
Developing a Cross-Platform
Service Ordering Mobile Application
for Social Integration
Bachelor of Science Thesis in Computer Science and Engineering

Emina Cindrak
Anton Ingvarsson
Carl Jansson
Bassel Kanaan
Christoffer Karlsson
Martin Sigvardsson

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Department of Computer Science and Engineering
Göteborg, Sweden, June 2017

Bachelor of Science Thesis

Developing a Cross-Platform Service Ordering
Mobile Application for Social Integration

Emina Cindrak
Anton Ingvarsson

Carl Jansson
Bassel Kanaan

Christoffer Karlsson
Martin Sigvardsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

University of Gothenburg

Göteborg, Sweden 2017

Developing a Cross-Platform Service Ordering Mobile Application for
Social Integration

Emina Cindrak
Anton Ingvarsson
Carl Jansson
Bassel Kanaan
Christoffer Karlsson
Martin Sigvardsson

© Emina Cindrak, Anton Ingvarsson, Carl Jansson, Bassel Kanaan, Christoffer
Karlsson, Martin Sigvardsson, 2017

Examiner: Morten Fjeld, Professor, Department of Applied IT

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commer-
cial purpose make it accessible on the Internet. The Author warrants that he/she is
the author to the Work, and warrants that the Work does not contain text, pictures
or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Cover: Screenshots from the client part of the application.

Department of Computer Science and Engineering
Göteborg 2017

ii

Developing a Cross-Platform Service Ordering
Mobile Application for Social Integration
Emina Cindrak
Anton Ingvarsson
Carl Jansson
Bassel Kanaan
Christoffer Karlsson
Martin Sigvardsson

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Bachelor of Science Thesis

Abstract
The aim of this project was to design and develop a cross-platform service ordering
mobile application for Android and iOS. The application should enable clients to
order services, and in turn, provide an easy way for newly arrived immigrants to
find suitable tasks to perform, in order to enter the Swedish labour market. The
application was developed on behalf of the company Just Arrived.
The construction and development was focused on implementing the client part
of the application and designing a visual prototype for the worker part. The client
part enables clients to order simple services, such as lawn mowing or cleaning. These
tasks are then published in the worker part of the application, used by newly arrived
immigrants, to easily be found and applied for.
This thesis describes the methodologies used, the theory behind the development
and the design, the challenges confronted during the development process, and the
final result of this project.

Keywords: React Native, i18n, Internationalization, JavaScript, Cross-Platform,
Android, iOS

iii

Sammanfattning
Syftet med projektet var att designa och utveckla en plattformsoberoende mobilap-
plikation för Android och iOS. Mobilapplikationen ska erbjuda kunder möjligheten
att beställa tjänster, men även erbjuda ett enkelt sätt för nyanlända immigranter
att hitta jobb att utföra, för att kunna ta sig in på den svenska arbetsmarknaden.
Applikationen utvecklades för, och i samarbete med, företaget Just Arrived.
Uppbyggnaden och utvecklingsarbetet var fokuserat på att utveckla beställardelen
av applikationen, samt att designa en visuell prototyp utan funktionallitet för ar-
betstagare. Beställardelen av mobilapplikationen gör det möjligt för kunder att
beställa enklare tjänster, såsom städning eller gräsklippning. Tjänsterna publiceras
sedan till arbetstagare, för att de enkelt ska kunna hitta och ansöka till uppdrag.
Denna projektrapport beskriver de metoder som använts, teorin bakom utvecklingen
och designarbetet, de utmaningar som uppkommit under utvecklingsprocessen, samt
det slutgiltiga resultatet av projektet.

Keywords: React Native, i18n, Internationalization, JavaScript, Cross-Platform,
Android, iOS

v

Vocabulary
• Actions - Redux methods handled by reducers
• Android - Mobile phone operating system
• API - Application Programming Interface
• Back end - Code handling data displayed in the front end
• Cross-platform software - Software working across multiple platforms from a

single codebase
• ESLint - Linting utility for JavaScript
• Fetch API - JavaScript interface for fetching resources
• FIFO - First In, First Out
• Git - Version control system
• GitHub - Web-based Git repository hosting service
• GUI - Graphical User Interface
• HTTP - Hypertext Transfer Protocol
• i18n - Internationalization (used to support multiple languages)
• iOS - Mobile phone operating system
• Java - Programming language used by Android apps
• JavaScript - Programming language (used by React Native applications)
• JSON - JavaScript Object Notation, used to store and retrieve information
• Just Arrived - The company that proposed this thesis project
• Kanban - Method for managing work (used within agile software development)
• Linting - Static code analysis to detect potential programmatic and stylistic

errors
• MVC - Model View Controller
• npm - Node Package Manager
• Objective-C - Programming language (used by iOS applications)
• P2P - Peer-to-peer
• React - A JavaScript library for building user interfaces
• React Native - Framework for building native applications using React
• Reducer - Redux state storage and action handler
• Redux - Predictable state container for JavaScript applications
• REST - Representational state transfer, a type of API
• Swift - Programming language (used by iOS applications)
• URL - Uniform Resource Locator
• UX - User Experience

Project Specific Definitions
• Client - Customer ordering a service using Just Arrived
• Worker - Newly arrived immigrant working through Just Arrived

vii

Contents

List of Figures xii

1 Introduction 1
1.1 Purpose . 1
1.2 Background . 1
1.3 Challenges . 2

1.3.1 Graphical User Interface . 2
1.3.2 Target Group and User Testing 2
1.3.3 Language Barrier . 2

1.4 Scope . 3
1.5 Outline . 3

2 Methods 4
2.1 Agile Software Development . 4

2.1.1 Kanban . 4
2.1.2 Lean UX . 5

2.2 Interaction Design Methods . 5
2.2.1 Paper Sketching . 5
2.2.2 Wireframing . 6

2.3 Testing . 6
2.3.1 Expert Testing . 6
2.3.2 User Testing . 6

3 Tools and Theory 7
3.1 Interaction Design . 7

3.1.1 Designing for Touch . 7
3.2 Frameworks . 8

3.2.1 React Native . 8
3.2.2 Redux . 8
3.2.3 React Navigation . 10
3.2.4 NativeBase . 10
3.2.5 Internationalization i18n . 11
3.2.6 React Native Fetch . 12

3.3 Just Arrived API . 13

4 Process 14
4.1 Pre-study . 14

ix

Contents

4.1.1 Requirements from Just Arrived 14
4.1.2 Functionality and Use Cases 15
4.1.3 Brief Market Analysis . 16

4.2 Interaction Design Process . 17
4.2.1 Low Fidelity Sketching . 17
4.2.2 Combining and Refining Sketches 18
4.2.3 Digital Wireframing . 18

4.3 Design Testing . 19
4.3.1 Expert Tests . 20
4.3.2 User Tests . 20
4.3.3 Client Wireframe Tests . 21
4.3.4 Worker Wireframe Tests . 21

4.4 Programming Development Process 22
4.4.1 Programming . 22
4.4.2 Pull Request . 23
4.4.3 Code Review . 23
4.4.4 Application Testing . 23

5 Results 25
5.1 Application Flow . 25

5.1.1 Task Ordering - Client . 25
5.1.2 Find Tasks - Worker . 26

5.2 Design . 27
5.2.1 Usability . 27
5.2.2 Language Selection . 28
5.2.3 Design for the Client Part of the Application 28
5.2.4 Worker Prototype Design . 33
5.2.5 Shared Design . 34

5.3 System Architecture . 37
5.3.1 Project Folder Structure . 37
5.3.2 Application Navigation . 38
5.3.3 Redux Integration . 39
5.3.4 Networking . 40
5.3.5 Networking and Redux . 40

6 Discussion 41
6.1 Limitations . 41

6.1.1 The Language Barrier . 42
6.2 Retrospective . 42
6.3 Usability Evaluation . 43
6.4 Design Decisions . 44

6.4.1 Login Screen Placement . 44
6.4.2 Navigation Menu Choice . 45
6.4.3 Unifying the Design for All Users 45

6.5 Ethical Choices . 46
6.5.1 Worker Selection . 46
6.5.2 Rating . 46

x

Contents

6.6 Framework Evaluation . 46
6.6.1 React Native . 47
6.6.2 Networking Component . 47
6.6.3 Redux . 48
6.6.4 NativeBase . 48
6.6.5 React Navigation . 49

7 Conclusion 50

Bibliography 51

A All Views of the Application I

xi

List of Figures

2.1 An example of a kanban board using post-it notes. 5

3.1 Simplified overview of frameworks used in the project and their hier-
archy. Dotted lines indicate communication, i.e. function calls. 8

3.2 Illustrative comparison of component communication without and
with Redux. 9

4.1 Screenshots from TaskRabbit, showing the Home tab and the Tasks
tab. 16

4.2 Flowchart visualising the programming development process. 17
4.3 Example of low-fidelity paper sketches during development. 18
4.4 Early iteration of combined and refined whiteboard sketches, created

together as a group. 18
4.5 Early iteration of wireframes for the client part of the application,

showing the list of owned tasks, as well as the option to choose a task
type during task ordering. 19

4.6 Printed wireframes used during testing. 20
4.7 Flowchart visualising the programming development process. 22

5.1 Interaction flow when ordering a task. 25
5.2 Interaction flow when choosing a worker. 26
5.3 Interaction flow when confirming that a task has been completed. . . 26
5.4 Interaction flow when finding and applying for a task. 26
5.5 Interaction flow when receiving a notification about being assigned

the task. 27
5.6 Interaction flow when confirming that a task has been completed. . . 27
5.7 Screenshots from the client part of the application, showing screens

involved when ordering a task. 29
5.8 Screenshots from the client part of the application, showing screens

involved when ordering a task. 29
5.9 Card with image header displaying the lawn mowing task. 30
5.10 Screenshots from the client part of the application, showing screens

involved when choosing a worker. 31
5.11 Screenshots from the client part of the application, showing screens

involved when paying for a task. 31
5.12 Screenshots from the client part of the application, showing screens

involved when marking a task as completed. 32

xii

List of Figures

5.13 Screenshots from the client part of the application, showing screens
involved when rating the worker. 32

5.14 Wireframes from the worker part of the application, showing screens
involved when finding tasks. 33

5.15 The notification received by the worker when accepted for a task. . . 34
5.16 Confirm task completed and rate experience. 34
5.17 The introduction wizard. 35
5.18 Screenshot of the shared login screen. 35
5.19 Main navigational tab bar shown throughout the application. 36
5.20 Task icons representing the different tasks in the application. 37
5.21 Tree data structure visualising an overview of the folder structure. . . 37
5.22 Visualisation of how the views are grouped in tabs, and the navigation

between them. Black arrow head indicates the ability to navigate,
and white arrow head indicates the ability to navigate backwards
(i.e. by using the return button). The grey section with dotted border
indicates the main content of the application, requiring the user to be
logged in. Each tab of the navigation tab bar is indicated by a package
with screens in them: CreateJobTab, MyJobsTab, and MyProfileTab.
While inside the main part of the application, navigation is always
possible between tabs. 39

5.23 Overview of GUI, Redux, networking, and how they are connected. . 40

A.1 Login screen and choose task type screen. I
A.2 Create and inspect task information. II
A.3 View owned tasks and receive a push notification. II
A.4 Views listing and displaying applicant information. III
A.5 Views displaying applicant references and listing credit cards. III
A.6 Payment confirmation and payment success screens. IV
A.7 Task completion notification and confirmation screen. IV
A.8 Rate worker and task completed screens. V
A.9 User profile and account creation screens. VI

xiii

1
Introduction

This chapter will give an introduction to the project as well as provide background
information and defining the purpose of the work that has been done.

1.1 Purpose
The purpose of this bachelor’s thesis was to, together with Just Arrived, develop a
mobile application where clients can order services to be performed by newly arrived
immigrants and they, in turn, can find suitable tasks. The aim of the application
is to help newly arrived immigrants enter and become a part of the Swedish labour
market. Furthermore, the project focused on how a modern interface should be
designed to overcome language barriers on touch devices.

1.2 Background
More and more people are fleeing their home countries to Europe, and in 2015
over 160 000 people were in search of asylum in Sweden [1]. This number dropped
drastically in 2016, after severe border controls were introduced, but the integration
of those who come to Sweden is still a relevant question. The company Just Arrived
consists of 150 volunteers [2] who have been working for two years on reaching their
goal - to make it easier for newly arrived immigrants in Sweden. They believe that
access to the labour market is one of the main barriers that must be overcome to
create better and safer living conditions for all affected.
Just Arrived’s concept is to match clients, who have tasks they want to be performed,
with newly arrived, who are in need of work and experience. These tasks can be
anything from lawn mowing to engineering services.
To further facilitate the process and increase the amount of clients, Just Arrived
reached out to Chalmers University of Technology for help with developing a mobile
application for the company. This application was aimed at helping potential clients
to order services. The project also included designing a prototype for the worker
part of the application.
The application had to be designed in such a way that it helps users overcome
language barriers in a visually appealing and efficient way. This was the main
interest of the project, since many potential users neither understand Swedish nor
English.

1

1. Introduction

1.3 Challenges
The project, which might be perceived as quite extensive, was split up into several
more manageable sub-problems. The combination of solutions to these sub-problems
together formed the finished product.

1.3.1 Graphical User Interface
There were a number of interesting challenges related to developing the design of
the application. Several questions had to be answered, including, How can a user
interface be optimised for touch devices? and How does culture and background
impact our perception of interfaces?.
There were also many challenges related to different languages, and how they affect
the design. As the worker part of the application was aimed at a wide audience,
with people from different cultures and countries, it was vital that the application
is multilingual and provides the user with a way of choosing different languages.
In this project we needed to explore many questions within the field of graphical
user interface (GUI) design. A few of them were which technical approach would
be preferable for supporting multiple languages, and how a right-to-left script could
affect components in the graphical user interface.
As a side note, the theme of the application could follow the current style guide
of Just Arrived, with their brand colours and so forth. This was however not a
requirement by Just Arrived.

1.3.2 Target Group and User Testing
Through Just Arrived’s wide network of contacts, we were provided with access to
people within the target group for the worker part of the application. We were also
provided with a description of the target group for the client part of the application,
so we could reach out to people within that group and perform user tests on them.
There were various challenges related to user testing - what should be tested, in
which way, and how should the tests be evaluated? Would communication between
the test subject and the tester be an issue, as they might not have a language in
common?

1.3.3 Language Barrier
Since the clients and workers might not share a language, a big challenge consisted
of designing and implementing GUI that is easily understandable by both types of
users, and aid in their communication with each other.
A challenge faced during development was to guarantee that the client would feel
secure in that the published task would be understood by the worker. Another
challenge was to clearly communicate to the worker what task is expected to be
performed, and details about the particular task.

2

1. Introduction

1.4 Scope
Just Arrived prioritised the development of the client part of the application. This
was due to the fact that Just Arrived had more workers than tasks available on their
web page. Therefore, the development for the clients was always the first objective
during the implementation.
Another goal was to let the application handle multiple languages. But due to
internal language knowledge this functionality was decided to be limited to Swedish,
English, and maybe Arabic if time constraints were to allow for it. Eventual users of
the application are assumed to have some basic understanding of one of the available
languages and some experience using touch screens.
Implementation of a payment system is out of scope for this project. The application
should however provide a GUI for credit card payments, that might be utilised in
the future, but back end functionality is not necessary for this project.
The academic interest of the project was focused on GUI and usability, hence front
end development was prioritised over back end functionality. Usability and appli-
cation flow was prioritised over designing a pixel perfect user interface, unless these
parts negatively impacted the usability.

1.5 Outline
The next chapter, chapter 2, explains the implementation methods used during the
project. Thereafter, chapter 3 introduces the theory behind the tools, frameworks,
libraries, and evaluation techniques used. Chapter 4 describes the realisation of the
application while chapter 5 contains the results produced. In chapter 6 a discussion
regarding various parts of the project is conducted, whereat a conclusion is formed
in chapter 7.

3

2
Methods

Various methods that were used during the project will be covered in this chapter,
including methods related to agile software development and methods for testing.

2.1 Agile Software Development
Agile software development, is a widely used development methodology, where work
is done iteratively [3]. Key concepts that define the agile process is the iterative way
of working, where software is developed and delivered continuously, and constantly
improved in a evolutionary way. As the name suggests, teams following the agile pro-
cess must be ready to act with agility, and be flexible and responsive when it comes
to making changes. Work is done in close collaboration with the customer, to make
sure both the customer and developers have a mutual idea of where development is
heading. To succeed, agile methodology states the following [4]:

• Individuals and Interactions over processes and tools
• Working Software over comprehensive documentation
• Customer Collaboration over contract negotiation
• Responding to Change over following a plan

2.1.1 Kanban
Kanban [5] is an agile process-management system, originally used to schedule work
in lean manufacturing. The name comes from the Japanese word kanban, which
roughly translates to billboard. While the system is widely used in industry, it has
lately also gained a lot of popularity and recognition within software development [6].
When working with kanban, scheduling is done and visualised on a kanban board.
The most basic and traditional starting point of a kanban board consists of three
columns: To Do, Doing, and Done. The kanban board is later filled with cards,
each corresponding to a task.
Traditionally kanban boards were physical, with post-it notes commonly used as
cards. Today there are more alternatives, specially within the software development
community. One common web-based service is called Trello [8], which provides an
online tool for project management following the kanban paradigm.

4

2. Methods

Figure 2.1: An example of a kanban board using post-it notes.
[7]

2.1.2 Lean UX
Lean UX [9] is another design process methodology, inspired by The Lean Startup [10]
and Agile UX [11]. In Lean UX, there is more focus on producing the right thing,
that is, what the customer wants. The biggest waste is designing something that
the customer does not want. Work in Lean UX is hypothesis driven, where a design
idea is quickly turned into a working prototype, often of quite low fidelity. The pro-
totypes are tested on customers, and later evaluated and improved in an iterative
approach as inspired by Agile UX.
Lean UX, as described by Gothelf (2013):

"Lean UX is the practice of bringing the true nature of a product to
light faster, in a collaborative, cross-functional way that reduces the em-
phasis on thorough documentation while increasing the focus on build-
ing a shared understanding of the actual product experience being de-
signed." [9]

2.2 Interaction Design Methods
There are several different methods used to draft testable prototypes before spending
valuable time to implement them. Here is a listing and short description of the
different methods used during the project.

2.2.1 Paper Sketching
Paper sketching or paper prototyping [12] is a widely used method to quickly visu-
alise ideas and put them to test. It is often used as a way to test different design
ideas and improve them through many quick iterations [13].

5

2. Methods

2.2.2 Wireframing
Wireframes [14] are used to illustrate a screen’s possible interface. Wireframes can
differ in level of detail and in whether they are made digitally or not, but wireframes
are typically more detailed then paper sketches, and should be a somewhat accurate
depiction of how the final interface could be implemented.

2.3 Testing
Usability Testing is a method used to observe an individual’s experience with an
application, as the individual goes through several given tasks [15]. Think Aloud
Testing is a method that encourages individuals to verbalise their thoughts and
actions during the test [15].

2.3.1 Expert Testing
An expert test, also known as as heuristic assessment [16], is a method in which an
expert tests an interface against generally accepted usability principles. An expert is
expected to already be familiar with proper heuristics, which makes the test format
rather informal since no general instructions should be necessary.

2.3.2 User Testing
User testing is a method that is used to evaluate a certain product, by testing the
product on potential end users of the product. The main purpose of the user testing
method is examining how the product works in practise. User testing often combines
other methods used for testing, such as Usability Testing, and Think Aloud Testing.

6

3
Tools and Theory

Different tools and techniques have been used throughout the project. This chapter
provides knowledge and contextual information about the theory of those tools and
principles.

3.1 Interaction Design
Designing a mobile application involves a lot more than just creating a visually ap-
pealing design. Creating an efficient navigation, simplifying user interaction, and
minimising so called excise. Excise being the extra work the user do that do not
directly contribute towards the user goal. These are just a few of many other im-
portant concepts involved in application design. Today’s mobile phone applications
often include numerous views, offering a wide variety of user interaction. This makes
the behaviour of the application, as well as the experience for the user, possibly more
important than ever before. Within the field of interaction design, the behaviour of
a product is in focus, rather than the visuals [17].

3.1.1 Designing for Touch
When designing for mobile devices, and touch devices in particular, there are a
number of things to keep in mind. Perhaps the most noticeable difference in com-
parison to other devices, is the drastically smaller screen size. This naturally makes
it harder, or even impossible, to fit all content that would normally be displayed on
a desktop screen, for example.
In general, mobile applications are transient [18], meaning that they are used for a
relatively short amount of time, where user interaction is brief, and the functionality
often is focused on a small but well-defined set of tasks.
Even though technology is advancing, with the resolution of touchscreens increasing,
the human anatomy stays the same. The human finger is clumsy and inaccurate in
comparison to a digital mouse pointer, which can achieve accuracy to hit a single
pixel on a screen [19]. A common approach to achieving an accurate touch interface
is to make the onscreen objects large enough so that they can be triggered easily
with a finger [18].
Another problem the human finger introduces is that it blocks part of the user’s
vision when covering the display. In mouse-driven desktop interfaces we are used
to receiving feedback from the interface upon hovering interactive components (e.g.

7

3. Tools and Theory

buttons). It is not possible to hover components in a touch interface, therefore it
is more complicated to use traditional interface components such as tool-tips and
other contextual hints [18]. The lack of hover state feedback persuades designers
into communicating these hints in another way.

3.2 Frameworks
A number of frameworks and tools were used to create the application. This section
describes the main functionality of these frameworks and tools, to provide contextual
information about how and why they can be used.

Figure 3.1: Simplified overview of frameworks used in the project and their hier-
archy. Dotted lines indicate communication, i.e. function calls.

3.2.1 React Native
React was originally developed by Facebook as a framework for website develop-
ment [20]. React is component-based, meaning independent components are created
and combined into views [21]. This facilitates code refactoring and reusage, thus
minimising the need to rewrite code.
Facebook later developed the framework React Native, based on JavaScript and
React, to take the principles they successfully used in web development into mobile
development [22]. React Native enables the programmer to create native cross-
platform applications [23].

3.2.2 Redux
As applications are becoming more complex, the code must handle a lot of states.
The states the applications need to keep track of include server responses, local data
not yet sent to a server, cached data, GUI states, such as navigation routes.

8

3. Tools and Theory

Keeping track of constantly changing states is a difficult task, but if various com-
ponents can manipulate each others states it will be extremely difficult to predict
when, why, and how a state changes. It is hard for developers to find bugs and add
new features, when it is difficult to predict the behaviour of the application.
Redux is a state container for JavaScript applications, attempting to solve this issue
with three core principles [24]:

• Single source of truth
All states of the application are stored and made accessible from a single
source. The states are no longer spread out through multiple components.
This means changes to states are not passed between views or components,
but sent to the store, and the components that are interested in a particular
state can get the information about the state themselves.

• State is read only
The only way to change a state is to dispatch an action [25]. This guarantees
that components cannot directly manipulate the state. Instead the action
declares the intent to change the state. The actual change is handled centrally
by the, so called, reducers. Changes made centrally are executed separately,
thus avoiding obscure bugs that could occur if the components handled the
manipulation of the state themselves.

• Changes are made in pure reducer functions
A pure reducer function specifies how a state is changed by actions. A reducer
takes the previous state, an action, and then returns a new state depending on
the action provided [26]. The state is immutable, therefore a new state (which
is a manipulated copy of the previous state) is returned, instead of changing
the old state.

Figure 3.2: Illustrative comparison of component communication without and with
Redux.

9

3. Tools and Theory

3.2.3 React Navigation
React Navigation is an external library for navigation in React Native [27]. It offers
a set of navigators, which provides a way of defining the navigational structure of
an application.
React Navigation has three different navigators [28]: StackNavigator, DrawerNavigator,
and TabNavigator. Each view in a StackNavigator is placed on top of a stack.
This is useful when the user wants to navigate backward through the history of views
previously visited, i.e. by pressing the back button. The TabNavigator facilitates
the creation of navigational tab bars, while the DrawerNavigator is used to create
drawer menus. React Navigation also offers the possibility of nesting navigators. For
example, an application with a tab menu and multiple views, will usually contain
a TabNavigator with a StackNavigator for each tab. Each view in a navigator is
identified by a unique key. This key can later be used in the code to programmati-
cally navigate to a particular view.
This is a simple example showing how application navigation can be defined. In this
example the application consists of a TabNavigator known as BasicApp, with two
tabs, MainScreen (with key Main), and SetupScreen (with key Setup):

// Simple example of an application with two screens in a tab menu
const BasicApp = TabNavigator({

Main: {screen: MainScreen}, //key: Main
Setup: {screen: SetupScreen}, //key: Setup

});

Below is another simple example of how navigation from one view to another can be
implemented. The example shows how to implement navigation to the setup screen
by clicking on a button, which can be located in an arbitrary view. In the onPress
method of the Button, a call to navigate(’Setup’) is done, which tells the appli-
cation to display the view with key Setup, which in the example is SetupScreen:

// Simple navigation example
<Button title="Go to Setup Tab" onPress={() => navigate(’Setup’)} />

3.2.4 NativeBase
NativeBase [29] is an open source library for React Native, providing essential cross-
platform GUI components. It is built as a layer on top of React Native and provides
components with platform specific design through the same code.
Below is an example of how to add a button to an application, using React Native
without external libraries, and using React Native with NativeBase. Using Native-
Base with React Native often enables developers to build interfaces using much less
code, as can be seen in the example below.
// React Native / Without NativeBase
var style = StyleSheet.create({

button: {

10

3. Tools and Theory

backgroundColor: ’#99AAFF’,
borderRadius: 5,
borderWidth: 1,
borderColor: ’#000033’

}
});

<TouchableOpacity style={style.button}>
<Text style={{color: ’white’}}>

Click Me!
</Text>

</TouchableOpacity>

// With NativeBase
<Button>

<Text>Click Me!</Text>
</Button>

3.2.5 Internationalization i18n
Internationalization, or i18n [30] (where 18 is the amount of letters between the I and
n [31]), is a term for adapting software to different languages, regional differences,
and specific technical requirements of a particular market.
There are various i18n frameworks for different programming languages, e.g. i18n-
js for React Native [32]. The i18n frameworks provide various functionality, where
some of the most common are translation look-ups, interpolation, and date format-
ting.
The internationalization frameworks read strings from an i18n file, where transla-
tions are saved in as key-value pairs, usually in a JSON-formatted file. The following
example shows a simple i18n file, containing translations for a greeting in English
and Swedish:

// Simple i18n translation file example
I18n.translations = {

en: {
greeting: ’Hello!’

},
sv: {

greeting: ’Hallå!’
},

};

To access i18n translations, a function is called with the key of the key-value pair
translation as argument.
// Translation lookup using i18n-js
I18n.t(’greeting’) // --> Hello (if English locale is selected)

11

3. Tools and Theory

The call to the lookup function returns a translation, that depends on the current
locale (i.e. the chosen language in an application).
i18n frameworks also provide the functionality of interpolation, which means that
variables can be passed to the translations.
// Interpolation example in i18n-js
I18n.translations = {

en: {
greeting: ’Hello {{name}}!’

},
};

// Call to the translation lookup function using interpolation
I18n.t(’greeting’, { name: John }) // --> Hello John

i18n frameworks also offer the functionality of displaying localised dates, as the for-
matting of dates differs between different locales. An example of such a framework
is moment.js[33], which offers functionality for handling and displaying dates appro-
priately for the current locale. It also offers the possiblity of displaying dates in a
humanized format (e.g. Last Monday at 2:30 AM).

3.2.6 React Native Fetch
React Native implements the Fetch API to provide a simple and easy to use interface
for communication with network resources [34]. In order to retrieve a resource from
a publicly available uniform resource locator (URL), one can use the global method
fetch and retrieve the resource using for example fetch(’justarrived.se’). For
more complicated requests, the fetch method can also be passed an object, con-
taining the hypertext transfer protocol (HTTP) method, various headers, and body,
e.g. fetch(’justarrived.se’, {method: ’POST’}).
The global fetch method returns a JavaScript promise, representing a response
stream that might be available at some point in time [35]. In order to handle the
data, once provided by the promise, method calls can be chained as they are needed.
Each method chained after a promise is also considered to be a promise. At the end
of a promise method chain, it is also recommended to use some way to ensure no
open promises are left behind as memory leaks. [36].
// Example fetching tasks and handling promises
fetch(’https://api.justarrived.se/api/v1/jobs/’)

.then((response) => {
if (response.status === 200) {

// If status code is 200 convert stream to JSON
return response.json();

}
throw new Error(’Response was not 200 ok’);

})
.then((responseJson) => {

12

3. Tools and Theory

// Successfully fetched JSON response
console.log(responseJson);

})
.catch((error) => {

// There was an error
console.warn(error);

})
.done();

3.3 Just Arrived API
Just Arrived provides an open source API named JustMatch API [37]. This API
was created with their web application in mind, where the newly arrived can apply
for jobs advertised by companies. In order for the JustMatch API to be usable with
the mobile application, functionality is being implemented to allow regular users to
post and manage tasks, in addition to the previously exclusive companies.
The API is a JSON representational state transfer (REST) API that follows the
JSON API 1.0 standard [38]. This means that the API, by default, returns JSON
objects from relatively simple URL requests.
The main difference from regular HTTP requests are some of the headers. The
Content-Type header, is defined as application/vnd.api+json, which differs from
the usual application/json, by informing the client that the content provided is
vendor specified and can be parsed as JSON. Other headers are
X-API-KEY-TRANSFORM: underscore, which ensures that all response data use un-
derscore as the separator, and
Authorization: Token token=XXXYYYZZZ, which is how authentication is included
in requests [39].
As specified in the JSON API 1.0 standard, the API response also provides links to
further resources that might be of interest based on the request. If the API returns a
subset of the total result, and pagination is necessary to retrieve additional resources,
the response should contain links to what was actually fetched, what should be
fetched next, and the last page that is possible to fetch. If the response contains a
variable that points towards some other endpoint with an ID, then that URL should
also be included in the response. It is also possible to add the include variable in
requests, in order to fetch additional resources directly without doing additional
request, thus minimising the amount of requests necessary to fetch additional data
not part of the standard response [38].

13

4
Process

This chapter covers the process involved in realising the project, beginning with
describing how the pre-study was conducted, followed by the interaction design
process, and ending with the programming development process.

4.1 Pre-study
Pre-studies were made for various factors of the application, but the initial part
was to establish Just Arrived’s expectations. This was done by frequent meetings
with Just Arrived, and by inspecting their already existing design guidelines and
web application, which gave us guidance and a clearer understanding of what the
application we were developing should offer.
Other existing and similar mobile applications that are on the market were also in-
spected, such as TaskRabbit [40], Freelancer [41], and Welcome [42]. These provided
a greater understanding of what the mobile application should be capable of. The
digital service platform TaskRabbit [40] gave us insight in how similar problems to
ours have been solved, such as methods for scheduling and rating.
The main goal of the pre-study was to define and conclude the ideal scope of the
project, and to gather fundamental information and requirements needed for the
development of the application.
React Native was recommended by Just Arrived as a means to ease cross-platform
development. The group initially had limited JavaScript experience, and no one had
prior knowledge of React Native. During the pre-study phase of the project, React
Native was evaluated by us, by individually completing various tutorials online, after
which the framework was approved by common consensus.

4.1.1 Requirements from Just Arrived
The company Just Arrived specified some expected functionality for the client part
of the application. These were that a client should be able to order and pay for
tasks, and provide feedback on the worker who performed the task.
The company specified additional functionality that could be developed if time would
permit, such as subscribing to a task and ordering a task to be performed a certain
date. When subscribing to a task, the client is given the possibility to arrange so
the task is ordered regularly. When ordering a task, the client should be able to
choose a certain date for the task to be performed.

14

4. Process

Other design specifications Just Arrived had for the client part of the application,
were uncomplicated solutions to the functionality mentioned above, and an intuitive
design. Uncomplicated solutions imply fewer steps before accomplishing a goal with
the help of the functionality that the application provides. Intuitive design implies
a self-explanatory application, where the user can use the application independently
and efficiently. Altogether, the functionality provided by the application should be
easily accessible, rather than time-consuming.
Aside from the company’s expectations, the group elaborated additional functional-
ity that improved the application. This functionality, together with the company’s
expectations, is covered in the next chapter.

4.1.2 Functionality and Use Cases
A functionality is a property of an application, while a use case is a goal that can
be accomplished by using the functionality. Initially, the functionality of the appli-
cation was elaborated by following the expectations from the company. Additional
functionality was defined by the group, some of it by looking into other existing
applications, such as the option to sign in.
Shared Functionality

• Sign up, sign in, and sign out
• View and edit user profile
• Support for multiple languages
• Push notifications through application, email, or phone
• View for current tasks
• View for history of tasks
• Application wizard
• Map view for locations
• Confirm that task is completed

Client Functionality
• Easy creation and management of tasks
• Rate worker

Worker Functionality
• Filter and sort available tasks
• Apply for tasks
• Rate client

Use Cases of the Shared Functionality
The first shared functionality is the ability to sign up, sign in, and log out. The
user should also have the ability to view and edit the user profile, providing vital
and necessary information about oneself. The application should provide support
for multiple languages, where the user can choose which language to use. The ap-
plication should also offer the functionality of sending reminders and messages to
the user in terms of push notifications, emails, or text messages. When in need of
finding an address or tasks at a specific location, the application should offer a map
view for locations to be found. A view for displaying current tasks, and a history of

15

4. Process

tasks, should also be implemented, where the client can review all created, pending
and completed task, and the worker can review all ongoing and performed tasks.

Use Cases of the Client Functionality
The client can easily order a task and manage it, by choosing date and time, or even
creating a repeatable subscription event. The client can choose a suitable worker
after receiving applicants. After the task is done, the client can confirm that the
task has been done, and then rate the worker. These use cases are characteristic for
the client part of the application.

Use Cases of the Worker Functionality
The worker has the ability to filter and sort available tasks, in order to find relevant
tasks in an efficient way. The worker can apply for several tasks, and when a task
has been performed, also submit that the task has been completed. Additionally,
the worker can rate the client for whom the tasks was performed. These use cases
are characteristic for the worker part of the application.

4.1.3 Brief Market Analysis

(a) Home tab (b) Tasks tab

Figure 4.1: Screenshots from TaskRabbit, showing the Home tab and the Tasks
tab.

Researching similar applications gave basic design inspiration and an idea of what
the application should be capable of. The first application that was studied was
TaskRabbit’s mobile application. The main view of their application contains navi-
gational tab bar, leading to Home, Tasks, and Profile, as can be seen in Figure 4.1.
The setup of using a tab bar, with tabs leading to pages similar to this example, also

16

4. Process

seemed suitable for the application that we were designing. A similar design is also
used in many other popular applications, such as Spotify’s [43] mobile application
for example. Another interesting aspect was the task view found in TaskRabbit’s
application, where all current, completed and unfulfilled tasks could be found, as
can be seen in Figure 4.1.

4.2 Interaction Design Process

Figure 4.2: Flowchart visualising the programming development process.

The GUI implementation process used, was inspired by Agile UX [11] and Lean
UX [9]. Our work was hypothesis driven, as suggested by Lean UX, and done in
short iterations as suggested by Agile UX. More concretely, the implementation
process (which was iterative and repeated) used in the project, consisted of the
following steps:

1. Low fidelity sketching
2. Combining and refining sketches
3. Digital wireframing
4. User testing
5. Test evaluation

4.2.1 Low Fidelity Sketching
Initially, we started the design process with brainstorming, where we took the func-
tionality previously defined in Section 4.1.2, and turned them into low-fidelity
sketches of application views. We did this by visualising different design solutions
by creating quick sketches on paper, to ensure a low fidelity. The choice of using
paper sketches, which can be seen as a relatively primitive method, was made con-
sciously, with the intention to enable us to create prototypes quickly, without risking
being too attached to one’s own work, due to spending a lot of time on a particular
design proposal. The paper sketches of application views were done individually, to
promote maximum creativity and variety within the group. If this had been done
together as a whole group at once, the group might have risked being influenced
by, and mentally tied to, the ideas of a single individual, which could potentially
strangle the combined creativity of the group. During the early stages of designing,
it was valuable to get a large variety of design proposals, and these took advantage
of being unbiased, to achieve the best outcome possible from the sketching phase.

17

4. Process

Figure 4.3: Example of low-fidelity paper sketches during development.

4.2.2 Combining and Refining Sketches
Once the individual low fidelity sketches had been created, the sketches were pre-
sented and discussed together as a group. The different design approaches were
weighed against each other, and the strengths from each sketch were combined to
create a common, refined version. Figure 4.4 shows an early iteration of combined
and refined whiteboard sketches, which were created together as a group, based on
individual low fidelity paper sketches.

Figure 4.4: Early iteration of combined and refined whiteboard sketches, created
together as a group.

4.2.3 Digital Wireframing
Using the common combined and refined sketches, a higher fidelity version of the
sketched views was created in the form of digital wireframes [44]. These wireframes
were slightly more detailed and advanced than the refined sketches, but they were
not pixel perfect. Figure 4.5, shows two different preliminary views created as
wireframes. Figure 4.5a displays the list of owned tasks, where all tasks owned by

18

4. Process

the user are available for an overview. Figure 4.5b shows a view displayed during
task ordering. These wireframes were later used during user testing.

(a) List of Tasks (b) Task Ordering

Figure 4.5: Early iteration of wireframes for the client part of the application,
showing the list of owned tasks, as well as the option to choose a task type during
task ordering.

4.3 Design Testing
The first stage of the design process, consisting of brainstorming and paper sketches,
was tested and evaluated within the project group itself before moving on to testing
on different target groups and an expert. The external tests were performed with
printed wireframes of the application views, to enable us to quickly switch between
views during our interactive test scenarios. The wireframes were printed to match
the size of an average smartphone display to give a realistic impression when seeing
them. The usage of wireframes enables the demonstration of interactive prototypes
in an effective and more realistic way.
Methods used when testing were, as mentioned in 2.3, Usability Testing, Think Aloud
Testing, and Heuristic Assessment. These methods are helpful when identifying
elements of the interface that could be improved with further developed.
The tests focused mostly on design flows, icons, and formulations. The group su-
pervisor, Sus Lyckvi, was consulted as an expert, before and after the tests were
performed, in order to optimise the gathering and interpretation of relevant data.
After analysis of the collected data, a new design with improvements was proposed.
This design was evaluated, implemented and tested again to see if the change gave
the desired result.

19

4. Process

Figure 4.6: Printed wireframes used during testing.

4.3.1 Expert Tests
The expert tests were performed using wireframes in several iterations throughout
the design phase. The expert tests were always performed on our supervisor, Sus
Lyckvi [45], and were prepared by printing the wireframes on paper. No specific
tasks, or use cases, were tested, since heuristic assessment does not require this.
Instead the method focus on identifying both major and minor problems, by looking
at several parts of the design separately.
During the tests notes were taken as the expert went through the wireframes, so her
comments could be discussed within the group when improvements were suggested
and implemented.

4.3.2 User Tests
Two user tests were conducted for this application. The first user test was targeting
the clients who order various tasks, while the second user test was focused on workers
who were going to apply for those tasks.
A number of test scenarios were prepared ahead of the tests, such as Order a service
and Change language of the application. These use cases were deemed to cover im-
portant functionality and should therefore be covered by the tests, as any problems
had to be caught quickly and corrected.
The think-aloud protocol was used when conducting the test scenarios. One person
administered the test and interacted with the person going through the scenarios,
while another person handled the paper prototypes, and the last person took notes
of the test subjects comments and interaction with the prototype. Afterwards, the
test subject was asked a series of questions regarding their overall experience, for
example regarding any issues they had not articulated during the test, and if they
would be interested in using the service in the future.
The content of the tests varied depending on the target audience, however the meth-
ods used during the tests remained the same.

20

4. Process

4.3.3 Client Wireframe Tests
The description of the possible task ordering clients, as provided by Just Arrived,
was a middle-aged person with good experience of using touch devices, preferably
living in a house. The client tests were performed on four subjects, randomly selected
but all judged as potential users of the application, within the description of the
provided persona.
The tests were based upon two use cases, where the first one was attempting to
open the application for the first time, and to order an arbitrary service. The
second test case was to change the language of the application, by interacting with
the application wireframes.
The first use case gave a lot of feedback. Arbitrary issues brought up included an
inconsistent use of words, such as the inconsistency between account and profile.
Another person noted that the wireframe views did not include any terms and
conditions. Issues hindering progress for the use case included a clear payment
confirmation, and some people were confused when they had to create an account,
and wanted that step moved to a different part of the application. One person did
not want to create an account at all, preferring to get a confirmation number or
email instead.
The use case of changing the application language appeared to be a clear and
straightforward task. The test persons found the language icon at the top of the
wireframes quickly. However, one person wanted flags to be used to represent lan-
guages, something the group consciously had decided not to do to avoid confusion,
and to avoid alienating people from possibly conflicted areas.

4.3.4 Worker Wireframe Tests
The worker part of the application was tested using two newly arrived immigrants,
who were potential workers. They were contacted and selected by Just Arrived.
This user test involved two use cases, where the first one was to create an account,
and the second test case was to find a suitable task and try apply for it. For this test
the wireframes were in Swedish, making some translation necessary. Here we could
benefit from having a member fluent in Arabic, as the test subjects had limited
knowledge of Swedish and English.
The Swedish user interface was the main obstacle for the test participants. This
brought up issues with translation as well as suggestions for how Swedish could be
simplified. This also contributed to testing how well the icons and general flow of the
application performed. One of the users had some issues finding the option to change
the language and the other user further suggested the option to upload documents,
such as old recommendations and qualifications, to the user profile. Other then this
the general flow of the application seemed to work well.

21

4. Process

4.4 Programming Development Process

Figure 4.7: Flowchart visualising the programming development process.

The programming development process began with splitting the project into smaller
tasks to populate our Kanban backlog as described in 2.1.1. As soon as that had
been done, the backlog was sorted with the most valuable cards at the top prioritising
their development. A couple of the tasks were then assigned and work commenced.
New cards were added to the backlog throughout the process, as soon as new tasks
were discovered, often after a meeting or a test.

4.4.1 Programming
Initially, the programming tasks mainly consisted of implementing views from wire-
frames. At this stage the components used static data, to illustrate what they would
look like in the future, once they were populated with actual data from the Just-
Match API (see Section 3.3). Hence the static temporary data tried to follow the
structure of actual API responses. In this way the components were constructed
in a way such that they were able to render static data following the structure of
data from actual API responses. This made it very simple to later introduce back
end functionality, which would replace the static demonstrative data with actual
data from API responses, and without changing anything but the data source in the
components, the data could be displayed instantly.
When most views had been created with static data, a basic navigation flow between
the views was introduced. Up to this point all static views had been reached through
a single view containing buttons to each view, for quick access during development.
Now the static views were placed in a navigational tab bar, and navigation between
views was introduced. Back-end functionality was developed in parallel during this
time. As API functionality was realised, the previously static demonstrative data
in the views were replaced with data from real API responses.
The JavaScript linting utility ESLint [46] was used to follow best practises, avoid
bugs, and follow a consistent code style. Having a consistent code style makes it
easier for other developers to be able to read and understand the code. When using
ESLint and other linting utilities, a rule set explaining how various things should
be treated is defined. These rules can for example define whether to use tabs or
spaces in the code. If a developer is not following the rules defined in the rule set,
ESLint notifies the developer with either a warning or an error. Airbnb has released

22

4. Process

a popular and widely used JavaScript linting guide, with numerous rules for best
practises defined [47]. The ESLint configuration file used in the project was based on
the Airbnb configuration, with some additional React Native specific rules applied.

4.4.2 Pull Request
The version control system Git [48], and the web-based Git repository hosting service
GitHub [49], were used throughout the project. These tools facilitated development,
as everyone could stay up-to-date with the latest version of the application, and make
changes in the same code without facing numerous merge conflicts. Techniques from
the well-known Git branching model GitFlow [50] were adopted, in order to stan-
dardise the workflow. Changes in the code were done in separate feature branches,
and never pushed or merged directly to the develop branch of our Git repository, but
instead all changes wanting to be merged to the develop branch had to be turned
into pull requests [51]. This allowed us to inspect and review each others code before
accepting and merging it with the develop branch. The pull requests contained a
concise summary of the changes made, as well as a screenshot if the changes affected
the user interface. This made it easier to get an overview of the changes made in
the pull request, as opposed to having to go through the code changes manually, in
order to try to figure out what the changes entailed.

4.4.3 Code Review
Using version control through GitHub, with pull requests that got reviewed by some
other developer before merging, in combination with warnings and tips from ESLint
during development, the code was constantly evaluated to ensure a high code quality.
Many unnecessary merge conflicts could be avoided, since all team members shared
the same development setup, with ESLint giving warnings and hints, to automati-
cally standardise the code.
In addition to the ESLint reviews, we also used the service Ebert [52] to review the
code as soon as it was turned into a pull request. This made it easier for the pull
request reviewer to find lesser errors, such as indentation issues, and also worked as a
compliment to ESLint for the submitter by showing potential errors in all submitted
files.

4.4.4 Application Testing
The application tests were performed several times with the application in its state
at the current time. Mainly by having other group members review the implemented
views or functionality added while doing the code review, before merging them with
the develop branch. A heuristic evaluation was also performed together with the
group’s supervisor, Sus Lyckvi.

23

4. Process

Expert Testing

The expert tests performed on the application were very similar to the tests using
wireframes, mentioned in 4.3.1, with the expert moving through the application
and identifying possible flaws.

24

5
Results

This chapter will show the complete results of the project. The first part of this
chapter will go through the different flows of the application. The second part of this
chapter will go deeper into the visual design of the application, and the design related
choices that have been made. Lastly, this chapter will cover the system architecture
of the application, regarding folder structure, navigation, and networking.

5.1 Application Flow
This section demonstrates the most essential application flows, both from a client’s
and a worker’s perspective.

5.1.1 Task Ordering - Client
This is the main application flow a user goes through when ordering a task.

Order Task

The first part of ordering a task consists of choosing a task, and specifying details,
such as date and location. As soon as that is done, a preview and confirmation screen
is shown before the task is published. Figure 5.1 shows the first steps involved in
ordering a task.

Figure 5.1: Interaction flow when ordering a task.

Choose Worker

When the task receives applicants the client gets notified through a push notification,
whereat a worker from the list of applicants can be chosen. After paying for the
task, a confirmation message is displayed. When the task has been completed by
the worker the client is notified (see Section 5.1.1).

25

5. Results

Figure 5.2: Interaction flow when choosing a worker.

Confirm Task Completed

When the task has been completed, it is time to confirm its finish, and rate the
worker. The confirmation that the task has been completed is either initiated by
the client or the worker. If the worker states that the task has been completed
through the worker application, the client receives a notification about the claim,
and can then proceed accordingly. The client can also take the initiative and mark
the task as completed. Figure 5.3 shows the steps involved in confirming that a
task has been completed.

Figure 5.3: Interaction flow when confirming that a task has been completed.

5.1.2 Find Tasks - Worker
This section will display and describe the flow through the application when a worker
applies for a task.

Find and Apply for Task

The tab for finding tasks lets the worker find tasks in two alternative ways - either
by using a compact list view, or by using a map view. The user then proceeds by
pressing on a task in order to view more details about it, such as location and date.
The user can apply for a specific task from the detailed task view. A confirmation
screen with information about the task is then displayed to give feedback to the
user. The user is then redirected back to the list of tasks, located in the My Tasks
tab. After applying for a task, the worker waits for a response from the client, to
know if the task was assigned to the worker or not. Figure 5.4 shows the steps
involved in finding and applying for a task.

Figure 5.4: Interaction flow when finding and applying for a task.

26

5. Results

Task Status Notification

After applying for a task and waiting for the clients response, the worker is notified
by an email and a push notification, to know whether or not the task was assigned to
them. If the task was assigned to the worker, the option to navigate to the detailed
task screen is included in the push notification. Otherwise, a notification is still
received, but without navigation to the task in question.

Figure 5.5: Interaction flow when receiving a notification about being assigned the
task.

Confirm Task Completed

When the task has been completed, it is time to confirm that it is finished, and also
let the worker rate the client, who ordered the task. This use case is very similar
to the steps in 5.1.1, with the difference that the worker is rating the client, and
not the other way around. Figure 5.6 shows the steps involved in confirming that a
task has been completed.

Figure 5.6: Interaction flow when confirming that a task has been completed.

5.2 Design
An effort was made to follow the design guidelines of Just Arrived when designing the
mobile application. The user interface is designed in a simplistic way with minimal
use of text and with numerous graphical images that clearly explains different steps.
For example a picture or illustration of someone mowing a lawn, in addition to only
having the text Lawn Mowing, helps visualise the lawn mowing option in the set of
task categories.

5.2.1 Usability
The mobile application is designed in a way that should make it easy and intuitive
for newly arrived immigrants to comprehend and to use. The user interface of the
application is designed in a simplistic way with illustrative images and minimal use
of text.
There are also no hidden views (e.g. content in a drawer menu), that a user has to
swipe, or do some other obscure action, to access. If there is a view the user needs
to access, there should be a straightforward way to get there.

27

5. Results

The worker part of the application is designed for newly arrived to quickly get an
initial basic understanding of each task there is to apply to. Each published task has
an associated image representing the type of the task as well as a brief introduction
of the task and how it should be performed. For example the lawn mowing task
displays a picture of a lawn being mowed, as well as an icon depicting grass.

5.2.2 Language Selection
Currently the language implemented in the application is English and all text is
retrieved using i18n (see Section 3.2.5), making it simple to add new languages.
If the application supports the phone’s default language, that language will be dis-
played by default. This drastically lowered the priority of implementing another
way to select language, and therefore it has not yet been implemented. In the case
where the phone’s default language is not supported, the application will fallback to
a preset language which currently is set to English. The application does also not
support right to left adjustment, meaning that icons remain in the same position
for all languages, independent of the reading direction of the chosen language.

5.2.3 Design for the Client Part of the Application
This section will show screenshots from, and describe the design of, the client part
of the application. All additional screenshots can be found in Appendix A

Order Task

In the use case when a client wants to order a task, images displaying the different
tasks are shown. Figure 5.7 shows screenshots of the application, from the Order
Task tab. Here the different tasks are visualised with a title text, a short description,
an image, and an icon. All these four elements are connected to the task, and used
in the application in multiple ways.

28

5. Results

(a) Choose task type (b) Specify task details

Figure 5.7: Screenshots from the client part of the application, showing screens
involved when ordering a task.

(a) Task preview (b) Owned tasks

Figure 5.8: Screenshots from the client part of the application, showing screens
involved when ordering a task.

In Figure 5.8b, the My Tasks tab is selected. Here the icons shown in 5.8a can be
found again. However, the header image is omitted in this screen, in order to allow
for a more compact view. The reason for wanting to achieve a more compact view of
the list of tasks is that it might contain a relatively large amount of tasks. A more
compact list makes it easier to get an overview of the data. The use of icons makes

29

5. Results

it even easier, than opposed to reading the title of each task in the list. Reusing
components makes it easier for the user to get a feel of how different screens and
behaviour of the application are connected [53].
Figure 5.9 displays a component displaying the lawn mowing task. It is built using
the standard component Card, coming from Material Design [54]. It consists of a
title, a description, a header image, and an icon. The information the user gathers
from these elements strive to make it intuitive and clear what the component is
showing. The small grey arrow pointing to the right indicates that the card is
clickable, and that it will take the user forward, to the next stage, upon clicking.
The grey arrow can also be seen in other components in the application, once again
to indicate interactivity and navigational manoeuvrability. The descriptive text has
a smaller font size, and lower contrast, than the title text above it. This is used for
typographic purposes [55], to indicate hierarchy, and to show what information is
supposed to draw the attention of the user, and what information is secondary.

Figure 5.9: Card with image header displaying the lawn mowing task.

Choose Worker

Figure 5.10 shows the three steps in the choose worker flow. The main screen (see
Figure 5.10b) being the list of applications to easily get an overview of the workers
different ratings and prices. And the worker profile screen (see Figure 5.10c) where
you get to see more detailed information about the worker and also get the choice
to view references before either moving back to view other profiles or pressing the
assign button.

30

5. Results

(a) Push notification (b) Task applications (c) Worker profile

Figure 5.10: Screenshots from the client part of the application, showing screens
involved when choosing a worker.

(a) Choose credit card for
payment

(b) Perform payment (c) Payment confirma-
tion

Figure 5.11: Screenshots from the client part of the application, showing screens
involved when paying for a task.

31

5. Results

Confirm Task Completed

(a) Push notification
stating that the task has
been completed

(b) Detailed task screen
with option to mark task
as completed

Figure 5.12: Screenshots from the client part of the application, showing screens
involved when marking a task as completed.

(a) Rate worker (b) Task completed con-
firmation

Figure 5.13: Screenshots from the client part of the application, showing screens
involved when rating the worker.

32

5. Results

5.2.4 Worker Prototype Design
This section will show images from the visual prototype and describe the design of
the worker part of the application.

Find Task and Apply

There are two alternative views for finding tasks as a worker. In the default view,
tasks are displayed in a compact list to get a quick overview of the tasks available.
The information for each task is the task type, date, time, and distance from the
home address of the worker.
There is also a map view, used to see the location of the tasks in the vicinity of the
user. The different pins on the maps have different colours to symbolise the different
task type. This will make it possible for the worker to get an idea of the task at
each pin easier.
The worker is able to filter the results by task type and only show tasks within a
certain distance, between certain dates and times. This is to enable the worker to
just look at the tasks that is interesting to them.
Both the list and the map utilise the task type symbols to enable the worker to
quickly differentiate between all task types.

(a) Find tasks (List) (b) Find tasks (Map) (c) Selected task to apply
for

Figure 5.14: Wireframes from the worker part of the application, showing screens
involved when finding tasks.

33

5. Results

Task Status Notification

Figure 5.15: The notification received by the worker when accepted for a task.

If the worker gets accepted for a task they receive a push notification notifying the
worker of the task and provides a link to the task details. The worker also receives
an email with the task details. If the task would be assigned to someone else, the
worker is still notified through a push notification.

Confirm Task Completed

(a) Confirm completion (b) Review experience

Figure 5.16: Confirm task completed and rate experience.

5.2.5 Shared Design
Many aspects of the design is shared between the client part and the worker part of
the application. Below some of our shared views and components will be described.

Introduction Wizard

An introduction wizard [56] is displayed the first time the application is started.
It contains brief information about Just Arrived, and the application specifically.

34

5. Results

The information is displayed across different screens, and provides the user with the
ability to navigate to the next screen, or completely skip the introduction.

Figure 5.17: The introduction wizard.

Login Screen

Figure 5.18: Screenshot of the shared login screen.

Figure 5.18 shows the shared login screen. It follows a fairly common layout for
login screens, and contains the elements a user is expecting to see. There are however
some interesting design decisions that have been made here. For example the input

35

5. Results

fields in the form are using floating labels. When using a floating label, the label
is always displayed, even after text has been entered in the input field. If a normal
placeholder had been used, the label would be hidden after text input by the user.
Floating labels have been used in other components in the application as well, for
the same reasons.
The login screen contains navigation to three different locations, in three different
ways: Log in to your account, Do you need an account?, and Forgot password?. The
button with text Log in to your account is the most prominent, as it is the biggest
button, as well as the most prominent when it comes to colour. It has the accent
colour of the application, which instantly catches the user’s attention. Do you need
an account?, and Forgot password?, are less salient, with smaller font sizes, and no
outstanding backgrounds. This way of indicating prominence and primary actions
has been used in other places of the application as well.
The login screen is placed at the beginning of the application flow, after the splash
screen and potential wizard screens. This means the user has to login before being
granted access to the main part of the application.

Main Navigation

The navigation is built as a tab bar, with three tabs: Order Task, My Tasks, and
Profile. The tab titles are written using title case capitalisation to give them more
visual prominence and symmetry [57]. The tabs also have corresponding icons,
to further make the tabs more intuitive. The tabs used in the tab bar provide
access to the most used features of the application. According to Material Design
Guidelines [58] and iOS Human Interface Guidelines [59], there should be between
three and five tabs in a bottom navigation tab bar. The orange accent colour (which
can be seen in the My Tasks tab in Figure 5.19) indicates which tab is selected.
Badges are used to indicate that new information related to a tab exists, and is yet
to be discovered by the user. A badge can be seen in Figure 5.19, as the red circle
with the number five in it.

Figure 5.19: Main navigational tab bar shown throughout the application.

36

5. Results

Task Icons

(a) Lawn
mowing icon

(b) Cleaning
icon

(c) Garden-
ing icon

(d) Miscel-
laneous task
icon

Figure 5.20: Task icons representing the different tasks in the application.

The motives for the icons in Figure 5.20 were found on the website Icons8 [60]. The
motive and colour schema for the icons were selected with the goal of making them
easily distinguishable and related to reality. For example the task of lawn mowing
has a green icon with the silhouette of grass, and the gardening task has an icon of
gardening shears, on an earth tone coloured background. The same idea of trying
to replicate reality is applied to the other icons, with the generic briefcase icon as
an exception.

5.3 System Architecture
The application is initialised directly in the main repository folder and the system
architecture for the application can be divided into two head folders, assets and
js, which will be discussed below.

5.3.1 Project Folder Structure

Figure 5.21: Tree data structure visualising an overview of the folder structure.

37

5. Results

The p2p-client folder has the executable files for Android and iOS, Node Package
Manager (npm) package information and the dependencies necessary to run the
application.
p2p-client has a js folder, short for JavaScript, where the vast majority of the
application specific code is found. When the platform specific executables from the
main folder are started all they do is to instantiate app.js and setup.js found in
the js folder. setup.js instantiate the state of the application through Redux and
app.js start appNavigator found in the same folder. appNavigator keeps track of
what view is displayed at any specific moment.
In the component folder there are two sub folders. The screens folders contains the
screens used in the application, e.g the login screen. The screens are built partly with
components from the common folder. Each screen has a folder for the components
only used for the particular screen, style sheets, etc.
The common folder contains small components that are used in multiple screens.
Keeping these files separate from the screen code makes it easier to find and reuse.
The top level assets folder contains two sub folders. The i18n folder contains
the i18n JSON-formatted translation files. There is one file for each language, e.g.
en.json for all English strings. The images folder contains all local images (i.e.
images that are not directly fetched through a URL), such as the application logo
etc.
In the distinction between assets and resources, assets contains things that have
no code in them, while the resources folder contains assets that might contain code,
e.g. the theme file, which contains rules for the colour scheme and component sizes.
What makes the theme file a resource and not an asset in this distinction, is that
it contains some JavaScript code (e.g. some theme properties depend on the device
platform (Android/iOS), and this is determined using JavaScript).
Everything that has a graphical representation is considered to be a React Compo-
nent, and can thus be found inside the component folder.
The js folder further has folders for Redux actions, reducers, and store (found under
the folders with respective names: actions, reducers, store). The js folder also
contains a folder called networking, with files related to API communication.

5.3.2 Application Navigation
Navigation between views in the application is realised using React Navigation as
described in 3.2.3. The root navigation of the application is a TabNavigator, with
three different tabs. Each tab is a separate StackNavigator (which makes it possible
to keep track of a stack of views while navigating in one of the tabs (i.e. the back
button makes sure that you return to the previously shown view in that tab)).
The root TabNavigator is called appNavigator, and the three StackNavigators that
it contains are called CreateTaskTab, MyTasksTab, and MyProfileTab.
A wrapper class called AppNavigatorWithNavigationHelpers creates an AppNavigator
component and passes in the appNavigationHelpers prop. This makes it possible

38

5. Results

(but not mandatory) to expose navigational functionality to Redux. Previously you
would need access to the navigation prop (which gets passed down to all components
which are defined as views in the navigators), in order to use the navigate method.
When using Redux it is no longer necessary for a component to have the navigation
prop provided, as it can use Redux actions in order to navigate freely. In other
words this makes it possible to navigate to any view, from any component.

Figure 5.22: Visualisation of how the views are grouped in tabs, and the navigation
between them. Black arrow head indicates the ability to navigate, and white arrow
head indicates the ability to navigate backwards (i.e. by using the return button).
The grey section with dotted border indicates the main content of the application,
requiring the user to be logged in. Each tab of the navigation tab bar is indicated
by a package with screens in them: CreateJobTab, MyJobsTab, and MyProfileTab.
While inside the main part of the application, navigation is always possible between
tabs.

5.3.3 Redux Integration
Redux (see Section 3.2.2) is used to manipulate and maintain the state of the ap-
plication. The Redux storage is initialised when the application starts, and the
storage is manipulated using actions and reducers, which are separated into two
corresponding folders. Each folder contains files with the same names. For in-
stance actions/session.js provides functions used when calling reducers, while
reducers/session.js handles incoming actions and perform the manipulation of
the state of the application.
The Redux state and actions are connected to the GUI through props. Props can
be defined to point towards certain parts of the storage, and every time the store
changes, the view is also updated with new props that contain the updated data.
Actions are also dispatched to the reducers through the use of props. A prop is set to
point towards a function that dispatch some action and when it is called the store
is updated. This can be considered to follow the Model View Controller (MVC)
pattern where the store (model) contain some data that is displayed in a view.
When something happens in the view an action is dispatched to the corresponding
reducer (controller), and the model is updated, which triggers a change in the view.

39

5. Results

5.3.4 Networking
The networking folder contain methods used to communicate with the API. The only
class that actively sends fetch requests (see Section 3.2.6) is networking.js which
defines methods for getting, putting, patching, and deleting network data towards
some URL. The request method, headers and body is created in request.js. Fur-
ther there are separate classes to communicate with each API endpoint. To set up
and remove user authentication against /api/v1/users/sessions the application
would use session.js to communicate with the API.

5.3.5 Networking and Redux

Figure 5.23: Overview of GUI, Redux, networking, and how they are connected.

In order for networking to be seamlessly integrated with the application it had to
be tied closely together with Redux. To achieve this all networking methods are
only accessed through Redux actions. When some action that require networking
functionality is called from the GUI it first dispatch to store that a request has
been sent before sending the request. While the request is being sent, the GUI is
simultaneously set to display a spinner due to the state change. Once data is received
the action dispatches the received data to the store, and the GUI is updated yet
again to display the data.

40

6
Discussion

In this chapter, the entire project will be evaluated and discussed. Some of the
main points that will be covered are limitations, methodology, design decisions,
frameworks, and ethical choices.

6.1 Limitations
As mentioned in section 1.4, the intention was to implement both the client and the
worker parts of the application, and test different languages within the applications.
But due to time constraints these goals had to be dropped. An overly optimistic
project plan, a slow initiation, and uncertain project goals, resulted in a struggle
with following the timetable. The lack of guidelines also contributed to the slow
initiation, where the group for a couple of weeks received different requirements
from different actors of the project.
Due to the setbacks given above, we had to limit ourselves to developing the code
for the client part of the application, with support for English only. This affected
the project both negatively and positively. Negatively, because the worker appli-
cation was left in the prototype stage, at the same time as the client part of the
application was developed supporting only one language. On the other hand, as the
implementation of the worker application was decided to be out of scope for the
project, we could focus on the client part of the application. Therefore, we could
implement a system for later adding more languages in the client part of the appli-
cation, which was one of our solutions to the obstacle we had regarding supporting
multiple languages. We also had more time to improve the code for the client part
of the application, making a lot of it reusable for Just Arrived when implementing
the worker application in the future.
Some other areas that were discussed thoroughly but we never had the time to
implement, are proper language selection, a map view for locations, and the option
to subscribe to recurring tasks. The lack of language support also led to right-to-left
GUI components never being properly explored.
Looking back, wondering what could have been done differently, we still would have
had struggles both with time estimation, and seeing the project in its entirety. This
due to the fact that a timetable with reasonable margins for possible setbacks is
difficult to plan, when unfamiliar tools and techniques are explored.

41

6. Discussion

6.1.1 The Language Barrier
As presented in the section above, the overcoming of the language barrier between
the clients and the workers did not go as expected. During the initial phase of the
project, the first thought of a solution to the language barrier was to design the
applications in a way that is easy to comprehend, and with support for multiple
languages. We also attached great importance to the use of graphical images and
animations, which together with the text description would provide a clear demon-
stration of the task.
As time passed by, we realised the limitation of time. Our main goal for preventing
language confusions, the support of multiple languages, as well as languages written
from right-to-left, had to be eliminated from the project. Instead, we looked into an
simplification of words, graphical images, and an implementation of the i18n func-
tionality, which contributes with an uncomplicated way of adding more languages
in the future. The graphical image is a vital part of the task description, since it is
associated with the task. For instance, the task type of cleaning has an image with
cleaning tools.
An additional solution to the language barrier was the decision to have prearranged
tasks to choose between when ordering a service. As the task is ordered by the client,
the client is not required to type text describing the task. The information needed
to order a task is kept to a minimum and has specified input fields, for details such
as time and location.
The simplified task ordering ensures that the same type of information is provided
to the worker each time. It gets easier for the workers, as they do not have to
translate the page each time they view a task information page. Having mostly
predetermined text also makes it easier to translate the application into multiple
languages, as no text will need automated translations, which would rely some
external service like Google Translate. Staying away from automated translations
will also prevent mistranslations. The predetermined text is mostly for task types,
descriptions, and labels for client input fields. This makes it easier for the workers
to understand the information associated with the labels.
The translation into other languages is handled by i18n, as previously discussed. If
the translation is handled this way, it can be professionally taken care of, providing
high quality translation for the necessary text.

6.2 Retrospective
About halfway through the project we realised that the goals set up during the
project did not always match the expectations held by the different group members.
To discuss these issues we decided to have a retrospective meeting. The meeting
was composed of the two following questions as well as an discussion part, leading
to the conclusions below.
What are we great at?

• Helping each other out whenever help is needed.

42

6. Discussion

• Sharing knowledge on a regular basis.
• Writing clean code.
• GitHub discipline, making pull requests and reviewing as soon as possible.
• Giving good feedback.
• Communication.

What can we do better?
• Work at the same location as much as possible, being able to ask questions

to someone in the same room greatly increases productivity. It also allows for
easy sharing of knowledge.

• Set up firmer goals and follow them as close as possible, if you realise you are
about to be delayed make sure to announce it as soon as possible. Whatever
reason it may be, as long as we are aware we can adapt.

The retrospective meeting was a break for us to reflect on how the project had
been going, and from these reflections make improvements. As within most project
groups, our group occasionally faced problems, which were not always discussed
openly. This due to the fact that successes are easier to point out, than failures.
Especially since we had not worked together before, there was an ice that needed to
be broken. By openly discussing both good and bad aspects, the trust among the
group members grew. When comparing the time before and after the meeting, our
productivity increased and the group was brought closer together.
Because of the positive effect the retrospective meeting had on the group, we all
agreed on that it should have been done earlier and more often. If this had been the
case, the increased productivity and the improvement of the group spirit would had
evolved already in the initiation phase. However, we are pleased that it happened,
because the tension we had within the group before the meeting has been replaced
with good friendship.

6.3 Usability Evaluation
To make sure the project was always on the right track regarding usability, many
evaluations were done throughout the project. Since we found it important to get
feedback as early as possible, setbacks could be avoided.
The user testing helped us find flaws and collect useful thoughts on what actual users
would want to see in this kind of application. The user tests were scheduled around
specific dates when we expected to have reached different stages of the design, before
the implementation of the application.
During the development of the client part of the application, we had many opinions
about how the hiring process should be implemented. Even though we had many
opinions, we did not know clearly how to solve this problem. So we decided to go
for the method First In, First Out, where the task is assigned to the first person
who applies for it. This choice was made temporarily, so the development could
set off, as we were open for improvements and other suggestions. As a result of
the user testing, the First In, First Out method was removed and another one was
introduced. Most test subjects were not comfortable nor pleased with the idea of

43

6. Discussion

not knowing who the worker performing the task will be. Instead, they preferred to
choose the worker from a list of applicants, all applying for the same task. To avoid
that only workers with the highest rating would be assigned all tasks, we decided
to lower the price for newly registered workers, and workers with lower ratings in
general.
When performing user tests for the worker application, we were limited by the
number of test subjects provided to us by Just Arrived. Since we only tested on two
test subjects, the extent of valuable feedback we received was limited. But some
feedback included notifications for the application. The test subjects would prefer
an SMS sent to their phone number, in addition to the push notification sent to the
application.

6.4 Design Decisions
During the process a number of design decisions had to be made. Overall the goal
was to improve usability, ease adaptation, and to minimise confusion. This chapter
covers some of these motivations, which will be explained and discussed.

6.4.1 Login Screen Placement
As stated in 5.2.5, the login screen is currently placed at the beginning of the flow,
when the user starts the application. At the earlier stages of development, the login
screen was placed at a later stage in the application flow. The reason for this was the
idea to let the user try the application before being prompted with a login screen,
as requiring the creation of an account can be seen as a hurdle the user has to
overcome.
The initial thought was to place the authentication before checkout of the order,
or when attempting to view profile information. This way the client would be able
to choose a desired task, fill in all necessary information, and then be prompted
with an authentication screen just before finalising the order. However during user
testing some subjects expressed that the sudden appearance of the login screen felt
out of place when it blocked the completion of ordering a task. This impression,
and discussion with Just Arrived, prompted the move of the authentication to the
beginning of the application.
The discussion about authentication placement concluded with the idea that placing
the login screen at the start of the application would not result in too much of a
threshold, as the user had already downloaded the application, and thus already had
enough interest and incentive to register for an account and log in. Another solution
that was discussed was to skip the login requirement entirely and instead give the
option of order numbers. But this was deemed to be unsafe as it would make it
harder for users to manage and keep track of existing tasks. If further testing show
that the initial idea was the correct one, it should not be to much of a challenge to
adjust the current application to the old flow.
Additionally, the idea was to give the user the option to sign in with their pre-
existing Facebook or Google accounts. This would completely eliminate the hurdle

44

6. Discussion

of filling in information when creating their account, eliminating many of the points
about why authentication placement matters. However, due to limited time, this
was never implemented.

6.4.2 Navigation Menu Choice
Deciding on the best way to navigate through the application was an important
decision with many discussions, whether to use a navigation drawer or tab menu, for
the main navigation of the application. Weighing the advantages and disadvantages
for each type of navigational menu helped during the development process, and
eventually we settled on using a navigational tab bar menu bar, which should be
located at the bottom of the screen.
Choosing the tab menu over the navigation drawer was done for several reasons.
The main motivation was that a navigation drawer might not be very intuitive to
use, as it requires the user to either use a swipe gesture, or press a, so called,
hamburger menu icon, at the top of the screen, in order to make the menu appear.
Just Arrived also confirmed our suspicion that the newly arrived can have problems
with these kind of options, specifically that a hamburger icon might not be very
easy to understand. The navigation drawer[61] is an Android design pattern, which
would make the platform implementations less cohesive. Another factor was the
realisation that the application simply did not have enough navigation requirements
to justify having an entire drawer. Placing the tabs at the bottom of the screen also
makes it easier to navigate when the option to change view is always available and
easily accessible.
A possible downside to tabs is that it could be harder to expand on application
functionality with the tab navigation. But at the moment there are no indications
that more then three tabs will ever be necessary. In the worst case more tabs could
also be added. As stated in 5.2.5, when using a tab menu, three to five different
tabs are alright.

6.4.3 Unifying the Design for All Users
During the design process it was decided to use the same pattern and general style
for both parts of the application. The motivation behind this was that it should be
easy for the respective kinds of users to imagine how the other part of the applica-
tion functions. When someone orders a task, the flow and preview should also be
presented in such a way that the person placing the order should be confident that
the applicants can easily understand what the task entails.
While there could be some benefits to optimising the task ordering flow for power
users, these options rarely seem to be appreciated by the market at large. Instead the
application design is an attempt to appeal to a larger market and to have as many
shared components as possible. Reusing components gives the user familiarity with
the functions, and makes it easier to overhaul the look and feel of the application.
As a bonus, it is generally also convenient for developers to reuse components in
multiple parts of an application.

45

6. Discussion

Another consideration was that while the main market might be young professionals
and busy house owners, the application should also be usable by older people who
might need some help with various tasks. Their technical knowledge could be in
doubt, giving them many of the same requirements as those defined for the newly
arrived, making a shared design something that greatly eased all parts of the project.

6.5 Ethical Choices
During the course of the project an ethical stance had to be decided upon regarding a
couple of design decisions. In the following subsections we will discuss them further.

6.5.1 Worker Selection
One of the ethical choices made was regarding the selection of workers for a task.
At the very beginning we used a First In, First Out system, assigning the task
to the first applicant, mainly because it was easy to implement, but also since it
was fair and focused on the task being performed rather than who would perform
it. During our first user tests we however received feedback on this approach of
assigning workers. The test persons asked for the possibility to choose who would
come and help them with their tasks, mainly in the case of tasks that were to
be performed inside their homes. Essentially changing the focus from just having
the tasks be completed, into giving the client the power to choose from all the
workers that applied to perform the task, is something that perhaps is not entirely
in line of the main interest of the application, in helping refugees without previous
work experience into the labour market. This version of the selection more closely
assembles how a company would proceed when hiring staff. However, if you were in
need of a plumber or an electrician, you would rarely take part of that information
before letting them into your house, perhaps simply because there is no easy way to
find that information.

6.5.2 Rating
When we implemented the rating system for the clients, a thought about people
possibly giving bad ratings was raised. Are we supposed to simply trust the client
ordering the task giving a fair rating? What if everything is based on a misunder-
standing due to communication, or if the client simply did not try co-operate? To
be able to find such issues we decided to add the possibility for the worker to give
a rating of the client, and the general experience of using the service, as well.

6.6 Framework Evaluation
As mentioned in 3.2, a number of various frameworks and tools were used during the
project. In this section we evaluate and share our thoughts about these frameworks
and tools.

46

6. Discussion

6.6.1 React Native
In the beginning of the project, a decision had to be made regarding how to imple-
ment the application. The alternatives considered were to either write native code
separately for Android and iOS, or to use a cross-platform approach, such as React
Native as recommended by Just Arrived, in which code would be written in React
and JavaScript. The group had previous experience of coding in Java (which is used
for Android development), but little experience of JavaScript, and developing iOS
applications using Objective-C or Swift.
After evaluating React Native during the pre-study, as described in 4.1, a deci-
sion was made to use React Native for the development of the application. This
choice was made due to the ease with which a simple project could be started, the
convenient cross-platform compatibility with iOS and Android, and the abundance
of available information regarding JavaScript online. Just Arrived’s preference for
React Native also influenced the decision, considering that they might use our code
in the future, in a continuation after this project has been completed.
There are other cross-platform development tools in addition to React Native, some
of which are considered more stable then React Native. If React Native had been
deemed as unsuitable, these tools would have been evaluated before settling for
developing using native code. We simply found the cross-platform development too
useful to pass up on. Sticking to one set of code saves time as the same functionality
does not have to be written twice in different languages. This is also an advantage
when it comes to maintaining the code. If a change is made in the code, it always
affects both platforms, saving time and making sure no version gets ahead of the
other.
After working with React Native for a while, the group is now fairly proficient in
JavaScript. Jacob Burenstam, the CTO of Just Arrived, voiced the opinion that we
should not hesitate to apply for jobs that require two years of JavaScript experience.

6.6.2 Networking Component
The initial idea for networking was to use Firebase, an easily integrated and expand-
able bucket service as a placeholder for a dedicated API [62]. Firebase differs from
a traditional API in that instead of providing endpoints that have to be configured,
they offer a bucket with storage space, where developers can create security rules
as to who is allowed to access which folders. Their SDK also offers authentication
straight out of the box, enabling developers to concentrate on creating the client
rather than spending time on implementing API functionality.
On suggestion from Just Arrived, Firebase was discarded, and networking was re-
alised straight against Just Arrived’s development API [63], while Jacob Burenstam,
CTO of Just Arrived, took responsibility for modifying API functionality as it be-
came necessary. This has limited the implementation in various ways due to only
being able to use existing functions most of the time, and the existing functions
sometimes not being very clear about their purpose. But it has also been a re-
lief not having to work on creating server, or Firebase functionality, simultaneously
while creating the application.

47

6. Discussion

The resulting networking component works well, and the integration between fetch-
ing data and Redux is fairly seamless, but the process of getting there did not go
entirely smooth. After discarding Firebase, the second obstacle was the integra-
tion between networking functionality and Redux. The main issue was that Redux
mainly functions as a state container, where logic is handled in actions and in the
views (see Section 3.2.2). A way had to be found for an action to trigger a loading
screen, download data, and then update the view with the received data. The way
it has been implemented is powerful and easy to expand (see Section 5.3.5), but it
might unfortunately not be entirely trivial to understand everything that is going
on. It did not help that for the majority of the time there was only one developer
dedicated to implementing this part of the application. Due to views being created
before implementing networking and Redux functionality, there was also a large
amount of refactoring necessary for most views.

6.6.3 Redux
The fact that Redux uses a single repository for storing all the states of the appli-
cation, facilitates a lot of work for us as developers. We did not have to keep track
of which component has which state at what time, or where the state is supposed
to be sent. All changes to the states of the application are sent to the store, and
components and views that use a particular state automatically receive the state
by themselves. Not having to figure out how to pass state information between
components in a proper fashion, and guaranteeing that every component that rely
on the state is passed the new value, and instead just have each component work
against the store, has made it an almost painless experience.
Redux has also made it easy to build new components for the application. We did
not need to figure out what information had to be passed from certain view into
the new component. We could just build a view and get the information from the
store. This also made it easy to test out a new module without having to modify the
already existing views, as the views operate independently, and only communicate
states with the store through Redux, and never directly with each other. In this
way we could test something new and delete it without affecting other components.
Although we found that Redux is a good tool for most situations regarding handling
states, it is not perfect for everything. In some cases we have used normal React
local states for components. If the state is used strictly in a specific component it is
a lot more work to send it to the store and request the information, instead of just
keeping it as a local component state. This has usually not been used for storage of
regular data, but instead for some GUI related states, such as toggling what type
of button should be displayed in a certain view.

6.6.4 NativeBase
When we first started coding we found using the components of NativeBase very
useful and easy to use. It became surprisingly easy to create views for the application
quickly, and try different design ideas.

48

6. Discussion

However, as the project progressed we ran into more and more problems. The
documentation was occasionally poor, and multiple components did not behave in
the way they were described. In several cases we had to read the source code for
NativeBase, instead of the documentation, to figure out how certain components
actually worked.
We encountered especially many problems regarding input fields that used icons or
labels. These were reported as bugs by users to NativeBase, but not yet fixed. Not
being able to do anything about the problems, or finding out how components work
from the documentation, made us feel like we were not in control. It also made the
application worse as it seemed to contain bugs that we could not do anything about
it.
If we had to make a choice today we would still have used NativeBase. In the case
of bugs that were not fixed, we would have created our own components to replace
the broken ones.
Someone with more experience might want to create all the components by them-
selves to have complete control, but for a smaller project with little to no prior
experience of React Native, it was a good library. Especially if the documentation
is improved.

6.6.5 React Navigation
React Navigation was introduced in January 2017 [64], making it a relatively young
framework. Even though it is one of the more popular and commonly used frame-
works for navigation in React Native, it is still in beta, and a stable version is yet to
be released. This can unfortunately be noticed when using the framework, in some
cases. During development we encountered some minor bugs, but more noticeably
documentation that sometimes was invalid or not up-to-date. Generally speaking,
the life-span and stability is something to examine and consider before committing
to a framework. In retrospect, however, it is not guaranteed that we would have
chosen another navigation framework due to these reasons. This is partially due to
React Native in general being a relatively young framework, so it is hard to expect
all frameworks for React Native (e.g. React Navigation) to be fully stable.

49

7
Conclusion

While all the goals of the project could not be realised, there are still conclusions
that can be drawn from what has been done.
Optimisation for touch devices is something that should mostly be done by following
existing design guidelines for the platforms used. The result might not always be
the most intuitive, but design compliance ensures that the user will recognise design
patterns, and from habit will be able to use the components.
The user’s experience with technology, touch units, and the specific platform affects
what value can be drawn from platform specific design guidelines. As the user’s
familiarity with the platform increases, the value of the design guidelines should in-
crease as well. Respectively, if the user has no or little experience with the platform,
the value of the guidelines decreases.
Based on the variety in expected technical background for end users, the value of user
tests increases. The developers of an application typically all have fairly advanced
technical knowledge, and thus do not represent the average user. Based on this it is
also valuable to have both broad and narrow use cases tested, since they can result
in different kinds of issues depending on who performs the tests.
Having a unified simplified design could go a long way in making the users feel secure
in the knowledge that the correct message is transferred through the application.
The use of standard input also helps both the client and the worker to be confi-
dent that the correct task will be performed, and it also facilitates translations and
support for multiple languages.
Based on the experience gained during the execution of this project, some more
subjective conclusions about how to maintain a collaborative project can be drawn.
When scheduling a project plan, leave a margin for errors. If nothing else it would
ensure time for a final test which would ensure more objective results. Working
together and continuous feedback through retrospectives are crucial aspects of the
agile process.
React Native and the packages used during development performed satisfactorily
despite some version issues. As the framework matures these issues should decrease
and the value gained from immediate cross platform support should increase.
The development of functional and intuitive user interfaces is an area of research
that will remain relevant as new techniques are invented and the market continues
to grow. Companies’ desire to continuously renew their image in order to remain
relevant also ensures that there will always be a constant demand for new solutions.

50

Bibliography

[1] Migrationsverket, “Migrationsverket Statistik.” [Online]. Available: https:
//www.migrationsverket.se/Om-Migrationsverket/Statistik.html

[2] Just Arrived, “About Just Arrived.” [Online]. Available: https://justarrived.
se/about-us/

[3] Agile Alliance, “Agile 101.” [Online]. Available: https://www.agilealliance.org/
agile101/

[4] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Agile
Manifesto,” p. 28–35, 2001. [Online]. Available: http://agilemanifesto.org/

[5] T. Ohno, “Toyota Production System: Beyond Large-Scale Production,” Pro-
ductivity Press, p. 152, 1988.

[6] Dan Radigan, “Atlassian Kanban.” [Online]. Available: https://www.atlassian.
com/agile/kanban

[7] Jeff Iasovski, “Kanban Board.” [Online]. Available: https://commons.
wikimedia.org/wiki/File:Simple-kanban-board-.jpg

[8] Trello, “Trello.” [Online]. Available: https://trello.com/about
[9] J. Gothelf and J. Seiden, Lean UX. O’Reilly Media, 2013. [Online]. Available:

http://ebooks.cambridge.org/ref/id/CBO9781107415324A009
[10] E. Ries, The Lean Startup. Crown Publishing Group, Division of Random

House Inc, 2011. [Online]. Available: http://theleanstartup.com/book
[11] L. Ratcliffe and M. McNeill, Agile Experience Design. New Riders, 2012.
[12] C. Snyder, Paper Prototyping: The Fast and Easy Way to Design and Refine

User Interfaces. Morgan Kaufmann Publishers, 2003.
[13] S. Farrell, “Mozilla Case Study,” 2015. [Online]. Available: https:

//www.nngroup.com/articles/mozilla-paper-prototype/
[14] “Wireframing.” [Online]. Available: https://www.usability.gov/

how-to-and-tools/methods/wireframing.html
[15] B. Hanington and B. Martin, “Universal Methods of Design,” pp. 194, 180,

2012.
[16] “Heuristic Evaluations and Expert Reviews.” [Online]. Available: https:

//www.usability.gov/how-to-and-tools/methods/heuristic-evaluation.html
[17] J. M. Spool, “Great Designs Should Be Experienced and Not Seen.” [Online].

Available: https://articles.uie.com/experiencedesign/
[18] A. Cooper, R. Reimann, D. Cronin, and C. Noessel, “About Face: The Essen-

tials of Interaction Design, 4th Edition,” pp. 508, 509, 549, 2014.

51

https://www.migrationsverket.se/Om-Migrationsverket/Statistik.html
https://www.migrationsverket.se/Om-Migrationsverket/Statistik.html
https://justarrived.se/about-us/
https://justarrived.se/about-us/
https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
http://agilemanifesto.org/
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://commons.wikimedia.org/wiki/File:Simple-kanban-board-.jpg
https://commons.wikimedia.org/wiki/File:Simple-kanban-board-.jpg
https://trello.com/about
http://ebooks.cambridge.org/ref/id/CBO9781107415324A009
http://theleanstartup.com/book
https://www.nngroup.com/articles/mozilla-paper-prototype/
https://www.nngroup.com/articles/mozilla-paper-prototype/
https://www.usability.gov/how-to-and-tools/methods/wireframing.html
https://www.usability.gov/how-to-and-tools/methods/wireframing.html
https://www.usability.gov/how-to-and-tools/methods/heuristic-evaluation.html
https://www.usability.gov/how-to-and-tools/methods/heuristic-evaluation.html
https://articles.uie.com/experiencedesign/

Bibliography

[19] C. Banga and J. Weinhold, Essential Mobile Interaction Design: Perfecting
Interface Design in Mobile Apps. Addison Wesley, 2014.

[20] Pete Hunt, “Why did we build react?” [Online]. Available: https:
//facebook.github.io/react/blog/2013/06/05/why-react.html

[21] Facebook Open Source, “React Introduction.” [Online]. Available: https:
//facebook.github.io/react/

[22] F. Lardinois, “Facebook Open-Sources React-Native,” 2015. [Online]. Available:
https://techcrunch.com/2015/03/26/facebook-open-sources-react-native/
?ncid=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=
Feed%3A+Techcrunch+%28TechCrunch%29

[23] B. Eisenman, “React Native Introduction,” 2016. [Online]. Available:
https://www.infoq.com/articles/react-native-introduction

[24] Redux, “Three Principles Redux.” [Online]. Available: http://redux.js.org/
docs/introduction/ThreePrinciples.html

[25] ——, “Redux Actions.” [Online]. Available: http://redux.js.org/docs/
introduction/ThreePrinciples.html

[26] ——, “Redux Reducers.” [Online]. Available: http://redux.js.org/docs/basics/
Reducers.html

[27] React Navigation, “React Navigation Documentation.” [Online]. Available:
https://reactnavigation.org/docs/intro/

[28] “React Navigators.” [Online]. Available: https://reactnavigation.org/docs/
navigators/

[29] Geeky Ants, “Native Base.” [Online]. Available: https://nativebase.io/
[30] F. Bento, “Open source ERP’s I18n,” in ACM SIGDOC Euro-

pean Chapter/ Eurosigdoc Workshop on Open Source and Design
of Communication - OSDOC ’10, 2010, p. 49. [Online]. Avail-
able: http://www.scopus.com/inward/record.url?eid=2-s2.0-79952512818&
partnerID=40&md5=b82a46fdd1e07905be1833a5f59772fe%5Cnhttp:
//portal.acm.org/citation.cfm?doid=1936755.1936771

[31] B. Ediger, Advanced Rails. O’Reilly Media, 2008. [Online]. Avail-
able: http://proquestcombo.safaribooksonline.com/book/web-development/
ruby/9780596510329/firstchapter

[32] A. Zaytsev, “i18n for React Native.” [Online]. Available: https://github.com/
AlexanderZaytsev/react-native-i18n

[33] “Moment.js.” [Online]. Available: http://momentjs.com/
[34] Facebook Open Source, “React-Native Networking.” [Online]. Available:

https://facebook.github.io/react-native/docs/network.html
[35] Mozilla Developer Network, “Javascript Promise.” [Online]. Avail-

able: https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/
Global_Objects/Promise

[36] ——, “Using Fetch.” [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/API/Fetch_API/Using_Fetch

[37] Just Arrived, “Just Match API Github.” [Online]. Available: https:
//github.com/justarrived/just_match_api

[38] S. Klabnik, Y. Katz, D. Gebhardt, T. Kellen, and E. Resnick, “JSON API
1.0.” [Online]. Available: http://jsonapi.org/

52

https://facebook.github.io/react/blog/2013/06/05/why-react.html
https://facebook.github.io/react/blog/2013/06/05/why-react.html
https://facebook.github.io/react/
https://facebook.github.io/react/
https://techcrunch.com/2015/03/26/facebook-open-sources-react-native/?ncid=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Techcrunch+%28TechCrunch%29
https://techcrunch.com/2015/03/26/facebook-open-sources-react-native/?ncid=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Techcrunch+%28TechCrunch%29
https://techcrunch.com/2015/03/26/facebook-open-sources-react-native/?ncid=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Techcrunch+%28TechCrunch%29
https://www.infoq.com/articles/react-native-introduction
http://redux.js.org/docs/introduction/ThreePrinciples.html
http://redux.js.org/docs/introduction/ThreePrinciples.html
http://redux.js.org/docs/introduction/ThreePrinciples.html
http://redux.js.org/docs/introduction/ThreePrinciples.html
http://redux.js.org/docs/basics/Reducers.html
http://redux.js.org/docs/basics/Reducers.html
https://reactnavigation.org/docs/intro/
https://reactnavigation.org/docs/navigators/
https://reactnavigation.org/docs/navigators/
https://nativebase.io/
http://www.scopus.com/inward/record.url?eid=2-s2.0-79952512818&partnerID=40&md5=b82a46fdd1e07905be1833a5f59772fe%5Cnhttp://portal.acm.org/citation.cfm?doid=1936755.1936771
http://www.scopus.com/inward/record.url?eid=2-s2.0-79952512818&partnerID=40&md5=b82a46fdd1e07905be1833a5f59772fe%5Cnhttp://portal.acm.org/citation.cfm?doid=1936755.1936771
http://www.scopus.com/inward/record.url?eid=2-s2.0-79952512818&partnerID=40&md5=b82a46fdd1e07905be1833a5f59772fe%5Cnhttp://portal.acm.org/citation.cfm?doid=1936755.1936771
http://proquestcombo.safaribooksonline.com/book/web-development/ruby/9780596510329/firstchapter
http://proquestcombo.safaribooksonline.com/book/web-development/ruby/9780596510329/firstchapter
https://github.com/AlexanderZaytsev/react-native-i18n
https://github.com/AlexanderZaytsev/react-native-i18n
http://momentjs.com/
https://facebook.github.io/react-native/docs/network.html
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://github.com/justarrived/just_match_api
https://github.com/justarrived/just_match_api
http://jsonapi.org/

Bibliography

[39] Just Arrived, “Just Arrived API documentation.” [Online]. Available:
https://api.justarrived.se/api_docs

[40] Taskrabbit, “TaskRabbit.” [Online]. Available: https://www.taskrabbit.com
[41] Freelancer, “Freelancer.” [Online]. Available: https://www.freelancer.com
[42] Welcome Movement, “Welcome Movement.” [Online]. Available: http:

//welcomemovement.se
[43] Spotify, “Spotify.” [Online]. Available: http://spotify.com
[44] D. M. Brown, Communicating Design: Developing Web Site Documentation for

Design and Planning. New Riders, 2010, vol. 39, no. 1.
[45] “Sus Lyckvi.” [Online]. Available: http://cse.gu.se/om/interaktionsdesign/

forskare/sus-lyckvi
[46] N. C. Zakas, “ESLint.” [Online]. Available: http://eslint.org/docs/about/
[47] Airbnb, “Airbnb Eslint.” [Online]. Available: https://github.com/airbnb/

javascript
[48] Git, “Git.” [Online]. Available: https://git-scm.com/
[49] Github, “Github.” [Online]. Available: https://github.com/justarrived/

p2p-client
[50] V. Driessen, “Git Flow.” [Online]. Available: http://nvie.com/posts/

a-successful-git-branching-model/
[51] Git, “Pull Request.” [Online]. Available: https://git-scm.com/docs/

git-request-pull
[52] Ebert, “Ebert.” [Online]. Available: https://ebertapp.io/
[53] Google, “Material Design Components.” [Online]. Available: https://material.

io/guidelines/patterns/navigation.html#
[54] ——, “Material Design Cards.” [Online]. Available: https://material.io/

guidelines/components/cards.html#
[55] ——, “Material Design Color and Contrast.” [Online]. Available: https://

material.io/guidelines/usability/accessibility.html#accessibility-color-contrast
[56] ——, “Material Design Onboarding.” [Online]. Avail-

able: https://material.io/guidelines/growth-communications/onboarding.
html#onboarding-top-user-benefits

[57] J. Saito, “Making a case for letter case,” 2016. [Online]. Available:
https://medium.com/@jsaito/making-a-case-for-letter-case-19d09f653c98

[58] Google, “Material Bottom Navigation.” [Online]. Available: https://material.
io/guidelines/components/bottom-navigation.html

[59] Apple, “ios Tab Bars.” [Online]. Available: https://developer.apple.com/ios/
human-interface-guidelines/ui-bars/tab-bars/

[60] icons8, “Icons8.” [Online]. Available: https://icons8.com/
[61] Google, “Material Design Navigation Drawer.” [Online]. Available: https:

//material.io/guidelines/patterns/navigation-drawer.html
[62] Firebase, “Firebase.” [Online]. Available: https://firebase.google.com/
[63] Just Arrived, “Just Match API.” [Online]. Available: https://github.com/

justarrived/just_match_api
[64] “React Navigation Introduction.” [Online]. Available: https://reactnavigation.

org/blog/2017/1/Introducing-React-Navigation

53

https://api.justarrived.se/api_docs
https://www.taskrabbit.com
https://www.freelancer.com
http://welcomemovement.se
http://welcomemovement.se
http://spotify.com
http://cse.gu.se/om/interaktionsdesign/forskare/sus-lyckvi
http://cse.gu.se/om/interaktionsdesign/forskare/sus-lyckvi
http://eslint.org/docs/about/
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript
https://git-scm.com/
https://github.com/justarrived/p2p-client
https://github.com/justarrived/p2p-client
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://git-scm.com/docs/git-request-pull
https://git-scm.com/docs/git-request-pull
https://ebertapp.io/
https://material.io/guidelines/patterns/navigation.html#
https://material.io/guidelines/patterns/navigation.html#
https://material.io/guidelines/components/cards.html#
https://material.io/guidelines/components/cards.html#
https://material.io/guidelines/usability/accessibility.html#accessibility-color-contrast
https://material.io/guidelines/usability/accessibility.html#accessibility-color-contrast
https://material.io/guidelines/growth-communications/onboarding.html#onboarding-top-user-benefits
https://material.io/guidelines/growth-communications/onboarding.html#onboarding-top-user-benefits
https://medium.com/@jsaito/making-a-case-for-letter-case-19d09f653c98
https://material.io/guidelines/components/bottom-navigation.html
https://material.io/guidelines/components/bottom-navigation.html
https://developer.apple.com/ios/human-interface-guidelines/ui-bars/tab-bars/
https://developer.apple.com/ios/human-interface-guidelines/ui-bars/tab-bars/
https://icons8.com/
https://material.io/guidelines/patterns/navigation-drawer.html
https://material.io/guidelines/patterns/navigation-drawer.html
https://firebase.google.com/
https://github.com/justarrived/just_match_api
https://github.com/justarrived/just_match_api
https://reactnavigation.org/blog/2017/1/Introducing-React-Navigation
https://reactnavigation.org/blog/2017/1/Introducing-React-Navigation

A
All Views of the Application

(a) Login screen (b) Choose task type

Figure A.1: Login screen and choose task type screen.

I

A. All Views of the Application

(a) Create task (b) Inspect task

Figure A.2: Create and inspect task information.

(a) Current tasks (b) Applicant notification

Figure A.3: View owned tasks and receive a push notification.

II

A. All Views of the Application

(a) List applicants (b) Inspect applicant

Figure A.4: Views listing and displaying applicant information.

(a) Applicant references (b) Credit cards

Figure A.5: Views displaying applicant references and listing credit cards.

III

A. All Views of the Application

(a) Payment confirmation (b) Payment success

Figure A.6: Payment confirmation and payment success screens.

(a) Task complete notification (b) Task complete confirmation

Figure A.7: Task completion notification and confirmation screen.

IV

A. All Views of the Application

(a) Rate worker (b) Task complete screen

Figure A.8: Rate worker and task completed screens.

V

A. All Views of the Application

(a) User profile (b) Account creation

Figure A.9: User profile and account creation screens.

VI

	List of Figures
	Introduction
	Purpose
	Background
	Challenges
	Graphical User Interface
	Target Group and User Testing
	Language Barrier

	Scope
	Outline

	Methods
	Agile Software Development
	Kanban
	Lean UX

	Interaction Design Methods
	Paper Sketching
	Wireframing

	Testing
	Expert Testing
	User Testing

	Tools and Theory
	Interaction Design
	Designing for Touch

	Frameworks
	React Native
	Redux
	React Navigation
	NativeBase
	Internationalization i18n
	React Native Fetch

	Just Arrived API

	Process
	Pre-study
	Requirements from Just Arrived
	Functionality and Use Cases
	Brief Market Analysis

	Interaction Design Process
	Low Fidelity Sketching
	Combining and Refining Sketches
	Digital Wireframing

	Design Testing
	Expert Tests
	User Tests
	Client Wireframe Tests
	Worker Wireframe Tests

	Programming Development Process
	Programming
	Pull Request
	Code Review
	Application Testing

	Results
	Application Flow
	Task Ordering - Client
	Find Tasks - Worker

	Design
	Usability
	Language Selection
	Design for the Client Part of the Application
	Worker Prototype Design
	Shared Design

	System Architecture
	Project Folder Structure
	Application Navigation
	Redux Integration
	Networking
	Networking and Redux

	Discussion
	Limitations
	The Language Barrier

	Retrospective
	Usability Evaluation
	Design Decisions
	Login Screen Placement
	Navigation Menu Choice
	Unifying the Design for All Users

	Ethical Choices
	Worker Selection
	Rating

	Framework Evaluation
	React Native
	Networking Component
	Redux
	NativeBase
	React Navigation

	Conclusion
	Bibliography
	All Views of the Application

