Towards Wireless Communication with
Bounded Delay

Master’s thesis in Computer Systems and Networks

Henning Tuan Hy Phan

Department of Computer science
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

MASTER’S THESIS 2016:03

Towards Wireless Communication with Bounded

Delay
Henning Tuan Hy Phan

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer science
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

© Henning Phan, 2016.

Supervisor: Thomas Petig, Department of Computer Science and Engineering
Supervisor: Olaf Landsiedel, Department of Computer Science and Engineering
Examiner: Elad Schiller, Department of Computer Science and Engineering

Master’s Thesis 2016:03
Department of Computer Science and Engineering

Chalmers University of Technology
SE-412 96 Gothenburg

Typeset in BKTEX
Gothenburg, Sweden 2016

v

Abstract

Many of the existing implementations of Wireless Sensor Networks (WSN) cannot
be considered for safety critical systems that require a constant upper bound time
delay delivering messages. To deal with that, Petig, Schiller, Tsigas proposed a self-
stabilising Time Division Multiple Access (TDMA) Protocol without leaders and
external references [1]. The system settings that Petig et. al’s assume consider
the case in which ambient noise does not exist and in the absence of concurrent
transmission packets are always received. This work considers the implementation
of Petig et. al in real systems. Namely, we consider message reception behaviour
that is subject to ambient noise and other complex radio propagation patterns.
We show that the strategy proposed by Petig et. al for mitigating the effect of
concurrent transmissions is applicable for working WSN systems. We also propose
to build atop Petig et. al’s robust algorithm and use a masking technique we call
link reliability to provide mitigation against repeated packet drop due. Simulations
and real experiments show distinct benefits of utilising link reliability.

Keywords: time divided multiple access, self-stabilisation, link reliability, clock syn-
chronisation, wireless sensor network, real time system, TinyOS

Acknowledgements

I would like to take some time here to show my gratitude for my sister Hilda Phan
who not only supported me but also helped me finish the thesis. I want to extend
my thanks to Thomas Petig, his insight in the project were invaluable when dis-
cussing the implementation. Also thank you Elad Schiller and Olaf Landsiedel for
participating.

Henning Tuan Hy Phan, Gothenburg, March 2016

vi

Contents

Introduction

1.1 Related work
1.2 Motivation
1.3 Objectives
1.4 Limitations

Technical Background

2.1 CSMA . . .
2.2 TDMA e
2.3 TinyOS CSMA architecture
2.4 TDMA timeslot alignment
2.5 Self-stabilisation o L o
Architecture
3.1 TinyOS TDMA application
3.2 TDMA subcomponents
3.2.1 TDMA component send and receive process
Implementation
4.1 Terminology and variables
4.2 TDMAPST: Algorithm description,
4.3 TDMAPST: Detailed algorithm description.
4.3.1 Algorithm 1: Upon alarm
4.3.2 Algorithm 1: Upon SFD
4.3.3 Algorithm 2: Upon receive
4.4 TDMA with link reliability: Link reliability design
4.5 TDMAwLR: Detailed algorithm description
4.5.1 Algorithm 4: Upon alarm
4.5.2 Algorithm 5: Upon receive
4.5.3 Algorithm 7: Link reliability functions
4.6 Self-stabilisation oo
4.6.1 Safe configuration oL
4.6.2 Legal execution L Lo
4.6.3 Convergence
4.7 TDMA packet header

11
11
13
14

17
17
18
18
18
19
19
24
24
24
24
25
30
30
30
30
31

vii

Contents

5 Results
51 Setup.
5.2 Cooja experiments

5.2.1 Convergence time . .

5.3 Experiments on Indriya . . .

6 Discussion

Bibliography

A Appendix 1

viil

5.2.2 Gridlayout 100% transmit success rate
5.2.3 Gridlayout 80% transmit successrate
5.2.4 Linelayout 80% and 31% packet success rate

A.1 TDMA component interface

35
35
37
37
39
42
45
47

51

53

1

Introduction

There has been an increased interest world-wide for WSN, they have huge potential
in many sectors, e.g., industry, military, research and others. The WSN market
has been forecast to become a multibillion activity if there is major advancement in
standards and technology [2]. Existing implementations of WSN cannot be used for
safety critical systems that require a constant upper bound time delay for delivering
messages. Carrier Sense Multiple Access (CSMA) protocols do not guarantee that
outgoing packages will be received within a well defined time interval. To counter
that, Petig et. al [1] proposed a self-stabilising TDMA, protocol. Their TDMA
protocol being the foundation of our implementation in which the self-stabilising part
has been given extra assistance by utilising a new feature called “link reliability”,
which we have created to handle external disturbances.

The challenge is to produce an implementation in WSN using an embedded platform
such as TelosB motes [3] and Tiny Operating System (TinyOS) [4]. Achieving a
(soft) real time implementation given the limited resources that the studied platform
has in the presence of packet omission due to ambient noise is another challenge to
which we aim at providing a degree of link reliability. The implementation in the
considered platform also includes challenges related to the dynamic communication
environment, node crashes and timing failures due to drifts of inexpensive clocks and
that TinyOS does not guarantee (hard) real time computation. Furthermore, the
protocol [1], assumes 100% transmission success rate between neighbouring nodes.
Note that the assumption that Petig et. al does not hold for WSN. In WSN, packet
drop can vary arbitrarily between 0 and 100%. Our proposal is to build upon
Petig et. al’s robust algorithm and use a masking technique for further providing
mitigation against repeated packet drops that are due to concurrent transmissions
by neighbouring nodes. The system development also require tailoring evaluation
tools for debugging and testing the proposed protocol in a large scale testbed.

1.1 Related work

Sgora et. al’s survey [5] on WSN TDMA protocols classifies existing TDMA proto-
cols and presents the benefits and caveats of different approaches. It would classify
Petig et. al’'s TDMA protocol [1] as a Media Access Control (MAC) solution, node
scheduled, distributed, topology-dependent TDMA protocol. Other attributes it

1. Introduction

has are self-stabilisation, and clock synchronisation without external reference. On
the topic of clock synchronisation, Herman and Zhang [6] present the clock syn-
chronisation concept converge-to-maximum, which is used by Petig et. al, though
clock synchronisation in ad-hoc network has it’s limitation as described by Fan et.
al [7]. There exist TDMA algorithms that do not synchronise clocks or use refer-
ence pulses but instead make assumptions on total number of neighbours and use a
large enough frame size to accommodate all neighbours [8]. Herman and Tixeuil [9]
who created the first self-stabilising TDMA algorithm for wireless ad-hoc networks.
They use an external reference to create timeslots which are assigned according to
the neighborhood topology.

1.2 Motivation

The purpose of this thesis is to produce a TDMA implementation inspired by Petig
et. al’s [1], for an embedded platform and test the performance on a real testbed.
Our implementation is referred as TDMAPST to honour Petig, Schiller, and Tsigas.
TDMAPST is self-stabilising but will have degraded performance because of (in-
termittent) faults due to ambient noise which will degrade the transmission success
rate. To increase the robustness we introduce a new feature, link reliability, which
aims to increase robustness in radio links. TDMAPST with link reliability will
henceforth be referred to as TDMAwLR, to distinguish it from TDMAPST.

1.3 Objectives

To create TDMAPST, an implementation heavily inspired by Petig et. al’s TDMA
protocol [1] for the embedded platform telosB, using the TinyOS framework and
programming language NesC. We use the word "inspired" because it diverges slightly
from the origin because of the limited processing power and resources of TelosB
motes. The product is a (soft) real time system, capable of handling a dynamic
environment and changes to the network topology.

Active nodes in TDMAPST require received packets to contain an acknowledgement
for them to retain their status. Becoming passive is an important mechanism to
ensure collision free communication between nodes but should sometimes be avoided,
e.g., a few missed acknowledgements because of ambient noise. Our solution is called
link reliability which works by delaying the decision in those cases. By collecting
data per timeslot on packet success rate and packet acknowledgements it can make
an informed decision whether it should become passive by comparing the gathered
data and the expected packet success rate.

1. Introduction

1.4 Limitations

The thesis explore the use of a TDMA mac protocol without an external reference
thus bandwidth utilisation or throughput is not considered. A radio environment
is considered where node A can communicate with Node B, and B will eventu-
ally communicate with Node A. Interference due to ambient noise or concurrent
transmissions is not distinguised between. Link reliability is non-adaptive, as it is
a proof of concept, which means a static packet success rate for all environments
which we can precomputate is assumed. Lastly, only WSN applications which re-
quires repeated communication are considered therefore we will not consider power
conservation.

1. Introduction

2

Technical Background

2.1 CSMA

The MAC layer is responsible for channel access mechanisms to allow multiple nodes
to communicate on shared media. Pure ALOHA [10] is a pioneering MAC protocol
and used in the demonstration of the first wireless packet transfer. When any
node has a packet to transmit it immediately sends it. Collisions occur when the
transmissions of at least two packets overlap in time. This could lead to packet
omission or corruption. If a packet is omitted the transport layer is responsible to re-
transmit. Carrier Sense Multiple Access with collision avoidance (CSMA/CA) [11]
[12] is also a decentralised MAC protocol inspired by ALOHA net that reduces the
probability of retransmissions by prior to transmission the node senses the medium
if anyone else is currently transmitting. If an ongoing transmission is detected the
node’s transmission is deferred by waiting a random period of time (random back
off) to reduce contention and by that avoiding collisions. CSMA has a well known
unbounded packet delay because of the random backoff and random access to the
media that can be solved by a more structured scheduling approach.

2.2 TDMA

TDMA is a schedule-based MAC approach where access time to the channel is
divided into frames which are further divided into slots, see figure 2.1. These slots are
distributed to nodes allowing them to transmit during that slot to avoid collisions.
In FreeBSD 8.0’s [13] implementation of TDMA a master station is used to broadcast
a beacon frame containing TDMA settings and free slots. Client nodes can adjust
their timers after the beacon frame. A client can request a free slot by sending a
beacon frame to the master which acknowledges it in the next beacon frame.

To avoid unwanted collisions, it is common to use a single node as an access point
that allocates timeslots upon request. There exists decentralised TDMA approaches
e.g., Leone and Schiller [14], that instead of depending on the availability of the
access point to nodes use coloring algorithms for allocating the timeslots by them-
selves. Leone and Schiller assume the availability of a common synchronised clock
and use this assumption for aligning the TDMA timeslots. Once the timeslots are

2. Technical Background

aligned, the node can use random colouring techniques for allocating the times-
lots. Self-stabilisation often have a problem when it comes to clock synchronisation
and bounded communication delay. Clock synchronisation algorithms often rely on
MAC algorithms that offer bounded communication delay while MAC algorithms
often assume access to synchronised clocks. Petig et. al proposed a bootstraping
solution for the dilemma in [1]. TDMA has more packet overhead as it requires
that to coordinate the schedule but that allows the packet delay time to be bounded
which might be an important requirement for some safety critical systems.

> Time

Timeslot Timeslot Timeslot Timeslot Timeslot Timeslot Timeslot
index 0 index 1 index 2 index 3 index 0 index 1 index 2

Frame Frame
index 0 index 1

Figure 2.1: Visual representation of TDMA with four timeslots per frame

Mustafa et al. [15] consider the alignment of TDMA timeslots, but not the timeslot
allocation as we do.

2.3 TinyOS CSMA architecture

TinyOS is an embedded operating system (OS) platform used in WSN. TinyOS is
event driven and applications are built with components, which usually abstract the
hardware and interact between each other by interfaces and deferred procedure calls.
A typical TinyOS CSMA application is shown in figure 2.2 which shows the how
the componentns are connected to create the application. By modifying the CSMA
controller we get our TDMA application, see figure 3.1. A component description
can be found in section A.1.

2. Technical Background

Basic application

receive(msg, mac data)

Name of component
msg A msg Name of component
L —— — — macdata function(parameters)
\
send(msg) param .
AMSender AMReceiver — > Calling a function passing *
receive(msg, mac data) parameter param
 }
msg ‘l msg param
v | mac data . T - Event raised
ms!
send(msg) J P 5end(MSY) | i et it e e e e e e e e
AMQueue ActiveMessage
receive(msg, mac data)
1 msg
msg | mac data
Y
send(msg)
CC2420ActiveMessage
receive(msg, mac data)
ms * msg ms!
\ 4 9 | _mac data magc data
send(msg) receive(msg, mac data) #— — — — — — — — -
CC2420Radio \
l
l
......... L
v |
send(msg)
CSMA Controller msg CC2420Receive
) mac data
receive(msg, mac data) [@— — — —
msg
mac data
\
send(msg, mac data)
CC2420Transmit
CSMA Component

Figure 2.2: TinyOS CSMA architecture scheme

2. Technical Background

2.4 TDMA timeslot alignment

Synchronised clocks on nodes with aligned timeslots can significantly reduce the ex-
posure time of collisions. In slotted ALOHA [16] with aligned nodes, collisions occurs
when multiple sources transmit on the same timeslot. When nodes are misaligned
collisions also occurs if a transmit is recorded on a neighbouring timeslot.

Various strategies has been developed to align timeslots. They usually synchronise
clocks by provide a global timescale or a relative time. Examples are the use of a
central node with the responsibility to propagate timestamps, which other nodes can
adjust themselves after or alternatively use an external reference such as Global Po-
sitioning System (GPS) [17]. Commercial GPS receivers provide a global timescale
which can achieve an accuracy better than 200ns relative to Coordinated Universal
Time (UTC). There are also algorithms that does not propagate time at all but rely
on pulses to align the timeslots [18].

Petig et. al’s TDMA protocol synchronise the clocks by embedding the converge-
to-maximum protocol [6] [19] to theirs. Converge-to-maximum is a distributed self-
stabilising clock synchronisation protocol without leaders or dependency to external
references. Converge-to-maximum has two rules: Firstly, a node’s clock time is
periodically transmit to its neighbours. Secondly, If the received clock value is
greater than the local time, then advance the clock for the time difference so they are
now equal. Assuming a bi-directed connected graph where nodes start with random
clock values with no skews, all transmissions always succeed, and the packet delay is
smaller than the margin of error. There most be at least one node with the highest
clock value and that or those nodes will not update their clocks anymore because of
rule two. Because their clock values are propagated the system will eventually all
converge to the maximum clock value.

2.5 Self-stabilisation

E.W Dijkstra’s seminal work of self-stabilisation in 1973 [20] remained somewhat
unknown until L. Lamport praised the work in 1983 to be a milestone in the field
of fault tolerance.

The interleaving model considers the system state as a collection of all the processors
state together with their incoming messages. The system execution starts from a
state that follows by a step that a single processor takes. That step brings the
system to another state from which further steps are taken and other states are
reached. The set of legal executions includes all the executions that satisfy the task
requirements. Starting from an arbitrary state, a self-stabilising system reaches a
legal execution within a bounded number of steps. A safe system state is a state
after which only a legal execution follows.

There are two important properties in self-stabilisation: Convergence, a self-stabilising
system is designed to start in any arbitrary state and after a bounded number of steps

8

2. Technical Background

reach a safe configuration. Closure, if the system is already in a safe configuration it
will stay in a safe configuration given no faults occur. A system that satisfies both
properties is said to be self-stabilising and when that system experiences (transient)
faults it is capable to automatically recover.

2. Technical Background

10

3

Architecture

Our TDMA application is built on top of TinyOS, which uses a modular approach
for building applications. TinyOS uses components which usually encapsulate a
functionality or a hardware abstraction. This chapter describes which components
are used building our TDMA protocol and how they are connected. Furthermore, we
look at how the TDMA component is built by looking at its subcomponents.

3.1 TinyOS TDMA application

Our TDMA protocol transmits and receives packets. It is built with several com-
ponents which figure 3.1 shows, where the black arrows with the text represent
function calls to transmit a payload, denoted as msg in figure 3.1. It transmits
the msg by using the component AMSender which indirectly uses AMQueue, Ac-
tiveMessage, CC2420ActiveMessage, CC2420Radio, TDMA Controller, and lastly
CC2420Transmit. The components provide a send function, outgoing buffer queue,
highest layer in the TinyOS radio stack, connects to high level abstraction of hard-
ware, media access control, and lastly hardware abstraction, respectively. Note that
the TDMA controller adds mac data, TDMA header, to the outgoing transmission
and the header content is described in 4.1.

The yellow arrows represent a receive event, which contains transmit data and
MAC header, and by following the yellow arrows leads back to the core com-
ponent called basic application. The components CC2420Receive, CC2420Radio,
CC2420ActiveMessage, ActiveMessage, and AMReceiver provides hardware abstrac-
tion, internal interface of the CC2420 stack to retrieve messages, connects to high
level abstraction of hardware, provides the highest internal interface to other com-
ponents, and provides a receive function to the application, respectively. The receive
event also reaches component TDMA controller to provide it with necessary infor-
mation to be able to provide MAC.

11

3. Architecture

Basic application
receive(msg, mac data) .
: Name of component
msg A msg : Name of component
L ————qmac data . function(parameters)
y \ .
send(msg) . param .
AMSender AMReceiver A Calling a function passing -
receive(msg, mac data) . parameter param
i
| .
msg | Msg : param
v | macdata ., T T T T - Event raised
ms . .
send(msg) 9, send(msg) | trretteteesessesseeeeieiaeaiaiians .
AMQueue ActiveMessage
receive(msg, mac data)
msg
msg | mac data
\ |
send(msg)
CC2420ActiveMessage
receive(msg, mac data)
ms * msg ms
\ 4 9 | _mac data magc data
send(msg) receive(msg, mac data) #— — — — — — — — A
CC2420Radio |
I
\
PP B L [ooeeeenennnns
\ ‘
send(msg)
TDMA Controller msg CC2420Receive
) mac data
receive(msg, mac data) [<— — — —
msg
mac data
\/
send(msg, mac data)
CC2420Transmit
TDMA Component

Figure 3.1: TinyOS architecture scheme. Only the most relevant components
appear

12

3. Architecture

3.2 TDMA subcomponents

For the TDMA controller to provide MAC protocol it needs to be notified of hard-
ware events. Each hardware event is abstracted as a component which is connected
to the TDMA controller, see figure 3.2. Each subcomponent is described in the
following paragraphs.

Controller:

All the TDMA logic and information is stored in this component. All others sub-
components are either directly or indirectly connected to the controller. The unit
decides when to access the media.

Alarm:
Provides an event called Alarm which is raised at the beginning of every timeslot at
the controller.

GPIOCapture:

When the start frame delimiter (SFD) bit sequence is detected in a transmission
GpioCapture raises the SFD event. The SFD event which is assumed to happen
simultaneously at both sending and receiving node is the event that is timestamped
and by comparing the timestamps we can get the clock difference.

CC2420Receive:

When a transmit is completed CC2420Receive passes the fully received message
and passes it to the controller. It also passes the message to CC2420Radio which is
responsible to forward it to the application.

CC2420Radio:

If the application wants to transmit data it goes through CC2420Radio which del-
egates the task and the timing when to transmit the message to Controller. If a
packet is received CC2420Radio forwards it to the application.

CC2420Transmit:

CC2420Transmit provides the function transmit which loads the buffer with data
and afterwards starts transmitting it. The function modify modifies the buffer and
is capable of modifying during an ongoing transmission. It is used to change an
ongoing transmissions timestamp to the timestamp of the SFD event.

13

3. Architecture

| Architecture of TDMA
| module and its

| component it requires
|

|

function(parameters)

-
|
|
|
|
|
| Name of component |
| |
| | TDMA component
| |
| |
I param |
| —> Calling a function passing |
| parameter param |
| |
| param |
|'°°U ——— bar(param) Function foo() calling bar |
| passing param |
| | Alarm a\avm()‘********;***"l
: — = foo() Event foo() created : setNextAlarm(duration) [
L o |
* timeslot |
msg * duration
header oo\ L |
| : i]| . |
N alarm() N
y : D
alarm() header | + header
receive(msg, header) - — — —
receive(msg, header)| <@ — receive(msg, mac data) : '1
: - 4 CC2420Receive
. . msg
L2t > |
: startFrameDelimiter() |
[alarm() sfd() |
[sfd() [— — -
msg header .
header | GpioC I
transmit(msg, mac data) |
> i data)
o msg .
CC2420Transmit mac data : Hardware
header) W radioT: i header)
modify(header) P> modifyTr i header)

Figure 3.2: Figure of TDMA component’s subcomponents. How they are con-
nected and what functions and events they provide to enable the TDMA unit as a
whole to work.

3.2.1 TDMA component send and receive process

The TDMA component expects events to occur in a specific order with room to
have time to process them. The pseudocode in tables 3.1 and 3.2 explains which
action the component takes to handle packet transmission and reception and which
underlying events are triggered to facilitate the task.

14

3. Architecture

Table 3.1: Table shows the pseudocode how the TDMA component handles packet
transmission

1. The Alarm component raises the alarm event at the Controller component and
updates variables related to TDMA.

2. Controller reaches the conclusion to send a packet and calls CC2420Transmit’s
transmit function and passes a new header and message.

3. CC2420Transmit passes the data to the hardware transmission buffer, a pro-
cess slow enough to expire the header timestamp, and then calls the hardware
to start transmitting.

4. During the hardware’s transmission several things happens to accomplish late
timestamping without ever stopping the transmission.

4.1. The first byte transmitted is an SFD byte which triggers the hardware
SFD event which raises the SFD event in the controller.

4.2. Because the node’s own transmission triggered the SF'D event it calls
CC2420Transmit modify function to update the expired timestamp.
Hardware might have already started sending part of the header but
not yet the timestamp thus an updated timestamp will be transmitted
instead.

4.3. Hardware completes sending header, msg and finishes by sending an SFD
byte.

Table 3.2: Table shows the pseudocode how the TDMA component handles packet
reception

1. The Alarm component raises the alarm event at the Controller component and
updates variables related to TDMA.

2. Hardware captures an SFD byte at the beginning of a neighbours transmission,
and raises the SFD event in controller.

3. The SEFD event function locally timestamps the incoming packet with the
current time.

4. After receiving the whole message, component CC2420Receive raises event
receive in Controller.

5. Controller processes the header by checking for clock alignment, and other
conflicts. Appropriate action will be taken depending on type of conflict.

15

3. Architecture

16

4

Implementation

This chapter explains how TDMAPST and the extended version with link reliability
works by first going through the terminology and variables necessary for the algo-
rithm followed by an overview description of TDMAPST and then a full line by line
explanation of the pseudocode. As link reliability is a feature we explain why its
needed and the design choices followed by an overview description of link reliability
and then a line by line explanation of the modified pseudocode but only the lines
that are changed.

4.1 Terminology and variables

Distance one neighbours refers to all nodes that can receive a transmission from the
reference node. Distance two neighbours are all nodes included from distance one
and additionally all nodes that can receive a transmission from any distance one
neighbour. The number of timeslot that makes up a frame is called frame size and
in TDMAPST frames also have indexes and of the same size like timeslots and they
are called super frames.

Each node has a set of variables to track the node’s perception of the environment.
src: Is a unique value that identifies the node. wait: is integer used as a counter to
decrement to zero for the random back off strategy. status: a boolean representing
if the node is active or passive. s: contains a timeslot index or is empty when the
node is active or passive respectively. rxAck: an array containing src’s of neighbours
that recently has successfully transmitted a packet. Each index in razAck refers to a
timeslot index so the information on what timeslot the received packet was received
on is preserved. usedSlots: Mapping of timeslot indexes and if they are in use by
others.

The TDMA header, which is included in all packets, contains s, src, and rxAck from
the node variables and two new fields. Firstly field, isCPKT, tells us if the packet
is a data or a control packet. The last field is time, a timestamp which marks when
the SFD byte was detected by the radio to facilitate clock synchronisation.

17

4. Implementation

4.2 TDMAPST: Algorithm description

A node’s status is either passive or active. A passive node strives to become active
by performing the random backoff strategy. The random backoff strategy uses wazit
which has been initialised with a random bounded integer. Wait is decremented if
the previous timeslot was unused until wait reaches zero. When wasit is zero the
node will transmit a control packet on the first timeslot that is free according to
the usedSlots map to notify others that the timeslot has been claimed and sets its
status to active and s to the timeslot index. wast is initialised again with a bounded
random integer to be used by the now active node.

An active node always transmit a data packet on its timeslot. It also uses a modi-
fied random backoff strategy to send control packets. The modification is that wait
is only decremented on unused timeslots on the frame index equal to s. The con-
trol packet is transmitted when wait is zero on the first free timeslot according to
freeSlot during the frame which has the same index as s. The control packets trans-
mitted by active nodes are used to detect e.g., timeslot collisions and are essential
for the algorithm to ensure that all timeslots claimed by nodes do not interfere with
each other.

When a node, regardless of status, receives a packet it contains a TDMA header. If
the time field in the header is greater than the local time timestamp the local time
is updated to the time in the header and status set to passive. Collision control is
done to ensure that the transmitting node does not use the same timeslot, or other
conflicts when updating rzAck and usedSlots with the information in the header.
If a conflict is found the node updates it status to passive and starts the random
backoff strategy.

4.3 TDMAPST: Detailed algorithm description

This section explains how the code for TDMAPST works complemented with pseu-
docode.

4.3.1 Algorithm 1: Upon alarm

Alarm is the event executed at the beginning of every timeslot (line 4). Set the
next alarm event for the next timeslot to ensure periodicity of event (line 5). Active
nodes transmit their data packets upon their timeslots (line 6-7). Line 8 to 13 will
be explained twice, from a passive and active node’s perspective.

Passive node’s perspective:

If wazit is greater than zero and no transmission was detected on the previous times-
lot, the previous timeslot is used because in hindsight we know that it was unused,
then wait will be decremented (line 8-9). If the variable wait is zero and the current

18

4. Implementation

timeslot is free according to usedSlots then we claim this timeslot by sending a
control packet, wait is assigned a new bounded integer by the backoff strategy, s is
set to the current timeslot index, and status is changed to active (line 10-13).

Active node’s perspective:

If the current timeslot belongs to this nodes super frame, the frame with the same
index as the s then proceed to line 9 (line 8). If wait is greater than zero and no
transmission was detected on the previous timeslot then wait is decremented (line
9). However if wait is zero and current timeslot is free according to usedSlots then
a control packet is sent and wait assigned a new random bounded integer by the
backoff strategy (line 10-12).

Active and passive node’s perspective:
The entries mapped to current timeslot index in usedSlots and rack is expired by
having the value FALSE and EMPTY assigned (line 14-15)

4.3.2 Algorithm 1: Upon SFD

SED is a bit sequence in a transmission which marks the beginning of a frame, not
to be confused with a TDMA frame. Upon SFD is executed after the hardware
encounter an SFD sequence in a transmission (line 16).

If the SFD originates from a neighbour transmitting

If node is receiving a transmission from a neighbour, which can be implemented by
a boolean which is toggled when the node itself starts or stops transmitting, then
proceed execution of line 18 (line 17). Mark that the current timeslot in usedSlots
is in use and save the current time in pkt RecTime, which will later be used in upon
receive(), (line 18). If the rzAck element corresponding mapped to current timeslot
was not a control packet then overwrite it with noise (line 19-20).

If the SFD originates from the node’s own transmission

Only line 22 is executed which modifies the outgoing transmission buffer which
contains the TDMA header timestamp and updates it to the current time (line
22).

4.3.3 Algorithm 2: Upon receive

Receive is executed when a full packet has been received (line 1). The parameters in
the receive function are variables from the header subscripted with an s to distinguish
them from local variables. times originates from line 18 in upon SFD(). time is
assigned pkt RecTime, which holds the timestamp of the SFD event for this packet
(line 2). If times is greater than time time but less then some buffer margin (128 in
the pseudocode) then advance the local clock for the time difference and set time
equal to times (line 3-5). However if the time difference is greater than the buffer
margin the node’s clock is considered misaligned and must advance the clock by the
difference, set time equal to timeg, empty the incorrect rxAck and usedSlots maps,
and drop the timeslot and become passive (line 6-11). Test if times and time after

19

4. Implementation

being converted from time to timeslot both matches the same timeslot index (line
12). Update razAck by adding sre, to the transmitting node’s timeslot index (line
13). If any timeslot collisions are detected with the node then drop the timeslot (line
14). For each timeslot in rx Acks that is non-empty mark corresponding timeslot in
usedSlots as taken (line 15-16). The last two lines allows usedSlots to contain the
taken timeslots used by distance two neighbours.

20

4. Implementation

Algorithm 1: Shared variables and Controller component

[uny

2
3

4
5
6
7

10
11

12
13

14
15

16
17
18
19
20
21
22

< : Categorises the different ways to reach dropTimeslot()
= : Pointer assignment

src : Unique identifier of the node

rxAck : Mapping of timeslot indexes to node src used to

acknowledge that a packet has been received from a
neighbour and which timeslot it used

usedSlots : Mapping of timeslot indexes to if they are in use or free
S : Contains the nodes timeslot index if its status is active
status : A node can either be active or passive
wait : Integer used as a countdown. Utilised in the backoff
strategy

pktRecTime: Contains a timestamp for each received transmission
object Ack

src

| bool cpktOrigin < FALSE

upon alarm()
component Alarm:setNextAlarm(getTime())
if s() == s then
component Radio:transmit(getTime(), rzAck, FALSE, sre,
PAYLOAD)
Ise if status == PASSIVE or mod(currentFrame, FRAME)== s
then
if wait > 0 and unused(s()-1) then wait < max(0,wait-1)
else if unused(s()) and wait <= 0 then
component Radio:transmit(getTime(), rzAck, TRUE, src,
NOPAYLOAD)
backOff()
if status == PASSIVE then (status, s) <—(ACTIVE, s())

)

ugedSIOts[s()] + FALSE
| rxAck[s() | + EMPTY

upon SFD()
if receiving from neighbour then
(usedSlots| s() |, pktRecTime) < (TRUE, getTime())
ack = rxAck[s()]
if ack.cpktOrigin == FALSE then rxAck[s() | «+ NOISE
if s == s() then dropTimeslot() > Stolen
else component Radio:modify(getTime())

21

4. Implementation

Algorithm 2: Receiver component

1 upon receive(srcg, S, rrAcks, isCPKTy, time,)

2 time < pktRecTime

3 if (times — time) < 128 then

4 call component Alarm:advanceClock(time; — time)
5 time < time,
6
7
8
9

©)

Ise if (times — time) >= 128 then
call component Alarm:advanceClock(time; — time)

time < time,
setall(reAck, Ack(EMPTY,FALSE))

10 setall(usedSlots, FALSE)

11 dropTimeslot() > Time advance
12 if timeslot(time;) == timeslot(time) then

13 updateRxAck(isCPKTs, srcs, timeslot(time), s;)

14 neighbourProblems(rx Acks, isCPKT;, s;)

15 for (index, value)« rxAcks do

16 L if wvalue.src! = EMPTY then usedSlots|index] < TRUE

22

4. Implementation

Algorithm 3: helper functions

SN

N O

©

10
11

12
13
14

15
16
17
18
19

20
21
22

23

24

25

26

27

function transmit (time, rzAck, isCPKT, senderSre, payload)
// The ack.cpktOrigin in rxzAck are not transmitted
call component CC2420Transmit(payload, header(senderSrc, time, iSCPKT,
rxAck))
setall(rxAck, empty, FALSE)

function unused(slot z)

| return usedSlots[z] == FALSE

function timeslot (time)
| return (int) time/TIMESLOT_DURATION

function back0ff ()

int tmp < getRandom(threeDelta)
wait < waitAdd+tmp

waitAdd < threeDelta-r

function dropTimeslot

(s, status) < (EMPTY, PASSIVE)
| backOff()

function updateRxAck (isCPKT, senderSrc, slot, s,)
if isCPKT == FALSE then
ack = rezAck| slot |
if ack.cpktOrigin == FALSE then
L ack.src <— senderSrc

else
ack = reAck| ss |
| (ack.src, ack.cpktOrigin) < (senderSrc, TRUE)

function neighbourProblems (raAcks, isCPKTs, ss)
if status == ACTIVE then

if reAcks[s| I= EMPTY and rxAcks[s] != NOISE and rxAcksls| != src
then dropTimeslot() > Interference
else if isCPKTs== FALSE and rxAcks[s] != src and roAcks[s] /=

NOISE then dropTimeslot() > Missed acknowledgement
else if s; == s then dropTimeslot() > Stolen

23

4. Implementation

4.4 TDMA with link reliability: Link reliability
design

TDMAPST’s line 26, in algorithm 3 handles missing acknowledgements. If line 26
could be ignored nodes would less frequently turn passive. However if an active node
would seldomly receive acknowledgements from a specific neighbour, there could be
interference just during the timeslot itself and then the best action is to switch to
another timeslot or the link itself could be poor and the best call would be to ignore
it.

The solution should ignore some missing acknowledgements but still be flexible to
change to new timeslots. Assuming the case of 80% uniform packet success rate
across the network, the chance of receiving an acknowledgement is 64% because it
needs to be successfully transmitted to a neighbour and successfully received back.
We expect three types of packet receptions events to occur on a link, to receive
a packet containing an acknowledgement, packet without acknowledgement, or the
absence of a packet. By sampling these events we can expect from the sample size
of the most recent events, 80% of them to be received and 64% of those 80% to
contain acknowledgements. Only links which have received 80% of the packets are
considered and if less than 50%, because 64% is the expected value and some margin
is helpful, contains an acknowledgement the timeslot is dropped.

4.5 TDMAwLR: Detailed algorithm description

In its essence TDMA with link reliability is the same as the TDMAPST algorithm
with the modification that the responsibility of handling missed acknowledgements
has been moved from function neighbourProblems, see algorithm 3 line 26, to the
new function linkProblem. The following subsections will go through only the lines
related to link reliability as how the TDMA protocol is explained in section 4.3. The
lines in the pseudocode, 4 5 6 7, marked with "*" are related to the implementation
of link reliability.

4.5.1 Algorithm 4: Upon alarm
If the link does not fulfill the requirements then drop the timeslot (line 9). Update

the link corresponding to the current timeslot with a preemptive miss, but if a packet
is received the miss will be changed, (line 10).

4.5.2 Algorithm 5: Upon receive

NeighbourProblems has been modified, the case which handles the missing acknowl-
edgement has been changed and moved over to the function linkProblem (line 14).

24

4. Implementation

If the packet is not a control packet then update the link mapped to the timeslot
the packet belonged to (line 15).

4.5.3 Algorithm 7: Link reliability functions

A link object imitate a circular buffer that overwrites the oldest entry after reaching
maximum capacity if used by the functions setMiss, setRec, and set Ack. The getRec-
Count function returns the number of received packets which includes acknowledged
packets. getAckCount and getMissCount returns number of acknowledgements and
number of absent packets respectively. Function reset does what the name implies
i.e. resets the link. LinkProblem decides if the node should drop the link. If enough
packets has been received and the link object is filled to its maximum capacity then
check the ratio of acknowledged packets with total received packets, if it falls below
the percentage threshold then drop the timeslot (line 32-35). If not enough packets
has been received the link is ignored. This prevents a neighbour with a high packet
loss rate to force others out of their timeslots.

25

2
3

4

10
11
12
13
14
15
16

17
18

19
20
21

22
23
24
25
26
27
28

4. Implementation

Algorithm 4: Shared variables and Controller component

* : Marks that the function or line is different from the original

< : Categorises the different ways to reach dropTimeslot()

= : Pointer assignment

src : Unique identifier of the node

rxAck : Mapping of timeslot indexes to node src used to acknowledge that a
packet has been received from a neighbour and which timeslot it used

links : Mapping of timeslot indexes to link objects which is used to evaluate
links

usedSlots : Mapping of timeslot indexes to if they are in use or free

S : Contains the nodes timeslot index if its status is active

status : ACTIVE or PASSIVE

wait : Integer used as a countdown. Utilised in the backoff strategy

pktRecTime: Contains a timestamp for each received transmission

1 object Ack

*

sre
| bool ¢pktOrigin < FALSE

object Link
* int array[SAMPLESIZE]

* int count

upon alarm()

component Alarm:setNextAlarm(getTime())
* linkProblem(s())
* setMiss(s())
if s() == s then
‘ component Radio:transmit(getTime(), rzAck, FALSE, src, PAY LOAD)
else if status == PASSIVE or mod(currentFrame, FRAME)== s then
if wait > 0 and unused(s()-1) then wait < max(0,wait-1)
else if unused(s()) and wait <= 0 then
component Radio:transmit(getTime(), reAck, TRUE, src,
NOPAY LOAD)
backOff()
if status == PASSIVE then (status, s) <—(ACTIVE, s())

u;edSlots[s()] « FALSE
if reAck[s() |.cpktOrigin == FALSE or status == PASSIVE then
| rzAck[s() | < EMPTY

upon SFD()

if receiving from neighbour then

(usedSlots| s() |, pktRecTime) < (TRUE, getTime())

ack = rxAck[s() |

if ack.cpktOrigin == FALSE then rxzAck|s() | < NOISE

if s == s() then * dropTimeslot() > Stolen
else component Radio:modify(getTime())

26

4. Implementation

Algorithm 5: Receiver component

*upon receive(sreg, sg, rrAck,, isCPKT,, time,)

time <— pktRecTime

if (times — time) < 128 then
call component Alarm:advanceClock(times — time;)
time < time,

Ise if (timegs — time) >= 128 then
call component Alarm:advanceClock(time; — time)
time < time

o

© 00 N o oA W N+

10
11

12
13
14
15
16
17

o

setall(raAck, Ack(EMPTY, FALSE))
setall(usedSlots, FALSE)
* dropTimeslot()

f timeslot(times) == timeslot(time) then

updateRxAck(isCP KT, srcs, timeslot(time), sg)
* neighbourProblems(rz Ack;, isCPK Ty, ss)

*if isCPKT == FALSE then updateLink(timeslot(time), rzAck)

for (index, value) rxAcks do

L if value.src ! = EMPTY then usedSlots|index| <+~ TRUE

> Time advance

W N

[BN

N O

©

10
11

12
13
14
15
16

17
18
19
20
21

22
23
24

25
26
27

28

4. Implementation

Algorithm 6: helper functions

function transmit (time, reAck, isCPKT, senderSrc, payload)

// The ack.cpktOrigin in rxAck are not transmitted
call component CC2420Transmit(payload, header(senderSre, time, isSCPKT, rzAck))
setall(rxAck, EMPTY, FALSE)

function unused(slot x)

L return usedSlots[x] == FALSE

function timeslot (¢time)

| return (int) time/TIMESLOT DURATION

function back0ff ()

*

*

int tmp < getRandom(threeDelta)
wait < waitAdd+tmp
waitAdd < threeDelta-r

function dropTimeslot
(s, status) < (EMPTY, PASSIVE)
backOff()
* for i=0;i<FRAME;++i do
L * reset (i)

function updateRxAck (isCPKT, senderSrc, slot, ss)

if isCPKT == FALSFE then

ack = rxAck| slot |

if ack.cpktOrigin == FALSFE then
L ack.src < senderSrc

else
ack = rxAck] s; |
| (ack.src, ack.cpktOrigin) < (senderSrc, TRUE)

function neighbourProblems (rxAck,, isCPKTy, sg)
if status == ACTIVE then
if reAckls| I= EMPTY and rzAckg[s] /= NOISE and rxAcks[s] = src then
dropTimeslot() > Interference
else if s, == s then dropTimeslot() > Stolen

28

=

10
11
12
13
14

15

16
17
18
19
20

21

22
23
24
25
26

27

28
29
30

31
32
33
34
35

36
37
38

4. Implementation

Algorithm 7: linkreliability helper functions

* function setMiss (idz)
*1 = links[idx |
| * lLarray[Leount++ % SAMPLESIZE | < MISS

function setRec (idx)
*1 = links| idx]
| ¥ Larray[(l.count-1)%SAMPLESIZE] +— REC

function setAck(idz)
*1 = links][idx |
| * Larray[(l.count-1)%SAMPLESIZE] +— ACK

function getRecCount (idz)
*1 = links[idx]
* result < 0
* for i=0; i<SAMPLESIZE and i<l.count; ++1i do
L *if larray/i] == REC or l.array[i | == ACK then ++result

* return result

*

*

*

*

function getAckCount (idz)
*1 = links[idx]
* result < 0
* for i=0; i<SAMPLESIZE and i<l.count; ++1i do
| *if lLarray/i] == ACK then ++result

* return result

function getMissCount (idx)
*1 = links[idx]
* result « 0
* for i=0; i<SAMPLESIZE and i<l.count; ++1i do
| *if Larray/i] == MISS then ++result

* return result

*

function reset (idx)
*1 = links| idx]
*1.count < 0

*

function linkProblem(idx)
*1 = links][idx |

*

getRecCount(idx)

L * jf getAckCount(ide) pppCOENTAGE then

*

function updateLink (slot, rxAcks)
*if rozAck[s] == src then setAck(slot)
| * else setRec(slot)

*if getRecCount(idz) > THRESHOLD and l.count >= SAMPLESIZE then

L *if status == ACTIVE then dropTimeslot() > Missed acknowledgement

29

4. Implementation

4.6 Self-stabilisation

A system must satisfy the convergence and closure property to be called self-stabilising.
Subsequent subchapters define a safe configuration for TDMAPST and explains how
the convergence and closure properties requirements are met [1].

4.6.1 Safe configuration

All nodes are active with their own unique timeslot index among their distance
two neighbours. This is possible because nodes track which timeslots are used by
their distance two neighbours in their usedSlots map which reflect correctly which
timeslots its neighbours are using. Each node’s clock deviate less than some error
margin compared to its neighbours.

4.6.2 Legal execution

An active node must transmit a data packet during its timeslot, containing rx Ack,
allowing its neighbours usedSlots map to reflect correctly which timeslots are in use
and keep neighbouring clocks synchronised.

4.6.3 Convergence

To ensure that TDMAPST provide collision free transmission the convergence phase
must be capable of handling six cases to reach a safe configuration, unsynchronised
clocks, passive nodes, usedSlots containing false timeslot claims which we call false
positve, usedSlots missing valid timeslot claims which we call false negative, direct
interference, and hidden terminals. How each case is resolved can be read in the
next paragraphs.

Clock synchronisation

In a connected system with misaligned clocks atleast one node has the highest value
which is considered the correct time. Other nodes will eventually receive the correct
clock value and align themselves after that value, set their status to passive and
perform the random backoff strategy to become active. After aligning themselves
with the correct value once they will never have to do it again as no nodes exists
with a higher clock value.

Passive nodes

To activate passive nodes. All nodes have a counter variable called wait containing
a uniform random positive integer. For each free timeslot that passes the wait is
decremented by one until reaching zero where it will claim the next free timeslot in
the usedSlots map by sending a control packet during that timeslot notifying its
neighbours, set status to active, and then set wait to some new bounded random

30

4. Implementation

integer value. Note that the control packet can collide with another packet if the
system is not in a safe configuration.

False positive

False positive claims in the usedSlots map do not have a node to update the claim
so they will eventually expire, they do not affect the countdown of the variable wait
because it only decrements if the previous timeslot was free. False positive claims
can however delay nodes striving to become active because the node can only claim
the next free timeslot according to usedSlots and if they contain false positive we
have to wait until they expire or a free timeslot is encountered.

False negative

False negative claims on the usedSlots mapping have two ways to be resolved,
one way to be relabeled as another problem, or repeat itself. The resolutions are
either if the node owning the timeslot or a third node corrects the false negative
in usedSlots by transmitting before the incorrect nodes transmits anything. If the
node tries to become active by sending a control packet the problem is relabeled as
a direct interference. If the node is already active and sents a control packet the
node owning the timeslot might become passive or the resolution is reapplied on the
same scenario.

Direct interference

Let two active nodes, node; and nodey, be within transmission range to each other
and both owning the same timeslot. They will not be able to send data packets
to each other because of the interference they create. They resolve this by sending
control packets similarly to passive nodes trying to claim a timeslot but with a
modified countdown mechanism. Control packets from active nodes are only sent
on their super frames, so they only compete on unused timeslots with passive nodes
and other active nodes with the same timeslot which should be few. Eventually a
control packet from one of the two nodes will reach the other, informing it of the
conflict which results in that node dropping the timeslot and becoming passive.

Hidden terminals

Let two active nodes, node; and nodes, be out of transmission range from each other
and own the same timeslot. Let a third node, node;,e,, be in range of both of them.
When node; and nodes transmit during their timeslot node;,.,, cannot receive the
packet due to interference. With some probability node; will succeed in sending
a control packet on a free timeslot on its super frame to node;,;., informing the
node of its usual timeslot which node;,., can propagate to node, which will drop
its timeslot thus resolving the issue.

4.7 TDMA packet header

The TDMAPST header has been embedded within the IEEE 802.15.4 header spec-
ification, for low-rate wireless personal area network (PAN), as it is already in place
in TinyOS. The complete header can be seen in table 4.1 where TDMAPST specific
bytes has been highlighted with a blue background colour.

31

4. Implementation

Table 4.1: The table shows the TDMAPST header format that comes with all
transmissions. FRAME in this example is 27.

offset bytes 0 1 2 3
0 length i fef dsn
4 destpan dest
8 src network s
12 competeAfter notif rxAck[FRAME]
16 rxAck[FRAME]

20 rxAck[FRAME]

24 rxAck[FRAME]

28 rxAck[FRAME]

32 rxAck[FRAME]

36 rxAck[FRAME]

40 rxAck[FRAME] comDelay

44 comDelay seq

48 seq isCPKT timestamp
52 timestamp type

32

4. Implementation

Table 4.2: TDMA packet header content description

Field name Description

length Length of header and payload in bytes subtracted by one.

fef Frame Control Field, defined in the 808.15.4 specs.

dsn Data Sequence Number, a number incremented for each
packet sent. Used in filtering out duplicate packets.

destpan The destination PAN ID, allows the network to sit beside
another TinyOS network and not interfere.

dest The Destination address of this packet.

src Unique identifier of the transmitting node.

network The TinyOS network ID, for interoperability with other
types of 802.15.4 networks.

s The transmitting nodes timeslot index.

competeAfter | Deprecated.

notif Deprecated.

rxAck Acknowledgement array of size FRAME containing node
src’es which packets has been received.

isCPKT If the packet is a control packet or a data packet.

comDelay Deprecated.

seq Deprecated.

timestamp Generated when the message is sent, used to synchronise
clocks.

type TinyOS AM type is used to differentiate between different

type of packets.

33

4. Implementation

34

O

Results

Our goal is to increase the robustness in TDMAPST (called the original in this
chapter), which we do by extending it with the feature link reliability. We evaluate
two settings of link reliability, with sample size ten and twenty, by comparing them
together with the original. This chapter discusses the settings available for the
experiments, evaluation of the implementations in the Cooja simulator that covers
convergence time and robustness. Convergence time is measured in frames and a
special metric is used for robustness, total number of active nodes, particular to our
protocol. All graphs on robustness are accompanied by bar charts presenting the
total number of dropTimeslot function calls categorised by:

1. Missed acknowledgements - When a node in the original TDMA protocol re-
ceives a packet and its acknowledgement is not included in rzAck it becomes
passive respectively in link reliability when the function linkProblem results
in the execution of dropTimeslot.

2. Stolen - When an active node is notified directly by a neighbour that they
share the same timeslot.

3. Time advance - When a node receives a higher clock value than its own time
and the time difference is greater than some predefined margin.

4. Interference - When a node is notified by a control packet that its timeslot is
interfering with another node.

All graphs and bar charts are made out of ten simulations. In the graphs the blue
line represent the average, the green outline represent the best data point out of the
ten experiments and the red outline represent the worst data point. The convergence
graph also show the median.

A full explanation of the dropTimeslot categories is found in the pseudocode in
chapter 4, all categories are marked with a < in the pseudocode.

5.1 Setup

In this section, we discuss the configuration options available for the experiments.
All settings are given an attribute, e.g., environment, an experiment can not have
two settings with the same attribute.

35

5. Results

Metwork

Metwork

Wiew Zoom

%

Wiew Zoom

® e 6
006 6

31)4% 79.8%

6-O-B06-
(@
@

@@@T‘@@@@TJ

R CROSC
® 66
SHORS

Figure 5.1: Grid layout, with 100%
transmit success rate to neighbour.

The transmit success rate can be
modified

36

Figure 5.2: Line layout, with ap-
proximately 80% transmit success
rate to close neighbours and 31% to
the rest of the neighbours

Cooja (Environment) - The simulation tool Cooja is the Contiki’s network
simulator. Cooja allows telosB motes to be simulated.

Indriya testbed (Environment) - Indriya testbed is a three-dimensional WSN
deployed across three floors at the National University of Singapore to facilitate
research in communication protocols and other fields.

Original (Code) - Original is the implementation we call TDMAPST based on
Petig et. al’s TDMA protocol.

Link ten (Code) - Link ten is TDMAPST extended with link reliability con-
figured with a sample size of ten.

Link twenty (Code) - Link twenty is TDMAPST extended with link reliability
configured with a sample size of twenty.

Grid (Layout) - When nodes are placed in a grid format with maximum four
distance one neighbours. Depicted in figure 5.1.

Line (Layout) - When nodes are placed in a line with maximum four distance
one neighbours. Depicted in figure 5.2.

Indriya (Layout) - The node arrangement Indriya testbed uses.

Transmit success rate (Tsr) - On Cooja the success rate can be set uniformly
across the network and the experiments uses 100%, 80% and a combination
of 80% and 31% transmit success rate. However on Indriya this setting is
dynamic and uncontrollable.

5. Results

5.2 Cooja experiments

Cooja [21] is a network simulator for Contiki and allows networks to be simulated.
This section contains all the experiments run on Cooja. The first subsection will
cover convergence time, the original versus the extended versions. The following
subsections cover robustness and how the implementations handle packet loss.

5.2.1 Convergence time

Convergence time is the time taken for an arbitrary configuration to reach a safe
configuration. Because there is no practical way in Cooja to verify a system achieved
a safe configuration we instead redefine convergence time to the time from system
start until all nodes are simultaneously active. We expect link ten and twenty to
perform either better or worse than original but not both.

Original Link ten Link twenty
85 T T T T 85 T T T T 85 T T T T
80 | 80 | 80 [
n n n
> S S
o 70 o 70 o 70 |
2 2 2
ke k9] ks
< < <
3 H# #
60 60 60
50 50 50
Worst
40 - Best e 40 - 40 I~
Average —
30 : . 30 30
20 C IIVIedIIan I 1 - 20 C 1 1 I 1 - 20 C 1 1 I 1 -
20 40 60 80 20 40 60 80 20 40 60 80
Frames Frames Frames

Figure 5.3: Gridlayout, 100% transmit success rate, thirteen distance two neigh-
bours and a total of 81 nodes in the system. The last node is started within 21
timeslots of when the first node was started. By looking at the median, pink line,
all three graphs have similar convergence time.

37

5. Results

Convergence time in frames
30

Original
Link ten =
Link twenty

29 | —

Frames

25 .

24 | -

23

81 nodes

Figure 5.4: The bar chart shows how many frames required for all nodes to be
simultaneously active for the first time from system start. Link ten and twenty is
either both better than original or worse. Because ten is worse and twenty is better
it is likely that the data is insufficient.

38

5. Results

Figure 5.3 shows that original, Link ten and Link twenty have similar convergence
time. Original have a red spike which is caused by a bug and is a distraction when
we examine the convergence time. The bug gives rise to a faulty clock value which
can be greater than the highest clock in the system. What follows is 80 nodes re-
aligning themselves and claiming new timeslots which occurs between frames 40 to
60 in figure 5.3 and is limited to to a single experiment and therefore only the average
is affected and not the median which is still at 81 in the y-axis. Because the figure
in 5.4 shows Link ten’s average performing worse than original but Link twenty
performing better we draw the conclusion that the data is insufficient to base a
winner on between original vs extended and are satisfied that the convergence times
are similar.

5.2.2 Gridlayout 100% transmit success rate

This test is performed to give us a baseline of how the implementations perform in
an environment with no clock skews, ambient noise and hardware failures 7.e. fault
free environment. The experiments are expected to be in a safe configuration and
stay there due to the closure property and all achieve 81 in active nodes and have
zero dropTimeslot calls.

39

5. Results

Original TDMA

8 85 T T T T T
© 80 =
o
C
Q 70 i
S 60 | .
<
:HI 40 1 1 1 1 1

0 50 100 150 200 250 300

Frames
Link reliability 10

8 85 T T T T T
e} 80 =
o
C
Q 70 i
560 1
<
:h: 40 1 1 1 1 1

0 50 100 150 200 250 300

Frames
Link reliability 20

$ 85 T T T T T
'§ 80 ™ o ™ ™ B
Q 70 Worst s -
'.8 60 Best -
< Average
:H= 40 1 1 1 1 1

0 50 100 150 200 250 300

Frames

Figure 5.5: The experiment settings are 81 nodes in a grid layout with 100% packet
success rate. The graphs show number of active nodes over time. A higher value is
better. The lack of hardware and environment disturbances are the reason why the
graphs present similar results. We expect 81 active nodes in a fault free environment
at all time, there are a few losses as seen by the red marks which indicate that the
closure property is not fully reliable.

40

5. Results

5
Original TDMA s
Link 10 =
@ 4 - Link 20 o
S
= 3 F .
° “
é 5 L Sy QO -
= N >
g. 1 k- Qﬁlﬁb Q) Q Q Q 4
© Q QO o
% o | _ > = .
-1
Miss ack Stolen Time advance Interference
90
X & Original TDMA s
80 - Link 10 ===
Link 20
70 -
0
L 60 -
(o]
c 50 | -
()]
2 40 -
[}
< 30 | i
$*
20 + E
10 + -
0

Avg #Active nodes

Figure 5.6: The top graph’s columns represent total number of dropTimeslot calls.
A low number of calls is better. The bottom graph’s columns represent the average
number of active nodes. A higher number is better with 81 being the maximum.
The lack of hardware and environment disturbances are the reason why the graphs
present similar results. We expect Link ten and twenty to perform better than the
original but as the original achieved the highest score of 81 link ten and twenty have
nothing to improve on.

41

5. Results

Note that in figure 5.5 the red marks come from ten simulations and the average
of red marks is only two per simulation. Though there exist errors it is so seldom
that the average number of active nodes is not affected. Because the system is most
likely in a non-conflicting configuration in the beginning of the graph a reasonable
explanation would be that control packets are colliding with active nodes timeslots
which means that usedSlots is not fully accurate. To summarise, there are problems
with the implementation and therefore the closure property is not working however
the problems happen so seldom that all the implementations still achieve the highest
score 81/81.

5.2.3 Gridlayout 80% transmit success rate

This test was performed to see how the implementations cope with packet loss.
Packet loss eventually leads to a missed acknowledgement which results in a node
dropping its timeslot and turning passive. The more nodes that are passive the
greater the chance of timeslot collisions and hidden terminals. We expect in the
graph of active nodes over time, in figure 5.7, that the height between the best
and the worst outline will decrease between the graphs: original, link ten, and link
twenty in that order.

When it comes to total number of dropTimeslot in the missed acknowledgement
category, depicted in figure 5.8, we expect the original to have the highest column
followed by link ten and twenty and the same is expected for the stolen and inter-
ference category as well because of the transient nodes created by packet loss. The
average number of active nodes is reversely correlated with total number of dropTi-
meslot events therefore we predict that link twenty should have the highest average
of active nodes highest followed by link ten and then the original.

42

5. Results

Original TDMA
& 85
e
@]
c
2
-
O
<
#*
0 50 100 150 200 250 300
Frames

Link reliability 10

o gg ' ' ! ! !
2
g7
o 60
<
3# 40

0 50 100 150 200 250 300

Frames
Link reliability 20

o 85
T 80 [rmrr—rm—rr S Eand = ol | T L T ¥ T
C
Q 70 Worst s -
T 60 Best mmmmm |
< Average
40 1

0 50 100 150 200 250 300

Frames

Figure 5.7: The graphs show number of active nodes over time. A higher value is
better. The transmit success rate is 80%. The link reliability’s sample size correlates
with its robustness. Note that Link ten and twenty outperforms the original by at
least 15 units of active nodes on average. The green and red outline in original are
not only further from the average line but also more spiky compared to link ten and
twenty. Predictable outlines closer to the average line is better.

43

5. Results

300
A© Original TDMA
AY Link 10
n 250 | ; N
= ’bb‘ N Link 20
=)
o A7 o
=~ 200 } 2 .
s &
o 150 -
£
}_
2 100 | .
) oA 9 9 % 4
* 50 L Pt N SSERNIEN PN
Miss ack Stolen Time advance Interference
90 oA
2 AY QY Original TDMA e
80 - ™ Link 10 ===
Link 20
70 .
o
2 60 | -
o
c 50 | -
[
Z 40 | -
Q
< 30 | i
H#
20 —
10 | —
0

Avg #Active nodes

Figure 5.8: The top graph’s columns represent total number of dropTimeslot calls.
A low number of events is better. The bottom graph’s columns represent the av-
erage number of active nodes. A higher number is better. The more nodes that
are passive increase the probability of timeslot collisions, direct interference, and
hidden terminal. The missed acknowledgement category which is majorly caused
by missed acknowledgements creates transient nodes which drives up the stolen and
interference category. Link ten and twenty is able to suppress missed acknowledge-
ments compared to the original by a factor of fifteen and 160 respectively. The time
advance category should be empty from a theoretical point of view.

44

5. Results

The graphs and bars support our predictions with the exception of the time advance
category as it is non-zero for the original implementation and likely caused by the
strain from the high number of dropTimeslot events.

5.2.4 Linelayout 80% and 31% packet success rate

The test is performed to evaluate how the implementations cope with neighbours
with different receive ratios. Two of them has 80% packet success rate, and the
other two has 31%. The node layout is that of a line, depicted in figure 5.2, because
the only way to have different packet success rate was to base that on distance from
the transmitting node and a gridlayout did not allow it. We expect the original
to perform similar to section 5.2.3 but with an increased number of dropTimeslot
calls in missed acknowledgement and because of that we expect more passive nodes
which should result in an increase in the categories of stolen and interference. This
should results in a lower average of active nodes. Meanwhile we expect link ten and
twenty to not be affected by the 30% receive ratio nodes due to link reliability.

Original TDMA

g 85 T T T
'§ 80
270
o 60
<
3# 40 L L

0 50 100 150 200

Frames
Link reliability 10

$ 85 T T T
E 80
g 79
o 60
<
:h: 40 1 1 1

0 50 100 150 200

Frames
Link reliability 20

$ 85 T T T
'§ 80
Q 70 Worst .
G 60 Best mmmmm |
< 40 . . Average
+*

0 50 100 150 200

Frames

Figure 5.9: The graphs show number of active nodes over time. A higher value
is better. The majority of nodes have two neighbours with 80% transmit success
rate and two neighbours with 31% transmit success rate. The lowered success rate
affects the original more than link ten and twenty. Original, link ten and twenty are
26.5, 2, 1 units from the maximum score respectively.

45

5. Results

500
Original TDMA s
Link 10 ==
2 400 | Link 20 o |
©)
(8] b‘\,
= ¥
o 300 | e
(7]
Q o A
IS 9’ o
£ 200 [X0 .
o
2
= 100 A ~
#* i , ; .
SN PANCTRN Ao
0 | 1 - o - =
Miss ack Stolen Time advance Interference
90 Sl
XAD P Original TDMA oo
80 | ™ Link 10 ===
Link 20
70 .
o
L 60 .
o
c 50 | _
[
2 40 -
(9}
< 30 | .
#*
20 —
10 + —
0

Avg #Active nodes

Figure 5.10: The top graph’s columns represent total number of dropTimeslot
calls. A low number of events is better. The bottom graph’s columns represent the
average number of active nodes. A higher number is better. Link ten and twenty are
more robust than the original and a larger sampling size decreases the probability
that a link turns passive. A larger sample size is better.

46

5. Results

By comparing with the previous experiment where the system has 80% transmit
success rate we notice that the original are more affected by the lowered success, by
the nodes with 31% success rate, compared to link ten and twenty. By comparing
the figures 5.8 and 5.10 with each other we see that original lost approximately nine
more units while link ten and twenty lost less than one unit. This shows how well
link reliability can ignore nodes with low packet success rate.

5.3 Experiments on Indriya

Real hardware is used in these experiments and clock skews are very much of reality.
There is no guarantee that the graph is connected and ambient noise can exist along
with faulty telosB motes. The packet success rate is not uniform and may vary
during the experiments. On all experiments in Cooja the distance two neighbours
is maximum thirteen and the frame size is 27. However on Indriya a node can have
approximately 24 distance two neighbours with a frame size of 27. This means that
the ratio between distance two neighbours per timeslot in a frame in Cooja to be
approximately two while it varies in Indriya and the worst case scenario is closer to
one in Indriya. A lower ratio increases the probability of timeslot collisions and a
slower count down of wait which results in fewer control packets being sent. The
category Stolen is deactivated because the telosB motes steal their own timeslots
which does not happen in the simulator. Instead those cases will be handled with
control packets by category interference. Stolen has the advantage over interference
that it works faster but is a tolerable loss. We expect in graph 5.11 and the bars 5.12
that link ten and twenty always are an improvement of the result of original.

47

5. Results

Indriya, approximately 86 nodes

Original TDMA
é 85 ! = ! I -
8 80 i I | i ok i
.g 70 "
g 60 '
40
* 0 50 100 150 200 250 300
Frames
Link ten
(7]
885 Loprprid - T ITTTIRPRRY v T L
Q 80
270 L - ! J
g 60
40
$#
0 50 100 150 200 250 300
Frames
Link twenty
o
Bl T v L e i
c i
270 Worst mmmmmm |
e Best
o 60
< 0 Avelrage
* 0 50 100 150 200 250 300
Frames

Figure 5.11: The graphs show number of active nodes over time. A higher value
is better. The red downward spikes represent unsynchronised clocks synchronising.
Link ten and twenty both are improvements compared to the original as the average
is increased and the outlines of worst and best are both closer to the average.

48

5. Results

Indriya, approximately 86 nodes

1800
Original TDMA s
, 1000 K Link 10 = |
= 1400 - Link 20 .
v)
- 1200 é;v —
o 1000 | > 0’.\@ .
(0]
£ 800 | AR -
}_
2 600 [-
T 400 A & .
#* S9N S)
200 | ,\'\?’ PASENCE ,»'\:1’ Dy
. oo Eha -
Miss ack Stolen Time advance Interference
9 ool ad
Original TDMA oo
80 ™ Link 10 ===]
| Link 20 o |
70
(2]
L 60 -
o
E 50 .
2 40 -
(@}
< 30 | _
#*
20 E
10 1
0

Avg #Active nodes

Figure 5.12: The top graph’s columns represent events that forces an active node
to become passive. A low number of events is better. The bottom graph’s columns
represent the average number of active nodes. A higher number is better. Link ten
and twenty present better results than the original in all categories.

49

5. Results

The figure 5.11 shows that link ten and twenty are both better than the original.
Compared to the simulations the results from Indriya improve on the original in the
same order, link twenty is better than link ten, but not with the same factor. In the
figure 5.8 link ten’s missed acknowledgements were less than original by a factor of
five but in 5.12 the factor is around two.

20

O

Discussion

Our proposed protocol, which provides bounded communication delays, can facili-
tate the satisfaction of system safety requirements [22]-[24]. Our experiment show
that link reliability can lower the rate at which active nodes become passive, because
of omitted packet acknowledgments. Other valid reasons to become passive e.g.,
breaking hidden terminals has been left unmodified. The experiment demonstrate
that the original and the extended versions have similar convergence time.

The graphs in figures, 5.5, 5.7, and 5.9 5.11, support that link reliability successfully
increases the robustness and robustness is correlated with sampling size. The figures
in 5.6, 5.8, 5.10, and 5.12 support that the average number of active nodes is inversely
correlated with total number of dropTimeslot() function calls.

The implementations are tested in simulated environments with (intermittent) faults
in which link ten and twenty handle omitted acknowledgement over the original by a
factor greater than fifteen and 160 respectively in the experiment with 80% transmit
success rate. In the Indriya experiments link ten and twenty handle omitted acknowl-
edgement better than the original by a factor of two and five respectively.

o1

6. Discussion

52

[11]
[12]
[13]

[14]

Bibliography

T. Petig, E. M. Schiller, and P. Tsigas, “Self-stabilizing tdma algorithms for
wireless ad-hoc networks without external reference”, in Ad Hoc Networking
Workshop (MED-HOC-NET), 2014 15th Annual Mediterranean, IEEE, 2014,
pp. 87-94.

P. Harrop and R. Das, “Wireless sensor networks 2010-2020”, Networks, vol.
2010, p. 2020, 2010.

T. Datasheet, Crossbow inc, 2013.

P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and scalable
simulation of entire tinyos applications”, in Proceedings of the 1st international
conference on Embedded networked sensor systems, ACM, 2003, pp. 126-137.
A. Sgora, D. J. Vergados, and D. D. Vergados, “A survey of tdma scheduling
schemes in wireless multihop networks”, ACM Computing Surveys (CSUR),
vol. 47, no. 3, p. 53, 2015.

T. Herman and S. Tixeuil, “A distributed tdma slot assignment algorithm for
wireless sensor networks”, in Algorithmic Aspects of Wireless Sensor Networks,
Springer, 2004, pp. 45-58.

R. Fan and N. Lynch, “Gradient clock synchronization”, Distributed Comput-
ing, vol. 18, no. 4, pp. 255266, 2006.

C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener, “Contention-free mac
protocols for wireless sensor networks”, in Distributed Computing, Springer,
2004, pp. 245-259.

T. Herman and S. Tixeuil, “A distributed tdma slot assignment algorithm for
wireless sensor networks”, in Algorithmic Aspects of Wireless Sensor Networks,
Springer, 2004, pp. 45-58.

N. Abramson, “The aloha system: Another alternative for computer commu-
nications”, in Proceedings of the November 17-19, 1970, fall joint computer
conference, ACM, 1970, pp. 281-285.

H. Wesolowski and K. Wesolowski, Mobile communication systems. John Wiley
& Sons, Inc., 2001.

A. Swami, Q. Zhao, Y.-W. Hong, and L. Tong, Wireless Sensor Networks:
Signal Processing and Communications. John Wiley & Sons, 2007.

S. Leffler et al., “Tdma for long distance wireless networks”, White Paper,
2009.

P. Leone and E. M. Schiller, “Self-stabilizing tdma algorithms for dynamic
wireless ad hoc networks”, International Journal of Distributed Sensor Net-
works, vol. 2013, 2013.

23

Bibliography

[15] M. Mustafa, M. Papatriantafilou, E. M. Schiller, A. Tohidi, and P. Tsigas,
“Autonomous TDMA alignment for vanets”, in Proceedings of the 76th IEEE
Vehicular Technology Conference, VTC Fall 2012, Quebec City, QC, Canada,
September 3-6, 2012, IEEE, 2012, pp. 1-5, 1SBN: 978-1-4673-1880-8. DOTI: 10.
1109/VTCFall.2012.6399373. [Online|. Available: http://dx.doi.org/10.
1109/VTCFall.2012.6399373.

[16] L. G. Roberts, “Aloha packet system with and without slots and capture”,
ACM SIGCOMM Computer Communication Review, vol. 5, no. 2, pp. 2842,
1975.

[17] D. K. Elliott and J. H. Christopher, “Understanding gps: Principles and ap-
plications”, Edition Kaplan, 1996.

[18] M. Mustafa, M. Papatriantafilou, E. M. Schiller, A. Tohidi, and P. Tsigas,
“Autonomous tdma alignment for vanets”, in Vehicular Technology Conference
(VTC Fall), 2012 IEEE, IEEE, 2012, pp. 1-5.

[19] S. Dolev, Self-stabilization. MIT press, 2000.

[20] E. W. Dijkstra, “Self-stabilization in spite of distributed control”, in Selected
writings on computing: A personal perspective, Springer, 1982, pp. 41-46.

[21] F. Osterlind, “A sensor network simulator for the contiki os”, SICS Research
Report, 2006.

[22] O. M. Ponce, E. M. Schiller, and P. Falcone, “Cooperation with disagreement
correction in the presence of communication failures”, CoRR, vol. abs/1408.7035,
2014. [Online|. Available: http://arxiv.org/abs/1408.7035.

[23] A. Casimiro, J. Rufino, R. C. Pinto, E. Vial, E. M. Schiller, O. M. Ponce,
and T. Petig, “A kernel-based architecture for safe cooperative vehicular func-
tions”, in Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems, SIES 2014, Pisa, Italy, June 18-20, 2014, IEEE, 2014,
pp. 228-237. DOL: 10.1109/SIES.2014.6871208. [Online]. Available: http:
//dx.doi.org/10.1109/SIES.2014.6871208.

[24] A. Casimiro, O. M. Ponce, T. Petig, and E. M. Schiller, “Vehicular coordina-
tion via a safety kernel in the gulliver test-bed”, in 34th International Confer-
ence on Distributed Computing Systems Workshops (ICDCS 2014 Workshops),
Madrid, Spain, June 30 - July 3, 2014, IEEE, 2014, pp. 167176, ISBN: 978-
1-4799-4181-0. poI: 10.1109/ICDCSW . 2014 . 25. [Online]. Available: http:
//dx.doi.org/10.1109/ICDCSW.2014.25.

o4

http://dx.doi.org/10.1109/VTCFall.2012.6399373
http://dx.doi.org/10.1109/VTCFall.2012.6399373
http://dx.doi.org/10.1109/VTCFall.2012.6399373
http://dx.doi.org/10.1109/VTCFall.2012.6399373
http://arxiv.org/abs/1408.7035
http://dx.doi.org/10.1109/SIES.2014.6871208
http://dx.doi.org/10.1109/SIES.2014.6871208
http://dx.doi.org/10.1109/SIES.2014.6871208
http://dx.doi.org/10.1109/ICDCSW.2014.25
http://dx.doi.org/10.1109/ICDCSW.2014.25
http://dx.doi.org/10.1109/ICDCSW.2014.25

A

Appendix 1

A.1 TDMA component interface

Table A.1: An example table showing the structure of a component description

Component: Component name
Description: Component description

functionName Function description.

functionParaml | Parameter description 1.

functionParam?2 | Parameter description 2.

Events (Events the component have handlers for.)

eventFunction() | Event description.

eventParam1 Parameter description 1.

eventParam?2 Parameter description 2.

Component: TDMA
Description: Provides medium access control to incoming and outgoing messages.
send Transmits message when the application has access to the
medium.
msg The payload.
Events
receive() New message received.
msg The payload.
header TDMA header information.

A. Appendix 1

Subcomponent: CC2420Transmit
Description: Communicates with hardware to transmit messages.

transmit () Transmits a message.

msg The payload.

header Header information for TDMA protocol.

modify() Modifies part of outgoing transmission that has yet to be
sent yet without interrupting the transmission.

header New header information for TDMA protocol to replace ex-
isting.

Events

CC2420Transmit does not have events

Subcomponent: CC2420Receive
Description: Processes incoming messages and notifies other components.

Events
receive() When a new incoming message has been received.
msg The payload.
header Header information for TDMA protocol.

Subcomponent: Alarm
Description: Provides the clock to the TDMA component and alarm Event.

setNextAlarm() [Duration before next alarm event.

time Duration until next alarm event is fired.
Events

alarm() Alarm was set.

Subcomponent: Controller
Description: The hub of the TDMA component and contains all TDMA specific

logic.
send() Loads controller with a message that will be sent next time
it has access to the medium.
msg The payload to be transmitted.
Events
_ Controller does not have events

Events

SubComponent: GPIOCapture
Description: Raises events on pins, in this case on the SFD pin.

SFD()

Every transmission has an SFD which raises this event.

IT

A. Appendix 1

Component: Hardware
Description: Used here to show other components dependency, the functionality
the hardware provides are all abstracted for explanation purposes.
radioTransmit() | Sends the data by radio.

msg The payload to be transmitted.

header Header information for TDMA protocol.

modifyTransmit()] Modifies TDMA header of outgoing transmission without in-
terrupting the transmission.

header New header information for TDMA protocol.
Events
receive() When a new incoming message has been received.
msg The payload.
header Header information for TDMA protocol.
SFD() All transmission have an SFD bit sequence which raises this
event.

I1I

	Introduction
	Related work
	Motivation
	Objectives
	Limitations

	Technical Background
	CSMA
	TDMA
	TinyOS CSMA architecture
	TDMA timeslot alignment
	Self-stabilisation

	Architecture
	TinyOS TDMA application
	TDMA subcomponents
	TDMA component send and receive process

	Implementation
	Terminology and variables
	TDMAPST: Algorithm description
	TDMAPST: Detailed algorithm description
	Algorithm 1: Upon alarm
	Algorithm 1: Upon SFD
	Algorithm 2: Upon receive

	TDMA with link reliability: Link reliability design
	TDMAwLR: Detailed algorithm description
	Algorithm 4: Upon alarm
	Algorithm 5: Upon receive
	Algorithm 7: Link reliability functions

	Self-stabilisation
	Safe configuration
	Legal execution
	Convergence

	TDMA packet header

	Results
	Setup
	Cooja experiments
	Convergence time
	Gridlayout 100% transmit success rate
	Gridlayout 80% transmit success rate
	Linelayout 80% and 31% packet success rate

	Experiments on Indriya

	Discussion
	Bibliography
	Appendix 1
	TDMA component interface

