutions equally good. If constraints or costs which brake these symmetries are
introduced, there is a big chance that the column generation will find better and even
approximately optimal solutions.

5.2.4 Computational Performance

A motivation for applying column generation on the task mapping problem was the com-
putational complexity of ILP and branch-and-bound. In Table 5.4 the running times for
the problem instances are presented. Firstly, it should be mentioned that measuring and
comparing wall clock time is debatable. This is due to the fact that there can be many
simultaneous processes in the computer, making it difficult to know which program’s run-
ning time is being measured. This being said, the wall time can give some insight into a
programs grade of parallelism, through a comparison with the CPU time.

It is evident that the motivation was justified, as Gurobi’s branch-and-bound solver clearly
needed the most CPU time. However, because of its efficient parallelization, the elapsed
real time was magnitudes lower than the CPU time. But ideally a mapping should not
require almost nine hours. For grids with hundreds or thousands of cores, alternative
methods to branch-and-bound must be explored. For the branch-and-bound solver it was
clearly better to restrict the grid, which was expected. As seen in Table 5.3, changing the
grid in this way did not increase the objective value significantly (from 82 to 85), giving
motivation to this approach.
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Instance Wall time (hours) CPU time (hours)

B-10-8-8-1 3.50 4.28
B-10-8-8-100 19.73 23.11
NB-10-8-8-1 0.03 0.04
NB-10-8-8-100 0.33 3.48
G-10-8-8 8.55 239.12
B-4-4-10-1 0.41 1.06
B-4-4-10-100 1.29 2.82
NB-4-4-10-1 0.05 0.55
NB-4-4-10-100 0.17 1.94
G-4-4-10 0.38 10.40

Table 5.4: Total running times. Wall time refers to the elapsed real time. CPU time
refers to the time spent, by the CPU, processing instructions associated with the program.

Although the formulation with a block structure could improve the initial solution, it was
the implementation of column generation which required the most computing time. Also,
having suboptimal columns in the RMP increased the running time further. The increased
number of variables in the RMP, as compared to instances where suboptimal columns were
not saved, is likely the cause of this. Therefore there is a trade-off between running time
and quality of the solution for implementations with a block structure. The implementation
did not have a particularly high grade of parallelization, which is revealed by comparing the
wall and CPU times. The reason for this is likely because of the simplicity of the individual
subproblems. Not that many nodes needed exploration in the branch-and-bound trees and
therefore a parallelization was unnecessary. As mentioned in Section 5.1, the individual
subproblems were not solved in parallel. Tests where this is implemented would therefore
be of interest.

The implementation without a block structure was significantly faster than all the others.
The fast convergence and the reduced number of variables in the RMP explains this. It
was also parallelized to a higher extent. This is because of the increased complexity of the
subproblem. The comparison between having a block structure or not shows that having
separable subproblems that are too easy to solve can become computationally problematic.
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In this project an MBLP model for the deployment of processing functions onto a many-
core grid, was created. The model was created by decomposing the processing graph into
function sequences and using binary variables for describing the assignment of functions
and associated connections, onto the grid. Successful mappings of processing functions
was then done by solving the model to optimality using branch-and-bound. Knowing that
the branch-and-bound method used would be computationally demanding as the problem
size grows, the model created was then used as foundation for a Dantzig-Wolfe decom-
position and column generation approach. Two decompositions were made, one with a
block-diagonal structure in the constraint matrix of the subproblem, and one without this
property.

The column generation method was then implemented in Julia using the modelling language
JuMP and the solver Gurobi. The method was tested on both decompositions using a
case graph with two different grids, and compared with optimal solutions found with the
branch-and-bound method. In the column generation method, the procedure of saving
intermediate suboptimal solutions from the subproblems, to improve convergence speed
and resulting final solutions, was investigated. The results of the tests indicated that the
column generation method was unsatisfactory in finding approximately optimal solutions
to the current MBLP model.

For the case with a block-diagonal structure the calculated bounds for the RMP did not
provide a good indication of the optimal objective value. It was also hard to conclude
whether or not the algorithm was about to terminate using the bounds. Both restricting
the grid and using suboptimal solutions from the subproblem, improved the convergence
speed of the algorithm. By using a block structure it was possible to find improvements
to the initial feasible solution for the larger grid. With suboptimal solutions used, further
improvements could be made. In this case the improving part-columns were all chosen
from the suboptimal solutions, motivating further investigation of this implementation.
However, the resulting binary solution was far from optimal. The binary valued columns
chosen in the solution to the IRMP showed that the subproblems associated with the
input and output constraints could generate improvements, both with and without the use
of suboptimal solutions. This led to the conclusion that introducing further constraints and
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differentiated costs in the model, to break symmetries in the problem, might improve the
resulting binary solution produced by the column generation. For the instances with a block
structure and the larger grid, the use of suboptimal solutions increased the computational
running time significantly. But compared to the branch-and-bound method the column
generation method is still faster. Reducing the grid size improved the running time. The
low grade of parallelism for the implementation with a block structure suggests that a new
implementation, where the subproblems are solved in parallel, should be tested.

Without a block-diagonal structure, the bounds gave roughly the same information, in
terms of indication of the optimal objective value, as for the case with a block structure.
However, without a block structure the bounds were more indicative as termination criteria
for the column generation. Neither using suboptimal solutions nor restricting the grid
improved the convergence rate for this case. But further testing on different grids should
be done before drawing any conclusions regarding this. No improving solution was found
for any of the instances without block structure. However, in terms of running time the
implementation was superior to the others. It would therefore be interesting to further test
this method with additional constraints or different costs in the model.

6.1 Further Work

It was shown that the column generation method can be used to find improvements to an
initial feasible solution. The resulting binary solution was, however, far from optimal. The
reason might be the vast amount of symmetries in the model created. As mentioned above,
the current MBLP model could therefore be modified with respect to constraints and/or
costs to remove some of these symmetries and increase the chances of finding improving
columns.

A reformulation with a block structure was seen to improve the initial solution, but the
implementation did not take advantage of a high grade of parallelism. The implementation
can therefore be improved in terms of solving the subproblems in parallel, especially when
the subproblems are easy enough to solve.

The implementation without a block-diagonal structure in the subproblem was very efficient
in terms of computational running time. This implementation could therefore be used as
a step in the branch-and-price framework [4, Section 1.3]. In this framework, when the
column generation is finished the non-binary valued variables in the columns of the final
RMP are branched upon and new reformulations are made in every node in the branch-
and-bound tree.
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