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DC Line Fault Prognosis Using Deep Recurrent Neural Network Over Sensor Data
Akhil Venkat Vissakodeti

Department of Electrical Engineering

Chalmers University of Technology

Abstract

The HVDC technology has become prominent because of its increased long-distance
bulk power transmission efficiency and facilitation of asynchronous interconnections.
The loaded cable can, however, fail due to flashover or short circuit in the power
system. As a result, this can cause a grid failure and damage the equipment by
introducing a high level of current in the system. To detect fault is therefore consid-
ered a cost-efficient and non-destructive technique to monitor the cable operating
condition. The main aim of this thesis is to predict faults in a DC cable using mea-
sured data from the sensors present in the system. Moreover, this method helps to
identify the cable fault before power failure with possible catastrophic consequences
occurs.

This thesis examines the prospect of employing deep neural networks to capture the
hidden patterns from the time series sensors to predict DC cable fault at early stages.
This is justified because deep learning approaches are well suited to incorporating
feature extraction into the predictive model. In this regard, long short-term memory
(LSTM) is considered to get a remarkable accuracy of 99.93%. A lower Relative
value of the absolute error of the signals proves that the model predicts the accurate
results for the fixed window size.
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1

Introduction

In the eighteen century, electric power was first transported using direct current
after the invention of electricity. In 1882, direct current was used to transmit and
distribute electrical energy. Although this was a wrong step, at that time it was
replaced by an alternate current (AC) power transmission system. Since then, it
has been widely assumed that alternating current (AC) is the most effective method
of transmitting electrical energy across long distances. However, when the distance
between load centres and generation grows, the losses in the AC transmission system
exceed tolerable.

Nevertheless, with the development of power electronics, DC was adapted towards
commercial use with HVDC. The first HVDC project commenced in 1954 in Swe-
den as a Gotland. As a result of the development in semiconductor technology, high
power converter and inverters promoted the idea of HVDC.[54]

DC transmission system has many advantages compared to the AC transmission
system in a long distance, which made the world rethink about the DC transmis-
sion system. Despite AC transmission, it experiences high charging current of cable
capacitance, high losses, absence of asynchronous operation, difficulty in control of
power flow, the need for reactive power compensation and having issues of skin and
Ferranti effects [23]. Because of these drawbacks HVDC system has increased its
demand significantly for long distances power applications [55]-[57]

Initially, a current source converter (CSC)-based HVDC system was employed for
power transmission. CSC-based HVDC systems employ thyristors and may achieve
high power ratings while exhibiting minimal losses (usually around 0.7%). On the
other hand, thyristors can only be switched on and have no turn-off capability.
Therefore, they cannot be managed to stop a fault current. Furthermore, a CSC-
based HVDC system requires a large filter, which raises the capital cost, and it is
susceptible to AC side faults, which might result in commutation failure [58]-[60].
Given these concerns, voltage source converter (VSC)-based HVDC systems have
been developed and given the opportunity to connect renewable sources to the Ex-
isting grid. Moreover, HVDC-based transmission lines enable the connectivity of
generation from wind, solar, and tidal plants [64],[65] from far off-shore or distant
sites, reducing transmission losses.

In spite of these, many advantages seen in VSC- based HVDC systems have a draw-
back towards the DC faults, which experience high losses (typically around 1.6%)
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1. Introduction

and lower power ratings [61]-[63] . The DC fault current has a high peak and con-
stant value within a few milliseconds, necessitating high-speed fault detection and
isolation systems in an HVDC grid. As a result, developing a protection plan for a
multi-terminal VSC-based HVDC system is problematic. However, many methods
for detecting DC defects have been proposed. As of today, the HVDC companies
are looking forward to the protection of the electric grid with the supervision and
maintenance procedure during the present critical power systems.

Currently, technology has been rocketing up towards big data and digitalization
in the field of maintenance systems. Moreover, the electrical industry is looking
forward to an innovative method using data analytics for supervision, which has a
broader scope in power grid. There are multiple approaches under the shade of sta-
tistical analysis tools like machine learning, artificial intelligence and deep learning.
Using these tools has profoundly affected predicting stocks, making decisions, and
identifying objects are some of the areas these tools have shown their outstanding
performances. By seeing the advantages of these tools, electric grid companies are
also inheriting the use cases for their data from the data acquisition systems. Fault
detection on the HVDC line help the TSO in detecting the problem before system
failure occurs.

1.1 Background

Due to the advantages of long-distance and large-capacity power transmission, asyn-
chronous interconnections, and the ability to prevent inadvertent loop flow in an in-
terconnected ac system, the number of HVDC systems has been rapidly increasing
because of their stability when compared to the AC grid. This stability is due to
VSC HVDC.[54]

Since roughly 2014, when multi-level converter technology became widely used for
HVDC projects, cumulative HVDC capacity has expanded significantly because of
a regular stream of new VSC HVDC systems with capacities ranging from 700 MW
to around 1 GW that have entered operation. However, new protection techniques
have been discovered, and some fault techniques are the Impedance based method,
voltage and current derivative-based method and handshaking method. Whenever
a DC line fault occurs in the system, it is seen in the system that the voltage
drops rapidly. In the meantime, the capacitor discharges the current through an
inverter and feeds the fault. The AC side also supplies short-circuit current to the
problem spot through the diodes after a few milliseconds. Consequently, when the
current from the AC side passes through the diode, it becomes an uncontrolled rec-
tifier which will affect the cable’s insulation and later destroy the power electronic
switches instantly.

During a DC line fault, it is impossible to isolate the multi-terminal HVDC system
in its whole without selectivity by tripping all the AC circuit breakers. Else the
converter will absorb the reactive power from the AC grid. However, the AC grid
cannot supply the reactive power to the converter, which leads to a blackout situa-
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tion.

To mitigate this situation, Hitachi energy devolved a product called MIMS. It stores
the values of change of derivative voltage(dv/dt) and derivative of current (di/dt)
when the fault occurs in the HVDC system. On the other hand, because both the
dv/dt approach and the di/dt method are dependent on the fault loop impedance,
they are susceptible to fault resistance.

Therefore, there is a need to develop a new automation technique which identifies
the DC fault with the data obtained from the MIMS from both stations by apply-
ing a machine learning technique to identify the pattern with the regression methods.

1.2 Objective

The aim of the thesis is to identify the faults in the HVDC line using the ML models
used on the condition monitoring data.
o Predicting the trend of the signal using time series forecasting
o Comparing the accuracy of supervised ML algorithms for predicting the volt-
age, current, power and resistance from the sensor data.
o By seeing the trend and identifying the fault in advance.

1.3 Limitation

e The predicted model cannot predict the multiple outputs continuously.

o The project was implemented with a limited input (240 time-steps) because
the model can experience a vanishing and exploding gradient. If the input
increases continuously, there is a chance of losing data for the later steps.
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Theory

In this chapter, a brief insight of HVDC sytems,type of faults in a DC Line, faults
identification methods, machine learning model and methods such as stationary test,
LSTM model and model evaluations are presented.

2.1 Basics of HVDC system

The basic structure of the HVDC system shown in the Figure 2.1, which consist of
AC side filter, Converter, transformer, DC side filters, reactors and DC cables.

Converter | o i Converter 2
Transmission Line

[ T

Transformer Transformer
| ' H |
Reactor Reactor

Filter Filter

— L_i —

Transmission Line

Figure 2.1: A basic structure of HVDCsystem

Converters:

The converters are critical components of the HVDC transmission system. At the
transmitting and receiving ends, it converts from AC to DC like a rectifier and from
DC to AC like an inverter, respectively. Converters are linked to the alternating
current system by transformers at both the transmitting and receiving ends. Cur-
rent source converters with line commutated thyristor switches are employed in a
simple HVDC converters system. A six-pulse valve bridge is utilized for both con-
versions in a simple HVDC system, i.e., rectification and inversion. Similarly, twelve
pulse converter bridge circuits may be created by connecting two six-pulse bridge
circuits.[12]

Transformer:

The transformers connect the alternating current transmission network to the six- or
twelve-pulse valve bridge. The transformers change the alternating current voltage
to a level appropriate for the converters. The power to be conveyed in the system



2. Theory

influence the design of these transformers.[12]

AC side Filter:

On the AC side, the converters of an HVDC transmission system generate harmonic
currents. These harmonic currents enter the alternating current system, which af-
fects the sensitive loads. AC filters on the AC side reduce these harmonic currents.
The converters use reactive power from the HVDC system during the conversion
process. This reactive power is partially corrected in the filter banks, with the re-
mainder supplied by capacitor banks linked to the HVDC transmission system.[12]

DC filters:

The HVDC transmission system’s converters cause a ripple in the DC voltage, affect-
ing the communication between two stations by causing resonance with the ripples.
So to avoid the concept of resonance, a DC filter is used in An HVDC system. How-
ever, DC filters are not required for pure cable transmission or back-to-back HVDC
stations. Nevertheless, if overhead transmission lines are used in an HVDC system,

DC filters need to be installed.[12]

DC cables:

HVDC cables are often employed in underwater and subsurface transmission sys-
tems. There are no length restrictions for HVDC cable transmission systems. A
back-to-back HVDC transmission system does not require DC cables or overhead
wires. Cables are utilized for land connections due to environmental concerns.[12]

2.1.1 HVDC Schemes

HVDC systems are designed and selected based on the operation requirements, cost,
and reliability issues. So for that reason, the HVDC systems are divided into three
schemes depending on the flexibility of demand. The following HVDC configuration
schemes are presented in [13]

Monopolar HVDC Scheme:

A single DC cable connects the two converters in this scheme. A positive or negative
voltage is used for voltage transmission in a monopolar HVDC scheme [13]. The
earth, sea, or grounding electrode can be utilized as a return path. Figure 2.2 depicts
the monopolar HVDC system.

AC Line DC Cable AC Line

|
¥
1

|||—¥|< —

Figure 2.2: Monopolar HVDCsystem
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Bipolar HVDC Scheme:

This scheme is a combination of two Monopolar HVDC systems. With this scheme,
power transfers between two conductors of opposite polarity. The system’s depend-
ability improves because of this combination. However, by removing one of the
system’s poles, the other part continues to function normally, using the ground as
a return channel. Figure 2.3 illustrates this scheme.

DC Cable

SA;@_@ _l_\; T —@h AC system
I i
—(OO] B—D—

DC Cable

Figure 2.3: Bipolar HVDCsystem

Homo polar HVDC scheme:
Figure 2.4 is also known as the zero-distance transmission system. In this scheme,
two converters are connected without a DC Cable [13]. Figure 2.4 shows this scheme.

Sk

AC
System |'—

A

Figure 2.4: Homopolar HVDCsystem

2.2 DC faults

Faults may occur on the DC transmission line in an HVDC transmission system due
to external mechanical stress, lightning, and pollution. Moreover, two types of faults
appear on the DC transmission line: line to ground faults and pole to pole faults.
However, these faults are permanent and take a long time to fix. Whenever there is
a fault in the DC transmission line, the converter should be blocked immediately.
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2.2.1 DC pole to pole short circuit:

Pole to pole faults occurs due to the insulation breakdown of the positive conductor
and the negative conductor of a DC transmission line. Moreover, this fault does not
commonly occur in the DC transmission line. However, when this fault occurs in
the line, the capacitor quickly discharges and simultaneously, the AC system will
be short-circuited through the fault point. When a fault arises on the DC side,
the IGBTs can be stopped for self-protection, leaving reverse diodes vulnerable to
overcurrent [15]. The problem requires that both converters be disabled. Figure 2.9
depicts the equivalent circuit of a pole-to-pole failure. The DC short-circuit faults
are classified into three stages, which are as follows.

Figure 2.6: capacitor recharging state

KAt 2 oL

Ipa Ini Ipe T ic =0

+
Ve=r2C

AN RN

; :
Dd !be Lo Fault/l

Figure 2.7: Diode freewheeling Stage
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Capacitor discharge stage:

When the pole-to-pole fault occurs, the DC link capacitor discharges the amount
of charge into the transmission line forming an equivalent circuit with the inductor
and resistance, as shown in Figure 2.5 5.

Diodes freewheel stage:

When the pole-to-pole fault occurs, the DC line voltage drops below the grid phase
voltage, which results in a second stage called the freewheel stage. In this stage, the
IGBT switches should be blocked for protection, and the Ac side grid supplies the
current through the fault by the diode shown in Figure 2.9.

Capacitor recharging state:

In this stage, the dc-link capacitor, cable inductance, and AC side produce a forced
reaction during this step, and the capacitor is charged [14]. As a result, the DC
voltage rises. The equivalent circuit shown in Figure 2.6.

2.2.2 DC line to ground faults:

The dielectric breakdown between a DC conductor and the ground can cause a
short circuit. These problems are common and mainly caused by the grounding
of the HVDC system. In this scenario, fault resistance significantly affects system
responsiveness and should not be overlooked.The paper [16]-[19] presents analyti-
cal simulation studies on the effects of residual currents in phase-to-ground faults
from various sources such as DC capacitors, reactors, and AC grids. As shown in
the figure 2.8, phase-to-ground faults can be evaluated in three phases: capacitor
discharge, grid current feeding, and voltage recovery.

DC side capacitor-discharge:

The DC line ground faults generate an equivalent circuit among the fault line ca-
pacitor and fault impedance, as shown in Figure 2.8. When a fault occurs in the
system, the DC capacitor starts to discharge the amount of charge in the circuit.[14]

Grid- Side current feeding Stage:

When the line to ground fault occurs in the line, the DC side capacitors start to
discharge because the DC voltage drops drastically below the phase voltage. In that
case, the system experiences a current feeding from the grid.[14] The equivalent cir-
cuit for the grid- side feeding stage shown in figure 2.9.

Voltage recovery Stage:

During discharge, the voltage of the fault pole capacitor falls while that of the non-
fault line capacitor rises. The DC voltage returns to a normal level, and the system
enters the voltage recovery phase.[14]
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Figure 2.8: DCline to ground Capacitor discharge stage

Fault

Y

Figure 2.9: Grid current feeding stage

2.3 DC fault identification method in HVDC:

2.3.1 Handshaking method

The primary support for a persistent DC fault is terminal sources. However, discon-
necting all electrical sources and implementing the protection strategy during the
fault in the DC line would protect the voltage source converter.

The Handshaking method comprises an AC circuit breaker with a DC Switch despite
the DC circuit breaker. Besides, the AC circuit breaker with the DC switch is
cheaper than a DC circuit breaker.

If the DC line fails, the AC circuit breaker opens the line from the AC side, and
the DC switch isolates the faulty line by providing the voltage and current value
threshold limit. When the current and voltage values are above the threshold, the
line has no fault.

10
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2.3.2 Voltage and current derivatives based method

The reference paper [20] proposes a voltage derivative (dv/dt) and current derivative
(di/dt) based protection method for the MTDC system. If the rate of DC voltage
and current change exceeds the specified threshold, the fault is detected. The work
in paper [21] describes fault detection on an earthed HVDC grid using the rate of
change of voltage (ROCOV). The DC inductor is connected in series with the DC
breaker to keep the peak fault current below the current level rating of the breaker.
Figure 2.10 depicts the suggested fault detection approach, using the ROCOV and a
current-limiting inductor. V,us is the bus terminal voltage, V}, is the voltage across
the inductor, and V};,. is the transmission line voltage.

Bus di/dt

| Limiting Inductor

m DC Line or Cable
\ Breaker \

Bus side voltage Line side voltage
measurement
( VBuS) measurement (VLW)

Figure 2.10: Voltage and current derivatives based method

The inductor voltage is given by

di(t)
Ve =L 2.1
L(t) i (2.1)
By reference of figure 2.10 the voltage of the bus terminal is given by
Viust) = Vi) + Viine) (2.2)
The rate of change of current is obtained from the equation 2.1 and 2.2
di(t Viusty — V/
i) _ Vousy = Vi (2.3)

dt L

From equation 2.3, L is the inductance value. When the fault occurs in a line, the
voltage across the voltage bus is constant, and the rate of change of the current at
the breaker is mainly dependent on the line voltage. Therefore, the fault location
can be achieved by measuring the ROCOV on the line side of the inductor.

2.3.3 Transient based method for DC fault detection

According to a reference paper [22], the transient-based method uses the difference in
transient energy between the rectifier and inverter end to identify and differentiate
faults in an HVDC line. The two terminal HVDC system consists a pair of AC
systems with a rectifier station, long transmission line and inverter station shown in
figure 2.11. Based on figure 2.11, a relay is placed on the rectifier (M) and inverter
(N) sides of the circuit. Using the DC voltage calculates the difference in transient
energy, which is currently recorded on both sides. The equations for transmission
lines and a distributed parameter model are used to calculate.

11
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AC System-1 M . . AC System-2
—>1

Iy
Long Transmission Line
— u, uy —
Rectifier Station Inverter Station

Figure 2.11: Transient based method for DC fault detection

The equation for the transient energy is provided below:

AEN = AUNA’iNAt (25)
AE = AEy — AEy (2.6)

From equation 2.5, 2.6 the terms Auyy, Auy, Aiyy, Aiy are the variation of the DC
voltage and current at rectifier and inverter side. Moreover, the continuous period
from ¢, to ¢ is denoted by At. Under normal conditions, the transient energy (AE)
fluctuation is zero, but it has a specific value if a fault occurs in the HVDC system.
An internal fault occurs when |AE| > AEset and AE< 0, but an external fault
occurs when |AE| > AEset and AE > 0, where AEset is the threshold value for
transient energy change.[23]

2.3.4 Impedance based method

From figure 2.12, it is possible to understand the impedance-based method’s princi-
ple with some assumptions to be considered. The transmission line is homogenous
and has the entire positive sequence impedance Z;; between the two terminals, G
and H, illustrated in figure 2.12. The network between the G and H is depicted by
their Thevenin analogues having impedances Zs and Zy. Moreover, when a fault
occurs at a distance of m per unit from terminal G, both sources contribute to the
total fault current Ir. Vi and I5 are the voltage and current phasors recorded at
terminal G during the fault. Likewise, the voltage and current phasors measured at
the terminal during the fault, Vg and Iy, represent terminal H. Although measure-
ments are accessible at both ends of the line, one-ended techniques use the voltage
and the current acquired at terminal G or terminal H.

Terminal G Terminal H

1-m)z,,

<
<

Figure 2.12: Impedance based method
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The voltage drop from terminal G may be described using Kirchhoff’s rules as
VG = mZLl)]G + Rf]F (27)

Equation 2.7 states the voltage and the current depending on the fault type in the
line. The apparent impedance to the fault (Z,,,) measured at terminal G may be
represented by dividing it by /5. The equation for the fault impedance is

Ve
Ig

Ir
Zapp = = mZLl) + Rf? (28)
G
Equation 2.8 serves as the general governing equation in one ended impedance fault
identification

2.4 Basics of Machine learning

ML is a superset of Artificial Intelligence (AI) devoted to creating computer pro-
grams that can learn independently and define the rules that govern this learning
process. ML models utilize algorithms to swift through a sizeable input-output
database of problems to predict, classify, etc. Machine learning applications have be-
come prominent in robotics, medicine, image classification, computer vision, speech
recognition, etc. Machine learning algorithms are further classified by how well they
predict accurately. ML has broadly classified as supervised learning, unsupervised
learning and reinforcement learning.

Supervised learning;:

A supervised learning algorithm consists of the input features and the output labels
or target variables. It tries to learn and map the relation with the input and output
labels. This training procedure would help to get the desired output by inputting
the labelled data. Moreover, to get a better knowledge of supervised learning, let
us consider an example of visual recognition of self-driving cars, which has become
an exciting topic in the modern era by training the machine learning model with
labelled videos of pedestrians, cyclists and cars. After obtaining the labelled video
data, supervised learning algorithms are trained on the data set to get a relationship
between the input data and the labelled data. Each algorithm identifies the labelled
object in fast-moving scenes. Then the test is done on the different video data to
obtain the algorithm’s accuracy.

Unsupervised learning;:

Unsupervised learning is a contrast to supervised learning. There would be no prela-
beled output data in unsupervised learning, which means that no target variable is
present in the data. The model analyses the pattern in the input data and forms
the clusters regarding their functionality without any human intervention. In this
case, let us consider an example having a dataset of random images of cats or dogs.
The Unsupervised Learning algorithm seeks to learn patterns within the data and
cluster inputs with similar "features". In this case, the feature may be recognisable
as a distinguishing feature of dogs or cats. However, it is often not identifiable or
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explainable.

Reinforcement learning;:
Agents interact with the environment by performing actions in reinforcement learn-
ing. It learns by errors and rewards which was given by the user for every iteration.

Deep Jearning

Example: Example: Example:

Example
MLPs

Knowledge
bases

Shallow

autoencoders

Logistic
regression

Representation learning

Machine learning

Figure 2.13: Venn diagram showing machine learning, Al, Deep Learning etc.,
correlate[24]

Considering the advantages of Ml in different fields have become more popular in
the power grid application by replacing the conventional statistical approach. Be-
cause of the increased availability of large-scale data storage and computational
power has allowed ML algorithms to perform mathematical calculations fast and
efficiently. This has opened a new trend in power grid application for monitoring,
prediction and fault detection to improve the power quality of the grid. Innumerable
measuring devices and sensors used in the data acquisition system can measure a
continuous stream of data from the sensors. Main goal of analyzing the condition
monitoring data is detecting, extracting, and analyzing the fault of the DC line. The
fault of the DC line data provides information about the fault and the root cause.
Thus, analyzing the fault data would help reduce the probability of the fault in the
transmission line before it occurs in the future.

Moreover, numerous papers identify fault detection in motor drives and transformers
but not in the transmission line. By taking the inspiration from the research papers
[33],[35], the following architecture was designed for this case.

2.5 Stationary test

The KPSS test describes the null hypothesis that an observable time series is sta-
tionary around the deterministic trend by following a linear regression model with
an intercept concept shown in equation 2.9.

Xt =Ty + Bt + €t (29)
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Where equation 2.9 has three terms r; is a random walk, St is a deterministic trend
and ¢, is a stationary error which tells us about the stationary of the time series
around a fixed level. While performing this test uses the ordinary least square
regression to identify whether the time series is stationary or trend stationarity
around the constant mean with a standard deviation of 0. However, most time-
series data do not follow the stationary in order to make it stationary there is a
method called differencing the time series. By following the equation 2.10 will help
to make the time series constant around the mean and make the standard deviation
0.

dVt) = X(t) - X(t—1) (2.10)

2.6 Neural Network

Neural networks, also known as artificial neural networks (ANNSs), are a subset of
machine learning foundation deep learning techniques. The human brain inspires
its name and form by replicating how real neurons communicate with one another.
Artificial Neural Networks (ANNs) consist of nodes containing one or more hidden
layers and an output layer. Each node, or artificial neuron, connects to another and
has an associated weight and threshold[25]. Suppose the output of any individual
node is above the specified threshold value. The node is activated with a function
of tanh and sends the data to the next layer of the network. Otherwise, the data is
not passed to the network.

Input layer Multiple hidden layers Output layer

QQOOO
SOO0O
OO000
olelelele

Figure 2.14: Neural network schematic

2.6.1 Recurrent neural network

RNNs are a type of neural network that can remember, making them more com-
parable to how humans absorb information and providing an effective solution to
various scientific issues. Data is processed individually in a loop of neural network
cells shown in figure2. Moreover, RNN is a dynamic system of learning sequential
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pattern dependencies over time. As a result, it has been used extensively in time
series analysis [37]-[39]. However, the RNN has an issue with a long term depen-
dency variable where the neural network will face an issue with vanishing gradients
and gradients blown up in training an RNN. So, as a result, to the reference paper
[38] has come up with an Idea of LSTM with long storage memory.
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Figure 2.15: Structure of RNN

2.6.2 Long short temporary memory

LSTM is also a recurrent neural network that overcomes the long-term dependen-
cies by considering memory cells: the input gate, the output gate, and the forget
gate. The memory cells store the previous value, and the gates are responsible for
controlling the amount of memory to be exposed.[26]

o @

Input gate:it

i B

nt Output gate:O¢

-
= J

Figure 2.16: Structure of LSTM

Input gate:
The function of this gate is to control the input information from H; ;, and X,
should be given to the cell shown in figure 4, where H; 1, and X, are the input
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vectors taken into the sigmoid function, which gives an output value of 0 and 1.
The output value 0 states that the information is not let out from the gate and the
output value 1 states that the information is let out from the gate. In the same
way, the input vectors passed into the tanh activation function prioritize the input
vectors in the form of weights to the values ranging from -1 to 1.

it = O-(Wi[Ht—lth] + bl) <21]_)
Y; = tanh(wJ[H;_1, Xi] + b.) (2.12)

Forget gate:

Depending on the sigmoid function, the gate’s functionality is to remember the past
value or forget the past value by taking the input from the Ht-1, and Xt shown in
figure 3. After the inputs are taken into the sigmoid function, the function outputs
0 and 1, stating that 0 means forget the data and one means remember the past
values.

Ji = o(wy[Hi—1, Xi] + by) (2.13)

Output gate:

The functionality of this gate is to give out the future values as the output by taking
the values from the input gate, and the memory gate decides the output. But the
sigmoid function decides the output of the gate. Whether to activate the gate or
not to activate the gate depends on the input vector, which provides output values
0 and 1. If the sigmoid provides an output value of 1, then the output from the
sigmoid function is multiplied by the output function of the tanh and provides the
output. Else the output gate will not provide the output.

Ot = O'(CL)O[Htfl, Xt] + bf) (214)
Ht = Ot X tanh(yt) <215)

2.7 Model Evaluation

Model evaluation plays a vital role in the performance of the ML model by com-
paring the accuracy of the predicted value (From the model) to the actual values
(sensor data). The evaluation metric used in this thesis is as follows:

Mean absolute error:

The mean absolute error is the average difference between the observations (actual
values) and model output (predictions) [27]. The sign of these discrepancies is
disregarded, preventing cancellations between positive and negative numbers. If we
didn’t disregard the sign, the computed MAE would be far smaller than the genuine
difference between model and data.

_ Z:L:1|Yz - }/bred|
n

MAE (2.16)
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where Y; is the actual output,Y),q is the model predicted output and n are the total
number of samples

Mean Squared error:
The degree of inaccuracy in statistical models is measured by mean squared error
(MSE). The average squared difference between the observed and expected values is
calculated. When there is no error in a model, the MSE is 0. As model inaccuracy
rises, so does this value.

?:1(}/; — Y;ored)2
n

MSE = (2.17)

Relative absolute error:

The Relative Absolute Error is a ratio that compares a mean error (residual) to
errors produced by a simplistic or naive model. This method is used to calculate
the model’s performance and accuracy.

?:1|Yi - Ypf’ed|

RAE =100 x =2
i:1|}/i - Ymean’

(2.18)

Root relative squared error:
The Root Relative Squared Error (RRSE) is the square root of a predictive model’s
sum of squared errors normalized by the sum of squared errors of a simple model.

n (Vi — Yyrea)?
RRSE =100 iz (Y = Ve
. J ?:1 (Y; - vaean)2

(2.19)
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Methods

In this chapter, the work flow for building fault model is explained. This comprises of
the introduction to data cleaning, Data generation, Merging Data, Feature selection,
Prepossessing, LSTM Architecture and the optimal values of the hyperparameters.

3.1 Cleaning Data

Dean Abbot, Smarter HQ’s co-founder and Chief Data Scientist, believes that "no
data is pure, but most are relevant." The first and most critical step is to cleanse
the data before commencing any further research to get insights into the data. It is
the process of recognising data from various files/folders and changing or updating
it according to the requirements[l]. By doing this procedure, the data has not
been tampered with but extracted the pertinent data from the cloud storage and
combined for the future study. As the ML engineer, the issue with the data is to
understand and comprehend the data before deciding what data is significant and
required to provide helpful insights.

Export Data Import Data

Standardise ! Merge Data
Data _ . set

Stationary Removing

Test ‘ - Duplicates

Figure 3.1: The structure of Data cleaning
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3.1.1 Data generation

The data in this thesis is in the form of a time series. Each number represents
a readout from the HVDC system sensors at a specific point in time. The data
comes from the MACH™ system (Hitachi Energy’s internal system), which is
the brain of the HVDC system. The telemetry data comes from the sensors of
transformers, valve, valve cooling, HVAC system and auxiliary systems values are
generated and connected through the MACH 3 input-output boards. The operation
data (conditional monitoring data)communicated to the MIMS system through the
ETDM protocol from the Input Outboard. Moreover, the operation data reaches
the MIMS system, converts the data into the text format and sends the text format
data into the cloud storage device by the web services. As for a clear understanding,
refer to figure 3.2.

Web Service / Rest API

Transformer
Valve (OCT)
Valve Cooling

HVAC System
Auxiliary System

thdh W0

Figure 3.2: Data generation methodology

3.1.2 Data merging using Python

Python is one of the most popular computer programming languages [52]. It pro-
vides many libraries that provide excellent functionality for handling mathematics,
statistics and scientific operations. Moreover, in the present era, the python libraries
have significantly impacted the field of Data sciences and ML with the numerous
amount of open-source libraries that have created an enormous impact on the ma-
nipulation of the data with the pandas library.
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However, due to more data available from different sources, the pandas library can
combine all the Data frames but cannot navigate to the different paths. So python
has an open library called glob. It can navigate and provide information about the
data frame available in the different paths by providing the exact path of the data.
Moreover, the discussed python libraries are used in this thesis.

Where the data is stored, the cloud has a folder named Station 1. Under station 1,
there are several subfolders, and each subfolder contains the time series data CSV
file for each HVDC control and protection system. To access this folder in python,
one needs to install the package of OS. Using the function’ Os.listdir.join’ to get all
the directories and files in a single list by providing the directory of the station 1
folder. After reading the path directory, the subfolders are converted into the list
and stored in variable a. The next step is to install the glob library, which helps to
say whether the CSV files are present in each subfolder or not. Upon completion of
the glob process, each CSV file is read into the pandas’ data frame and concatenated
each time series CSV into one CSV file. In the end, the CSV files merged into a
single time-series CSV file. However, the sampling frequency of the time is not
equal. To make the sampling frequency equal. The sampling frequency has been
resampled by 30 seconds. This is done to increase the data points available in the
data set. The other sampling frequency was also tried, but they intended to reduce
the data points, which will affect the model accuracy and also lead to the concept
of overfitting. Now, the sampling frequency between each time is unique, making
it easy to create a sliding window algorithm, a technique used in fault prognosis
analysis in the later section of chapter 3.5.

Data merging with python using the above functions has provided with a data of
60517 rows and 1517 columns sent to the feature selection, This is explained in the
following sections.

3.2 Feature selection

Feature selection plays a prominent role in the machine learning algorithm. It
changes from problem to problem as it deals with an issue of fault prognosis in an
HVDC line. It was decided to pick the features of voltage, current and power. As a
result of considering these features, resistance is calculated and added as a feature
to the data set. Due to this, DC lines are more susceptible to faults that occur with
changes in voltage and current.

Therefore, by using the process, the data is reduced to 60517 rows and 4 columns.
The scaled down data is sent to the preprocessing step.

3.3 Preprocessing

Data preparation is the process of converting raw data into a machine-readable

format. In many real-world scenarios, the data obtained is either incomplete, prone
to mistakes, includes categorical data, separate columns will have different scales as
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described [3]. The steps for the data preprocessing are shown below.

3.3.1 Missing Values

Missing values are common in data obtained from real-world applications. This
might be due to information loss, data corruption, or a failure to capture data.
Because many machine learning algorithms fail to evaluate data with missing values,
it is critical that the missing values be addressed before proceeding with the analysis.
In our situation, more than 2% of the dataset contained missing values, which we
completely disregard for further research. There are several approaches to dealing
with missing data [2]. The methods used for filling the missing values with mean
mode median,filling the missing values with forwarding fill, deleting rows with the
missing values, filling the missing values with interpolate and filling the missing
value with the replace method are the methods used to remove the missing value in
the data frame. Among of these methods Filling the missing values with forwarding
fill, Deleting rows with the missing values are out performed and the rest did not
perform well. Because the rest of the methods fills the missing values by taking
the mean, median and mode of the data. In the below figure 3.3 tells us about the
missing values.

Sno Volatage Current Power
1 400 1200 480000
2 nan nan nan
4 410 1250 512500
4 320 1200 362400

Figure 3.3: Missing value Data set

3.3.1.1 Filling the missing values with forwarding fill

Deleting the rows for the nan values will give good results when the nan values are
less than 5%. But on the other hand, if the nan values is more than 5% deleting the
rows will not be a good idea. Either the missing values are to be forward filled by
the previous value will be a good idea for larger datasets.

As a result of utilizing this method, the data is filled with previous values, but all
the nan values did not eradicate from the data set. So it was decided to delete the
rows and the columns that are there in the data set.

3.3.1.2 Deleting rows with the missing values

One solution to the missing value problem is to delete the whole row of missing
values in one or more columns. It is only successful if the percentage of missing
values is low, about 5%. This method works better and trains the machine learning
model with robust results. Therefore, after using the procedure, the data is reduced
to 57367 rows and 4 columns.
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3.3.2 Removing the outliers and smoothing

The data obtained from the sensor will consist of outliers and some noises in the
system, which affect any machine learning model that you train. To mitigate the
problem of outliers and the noise in the signal, python has a signal library where
you can use all types of smoothing functions such as low pass filter, high pass filter,
and a bandpass filter to remove the outliers and smooth your signal. As employed
sampling frequency is 0.033 Hz, it was decided to use a low pass filter from the signal
library. In this regard,a low pass filter is used in this thesis. Figure 3.4 and Figure
3.5 shows the difference between a smoothed and an unsmoothed graph.
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Figure 3.4: smoothed graph using low pass filter
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Figure 3.5: Unsmoothed graph before low pass filtering
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3.3.3 Stationary test

KPSS [53] determines whether or not the time series data are trending and station-
ary. Therefore, this test performs a regression analysis around the time-series data.
The regression analysis enhances the trend and tells us about the stationarity of the
signal of the time-series data.

According to this test, the time series data that is used in this thesis is not stationary
from figure 3.4. With the reference to the figure 3.4 it is evident that the data
points do not have a constant mean, and the standard deviation is not equal to
zero. As a result, to make the time series data stationary, there is a method called
differentiating the time series data, which is discussed in 3.3.4

Differntiating the current graph

21| —— Differntiate the current

current [kA]
[
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Feb,07 00:00:00
Feb,09 12:00:00
Feb,12 00-00:00 {
Feb,14 12:00:00
Feb,17 00:00:00
Feb,19 12:00:00

Time

Figure 3.6: Differentiating the time series signal

3.3.4 Differentiating the time series data

Differentiating the time series data is an important concept by which you can make a
non-stationary time series signal into a stationary time series signal by removing the
series dependence on time and stabilizing the mean of the time series by eliminating
the trend seasonality, which is shown in the Figure 3.6.

3.3.5 Feature Scaling

Feature scaling is a prominent methodology when dealing with a machine learning
algorithm. It is a strategy for standardizing the independent variables or features
within a specific range. Moreover, it helps to reduce the values but also increases
the speed of calculation of the algorithm. The most common technique used for
feature scaling is discussed below.
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Figure 3.7: Feature scaling diagram as described in [4]

3.3.5.1 Normalization

Normalization is also called as min max scalers where the range of features is rescaled
to [0,1]. The formula of the min max scaler is given by

X —max(X)
Xnormalization = :
max(X) — min(X)

The above equation 1 describes the Max(X) as the maximum value of the feature,
and min(X) is the minimum value of the feature. However, it depends on the
application. The range can potentially be something other than [0,1]. Whenever the
data does not have a Gaussian distribution, normalization is the preferred method
of feature scaling. Refer to table 1 for a clear understanding of the maximum value
and the minimum value of the signal.

As a result this method is not used in our application because of providing a large
error in the model prediction. Instead it was decided to choose the method stan-
dardization which is explained in the section 3.3.5.2.

(3.1)

Table 3.1: Maximum and Minimum Values for Current, Voltage and Power

Maximum current 1.5172kA
Minimum current 0A
Maximum voltage | 443.8294kV
Minimum voltage ov
Maximum power | 605.3441MW
Minimum power Y

3.3.5.2 Standardization

Standardization is putting the diverse variables on the same scale in statistics. This
method is used to have the zero mean and unit variance to transform the data into
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machine-readable values by calculating the mean and Standardization of the entire
feature. The formula for determining each value of the data point in a feature after
calculating the mean and standard deviation is,

X-X
ag

(3.2)

Xstandardization =

X is the mean of the feature, and o is the standard deviation of the feature. Stan-
dardization is usually favored when the data has a Gaussian distribution, but it is
not always required. Even if there are outliers in the data, standardization will not
influence them. In addition, standardization is the best feature scaling technique
used in time series analysis because of its sequence of data where it has a significant
variance in the series obtained from the sensors.

However, considered all the feature scaling techniques, standardization has outper-
formed with a lower training loss than the normalization technique [50],[51]. In this
thesis, the standardization technique on the entire data set using equation 3.2. More-
over, the coefficients used to rescale the value of the original values after training
the model.

3.4 Train and Test

Standardization data should be separated into the train set, the validation set, and
a test set before the sliding window procedure. Because when you don’t split the
data into train and test sets. The future values that you want to predict will be
stored in the training set and affect the model. So the train split procedure plays
a prominent role in the model evaluation. The example of train split procedure is
shown in Figure 3.8

Original data from sensors

Figure 3.8: Example of Train Split procedure

The time-series data cannot be split randomly as other machine learning algorithms
because of the sequential way that data obtained from the sensors will lose their
sequence and lead to an unbalance in the future prediction. So to avoid that situ-
ation, data set is divided by taking the length of the data set. Since the data set
used in this thesis has 57636 rows, 60% of them are divided into training data, and
the remaining 40% are split into test data and validation data.
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3.5 Sliding Window

The sliding window algorithm has become prominent in time series applications
such as medical, weather, and finance [47]-[49]. This methodology is applied to
the fault prognosis of the HVDC line. The sliding window algorithm is a temporal
approximation of the actual value of the time-series data [8]. As the window size and
the segment size increase [9], the selection of the first segment and the next segment
is selected from the end of the first segment [8]. This process continues until all-time
series data have been segmented. The process is explained in Figure 3.9 with an
example of 10 numbers with a window size of 3. The sliding window accumulates the
historical time series data [10] to predict the succeeding 1-minute current, voltage,
power, and resistance of the DC line. Figure 3.9 explains the process with window
size 3 [11]. Each number in figure 3.9 tells about the time series data obtained for
every minute. Once the window size is set, the window Starts to consume 3 minutes
of the historical data to predict the next minute’s current, voltage resistance and
power. After consuming the time series data for the first window, the window begins
to slide towards the right for one minute to cover the next 3 minutes of the data.
Because the step size was set to 1, this process continues until the end of the time
series data.

Initial Window |

Figure 3.9: Sliding window process

The experiment was done on the voltage, current, power and resistance on the train-
ing data set with a window size of 240. It stores the past data of the sequence in
windows and divides it into a three-dimensional array (WindowsxData points in a
Window xnumber of features). Assoon as it is placed in the sliding window, the train
data of size(46107,4) appears in a three-dimensional array/ matrix (45287,240,4) as
show in figure 3.10.

The figure 3.10 describes about the data representation when the sliding window
algorithm technique is applied on the sensor data. As a result the X axis of the figure
3.10 mark out the features of data such as resistance, voltage, power and current.
While the Y axis of reports data points obtained from the window size and the Z
axis tells us about the windows that are obtained by the sliding window algorithm.
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240 Data Points

|

4 Features

Figure 3.10: Structure of the three-Dimensional matrix

3.6 LSTM architecture

In this section, the process of building an LSTM network starts from the Input,
layers, optimal layers selections and the optimal hyperparameters for training the
network discussed below.

3.6.1 Input Data

The data prepared from the sliding window section is fed directly to the LSTM input
layer as the input to the network. The network takes the input as a 3-dimensional
array in the shape of (WxLxF), where W is the number of windows or data points,
L is the length of the window, and F is the input features.

3.6.2 Layers

3.6.2.1 Hidden layer

The hidden layer is present between the input and output layers of the LSTM
network. In each hidden layer, there are cells which have the functionality to add
weights to the input and direct them through an activation function as the output.
Besides, the cells used in the hidden layer change with the applications used in a
realtime. In this thesis, I have successfully introduced a hidden layer with 256 cells
to get better output from the network.

3.6.2.2 Dense layer

In an LSTM network, the dense layer is known as the output layer, which connects
the cells present in the hidden layer to the output layer cell.
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3.6.2.3 Number of layers

The LSTM model consisting of three layers, two hidden layers and one dense layer.
Initially, the train data from the sliding window approaches the input layer of the
LSTM network. The output of the input layer connects the hidden layer through
cells and trains the model by adding the weights to the data. After preparing the
model in the hidden layer, the data is transferred to the next hidden layer using
the return sequence equal to true. Upon receiving the data from the first hidden
layer, the second hidden layer also trains the model with the appropriate weights
and sends the data to the dense layer. Refer to Table 3.2 to see how the flow of the
network. Table 3.2 tells us the network flow, but in the middle of each hidden layer,
a dropout function is used after every hidden layer to prevent the risk of overfitting

5].

Table 3.2: LSTM Network Architecture

Layers Architecture

Input Layer 45867 x240x4
LSTM Hidden layer 1 (128,256)

LSTM leaku Relu ( )

Dropout ( )

LSTM Hidden layer 2 (128,256)

( )

( )

( )

LSTM leaku Relu
Dropout
Dense Layer

3.6.3 Optimal hyperparameter

The hyperparameter plays a vital role in predicting accuracy while testing your
model in any mathematical network. As referring to many papers, the paper by
[5] has motivated to find the optimal hyperparameter, which would lead to higher
accuracy and minimise the risk of overfitting data. When testing the Table 3.2 net-
work,the default hyperparameters are provided for the test used in the other papers.

After testing the model, each hyperparameter is tweaked and trained to obtain the
optimal value. Furthermore, an optimal value for an LSTM can be achieved by
providing the test data to the network. Calculating the mean absolute loss from the
predicted value will help us to provide an optimal value for each hyperparameter.

3.6.3.1 Dropout

Dropout is a tunable parameter that reduces the overfitting of the data by choosing
the random cells from the layer based on the probability specified and setting their
output to 0 [6]. The dropout function applied to every hidden layer can be seen in
Table 2. The model tested for every dropout value to obtain the optimal value shown
in figure 3.11. In the figure 3.11, the X axis describes about the mean absolute error
which was obtain by each iteration with the change of the dropout value. On the Y
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axis the dropout values are considered shown in figure 3.11. From figure 3.11, it is
evident that the optimal value for the dropout is 0.2 because the MAE loss is low
compared to the other dropout values.

Optimal Dropout Number

00055

0.0050

0.0045

0.0040
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Figure 3.11: optimal Dropout Number

Despite doing this test, the value of epochs was set to 150 and the LSTM cells
considered in each layer were fixed to 256,256,1, with a learning rate of 0.0001.

3.6.3.2 The number of epochs for training the model

The number of epochs is a hyperparameter that specifies how many times the learn-
ing algorithm will run over the whole training dataset. An epoch represents a single
training data sample, which updates the model parameters at the end of each epoch.
As soon as the data passes through the network, it divides the data according to the
batch size. The batch size used in this thesis is 256, which divides the training set
data into 237 batch samples. Once the batch samples are divided, then the training
of the network is done by the 237 batch samples for one iteration. This process
continues until the end of the epoch.

The X axis of the figure 3.12 marks out the mean absolute error which was obtained
by changing the epochs. On the Y axis different epochs values are considered,for
each epoch value on the Y axis an iteration is done on the network to obtain the
mean absolute error. After testing all the epochs value on the Y axis shown in the
figure 3.12 describes the optimal epoch value is 200. Because at the epoch value 0f
200 has the lowest MAE value.However, While performing this test the LSTM cells
are considered in each layer were fixed to 256,256,1, with a learning rate of 0.0001.
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Optimal epochs
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Figure 3.12: The optimal number of Epochs

3.6.3.3 Optimal Cells in each LSTM layer

In a neural network, hidden and dense layers consist of cells in each layer which
would help to train the LSTM network. We consider different cell values on X axis
shown in the figure 3.13 and on the Y axis different values of mean absolute error
values are considered by training the model with a different value of cell. As a result
to determine the optimal value of cells present in the hidden layers. Figure 3.13
clearly shows that cells in each layer have 256,256,1 since the number has the lowest
MAE compared to the other cell’s variety.

While doing this test, the value of the epochs set to 150 and the dropout set to 0.2
with a learning rate of 0.001.

Optimal number of cells
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Figure 3.13: Optimal number of Cells in each layer

3.6.4 Loss function in LSTM

An LSTM loss function measures the difference between the predicted and absolute
values for every epoch of the training data. The 20% of the validation data used
to evaluate the model’s training. When the model’s training starts, you need to see
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3. Methods

that the training loss should reduce simultaneously, and the validation loss should
be reduced with the previous value and store the best value of the model. Moreover,
the validation loss stored value should be less than the training loss, as shown in
Figure 3.14. In the figure 3.14 the blue line marks about the training loss and the
red line talks about the validation loss of the model.As these losses are obtained
when the model is trained and tested with the optimal hyper-parameter. However,
if the model is not trained with optimal hyperparameters, this would lead to a case
of overfitting when the validation loss is not lower than the training loss.

Training and validation loss

—— Taining loss
—— Validation loss

loss

0 20 ) ) 0 100
epochs

Figure 3.14: Training and validation loss

The loss function used in this model is the Mean absolute error mainly used in the
fault prognosis analysis.

3.6.5 LSTM optimizer

RMSprop and Adams are the optimizer used in this thesis with a learning rate of
0.001. By comparing both methods, Adam has high performance and convergence
compared to the RMSprop optimizer.

3.6.5.1 Error calculation

After the optimizer selection it needed to calculate the error while training the
model. The error used in this thesis are MAE and RMSE which is explained in the
section 2.7.
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Results

In this section, the validation of the LSTM model is presented with the different
conditioning monitoring data of voltage, current, power, and resistance to predict
possible fault that would happen in the future. The output from the model is
evaluated by the different loss functions explained in the above section|theory], which
would result in the accuracy of the model and the error of the predicted value with
the original value.

4.1 Prediction of test data after inverse differen-
tiation and denormalization

The denormalization of the values plays a vital role when you want to predict the
voltage, current, power and resistance value. It would be challenging to understand
the value of those features. So, when the values of the features appear after testing
the model one should denormalize and do the inverse differentiation to obtain the
current, voltage, power, and resistance signal.

4.1.1 Comparison of voltage prediction with original value
of the voltage:

Figure 4.1 talks about the LSTM model prediction of the voltage in the blue dashed
line and the original voltage values in the solid orange line. Considering figure 4.1,
it is evident that the prediction value follows the trend of the actual voltage. With
that reference, it is evident that the model fits perfectly with the original values of
the voltage. Moreover, the maximum sensor value of the voltage is 443 kV, and the
model has predicted a value of 445 kV. Nevertheless, the model has failed to predict
the values at 340 kV and 0 kV, which can be seen in figure 4.1. It has happened
at every rise and downfall of the voltage values that the model has predicted the
high voltage values. This happened because the LSTM requires more correlated
features to reduce the peaks. As a result, identify the error between the actual and
predicted value shown in table 4.1, the estimated error of the model using MAE
(mean absolute error), MSE (mean squared error), RAE (relative absolute error),
and RRSE (root relative squared error) variables with 256 samples and a learning
rate of 0.0001.

33



4. Results

Table 4.1: Performance measure of the constructed predictive models on
validation data( case voltage)

MSE | MAE | RAE | RRSE | Accuracy
117.333 | 1.637 | 0.876% | 5.5925% 99.36%
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Figure 4.1: Comparison of voltage prediction with actual value of voltage

4.1.2 Comparison of current prediction with the actual value
of the current

Figure 4.2 depicts the LSTM model forecast of the current in the blue dashed line
and the original current values in the solid orange line. Figure 4.2 shows that
the forecast value closely matches the pattern of the actual current, Which means
that the model fits perfectly with the actual sensor values of the current. But the
predicted values of the model are slightly above the actual values of the current at
0 kA and at 0.7 kA. A tiny variation during the current’s increase and decrease is
inconsequential. As a result, find the difference between the actual and predicted
values in 4.2, as well as the model’s estimated error using MAE (mean absolute
error), MSE (mean squared error), RAE (relative absolute error), and RRSE (root
relative squared error) variables with 256 samples and a learning rate of 0.0001.

Table 4.2: Performance measure of the constructed predictive models on
validation data( case current)

MSE MAE RAE RRSE Accuracy
3.68912857e-05 | 0.00213346 | 0.65475119% | 1.54380465% | 99.36%
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comparision of predicted values to the orginal value of current
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Figure 4.2: Comparison of current prediction with actual value of current

4.1.3 Comparison of power prediction with the original value
of the power:

Figure 4.3 shows the power predictions of the LSTM model as dashed blue lines and
the actual power values as solid orange lines. Figure 4.3 shows that the predicted
values are very close to the actual power pattern and small deviations between power
increases and decreases are not significant which can be seen between the time feb
17 00:00 to feb 17 12:00. However, by inspecting the figure 4.3 there it can be seen
that model predicted value follows the path but there is a small difference at the
sudden rise and sudden falls with a change of value of 2%.As a result, to calculate
the difference between the actual and predicted values in table 4.3 and the MAE
(mean absolute error), MSE (mean squared error), RAE (relative absolute error),
and RRSE (root). (Relative squared error) variables with 256 samples and a learning
rate of 0.0001.

Table 4.3: Performance measure of the constructed predictive models on
validation data( case power)

MSE MAE RAE RRSE Accuracy
8.29800211 | 1.03718855 | 0.77797587% | 1.75467877% | 99.36%

35




4. Results

comparision of predicted values to the orginal value of power
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Figure 4.3: Comparison of power prediction with actual value of power

4.1.4 Comparison of resistance prediction with the actual
value of the resistance:

Figure 4.4 depicts the LSTM model’s resistance predictions as dashed blue lines
and the actual resistance values as solid orange lines. Figure 4.4 indicates that
the predicted values are quite similar to the actual resistance pattern, where the
predicted value of the resistance is inscribed below the orange dashed line. By
inspecting the figure 4.4 it says that it a not overfitting the graph and concludes
that it was a good fit. However, by looking the figure 4.4 there could be a strange
behaviour between the time feb 17 12:00 to feb 18 00:00 there is a large spike with
38000 ohms. This is happened due to the system current tended to zero then a
infinite amount of resistance can be observed and also time between feb 17 00:00
to feb 17 12:00 there are three short spikes which discuss about the sudden change
in the current obtained in the system. Moreover this spikes are identifeid by the
model accurately.As a consequence, to check the difference between the actual and
projected values in table 4.4, as well as the MAE (mean absolute error), MSE (mean
squared error), RAE (relative absolute error), and RRSE (relative squared error),
were calculated (root). Variables with (Relative Squared Error) 256 samples and a
learning rate of 0.0001.

Table 4.4: Performance measure of the constructed predictive models on
validation data( case resistance)

MSE MAE RAE RRSE Accuracy
6.29800211 | 1.43718855 | 0.70747587% | 1.54607877% 99.3%
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comparision of predicted values to the orginal value of resitance
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Figure 4.4: Comparison of resistance prediction with actual value of resistance

4.2 Future Prediction for the fault

The top left corner of figure 4.5a describes the future predicted current, where the
blue line discusses the past values of the current, and the orange line describes the
future values of the current. Looking deep into the figure 4.5a shows a slight rise
in future value at feb 21 22:45 is 0.67 kA. This rise has happened due to the cur-
rent model’s prediction shown in the figure 4.2 has a RAE of 0.65%. However, the
slight rise can be reduced by choosing appropriate hyperparameters. Now let us
consider the figure 4.5b at the top right corner, which describes the future predicted
voltage. In this graph, the blue line tells us about the past values, and the orange
line describes the future values of the voltage. By inspecting the voltage graph, a
small heap appeared at feb 21 21:15 in the voltage. The model’s predicted voltage
graph shown in the figure 4.1 had predicted the voltage as very high at the sharp
corners. So for that reason, there is a heap in the future voltage values. The future
predicted power graph can be seen right below the voltage graph in the figure 4.5d

This graph consists of a blue line about past power values and an orange line
about future power values. Inspecting the graph tells us that the future values of
the power have a minor error which can be negligible similarly if we look at the
graph of future predicted resistance situated at the bottom left corner shown in the
figure 4.5c. This graph has a blue line representing the past values of the resistance
and an orange line representing the future values of the resistance. However, the
resistance graph also has a minor error that can be seen from the future predicted
resistance graph 4.4 with a RAE 0.70747%.

From figure 4.5, it is evident that future voltage value is around 441 kV which is

constant, while the current is around 0.65kA, the power is around 280 MW, and
the resistance is 650 ohm. This value states that no fault appears in the next 30
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minutes of the time interval. However, if the fault appears in the DC line, then
one can see the change in the voltage would reach the value of 0V, and the current
reaches a higher value above the rating of the converter. So, then there would be a
large amount of short circuit current flowing in the system and causes a black out
situation of the HVDC grid.
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Figure 4.5: Future fault prediction by comparing the voltage current power and
resistance

38



O

Discussion

As part of this thesis, the HVDC (High Voltage Direct Current) system provides
fault signals from the sensor in the form of time-series data. These signal param-
eters of voltage, current, resistance and power are estimated using the time series
measurement. To estimate the signal parameters, one needs to divide the known
signal parameters with a long history in statical signal processing [35]. The division
of the signal into long segments is done by using a method called a sliding window,
explained in the above section.

In this study, I used to set of purely data-driven techniques to capture the hid-
den patterns of the fault time series without any signal modelling of DC faults.
In this regard, I have considered an LSTM model to better understand the time-
series sequence compared to the machine learning algorithms such as (support vector
regression, multi-layer perceptron and linear regression). Nevertheless, it is not in-
tended to say that the LSTM model performed well compared to the other Machine
learning models in the fault prognosis context. There are no specific guidelines in
the machine learning community to say that this algorithm suits this application.

Moreover, in this study, I have observed that predicting the fault of the DC line
based on the time series is a more challenging problem than predicting the regular
operation of the DC line. From the HVDC line perspective, we may justify the
fault of the DC line via an unexpected change in the voltage and the current when
a line to a ground fault has appeared in the system. When these faults appear in
the system, they try to absorb more current from the converter to feed the fault
and may affect the line’s resistance. While this process continues, the line resistance
changes and may lead to damage to the line. Since the damage to the line is de-
pendent on the rise of current and the fall of voltage values. These values are taken
in with respect to time. However, most faults appear in the DC line when the pole
is blocked, so it is difficult to identify the faults if there is no change in the voltage
and current. Hence, I faced more challenges in estimating the faults than the line’s
regular operation.

The trained LSTM architecture in this thesis will estimate the DC line voltage,
the current, the power, and the resistance is shown in figure 4.5 using the recorded
HVDC system waveform in the last 1 hour. In addition, by analyzing the HVDC
system data over the last hour, the model should be able to detect the fault at an
early stage or become suspicious when the value changes in the voltage lesser than
the limit and the value of the current greater than the limit coined as the faults in
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the system.

Furthermore, solving the problem by the categorical variable [35] way might be dif-
ficult because the data obtained from the sensors will not have the output labels of
the fault and not the fault. As a result, the problem was formulated into a regression
problem. The aim is to estimate the change in the continuous variable of voltage,
current, power and resistance. A regression prediction is more complex than classifi-
cation [36]. In practice, however, it enables practitioners to interpret fault situations
based on pole faults and line to ground faults rather than imposing our definition
for "faulty" conditions. Due to a lack of consistency in definitions of problematic
conditions, we are experiencing this problem. In such a case, predicting the signs of
a defect (like a change of voltage or current) would be the most appropriate way to
describe the problem.

One of the practical points in the utility of our predictive model relates to the length
of time needed for decision-making [35]. On the one hand, the 1-hour length of
the collected voltage, current, power and resistance waveform required for decision-
making by the trained LSTM is impressively brief. On the other hand, no model
is 100% accurate compared to the real-time monitoring system connected to the
HVDC line.
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Conclusion

The thesis aims to predict the DC cable fault using the ML model trained on the
condition monitoring data of the DC cable. Section 3.1.1 describes the data gener-
ated from the sensors of the DC cable. After generating the dataset by the sensors
of the DC line, it was identified that it has less than 5% faults compared to the
entire dataset. However, while going through the dataset, it has been identified that
most line-to-ground faults appear in the pole reversal. This means that when the
power direction has changed from HVDC station 1 to HVDC station 2, the line fault
locator has triggered, stating that there is a fault.

Nevertheless, there is no voltage and current fluctuation when the fault has ap-
peared. In addition, line-to-ground faults appeared in the system when the power
requested by HVDC station 2 was equal to OMW. Then the line fault locator sensor
has triggered and stated about the fault. Nonetheless, there was no change in the
voltage and current values because the power was equal to 0OMW. By considering all
these criteria, the data generated from the sensors were modified using the standard
scaler, discussed in section 3.3.5.2.

The modified data sent to the sliding window algorithm discussed in the section 3.5
converts the data into supervised learning and fed into the baseline model of the
LSTM. However, due to the recent advances in machine learning, deep learning may
rely more heavily on data-driven models, including all the above model generation
steps. In this regard, the author relied exclusively on LSTM architecture in the
current study to identify the patterns from the voltage, current and power signals
while building up the predictive model to detect the faults in the cable. In other
words, a distinct feature extraction stage during model creation was skipped en-
tirely. A brute-force model selection with optimal hyperparameters and the LSTM
architecture examined resulted in training for predicting the fault in the DC line.

This approach led us to predict the model’s performance calculated using the Rela-
tive absolute error of the voltage, current, power, and resistance are deficient and led

to an accuracy of 99.93%. By seeing this accuracy, it is easy for a TSO to identify
the fault prior and can take precautionary steps to avoid the fault.

6.1 Ethical Aspects

The project presents the following risks in regards to the IEEE code of ethics.
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6. Conclusion

To improve the understanding by individuals and society of the capabili-
ties and societal implications of conventional and emerging technologies,
including intelligent systems.

Possible risks: Hiding the disadvantages of the project and only promoting the ad-
vantages.

Preventive measures: The limitations of the project must clearly be understood and
stated. The sustainable impacts of the project must also be promoted to increase
awareness and interest.

To avoid injuring others, their property, reputation, or employment by
false or malicious actions, rumors or any other verbal or physical abuses.
Possible risks: Implementing the services in available wind turbines without further
research or testing. This can lead to damage to property and reputation.
Preventive measures: Presenting all available data and results, while stressing on
the need for more testing and development of technology.

To support colleagues and co-workers in following this code of ethics, to
strive to ensure the code is upheld, and to not retaliate against individ-
uals reporting a violation.

Possible risks: Not encouraging fellow team members, leaving them unnoticed are
some possible risks.

Preventive measures: Setting a time plan and helping each other in technical as-
pects. Involving everyone in the team in discussions and decisions. Conducting peer
reviews and providing constructive suggestions will allow for individual growth and
contribute to the team’s objectives.
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Future Work

This thesis considers four parameters that influence the fault of the DC line. These
parameters generate the training samples and predict the outcomes from the ML
model. Nevertheless, some other parameters can be included in the DC line fault.
Moreover, to improve the concept of multivariate and multi-step time series pre-
diction with LSTM. Furthermore, NLP can also be used to identify the faults in
the DC line. In addition to NLP, two other methods are identified for multi-step
development.

1. This method uses a brute force approach to extract the feature from the data
set and send them to an LSTM Autoencoder. LSTM Autoencoder comprises
an encoder part and a decoder part. In an encoder part, a fast Fourier trans-
form mathematical tool is applied to the dataset, which converts the data into
complex data. After obtaining the complex data is sent to the LSTM model.

The decoder also consists of an LSTM model, which converts the complex
data to the original size and applies an inverse Fast Fourier transform with an
appropriate hyperparameter to tune the model.

2. This technique extracts the feature from the data set via brute force and
sends it to an LSTM cell, which serves as the encoder. It takes as input 3D
sequences formed by concatenating time series data with a categorical feature
embedding. It generates a 2D output, as do all encoders in a VAE architec-
ture, which estimates the mean and variance of the latent distribution. To
construct 3D sequences, the decoder samples from the 2D latent distribution
upsampling. The resulting sequences are concatenated with the original cate-
gory embeddings and fed into an LSTM cell to recover the original time series
data sequence.

A VAE (Variational AutoEncoder) is trained by minimising a loss that is the
combination of two parts. A reconstruction component (scaled mean squared
error ), which indicates the model reproduces the target, and a regularisation
component (Kullback Leibler divergence), works as a restriction to make the
latent space more akin to a normal distribution. For a clear understanding,
refer to the figure 7.1.
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Figure 7.1: Variational AutoEncoder Architecture

These are the two methods that can reduce this thesis’s limitation and provide great
results in identifying the faults for multiple steps.
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