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Inverse Driver Learning and Short Time Prediction in Freeway Traffic Situations
Aditya B. Sridhara
Department of Mathematical Science
Chalmers University of Technology

Abstract

Traffic prediction around the vehicle during highway driving is a hard task to solve as
the driver’s decision are complicated. It is necessary to build a procedure to predict
driving decisions, such as lane change, overtaking and many other scenarios around
the vehicle. Further, building an accurate prediction model is a requisite to improve
the design and validation of Automated Driving Systems (ADS).

To solve the prediction task, the project aims to build a Deep Inverse Reinforcement
Learning (DIRL) model to analyze and learn diverse driving behaviour during lane
change scenarios. DIRL learns this behaviour by undergoing apprenticeship training
from an expert. It learns the reward structure of drivers decision during lane change
scenarios from such varied expert driving behaviour, and by utilizing these reward it
predicts driving decision.

DIRL model is built upon a sequential time series model and General Adversarial Im-
itation Learning (GAIL). GAIL assists in learning the rewards and future trajectories
are predicted using the sequential model. The model is optimized using reinforce-
ment learning techniques by performing policy gradients on the rewards, that are ob-
tained from the GAIL. The model is trained on expert naturalistic driving data recorded
on German highways called HighD. The model predicts lateral, longitudinal position
and velocity of surrounding vehicles. The accuracy of these predictions is evaluated by
comparing these trajectories with expert data.

Keywords: Trajectory prediction, deep learning, Seq2Seq, GAN, inverse reinforcement
learning, MDP.
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1
Introduction

Demands for goods and services increase around the world, the main catalyst to ser-
vice this demands are road transport systems. It may be freight transport or passenger
transport[5]. In one of the study it is suggested that transport system is one of the in-
dicators for economic growth and created around 12 million jobs [6]. It is seen that the
road transport in the world has been increasing steadily, one of the reasons lie in the
disruptive technology like autonomous driving that is changing the transport industry
radically by reducing the transport cost making goods cheaper .

Taking into account of the increasing road transport, it necessary to have an
efficient and safe transport system. Though its seen that EU roads are one of the safest,
accidents on these roads haven’t abated as envisioned by European commission [7].
The road transport accounts to, as of year 2017, around 135,000 people seriously in-
jured, and 25,300 people lost their lives.This is estimated to about 70 lives per day and
around 120 billion Euro loss per year for Europes’s GDP. The European commission
road safety policy set reduce this road fatalities by halve by the year 2030 [7].

The measure taken by the European commission is to focus on the vehicle
safety that would consecutively increase the standards of road safety. It is found that
94 percentage of accidents can be attributed to human error or human judgment[8]. So
to enhance vehicle safety it is imperative to provide integral technical systems for as-
sistance to human drivers. These systems must include crash avoidance system, crash
mitigation and crash protection systems for a robust vehicular safety. ADS were built as
a precautionary measures in consideration for increased road safety. ADS are proven in
providing positive solution in reducing the road fatalities[9]. ADS comprises of systems
like Lane Keeping Support systems, Path Planning and Trajectory Predictions.

The major challenges to achieve higher autonomy in ADS is to estimate and
predict human intention of surrounding vehicles.The current master thesis project is
to provide plausible solution in this direction, to predict human intention around host
vehicle.
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1. Introduction

1.1 Thesis Objective

A momentous task for the ADS is to predict the behaviour or intentions of surround-
ing vehicles. It is difficult to predict driving intentions of surrounding vehicles, which
may include overtaking, changing lane, exiting the highway or taking a turn. All such
diverse scenarios arising are numerous and it is difficult to develop a single prediction
framework that can encompass all such driving scenarios.

One such driving situation that is largely considered for the study in the cur-
rent thesis is lane change behaviours. Figure 1.1 shows a situation arising on highway
frequently, vehicle 1 called the ego vehicle makes a lane change, to exit the highway.
The ego vehicle has to judge the surrounding vehicle 2 motion as the the surrounding
vehicle may or may not allow the ego vehicle to pass through. It is imperative to predict
the surrounding vehicle motion to have a safe lane change maneuver for the vehicles
on the highway. The ego vehicle, a truck, has to consider whether to change lane or not
based the surrounding vehicle speed, whether it can change lane safely considering its
trailer’s length. The thesis considers all the lane change behaviour arising all the type
of vehicles, car or truck, for either ego or surrounding vehicle.

Figure 1.1: Highway driving scenarios, vehicle 1 (ego vehicle) making a lane change,
ADAS of vehicle 1 has to predict the behaviour of vehicle 2 (surrounding vehicle) to
make safe lane change.

Prediction of surrounding vehicles during lane change is of importance when
there is a high density of the traffic on the highway. Analyzing and predicting all the
driving behaviour of the ego and surrounding vehicle during lane change would in
turn help in negating crashing scenarios.

The aim of the thesis is to provide a suitable solution in predicting the trajec-
tory and motion of the surrounding vehicle by imitating driving behaviours. The end
goal is to build a robust model efficient to predict diverse human driving behaviours
by predicting vehicular motion, so that it aids in prescribing certain control strategies
to ADS.
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1. Introduction

1.2 Research questions

The master thesis aims at addressing the following question

• How efficiently can Deep Inverse Reinforcement Learning algorithms can predict
vehicles behaviour?

• How are the features of the surrounding vehicle mapped to get the optimal re-
ward in inverse reinforcement learning ?

• Can the model predict the future driving behaviour even after the lane change
based on the output of the inverse reinforcement learning algorithm?

1.3 Scope and Limitations

The thesis is limited to working on the naturalistic driving data set called HighD [4].
The data contains trajectory of vehicle on straight German highway possessing a sim-
ple lane change maneuvers and void of any junction crossing, and lane merging sce-
narios. Thus our prediction model is built for the lane change maneuvers. As the con-
cept of inverse reinforcement learning is quite novel, to analyze the efficiency of this
prediction model clearly, this thesis is restricted to predicting driving intention for two
lane, two agent or vehicle lane changing scenarios.

1.4 Outline

The section below is a brief outline for the forthcoming chapters of thesis report.

1. Theory : In this section we delve upon theoretical concepts required to build
driver behaviour prediction or traffic prediction model. The chapter is mainly
divided into two major sub topics namely deep learning methods an inverse re-
inforcement learning. The concepts concerned to this project are elucidated,
along with its underlying mathematical principles.

2. Methodology: The chapter initially describes the naturalistic driving data and
pre-processing techniques. The chapter presents a step wise formulation in build-
ing inverse reinforcement based traffic prediction model for highway lane change
scenarios. It also elucidates the complete inverse reinforcement algorithm built
for vehicle trajectory prediction. Furthermore, the chapter contains a brief overview
of the software libraries utilized in the thesis.

3. Result: It presents the experimental results and the result analysis of the deep
inverse reinforcement prediction model.

3



1. Introduction

4. Conclusion and Future work- The experimental results are contextualized with
the objective of the thesis. The chapters also expands on the future course of
direction in which the model needs to be investigated.
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2
Theory

In the following section, concepts required for DIRL formulation are explained
in detail. It comprises of a comprehensive review of the theory along with a de-
tail elaboration of its mathematical framework. The chapter is divided into two
topics, deep learning and inverse reinforcement learning methods respectively.

2.1 Deep learning

Deep learning is sub-field of machine learning that solves representation learning task
using successive smaller and simpler layered representation of data. Therefore it also
named as layered representation learning or hierarchical representation learning. This
layer representation helps the computer to understand complex concepts such as im-
ages and speech. The layered representation learning is generally modelled using Ar-
tificial Neural Network (ANN)[10]. ANN are computational graphs and work as func-
tional approximators f (x,θ), for input data x. The objective of the network is to cal-
culate the output y , by calibrating its parameter θ. For a thorough explanations and
understanding of ANN and its mathematical framework, readers are encouraged to go
through [10]. In the following subsection we elaborate on Recurrent Neural Network
(RNN), Seq2Seq and Generative Adversarial Network (GAN).

2.1.1 Recurrent Neural Network

The functional approximation done by simple ANN for sequential data is very ineffec-
tive as ANN assumes the data to be independent identically distributed and uncorre-
lated. RNN is a class of neural network that specializes in processing such sequential
data like speech, music, language and other time series data efficiently [11, 12]. RNN
is constructed by inserting feedback loop over each neuron. This enables the network
to share parameters across time and establish a recurrent mechanism [13]. The output
of RNN depends on the input fed to the network and the output at previous time step.

RNN takes in an input sequence vector x = (x1, . . . , xt ) and approximates this
sequential data to output ŷ = (ŷ1, . . . , ŷt ) at each time step t . RNN has a layer of hidden
states ht that summarize the previous states of the input until the current time step.

5



2. Theory

Figure 2.1: Single neuron of recurrent neural network [1].

This layer forms the feedback loop that helps to share information from previous states
and forms the recurrent mechanism[13]. At each time step t , RNN simultaneously
updates the hidden state and produces an output, based on the current input xt and
the hidden state at previous time step ht−1. The hidden state of the cell are updated
according to equation 2.1 and the output of RNN is given by equation 2.2.

ht = f (Wi xt +Whht−1 +bh) (2.1)

ŷt = g (Woht +bo) (2.2)

where f (x) and g (x) are activation functions, Wi ,Wh ,Wo are the weight matrix of the
input, hidden and output layers respectively and bh ,bo are the biases.

Training of RNN is done with the algorithms called Back-propagation Through Time
(BPTT)[14] and updated version Truncated Back-propagation Through Time (TBPTT)
[15]. The algorithm trains the network through generalized back-propagation after it
unrolls the network in the given time T, as shown in Figure 2.2.

Figure 2.2: Unrolling of a recurrent neural network through time for training [1]

Long Short Term Memory Networks

Despite RNN being utilized to approximate sequential data, it has problem such as
vanishing gradient [16] and cannot learn long term dependencies in the data [17]. To
overcome these problems LSTM was proposed [18] and was upgraded by including
the weight condition of the LSTM [19]. LSTM is a type of where the hidden layer are
replaced by LSTM cell, that has a self loop so that gradient can pass through without
exploding. There are three gates namely input, forget and output that controls the flow
of information to and within the memory cell. During training, LSTM learns to control

6



2. Theory

the gates which changes the weights of the memory cell. The basic structure of the
LSTM cell is shown in Figure 2.3.

Figure 2.3: Schematic unit of LSTM consisting of four components and three gates to
control the flow of information. Where rectangles σ and tanh refers to sigmoid and hy-
perbolic tangent activation respectively and × is Hardamard product and + is addition
are vector operation in the cell [1][2]

.

LSTM consist of four components that gives an output of cell state Ct and hidden state
ht at each time. The forget gate ft ,introduce by Schmidhuber et al [19] helps to decide
the elements of cell state to be passed. Forget gate outputs a vector of 0 or 1, when
combined with cell states it can decide the elements to be kept for the current time.
The output of the forget gates is given by Equation 2.3. The input gate it decides the
elements that would be contributing to next cell as shown in Equation 2.4. The output
gate ot of the LSTM cell filters the the elements of the current cell state evaluated by
Equation 2.5.

ft =σ(W f xt +U f ht−1 +b f ) (2.3)

it =σ(Wi xt +Ui ht−1 +bi ) (2.4)

ot =σ(Wo xt +Uoht−1 +bo) (2.5)

The cell state an the hidden state are updated and stored in the memory cell for next
time step given by the list of Equation 2.6, 2.7, 2.8.

Ĉt = tanh(Wc xt +Uc ht−1 +bc ) (2.6)

Ct = ft ¯Ct−1 + it ¯ Ĉt (2.7)

ht = ot ¯ tanh(Ct ) (2.8)

where

• W f ,Wi ,Wo ,Wc are the input weights

• U f ,Ui ,Uo ,Uc are the recurrent weights

7



2. Theory

• b f ,bi ,bo ,bc are the biases

• ¯ denotes element-wise multiplication

• σ and tanh are the activation functions

2.1.2 Sequence to Sequence

LSTM is used for modelling sequential data efficiently but it takes in data of fixed input
length and generates an output of fixed length. Many real world application like ma-
chine translation, speech recognition and time series forecast, requires network to be
flexible so as to take input of variable length and produce an output of variable length.
Sequence to Sequence Network (Seq2Seq) [12] model is the neural network architec-
ture built using LSTM to overcome the shortcomings of simple LSTM network.

A Sequence to Sequence architecture has two components, an encoder and
decoder. The encoder takes input X = {x1 . . . xt } with variable length and converts into
a context vector v which is fed to the decoder. The decoder with use of this context
vector gives an output Y = {y1 . . . yT } of required variable length.The figure shows a
basic architecture of the Seq2Seq model.

Figure 2.4: Seq2Seq model architecture

The encoder consist of two layer of neural network, embedding layer and LSTM
layer respectively to which sequential data X = {x1, , , xt } is fed. Embedding layer of the
encoder generalizes this high dimensional data to low dimensional data by categoriz-
ing data into row of an embedding matrix with columns length as the total vocabulary
size. Then this embedded data is encoded into on fixed representation context vector
v using the LSTM layer.

The decoder consist of layer of LSTM layer with softmax output. It produces a
conditional probability of the output given the input sequence Equation 2.9 [12]. The
output of the decoder from the time t −1,yt−1 is fed as input to the decoder at current

8



2. Theory

time t to produce an output yt

P (ŷ1 . . . ŷt /x1 . . . xt ) =
T∏

t=1
P (ŷt /v, ŷ1, . . . , ŷt−1) (2.9)

where v = (x1 . . . xt ) , ŷt is predicted output

P (ŷt /v, ŷ1, . . . , ŷt−1) = exp(wᵀ f (ŷt , ŷt−1, x1:t )∑
exp(wᵀ f (ŷt , ŷt−1, x1:t )

(2.10)

Training

Output of the Seq2Seq model is a probability density on the total vocabulary length.
But the actual value of the output is evaluated using the Equation 2.11

yt = argmax
y∈Y

P (ŷt /v, ŷ1, . . . , ŷt−1) (2.11)

The loss at each time step t is calculated using the cross entropy with the true output
density. The loss is calculate using the Equation 2.12. The decoder and encoder are
updated using Stochastic Gradient Descent (SGD) [20]

∇Lθ =− 1

N

T∑
t=1

P (yt )∇θ logP (ŷt ) (2.12)

2.1.3 Generative Adversarial Network

Generative Adversarial Network (GAN) is a differentiable generator network, where the
data is transformed from latent space using a differentiable function [10, 21]. It was
initially developed to generate realistic samples of data with the given distribution p(x)
[21]. GAN has been used in various field in image translation, sequence generation and
model free reinforcement learning task [22, 23, 24].

GAN consists of two networks called Generator G and Discriminator, D respectively.
The generator produces synthetic data samples similar to distribution of training data.
The discriminator’s objective is to examine these sample from the generator and dis-
tinguish them whether they are real or fake. Intuitively the generator can be considered
as the counterfeiter trying to fool the discriminator by making fake money. Then the
discriminator is considered as the police trying to distinguish whether currency is real
or counterfeit [25].

Generator G is a neural network having a differentiable function G(z;θG) w.r.t to input
noise z and with parameter θG. It samples the data from prior latent space with dis-
tribution pz(z) and tries to minimize its cost function LG(θG). Similarly discriminator
is a neural network, that has a differentiable function D(x;θD) w.r.t to input and the
observed samples x with network parameter θd . The output of the discriminator is

9



2. Theory

Figure 2.5: Graphical representation of GAN

scalar value representing the probability whether the data x comes from the original
distribution p(x) or not, with cost function as LD(θD).

GAN is considered as two agents G and D playing a min-max game having a
total payoff with value function V(θG,θD). Solving the minimax game is equivalent to
optimizing the generator parameter given by

θG∗ = argmin
θG

max
θD

V(θG,θD) (2.13)

The value function is nothing but the V(θG,θD) = LG(θG) = −LD(θD). The mathemati-
cal formulation of the cost function is given as the binary cross entropy defined by the
Equation 2.14 [21]

V(θG,θD) = Ex∼Pr logD(x)+Ez∼Pg log[1−D(G(z))] (2.14)

where x is the input data with distribution Pr , z are the samples from prior distribu-
tion P (z) generally a Gaussian, and Pg distribution form the output of generator. The
loss function of discriminator is maximized and the loss function for the generator is
minimized such that Pg converges to Pr , ie Pr = Pg . In this min max game the dis-
criminator minimize the cross entropy while the generator tries to maximize this cross
entropy [25].

Training

Training the network is done in two steps but iteratively with alternatively gradient
descent, where in discriminator is trained first and then generator trained next. Two
batches of samples are drawn from Pr and from latent variable x̃ distribution G(z) ∼
Pg , which are fed to the generator G. The output of the generator fed to the discrimina-
tor, yielding a probability Pr . The discriminator loss are calculated and updated using
the SGD [20, 26],

∇θDVD (θG,θD) = − 1

N

N∑
n=1

[∇θD logD(xn)+∇θD log(1−D(x̃n))
]

(2.15)
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Once the discriminator is updated which tries to minimize the cross entropy, new sam-
ples x̃ are drawn from Pg and the generators gradients are updates by Equation 2.42

∇θGVG (θG,θD) =∇θgLG(θG) = 1

N

N∑
n=1

∇θG log(1−D(x̃n)) (2.16)

2.2 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is a subclass of techniques of Imitation Learning
(IL), where in the the agent learns the optimal behaviour from the set of demonstra-
tion of experts. These are methods developed initially to program autonomous robots
to perform highly complex task like pick and place [27, 28], robot path planning [29],
helicopter maneuvering [30] which had very successful outcomes. The distinction be-
tween IRL and imitation learning is that while IRL objective is to only infer the reward
function from the expert where as IL goal is to mimic the expert behaviour. IRL is
closely related to supervised learning where in prediction task are converted into se-
quential decision task [31, 32]

Early stages of development of IRL were done by Kalman 1960, where in he recovered
the objective function for deterministic linear system with quadratic cost [33]. The use
of Markov Decision Process (MDP) frame work to recover the rewards was first done
by Russell et al [34], wherein the agent task is modeled as sequence of decision making
process, which then can be solved using reinforcement learning techniques [35]. Since
then the IRL has gain traction and advantages in using the MDP framework to model
the environment as it can be solved using Reinforcement learning techniques. The
concept of IRL requires a basic understanding of reinforcement learning techniques
for MDP. The following section is a reference to concepts in reinforcement learning
and IRL

2.2.1 Reinforcement Learning

Reinforcement Learning (RL) is described as a learning framework, where an agent or
learner interacts with the environment to achieve a goal. Unlike a supervised learning
where the learning is passive, RL is active as it learns from the reward signal received by
the environment continuously. Reward signal is the closed loop feed back received to
the agent from interaction between the agents and the environment that occur in dis-
crete time. The goal or the learning behaviour can be represented in form of feed back
signal in-between agent and the environment, where one signal represent the choice
of the agent (actions), next signal represent the signal based on which the choices are
made (states) and the reward signal based on the agent goal(reward) as shown in Fig-
ure 2.6

Environment constitutes a situation or scenario in which the agent acts and learns to
achieve a specific goal. States st are some representation of a complete or all possible
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2. Theory

Figure 2.6: Reinforcement Learning [3]

environment state S that agent receives at each time t , st ∈ S .Based on the states the
agent takes a control decision, these are called actions at ∈A(st ), where A(st ) set of
action that agent can take at particular state st .

Rewards rt , is a scalar value, it is the incentive the agent receives at a particular state
after choosing an action A(st ). The agent’s goal is to maximize these expected reward
Rt , a function defined as a sum of rewards it may receive next from time t +1 until the
length of the that episode T .

Rt = rt+1 + rt+2 +·· ·+ rT =
T∑

k=0
rt+k+1 (2.17)

In other words it quantifies how well the agents have performed the task from the cur-
rent state at time t to the end state T over the each episode [3]. If we consider a con-
tinuous control task, that doesn’t have a terminal state or do not have an end goal i.e
T =∞ the Equation 2.17 does not converge. A discount factor γ ∈ [0,1] is introduced
to rectify this problem [36, 37], then the Equation 2.17 can be re written as

Rt = rt+1 +γrt+2 +γ2rt+3 · · · =
∞∑

k=0
γk rt+k+1 (2.18)

If the agent has γ = 0 discount factor, it’s goal is to choose an action to maximize im-
mediate rewards, on the other hand if the discount factor γ→ 1 it chooses actions at

so as to consider long term rewards.

Markov Decsion Process

The Markov Decision Processes (MDP) is a mathematical formalism suitable for mod-
elling and solving decision making or real world control problems. MDP is defined [3]
as a tuple 〈S ,A,P ,R,γ〉, where

• S is set of all possible states of environment, satisfying the Markov property

P (st+1|st ) = P (st+1|s1, s2, . . . , st ) (2.19)
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• A is set of actions taken by agent in the state st

• P : S×A×S → [0,1] is the state transition probability,

P(s′|s, a)= P (st+1|st , at ), where s′ is the successive state, and s, a are current state
and action respectively

• R: S×A→R is the reward function

R(s, a) = E[rt+1|st , at ]

• γ is the discount factor ∈ [0,1]

Policy

Policy, π is the characteristic behaviour of the agent. A stochastic policy is defined as
probability of choosing an action from the current state, more formally agents policy
is the distribution of action over given states as shown in Equation 2.20. The goal of RL
is find the optimal policy π∗ that acquires the maximum expected rewards.

π(st ) = P (at |st ) (2.20)

Value functions

State value function,V π(s), is defined as the expected return of the state s, and then
following the policy π. It signifies "how good" the current state is [3].

V π(s) = Eπ[Rt |st ] = Eπ[
∞∑

k=0
γk rt+k+1|st ] (2.21)

Action value function, Qπ(s, a), is similar to the state value function, but considers the
action taken in the current state. It is defined as the expected return from the state s ,
taking the action a, and then following the the policy π [3].

Qπ(s, a) = Eπ[Rt |st , at ] = Eπ[
∞∑

k=0
γk rt+k+1|st , at ] (2.22)

Optimal Value function

The optimal value function are the expected values following the optimal policy π∗,
wherein the policy π∗ has the maximum excepted rewards [3]. The optimal value func-
tion V ∗(st ),Q∗(st , at ) are given as

V ∗(st ) = max
π

Vπ(st ) (2.23)

Q∗(st , at ) = max
π

Qπ(st , at ) (2.24)

π∗(at |st ) = argmax
a

Qπ(st , at ) (2.25)
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2.2.2 Policy Gradient

The policy gradient are optimizing methods for RL, that uses gradient ascent on the
policy parameter to obtain an optimal policy which subsequently maximizes reward.
Policy gradient methods are suited for agents having continuous action spaces or stochas-
tic policy. We use a functional approximator to estimate the policy, that has a parame-
ter θ, then the policy can be defined in terms of the parameters as πθ(a/s). The quality
of the the policy is quantified in terms of the objective function J . It yields the ex-
pected reward for the current policy. It is mathematically defined for continuous action
space as

J (θ) = Eτ∼πθ(τ)[r (τ))] =
∫
πθ(τ)r (τ)dτ (2.26)

where τ is the trajectories of the agent, and it can be decomposed into product of the
conditional probabilities

πθ(τ) =πθ(s0, a0, s1, a1, . . . sT , aT ) = P (s1)
T∏

t=1
πθ(st )P (st+1|st , at ) (2.27)

we perform the gradient ascent on the objective function to optimize θ such that it
yields the highest expected rewards

∇θJ (θ) =
∫

∇πθ(τ)r (τ)dτ (2.28)

we know that

∇θπθ(τ) =πθ(τ)
∇θπθ(τ)

πθ(τ)
=πθ(τ)∇θ logπθ(τ) (2.29)

Therefore, substituting the values of Equation 2.29 to Equation 2.28, we obtain the pol-
icy gradient as

∇θJ (θ) =
∫
πθ(τ)∇θ logπθ(τ)r (τ)dτ= Eτ∼πθ(τ)

[∇θ logπθ(τ)r (τ)
]

(2.30)

2.2.3 Inverse Reinforcement Learning methods

RL is a technique to learn a behaviour based on rewards. Robustness of the learning
algorithm and the objective of the task of RL is succinctly defined upon the rewards.
In the real world task rewards can’t be specified to the learning task manually [30]. In
such cases and most apparent cases we only know the trajectories of the experts and
intend to learn these behaviour. IRL is defined "apprenticeship learning to acquire
skilled behaviour and to ascertain the reward function of the expert" [34]. If reward
structure is learnt, the problem is reduced to finding the policy that can be solved by
RL algorithms.
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The IRL considers that expert trajectories are output of the MDP. The notation
of MDP are mentioned in the earlier section and to derive solutions for IRL problem the
author maintains the same notation for consistency. Russell et al [34] established that
it is possible to select the best reward function that has the optimal policy. The reward
function for the optimal policy can be selected using Equation 2.31, which satisfies
the condition 2.33. For a finite state MDP this equation can be solved using linear
programming [34].

an ≡π(s) ∈ argmax
a∈A

∑
s′
P(s

′
)V π(s

′
) (2.31)

V π = (I −γPan )−1R (2.32)

for

(Pan −Pa)(I −γPan )−1R≥ 0 (2.33)

Where π(s) ≡ an is the unique optimal policy, a ≡A\ an for action set A=a1, a2, . . . , ak

Feature Expectation Matching

The concept of feature expectation matching was introduced by Abbeel et al [30] and
subsequently implemented by Ziebart et al [38]. It can solve even infinite state space
IRL problems, where we assumes the reward function as a linear function of features [34].

r (s) = w> f (s) (2.34)

f (s) is the feature vector of the state S and the w is the weight vector. The feature
represent the state space of the agent at a given time. The feature vector depends on
the agent and the task considered. The value function for the policy π

E[
∞∑

t=0
γt r (st )|π] = E[

∞∑
t=0

γt w> f (st )|π] = w>E[
∞∑

t=0
γt f (st )|π] (2.35)

For a given expert, trajectories/demonstration τ, feature expectation µ(π) is defined on
the policy π as

µ(π) = E[
∞∑

t=0
γt f (st )|π] (2.36)

Therefore, the expected value is the linear combination of feature expectation

E[R|π] = w>µ(π) (2.37)

The feature matching algorithm maximizes the reward function by matching
the feature expectation with the experts feature visitation.

Feature expectation matching is not a robust algorithm as it can map many
policies to a single reward function and it can be ambiguous when the demonstration
is sub optimal [39].
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Maximum Entropy Inverse Reinforcement Learning

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL), is advanced method
to solve IRL problem leveraging the principles of maximum entropy [40]. The algo-
rithm selects a distribution that maximize the entropy that matches the feature expec-
tation of the expert [41, 38]. In MaxEnt IRL the reward is a linear mapping of sum of
the feature counts,

R(τ) = w> f (τ) = ∑
s j∈τ

w> f (s j ) (2.38)

• where, f (τ) =
∑

s j∈τ f (s j ) is the feature counts of the trajectory

• f (s j ) ∈Rk feature at each state j

• w is the parameterized weights

The agent/learner, learns the policy distribution π(τ) that maximizes the fea-
ture expectation of the expert, having the constraints

Eπ∼L[ f (τ)] = Eπ∼E [ f (τ)], f or
∑
τ

π(τ) = 1, ∀τ,π(τ) = 1 (2.39)

where

• Eπ∼L[ f (τ)] expected feature count on the learners policy

• Eπ∼E [ f (τ)] expected feature count on the expert policy

The probability density that satisfies Equation 2.39 is Equation 2.40. According to this
the optimal trajectories have the highest likelihood and the sub-optimal path gener-
ated by the expert decreases with exponential probability.

π(τ|w) = exp(w> f (τ))

Z (w)

∏
st+1,st ,at∈τ

P (st+1|st , at ) (2.40)

Z (w) = ∑
τ exp(w> f (τ)) is the partition function. The parameter w is obtained by

maximizing the likelihood L(w) under the maximum entropy density for the observed
data.

w∗ = argmax
w

L(w) = argmax
w

∑
τi

logπ(τ|w) (2.41)

w is updated using the gradient descent on the objective function L(w), which is the
difference between the expert’s features counts and the learners expected feature counts,
given by Equation 2.42.

∇wL(w) = f̃ −∑
τi

logπ(τ|w) f (τ) = f̃ −∑
s j

Ds j f (s j ) (2.42)
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Ds j is state visitation count. Calculating Ds j is time consuming using quadratic pro-
gramming. Though it is demanding to calculate equation 2.42, it can be calculated
using deep neural network [42]. The major drawback of MaxEnt IRL is that it requires a
state transition probabilities. In many real world scenarios like robot action, helicopter
maneuvers and car lane change it is difficult to obtain these probabilities.

Generative Adversarial Imitation Learning

MaxEnt IRL fails to work when the state transition dynamic isn’t specified. Though
many iteration and modification to this approached have been undertaken [39, 43,
44, 45], but still all of these require a state transition dynamics. In other words these
are model based IRL approaches that requires a model of the state transitions. On
the other hand Generative Adversarial Imitation Learning (GAIL) is model free IRL ap-
proaches that do not require any state dynamics and can be scaled easily to the very
large environments [46]. GAIL is a type of IRL wherein it doesn’t specify explicit reward
function it learns the behaviour of the experts form its policy directly. But the rewards
can be extracted from GAIL which can be used to train similar MDP models.

The proposed method evaluates the best policy by running the RL on the cost
function C based on the maximum casual IRL [39]. The objective of maximum casual
IRL is 2.43 and it can be optimized by RL algorithm 2.44

I RL(πE ) = max
c∈C

(
min
π

−H(π)+Eπ[c(s, a)]
)
−EπE [c(s, a)] (2.43)

RL(c) = argmin
π

−H(π)+Eπ[c(s, a)] (2.44)

where the H(π) = Eπ[− logπ(a|s)], is the entropy of the policy π and
EπE [c(s, a)] = Eπ[

∑∞
t=0γ

t r (st )|π] is the cost function

Occupancy measure is described as the distribution of state-action pairs which are
generated by the policy π given by Equation 2.45 [46].

ρ(s, a) =π(s)
∞∑

t=0
γt P (st+1/st , at ) (2.45)

Then the IRL problem can be described based on the occupancy measure, it is the pro-
cedure to find the policy that matches the occupancy measure of expert’s policy [46].
It can be shown that the objective of IRL can be reduced to dual of an occupancy mea-
sure match problem between the inner loop of causal IRL and the outer loop RL ascent
as in Equation 2.46.

RL.I RLψ(πE ) = argmin
π

−H(π)+ψ∗(ρπ−ρπE ) (2.46)

In this imitation learning setup −H(π) is called the policy regularizer and ψ∗ is the
convex conjugate of the regularizer called the cost regularizer. The GAIL is derived
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by choosing the optimal cost regularizer that reduces the Janson - Shanon divergence
(D JS) [46].

min
π

ψ∗(ρπ−ρπE )−λH(π) = D JS(ρπ,ρπE )−λH(π), ∀λ> 0 (2.47)

The proposed GAIL algorithm draws a connection between IRL and GAN net-
works, it utilizes the GAN training to fit the expert trajectories. The occupancy measure
of π is the data distribution of the generator and the occupancy measure of expert is
the true distribution that the discriminator must distinguish. The objective of GAIL is
to find the saddle point in the Equation 2.48

Eπ[log(D(s, a))]+EπE [log(1−D(s, a))]−λH(π) (2.48)

GAIL training is described in the Algorithm 1. Initially the weights of the dis-
criminator network are updates based on the generated trajectories. The weights of the
generator θG are updated using Trust Region Policy Optimization(TRPO) [47] based on
the policy π.

Algorithm 1 Generative Imitation Learning Algorithm
Input : Expert trajectories τE

Initialize parameters θ and w
for i = 1, 2, . . . do

τi ← sample trajectories from τE

wi+1 ← Update the the weight parameters from wi with gradients

Eτi [∇w logD(s, a)]+EτE [∇w log(1−D(s, a))]

θi+1 ← Update the policy parameter from θi using TRPO

Eτi [∇θπθ(s)Q(s, a)]−λHθ(πθ)

Q(s, a) = Eτi [logDw+1(s, a)|s0, a0]

end

GAIL is well suited to imitate complex behaviour in large and high-dimensional
environments. Chelsea Finn et al [24] provides this mathematical equivalence between
the MaxEnt IRL to the GAN.
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3
Methods

This chapter is a detailed elaboration of the methodology implemented to solve
driving behaviour prediction. Initially, the chapter formulates the Inverse driver
learning objectives in terms of deep inverse reinforcement learning framework.
Then chapter deals with the data employed to undertake this task and its pre-
processing techniques. Finally, the chapter deals with building the Deep Inverse
Reinforcement Models.

3.1 Problem formulation

The goal of the thesis project is to achieve a suitable prediction model of driver’s inten-
tion, in case of lane change scenarios to help in improving ADAS systems. The predic-
tion models must be robust to predict varied situations. Consider a highway driving
scenario the ego vehicle needs to predict the surrounding vehicle intentions, whether
the vehicle would allow the ego vehicle to pass, does the vehicle reduce the speed and
many such characteristics features of the surrounding vehicle. Our aim is analyze var-
ious behavior of the surrounding vehicle during lane change scenarios for prediction.

The ego vehicle, the surrounding vehicle and their interacting behaviour dur-
ing lane change are considered experts agents. These expert agents behave optimally
during the lane change. The expert’s behaviour are considered to be MDP, whose out-
put is a time series state trajectories, that are extracted form a reliable data resource.
These extracted trajectories are considered to be expert trajectories τE . The task is
to analyze all these trajectories τE of the surrounding vehicle in the data and build a
model to predict such driving patterns for future reference to the ADS. So IRL tech-
niques are employed to understand the reward structure of this expert trajectories τE .
Based on the reward the driving behaviour of the surrounding vehicle are predicted.

3.2 Data

The project requires an experts data so that the model can learn their diverse driv-
ing behaviour by performing IRL. There are various open access Naturalistic Driving
Dataset (NDD) especially for capturing driving behaviours in traffic flow [48, 49]. KITTI
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is a NDD recorded using lasers and cameras mounted on the car, which is mostly used
for computer vision application [49, 50]. It is not suitable for our DIRL model as it lacks
highway traffic scenarios. The most widely used NDD is Next Generation SIMulation
(NGSIM) especially for highway scenarios [48, 51, 52]. NGSIM contains recording of
United States highway traffic, collected using digital video cameras mounted on high-
way. But NGSIM data poses serious challenges while analyzing, as the data is noisy
and requires filtering. The major problem of NGSIM is that numerous data points for
the position, speed and acceleration are erroneous [53], these data points are impos-
sible to achieve for a vehicle in normal driving scenario. To avoid such problems we
consider the much more accurate NDD called HighD [4].

HighD stands for Highway Drone, it is a NDD recorded across German highway us-
ing drones. The data was taken at six different highway location around the Cologne
area. It was recorded using high resolutions camera mounted on the drone hovering
at a fixed position above the highway as in Figure 3.1. This way of recording helps to
provide an unbiased data set as the drivers isn’t aware of the data being recorded, so
their behaviours are uninfluenced and it also provides an aerial perspective of traffic
flow. There are several advantages of recording using drones which includes accurate
measurement of naturalistic behaviour, data has good static and dynamic description
and has better privacy protection [4].

Figure 3.1: Data recorded using drone hovering above the highway that can capture
the traffic within the 420 m highway segment [4].

HighD data was recorded using 4k video camera having 25fps. At each recording loca-
tion, road segment of length 420 meter is considered and a total of 60 video recording
with an average duration of 17 minutes per video were recorded. The data can be visu-
alized using the codes provided by the authors of the dataset as shown in the Figure 3.2.
Some of the salient features of HighD dataset are mentioned in the Table 3.1

Data description

Video recording are mapped into data points using computer vision algorithm. Each
video recording is converted into 3 CSV files containing the data of recorded location,
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Figure 3.2: Road segment visualization for HighD datset. The red box are computer
vision algorithm processed bounding box representing the vehicles on the highway.
The black triangle on the bounding box denotes the driving direction. Each vehicle has
unique yellow label consisting the type of vehicle car or truck(C or T), vehicle velocity
and vehicleId [4].

HighD data Measurements

Total recording duration in hours 16.5
Lanes per direction 2-3

Total number of vehicles recorded 110,000
Recording distance per location in meters 400-420

Table 3.1: Significant attributes of HighD dataset

vehicle description and lane trajectories. This high resolution data would be very use-
ful in extracting the experts behaviour easily. The Table 3.2 below shows the descrip-
tion of CSV file contents.

File Name Data description

XX_recordingMeta.csv Meta information about the recording setup
XX_tracksMeta.csv Information of lanes and lane changes in the recorded video

XX_tracks.csv File containing vehicle trajectories

Table 3.2: Table shows the description of each recorded video in term of CSV file. The
XX in the filename represents the number of the recording ranging from 01 to 60

XX_recordingMeta

The files contain the data of the recording setup for a given recording XX, as XX range
from 01 to 60. These files are use full in processing the data. Table 3.3 shows the detail
of this file.
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Feature columns of recordingMeta Feature Description

id Id given to each recording
frameRate Frame rate of video camera = 25fps
locationid Id given to each of the six recorded location
speedLimit Speed limit of highway at that recording location
month Month in which the recording was undertaken
weekDay Weekday of the recording
startTime Starting time of the recording
duration Total time of the recording for a given locationid
totalDriverDistance Total driven distance of all tracked vehicles
totalDrivenTime Total driven time of all tracked vehicles
numVehicles Total number of vehicles,including car and

Truck recorded at that recording session
numCars Total number of cars recorded
numTrucks Total number of trucks recorded
upperLaneMarkings Upper lane markings of the road segment
loweLaneMarkings Lower lane markings of the road segment

Table 3.3: RecodingMeta file description

XX_tracksMeta

The current files for a given file number XX has a brief summary of trajectories for all
the vehicle recorded on the road segment. tracksMeta files are most useful when the
data needs to be filtered based on the lanes, class(car or trucks) and lane change. The
Table 3.4 shows features of trackMeta data .

XX_tracks

Tracks data file contain vital information of the vehicle trajectories. This file represents
the state information of all the vehicles recorded containing information of position,
velocity, following vehicle id and many other state features in the traffic. The state
information of vehicle is a time series starting form the initial frame to final frame of
the vehicle. This time series data of each vehicle is listed in ascending order based on
the vehicleId.

To understand the state features of this file, we need to learn the frame of ref-
erence to which HighD was recorded. Figure 3.3 shows the road segment coordinate
system to which the vehicle states features are contextualized. The road segment is
seen from the top view from the drones perspective and the vehicle move from left to
right, or vice versa. The origin of the coordinate system is at the top left corner of the
road segment. The x values increase as it moves to right and the y values increases
when vehicles moves towards the bottom of the road.

XX_tracks contains the state features of the all recorded vehicles, the complete
details the features are mentioned in Table 3.5. Figure 3.4 shows the illustration for
these features when considering the ego vehicle, shown in yellow bounding box.
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Feature columns of tracksMeta Feature description
id Id of the vehicle recorded,

in ascending order based on time of first seen in the video camera
width The width of the bounding box used to post-process the vehicle,

represents the length of the vehicle
height The length of the bounding box used to post-process the vehicle,

represents the width of the vehicle
intialFrame Video frame in which vehicle is first observed
finalFrame Video frame in which vehicle is last captured
numFrames Total number of frames

in which vehicle is observed from start to final
class Type of vehicle (car or truck)
drivingDirection Driving direction of the vehicle from the point of drone.

Either 1 for the left direction (upper lanes) or
2 for the right direction (lower lanes).

traveledDistance total distance covered by the vehicle
minXvelocity Minimum velocity of the vehicle in the given driving direction
maxXVelocity Maximum velocity of the vehicle in the given driving direction
meanXVelocity the mean velocity of the vehicle
minDHW Minimal Distance Headway (DHW) to a preceding vehicle
minTHW Minimal Time Headway (THW) to a preceding vehicle
minTTC Minimal Time-to-Collision (TTC) to a preceding vehicle
numLaneChanges Total number of lane changes by the vehicle

Table 3.4: tracksMeta file description

Figure 3.3: Road coordinate system. The vehicle in the upper lane move from right to
left. The vehicles in this lane have x values decreasing as the vehicle moves from right
to left and velocity of vehicle is negative in reference to the coordinates. It is converse
in the lower lane.

3.3 Data processing

Current section deals with data extracting and processing techniques for the HighD
data set that were essential in training DIRL models. The major steps in this process
are to extract all the vehicle trajectories of ego and surrounding vehicle for lane change
scenarios, in a two lane highway.
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Figure 3.4: Illustration of _tracks feature considering ego vehicle 4 and 10 in upper and
lower lane respectively

State features of Vehicle in tracks Features description

frame Current frame
id Vehicle id
x Position of vehicle in x direction in the current frame
y Position of vehicle in y direction the current frame
width The width of the bounding box used to post-process the vehicle,

represents the length of the vehicle
height The length of the bounding box used to post-process the vehicle,

represents the width of the vehicle
xVelocity Longitudinal velocity of the vehicle, positive in the positive x direction
yVelocity Lateral velocity of the vehicle, positive in the positive direction
xAcceleration Longitudinal acceleration of the vehicle
yAcceleration Lateral acceleration of the vehicle
frontSightDistance Distance from the current position of the vehicle till

the end of the road segment in the driving direction
backSightDistance Distance from the current position of the vehicle till

the end of the road segment in the opposite driving direction
dhw Distance headway measure
thw Time headway
ttc Time to collision
precedingXVelocity velocity of the preceding vehicle in x direction
precedingId vehicle id of the preceding vehicle in same lane
followingId vehicle id of the vehicle following in the same lane
leftPrecedingId The id of the preceding vehicle on the adjacent lane

on the left in the direction of travel.
leftAlongsideId The id of the adjacent vehicle on the adjacent lane

on the left in the direction of travel.
leftFollowingId The id of the following vehicle on the adjacent lane

on the left in the direction of travel
rightPrecedingId The id of the preceding vehicle on the adjacent lane

on the right in the direction of travel.
rightAlsongsideId The id of the adjacent vehicle on the adjacent lane

on the left in the direction of travel.
right FollowingId The id of the following vehicle on the adjacent lane

on the left in the direction of travel
laneId Id of the lane in which the vehicle is moving as in Figure 3.3

Table 3.5: Table describing the features of the tracks data

Lane Change data extraction

HighD data are recorded on highways having 2 and 3 lanes per direction. Considering
our projects limitation we only extract lane change trajectories for two lane scenarios.
Two lane here refers to highway’s having two lane in the upper lane and two lanes in
lower lane. Further in the report, lane is always mentioned in context to number of
lanes in a single driving direction on the highway.

24



3. Methods

The data contains details of all the vehicle on the highway. In regards to project only
the vehicles trajectories necessary were extracted. The following section explains the
steps involved in extraction of lane change maneuvers, it also includes the data pro-
cessing techniques. There are 60 recordings taken at different location, wherein each
video recording is converted into 3 CSV file as mentioned in the earlier section. The
projects make use of recordingMeta, tracksMeta to filter the necessary trajectories form
the XX_tracks file.

Step 1 - Two lane data

Initial task is to learn file number XX, as XX ranges from 01 to 60 that posses the record-
ing for two lane highway’s. For this lowerlaneMarking feature column in the
XX_recordingMeta file are taken into consideration to list all the X X _tr acks file hav-
ing two lanes. The Algorithm 2 lists a total of 13 files containing two lane highways.
The algorithm iterates trough XX for on all recordingMeta files and counts the num-
ber of lowerlanemarkings, if there are 3 lane marking then the algorithm stores the file
number else iterates further until end.

Algorithm 2 Two lane files
Input : HighD - XX_recordingMeta, XX_tracksMeta, XX_tracks
Output: Twolane_filename

for XX ← 01. . .60 do
C ← count lowerlaneMarkings in XX_recordingMeta
if C = 3 then

two_lane_files = XX
else

continue
end

end

Step 2 - Extract the lane change data

After the files containing two lane highway are extracted, the following task was to ex-
tract lane change maneuvers. But initially the two lane files are divided into train and
test set. Initially all the vehicle in the two lane highway don’t change lane, we select
only the vehicle that change lane. The vehicle that’s change lane is referred as ego ve-
hicle and the following vehicle, after the ego vehicle changes lane is called surrounding
vehicle. A single following vehicle is called surrounding vehicle that is specific to scope
of this project.

The complete time series data of the ego vehicle are extracted, by going through
the numLanchages feature column of XX_tracksMeta. If the vehicleid has lane change
values as 1, we choose such vehicle id and extract their complete highway data from
XX_tracks file. To select surrounding vehicle trajectories for each of the ego vehicle,
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LaneId column is searched from the selected ego vehicles the place the laneId changes,
we look at the corresponding followingId column to know the surrounding vehicleid.
Using this vehicleid, track data for the surrounding vehicle are extracted. The extracted
surrounding vehicle tracks is appended column wise with corresponding ego vehicle.
If there is no such surrounding vehicle for the ego vehicle or the data is devoid of sur-
rounding vehicle, then the ego vehicle track data was eliminated. At this step the data
has all ego vehicle and the corresponding surrounding vehicle tracks/trajectory data.

Algorithm 3 Lane change data
Input : HighD - XX_recordingMeta, XX_tracksMeta, XX_tracks , two_lane_filename
Output: Lane_change_trajectories

for XX ← 01. . .60 do
if XX = two_lane_files then

for i ≤ leng th(numLaneC hang e) do

lanechange= XX_tracksMeta(numlanechange(i))
if lanechange = 1 then

lanechange_vehicle_id = XX_tracksMeta(id(i))
ego_data = XX_tracks(id(lanechange_vehicle_id))

surrounding_vehicle_id = ego_data(followingId)
surround_data = XX_tracks(surrounding_vehicle_id)

Lane_change_trajectories = concat(ego_data,surround_data)
end

Lane_change_trajectories = append(Lane_change_trajectories)
end

else
continue

end
return Lane_change_trajectories

end

Step 3 - Filter data

The data extracted until now contains all the ego vehicle and corresponding surround-
ing vehicle trajectories. But these data may also include the trajectory data before and
after the lane change occurs that is irrelevant to the model training. The data has to
have only relevant information as training data the the lane change behaviour of the
ego vehicle and the surrounding vehicle.

The average time for lane change is 4-4.5s [54], but we have trajectories for the com-
plete road segment which is about 10s. The current project requires only relevant lane
change trajectories, hence the need for the reduction in size of lane change trajectories.
The data is reduced to about 7.5s trajectories, two sec is the history before lane change
and 4.5s is lane change maneuver. To extract only these trajectories algorithm goes
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through the laneId feature of the ego vehicle data. This is because in HighD the laneId
changes when the vehicle’s centre cross the lane marking that is when the bounding
box centre crosses the the centre lane marking.

Initially laneId of the ego vehicle is noted at the start frame. As and when the
laneID changes the value for given vehicle id, the corresponding frame is considered
as the pivoting frame or lane change frame. The trajectories are extracted for the given
vehicle by considering the feature before and after this lane change frame.

As mentioned earlier, the data is recorded at 25fps (0.04sec), therefore algo-
rithm takes into account 2.5s about 50 frames before the lane change frame as the ini-
tial frame and 125 frames after the lane change as the final frame. The data between
these initial and final frames are extracted. The ego vehicle’s and the corresponding
surrounding vehicle’s data considered only between these initial and final frame and
the rest are eliminated.

At the end of this step the expert data contains lane change scenarios of ego
and surrounding vehicle with 7.5 sec trajectories concated by column. The Algorithm 4
show the data reduction process.

Algorithm 4 Data Filtering
Input : Lane_change_trajectories
Output: Filtered_data

ego_vehicle_id← from Lane_change_trajectories
for i ≤ leng th(eg o_vehi cl e_i d) do

temporary_data ← Lane_change_trajectories for ego_vehicle_id(i)
lane_change_frame ← frame in which vehicle changes laneid
initial_frame, final_frame = lane_change_frame-124, lane_change_frame+40
Filtered_data← temporary_data between initial_frame and final_frame
Filtered_data ← append Filtered_data

end
return Filtered_data

Data Transformation

The expert data contains the behaviour all across the road segment which is non uni-
form in context of training the model. Feeding such data to DIRL model as an expert
would prove disastrous, since the prediction of future states may depend on the place
at which lane change occurs and there are are very few demonstration in highD data
to learn all such behaviours on the complete road segment. The goal of IRL is to learn
the lane change behaviour, irrelevant of the place of lane change of the ego vehicle.
To make the data set robust for training and testing the following transformation tech-
niques are employed.

1. Centering lane change maneuvers

27



3. Methods

Figure 3.5: The lane change trajectories are shifted to the centre frame, with ego
vehicle’s 2 and 4, lane change maneuver starting at 210m

The lane change maneuver of the extracted data can start from any position on
the road segment. That is the x position of ego vehicle in initial frame are varied.
To make this uniform the ego vehicle is always considered start the lane change
with x position at the mid way of the road segment, i.e at 210 m. This is executed
by shifting the x values of the time series of all the ego vehicle data, so that all the
ego vehicle x values has lane change trajectories starting from 210m. The sur-
rounding vehicles x values are shifted with equivalent amount to its ego vehicle.
The Figure 3.5 shows an example of centering function on the expert data.

2. Mirroring along road centre

The expert data collected consist of trajectories in both the upper lane and the
lower lane. In the upper lane the vehicle move from left to right, with coordinate
system defined in the Figure 3.3. x position of the vehicle reduces as it moves
from left to right. In the initial frame the vehicle has the 410m and the last frame
would have 0m. But the vehicles in the lower lane the has a completely converse
x values for initial and final frames. If this data is fed to our model, it may predict
the future behaviour based on the lane in which lane change occurs. To make
the prediction uninfluenced by the lane, the trajectories of vehicle in upper and
lower x values must be uniform, it should either increase with time or decrease
with time, but never both.

Flip the upper lane vehicle trajectories, so that it can be assumed the vehicle x
values increase with time. It can also be said that the vehicles trajectories are
mirrored with respect to the mid segment of the road. An illustration the of this
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Figure 3.6: The figure illustrates the flip transformation on the data set. The ego
vehicle 2 have their lane change maneuvers mirrored along the centre of the road.

This results in vehicle trajectories in upper lane having the same moving direction as
in the lower lane

transformation is shown in the Figure 3.6

3. Mirroring along the lane markings
In the two lane highway the vehicle moves in one of the two lanes, that is vehicle
moves in lane 2 or 3 in the upper lane, 5 or 6 in lower lane as in Figure 3.3. The
vehicle changes lane either from 2 to 3 or 3 to 2 in the upper and 5 to 6 or 6 to 5 in
the lower lane. Therefore during the lane change the values of y either increase or
decrease over the time based on the lane it starts, which again it is unsuitable as
training data. By previous convention the data whose y values decrease in time
are transformed.

Consider the ego vehicle starts from lane 3 and changes lane to 2. Over the
course of lane change the y values decreases based on the coordinate system pre-
scribed. While ego vehicle starting from 2 has the y value increased during the
lane change. This non uniformity in the behaviour of lane change can be mod-
ified by mirroring the lane change maneuvers along the lane marking. The lane
change that starts form lane 3, ending in lane 2 will be mirrored along lane mark-
ing between lane 2 and lane 3, this would transform data as though lane change
are starting from the 2 and ending in 3. So would the corresponding surrounding
vehicle data mirrored in accordance to its ego vehicle. This mirroring techinques
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is applied to expert trajectories with ego vehicle starting from 6, which mirror
along the lane marking between 5 and 6.

Figure 3.7: The expert trajectories, with ego vehicle in the lane 3 and 6, are mirrored
along the lane marking in each of the lanes such that their lane maneuver starts from

2 and 5 respectively. It results in positive y values with time t

4. Shifting lower lane
In this step the lane change occurring in the lower lanes are shifted, as though
they are happening in the upper lane. Consider as though the lower is kept on
top of the upper the lane by shifting its trajectories along the centre of the road
as shown in the Figure 3.8.

These data transformation techniques are used to process the lane change trajectories
to form the expert data for the DIRL model. The vehicle trajectories in each lane un-
dergoes at least one of these transformation or all of these transformation based on
lane in which the lane change starts.The Figure 3.9 describes all the transformation
based on the ego vehicle starting their lane change for each lanes. The transformation
performed simultaneously to the surrounding vehicle with respect to its ego vehicle.

The expert data extracted has to many features. The features that are irrelevant are
eliminated, only data from the features x(position), y (position), xVelocity and yVelocity
of the both ego vehicle and surrounding vehicle are kept. In addition to this four more
features are added to the data point, which are the difference in the x, y xVelocity and
yVelocity between the ego vehicle and surrounding vehicle. After this the data set of
the expert contains the features as mention in the Table 3.6.
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Figure 3.8: Expert trajectories in the lower lane are shifted to upper lane maintaining
the same direction as in the lower lane

Expert features Feature Description

xE Position of ego vehicle in x direction
yE Position of ego vehicle in y direction
xV el oci t yE Longitudinal velocity of ego vehicle
yV el oci t yE Lateral velocity of ego vehicle
xs Position of surrounding vehicle in x direction
ys Position of surrounding vehicle in y direction
xV el oci t yS Longitudinal velocity of surrounding vehicle
yV el oci t yE Lateral velocity of ego vehicle
x∆ Distance between ego and surrounding vehicle in x axis
y∆ Distance between ego and surrounding vehicle in y axis
xV el oci t y∆ Difference in longitudinal velocities of the ego and surrounding vehicle
yV el oci t y∆ Difference in lateral velocities of the ego and surrounding vehicle

Table 3.6: Expert Data features for the DIRL model

Expert data has very high precision, this can be of great advantage in augmenting the
data. Since the two lane road segment has fewer lane change scenarios augmenting
data helps the model for accurate prediction. The data has 0.04s sample time, for a 7.5
s trajectory the length of vehicle trajectory for each features is about 175 time steps.
Length of the sequence is large , therefore at each expert time series data is split into
two sequences with 0.08s sample time. This serves two purposes, it first helps in aug-
menting the data set and the second it reduce the sequence length for prediction.
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Figure 3.9: The figure illustrates the the complete data transformation’s undertaken by
the expert data
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3.4 Deep Inverse Reinforcement Learning Model

The current section is a description of the model building procedure for Deep Inverse
Reinforcement Learning for the traffic prediction. The data collected has the vehicle
trajectories of both the ego and the surrounding vehicle and are considered as the ex-
perts behaviours. The project learns the intention of the surrounding vehicle by pre-
dicting the trajectories of the surrounding the vehicle before and after the lane change.
The data is times series value of the vehicles position and velocity. The DIRL models in
this project is influenced from the research papers in the Natural Language Program-
ming and Imitation learning [55, 56, 57, 46].

The expert trajectories τE collected has the the state space values of the vehi-
cle and lacks the state transition dynamics to perform the usual MaxEntr IRL to learn
the driver behaviour. GAIL is most suited for our task, it learns the policy of the expert,
which in turn is a model free MaxEnt IRL [24]. GAIL can intuitively understood as the
model that learns the task given the trajectories, wherein the generator G learns the
policy π using the RL algorithm and the discriminator network helps us obtain the re-
wards at time t [24].

The project makes some advancements in the GAIL from the original GAIL ar-
chitecture. The generator in the original proposed GAIL was simple MLP used to learn
behaviour for discrete task but wasn’t efficient for continuous control task [46]. But
trajectories in our task have stochastic policy which isn’t effectively capture the by nor-
mal MLP of GAIL. So the project builds DIRL model based upon similar architecture as
Sequential Generative Adversarial Network(SeqGAN). SeqGAN was built to generate a
text sequence using GAIL principles, it can capture stochastic policy easily.

In SeqGAN, the generator of the GAN is a Sequence to Sequence(Seq2Seq) net-
work [55]. Seq2Seq is used in Natural Language Processing (NLP) for text translation
wherein the input sequence needs to be translated into different language [12], but
these are also used in time series prediction in various field of the weather prediction,
vehicle trajectories to predicts time series data efficiently [58, 59]. It consists of two
LSTM layers, where one reads the input sequence and the others extracts the trans-
lated output. The input sequences are converted to single vectorized representation
by the first LSTM encoder, and fed to the second LSTM decoder, that extracts the out-
put which is conditioned on the input vector. The discriminator in the DIRL model has
a similar architecture to that of generator. The basic architecture of the DIRL model is
shown in the Figure 3.10.

3.4.1 DIRL Model

The task of the project is to predict the future trajectories when provided with previous
history. The trajectories are nothing but state features of the expert behaviour. st is
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Figure 3.10: DIRL network architecture

the state features at time t for single feature representing one of x, y , xVelocity and
yVelocity. Complete state of the vehicle behaviour for the lane change maneuver at
time t is f (st ), which is nothing but the complete feature set in Table 3.6. The model
is explained for the single state st feature trajectories, but the same formulation holds
true to a complete feature set.

Let τ represent the set of all the expert trajectories extracted from the data.

τE = {τ1,τ2, . . .τn} (3.1)

wherein each expert trajectories is a times series of state representation of lane change
maneuver

τi = {x(i )
1 , x(i )

2 , . . . x(i )
t , y (i )

1 , . . . y (i )
T } (3.2)

τi = {τ(i )
h ,τ(i )

l } (3.3)

where τh = {x1, x2, . . . xt } represents the historical trajectories and the τl = {y1, . . . yt } are
the lane change trajectories of the expert. x1:t are in the input state trajectories that
are fed to the model, and y1:T are future trajectory. The project makes use of xt , yt to
distinguish between historical states and predicted states but these are nothing but st
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of the expert trajectory data.

The historical trajectories are fed to the generator, G that encodes historical trajectories
and generates a future trajectories. The seq2seq network of the generator, models the
conditional density of the future trajectories provided the input sequence of historical
trajectories.

P (τl |τh) = P (y1 . . . yt |x1:t ) (3.4)

P (τl |τh) =
T∏

t=1
P (yt |c, y1, . . . yt−1) (3.5)

where c = {x1 . . . xt }, is cell states fed to the decoder. The decoder of seq2seq in gener-
ates an output sequence auto-regressively, as in at each time t , the decoder takes the
input from previous decoded output and generates the output at the current time. The
output of this seq2seq model is a probability given by the softmax function.

P (yt |yt−1, y1:t ) = exp(wᵀ f (yt , yt−1, x1:t )∑
exp(wᵀ f (yt−1, x1:t )

(3.6)

The parametric output of the generator for the complete sequence is Gθ(s1:t ). At each
time step t the output of the generator is given by

Gθ(yt ) = P (yt |c, y1, . . . yt−1) (3.7)

The discriminator, Dφ is fed with with the samples of generator and real data.
It determines whether the state trajectories of the generator are real or fake. The para-
metric output of discriminator is given as

Dφ(ŷt ) = P (ŷt = y r eal
t |y1:t−1) (3.8)

The output of the discriminator is used to train the generator using RL and the discrim-
inator was updated using SGD.

3.4.2 Model training

The output of generator at time t is probability of the state yt . It can be said that ac-
tion at taken by the generator at time t is st . The state of the generator is the states
generated until the time t .

Pol i c y = π(yt ) = P (yt |ỹ1:t ) (3.9)

St ate = ỹ1:t = {y1 . . . yt−1} (3.10)

The reward is specified by the the discriminator, and we define the state value function
as shown in the equation
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rt = logDφ(ŷt ) (3.11)

Qπ(yt ) = Eπ∼Gθ(yt )
[
Dφ(ŷt )

]
(3.12)

Training our model is similar to training the GAIL 1. The output of the discriminator
are used to update the generator parameter θ by policy gradient methods. The dis-
criminator parameter φ are updated using generated policy.

The policy gradient method that is considered for our project is REINFORCE.
REINFORCE is a policy gradient method based on monte-carlo policy estimation.The
policy gradient as is given by from the theory section

∇θJ (θ) = EGθ

[
Rt∇θ logπθ(st )

]= EGθ

[
Qπ(s, a)∇θ logπθ(st )

]
(3.13)

In the present model the policy gradient can be written as

∇Gθ
J (θ) = Est∼Gθ

[
Qπ(st )∇θ logGθ(st )

]
(3.14)

Monte Carlo estimate with roll out policy is applied to unknown future trajectories
from the current step t until the final step T. It is evaluated using the same genera-
tor and is referred as GMC [55]. The sampled next state action value for st+1is given
by

Qπ(st ) =
{

1
N

∑
Dφ(ŝn

t ),∀sn
t ∈GMC , t < T

Dφ(s̃1:T ), t = T
(3.15)

Once the sequence is generated its parameter Gθ of generator are updated us-
ing the policy gradients in Equation 3.14

θ← θ+αG∇θJ (θ) (3.16)

where αG is the learning rate.

Then the discriminator generates the state action value for the policy gradi-
ents, its parameter φ are updated by normal cross entropy as defined in Equation 2.14

∇DφJ (φ) = Es∼d at a
[∇φ logD(s1:T )

]+Es∼Gθ

[∇φ log(1−D(ŝ1:T ))
]

(3.17)

Discriminator is updates by Equation 3.18, αD is the learning rate of the discriminator

φ←φ+αD∇φJ (φ) (3.18)

The complete training sequence of DIRL model undertaken is illustrated in
the Algorithm 5
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Algorithm 5 Deep Inverse Reinforcement Learning for lane change behaviour
Input : Expert data - τi = {τ1,τ2, . . .τn}

Initialize the weight parameters θ,φ

repeat
τi ← sample trajectories

for i = 1 to G steps do

yt ← Generate state trajectory from previous Gθ(yt )
Qπ(yt ) ← State action value from the discriminator Dφi+1(ŷt )
θi+1 ← Update the generator parameter using the REINFORCE

end
for i = 1 to D steps do

yt ← Generate state trajectory from previous Gθ(yt )
Qπ(yt ) ← State action value from the discriminator Dφ(ŷt )

end
φi+1 ← Update the discriminator using the cross entropy

until Number of steps;

3.5 Software library

The project makes use of the python language to perform the necessary task. The
advantage of using python language is its easy to use syntax, many inbuilt functions,
several open source library to easily perform analysis and build our model. These li-
brary are well developed in performing various specialized task like, data manipula-
tion, mathematical operation and help in building neural networks easily.

Pandas

The project makes use of pandas library to extract and build the expert data frame
required for of DIRL model. In addition it is extremely useful in data transformation
and imputing the N an values if there are in the expert data frame.

Tensorflow

TensorFlow is built on the principal of computational graphs, that performs the nec-
essary mathematical operations.It developed under Apache 2.0 licence by Google . It
is most useful in building neural networks starting from simple to complex and large
scale models. The project makes use of this library to build the generator and discrim-
inator neural network for the DIRL model.
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4
Results and Discussion

The current chapter deals with experimental results obtained form the DIRL per-
formed on the expert data. Chapter includes the brief discussion on the perfor-
mance analysis of our model.

The DIRL model was trained for 500 epoch with an equal learning rate of 0.0001 for
both the generator and discriminator networks. At each epoch, a random sample of
historical trajectory is fed as input and was trained according to Algorithm 5. The DIRL
model was trained on each feature separately to reduce the computational complexity.
As the model had to learn 12 features for predicting 4.5s of future trajectory. The statis-
tics in this section are based on 100 samples of output from the DIRL model during the
testing period. The result shown in this section are divided into longitudinal and lateral
features, this helps in recognizing the influences of each feature on the predicted tra-
jectory. The predicted trajectory is a time series, and the project measures the general
statistical parameter instead of the similarity measures between time series. It helps in
analyzing the basic structure of the data and the predicted trajectory.

4.1 Longitudinal features

The Table 4.1 illustrates the mean and standard deviation of predicted trajectory. The
results correspond to both the longitudinal features, position and velocity of the ego,
surround and their difference.

Longitudinal features Mean Standard Deviation

Position (m)
ego 347.69 42.046

surround 308.72 34.55
difference 39.88 7.49

Velocity (m/s)
ego 33.11 0.021

surround 27.20 0.085
difference 5.91 0.075

Table 4.1: Mean and standard deviation of the complete 4.5s predicted trajectories for
the longitudinal features

The longitudinal position of the vehicle is always increasing and has high vari-
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ance, as it represents vehicle position while moving along the length of the highway.
The mean longitudinal position of the ego vehicle is about 350m and varies from about
230m until the end of 450m. This due to the data transformation wherein the ego ve-
hicle’s historical trajectories start from 210m and the corresponding lane change tra-
jectory of the predicted trajectory starts around 250m. The high change in positional
features is reflected in the standard deviation. But on the contrary the longitudinal ve-
locities do not vary along the time, it is almost uniform for 4.5s. This may be due to the
highway driving scenario, as the vehicle maintains a relatively constant speed on the
highway.

Predicted trajectory

The sequential data predicted by the DIRL model is illustrated in the Figure 4.1. The
output of the predicted trajectory is compared with actual trajectory of the vehicle. It
can be deduced that the longitudinal position follows a linear trend and the velocity
trajectory is remains almost constant. The results. Longitudinal velocity has the simi-
lar prediction as the the original trajectory unlike the position. It seems that the train-
ing epoch was sufficient to capture the longitudinal velocity but not the longitudinal
position.Since the time series data of the longitudinal velocity has very small variance
along the 4.5s trajectory compared to the longitudinal position.

Longitudinal Position

Root Mean Squared Error

The Table 4.2 shows Root Mean Squared Error (RMSE) evaluated for predicted trajec-
tory. The table is divided into three equal time intervals for the 4.5s trajectory output,
predicted by the DIRL model. The division of output time series into time intervals
helps to analyze the robustness of the model to predict long-time series with only his-
torical trajectories. DIRL is very good at predicting the initial times series until 1.5s as
it has less deviation. But has relatively weaker performance in the second interval, as
the deviation from the original trajectory as the lane change behaviour is maximum at
this place. But in the third interval, it significantly improves its performance with very
small errors. This behaviour can be also observed form the Figure 4.1
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Longitudinal Velocity

Figure 4.1: The plots of longitudinal position and velocity of 4.5s predicted trajectory

Features
RMSE

0s -1.5s 1.6s - 3s 3.1s -4.5s

Position (m)
ego 3.455 3.85 3.74

surround 3.385 4.162 4.127
difference 3.021 3.91 3.324

Velocity (m/s)
ego 1.0105 1.036 0.969

surround 1.002 1.054 0.957
difference 0.978 0.998 0.972

Table 4.2: Evaluation of the RMSE of the predicted trajectories for the longitudinal
features. RMSE is evaluated for 3 time intervals for the 4.5 s trajectory

4.2 Lateral features

In this section, the output of the model is evaluated for the lateral features. The lat-
eral features of both the position and velocity were scaled before being fed to the DIRL
model. Scaling was necessary as the changes in the lateral direction are too small to
be captured by the networks. Table 4.5 shows the average lateral displacement of the
vehicle during the lane change. The displacement in the lateral position was compara-
tively small compared to a longitudinal position. The surround vehicle has the highest
displacement signifying its lane change behaviour. But the more influencing feature is
the lateral velocity that has a significant change in values for the mean and standard
deviation.

Predicted trajectory

The lateral position and velocity of the predicted trajectory is compared and plotted
as shown in the Figure 4.2. The lateral position and the lateral velocity follows similar
trend unlike the longitudinal features.The lateral velocity has a non linear trend espe-
cially the surround vehicles trajectory.
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Lateral features Mean Standard Deviation

Position (m)
ego 12.08 0.965

surround 14.54 0.01
difference 2.45 0.953

Velocity (m/s)
ego 0.678 0.18

surround 0.041 0.009
difference 0.638 0.019

Table 4.3: Mean and variance of the sampled predicted trajectories for lateral features

Lateral Position

Lateral Velocity

Figure 4.2: Plots of lateral position and velocity of 4.5s predicted trajectory

Root Mean Squared Error

The robustness of the DIRL model for lateral features is evaluated using the RMSE for
the predicted trajectories. The RMSE is evaluated at three time intervals as shown in
the Table 4.4. The model performs significantly better at predicting the ego vehicle
trajectories position and velocity for all three-time intervals. Moreover the model has
the highest accuracy in predicting the ego vehicle’s position in the third interval and
difference position in the second interval.The model performance in predicting the
driving behaviour reduces after 1.6s .

42



4. Results and Discussion

Lateral Features
RMSE

0s -1.5s 1.6s - 3s 3.1s -4.5s

Position (m)
ego 2.181 2.894 0.816

surround 2.058 2.98 1.637
difference 1.537 0.57 1.093

Velocity (m/s)
ego 0.474 0.749 0.589

surround 0.141 0.284 0.113
difference 0.42 0.671 0.751

Table 4.4: Evaluation of the RMSE of the predicted trajectories for the lateral features.
RMSE is evaluated for 3 time intervals for the 4.5 s trajectory

4.3 Discussion

In this section, the overall performance of the DIRL is evaluated and analyzed. Table 4.5
show the overall RMSE values for all the features, predicted trajectory. RMSE for all the
features is significantly lower except for the lateral velocity. This can also be viewed in
Figure 4.2. The predicted trajectory of lateral velocity has a noisy behavior compared
to the rest of the predicted trajectory.

features RMSE

Longitudinal Position (m)

ego 3.687
surround 3.98
difference 3.41

Average 3.61

Longitudinal Velocity (m/s)

ego 1.007
surround 1.014
difference 0.98

Average 1.001

Lateral Position (m)

ego 1.963
surround 2.258
difference 1.082

Average 1.757

Lateral Velocity (m/s)

ego 0.604
surround 0.179
difference 1.87

Average 0.875

Table 4.5: Mean and variance of the sampled predicted trajectories for lateral features

The RMSE of the position for longitudinal and lateral is 2.68m and similarly
the RMSE for the velocity is 1.005m/s. This results show that the DIRL model predicts
the the positional feature more accurately than velocity feature . Since the model was
the scaled for the velocity features , the error also are scaled, this may be on of the
reason that the velocity feature prediction has weaker performance.
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DIRL was set up to choose random values from the given vocabulary size based
on the probability output from the generator’s soft-max to predict the next time tra-
jectory. It helped the DIRL model to choose diverse values to capture varied driving
behaviour and get the reward for all such values. The probability distribution from the
softmax layer of the generator was spread out for data with high variance such as lon-
gitudinal position and lateral velocity. The discriminator provided this prediction with
relatively good rewards even though the prediction was not accurate for the current
input(historical trajectory). Training generator with this reward weakens the generator
performance to provide a noisy time series prediction. The spikes and noise illustrated
in the predicted trajectory for the longitudinal position and lateral velocity feature Fig-
ure 4.1,4.2 are due to the above reasons. The DIRL model compensates for accuracy to
predict varied trajectories and driving behaviour.

The feature set of the expert includes the difference column, but analysis con-
centrated on the ego and surround features. The difference column was added to the
feature set to test hypothetical case when provided only the relative position and speed
of the ego and surround vehicle could the DIRL model learn the driving behavior. The
DIRL model was able to predict this feature quite accurately.

The list of features that are trained is large. It can be of advantage if the fea-
tures set could be reduced. In such a case reduced data set must contain the most
important features. Based on the results the most varying features are the longitudi-
nal position and lateral velocity. These two features are of significant importance and
must be retained in the reduced data set for prediction.

Initially, the model was set up to run the DIRL model until the generator and
the discriminator converges. But the time it took was very high and ran into unprece-
dented executions glitches. The convergence of GAN wasn’t achieved one of the rea-
sons is that the varied time series trajectories. The generator of DIRL couldn’t capture
all the time series behaviour to fool the discriminator. This lead to reducing the train-
ing period of DIRL for a fixed number epoch mention earlier in this section. Even after
reducing the training period DIRL model took about 12 - 15 hours to train each fea-
ture. Using more advanced computers with multi-core capabilities the DIRL model
can easily predict the vehicle trajectories.
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In this section the project result are contextualized with the research questions
and a possible future course of direction for the project development for better
performance are suggested.

5.1 Conclusion

In the current project, a model based on inverse reinforcement learning was developed
to predict human driving behavior during the lane change scenario. The DIRL model
predicts the vehicle motion trajectory for 4.5 sec given the historical vehicle motion.
The vehicle trajectory predicted, in turn, reflects the intentions of the driver during
and after lane change. The DIRL model predicts the behaviour of both the ego vehicle
and the surrounding vehicle during lane change scenarios. Though the aim was to pre-
dict the surrounding vehicle motion the model tries to predict a probabilistic trajectory
of the lane change interactions all-together. This probabilistic time series prediction is
very useful when provided to ADS.

The project aims to find answers to the research question stated in Section 1.
From the results of the DIRL model, the answer to the research question is explained.

• Research question 1:How efficiently can Deep Inverse Reinforcement Learning
algorithms can predict vehicles behaviour?

The DIRL model predicts the lane change behaviour of the vehicle quite accu-
rately with RMSE for the position is 2.68m and the RMSE for the velocity is 1.001m/s.
The advantage of the DIRL model compared to the deep learning model is that
it can predict a complete lane change trajectory of the vehicle behavior. DIRL
model was able to learn such a complex driver behaviour with a comparatively
small data set.

The DIRL model was able to predict the longitudinal position, velocity and lateral
position more accurately than the lateral velocity. The model was trained for
relatively small-time, so to produce more accurate results DIRL model must be
trained for a longer period or until the GAN converges with a more advanced
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computer.

• Research question 2: How are the features of the surround vehicle mapped to
get the optimal reward in inverse reinforcement learning?

The reward functions are used to train the GAN using inverse reinforcement learn-
ing as described in Algorithim 5. The model maps the reward function to gener-
ate the predicted trajectory. So in the DIRL model, the rewards are not explicitly
generated but are learned by the model, which influences the performance of
the predictions.

Optimal or the best reward generates the optimal policy according to Equation
2.33 [34]. In the current project, a policy is nothing but the predicted trajectory.
The predicted trajectory of longitudinal and lateral features with the least error
has the optimal reward mapped to the features set. The features, both longi-
tudinal and lateral of ego vehicle has the optimal rewards. Since the predicted
trajectory is very similar to the expert trajectory. The DIRL model could not learn
the optimal rewards of the surround vehicle features but with more training, it
would be possible to learn the best reward for the surrounding vehicle.

• Research question 3: Can the model predict future driving behaviour even af-
ter the lane change based on the output of the inverse reinforcement learning
algorithm?

The DIRL model is based on the Sequence to Sequence architecture that can pre-
dict time series of variable length. It is possible to predict the trajectory for more
than 4.5s using the current prediction model. It is shown in the Tables 4.14.5 that
the RMSE for the final interval of 3-4.5s for all the features is low. It seems that
DIRL model may able to predict future trajectories beyond the 4.5 sec, which is
after the lane change. But the accuracy of the predicted value must be evaluated
and if the surround makes another lane change after the 4.5s it may be difficult
for the model to predict this behaviour

5.2 Future Work

The project concentrated on discovering a new approach in predicting the driver in-
tentions. Therefore there is a huge scope for improving the model. Future work on this
model can be made for more accurate result, in the following direction that are listed
below.

• Due to the scope and time constrain the DIRL model was trained on individual
features. It would be ideal to train the DIRL model on multiple features.

• The project concentrated on two agent lane changing scenario. The model can
be extended to predict driver behaviour of multiple agents and multiple scenar-
ios.
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• Training the DIRL model can also include the training the hyper-parameter of
the neural network

• The number of LSTM layer can be increased in the GAN network, especially in-
creasing the LSTM in the Generator, improves the efficiency of the model.

• Experimenting with various architectures in the generator network and discrim-
inator network, on of the possible is to make use of wavenet model, as it seems
promising for sequential data.

• Advanced policy gradients such a Actor Critic, TRPO, DQN and PPO yields better
result and may reduce the variance of the time series prediction.

• A comparative study of the DIRL model with already known models may help to
gauge the superiority or the advantages of DIRL model
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