
Evaluating word-vector generation
techniques for use in semantic role
labeling with recurrent LSTM
neural networks
Master’s thesis in Computer Science: Algorithms, Languages and Logic

DANIEL TOOM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017:NN

Evaluating word-vector generation techniques
for use in semantic role labeling

with recurrent LSTM neural networks

DANIEL TOOM

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Evaluating word-vector generation techniques for use in semantic role labeling with
recurrent LSTM neural networks
DANIEL TOOM

© DANIEL TOOM, 2017.

Supervisor: Richard Johansson, Department of Computer Science and Engineering
Examiner: Alexander Schliep, Department of Computer Science and Engineering

Master’s Thesis 2017:NN
Department of Computer Science and Engineering
Computing Science division
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Printed by [Name of printing company]
Gothenburg, Sweden 2017

iv

Evaluating word-vector generation techniques for use in semantic role labeling with
recurrent LSTM neural networks
DANIEL TOOM
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This is an investigation of how the performance on a natural language task, semantic
role labeling (SRL), is affected by how the input text is encoded. Four methods for
encoding words as dense vectors of floating-point numbers are evaluated: Noise-
contrastive estimation (NCE), Continuous bag-of-words (CBOW), Skip-grams and
Global vectors for word representation (GloVe). Vectors are generated using a corpus
of Wikipedia articles as the training set, with different values for various parameters,
such as vector length, context length and training methods. In order to evaluate
the generated vectors, they are then used as the input into a recurrent bi-directional
neural network using LSTM neurons. This network is trained using the standard
CoNLL-2005 shared task data set, and evaluated with the associated test sets. The
results show that there is no large or consistent advantage to using word encodings
from any of the tried methods or any of the tried parameter settings over any of the
other methods or parameter settings. The SRL system that was used thus seems to
be fairly robust in regard to the choice of input vectors. All methods generate vectors
that outperform random vectors, however, indicating that pretraining vectors has a
positive effect. The labeling accuracy is close to but slightly worse than previously
published state-of-the-art performance results from the use of a similar network on
the SRL task.

Keywords: word-vector generation, SRL, NCE, CBOW, skip-grams, GloVe, CoNll-
2005, LSTM RNN.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Research questions and scope . 2
1.2 Overview . 2

2 Word vectors 3
2.1 Motivation for and overview of dense vector representations of words 3
2.2 Methods based on manual feature engineering 3
2.3 Cooccurrence counting . 4

2.3.1 Matrix methods . 5
2.4 GloVe: Global vectors for Word Representation 6
2.5 Artificial neural networks and their use in prediction-based methods

for word-vector generation . 6
2.5.1 Training neural networks . 8

2.5.1.1 Using Adagrad or Adadelta for learning rate adjust-
ments . 8

2.5.1.2 Adam — Adaptive moments 9
2.5.1.3 Avoiding overfitting — regularization and early stop-

ping . 10
2.6 Continuous bag-of-words . 10
2.7 Skip-gram . 13
2.8 Another prediction-based method: A log-bilinear model with noise-

contrastive estimation . 14

3 Evaluating the performance of word vectors 17
3.1 Intrinsic measures . 17
3.2 Extrinsic measures . 18
3.3 The SRL task . 19

3.3.1 Traditional strategies for SRL, using manually crafted features 19
3.3.2 SRL with neural networks . 21

3.3.2.1 Sequence labeling with long short term memory . . . 21
3.3.2.2 Using LSTM for language tasks — a bidirectional

network . 22
3.3.2.3 Input features for the neural network 25

vii

Contents

3.3.2.4 Conditional random fields as classifiers for sequences 25
3.3.2.5 Output labelings using a CRF 26

4 Implementation 27
4.1 Implementation of word-vector generation algorithms 27
4.2 Implementation of the SRL-system 28
4.3 Training and evaluation datasets . 28

4.3.1 Data sets for the SRL task . 29
4.4 Evaluation benchmark . 29
4.5 Overview of investigated settings for the vector generation algorithms 30

5 Results 33
5.1 Preliminary testing . 33
5.2 Results using random vectors . 34
5.3 Results using vectors from NCE . 34
5.4 Results using vectors from CBOW and Skip-gram 35
5.5 Results using vectors from GloVe . 36
5.6 Confirmation of outlier results . 36
5.7 Statistical comparison of some parameter settings 37
5.8 Comparison of methods . 37

6 Conclusion 39
6.1 Comparison to previous results . 39
6.2 Future work . 41

Bibliography 43

viii

List of Figures

2.1 Predicting a target word from a given one-sided (asymmetric) context. 5
2.2 Predicting the one-sided (asymmetric) context words from a given

target word. 5
2.3 Predicting a target word from a given two-sided (symmetric) context. 5
2.4 Predicting the two-sided (symmetric) context words from a given tar-

get word. 5
2.5 A sigmoid neural network unit with inputs x, weights w and output y. 7
2.6 Continuous bag-of-words network. Note that the projection layer also

includes the summing of all the looked-up vectors. 11
2.7 Continuous bag-of-words network with hierarchical softmax. Note

that the projection layer also includes the summing of all the looked-
up vectors. 13

3.1 A long short-term memory (LSTM) unit. 23
3.2 An overview of the neural network used in this thesis for SRL. Note

that the boxes marked LSTM represent several LSTM units. Peephole
connections (from the LSTM states to the gate inputs) are not shown.
Beginning-X in the output means that the tag X begins at that word. 24

ix

List of Figures

x

List of Tables

3.1 An example of SRL tags for an input sentence with two predicates.
The predicate label is given in the input, shown as (P). A separate
set of labels is generated for each predicate of the sentence. Empty
columns denote a null tag. 19

3.2 Inputs to the network for each time step. Here n is the size of each
word vector and c is the length of the context in words. 25

4.1 Closest neighbors for some common words in the output of the NCE
implementation. 28

4.2 An example of the Inside Outside Beginning (IOB) tagging scheme. . 29
4.3 Investigated vector generation parameters. 31

5.1 F1 scores with randomly initialized word vectors. In the constant
vectors case, vectors were randomized at the start of the training and
never changed. In the variable vectors case, vectors were randomized
at the start of the training and then trained using backpropagation
together with the rest of the neural network. Dev, Wsj and Brn refer
to the development set, Wall Street Journal test set and Brown test
set of the CoNLL-2005 shared task benchmark, respectively. 34

5.2 F1 scores for NCE on the dev set. 35
5.3 F1 scores for CBOW and Skip-gram, using five-sample negative sam-

pling. 36
5.4 F1 scores for CBOW and Skip-gram for different training methods.

All tests used ten-word contexts. 36
5.5 F1 scores for GloVe. The asterisks indicate a context length of +1

compared to the labels in the table. 37
5.6 F1 scores for re-run tests. 37
5.7 F1 scores for the best vectors from the previous tests. Dev, Wsj and

Brn refer to the development set, Wall Street Journal test set and
Brown test set of the CoNll-2005 shared task benchmark. 38

5.8 Parameter settings corresponding to the performance figures pre-
sented in table 5.7. 38

xi

List of Tables

xii

1
Introduction

Natural language processing (NLP) nowadays makes heavy use of machine learning
techniques, such as artificial neural networks. These techniques generally work with
continuous values as input, requiring that texts be translated into a suitable repre-
sentation. This thesis deals with the problem of finding suitable ways of encoding
(or embedding) words as vectors of floating-point numbers. There are several com-
monly used methods for generating dense vector representations [1]–[3] with the goal
that these should contain as much useful information for NLP tasks as possible. The
use of such dense vectors has several advantages over other sparser representations,
such as one-hot encoding. For instance, since the dimensionality can be much lower,
processing can be more efficient. Another advantage is that if words with similar
meanings are given similar representations, then a machine learning system should
be able to make better use of small training data sets, since similar input texts can
be dealt with in similar ways, and so generalization performance can be improved
[4].

Many vector-generation techniques can be tuned by the setting of various parame-
ters. As an example, most methods make use of a word’s common contexts in a large
text corpus to capture the meaning and grammatical features of words. For such
methods, the length of the contexts that are considered can impact the resulting
vectors. Consequently, another goal of this work is to investigate the performance
impact of various settings for such parameters.

Methods for evaluating word-vector embeddings can be divided into extrinsic and
intrinsic categories. Intrinsic evaluations use some low-level benchmark, often specif-
ically designed for vector evaluation. Examples of such evaluations are comparing
vectors representing synonyms and tasks where the objective is to answer questions
about analogies on the form “a is to b as c is to what?” Extrinsic evaluations on
the other hand take actual NLP task performance as a proxy for the performance
of the word vectors. The latter approach is the one taken in this thesis.

Semantic role labeling (SRL) is the task of finding role labels for words or phrases in
natural language texts and it is the extrinsic measure of quality used in this work.
Semantic roles describe the semantic relation of a predicate, often a verb, to its
arguments [5]. For instance, given the sentence “The thief was hit with a bat by
the house owner”, for the predicate “hit” the role of agent can be assigned to “the
house owner” and the role of theme or patient can be assigned to “The thief” and
finally, the role of instrument can be assigned to “a bat”. Such labels comprise useful

1

1. Introduction

information for many machine learning tasks, such as document categorization [6],
question answering [7], sentiment analysis [8] and translation [9].

Recently, Zhou and Xu [10] showed that a deep-learning method can be used to
solve the SRL task. Their machine learning system, using long short term memory
(LSTM) artificial neural network units coupled with a conditional random field
(CRF) classifier, was able to reach state-of-the-art classification performance on a
standard SRL benchmark. A similar system is used here as a testbed.

1.1 Research questions and scope

The research questions that this thesis aims to answer are the following:

• Which method for word-vector generation yields the best performance in an
SRL benchmark?

• How should that method’s parameters be set?

This investigation is limited in scope in the following ways:

• The evaluation of the word-vectors is only performed with only one extrinsic
performance measurement, the SRL task and only one benchmark for this task
is used, the CoNLL-2005 shared task [11].

• The thesis work does not comprise a comparison of resource usage for the
investigated methods, neither in the sense of running times nor in the sense of
memory use. Such matters obviously form practical limitations for the scale
of the experiments, but beyond this, no further regard is taken to resource
usage.

1.2 Overview

The following background theory chapters contain a general introduction to word-
vector generation, a description of four methods to be evaluated, a discussion about
extrinsic and intrinsic testing and an introduction to SRL machine learning methods
in general as well as the SRL machine learning system used by Zhou and Xu [10].

The implementation chapter covers some implementation details as well as details
about which tests were run. The results chapter presents the results from the vector-
generation methods one by one. In the discussion chapter, some differences between
Zhou and Xu’s [10] results and the results in this thesis are discussed, some compar-
isons to previously published evaluations are made and some suggestions for further
research are given.

2

2
Word vectors

This chapter starts with a general discussion about and motivation for representing
words as dense vectors. Next comes a description of the vector-generating algorithms
that were evaluated in this work, some of which use neural network techniques.
These techniques are therefore explained when needed.

2.1 Motivation for and overview of dense vector
representations of words

Let us first consider some general issues regarding how to represent a word in a
useful way for a machine learning system. As a first suggestion, one could imag-
ine representing words as one-hot vectors, with a length equal to the size of the
dictionary. In this case, each word would correspond to a vector with zeros in all
places except one place. With very small dictionaries, this may be a feasible way
to represent words but in real applications the dictionary size is in the hundreds of
thousands or greater, leading to extreme data sparsity. Another downside with this
strategy is that this encoding does not give a machine learning system any informa-
tion about which words are similar in syntactic function and meaning. It would be
better if words like “table” and “house” had representations that showed that they
can be used as nouns (syntactic similarity), just as it could be useful if words like
“book” and “read” had representations that hinted at their having related meanings
(semantic similarity) [4]. In the following sections we give an introduction to various
methods that have been tried to address these two issues.

2.2 Methods based on manual feature engineering

To solve the similar-word/dissimilar-vector problem, a traditional strategy has been
to manually design word features and then use these features to encode the words
to be input into a machine learning system. To elaborate, word features that may
be useful for the particular machine learning task, such as part of speech, tense,
number, various semantic features etc. would be manually annotated for each word.
One would then form one-hot vectors for each feature, so that for instance if there

3

2. Word vectors

are 20 parts of speech, the part-of-speech feature vector would have 20 elements: 19
zeros and 1 one for each word. All the one-hot vectors for the different features could
then be concatenated to form a representation for a word. If there are many features
or features with many possible classes, these vectors may still be very sparse and
high-dimensional, but similar words would now have similar encodings. The sparsity
problem is exacerbated by the fact that it is often useful to encode combinations of
such core features into additional features. For instance, it may be useful to have
a feature that combines the part of speech information about the previous word as
well as the current word in a sentence. Thus, this combined feature vector would
have n2 elements where n is the number of parts of speech [4].

To solve the sparsity problem, one solution is to “compress” the data into fewer
dimensions using linear algebra matrix operations. For instance, singular value
decomposition (SVD) can be used to factorize a matrix of word vectors into several
smaller matrices, one of which can be used as a dense approximate representation
of the initial larger one. It is also possible to use neural network techniques for this
compression [4].

Deciding what features to use is a non-trivial problem, requiring trial-and-error to
discover which ones works best for different natural language processing applications.
There are other methods that do not require this manual feature engineering, but
rather find useful features using only a corpus of text as the input. There are, for
instance, methods based on cooccurrence count matrix factorizations and methods
based on predicting a word from its common contexts. The next sections give brief
introductions to these categories of methods.

2.3 Cooccurrence counting

In all the methods presented below, the common contexts of words in a large text
corpus are used to find good vector representations for those words. The basic idea
behind this is that words that are used in similar contexts probably can be expected
to have similar meanings and similar syntactic features. For instance, given the
context “She saw the (x) on the table.”, words that could be used in the place of
(x), would be words that can appear in a nominal function (function as nouns) and
they would also be words denoting items that are possible to put on tables (not too
large physical objects). Thus, from a word’s common contexts, it should be possible
to extract both syntactic and semantic information. Generally, larger contexts tend
to lead to a word’s semantic features having a greater importance, whereas shorter
contexts tend to favor its syntactic features [12].

Contexts to be used by word-vector-generating algorithms can be configured in
multiple ways, as shown in figures 2.1, 2.2, 2.3 and 2.4. The algorithms can either try
to find vectors that make it possible to predict a target word from a given context,
or, given a word, predict its common context words. The contexts can be either
one-sided (i.e. asymmetric) or two-sided (i.e. symmetric). Note that in this thesis,
the terms “word” and “token” are used interchangeably to mean the occurrence of

4

2. Word vectors

a string of characters, used in a text, that is processed as one unit by some learning
algorithm. As seen in the figures, tokens also include punctuation and clitics.

Figure 2.1: Predicting a target word from a given one-sided (asymmetric) context.

Figure 2.2: Predicting the one-sided (asymmetric) context words from a given
target word.

Figure 2.3: Predicting a target word from a given two-sided (symmetric) context.

Figure 2.4: Predicting the two-sided (symmetric) context words from a given target
word.

2.3.1 Matrix methods

A simple way to use cooccurrence counts is to form a word-word matrix, A, where
Aij is the number of times that the word i occurs in the word j’s context in a large
text corpus [12]. Now, the dot product of two row vectors of the matrix, normalized
by the product of their lengths, constitutes a measure of the similarity of these two
vectors. The more similar the directions of two vectors are, the greater the dot
product becomes, and in order to reduce the effect of how common words are, the
normalization is added. This value is called the cosine similarity, since it is equal to
the cosine of the angle between the two vectors.

In this case too, there is the issue of sparsity, since many words never occur in each
other’s contexts and the vocabulary can be very large, so similar dimensionality
reduction have been used for these vectors as described in section 2.2.

5

2. Word vectors

2.4 GloVe: Global vectors for Word Representa-
tion

A recent variation on the theme of factorizing cooccurrence matrices was suggested
by Pennington, Socher and Manning [3], called Global Vectors for word represen-
tation (GloVe). The idea behind this method is that ratios of cooccurrence proba-
bilities should be the basis for word-vector learning. They argue that if P (x|y) is
defined to be the probability of word x occurring in word y’s context, then if the
ratio P (a|c)/P (b|c) is high, then c probably has a greater similarity to a than to b.
Thus, if we have word vectors w for target words and w̃ for context words, then the
model F that is trained should somehow relate the ratio P (a|c)/P (b|c), which can
be tabulated from a corpus, to wa, wb and w̃c (where wx is the vector representation
of the word x). By arguing that what matters is really the difference between the
vectors wa and wb and that w and w̃ should be used in a symmetrical way in the
model, they arrive at the following equation; see [3] for details.

wT
a w̃c + ba + b̃c − log(P (a|c)) = 0 (2.1)

In training, the objective is to find vectors, wa and wc, and scalars ba and b̃c, such
that equation 2.1 is approximated as well as possible, for all possible combinations
of a, b and c from the vocabulary. This is done by minimizing the squared error.
Also, a weighting is multiplied with the error, so that more common words are
counted more towards the total error than uncommon words, without overweighting
very common words. Through testing, Pennington, Socher and Manning found that
a weighting that works well is given by equation 2.2, where xw is the occurrence
count of the word w in the 6-billion-word corpus that they used for training. The
parameters a and xmax were set to 3/4 and 100 respectively,

f(xw) = (xw/xmax)a, if xw < xmax, else 1. (2.2)

2.5 Artificial neural networks and their use in
prediction-based methods for word-vector gen-
eration

Artificial neural network (ANN) techniques can be used for finding word vectors,
through the task of predicting what words commonly appear in what contexts. Some
training techniques used for ANNs are also used in noise-contrastive estimation
(NCE), which is another vector-generation method, described in a following section.
Finally, the SRL task can also be solved with ANNs. Therefore, what follows is a
short introduction to the structure and training of such networks. The following
description is based on Lecun, Bengio and Hinton’s introduction to ANNs [13].

6

2. Word vectors

Figure 2.5: A sigmoid neural network unit with inputs x, weights w and output y.

An artificial neural network is a machine learning tool that can be used for clas-
sification tasks, where the objective is to decide which of several classes an object
described by an input vector belongs to. A traditional artificial neural network is
composed of several layers of neurons, where each neuron combines a number of
inputs to produce an output that is passed on to the next layer. The inputs for the
first layer are thus the independent variables in the classification problem, and the
output from the last layer constitutes the network’s classification of the input.

The output of a neuron in a traditional artificial neural network with n scalar inputs,
xi, i ∈ [1, n], is described by equation 2.3 and a pictorial representation of such a
neuron is shown in figure 2.5. As can be seen, the scalar product of the input
vector and a vector of weights, w, is computed (each neuron in each layer has its
own weights), and the result is then fed into a non-linear function, σ. It can easily
be shown that if there is no such non-linearity, the addition of more neurons to a
layer in a neural network does not increase the expressiveness of that layer. Some
possible choices for this non-linearity are the sigmoid function in equation 2.4, the
tanh function in equation 2.5 or the rectified linear function in equation 2.6. Two
of these choices for non-linearities also have the effect of squashing the output into
a limited range — (0, 1) for the sigmoid and (−1, 1) for the tanh function. The
main advantage of the rectified linear function is that its derivative does not go to
zero for large inputs, which is very helpful in training networks with many layers. If
there is a connection between every neuron in layer n to every neuron in layer n+ 1
then these layers are said to be fully connected, which is the common case in the
applications used in this thesis.

y = σ(
n∑

i=1
wixi) (2.3)

σsigmoid(x) = 1
1 + e−x

(2.4)

σtanh(x) = e−2x + 1
e−2x − 1 (2.5)

σrelu(x) = x if x > 0, else 0 (2.6)

7

2. Word vectors

In the simplest case, the output of the network is a binary classification. That is,
the purpose of the network is to conclude whether some input data belongs to one of
two classes. As an example, one might imagine a network designed to classify houses
as overpriced or not given certain input statistics about their sales. The last layer of
the network could in such a network consist of a single sigmoid or tanh neuron whose
output would constitute the classification. A value closer to the maximum output
could be taken to mean that the network classifies the house as more probable to be
overpriced whereas a value closer to the minimum output could be taken to mean
that the network classifies the house as less likely to be overpriced.

If there are more than two classes in the learning problem, there would be one
neuron for each class in the final layer and their outputs would be fed through a
normalization, such that the sum of all outputs equal 1. In this case, the outputs can
be understood as probabilities for the different classes. This normalization is called
softmax, and is shown in equation 2.7, where c is a class, C is the set containing all
possible classes and yx is the output from the neuron corresponding to class x.

P (c) = yc∑
i∈C yi

(2.7)

2.5.1 Training neural networks

In order to find optimal values for the weights to use in a neural network, a training
set with correctly prelabeled data is used. The purpose of the training is to minimize
the error on this training set, measured by some function of the output of the network
and the correct labels, called the loss function.

To do this, the algorithms forward/backward propagation are commonly used to-
gether with stochastic gradient descent (SGD). The first step is to feed a batch of
training examples through the network and compare the output from the network
with the correct output using the loss function. This is the forward propagation
part of the algorithm. The next step is to change the weights of the network so that
the error in the classification is reduced. The gradient of this error with respect to
the weights is calculated and an average is taken over the training examples. This
is called the backward propagation part of the algorithm, since the gradients in any
layer can be calculated using the chain rule for derivatives if the error gradient with
respect to that layer’s output is known. So, for each layer starting at the last layer,
the gradient is calculated with respect to that layer’s weights and then the error
gradient with respect to that layer’s inputs is propagated backwards. Finally, the
weights are updated in the direction of diminishing errors, as given by the gradient.

2.5.1.1 Using Adagrad or Adadelta for learning rate adjustments

An important parameter in SGD is the step size, which decides the size of the update
steps in the direction of the error gradients. If this is too small, then training will

8

2. Word vectors

take longer than necessary and if it is too large, the algorithm may take too large a
step and skip over an optimal configuration of the weights. Simply stated, it would
be preferable if the step sizes were large when the training had just begun and
smaller as the training went on and the model closed in on an optimal configuration
of weights. A method for doing this without manually setting learning rates and
which has been used in language tasks is called Adagrad, short for Adaptive gradient
algorithm.

The idea behind Adagrad is to maintain histories of previous gradients and adjust
the learning rate according to these [14]. If there have been many large updates to
the weights in the past, then the learning rate is reduced for these weights. This
is done by maintaining a squared sum or previous gradients for all the weights (see
equations 2.8 and 2.9, where T is the number of training batches so far, f is the
function being optimized, wt is a vector of the weights with respect to which the
gradient is taken, λ is the nominal learning rate (a “master” learning rate), z is a
“fudge factor”, used to prevent numerical instability if g should be very small and
� is component-wise multiplication.)

gT =
T∑

t=1
(∇wtf)� (∇wtf) (2.8)

wT = wT−1 − λ
∇wT

f√
g + z

(2.9)

A problem with Adagrad is that it reduces the rate of learning fast, and the rate
reduction caused by Adagrad can never diminish as learning goes on. Thus, the
learning rate for often-updated parameters can become very low, very much reducing
the impact of late training examples as compared to early ones. A modified version
of Adagrad can reduce this problem, by decaying the rate adjustment factor for
each update of the weights. This is a description of a simplification of a method
called Adadelta. Only g is changed from Adagrad, and the new version is shown
in equation 2.10, where d is a decay factor that controls how fast old gradients are
forgotten.

gT = gT−1d+ (1− d)(∇wT
f)� (∇wT

f) (2.10)

2.5.1.2 Adam — Adaptive moments

Another alternative method for updating variables in SGD is called Adam [15], or
Adaptive moment estimation. This method keeps track of moving averages of the
first and second moments of the gradients and uses these values in its update rule for
the parameters. That means that if a certain parameter’s derivative has had a very
similar value, close to say a, in several consecutive time steps, then the estimated
first moment (the mean of those derivatives) will be close to a for that variable and
the estimated second moment (the variance of the derivative) will shrink towards

9

2. Word vectors

0. In this case it is considered safe to increase the update rate for this variable.
On the other hand, if the derivative of a certain variable with regard to the error
function has had values both positive and negative and with a large range in several
consecutive time steps, then the first moment will be close to 0, and the second
moment will be large. In this case, the rate of update for this parameter should
be kept more conservative. Thus, the update rule for the Adam method is given in
equation 2.11 wherem1 andm2 are moving averages of the first and second moments
of the gradient respectively, λ is the learning rate and z is a fudge factor to avoid
numerical instability.

wT = wT−1 − λ
∇wT

f �m1√
m2 + z

(2.11)

2.5.1.3 Avoiding overfitting — regularization and early stopping

A problem in most machine learning applications is known as overfitting — when a
learnt model is so detailed and/or powerful that it is able to predict correct labels
for a training data set very well, but the model is not able to get generalized good
classification performance on data outside of the training set. One way to reduce
this problem is by penalizing models that make use of many model parameters to
very well fit to the training data. This can be done by regularization, where having
many high values for model weights are penalized in the loss function. For instance,
if L2 regularization is used, then the L2 norm of the model’s weight vector is added
to the loss function (weighted by a factor).

Another way to reduce overfitting is by early stopping. In early stopping, a part of
the training data is not actually used for training the model, but as a check to see
whether further training increases the generalized classification performance of the
model. The system is trained until the classification performance on this part of the
training set does not increase or starts to drop.

2.6 Continuous bag-of-words

Returning to the discussion on word-vector-generation, the following sections present
two methods based on neural network techniques. In the continuous bag-of-words
(CBOW) model, the objective is to predict a target word when given a context.
Mikolov, Corrado, Chen and Dean [2] presented an efficient method to perform this
task. The network that they used consisted of three layers: input, projection and
output, as shown in figure 2.6.

The first layer is the input layer with one-hot representations of the context words.
Thus, the size of each input context vector is equal to the size of the dictionary.

The middle layer is a projection layer, which can be thought of as a look-up table

10

2. Word vectors

Figure 2.6: Continuous bag-of-words network. Note that the projection layer also
includes the summing of all the looked-up vectors.

where a vector representation of the target word is looked up. In a bag-of-words
model, the sum or average of the vectors from the context is computed and passed
on to the next layer. See equation 2.12 where W is a matrix containing the vector
representations, xt are the input one-hot representations for all T context words.
The size (in number of parameters) of the middle layer is the size of the dictionary
times the size of the vector representations. However, since only one vector is used
per input word, the amount of computation required in this layer is still small.
The word vector representations in this layer (W) constitute the output when the
training is done.

y =
T∑

t=1
Wxt (2.12)

The final layer is a prediction/output layer where the target word is predicted. One
could imagine this (fully connected) layer implemented with one neuron per word in
the dictionary, and one could use softmax to make predictions as to which word is the
most probable target word. However, this would require a number of computations
of the order of nv where n is the number of words in the context and v is the size
of the dictionary. Since the size of the dictionary can be very large (hundreds of
thousands or even millions of words), this would be very inefficient.

One way of avoiding the inefficiency of calculating the full softmax in the final layer

11

2. Word vectors

is to use what is called negative sampling [16]. In negative sampling, not all neurons
in the output layer are used, but only a randomly sampled subset. For instance,
given the context “she walked into the” — “and ordered a drink” and the actual
target word “bar”, all taken from a corpus, the algorithm could generate a number
of random noise target words, like “and”, “from” or “home” etc. The objective for
the learning algorithm is then to distinguish between only the sampled words and
the actual target word.

The expression in 2.13 gives the objective for negative sampling in CBOW for one
training example. Just as in GloVe, each word x has two vectors: one target vector
representation (wx) from the output layer and one context vector representation
(w̃x) from the middle projection layer. In 2.13, wO is the vector for the target word,
w̃I is the sum or average of the context vectors. E is the expectation and Pn is the
distribution used in the sampling for the k noise sample vectors, wx.

log σ(wT
Ow̃I) +

k∑
x=1

Ewx∼Pn [log σ(−wT
x w̃I)] (2.13)

Another way to avoid the inefficiency of a large final layer in the network is to use
a hierarchical softmax [16] as illustrated in figure 2.7. In the hierarchical softmax,
like with negative sampling, only a few of the neurons in the output layer need to
be involved in the training for each training example. However, the interpretation
of the outputs is different from the methods described in the previous paragraphs.
In order to understand the hierarchical softmax, one can imagine the final output
layer laid out as a binary tree, where each leaf corresponds to an output word and
each non-leaf corresponds to a neuron in the final layer. Now, only the nodes on
the path from the root of the tree to the leaf corresponding to the correct output
word need to be used for any given training example. The output of a neuron on
the path can be either closer to 1, suggesting that the “left” child is the likeliest or
closer to 0, suggesting that the “right” child is the likeliest. Thus, one can multiply
the outputs along the path (or 1 - the outputs in the case of the “left” child being
correct) in order to calculate the predicted probability of the leaf node being in the
context of the target word. When training, similarly, only the weights associated
with these nodes need to be updated. Typically, the binary tree that is used is built
from the Huffman encoding of words given the words’ occurrence counts in a large
corpus, leading to short paths for common words and longer paths for uncommon
words.

The expression in 2.14 gives the objective for hierarchical softmax for a training
example. Here, nO is the leaf node for target word O, h(nO) is the set of vectors
(weights) in the neurons on the path to nO, and the function f(nO, w) is equal to
−1 if nO is in the “left” subtree under w and it is equal to 1 if nO is in the “right”
subtree of w.

∑
w∈h(nO)

log σ(f(nO, w)wT w̃I) (2.14)

12

2. Word vectors

Figure 2.7: Continuous bag-of-words network with hierarchical softmax. Note that
the projection layer also includes the summing of all the looked-up vectors.

2.7 Skip-gram

In the same article that presented the CBOW method described above, Mikolov,
Corrado, Chen and Dean [2] also suggest another method: the skip-gram method.
Here, a very similar neural network is used as in the CBOW method, but instead
the objective in the training is to predict words in common contexts of a given
word. A constant k is chosen, denoting the number of words to be predicted for
each training example. These k words are chosen among the context words for
the training example — thus, the method does not (necessarily) train on the full
contexts of each example. The probability of context words being chosen can be
skewed so that words closer to the given word are chosen more often.

The network used for this method also has three layers: input, projection and output.
The input layer again consists of one-hot vectors, but this time for each training
example there is only one one-hot vector for the given word whose context is to
be predicted. The middle layer is a projection layer, just as in the CBOW method.
Finally, the last layer is a hierarchical softmax layer or a softmax layer with negative
sampling, just as in the skip-gram method.

13

2. Word vectors

2.8 Another prediction-based method: A log-bilinear
model with noise-contrastive estimation

A final method, noise-contrastive estimation (NCE), for finding vector representa-
tions for words was described by Mnih and Kavukcouglu [1]. This method shares
many of its basic principles with the CBOW and skip-gram methods described above,
but it allows some additional parameters not available in the CBOW or skip-gram
methods. NCE is also based on either predicting a word, given that word’s common
contexts in a corpus, or, given a word, predicting that word’s common contexts. In
this thesis, only the first of these options is explored for the NCE method.

In NCE, just like the other methods, each word has two vector representations: one
context representation, w̃, and one target representation, w, with w used as the
output of the algorithm after the training. Furthermore, each word also has a scalar
value, b, that is connected to how common the word is in the corpus. Finally, there
are vectors c that function as weights that multiply the context vectors. Thus, c can
be used to find which positions and which elements in the vectors of the context are
more or less important for predicting the target word. When these parameters are
combined in the way described in equation 2.15, a score is produced (note that W̃
in this equation is actually all the context word vectors), which signifies how well
the word represented by w fits the context represented by the vectors w̃ ∈ W̃ .

s(w, W̃) = (
N∑

i=1
ci � W̃i)Tw + b (2.15)

If one wants to calculate how probable a word is according to a model (an assignment
of values to the parameters for an entire dictionary) in a certain context, one can
then calculate the above score for all words in the dictionary, and then use a softmax
(look back to equation 2.7) to get a probability score. In order to improve such a
model, one can then use stochastic gradient descent to update the weights so that
the probabilities match the actual word cooccurrence counts in a text corpus.

However, with most real-world use-cases, just as with skip-gram or CBOW, the
softmax sum would be prohibitively expensive to compute naively since the dictio-
naries are too large. Instead, a method called noise-contrastive estimation (NCE),
similar to the negative sampling of [2] can be used to train the log-bilinear model.
In NCE, random sampling is used, where random noise target words are generated
and compared to an actual target word, given a context from a corpus. Next, NCE
updates the parameters of the model such that the score for the actual target word is
increased and the score for the noise targets are reduced. This is done with gradient
descent, where the gradient is calculated based on what scores the model assigns for
the target word and the noise words occurring in the context. (For details for how
this gradient is calculated, see [1].)

The actual objective for NCE is given in 2.16. Here Pn is the noise distribution, P W̃
d

14

2. Word vectors

is the trained model’s distribution of words in the context W̃ .

E
w∼P W̃

d
[log(∆s(w, W̃)] + kEw∼Pn [log(1−∆s(w, W̃)] (2.16)

∆s(w, W̃) = s(w, W̃)− log(kPn(w)) (2.17)

Mnih and Kavukcouglu found experimentally that using Adagrad with NCE and
SGD reduced the learning time and that it was possible to find good word vectors in
hours or days on a single CPU core with corpora with sizes in the tens or hundreds of
million words. However, to be able to do this, they simplified the Adagrad algorithm
to only keep track of one adjusted learning rate for each word in the dictionary, rather
than one such rate for each element of each vector for each word.

15

2. Word vectors

16

3
Evaluating the performance of

word vectors

There are several ways to measure the performance of techniques such as those
described in the previous chapter and the vector representations that they generate.
The approach taken in this thesis is to use the performance in a natural language
processing task, semantic role labeling, as a proxy for the performance of the vector
generation techniques. This is called an extrinsic measurement strategy, but there
are also more direct, intrinsic techniques, which have more commonly been used for
such evaluations [17]. As background, and to give some results for comparison to the
results in this thesis, some intrinsic evaluation methods and results are described in
the following. After that and as a conclusion to this chapter follows a description
of the architecture of the SRL system of Zhou and Xu, a similar system to the one
used in this work [10].

3.1 Intrinsic measures

Intrinsic measures of word vector quality consider some “simple” test of semantic
or syntactic similarities between words. Four groups of such measures used by
Schnabel, Labutov, Mimno and Joachims [17] are 1) relatedness tests, where human
rankings of similarity between words are compared to some measure of similarity
between the generated vectors, 2) analogy test, where the task is to answer questions
like “a is to b as c is to what?”, 3) categorization, where the objective is to cluster
vectors into groups where all words should be related to each other and 4) selectional
preference tests, where the objective is to say if a noun is commonly used as the
subject or object of a given verb.

In a comparison using 14 tests from all these four categories evaluating the repre-
sentations generated by the techniques CBOW, GloVe and some other vector fac-
torization methods, CBOW showed better performance than all other methods in
most of the tests. However, in one relatedness test and in the selectional preference
tests, either GloVe or another matrix method had better results.

Another investigation of word vector performance was made by Baroni, Dinu and
Kruszewski [18], using intrinsic measurement techniques very similar to the ones

17

3. Evaluating the performance of word vectors

used by Schnabel et al. They trained 48 CBOW models (the word model is here
used to mean a set of word vectors) using various parameter settings and 36 models
using different count-matrix methods. In all the tests, CBOW outperformed the
matrix-based models. This was true, both if the best model for each subtask was
considered, or if only one model was considered across all subtasks.

3.2 Extrinsic measures

Schnabel et al [17] also performed some extrinsic tests: noun phrase chunking and
sentiment classification. Chunking [19] involves finding boundaries for phrases such
as noun phrases or prepositional phrases in text. Sentiment classification means to
decide whether the attitude expressed in a text is positive or negative. In [17], the
texts that were used were movie reviews.

For the noun chunking task, the differences between the methods were all within
half a percent of each other in classification performance, with one of the matrix
techniques achieving the best results and CBOW and GloVe in the bottom positions.
In the sentiment classification task, however, CBOW reached the best results. The
conclusion drawn in [17] is that the intrinsic measures do not always predict the
performance in the extrinsic measures.

Noting that there is a dearth of extrinsic evaluations, with intrinsic evaluations be-
ing much more common, Nayak, Angeli and Manning [20] created a tool for extrinsic
evaluation, comprising six different language tasks: part-of-speech tagging, chunk-
ing, named-entity recognition (classifying an entity as a person, location, organiza-
tion or other), sentiment classification, question classification (classifying questions
by the type of answer that is expected) and a task that involved understanding the
meaning of whole phrases. Their article only presented the method of evaluation
however, and no actual benchmark results.

The small number of published extrinsic evaluations, and the apparent weak corre-
lation between intrinsic and extrinsic evaluation performance, indicate that further
extrinsic evaluations may shed more light on the strengths and weaknesses of vari-
ous word vector generating techniques. Using SRL as a testbed for word vectors is
novel and interesting, not just because of the general lack of extrinsic evaluations,
however, but also because extrinsic testing has generally used less complex tasks
than SRL.

The next section describes semantic role labeling and how it is used for extrinsic
performance evaluation in this work.

18

3. Evaluating the performance of word vectors

Input 1 He opened (P) the door , entering the house .
Output 1 Agent Predicate Patient
Input 2 He opened the door , entering (P) the house .
Output 2 Agent Predicate Location

Table 3.1: An example of SRL tags for an input sentence with two predicates.
The predicate label is given in the input, shown as (P). A separate set of labels is
generated for each predicate of the sentence. Empty columns denote a null tag.

3.3 The SRL task

This section describes machine learning strategies for semantic role labeling. This
task deals with finding the semantic relationship in a sentence between a predicate
and the other phrases in the sentence. The predicate is generally a verb, but can
also be other word classes with action semantics. The other phrases can be tagged
with roles such as agent (somebody who volitionally and intentionally performs or
initiates an action), patient (the entity affected by the action and made to change
state in some way), location (place of the action), instrument (a tool used to perform
the action) etc. Note that these definitions are not meant to be precise, but to give
a prototypical description of the roles [5]. Not all words need to have a semantic
relationship to the predicate, and those that do not should be given a null tag.

As an example of a role labeling, see table 3.1. As can be seen in the example, a
sentence may contain more than one predicate, and each such predicate will get its
own role labels.

Traditional strategies have generally involved manually engineered features. That
is, researchers have by hand designed a set of features describing the words of a text,
to be used as input to some machine learning algorithm. A brief introduction to
some such strategies is given in section 3.3.1. The system used here for word vector
evaluation, however, does not make heavy use of manually crafted features, instead
relying mostly on word vectors as the input. This system is described in section
3.3.2.1.

3.3.1 Traditional strategies for SRL, using manually crafted
features

Gildea and Jurafsky [21] made an early attempt to solve the SRL problem with
machine learning techniques. Their most successful method made use of several
hand-crafted and generated features of the input text and used statistical methods
to find probable labels for the input words.

The features that were used included parsing information. For each input sentence a
parse tree was created using a standard parser. Such a parse tree gives a representa-
tion of the syntactical structure of a sentence, indicating hierarchically which words

19

3. Evaluating the performance of word vectors

form units, such as noun phrases, verb phrases and prepositional phrases. Then, for
each input word, a feature that they used was the path in this tree from the input
word to the predicate that was considered.

Other features included voice (active or passive), position in the sentence (before
or after the predicate), the head words of phrases and syntactic function (subject
or object). In order to predict SRL labels, various statistical methods were exper-
imented with. The simplest of these was just to consider the cases in the training
data with matching feature values, and then to find which role was the most com-
mon among those matching examples. However, not all combinations of values for
the features were present in the training data, so when making predictions for labels
for sentences not taken from the training data, some interpolations had to be made
from the data that was available.

One example of a way to improve the accuracy for input word combinations that
had not been seen in the training data was to use a large text corpus to find words
that were commonly used in similar ways. The expectation maximization algorithm
[22] was used to find clusters of words with similar usage patterns. Then, if one or a
few of the words in a cluster were seen in the training data, the labeling information
given in the training data could be generalized and used also for the other words in
that same cluster.

The labeling accuracy achieved by Gildea and Jurafsky differed widely depending
on which features were available. In particular, if parsing information was available,
the classification performance increased by some 20 percentage points as compared
to when such information was not available to the statistical classifier.

Other work in the same vein as Gildea and Jurafsky’s has focused on experimenting
with other kinds of classifiers and other kinds of features. For instance, Pradhan et
al. [23] used a combination of support vector machines (another kind of machine
learning tool for binary classification) and a sigmoid unit. Pradhan et al noted that
a large proportion of the input words are supposed to get a null label, as they do
not have a semantic role relationship to the predicate to be considered. So, they
constructed a two-stage model where the first stage is a sigmoid unit that classifies
input words as either null or non-null and the second stage is a set of support vector
machines, one for each output class, only used when the first stage classifies the
input as non-null.

The features used by Pradhan et al. included the ones used in [21], but also some new
ones, like the part of speech of the head words of a phrase, whether a word denoted
a person/organization/location or various kinds of numerical data, shortened parse
tree paths (to mitigate the sparsity issues discussed above), and several others.

Another learning system using manually crafted features is the one of Johansson
and Nugues [24] who used a different kind of parsing — dependency parsing. Here,
a sentence is not split up into constituents but rather each word, w is assigned a
head word h, based on what word syntactically governs w. The main verb of a
sentence is considered as the root of the resulting tree of dependencies and it is thus
not assigned a head.

20

3. Evaluating the performance of word vectors

Johansson and Nugues trained a system to jointly perform dependency parsing and
SRL analysis. The dependency parsing was done with a variant of a support vector
machine, and the SRL part was performed by several sigmoid units. The sigmoids
were arranged to perform their task in three steps: 1) decide the sense of the pred-
icate, 2) identify what the arguments are, which were to be labeled and 3) label
the arguments with their roles. Different features were used as input to the various
sigmoids, such as dependent words, part of speech tags for dependent and proximal
words, the sense of the predicate (for disambiguation), voice and some tags used to
disambiguate the parse information.

The system described above was used to generate several candidate solutions to the
whole sentence labeling, and then this list of candidates was filtered to exclude such
ones that were not linguistically feasible, and finally a choice was made among the
16 best candidates in the filtered list. This final selection was made with a softmax
classifier, using the logs of the probabilities output from the previous steps as its
input features.

3.3.2 SRL with neural networks

The methods in the prior discussion has some disadvantages that can be mitigated
by the use of neural networks. First, they used manual feature engineering, which
requires a great deal of work from the implementer. Second, they often need parse
information as input or they rely on a parser to generate such information.

An early attempt to perform semantic role labeling with multi-layer neural networks
was presented by Collobert and Weston [25]. They did not use any parsing infor-
mation as input features, but only part-of-speech tags and the words of the input
sentence. The words were each given encodings as vectors, and these vectors were
learnt automatically by the neural network. Thus, the first stage of the network
was a vector look-up, similar to the first layer described in the sections about the
CBOW (2.6) and skip-gram methods (2.7). The rest of the network consisted of
a layer where the input word was combined with a window of context words, a
tanh layer, a projection layer and a final softmax layer with one output for each
possible classification for the input word. In their work, only per-word performance
figures were given, and they were close to state-of-the art at the time. However,
with performance measured on the phrase level, a similar system constructed in [10]
performed poorly.

3.3.2.1 Sequence labeling with long short term memory

Better performance on the SRL task with neural networks can be achieved if one
makes use of artificial neurons with memory. One example of such neurons is the long
short-term memory (LSTM) neurons introduced by Hochreiter and Schmidhuber
[26] and improved by Gers et al. in [27] with forget gates and in [28] with peephole
connections. Zhou and Xu [10] used a network comprising such neurons to solve

21

3. Evaluating the performance of word vectors

the SRL task, together with a CRF sequence model and traditional neural network
units. Below is a description of LSTM units, CRF sequence models and their use in
Zhou and Xu’s learning system. For a pictorial representation of this whole system,
see figure 3.2.

The neural units that Hochreiter and Schmidhuber proposed do not just feed forward
a value, but they can also use their input to update a stored value that can be used
when the next word is input for the next time step. The LSTM unit contains three
“gates” that control what value to store and what value to output. The LSTM
unit also contains a traditional non-linear unit like the ones described in section
2.5, which combines and squashes the cell’s inputs into a single value that can be
remembered or added to the value already remembered. In figure 3.1, showing an
LSTM artificial neuron, the gates are labeled In, Out and Forget and the unit that
calculates what value to add to the remembered value is labeled Value. In the center
is the stored value, i.e. the remembered state of the neuron, and on top is the output
of the whole neuron. As can be seen in the picture, not only the state and the output
of the neuron are passed on to the next time step, but the output from the gates
from time t is also used as inputs at time t+ 1, for all neurons of the same layer.

All gates function like the neurons described by equation 2.3, and different non-
linearities can be used for different gates. If “peephole connections” [28] are used,
the set of inputs to the gates also includes the current value of the state of the neuron.
The input gate decides whether the value stored in the cell should be updated, and
the forget gate decides whether the previous value should be discarded, as seen in
equation (3.1) where st is the value stored in the neuron, ft is the value of the forget
gate, it is the value of the input gate and vt is the value from the value sigmoid, all
at time step t. The output gate decides if the value stored should be output to the
next layer at this time step and the current layer at the next time step, as seen in
equation 3.2, where yt is the output from the neuron, st is the value of the stored
state and ot is the value of the output gate, all at time step t.

st = st−1ft + itvt (3.1)

yt = stot (3.2)

For each LSTM neuron in each layer of the network, there are separate weights for
each gate as well as for the inputs to each neuron. However, the addition of more
time steps does not increase the number of weights, but rather they are reused for
each time step. Such reuse is what signifies a recurrent neural network.

3.3.2.2 Using LSTM for language tasks — a bidirectional network

In an LSTM network as described above, information only flows in the forward time
direction in forward propagation. This constitutes a problem when the objective for
the network is a language task that deals with semantics, since the meaning of a

22

3. Evaluating the performance of word vectors

Figure 3.1: A long short-term memory (LSTM) unit.

23

3. Evaluating the performance of word vectors

Figure 3.2: An overview of the neural network used in this thesis for SRL. Note
that the boxes marked LSTM represent several LSTM units. Peephole connections
(from the LSTM states to the gate inputs) are not shown. Beginning-X in the output
means that the tag X begins at that word.

24

3. Evaluating the performance of word vectors

word in a sentence or phrase does not depend only on the words prior to that word,
but also on the words that follow. For instance, consider the sentences “He arrived
in Gothenburg” and “He arrived in December.” To be able to label the word “in” in
the phrases “in Gothenburg” and “in December”, one needs to know the meaning of
the following word. In the first case it is a place, and so the label “Location” would
be correct, but in the second case it is a time expression, and so the label “Time
(Temporal)” would be correct.

In order to mitigate this problem, Zhou and Xu [10] used a bi-directional LSTM
network. In such a network, between each layer, the order of the inputs is reversed so
that every other layer of the network sees the input in the backward time direction.
(See the middle of figure 3.2 for a pictorial representation of this structure.) In their
testing, Zhou and Xu achieved the best results with a network utilizing 8 layers (this
is, 4 bidirectional layers) with 128 LSTM units in each layer.

In their bidirectional LSTM network Zhou and Xu included a layer of traditional
neural network units between each LSTM layer in the configuration shown in figure
3.2. In their paper there is little information about this layer. It is not explicitly
stated which kind of units are used and it is not entirely clear what the dimension-
ality of this layer is.

3.3.2.3 Input features for the neural network

The inputs to Zhou and Xu’s [10] network contained for each time step 1) a vector
representation of the word for that time step, 2) a flag equal to 1 if the word was
within the predicate’s context, 3) a vector representation for the predicate as well as
4) a vector representation for the predicate’s context. Thus, if the vector size was v
values, and the context length was c then the total input vector for each time step
would contain v(c+ 2) + 1 values. Note that this context length is not (necessarily)
the same as the context lengths described in the sections about vector generation.

Field Current word Flag Predicate Context of predicate
Size (number of 32-bit floats) n 1 n nc

Table 3.2: Inputs to the network for each time step. Here n is the size of each
word vector and c is the length of the context in words.

3.3.2.4 Conditional random fields as classifiers for sequences

Just as an LSTM cell can be better than a traditional neural network unit for
dealing with sequences, the final stage of the network, which outputs the labels, can
also be adapted to better suit sequences. If for instance the IOB (Inside, Outside,
Beginning) tagging scheme is used (see section 4.3), there is a very strong correlation
between adjacent labels, and some labels can never appear next to each other. For
instance, if one word is marked as the first word (beginning) of an agent phrase,

25

3. Evaluating the performance of word vectors

then the next word cannot be marked as inside any other label than an agent. A
sequence model that makes use of such background information about dependencies
among adjacent labels is a conditional random field (CRF) [29]. Below is presented
a first-order linear-chain CRF, which is a simple kind of CRF that is often used for
language tasks.

A first-order linear chain CRF uses two matrices of values: the first matrix, O,
contains weights associated with predicting a label, given an input. For the machine
learning system used in this thesis, the inputs to the CRF are the outputs from
the bidirectional LSTM network. The other matrix, A, contains unnormalized state
transition scores, that is, values that can be used to predict a label given the previous
label in the output sequence. The predicted, unnormalized, probability score of a
sequence of outputs, or states, y, given a series of inputs, x, over T time steps in the
sequence would then be proportional to the expression in equation 3.3. Note that
Oytxt is the dot product of a vector in O with the input vector xt.

F (x, y) = exp(
T∑

t=1
Oytxt + Ayt,yt−1) (3.3)

3.3.2.5 Output labelings using a CRF

If one wants to use a CRF to predict the most probable sequence of labels, one could
imagine a naive approach where one calculates the probability for all possible output
sequences. To get the probability for this sequence, one would have to normalize
F over all possible output sequences y. It is usually too computationally expensive
to find this normalizing sum, usually called Z or the partition function, as well as
F for all the output sequences naively. (see equations 3.4 and 3.5, where y ranges
over all possible output sequences.) However, to make a prediction for the most
probable sequence, one does not need to calculate these values. Instead, a dynamic
programming technique, the Viterbi algorithm is commonly utilized to make label
predictions. For training, there is also a dynamic programming algorithm called
forward/backward (not the same as forward and backward propagation described
previously) that can be used. Both these algorithms simplify the calculations by
splitting them up so that only one time step is considered at once. The time com-
plexity thereby drops from exponential in the number of time steps to polynomial
in the number of time steps and number of output classes. For details see [29].

P (y|x) = F (x, y)
Z(x) (3.4)

Z(x) =
∑

y

F (x, y) (3.5)

26

4
Implementation

This section covers implementation details for the word-vector generation algo-
rithms, the neural network learning system, and the methods for testing the perfor-
mance of the vectors.

4.1 Implementation of word-vector generation al-
gorithms

An implementation of NCE was written in Python 3.5 and Numpy. It followed Mnih
and Kavukcouglu’s [1] description, except for some details. Mnih and Kavukcouglu
[1] made use of Adagrad, but it was simplified such that only one learning rate per
word in the dictionary was maintained. This was useful for them, since in their
testing they used word vectors of sizes ranging up to 600 dimensions. However, for
the system used in this thesis, the sizes for the word vectors are much smaller, and
so maintaining a separate learning rate for each model parameter was viable. Also,
instead of Adagrad, Adadelta was used in order to reduce the possibly inordinate
impact of the first few training examples for a word.

The function of the NCE implementation was tested informally by considering the
closest neighbors, in the sense of smallest cosine distance, for some common words.
In table 4.1, ten common nouns and the words whose vectors are most similar
to the vectors corresponding to those nouns are shown. For these examples, 100-
element word vectors created from 6-word position-dependent contexts were used.
The closest neighbors that were found are mostly close in meaning, which is what
would be expected if the implementation was correct.

Standard implementations of the GloVe [3], CBOW and skip-gram methods [30] are
available and these were used. The implementation of NCE is available upon request
from the author of this thesis. All vectors were normalized so that all dimensions
had a mean of 0 and standard deviation of 1 before they were used as input in the
neural network. The training time for the vectors was not a research question for
this thesis, but as a general comment, training GloVe vectors took approximately
a few hours, for CBOW and Skip-gram the time taken was less than a day and for
NCE the time was a few days.

27

4. Implementation

Target word Most Similar Words
Time Distance Moment Period
Year Month Day Week
People Citizens Residents Men
Way Terms Method Direction
Day Week Night Month
Man Woman Girl Gentleman
Thing Things Reason Sight
Woman Girl Man Person
Life Vocations Lodgings Pleasures
Child Grandchild Baby Pet

Table 4.1: Closest neighbors for some common words in the output of the NCE
implementation.

4.2 Implementation of the SRL-system

The whole learning system, including neural network and CRF classifier, was im-
plemented in Python using the Tensorflow [31] framework. Both the Windows CPU
(version r0.12) and Linux GPU (version r0.11) versions of Tensorflow were used.
For the LSTM units, Tensorflow’s nn.rnn_cell.LSTMCell class was used, with peep-
holes activated. For the traditional neural network units, Tensorflow’s nn.relu class
was used. For the final CRF layer (including loss function) Tensorflow’s contrib.crf
module was used.

As mentioned in section 3.3.2.2, the number of traditional network units in each
layer was not specified by Zhou and Xu. In the tests, this number was set to 128+n
where n is the number of elements in the input for one time step and 128 corresponds
to the number of LSTM neurons in each layer. This meant that the number of values
output by the sigmoid layer was the same as the number of values in the input to
the sigmoid layer for all layers except the first one.

4.3 Training and evaluation datasets

The corpus that was used for training all word vectors was a dump of all Wikipedia
articles from 2006. The corpus contained approximately 600 million tokens, includ-
ing punctuation and clitics. The dictionary for the dump contained approximately
1.5 million different word types initially, but many of these had a very low occur-
rence count. Therefore, those that occurred less than 10 times in the whole corpus
were consolidated into one “low-frequency” word type. Furthermore, numbers were
also consolidated into five categories: negative integers, small positive integers (less
than 1500), medium positive integers (1500 to 2100) large positive integers (larger
than 2100) and numbers with a decimal point. This consolidation reduced the size
of the dictionary to just under 500 000.

28

4. Implementation

Input The angered man hit the dog .
Labels B-Agent I-Agent I-Agent B-Predicate B-Patient I-Patient O

Table 4.2: An example of the Inside Outside Beginning (IOB) tagging scheme.

4.3.1 Data sets for the SRL task

The CoNLL-2005 shared task dataset [11] was used for the supervised training of the
neural network and CRF sequence model. This is a corpus of texts from The Wall
Street Journal for which manual SRL tagging has been performed, and these tags
were used as correct training labels. There are three subdivisions in this dataset,
called test, development (dev) and train. The train set, containing some 90000
predicates, was used for training the system. The use of development and test is
described in the next section. Sentences in the datasets can contain many predicates,
and each sentence-predicate pair is considered as a training example.

Some pre-processing was performed before it was used to train the learning system:
the correct outputs from the dataset were converted to an IOB (Inside Outside
Beginning) tagging scheme [32], where each token was either marked as Outside,
meaning no tag, Beginning-X, meaning that the tag X started at that token or
Inside-X, meaning that the token was marked as the continuation of the tag X.
Inside-X could thus only occur after Beginning-X or another Inside-X. See table
4.2 for an example of the IOB tagging scheme. Furthermore, a few (less than
one percent) of the sentences in the CoNLL-2005 dataset were not tagged with a
predicate and these sentences were neither used for training nor testing.

The dev, test and train sets contained some tags that only occurred a few times
(less than 40). These tags were changed to Outside in the train set, and the labels
output by the network were limited to the ones that occurred in this modified train
set. For the testing, the classification for the removed tags was always considered
as errors.

4.4 Evaluation benchmark

The evaluation of the different vector-generation techniques was also performed with
the standard CoNLL-2005 shared task [11] benchmark. The dev set was used for the
stopping criterion — when the classification scores for the system did not increase
for the dev data set, training was stopped to reduce overfitting. The dev set results
were also used for comparisons of parameter setting performance.

The test set was used for the comparison of the methods against each other. The test
set includes two parts: one with text and labels from the Wall Street Journal and
one with texts and labels from the Brown corpus, which is a more general collection
of texts published in America. Since the latter texts are generally from other genres
than those found in the Wall Street Journal, it is often the case that the performance

29

4. Implementation

on the Brown part of the test is lower than on the Wall Street Journal part. The
test and dev sets are circa one twentieth the size of the train set.

For both the stopping criterion and the evaluation criterion, the F1 score was used.
The F1 score is the harmonic mean of the recall and the precision, where the re-
call (see equation 4.1) is defined as the percentage of the training labels that were
correctly identified by the learning system and the precision (see equation 4.2) is
defined as the percentage of the labels output by the learning system that were cor-
rect. The F1 score is calculated on the phrase level, rather than on the word level.
Thus, in the example sentence in table 4.2, for the first tag be considered correct,
“The” would have to be labeled “B-Agent” and also “angered” and “man” would
have to be labeled “I-Agent”.

recall = #correct output labels
#correct labels in data set (4.1)

precision = #correct output labels
output labels (4.2)

F1 = 2 ∗ precision ∗ recall
precision + recall (4.3)

4.5 Overview of investigated settings for the vec-
tor generation algorithms

The word-vector-generation methods were compared against each other, and dif-
ferent parameters for the methods were also tested. For all the models, context
length and vector size were varied. Context length varied between 6 and 14 words,
and one-sided contexts as well as two-sided ones were used where the option was
available. The vector size ranged from 32 (which is the vector size used in [10]) to
150 values (the maximum possible size such that the training processes did not run
out of memory on computer systems with 8 GiB of memory.) As a midpoint, 100
element-vectors were also used. For NCE, both position-dependent contexts and
position-independent contexts were tested. CBOW and Skip-gram can be trained
using either negative sampling or a hierarchical softmax and both these methods
were used. Negative sampling was used with both five and ten negative samples.
GloVe and NCE can be used with one-sided or two-sided contexts, and for both
methods both types of contexts were tested. For a summary of these parameters,
see table 4.3.

30

4. Implementation

Method Parameter Settings
All Methods Vector length 32

100
150

Context size 6
10
14

NCE Position-dependence Independent
Depdendent

CBOW and Skip-gram Training method Hierarchical softmax
Five-sample negative sampling
Ten-sample negative sampling

GloVe and NCE Context shape One-sided
Two-sided

Table 4.3: Investigated vector generation parameters.

31

4. Implementation

32

5
Results

This chapter presents the results from the SRL task. First, a baseline is established
by the use of random word vectors. In order to investigate which method is better,
first the best parameter settings for each method is found by comparison of results on
the development (dev) set, and then for the best performing model for each method,
their results on the Wall Street Journal and Brown test sets are compared. In order
to answer whether the setting of some parameters have a statistically significant
effect, Friedman’s p-values are calculated for the dev set results.

5.1 Preliminary testing

Some preliminary testing showed that the implemented learning system was not
able to reach anywhere close to the performance levels presented in [10], which is
an F1 score of circa 82 for the test set and 79 for the development set. Therefore,
some adjustments were made, including setting the intermediate non-LSTM layers to
use rectified linear units, which helps propagate gradients through a deep network
more efficiently. Also, the Adam training method was used [15] rather than the
Adagrad method used in [10]. Finally, a context size of one word on either side of
the predicate was used for the input into the network, as described in section 3.3.2.3.
This increased performance, but still not quite to the levels presented by Zhou and
Xu.

Since the training method was changed from the one used in [10], suitable values
for training parameters had to be found in preliminary experiments. These showed
that regularization did not have a positive impact on results, something that was
confirmed in [10], where it was also found that the model did not show signs of
overfitting to the training data. Thus, regularization was not used in the following
tests, in slight contrast to the system used in [10] where L2 regularization with a
small weighting was used. The learning rate of 0.0003 was found to work well as
did a batch size of 200 training examples. Training the SRL system took between
20000 and 30000 iterations until F1 scores stopped improving for the development
data set. The number of iterations until convergence was not recorded for the
experiments presented below, but there was no obvious impact on training speed
from the training method that had been used to produce the word vectors.

33

5. Results

Vector size: 32 100 150
Vectors Dev Wsj Brn Dev Wsj Brn Dev Wsj Brn
Constant 68.33 70.33 54.84 73.54 75.85 60.67 58.17 59.98 50.70
Variable 70.23 72.23 57.34 74.33 76.35 61.99 55.41 57.68 50.11

Table 5.1: F1 scores with randomly initialized word vectors. In the constant vectors
case, vectors were randomized at the start of the training and never changed. In the
variable vectors case, vectors were randomized at the start of the training and then
trained using backpropagation together with the rest of the neural network. Dev,
Wsj and Brn refer to the development set, Wall Street Journal test set and Brown
test set of the CoNLL-2005 shared task benchmark, respectively.

5.2 Results using random vectors

As a baseline, the performance of the neural network was recorded using randomly
initialized word vectors. There were two cases: either the vectors were kept constant
throughout the training or they were updated using backpropagation. As can be
seen in table 5.1, the results were best for vectors of size 100, and updating the
vectors with backpropagation further improved performance in this case, with de-
velopment set F1 scores of 73.54 and 74.33, respectively. However, for larger vectors,
development set F1 scores dropped drastically to below 60 and in the large vector
case, allowing backpropagation updates to the vectors even worsened performance.
For the rest of the results presented in this chapter, the word vectors were held
constant during training.

5.3 Results using vectors from NCE

For the NCE vector training method, the parameters whose impact were investigated
were the vector length, the context length, whether the context was one-sided or
two-sided around the target word and whether the position of the word in the context
mattered or not (i.e., whether vectors ci in equation 2.15 were kept at the constant
value of 1). The results from these experiments are presented in table 5.2.

The F1 scores hover mostly between 76 and 78 for the dev set, with the best result
at 77.97 for one-sided 14-word contexts and 100 element vectors. For the position-
independent test cases, the scores have a wider range, and slightly lower values in
general. The best position-independent result is seen for one-sided contexts and 100
element vectors, at 76.99. There are also some rather extreme outliers. For instance,
for the one-sided, position-independent, ten-word context, 150-element vector case,
the result is a very low 61.04, close to, but still beating, the results achieved with
150-element random vectors.

The best results for 32, 100 and 150 element vectors are very similar, but the range
of scores is larger for 32 element vectors and 150 element vectors. Also when it

34

5. Results

Vector size: 32 100 150
Context length

Position-dependent One-sided 6 76.63 77.85 77.77
10 77.70 77.63 77.73
14 77.90 77.97 77.79

Two-sided 6 75.17 75.62 76.63
10 76.30 77.14 76.83
14 76.05 76.33 77.25

Position-independent One-sided 6 75.76 76.99 74.29
10 75.02 76.95 61.04
14 64.37 69.31 68.08

Two-sided 6 74.55 76.00 75.87
10 67.53 76.66 76.43
14 74.49 76.94 74.52

Table 5.2: F1 scores for NCE on the dev set.

comes to context length, the best results for the different parameter settings are
similar.

5.4 Results using vectors from CBOW and Skip-
gram

Next, for the CBOW and Skip-gram methods, the investigated parameters were
vector size, context length and training method (five-sample negative sampling,
ten-sample negative sampling or hierarchical softmax). First, the effect of vector
size and context length was investigated, and the results are shown in table 5.3.
The F1 scores on the dev set are consistently close to 78, with the best result at
78.42 for 14-word contexts and 150 element vectors. For Skip-gram, the best result
is similar, at 78.15 for ten-word contexts and 150-element vectors. However, the
Skip-gram results have a wider range, with the most extreme outlier at 71.73 for
14-word contexts and 32-element vectors. For all results in this table, five-sample
negative sampling was used.

The effect of the training method was also investigated. For these experiments, the
context length was kept constant at ten words. See table 5.4 for the results from
these tests. The differences between the training methods are small for CBOW. For
Skip-gram, using ten-sample negative sampling or hierarchical softmax yields worse
results than does five-sample negative sampling.

35

5. Results

Vector size: 32 100 150
Context length

CBOW 6 77.39 78.15 77.59
10 77.12 77.63 78.29
14 76.90 77.78 78.42

Skip-gram 6 75.68 77.44 77.50
10 74.95 77.73 78.15
14 71.73 75.60 76.53

Table 5.3: F1 scores for CBOW and Skip-gram, using five-sample negative sam-
pling.

Vector size: 32 100 150
Training method

CBOW Five-sample negative sampling 77.12 77.63 78.29
Ten-sample negative sampling 77.01 75.29 77.03
Hierarchical softmax 77.02 77.72 78.14

Skip-gram Five-sample negative sampling 74.95 77.73 78.15
Ten-sample negative sampling 72.29 68.02 74.4
Hierarchical softmax 71.19 73.18 67.56

Table 5.4: F1 scores for CBOW and Skip-gram for different training methods. All
tests used ten-word contexts.

5.5 Results using vectors from GloVe

Finally, for the GloVe method, one-sided and two-sided contexts were tried with
varying lengths. As for the other methods, the vector length was also a parameter
whose impact was investigated. The results for the GloVe method are shown in
tables 5.5. The best F1 score is 77.99, from one-sided 10-word contexts and 100-
word vectors. There is no consistent trend in the GloVe results favoring any of
the parameter settings over any others, other than 100- and 150-element vectors
outperforming 32-element vectors slightly. Due to a mistake, the results marked
with an asterisk, actually make use of contexts one word larger than is stated in the
table.

5.6 Confirmation of outlier results

Some results from the previous sections were clearly much worse than others, but
seemingly not as a result of a clear trend, but appearing apparently randomly in the
tables. To see whether this was an anomaly due to random chance or a significant
result, three tests which resulted in outliers were re-run. The results can be seen
in table 5.6. The word vectors were generated again, and the SRL network was
retrained with the new vectors. Two of the results in the re-run were clearly much

36

5. Results

Vector size: 32 100 150
Context length

One-sided 6 76.01 77.74* 76.79*
10 76.51 77.99* 77.05*
14 75.66 76.62* 76.27*

Two-sided 6 74.34 76.81 76.51
10 75.44 77.57 76.58
14 74.86 72.90 76.11

Table 5.5: F1 scores for GloVe. The asterisks indicate a context length of +1
compared to the labels in the table.

Method and parameters F1 score
Skip-gram, 100 elements, 10-word context, 10-word negative sampling 75.99
NCE, 150 elements, 10-word position-independent context 59.48
GloVe, 100 elements, two-sided 14-word context 75.96

Table 5.6: F1 scores for re-run tests.

better than in the first attempt, reaching levels that would not be clear outliers
compared to the other results. In one case, the result was still low, however.

5.7 Statistical comparison of some parameter set-
tings

To investigate whether the choice of vector size or context length had a significant
impact on the results, the Friedman p-value was used. For the comparison of vector
sizes, the dev set results were put in a matrix A where the columns corresponded
to vector sizes and rows corresponded to the valid combinations of method and
context length. Next, the values of A were ranked by row, and these rankings
were subjected to the Friedman test. For the comparison of context sizes, a similar
method was followed to create a matrix B, but now the columns corresponded to
context lengths and the rows to combinations of method and vector size. For vector
size, the calculated p-value indicated a highly significant effect at 1.4 ·10−9. Looking
back at the data, the 32-element case for each row of A was most often ranked worst
and never ranked best, probably causing the low p-value. The effect of context
length, however, was not significant, with a p-value of 0.43.

5.8 Comparison of methods

Finally, a comparison of the best results from the four different methods was carried
out, using the Wall Street Journal and Brown test sets from the CoNLL-2005 bench-

37

5. Results

Method Dev Wsj Brn
NCE 77.97 79.09 66.12
CBOW 78.42 79.2 68.63
Skip-gram 78.15 79.37 66.14
GloVe 77.99 79.41 67.54

Table 5.7: F1 scores for the best vectors from the previous tests. Dev, Wsj and
Brn refer to the development set, Wall Street Journal test set and Brown test set of
the CoNll-2005 shared task benchmark.

Method
NCE 100-element vectors, trained with 14-word two-sided contexts,

using the context-position-dependent method
CBOW 150-element vectors, trained with 14-word contexts, using

five-sample negative sampling
Skip-gram 100-element vectors, trained with 10-word contexts,

using five-sample negative sampling
GloVe 100-element vectors, trained with one-sided 10-word contexts

Table 5.8: Parameter settings corresponding to the performance figures presented
in table 5.7.

mark. The results are shown in table 5.7. The settings that were used are shown in
table 5.8. As is seen in table 5.8, the settings for the best results are not consistent
across the methods: both one-sided and two-sided contexts are represented, as are
different context lengths and different vector sizes.

As can be seen, the results are all within .35 of each other for the Wall Street Journal
test and also very close for the Brown test (remember that the Brown test is much
smaller, so larger variations due to random chance are more probable).

38

6
Conclusion

This work is a comparison of the performance of four different word-vector generation
algorithms: GloVe, CBOW, skip-gram and NCE. The vectors generated were used
in the input for a bi-directional LSTM artificial neural network and the performance
was evaluated with the CoNLL-2005 shared task data sets. Random vectors were
used as a baseline performance level.

In the results presented in the previous chapter, there were some weak trends in
the data, but the large variations between two runs with identical parameters is a
reason to take the results as tentative or inconclusive. In the data there were some
clear outliers, so some of the parameter settings were retested. The new results
were in some cases no longer outliers, indicating that the random effects of noise
in the results are large. For this reason, the results presented below discuss trends
that appear in several runs, rather than a comparison of single results, when this is
possible.

6.1 Comparison to previous results

In this work, the most consistently good results were achieved with the CBOW
method, but the best results for CBOW were matched by some performance results
from the other categories as well. The largest proportion of low results were achieved
with the skip-gram method. All methods clearly outperformed the random word
vectors, showing that there is an advantage to pretraining the vectors.

It is useful to compare this result to results from the articles that originally presented
the methods. For instance in [3], where GloVe was originally presented, CBOW,
skip-gram and several other methods were tested against each other on a word
similarity task as well as on a named entity recognition task. In these benchmarks,
there were significant differences in the performance between the methods, such
that the GloVe method outperformed the others by a significant margin on the
word-similarity task and by a small margin on the named-entity recognition task.
In [2], where skip-gram and CBOW were introduced, they were compared against
several other methods on semantic and syntactic analogy tests, and there too there
were significant differences in the performance between the methods. Here, the skip-
gram was far better than the CBOW method on the semantic test, but CBOW and

39

6. Conclusion

skip-gram were similar in performance on the syntactic test. Also remember from
section 3 that CBOW outperformed several other methods in many intrinsic tests
but that these differences were not necessarily reflected in extrinsic performance
tests.

As to the impact of the vector size, good results were most consistently achieved for
the 100-element case for all algorithms, but equally good results could be seen also for
vectors with 32 or 150 elements, however less consistently. This peak performance for
the 100 element case also shows up, even more markedly, when randomly generated
vectors are used. This is true both if they are updated in backpropagation and
if they are not updated. This result is inconsistent with most other results from
extrinsic and intrinsic evaluations, where it is often found that using larger vectors
leads to better performance. However, in prior evaluations, the evaluation methods
have been comparatively less complex than in this thesis.

A probable reason for the reduction in consistent performance for 150-element vec-
tors is that the increase in complexity or dimensionality of the learning problem
causes problems for the applied training method. In the article by Zhou and Xu
[10] on which the artificial neural network used in this thesis is based, the number
of traditional neural network units between the LSTM units in the bi-directional
LSTM network was not explicitly stated. For this study, this number was set to be
equal to the number of LSTM neurons plus the size of the initial input vector, so
that the size of the input vector would equal the size of the output vector for each
layer after the first. However, this also means that the number of parameters to
be trained in the neural network increases when the vector size goes up. Since it
is harder to train a network with more parameters, this could be a reason that the
results were less consistent for the larger vector case. Something that supports this
conjecture is that the test case with the updatable 150-element random vectors had
worse performance than the non-updatable 150-element random vector case, since
allowing these updates is another way to increase the number of learnt parameters
in the model.

The performance impact of context length was also inconsistent, but 14-token con-
texts were mostly slightly worse than the other sizes. Since words that are close
in the context can be expected to have a closer relationship to a target word than
those that are further away, it is reasonable to assume that there should a limit to
the context size, increases beyond which should add more noise than signal to the
training examples, especially when it comes to syntactic information. This perfor-
mance impact does not exist for the NCE context dependent case, however, which
is possibly explained by the fact that the method learns to give less weight to the
distant words in the context. For skip-gram, context words further from the target
are also given less weight, but in skip-gram this is done instead by more rarely sam-
pling more distant words in the negative sampling. The distribution for the chosen
distances to the context words is not learnt, but set by the researcher. Furthermore,
for skip-gram, this weighting is done on a per-context-position basis, but for NCE, it
is done on a per-context-position and per-vector-element basis, leading to a possibly
more expressive model for the position weights in the NCE case.

40

6. Conclusion

For the CBOW and the skip-gram methods, the effect of the training method was
investigated. For CBOW, the results showed small differences between the training
methods. For skip-gram, however, using negative sampling with 5 samples seemed
to give better results than 10-sample negative sampling or using the hierarchical
softmax. This result, too, is inconsistent with prior results from intrinsic testing.
Comparing the present results to those from the article that introduced negative
sampling with neural network models [16], the results go in different directions. In
[16], larger sample sizes lead to slightly better performance in a semantic intrinsic
benchmark and similar performance in a syntactic intrinsic benchmark.

A conclusion from this study thus seems to be similar to that in Schnabel et al’s
evaluation [17], that the performance in intrinsic tests may not always predict the
results in extrinsic tests. When there were tendencies for differences in this work,
they sometimes ran in the opposite direction as predicted from intrinsic testing.
Again, though, a reminder that the results here were not very consistent across
testing runs is in order due to seemingly random effects. Intrinsic testing is often
less complex, and so such random effects may be less impactful there.

6.2 Future work

A question that consequently arises is why clear performance differences do not
show up in the tests performed for this thesis, but all vector generation methods
yield similar results. Semantic and syntactic information about words is, after all,
obviously important to solve the SRL task. A possible answer to this question is
that the first few layers of the network on their own are able to generate word
representations that lead to good performance on the SRL task, as long as there
is some basic semantic and syntactic information captured in the input vectors.
As long as this base level of information is reached, the network may be able to
implicitly generate whatever other information about the words is needed.

A suggestion for further study is whether these representations in first layers of
the network work well in intrinsic syntactic and semantic tests. In [10], Zhou and
Xu comment that their network seems to be able to implicitly encode syntactic
information about the input. However, they only tested this by considering four
example sentences, comparing the values of the output from the forget gates over
time with a syntactic analysis of the sentences. Thus, a more thorough investigation
using more standard tests could be more enlightening in answering what syntactic
information is captured by the network. Similarly, tests for semantic content could
be run to examine to what degree semantic information is captured by the first
layers of the network.

The neural network for the SRL task used in this thesis is based on the descriptions
of a network described in Zhou and Xu’s article [10]. However, it was not possible
in the present tests to reproduce the performance levels of Zhou and Xu using their
exact network. The reasons for this are not known, but some possibilities include
that different frameworks for machine learning may have been used as Zhou and Xu

41

6. Conclusion

do not state which framework was used in their paper or that there were differences
in the layouts of the networks due to incomplete information given by Zhou and Xu.
For instance, there is no information about the number of traditional network units
in each bidirectional LSTM layer is in the paper. So suggestions for further research
are to investigate whether such performance differences between the frameworks
exist and why and to further investigate the performance impact of the unspecified
parameters.

42

Bibliography

[1] A. Mnih and K. Kavukcuoglu, “Learning word embeddings efficiently with
noise-contrastive estimation”, in Advances in Neural Information Processing
Systems, 2013, pp. 2265–2273.

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space”, ArXiv preprint arXiv:1301.3781, 2013.

[3] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation.”, in EMNLP, vol. 14, 2014, pp. 1532–43.

[4] Y. Goldberg, “A primer on neural network models for natural language pro-
cessing”, ArXiv preprint arXiv:1510.00726, 2015.

[5] M. Palmer, D. Gildea, and N. Xue, “Semantic role labeling”, Synthesis Lectures
on Human Language Technologies, vol. 3, no. 1, pp. 1–103, 2010.

[6] J. Persson, R. Johansson, and P. Nugues, “Text categorization using predicate–
argument structures”, in Proceedings of NODALIDA, 2009, pp. 142–149.

[7] D. Shen and M. Lapata, “Using semantic roles to improve question answer-
ing.”, in EMNLP-CoNLL, 2007, pp. 12–21.

[8] B. Liu, “Sentiment analysis and opinion mining”, Synthesis lectures on human
language technologies, vol. 5, no. 1, pp. 1–167, 2012.

[9] D. Wu and P. Fung, “Can semantic role labeling improve smt”, in Proceedings
of the 13th Annual Conference of the EAMT, 2009, pp. 218–225.

[10] J. Zhou and W. Xu, “End-to-end learning of semantic role labeling using recur-
rent neural networks”, in Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2015.

[11] X. Carreras and L. Màrquez, “Introduction to the conll-2005 shared task:
Semantic role labeling”, in Proceedings of the Ninth Conference on Computa-
tional Natural Language Learning, Association for Computational Linguistics,
2005, pp. 152–164.

[12] S. Clark, “Vector space models of lexical meaning”, Handbook of Contemporary
Semanticssecond edition, pp. 1–42, 2012.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[14] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization”, Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, ArXiv
preprint arXiv:1412.6980, 2014.

43

Bibliography

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality”, in Advances
in neural information processing systems, 2013, pp. 3111–3119.

[17] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims, “Evaluation methods
for unsupervised word embeddings”, in Proc. of EMNLP, 2015.

[18] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors.”, in
ACL (1), 2014, pp. 238–247.

[19] E. F. Tjong Kim Sang and S. Buchholz, “Introduction to the conll-2000 shared
task: Chunking”, in Proceedings of the 2nd workshop on Learning language
in logic and the 4th conference on Computational natural language learning-
Volume 7, Association for Computational Linguistics, 2000, pp. 127–132.

[20] N. Nayak, G. Angeli, and C. D. Manning, “Evaluating word embeddings using
a representative suite of practical tasks”, ACL 2016, p. 19, 2016.

[21] D. Gildea and D. Jurafsky, “Automatic labeling of semantic roles”, Computa-
tional linguistics, vol. 28, no. 3, pp. 245–288, 2002.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the em algorithm”, Journal of the royal statistical society.
Series B (methodological), pp. 1–38, 1977.

[23] S. S. Pradhan, W. H. Ward, K. Hacioglu, J. H. Martin, and D. Jurafsky,
“Shallow semantic parsing using support vector machines.”, in HLT-NAACL,
2004, pp. 233–240.

[24] R. Johansson and P. Nugues, “Dependency-based semantic role labeling of
propbank”, in Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, 2008, pp. 69–
78.

[25] R. Collobert and J. Weston, “Fast semantic extraction using a novel neural
network architecture”, in Annual meeting-association for computational lin-
guistics, vol. 45, 2007, p. 560.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm”, Neural computation, vol. 12, no. 10, pp. 2451–2471,
2000.

[28] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing
with lstm recurrent networks”, Journal of machine learning research, vol. 3,
no. Aug, pp. 115–143, 2002.

[29] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data”, in Proceedings
of the eighteenth international conference on machine learning, ICML, vol. 1,
2001, pp. 282–289.

[30] R. Řehůřek and P. Sojka, “Software framework for topic modelling with large
corpora”, in Proceedings of Language Resources and Evaluation Conference
2010 workshop New Challenges for NLP Frameworks, Valletta, Malta, 2010,
pp. 46–50.

44

Bibliography

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasude-
van, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems”, CoRR, vol. abs/1603.04467, 2016. [Online]. Available:
http://arxiv.org/abs/1603.04467.

[32] E. Tjong Kim Sang and J. Veenstra, “Representing text chunks”, in Proceed-
ings of the Ninth Conference of the European Chapter of the Association for
Computational Linguistics, Bergen, Norway, 1999, pp. 173–179.

45

http://arxiv.org/abs/1603.04467

	List of Figures
	List of Tables
	Introduction
	Research questions and scope
	Overview

	Word vectors
	Motivation for and overview of dense vector representations of words
	Methods based on manual feature engineering
	Cooccurrence counting
	Matrix methods

	GloVe: Global vectors for Word Representation
	Artificial neural networks and their use in prediction-based methods for word-vector generation
	Training neural networks
	Using Adagrad or Adadelta for learning rate adjustments
	Adam — Adaptive moments
	Avoiding overfitting — regularization and early stopping

	Continuous bag-of-words
	Skip-gram
	Another prediction-based method: A log-bilinear model with noise-contrastive estimation

	Evaluating the performance of word vectors
	Intrinsic measures
	Extrinsic measures
	The SRL task
	Traditional strategies for SRL, using manually crafted features
	SRL with neural networks
	Sequence labeling with long short term memory
	Using LSTM for language tasks — a bidirectional network
	Input features for the neural network
	Conditional random fields as classifiers for sequences
	Output labelings using a CRF

	Implementation
	Implementation of word-vector generation algorithms
	Implementation of the SRL-system
	Training and evaluation datasets
	Data sets for the SRL task

	Evaluation benchmark
	Overview of investigated settings for the vector generation algorithms

	Results
	Preliminary testing
	Results using random vectors
	Results using vectors from NCE
	Results using vectors from CBOW and Skip-gram
	Results using vectors from GloVe
	Confirmation of outlier results
	Statistical comparison of some parameter settings
	Comparison of methods

	Conclusion
	Comparison to previous results
	Future work

	Bibliography

