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Abstract
Practising is a part of learning how to program. Usually, teachers help students
with this, but digital alternatives are available. Ask-Elle is such an alternative,
developed for teaching the functional programming language Haskell. Students can
submit partial solutions to exercises and will receive feedback from Ask-Elle. How-
ever, it has some limitations when dealing with partial solutions that diverge from
the structure of its reference solutions.

We present a proof of concept to complement Ask-Elle (called thupy) that aims to
handle solutions where students do not follow the structure of the reference solutions
from Ask-Elle. We use program synthesis to generate a suggested next step for a
student, with more focus on the behaviour rather than the structure of the reference
solutions.

Our results show that this is a promising idea. Evaluating thupy on a dataset
gathered from Ask-Elle, we manage to provide feedback on 21% of student solution
where Ask-Elle cannot, and 35% of solutions where it can. We measure an average
runtime of ∼ 3 seconds, which is an acceptable amount of time to wait for feedback.

Keywords: Computer Science, Functional Programming, Digital Programming Tu-
tor, Program Synthesis, Haskell, Ask-Elle
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1
Introduction

In a society where software is an increasingly important part of our lives, the skills
of a software developer are needed more than ever. Practising programming by
solving exercises is an important step in learning these skills. Exercises are usually
provided by humans but preparing and supervising this can be time consuming.
Additionally, the coupling between the student and the teacher can be a limiting
factor, for example, students might not get access to the same tutoring due to
physical or economical constraints.

By imitating a teacher’s role in tutoring, digital tutors can offer solutions to these
problems. One such tutor is Ask-Elle. It is an online digital tutor aimed at teaching
the functional programming language Haskell at an introductory level. A key feature
of Ask-Elle is letting students from anywhere in the world submit partial solutions
to exercises, to which Ask-Elle can provide feedback. These partial solutions can
have left out parts (called holes) that are each marked with a ?. The given feedback
may enable the student to take the next step. Repeating this process guides the
student towards a complete solution. In the following example (Figure 1.1) we can
see what a partial solution to the exercise dupli can look like and what feedback is
given when Ask-Elle is asked for help. For the dupli exercise, the student should
write a function that duplicates each element in a list.
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1. Introduction

Figure 1.1: A student has entered a partial solution to the exercise called dupli
and has received feedback on the right side.

However, Ask-Elle has its limitations. When faced with a partial solution that does
not directly follow one of its predefined model solutions, Ask-Elle can no longer
determine if a student is on the right track. A student’s deviation from a model
solution does not have to be significant as shown in the following example:

dupli = concat . map ?

The small deviation from concatMap to concat . map throws Ask-Elle off-guard
even though the solution would be practically identical. Instead, Ask-Elle just replies
“You have drifted from the strategy in such a way that we can not help you any
more.” While Ask-Elle tries to mitigate this problem by normalising the student
programs, this approach does not scale well. This inherently limits Ask-Elle in what
it can give feedback to.

We present an approach to complement Ask-Elle, such that Ask-Elle becomes less
strict, by using program synthesis to generate code that completes the partial so-
lution. This approach focuses more on the functionality of the code rather than
the structure of the model solutions. Instead, the parts of the model solutions are
used to generate a complete solution from the provided input. This approach gives
students more freedom in structuring their programs whilst keeping them relatively
close to a model solution. We call our proof of concept application Tutor extension
for Haskell Using Program sYnthesis, or thupy for short. The complement uses
program synthesis to generate a solution from the program that the student has
provided, together with the model solutions. It then guides the student towards the
generated solution by giving the student a suggested next step. For instance, for
the following model solution:

2



1. Introduction

modelDupli :: [Int] -> [Int]
modelDupli list = concatMap (replicate 2) list

thupy will find that replacing the hole in the previous student solution, dupli with
(replicate 2) from modelDupli yields a valid solution. To let the student figure
out the solution by themselves, thupy only provides the student with a suggested
next step, as shown below.

dupli = concat . map (replicate ?)

Although the focus of this thesis is on Ask-Elle, the general approach should be
applicable to other tutors as well.

1.1 Research Question
This thesis examines if and how program synthesis can be used to complement
Ask-Elle. The goal can be formalised into three questions that we seek to answer:

1. Is it possible to use program synthesis to generate feedback that suggests a
next step to complete a partial program?

2. If so, how well does it perform on partial programs that Ask-Elle cannot
handle?

3. Also, how well does it compare against the existing Ask-Elle feedback algo-
rithm?

To evaluate if we have achieved the goals of this thesis, we focus on how well our
program synthesis approach can generate feedback in the form of a suggested next
step for a user. We apply our complement to a set of partial programs previously
handled by Ask-Elle. These attempts are divided into two categories, those that
Ask-Elle has succeeded to give feedback to, and those that it did not. We evaluate
for how many of each our complement can suggest a next step. This allows us to
assess how well thupy compares to and complements Ask-Elle respectively.

1.2 Limitations
To limit the scope of this thesis, we will not perform any user evaluations. Fur-
thermore, the quality of the feedback that is generated will not be assessed. The
focus of the thesis will instead be the technical aspects and assumes that providing
a next step is useful feedback. In addition, thupy will only support monomorphic
types, because polymorphic types are needlessly complicated for our proof of con-
cept. Furthermore, we limit ourselves to the subset of the Haskell language that the
exercises in Ask-Elle uses and limit our program synthesis to expressions. Finally,
there is no focus on optimising the performance beyond running in a reasonable
time. Informally, reasonable time means that the program is fast enough to not
make the user quit out of frustration, which we deem to be within a few seconds.
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1. Introduction

1.3 Contributions
Our main contributions described in this thesis are:

1. thupy, a proof of concept to complement Ask-Elle, that uses program syn-
thesis to generate a next step from a partial solution.

2. Evaluate how well the above contribution complements and compares to Ask-
Elle.

1.4 Outline
Chapter 2 presents the needed background to understand the following chapters.
The next chapter explains how we implemented our solution and motivates some
of the choices we made. In Chapter 4 we present and discuss our results. Next,
we discuss our work, some difficulties that arose during the project and highlight
possible future work. We then present some related work and how our project relates
to them. Lastly, we present our conclusions drawn from working on this project.
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2
Background

In this chapter, we present the concepts and tools needed to understand the following
chapters. We first present the Haskell programming language and some related tools.
We continue with a brief introduction to different aspects of program synthesis.
After this, we introduce digital programming tutors and describe the model-tracing
approach to providing feedback. Finally, we introduce the digital tutor Ask-Elle in
more detail.

2.1 Haskell
Haskell is a functional, statically typed programming language [1]. As a functional
language, Haskell’s functions are first-class citizens, meaning that e.g. functions can
be passed to other functions as parameters [1]. Additionally, functions in Haskell
are pure, which means that a function application has no side-effects and that they
produce the same output for the same input [2]. Since Ask-Elle was developed to
teach Haskell and most tools to work with the language are also written in Haskell,
we chose to develop thupy in it as well.

2.1.1 Types
Handling types is an important part of our synthesis, and we briefly introduce some
important concepts of the Haskell type system in this section.

Haskell is a statically typed language. At compile time the type of every expression
is already known [3]. Furthermore, Haskell can infer the type of an expression from
the type signatures of the expressions around it [3].

The Haskell type system allows for polymorphic types. A polymorphic type in
Haskell means that it can represent multiple different types [3, 4]. Monomorphism
is the opposite of polymorphism, a concrete type, for instance Int [5]. At runtime
the polymorphic type can only ever take the form of one type at a time [4]. For
instance the type variable a can represent any type, such as Int or Char. However,
it cannot represent both Int and Char in the same context. Consider the following
function type signature:

f :: a -> a -> a

5



2. Background

Here we have a function that takes two inputs and produces one output. They all
have the same type, but that type can vary depending on how the function is used.
For example, applying it to two Ints would produce an Int and applying it to two
Strings would produce a String.

The polymorphic types can be constrained, for instance, Num a means that the type
variable a can only be numerical types [4]. Common numerical types are Int and
Double.

2.1.2 Eta-Transformations
Haskell is based on the formal mathematical lambda calculus system. Some of the
transformations from this are directly applicable to Haskell functions [6, 7].

In lambda calculus, an eta-transformation can be described as follows:

λx.Mx
η←→M if x is not free in M and M is of function type [8].

A reduction on this form can be used to normalise an expression [9]. A very sim-
ple example from the Haskell wiki of an eta-reduction is the lambda expression
\x -> abs x η−→ abs [10]. Eta-expanding the eta-reduced expression yields the
original expression: abs η−→ \x -> abs x.

In thupy we use eta-transformations to create alternate versions of the model so-
lutions. This gives us additional, and sometimes crucial, expressions that we can
use when synthesising solutions. This process is described more in-depth in Sec-
tion 3.3.1.

2.1.3 The Glasgow Haskell Compiler
The Glasgow Haskell Compiler (GHC) is according to a 2017 survey the most used
compiler for Haskell [11]. It is not uncommon for compilers to offer support for
extending and modifying their behaviour. GHC does this by providing its function-
ality as a library [12]. This gives us the ability to tap into the internals and to make
use of its functionality.

Compilation of Haskell code using GHC, like most other compilers, consists of a
number of phases [13]. Each phase takes as input the output from the previous
phase, manipulates the input and gives an output for the next phase to process [13,
14].1 To understand this thesis, only the parsing and type-checking phases need to
be explained.

• The parsing phase takes a Haskell source file as input. It syntax-checks
and parses the code from an unstructured string into an abstract syntax tree
(AST) [13]. An AST is a tree structure that many compilers use to represent
the code internally.

1The entire pipeline can be seen here: https://gitlab.haskell.org/ghc/ghc/-/wikis/
commentary/compiler/hsc-pipe
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2. Background

• The type-checking phase adds type information to the AST. It also provides
the information needed to reconstruct the type of any expression. If the types
in the AST do not fit, the type-checker returns an error to the user [13]. We
use the type-checked AST to retrieve type information about the code.

Typed Holes in GHC: A hole in GHC is a feature where a programmer can
specify a location in their code where they want help figuring out what to write [15].
These holes are marked with an _ (underscore) in the code. The compiler recognises
the holes and uses type-inference to give the hole a type. GHC then returns an error
message with the type of the hole along with a list of suggested possible bindings
(names of variables or functions) that would fit in the hole [15].

Although similar to how thupy works, GHC only provides a list of suggestions
based on type, whereas thupy does it based on both type and functionality. The
functionality is determined by testing the input-output behaviour of the function.
thupy uses GHC to calculate the type of a hole.

2.1.4 QuickCheck
QuickCheck is a property-based testing library for Haskell [16]. It tests functions by
checking if a given property holds for it. This is done by applying arbitrary inputs
and checking if the output matches the specified properties [16].

An example of a simple property is that a list reversed twice should be equal to the
original list. In the original QuickCheck paper [16], this property is expressed like
this:

prop_RevRev xs = reverse (reverse xs) == xs

Both Ask-Elle and thupy use QuickCheck to check if a solution has the expected
behaviour. However, where Ask-Elle only tests the partial solution from the student,
thupy tests if any synthesised solution has the expected behaviour.

2.2 Program Synthesis
The idea of program synthesis is to automatically generate programs from a specifi-
cation [17, 18]. In traditional programming, the programmer implements a program
that meets a particular specification. In contrast, program synthesis generates a
program that adheres to a specification given by a programmer [17, 18]. Like com-
pilers, program synthesisers translate a statement from one language to another,
often from a “higher” level language (a specification) to a “lower” level language (an
implementation) [17, 18].

Describing the specifications can be done in different ways, but some common meth-
ods are:

• Input-output examples: This approach, like the name suggests, uses a

7



2. Background

predefined mapping between what output the function should produce given
a certain input to synthesise a program [19]. If the input-output examples do
not fully specify the desired behaviour of the program the synthesised program
might not have the desired behaviour. A solution is to add more examples to
specify the behaviour more precisely [20].

• Logical specifications: This approach uses a given logical specification that
the output of the function should satisfy in relation to the input that was
given [20]. An example of a logical specification of a function calculating the
maximum of two integers is the following:

max x y -> z

(z = x ∧ x > y) ∨ (z = y ∧ y ≥ x)
Logical specifications need not be understood for this thesis, but illustrates
that there are many types of program synthesis.

• Oracle guided program synthesis: This implementation is quite close to
input-output examples. A finished black box program, called an oracle gener-
ates correct output for any input with regards to the specification [21]. Input-
output examples can thus be automated [22].

Our approach uses an oracle to generate input-output examples. Furthermore, we
apply a sketching approach (which is explained in the next section) for generating
feedback.

2.2.1 Sketching
Sketching is a type of program synthesis where a programmer supplies the program
synthesis algorithm with both a specification, and a partly finished program, or a
“sketch” [23, 24]. The partly finished program contains holes [23], much like those
in Ask-Elle and Haskell. The goal for the synthesiser is to generate code that fills in
the holes to complete the program and make sure that it fits the specification [23].

By sketching a skeleton of the program, the programmer is given more control of the
overall flow of an application [23, 24]. They can also specify the structure that the
synthesised program should have. The synthesiser only operates and generates code
on the parts where the programmer has left a hole [23, 24]. Sketching effectively
divides the program synthesis into two sub-problems: Program Search and Program
Verification. In our case, we search for all possible expressions that could fit into
the hole. Then we verify that they make the solution as a whole behave correctly.

2.2.2 The Search Space
Synthesising code involves searching through a set of programs to find one that fits
the specification [25]. This set of programs are usually referred to as the program
search space, and quickly grows very large [25]. The search-space can be comprised
of a subset of the language that the program synthesis operates on [26].

8



2. Background

Programs in this search-space can be discovered using different search techniques [26].
The most basic technique is a brute-force search of the entire search space, which
enumerates every possible program and tests if it satisfies the specified properties
and constraints [26]. A pure brute-force technique is often not feasible due to re-
source constraints. To overcome this, the search space can be reduced by applying
various optimisations to shrink it [20]. An example of reducing the search space
could be to restrict it to expressions of a specific type.

2.3 Intelligent Digital Programming Tutors
An intelligent digital programming tutor is a program that is designed to mimic
tutoring from a teacher but in a digital tool [27]. The main feature of most digital
tutors is that they provide feedback and hints to students to help them write a
program that has some desired properties [27]. A digital tutor can also help a
student understand programming better [27]. This can be done by, for example
asking quiz questions about the programs written by the student, and by helping
the student design their solution [27].

Digital tutors have been proven to be a more effective method of teaching intro-
ductory programming to students than a traditional approach where the student is
given an exercise to solve by themselves [28]. Using digital tutors as a helping tool
has also been shown to decrease the amount of help needed from teachers, while
not decreasing the performance on tests taken by the students [29]. Thus, once a
programming tutor has been deployed, it lowers the need for a teacher or TA to aid
students with trivial questions. It also allows students to learn at their own rate,
while teachers can focus on more advanced questions [28].

2.3.1 Model-Tracing
Model-tracing was an early approach for constructing a digital tutor. The concept
traces back to at least the 80s [30]. A tutor using a model-tracing approach solves
the problem alongside the student. The tutor has divided the process of writing a
specific program into a set of steps. While the student is solving the problem, the
tutor is keeping track of which step the student has reached towards an ideal student
solution, a so-called model solution. This step then has associated feedback which
can be used when the student asks for help [30, 31]. Most digital tutors that use
this approach make use of predefined model solutions to guide the student towards
a well-written program. Many tutors also include a number of models that describe
common incorrect steps taken by students. This enables tutors to provide more
accurate and individualised feedback to a “wrong” step [32, 30, 33].

2.4 Ask-Elle
Ask-Elle is a digital tutor. It has a set of exercises that a student can attempt to
solve [32]. Each exercise consists of a description of the function that the student

9



2. Background

should implement. They can submit a partial solution to Ask-Elle that may contain
holes marked with ?. Such a hole marks a location in the code where the student
wants feedback on how to proceed. Ask-Elle tries to give feedback on how to continue
toward one of its predefined solutions, called model solutions. These model solutions
are defined by teachers [34].

Ask-Elle normalises a student’s attempt using a set of program transformations,
which preserves the semantics of the program. The normalisations both optimise
the student program and allow the system to better match an attempt to a model
solution [32]. Apart from normalising the solutions, Ask-Elle internally replaces the
holes with undefined. This allows the compiler to compile the program, given that
the rest of it type-checks and is well-formed. If the program does not compile with
these changes, there is a problem apart from the holes in the submitted solution.

Each submission to Ask-Elle is stored in a database along with the response and
some metadata about the request and response [32]. Gerdes et al. [32] have used
this to examine how well the tutor could generate feedback to user requests. They
classified each student interaction as:

1. Compiler error - The compiler has reported a syntax or type error.

2. Model - The student has either solved the solution according to a model solu-
tion or is on track to do so.

3. Counter - Ask-Elle has run QuickCheck and found that at least one test has
failed.

4. Tests passed - Ask-Elle has determined that the solution has passed all tests,
but does not follow any model solution.

5. Discarded - The solution compiles, but does not follow any model and tests
cannot be run against it. These entries represent where Ask-Elle has not
managed to give feedback and are thus the attempts we are interested in
solving when attempting to complement Ask-Elle.

2.4.1 Strategies
Ask-Elle tries to guide a student towards a predefined solution using a procedure
called strategies [34]. The strategies are derived from the model solutions and track
the student’s progress throughout the exercise. Furthermore, if a teacher wishes,
the model solutions can be enriched with feedback annotations. These provide
more detailed feedback to certain parts of the functions and can add descriptions
on how the solution works [34]. Strategies is a form of model-tracing, described in
Section 2.3.1 [32].

In Listing 1 an example of a model solution to the exercise fromBin is given. The
function should convert a list of bits (a binary number) to a decimal integer. This
model solution has annotations to specify feedback and give a description of the
solution.

10



2. Background

{-# DESC Implement fromBin using the @foldl @prelude function. #-}

fromBin =
{-# F Define the fromBin function using @foldl. The operator

should multiply the intermediate result with two and add
the value of the bit. This solution therefore multiplies
every bit in the list n-times by two while summing the
individual bits. #-}

foldl op 0
where

n `op` b = {-# F Multiply n by two and add b. #-} 2*n + b

Listing 1: An example of a model solution in Ask-Elle with a description and
feedback given as annotations.
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3
Generating Feedback using

Program Synthesis

In this chapter, we describe how we use program synthesis to suggest a next step
based on input to thupy. We start with a quick system overview, followed by a
description of the details of how we use ASTs (abstract syntax tree) in our project,
we continue to explain the different steps we use in our program synthesis. Finally,
we describe how we use our synthesised solution to generate a next step.

3.1 System Overview
We present an overview of our approach for generating feedback using program
synthesis. The program synthesis algorithm is based on input-output examples
and sketching, which are both explained in Section 2.2. Our approach attempts to
generate a set of complete solutions from a partial student solution. This synthesis
step starts with extracting expressions from the model solutions. It then tries to
put these into the holes of the partial student solution. After this, it renames any
variables in the inserted expressions to fit into the partial solution. Next, it tests all
the possible combined solutions to check which, if any, have the expected properties.
These are called the valid solutions. Finally, it uses a valid solution as a blueprint
to create the next step for the student and return this as feedback.

By synthesising the code using expressions from the model solutions, we push the
system to synthesise solutions “close” to a combination of one or more model solu-
tions. This also limits the search space and speeds up the procedure.

To illustrate this system in action, let us assume that a student gives the following
partial solution for the exercise dupli:

dupli :: [Int] -> [Int]
dupli = concat . map ?

Here a hole is placed in the first argument to the map function. Now, consider that
a teacher has supplied the following model solution:

modelDupli1 :: [Int] -> [Int]
modelDupli1 = concatMap (replicate 2)

13
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By extracting the expression (replicate 2) from the model solution and inserting
it into the hole in the partial solution, we create the following combined solution:

dupli :: [Int] -> [Int]
dupli = concat . map (replicate 2)

We can see that no names that need to be renamed are introduced in the combined
solution. Thus, we move on to testing the combined solution. Testing is done
by QuickChecking the following property that is defined together with the model
solution:

propModel f = property $ \xs -> f xs == modelDupli1 xs

By testing this property, we conclude that the solution indeed is valid. We then
obscure parts of the generated solution to only show the next step that the student
should take to reach it, which looks like this:

dupli = concat . map (replicate ?)

The following sections show how the algorithm works in more detail.

3.2 Working with Abstract Syntax Trees

To represent a Haskell program in a more structured way, the Haskell code is com-
piled into an AST (Abstract Syntax Tree). This AST is similar to that of GHC’s but
with a lot of excess information removed, such as source location data and typeclass
declarations. The reason for creating our own AST is to reduce the size of the search
space for the program synthesis and creating a level of indirection to not be reliant
on a third party AST.

One of the more important data types in our AST is Pat, representing patterns,
and a part of it is shown below:

data Pat
= PList Pats
| PLit Literal
| PWildcard
...

Patterns are used when pattern matching in top-level bindings, such as case state-
ments and where clauses. An example of this could be the following:

case ys of
[] -> print "empty"
(x:_) -> print x

Here we match on the list ys and if it is empty we print empty, otherwise, we match
the first value of the list and print that.

14
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Finally, most of the program logic, that is the functionality that converts the input
into output, is encoded in Expr:s and this is what we have focused our synthesis on.
A part of this datatype is shown below:

data Expr
= Hole HoleID
| Lit Literal
| Paren TExpr
| Tuple [TExpr]
| App TExpr [TExpr]
| Var Name
...

In our AST, every Expr is wrapped in a TExpr, which contains the type of an
expression. By storing information on the type of each expression we can reduce
the complexity of the code later in the process. The code for the entire AST can be
seen in Appendix A

data TExpr = TExpr GHC.Type Expr

In Figure 3.1 we show an example of how the expression concatMap (replicate
n) xs is represented in a simplified version of our AST. Note that we omit the types
in this AST to give an easier overview. In reality, every node is wrapped in a TExpr
with the type of the expression. In this figure, App represents a function application.
The figure is simplified a bit, and the list of expressions that App takes is replaced
with the expressions directly. In the figure, the function Var concatMap is called
with the arguments from its sibling sub-trees connected to the App node. Paren
represents a parenthesis around the sub-tree below it. Finally, Var is a variable with
the name from the node below it. The Var is also simplified a bit, and in reality,
each name is wrapped in an Ident. A non-simplified version of this tree can be seen
in Appendix A.

App

Var concatMap Paren

App

Var replicate Var n

Var xs

Figure 3.1: A visualisation of the AST representation of the Haskell expression
concatMap (replicate n) xs. Note that we simplify it and omit the TExpr:s to
give an easier overview.
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3.2.1 Transforming Haskell Code to AST
By using GHC as a library, (explained in Section 2.1.3) we can use the internal
functionality of GHC. By limiting the compiler to only run the parsing and type-
checking phases of the compiler, we can access the internal AST that GHC uses
to represent the code after the type-checking phase has completed. After the type-
checker has run, this AST contains type information about every expression and
pattern of the compiled code.

We use the AST from GHC to create and type our own AST. To do this, we recur-
sively go through the AST from GHC and for every relevant node in it, we create
our own node based on it. For instance, the representation for an expression in
GHC’s AST is HsExpr. Each expression is transformed into our smaller representa-
tion called Expr. During this process, we wrap the expression in a TExpr datatype,
that holds the type of the expression. The Type datatype is the exact same as GHC
uses.

Using GHC’s internal representation of types allows us to use some well tested and
robust utility functions from the GHC library, such as eqType which checks if two
types are equal. More importantly, the Type type in GHC can handle the full set
of available types in Haskell, which we can use to our advantage when synthesising
code.

3.2.2 Transforming AST to Haskell Code
We convert our AST to runnable Haskell code again for two reasons. First, we need
to validate the behaviour of our synthesised ASTs using QuickCheck. However, di-
rect evaluation of our AST was not implemented, since it requires a disproportionate
amount of work compared to the benefits. Thus, we convert it into Haskell code
again to compile and run it. Second, we show the generated feedback as code to the
student. Therefore, we return to a format that can be read by both humans and
machines, which in our case is pretty printed Haskell code.

Some information is lost during this transformation. Most notably, white space and
the formatting of the text gets removed during compilation. This has the potential
to confuse the student, but these changes should be minor. It should however be
possible to extract this information from the GHC AST, but we did not implement
this.

3.3 Synthesising code
From the typed AST, our program tries to synthesise code that fits into the holes left
by the student. Before beginning the synthesis process, libraries, such as Data.List,
sometimes needs to be imported to support the model solutions. To synthesise
the solution, the program goes through the following phases (an illustration of the
process can be seen in Figure 3.2):
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1. Pre-processing the model solutions by eta-expanding them.

2. Combining the model solutions with the student solution.

3. Renaming the combinations.

4. Testing the renamed combinations.

Figure 3.2: The phases of the program synthesis. First, we pre-process the model
solutions, then we combine them with the partial solution. After that, we rename
all undefined names and the test the potential solutions. Finally, we hopefully get
a valid solution.

Now, assume that a teacher has defined the following model solutions for the exercise
dupli:

modelDupli1 :: [Int] -> [Int]
modelDupli1 list = concatMap (replicate 2) list

modelDupli2 :: [Int] -> [Int]
modelDupli2 = foldr (\x xs -> x : x : xs) []

Furthermore, assume that a student submits the following partial solution:

dupli :: [Int] -> [Int]
dupli = foldr (\y ys -> ?) []

In this case we would expect to get a suggested next step guiding the student towards
modelDupli2 but with x and xs replaced with y and ys respectively:

dupli :: [Int] -> [Int]
dupli = foldr (\y ys -> y : y : ys) []

We now show how our approach comes to this result by explaining each phase of
the synthesis. To simplify the explanation, we explain the process for one hole. The
process for multiple holes is identical, but the combination phase is repeated for
every hole. This means that the number of combinations increases exponentially
with every hole.
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3.3.1 Eta-Expanding the Model Solutions
The first phase of the synthesis process is to eta-expand the model solutions. We
can see that only modelDupli2 can be eta-expanded:

modelDupli2a as = foldr (\x xs -> x : x : xs) [] as

When the partial student solution and a model solution differ in form, thupy might
not succeed in finding a solution, even though with an eta-expanded model solution
it might. Consider the following example:

-- Partial student solution
repli a xs = concatMap (replicate a) ?
-- Model solution
repli1 a = concatMap (replicate a)
-- eta-expanded model solution
repli1a a xs = concatMap (replicate a) xs

In this example repli is a partial student solution, while repli1 is a model solution.
repli1a is the eta-expanded version of the same model solution. In repli we would
like the program to be able to suggest putting xs into the hole. However, since the
model solution repli1 does not contain xs or any other variables with that type we
would not be able to figure this out. This is where the eta-expanded version of the
solution, repli1a, comes in. This version has a list, xs, that could fit in the hole.

To ensure that we avoid this problem we always expand our model solutions. It
might seem simpler to just transform the one student solution rather than all the
model solutions. However, when we later need to show a next step, we want it to
be a step from what the student submitted. Therefore, we think it is better to keep
the student solution intact and change the model solutions instead.

3.3.2 Combining the Student Solution with the Model So-
lutions

The next phase in the process is combining the student solution with the model
solutions. We want to substitute the hole with an expression of the same type. We,
therefore, gather all the expressions from the model solutions and group them by
their type. Next, we create a possible solution from each expression that has the
correct type by inserting it into the hole of the student solution.

For our dupli example we find that the hole has type [Int]. We, therefore, pick
all the expressions from the model solutions that have this type. We can see each
of these expressions underlined below:

modelDupli1 list = concatMap (replicate 2) list

modelDupli2 = foldr (\x xs -> x : x : xs) []

modelDupli2a as = foldr (\x xs -> x : x : xs) [] as
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Notice that we find duplicate expressions. For example, we find expression xs in
dupli2 and dupli2a. However, duplicate expressions do not affect thupy’s ability
to give a suggestion. It only affects the performance since it potentially has to test
the same solution multiple times. However, the performance gain from removing
duplicates might not be worth the overhead and we did not evaluate this further.
Instead, we accept the duplicates to keep our proof of concept simpler.

Now that we have picked all the relevant expressions, we insert them into the student
solution. We are not going to show the full list of resulting combinations here but
limit it to two that are of interest in future steps:

dupli = foldr (\y ys -> as) []

dupli = foldr (\y ys -> x : x : xs) []

We know that the expressions we inserted into the student solution have the right
type but as can be seen from the above examples many of the inserted names lack
accompanying definitions. This is where the renaming step comes into play. We
explain this further in the next section.

3.3.3 Renaming
In our dupli example from before, the renaming is based solely on variables being
undefined. We can see that the only variable in scope with type [Int] is ys and
the only variable with type Int is y. Therefore, as and xs are renamed to ys and
x is renamed to y. This creates the following two dupli functions:

dupli = foldr (\y ys -> ys) []

dupli = foldr (\y ys -> y : y : ys) []

For this example, the need for and use of renaming is clear but probably raises some
questions. We, therefore, explain the renaming phase in more detail.

When inserting an expression from one place to another, the values bound to the
variables may change. Consider the following two solutions:

modelMyConcat first last = first ++ last
myConcat last first = ?

Simply inserting the underlined expression from modelMyConcat into the hole in
myConcat would not cause any type or naming problems, but the semantics have
changed. The underlined expression will differ in behaviour since first in
modelMyConcat is the first parameter and in myConcat it is the second function
parameter. Therefore, the synthesised solution would concatenate the lists in the
wrong order. The problem is that we do not know the original value that a variable
represents in the inserted expressions. This means that we need to try all possible
representations to find the correct one. We do this by first renaming and then later,
testing which variable represents the correct value.
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When deciding which variables to rename we look at it in two steps. First, we look
at the names and check if any of them are defined in the Prelude or any imported
library. Since these names are defined outside the solution, we skip renaming them.1
Below, we show an expression from a model solution in isolation, which serves as
an example of an expression that can be inserted into a hole. Here we find both ++
and replicate to be Prelude functions:

(\acc e -> acc ++ replicate a e)

Secondly, we check if any of the variables are bound in the inserted expression itself.
These variables are also assumed to be used correctly since their definition is part
of the expression itself. We, therefore, do not rename these variables either. We use
the same example as above and the variables that are defined inside the expression
itself are underlined together with their corresponding definition.

(\acc e -> acc ++ replicate a e)

The remaining variables need to be renamed. We try to rename them to any variable
defined in the student function that fits the type. If no such variable exists and
the name cannot be bound, the function cannot compile, and the synthesis cannot
continue from this combination. It is possible that a name can be renamed to more
than one variable. In the following listing we demonstrate this:

-- Model Solution
repli :: [Int] -> Int -> [Int]
repli as a = foldr (\acc e -> acc ++ replicate a e) [] as

-- Original function with a hole
repli :: [Int] -> Int -> [Int]
repli xs n = foldr (\ys y -> ys ++ ?) [] xs

-- Original combination of model solution and partial solution
repli :: [Int] -> Int -> [Int]
repli xs n = foldr (\ys y -> ys ++ replicate a e) [] xs

-- Renamed combinations
repli :: [Int] -> Int -> [Int]
repli xs n = foldr (\ys y -> ys ++ replicate y y) [] xs
----------------------
repli :: [Int] -> Int -> [Int]
repli xs n = foldr (\ys y -> ys ++ replicate y n) [] xs
----------------------
repli :: [Int] -> Int -> [Int]

1There is a known bug with this approach when the student solution defines a variable in the
function with the same name as a prelude function used in the inserted expression. This will likely
cause a mismatch in what type the synthesis thinks the expression has and what the compiler will
evaluate the type to be, which in turn will cause the synthesis to fail. A simple fix to this is to
check if a prelude name is also a variable defined in the student function.
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repli xs n = foldr (\ys y -> ys ++ replicate n y) [] xs
---------------------
repli :: [Int] -> Int -> [Int]
repli xs n = foldr (\ys y -> ys ++ replicate n n) [] xs

Here we can see that replicate is defined in the Prelude and is not renamed. The
only variables left to rename are a and e. Since both of these variables are of type
Int, we rename each of them to both n and y. This creates 4 renamed solutions,
which are the valid ways to rename the expression. However, at this point, we do
not know which (if any) of the renamed solutions are correct. Therefore we test all
of them.

3.3.4 Testing
Once the program has generated potential solutions where all types match and
there are no unbound variables, we check if they have the desired behaviour. For
each exercise, the intended behaviour is specified by teacher-defined QuickCheck
properties. The tests will either succeed or fail based on if the solution passes the
QuickCheck tests. If a solution passes all the tests it should be a valid solution. (If
the test cases were not comprehensive enough, there might still be counterexamples.)
Once a valid solution is found, we terminate the testing and use the found solution
when generating the suggested next step. In the case of our dupli example, only
one property exists:

propModel f = property $ \xs -> f xs == modelDupli1 xs

We can see that the property checks if the synthesised function is semantically
equivalent to modelDupli1.

To test our potential solutions that are in an AST form, we convert them back to
Haskell code. To evaluate the code using GHC it is easier to first store it in a file.
We store each solution separately in files along with the QuickCheck tests. This file
is compiled and evaluated by GHC. An example of such a file is shown below:

properties :: [([Int] -> [Int]) -> Property]
properties = [propModel]

propModel f = property $ \xs -> f xs == modelDupli1 xs

dupli = foldr (\y ys -> ys) []

run = quickCheckWithResult
stdArgs {chatty = False}
(within 1000000 (conjoin (map ($ dupli) properties))))

The first combined and renamed solution that passes the test is:

dupli = foldr (\y ys -> y : y : ys) []
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This is the solution that we said that we would get in the beginning of Section 3.3.

Timeout: If a test runs for too long, it is set to fail. This is done to ensure
that the program does not contain an infinite recursion, and to restrict the time
it takes for thupy to give feedback. The timeout duration is set to 1 second (106

microseconds). This timeout is somewhat excessive and in our testing, almost any
(non-infinitely recursive) solution could be tested in at most ∼ 100 milliseconds on
modern hardware.

Figure 3.3 shows a graph over our testing of how much time it took to test 550
partial solutions timed in microseconds. In this graph, everything above 1 second
timed out. All the timed-out solutions contained expressions that caused an infinite
recursion in the function. We believe the reason that the timed-out solutions was
measured as ∼ 4 seconds was because of overhead from terminating the running
function.
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Figure 3.3: How long each run of QuickChecking a potential solution took, mea-
sured in microseconds. In total, 550 potential solutions were tested.

Ordering the Tests: We only use the first successful solution and this can cause
problems. There is a chance that the first valid solution found is overly complicated
and that there exists a less complicated solution. One way to mitigate this is to
test the solutions in order of increasing complexity. We chose to order the inserted
expressions by their depth, i.e. the height of the AST. By testing the solutions in
this order, we know that the first valid solution to pass the tests should be the “least
complex” one. If more than one solution has the same depth, there is no relative
ordering between the solutions.

We could test all solutions and decide which is the best one after all valid solutions
have been gathered. However, doing this will severely impact performance by making
thupy handle sometimes thousands of more potential solutions. Note that the
ordering of the solutions, in reality, happens earlier in the pipeline, namely after
the combining step. However, how the results are ordered does not have an impact
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on any step in the pipeline before the testing step, thus it is not explained until
now. The solutions are ordered in the combination step since there are the fewest
expressions to order at that point. Furthermore, the ordering of the solutions is kept
throughout every phase.

Batching the Tests: Compiling each potential solution individually has a lot of
overhead. This means that the response time often becomes longer than necessary.
We, therefore, opted to batch the testing of the solutions to minimise this overhead.
The batching works by writing multiple solutions and QuickCheck calls into the
same file. Furthermore, we add a function that tests all the solutions and returns
the first one that succeeds. An example of such a file for our dupli example is
shown below.

properties :: [([Int] -> [Int]) -> Property]
properties = [propModel]

propModel f = property $ \xs -> f xs == concatMap (replicate 2) xs

dupli1 = foldr (\y ys -> ys) []

dupli2 = foldr (\y ys -> y : y : ys) []

funcs :: [(Int, IO Result)]
funcs = [(1,

quickCheckWithResult
stdArgs {chatty = False}
(within 1000000 (conjoin (map ($ dupli1) properties)))),

(2,
quickCheckWithResult
stdArgs {chatty = False}
(within 1000000 (conjoin (map ($ dupli2) properties))))]

run :: [(Int,IO Result)] -> IO (Maybe Int)
run [] = return Nothing
run ((i,f):fs) = do

res <- f
case res of

Success{} -> return $ Just i
_ -> run fs

The batch size was decided by testing a few different values on two partial solutions,
each run five times. The values tested and their runtime can be seen in Table 3.1.
The functions repli and slice from Listing 2 were used for this testing. From the
table, it is easy to see that batching potential solutions decreases runtime compared
to running them one by one. For our case we found a batch size of 25 or 50 to be
good enough. A static batch size of 50 entries was chosen.
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repli :: [Int] -> Int -> [Int]
repli xs a = foldl (\acc e -> ? ++ ?) [] xs

slice :: [Int] -> Int -> Int -> [Int]
slice xs i j = map snd

$ filter (\(x,_) -> ? && ? )
$ zip [1..] xs

Listing 2: The two programs repli and slice measured in Table 3.1

Batch Size repli (s) slice (s)
1 7.6 22.2
5 2.3 6.0
10 1.9 3.7
25 1.5 3.0
50 2.0 2.5

Table 3.1: A table over the average running-time (measured in seconds) for partial
solutions of repli and slice from Listing 2 with batching size 1, 5, 10, 25, 50.
Each function and batch size combination was run 5 times.

For optimal performance, the batch size should be exactly equal to the number
of tries it takes to generate a correct solution. If the program batches too many
solutions the synthesising algorithm will have to compile more potential solutions
than necessary. If the program batches too few, we have to run the compilation
many times. Compilation has a high overhead, so compiling a small program and a
large program takes similar time.

3.4 Generating Feedback
From the synthesised code, we want to present a next step to the student. The aim
is for the student to be able to continue to a solution using our provided next step.
We do this by providing the student with a small incremental next step toward the
solution. How the feedback is presented could be configurable in a future version.

3.4.1 Formatting the Hints
Once thupy has found a solution, we insert holes into it so that it only reveals the
suggested next step for the student. Consider the following example of a student
input, generated solution and the formatted hint:

-- Student input
dupli :: [Int] -> [Int]
dupli = foldr (\y ys -> ?) []
-- Synthesised solution
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dupli :: [Int] -> [Int]
dupli = foldr (\y ys -> y : y : ys) []
-- Suggested next step
dupli = foldr (\y ys -> ? : ?) []

This shows the next step from the continuous example in the previous section after
the synthesis process has produced a result. In this case, our algorithm suggests
adding a list constructor (:)

In general, to suggest the next step, we first look at the expressions that were inserted
to create the solution. The root expression is kept while the child expressions of it
are replaced with holes.
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4
Evaluation

In this chapter, we describe our procedure for evaluating how well thupy comple-
ments and compares to Ask-Elle. We use a set of previously stored attempts at
solving exercises from Ask-Elle. The set of attempts can be divided into two cate-
gories, one where Ask-Elle could provide feedback and another where it could not.
For each attempt, we evaluate if thupy can generate feedback, and how long it
takes to either fail or succeed. Evaluating these two categories tells us how well we
complement Ask-Elle, and how well we compare directly to it. Finally, we analyse
and discuss our results.

4.1 The Dataset
The dataset that we use to evaluate thupy consists of 18139 entries from September
2015 until February 2021 and was gathered from an instance of Ask-Elle running
on servers at the University of Utrecht. The dataset is not the same dataset as
in any of the previous Ask-Elle papers. Out of these 18139 entries, 8370 describe
student attempts submitted to Ask-Elle. The remaining entries are logs of requests,
such as listing the exercises which are not relevant to us. Many of the attempts
were syntactically faulty, did not type-check, or had some other problem caught by
Ask-Elle. After these invalid entries were filtered out, the dataset contained 1943
compilable entries.

From the classifications described in Section 2.4, we are interested in the discarded
and model attempts. The attempts classified as model are where Ask-Elle gave
feedback or deemed the attempt finished. The attempts classified as discarded, on
the other hand, are where Ask-Elle cannot give feedback, but finding a next step
might still be possible. To better suit the context of this thesis, we call the model
attempts on-path and the discarded attempts drifted. Since the finished solutions
are not relevant in our case, these 715 entries are removed. In total, we use 1228
entries, out of these, 299 were categorised as drifted and 929 as on-path.

4.1.1 Compatibility
Many of the entries in the dataset are missing type-signatures for the defined func-
tions. This means that the type of a function is determined by the type-checker
using type inference which can result in the function being defined with polymor-
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phic types. thupy does not support polymorphic types, which was one of the
limitations we listed in the introduction. Consider the following:

dupli = concatMap ?

In this case the type-inference in GHC (which we used to compile the entries for
thupy) would give the function the polymorphic type [a] -> [b] and the hole in
the expression the polymorphic type a -> [b]. We however, have defined monomor-
phic types for the model solutions (for dupli it is [Int] -> [Int]) which are not
equivalent to these polymorphic types. This means that these entries are not com-
patible with thupy.

To allow us to run thupy on this dataset we need to give these entries the same
monomorphic type as the corresponding model solutions. If an entry has a given
type signature we simply use that one since we consider it part of the student’s imple-
mentation. For each entry with no explicit type-signature, we add a monomorphic
type signature that matches the model solutions. This allows us to match types
between the partial student functions and the model solutions.

4.2 Accuracy

To evaluate how well thupy complements Ask-Elle, we apply it to all the drifted
attempts. Additionally, we apply it to all the on-path solutions to evaluate how the
program synthesis method compares to Ask-Elle directly.

Sometimes entries take considerably longer to process than what we in the introduc-
tion described as “reasonable time”. This usually happens when the student leaves
more than three holes in their solution causing the number of possible solutions to
grow to an unmanageable size. If a valid solution does not appear until late in this
list (or not at all) we are likely to run out of time. To handle this we set a somewhat
arbitrary timeout duration of 30 seconds for testing any given entry. After this,
the entry is considered failed and marked as timed-out. We believe that beyond 30
seconds would be considered unreasonable by most people.

4.2.1 Result

thupy is able to provide feedback to 21% of the drifted entries. For the examples
where Ask-Elle had already succeeded in providing feedback, thupy generates feed-
back for 35% of the attempts. Combining these numbers, we conclude that thupy is
able to provide feedback for 32% of applicable entries. Some examples of generated
solutions from this evaluation can be found in Appendix D.
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Evaluation Result Categories
Drifted On-Path Combined

Successful 63 (21%) 329 (35%) 392 (32%)
Not Found 231 (77%) 556 (60%) 787 (64%)
Timed Out 5 (2%) 44 (5%) 49 (4%)
Total 299 929 1228

Table 4.1: The number of entries for each category and dataset.

4.2.2 Discussion
The results are promising at first glance, given that thupy provides feedback for
21% of entries where Ask-Elle cannot. We think there is reason to believe that this
result can be even better. We limited our implementation to synthesising expres-
sions, which means feedback will not be generated if there are holes in patterns.
Furthermore, the drifted category contains entries that are impossible to solve by
only substituting a hole.

In addition to the previously mentioned entries, there are a number of other entries
in the on-path category that thupy cannot provide feedback for. In this category,
Ask-Elle has already shown that it is possible to provide feedback. Therefore, there
is no reason why our synthesis approach should not be able to find a valid solution.
We believe that this is caused by flaws in the implementation of thupy.

Overall, the results show that a combination of Ask-Elle and thupy performs better
than any one of the two individually.

Holes in Patterns: Since we did not implement synthesis for holes in patterns,
thupy cannot provide feedback to some fairly “simple” entries in the dataset. An
example of such an entry is the following:

dupli ? = concatMap (replicate 2) ?

In this example, we have a partial student solution with a hole as the function
parameter as well as one at the end of the expression. Here we expect a valid
solution to use the function parameter like this:

dupli xs = concatMap (replicate 2) xs

However, in the partial student solution, the function parameter has not been given
a name and is therefore ignored. Creating a valid solution by only replacing the hole
in the expression is therefore not possible. In this case, by implementing support
for synthesis in patterns we could replace the hole in the function parameter with a
variable that the expression synthesis can use.

We count the number of entries with holes in patterns using the following two
regexes, written in Python style. These match holes in patterns and are applied to
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every line in an entry.

# All function bindings with at least one hole instead of a parameter
".*\?.*=.*"

# All lambda functions with at least one hole instead of a parameter
"\( *\\.*\?.*->"

These entries account for 17% of the drifted dataset and 21% of the on-path dataset.
If we were to disregard these entries, we would succeed to suggest a next step for

63
299−53 ≈ 26% of entries in the drifted category and 329

929−201 ≈ 45% in the on-path
category, compared to the original 21% and 35% respectively.

Entries Without Parameters Just like there are a number of entries with holes
in patterns, there are also a number of entries with no parameters at all. In this
case, the problem is that most of the model solutions use their parameters in their
expressions. Using parameters from the model solutions that are never introduced
in the partial solution causes the renaming phase of the synthesis to fail.

To count the entries without parameters, we use the following regex:

# All functions with a function name, no parameters and only a hole
# on the right hand side
"^\w+ *= *\?$"

There are in total 182 entries with no parameter bindings and only a hole on the
right-hand side in the on-path category. There might be more similar problems in
the dataset not caught by the regex we used to detect these entries. It should also
be noted that some of these entries might be solvable by us. Since we do not know
how many of these parameterless entries are solvable, we choose not to draw any
conclusion from this and instead just note their existence and how many we could
find.

Impossible Entries: There are also a number of entries in the dataset that are
impossible to synthesise a solution from. One such example is:

dupli xs = map ? xs

Since map operates on every element in the list, the output of map must be equally
long as its input. However, one key property of dupli is that it should return a list
double the length of the original list. Therefore it is impossible to find a solution
from this input.

These entries have the type signature that the exercise requires but the logic does
not allow for any possible way to synthesise a solution with the expected properties.
Unfortunately, we found no easy way to determine how many entries are impossible
to suggest a next step for.
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4.3 Performance

To evaluate if thupy was able to generate feedback in “reasonable” time, as stated
in the introduction, we applied it against the same dataset as before, using the same
categories. For each entry, we measured the time it took for thupy to provide
feedback.

4.3.1 Result

The result of these tests can be seen in Table 4.21. This table counts every timed-out
entry as a failure taking 30 seconds to complete. While the number of timed-out
entries was small (less than 5% of all entries), it has a large impact on the average
runtime of thupy. However, looking at figure 4.1, we can see that more than 60%
of all entries finished in less than 1 second and more than 80% finished in less than
three. Figure 4.2a shows the runtime for each entry in the the drifted category and
Figure 4.2b the same for entries categorised as on-path. In these figures, the blue
squares are entries that thupy succeeded in providing feedback for, and the red
triangles are entries where it failed.

Metric Drifted (s) On-path (s) Combined (s)
Avg. time to succeed 2.14 2.24 2.22
Max time to succeed 17.33 26.27 26.27
Avg. time to fail 2.08 4.30 3.67
Max time to fail2 17.68 27.72 27.72
Avg. runtime 2.09 3.57 3.21

Table 4.2: The table shows a list of different metrics for running on drifted, on-
path, and both categories combined. The figures in the table are running time
measure in seconds.

1These times were achieved using an Intel Core i7-7700K@4.60Ghz, with 16GB of RAM on
Linux 5.10.36-1-lts.

2Not including the timed out entries
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(b) Runtimes for the on-path category.

Figure 4.2: The runtime for every entry. The different plots depict the different
categories. The blue squares represents a success and the red triangles represent a
fail.
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4.3.2 Discussion
We found the runtime of thupy to be reasonable for most entries. We do not
think most users will be too frustrated by waiting a few seconds to receive feedback.
Furthermore, thupy is a proof of concept and performance can be improved in the
future. There are however entries, both failed and succeeded in the dataset that
took abnormally long to run and some successful entries took close to the timeout
of 30 seconds to finish. Thus, there is a possibility that some entries that timed out
would eventually have succeeded and provided feedback.

The timeout was already set fairly high and from Figure 4.2 we see that it is a
small portion of successful runs that take more than 10 seconds (∼ 3%). Later, we
discuss such an entry, and why we think it took a long time to finish. From a user
interaction perspective, having thupy timeout after closer to 10 seconds might be
more reasonable, even if a few more attempts would not receive feedback.

Figure 4.2 and the averages from Table 4.2 shows us that the average time to succeed
is very similar between the two categories (2.24 and 2.14 seconds). However, the
average time to fail was noticeably longer for the solutions categorised as on-path
compared to the ones categorised as drifted (4.30 and 2.08 seconds). One reason for
the difference is that the portion of entries that timed out in the on-path category
is larger than in the drifted category.

Example of Entry that Took Long: The evaluation of the runtime also showed
that there are examples where the runtime becomes considerably longer than desired
and might cause the user to give up. When evaluating thupy, one of the entries that
took a long time to finish (∼ 17 seconds), while still succeeding was the following
attempt at elementat. The function elementat should find the element at a certain
index in a list.

elementat :: [Int] -> Int -> Int
elementat (x:_ ) 1 = x
elementat (x:xs) n = if True then elementat ? ? else ?

For this input, the student solution is quite similar to a model solution that looks
as follows:

elementat :: [Int] -> Int -> Int
elementat (x:_) 1 = x
elementat (_:xs) k = elementat xs (k - 1)

To synthesise a solution to this, we need to fill three holes. This in itself can take
quite a lot of time since the number of possible solutions increases exponentially
with the number of holes. The holes are also quite general in their types, the first
hole is of type [Int], while the two other are of type Int. This means that there
is a high number of possible expressions that can be inserted into each of the holes.
More specifically for this input, there are 5776 solutions for the testing phase to
try (the average entry has ∼ 80). Another problem is most likely our heuristic
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approach which sorts the possible solutions by the depth of the inserted expressions.
In this case, there are many expressions with low depth to try before reaching the
expression (k - 1), which is the second deepest expression in the model solution of
type Int. There is most likely a mix between these two problems that cause the
long runtime.
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Discussion

In this chapter, we discuss some of the techniques used in this thesis. Furthermore,
we discuss some possible future work. Finally, we also address some societal, ethical
and ecological aspects of our project and the techniques behind it.

5.1 Comparing Program Synthesis to Strategies
Both the program synthesis and the strategies approach have their strengths and
weaknesses. The strategies approach, described in Section 2.4 is strict and operates
under the presumption that a student has approached the problem according to
one of the supplied model solutions. The most obvious upside to this approach is
that the tutor forces the student into a solution that a teacher has deemed to be
appropriate. This makes it possible for a teacher to focus on a particular topic. For
example, if the current topic in a course is list-comprehensions, the teacher might
only enter model solutions that use a list-comprehension approach. However, the
major downside of this rigidity is that it might be too strict, as we highlighted in
some of the examples in this thesis.

The program synthesis approach has different characteristics. Compared to Ask-
Elle, we are able to provide feedback for more diverse partial solutions and can
cope with diversions from the pre-defined solutions in ways that Ask-Elle cannot.
However, we are not able to give as extensive feedback compared to Ask-Elle. Ask-
Elle can for instance also use annotations to explain the next step more in-depth.
Thus, if both our complement and Ask-Elle can find a next step, choosing Ask-Elle
would be preferable as it can provide different kinds of feedback and not just a
suggested next step. We think that the best application of thupy is as a fallback
to Ask-Elle when it is unable to provide feedback to an attempt.

Furthermore, comparing our limited search space method to a more traditional pro-
gram synthesis approach, with more freedom in the expressions it can synthesise,
has both its pros and cons. Using the model solutions as the search space allows
teachers to guide the synthesis towards solutions that they deem to use good prac-
tices. However, this requires a teacher to provide model solutions to the exercises
and makes it more demanding to create new exercises. Additionally, the smaller the
search space is for a program synthesis algorithm, the faster it runs. The runtime
is also impacted by how efficient the algorithm is, so while our search space might
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be smaller than that of other algorithms, our runtime might still be slower.

5.2 Expression-Synthesis and Pattern-Synthesis
For a student, determining the structure of an expression is, in our experience, often
harder than constructing a pattern. Therefore, we believe that being able to syn-
thesise expressions is more important than patterns. Furthermore, in the exercises
that Ask-Elle and we use, patterns are often small and simple. They often consist of
a simple parameter or a constructor wrapping one or more variables. Expressions,
on the other hand, tend to be more complicated. Finding a suitable expression and
logic is often the central part of programming. This is further supported by how
few solutions have holes in patterns compared to the total number of entries in the
datasets. The full dataset has a total of 254 entries with holes in patterns, which
corresponds to about 21% of all entries. Contrarily, there are 1039 entries with holes
in expressions. This corresponds to about 85% of entries. This seems to indicate
that students have more problems determining the structure of an expression com-
pared to a pattern. Thus, we focused on being able to synthesise code for holes in
expressions and did not implement synthesis for holes in patterns.

5.3 Handling GHC
We decided to use GHC as a library to handle much of our types and compilation.
The library essentially exposes the inner functionality of GHC and is a massive
library. Unfortunately, its documentation is a bit lacking and most functions are
not documented in any detail. The GHC and Haskell wiki explains, among other
things, how to run each phase of the compiler. But for things such as how the typing
system works and how to interact with it, we found little documentation except for
comments in the code and very basic explanations for a few functions. Thus, we
found it to be user-unfriendly, especially to developers that are not familiar with
the library.

5.3.1 Type Equivalence & Variable Substitution using GHC
We rely heavily on GHC for checking equivalence between two types since it handles
most of that logic for us. Haskell uses a very complex type system and checking if
two variables of polymorphic types a and b are substitutable is non-trivial. To be
able to substitute a variable of type a with a variable of type b, both types must
share the same constraints in their context.

In our case, we have two different contexts: one from the partial solution and an-
other from a model solution. This makes it even harder to decide if two polymorphic
types are substitutable. A very simple example of how type equivalence and type
substitutions are complex is the following: A hole ? has type Num a, and an expres-
sion e that we try to insert when synthesising has type Int. Since Int (in the default
context) has an instance for Num, it is possible to insert e into the hole. However,
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we need to look up what types Int has instances for in the current environment. As
the context of the current program changes, even a simple type like Int can derive
different types and be subject to different constraints. The easiest way to calculate
all constraints of a variable and its type is to let a library or compiler do it for us.
GHC should have support for this, but we found extracting this information to be
hard and would require rewriting a large portion of thupy.

5.3.2 Coupling to GHC
Many of the features and functionality of thupy are closely connected to GHC. Both
when parsing and testing the code we use both GHC’s ability to compile Haskell
code (and its AST, which we convert to our custom one). The fact that the coupling
is so strong makes it difficult to replace GHC for another Haskell compiler, but it
should be doable as long as it is a compiler with the required functionality.

5.4 Future Development and Improvements

We believe that our results show that using program synthesis to complement Ask-
Elle is a valid idea. We also think that this concept can work for other digital tutors,
and not just Ask-Elle. It would be interesting to evaluate program synthesis as a
complement to strict tutors in general. Furthermore, it would also be interesting to
evaluate the quality of the feedback, by performing field studies with students.

In Section 4.2 we discuss how potential future features could improve the results of
the evaluation. We think it would be interesting to continue this research by eval-
uating a more sophisticated complement to Ask-Elle that uses either polymorphic
types, pattern synthesis, or both.

Our program synthesis uses only the expressions in model solutions as its search
space. It would be interesting to see how well feedback could be given using program
synthesis if the algorithm could use the entire Haskell language and its base libraries
as search space.

In our evaluation, we found impossible entries that have no way to fulfil the proper-
ties defined for the function. Being able to tell the student that their solution has this
flaw, could reduce the time a student spends attempting an approach that will never
work. It would be interesting to see if it is possible to detect these impossibilities.

5.5 Societal, Ethical and Ecological Aspects

During the project, some thoughts regarding societal, ethical and ecological aspects
came up. These mainly concerned digital tutors and program synthesis, and how
they can affect the world around us. These thoughts are mainly theoretical and we
do not think that the work in this thesis will directly affect any part of society.
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5.5.1 Digital Tutors
This thesis was written during a pandemic. This pandemic has shown the impor-
tance of good tools when learning from home. It has also shown that digitalised
solutions can offload human tutors when teaching from a distance. One example of
this is digital and recorded lectures. We think that programming tutors can both
help students and teachers. Students can get dynamic feedback on what they are
doing even when no human is present. A teacher on the other hand can let a digital
tutor do most of the heavy lifting, allowing the teacher to focus on the students who
need the most help.

By being able to teach and learn remotely to a greater extent, the need for travelling
to school and back could be reduced. This, in turn, can permit more free time for
both students and teachers, but also reduce the climate impact caused by travelling.

We think it will be hard for a digital tutor to replace a real teacher. For feedback
to be as effective as possible, it should fill in the gaps between what the student
understands and what the goal is for the student to understand [35]. What a student
already understands and does not understand differs between students. Thus, the
process of providing feedback should be customised to fit each student [35]. A
teacher can tailor their feedback based on how much knowledge the student has in
the area. A digital tutor can probe and try to estimate how much knowledge a
student has based on the code they have written, and on how they reason about
their code. However, we have not found a tutor that tailors its feedback in this way,
and think that most students prefer answering questions verbally to a human over
interacting with a machine. We do not think that digital tutors will replace a real
teacher anytime soon, but at most aid them in their work.

thupy (and Ask-Elle) could be manipulated by a student to give the entire solution
away by repeatably just replacing the hole with the feedback given in the previous
step. By iteratively doing this, a student is led through the solution step by step
until it is complete. If they did this with intending just to skip through the exercise,
the student would most likely not learn anything, or at least not as much as it would
have if they had tried to find a solution themselves. However, this can also be used
as a way to see the entire derivation of a solution and to learn from it.

5.5.2 Program Synthesis
Program synthesis algorithms can produce whole programs from a specification and
could theoretically replace writing code. However, at its current state, program
synthesis requires a very precise specification. In our limited experience, providing
a precise specification can be hard. We think program synthesis will at most become
a part in a software developers toolbox, similar to a good IDE. Many IDEs offers
help in suggesting which functions and variables are in scope, and in the future, these
suggestions might be extended with suggestions generated from program synthesis.

In a way, writing code in high-level languages can be seen as the program synthesis
specification and the produced machine code as the generated program. Nonetheless,
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we think that even if program synthesis would become powerful enough to generate
whole programs, the work of a software engineer would shift to producing precise
specifications instead.
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6
Related Work

The fields of both program synthesis and digital tutors are large. In this chapter,
we describe some projects and papers that are similar to ours.

6.1 CodeQ

CodeQ is a programming tutor, which like Ask-Elle provides a set of exercises. These
exercises are for the programming languages Prolog and Python. Feedback is pro-
vided by showing implementation plans, hints and by running tests on the program.
Hints can be provided explicitly by a teacher for common errors or automatically
using rewrite rules or code patterns. These rewrite rules are essentially transforma-
tions on a student’s program, that should bring the student’s solution closer to a
correct solution. CodeQ tracks every student’s progress and their attempts at solv-
ing an exercise. The system then tracks how the student rewrote a fragment of their
code to reach a program closer to a solution. These tracked changes can then be
used to transform another student’s program. If the transformed program is closer
to a solution than the previous program, feedback is provided to the student based
on the rewrite transformation. CodeQ keeps doing these transformations until it
finds a solution or it times out. Code patterns also use machine learning on previ-
ous student attempts, this time to find patterns in submissions that corresponds to
correct or incorrect solutions [36].

CodeQ is quite similar to our project in that it can automatically generate feedback
based on a student’s input. One major difference is that CodeQ uses student at-
tempts to generate feedback, while we only base our feedback on teacher supplied
model solutions. This can mean that as long as a teacher provides a good model
solution, thupy might guide the student toward a better solution than CodeQ can.
However, it also means that CodeQ can improve with time and that the suggestions
can become more sophisticated as time passes. Another major difference is that we
only provide feedback to locations that the student has explicitly marked in their
code, while CodeQ tries to improve and work on the entire program that the student
has written [37].
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6.2 Hazelnut Live
Hazelnut Live, by Omar et al. [38] is an online programming editor built to be
able to work with incomplete programs in the programming environment Hazel.
The environment was developed by the same researchers as Hazelnut Live [39].
Like our complement, it uses holes to mark a part of the code that is not yet
implemented. These holes are treated as arbitrary expressions with appropriate
types so Hazelnut can continue evaluating the program around the hole. Hazelnut
can continuously provide feedback to the user by dynamically evaluating the code
as it is being written. An example from the paper is (30.0 * hw + _), where
hw is a variable equal to 88.0, 76.0 or 93.0 in three different cases. For these
examples Hazelnut will evaluate the expressions to (2640.0 + _), (2280.0 + _)
and (2790.0 + _) and show these results live to the user. Hazelnut can also ignore
ill typed expressions and do the same evaluation around them as it can around
holes [38]. Hazelnut will evaluate the type needed for each hole, and tell the user.
Furthermore, it can use the type to suggest which variables can be inserted into the
hole [38].

Like our complement, Hazelnut Live uses typed holes as a key element in how they
generate feedback to a user. It also tries to aid a user in formalising and constructing
their intended program. However, where we (and Ask-Elle) try to guide a user to a
solution, Hazelnut instead supplies live supplementary information about the code.
Hazelnut can in many ways be regarded as an improvement to code editors and
IDEs, but their approach to giving supplemental information about holes in a users
code is in many regards close to our method of supplying feedback to exercises. This
feedback is given directly on the student’s code, without the need to utilise model
solutions. Furthermore, Hazel operates on a language built around typed holes,
while in our case we applied it to Haskell which is a more general language.

6.3 MagicHaskeller
MagicHaskeller is a program synthesis library written in and built for generating
Haskell code, it was developed by S. Katayama [40]. To generate an expression
the user needs to provide a boolean function that specifies the properties of an
expression, this function resembles a QuickCheck property. The library generates
a stream of expressions that satisfies the specified input-output examples. The
expressions are streamed in order of small to large, and every expression in the
stream is tested until one is found that fulfils the specified properties.

The approach of generating type correct expressions and testing them one by one
is pretty close to what we are doing in thupy. Where we only test a relatively
small number of expressions for each hole and each expression is generated before
testing, MagicHaskeller generates a very large number of possible expression as a
stream. Both thupy and MagicHaskeller use the same method of ordering how
the expressions are tested, from small to large, in the case of MagicHaskeller, this
is also the order that the expressions are generated. While thupy only uses the
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expressions from the model solutions, MagicHaskeller uses the entire Prelude (and
Data.List) to generate expressions [41].

6.4 Hoogle+
Hoogle+ by James et al. [42] is an online synthesis engine for Haskell. Unlike what
the name suggests, it is not related to the Haskell API search engine Hoogle. The
program is a web-based tool for generating Haskell programs by specifying a set
of input-output examples and optionally a type. Hoogle+ generates programs that
match the specified type and the behaviour defined by the input-output examples.
Like our complement, Hoogle+ uses a property-based testing tool, in their case
SmallCheck, to test if a synthesised program has the behaviour specified by its
input-output examples [42].

Underneath, Hoogle+ uses the TyGAR type-search algorithm [42]. TyGAR com-
bines functions from different libraries to construct an expression with a type-
signature specified by the user [43]. Furthermore, TyGAR handles polymorphic
types [43].

Hoogle+ uses a much larger search space than thupy and can use any function from
the standard Haskell libraries for its synthesis [42]. Our synthesis is more targeted,
and thupy uses only expressions from the model solutions for synthesising code.
Furthermore, while Hoogle+ is an online tool to demo program synthesis, our proof
of concept was built to show if and how program synthesis can complement Ask-
Elle.

6.5 Program Synthesis Libraries in Haskell
Program synthesis has not been an active topic in the Haskell community, and there
are only a few program synthesis libraries and projects for Haskell. We investigated
if we could use two of the more prominent projects, which all potentially synthesise
code for us. We ended up not using any of them, for the reasons listed below.

• The library we looked into the most was MagicHaskeller. This library showed
a lot of promise when initially researching it since it promised ease of use
and seemed to fit our need. However, MagicHaskeller is rather strict in
what it needs to synthesise code, and we do not know what properties holes
should have to fulfil the finished program, only their types. Furthermore,
MagicHaskeller has not been maintained for the last couple of years1, and we
could not get it to compile and build properly.

• TyGAR(TYpe Guided Abstract Refinement) is a tool for synthesising Haskell
programs [43]. It is used in the backend of Hoogle+ described in Section
6.4. TyGAR takes as input a type signature and generates an expression that

1The last release that reported successfully building was: https://hackage.haskell.org/
package/MagicHaskeller-0.9.6.7 in 2017
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matches the type. This tool also showed to be quite interesting, and could
in theory be used to generate expressions to insert into holes. It can use
polymorphic types, which according to us is its greatest advantage over our
implementation. However, the results from TyGAR could as far as we found
not be tailored to use only a set of predefined expressions, but only to use
functions from libraries.

We found neither of these libraries to be suitable for our use-case of synthesising
code from partial solutions (sketching).
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Conclusion

The main research questions that we address in this thesis is if program synthesis
can be used to complement Ask-Elle, examine how well it works, and if it can be
done in a reasonable time. We have built a proof of concept, which demonstrates
that this is indeed possible. It was however not integrated into Ask-Elle.

The rudimentary program synthesis we developed provide feedback for several par-
tial programs (21% of entries) where Ask-Elle failed. This result shows that pro-
gram synthesis can indeed be a valid method of generating feedback to complement
Ask-Elle. Furthermore, we found that on attempts where Ask-Elle could provide
feedback, we are not as successful (thupy only succeeded for 35% of entries). After
testing thupy against the Ask-Elle dataset we can also conclude that it generally
provides a suggestion in a reasonable time (avg. ∼ 3s).

Our implementation only works for partial solutions with holes in expressions and
with monomorphic types. Furthermore, many implementation details are not fin-
ished, and we think that implementing these could improve how well thupy per-
forms in the evaluation.
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A
Listing of Full AST Code

The code for the full AST, since this AST was derived from Ask-Elle’s, some unused
datatypes are left in the code, for instance RefactorChoice and Alt

1 type HoleID = String
2

3 -- Alt ---------------------------------------------------------
4 data Alt
5 = AHole HoleID
6 | Alt (Maybe String) Pat Rhs
7 | AltEmpty
8 deriving (Data, Eq, Ord, Show, Typeable)
9

10 -- Alts --------------------------------------------------------
11 type Alts = [Alt]
12

13 -- Body --------------------------------------------------------
14 data Body
15 = BHole
16 | Body Decls
17 deriving (Data, Eq, Show, Typeable)
18

19 -- Decl --------------------------------------------------------
20 data Decl
21 = DHole HoleID
22 | DEmpty
23 | DFunBinds FunBinds
24 | DPatBind Pat Rhs
25 deriving (Data, Eq, Ord, Show, Typeable)
26

27 -- Decls -------------------------------------------------------
28 type Decls = [Decl]
29

30 -- TExpr
--------------------------------------------------------↪→

I



A. Listing of Full AST Code

31 data Expr
32 = Hole HoleID -- HsUNboundVar?
33 | Feedback String TExpr
34 | MustUse TExpr
35 | Eta Int TExpr
36 | Refactor TExpr RefactorChoices
37 | Case TExpr Alts
38 | Con Name
39 | If TExpr TExpr TExpr
40 | InfixApp MaybeExpr TExpr MaybeExpr
41 | Lambda Pats TExpr
42 | Let Decls TExpr
43 | Lit Literal
44 | Paren TExpr
45 | Tuple TExprs
46 | App TExpr TExprs
47 | Var Name
48 | Enum TExpr MaybeExpr MaybeExpr
49 | List TExprs
50 | Neg TExpr
51 deriving (Data, Eq, Ord, Show, Typeable)
52

53 -- TExpr -------------------------------------------------------
54 data TExpr = TExpr GHC.Type Expr
55 deriving (Data, Show, Typeable)
56

57 -- TExprs ------------------------------------------------------
58 type TExprs = [TExpr]
59

60 -- TExprs ------------------------------------------------------
61 type Exprs = [Expr]
62

63 -- FunBind -----------------------------------------------------
64 data FunBind
65 = FBHole HoleID
66 | FunBind (Maybe String) Name Pats Rhs
67 deriving (Data, Eq, Ord, Show, Typeable)
68

69 -- FunBinds ----------------------------------------------------
70 type FunBinds = [FunBind]
71

72 -- GuardedExpr -------------------------------------------------
73 data GuardedExpr = GExpr TExpr TExpr
74 deriving (Data, Eq, Ord, Show, Typeable)
75

II



A. Listing of Full AST Code

76 -- GuardedExprs ------------------------------------------------
77 type GuardedExprs = [GuardedExpr]
78

79 -- Literal -----------------------------------------------------
80 data Literal
81 = LChar Char
82 | LFloat Float
83 | LInt Int
84 | LString String
85 deriving (Data, Eq, Ord, Show, Typeable)
86

87 -- MaybeExpr ---------------------------------------------------
88 data MaybeExpr
89 = NoExpr
90 | JustExpr TExpr
91 deriving (Data, Eq, Ord, Show, Typeable)
92

93 -- MaybeName ---------------------------------------------------
94 data MaybeName
95 = NoName
96 | JustName Name
97 deriving (Data, Eq, Show, Typeable)
98

99 -- Module ------------------------------------------------------
100 data Module = Module MaybeName Body
101 deriving (Data, Eq, Show, Typeable)
102

103 -- Name --------------------------------------------------------
104 data Name
105 = Ident String
106 | Operator String
107 | Special String
108 deriving (Data, Eq, Ord, Read, Show, Typeable)
109

110 -- Names -------------------------------------------------------
111 type Names = [Name]
112

113 -- Pat ---------------------------------------------------------
114 data Pat
115 = PHole HoleID
116 | PMultipleHole HoleID
117 | PCon Name Pats
118 | PInfixCon Pat Name Pat
119 | PList Pats
120 | PLit Literal

III
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121 | PParen Pat
122 | PTuple Pats
123 | PVar (GHC.Type, Name)
124 | PAs Name Pat
125 | PWildcard
126 deriving (Data, Eq, Ord, Show, Typeable)
127

128 -- Pats --------------------------------------------------------
129 type Pats = [Pat]
130

131 -- RefactorChoice ----------------------------------------------
132 data RefactorChoice = RefactorChoice String TExpr
133 deriving (Data, Eq, Ord, Show, Typeable)
134

135 -- RefactorChoices ---------------------------------------------
136 type RefactorChoices = [RefactorChoice]
137

138 -- Rhs ---------------------------------------------------------
139 data Rhs
140 = Rhs TExpr Decls
141 | GRhs GuardedExprs Decls
142 deriving (Data, Eq, Ord, Show, Typeable)

IV



B
Full AST of Figure 3.1

The AST from Figure 3.1 in full, with TExprs and types appended to the original.
The expression represented is concatMap (replicate 2) xs
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B. Full AST of Figure 3.1

TExpr

[Int]
App

TExpr

(Int
->

[Int])
->

[Int]
->

[Int]
Var

Ident
concatM

ap

:

TExpr

Int
->

[Int]
Paren

TExpr

Int
->

[Int]
App

TExpr

Int
->

Int
->

[Int]
Var

replicate

TExpr

Int
Var

n

TExpr

[Int]
Var

Ident
xs

VI



C
Evaluation Script

1 import sqlite3 as sql
2 import subprocess
3 import json
4 import os
5 import signal
6 import sys
7 import math
8 import time
9 import re

10

11 def signal_handler(sig,frame):
12 sys.exit(1)
13

14 signal.signal(signal.SIGINT, signal_handler)
15

16 def run_test(logs):
17 ps_bin = compile_program()
18 success = 0
19 fail = 0
20 timed_out = 0
21 subprocess_error = 0
22 done = 0
23 success_times = []
24 fail_times = []
25 total = len(logs)
26

27 for log in logs:
28 params = json.loads(log[0])["params"]
29 ex_id = params[0][0].replace(".",

"/").replace("haskell/", "")↪→

30 ex_fun_name = ex_id.split("/")[1]
31

32 inp = params[1]
33 inp = str.strip(inp)

VII
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34 inp = re.sub(ex_fun_name, ex_fun_name, inp,
flags=re.IGNORECASE)↪→

35 inp = getFuncString(ex_id) + "\n" + inp
36 print(f"--- Trying {ex_id} ---")
37 try:
38 s = time.time()
39 result = subprocess.run(["stack", "run", "--", ex_id,

inp], capture_output=True, text=True, timeout=30,
check=False)

↪→

↪→

40 e = time.time()
41

42 if os.path.exists("/tmp/askelle-test.hs"):
43 os.remove("/tmp/askelle-test.hs")
44 if os.path.exists("/tmp/askelle.hs"):
45 os.remove("/tmp/askelle.hs")
46

47 stderr = result.stderr
48 stdout = result.stdout
49 print(stdout)
50

51 if "Suggestion" in stderr:
52 print("successful: ", inp)
53 print(stderr)
54 success += 1
55 success_times.append(e-s)
56 elif "No holes, nothing to do" in stderr:
57 print ("nothing to do ", inp)
58 success += 1
59 success_times.append(e-s)
60 elif "scavenge_one" in stdout:
61 print(stderr)
62 subprocess_error += 1
63 else:
64 print("# FAILED #")
65 # print(stderr)
66 print(inp)
67 fail += 1
68 fail_times.append(e-s)
69 except subprocess.TimeoutExpired:
70 print("timed out")
71 timed_out += 1
72 except subprocess.SubprocessError:
73 print("subprocessError")
74 subprocess_error += 1
75
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76 done += 1
77 print("################################")
78 print(f"## Finished {done:4} out of: {total:4} ##")
79 print(f"## Timed out: {timed_out:3} ##")
80 print(f"## Subprocess Error: {subprocess_error:3}

##")↪→

81 print(f"## Successful: {success:3} ({round(success/done *
100):3}%) ##")↪→

82 print(f"## Avg Success time:
{avg_time(success_times,2):.2f}s ##")↪→

83 print(f"## Max Success time:
{max_time(success_times,2):.2f}s ##")↪→

84 print(f"## Avg Fail time:
{avg_time(fail_times,2):.2f}s ##")↪→

85 print(f"## Max Fail time:
{max_time(fail_times,2):.2f}s ##")↪→

86 print(f"## Avg Run time: {avg_time(success_times +
fail_times,2):.2f}s ##")↪→

87 print("################################")
88

89 def avg_time(times,rnd):
90 avg = 0
91 if len(times) > 0:
92 avg = round(sum(times) / len(times),rnd)
93 return avg
94

95 def max_time(times,rnd):
96

97 if len(times) > 0:
98 return round(max(times), rnd)
99 return 0

100

101 def compile_program():
102 bin_name = "./askelle-ps-pythontest"
103 try:
104 subprocess.run(["stack", "--local-bin-path", ".",

"--copy-bins", "build"])↪→

105 subprocess.run(["mv", "askelle-ps-exe", bin_name])
106 return bin_name
107 except:
108 print ("couldn't build askelle-ps binary, aborting...")
109 sys.exit(1)
110

111 def getFuncString(exName):
112 fName = exName.split("/")[1]
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113 f = f"exercises/haskell/{exName}/Config.hs"
114 with open(f) as file:
115 for line in file:
116 if "properties" in line:
117 return fName + " :: " + line[16:-15]
118

119 print(getFuncString("list/repli"))
120

121 request_file = "requests.db"
122 con = sql.connect(request_file)
123 cursor = con.cursor()
124 drifted_logs = cursor.execute("SELECT input FROM requests WHERE

service LIKE 'feedbacktextdeep' AND output LIKE
'%%drifted%%'").fetchall()

↪→

↪→

125 cursor2 = con.cursor()
126 askelle_success_logs = cursor2.execute("SELECT input FROM

requests WHERE service LIKE 'feedbacktextdeep' AND output
LIKE '%%Correct%%'").fetchall()

↪→

↪→

127

128

129 print("where ask-elle drifted, we did:")
130 run_test(drifted_logs)
131 print("where ask-elle succeeded, we did:")
132 run_test(askelle_success_logs)

X
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Some generated solutions from the

evaluation

-- Student Input
dupli list = concat (map ? list)
-- Generated Solution
dupli list = concat (map (replicate 2) list)
-- Suggestion
dupli list = concat (map (replicate ?) list)
========================================
-- Student Input
pack (x : xs) = ?
pack [] = ?
-- Generated Solution
pack (x : xs) =

(x : takeWhile (== x) xs) : pack (dropWhile (== x) xs)
pack [] = []
-- Suggestion
pack (x : xs) = ? : ?
pack [] = []
========================================
-- Student Input
dupli :: [Int] -> [Int]
dupli = \l -> ?
-- Generated Solution
dupli = \l -> (concatMap (replicate 2) l)
-- Suggestion
dupli = \l -> (concatMap ? ?)
========================================
-- Student Input
compress (x : (y : ys)) = ?
compress x = x
-- Generated Solution
compress (x : (y : ys)) =

(if x == y then [] else [x]) ++ compress (y : ys)
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compress x = x
-- Suggestion
compress (x : (y : ys)) = ? ++ ?
compress x = x
========================================
-- Input
myreverse :: [Int] -> [Int]
myreverse [] = []
myreverse (x:xs) = ?
-- Generated Solution
myreverse [] = []
myreverse (x : xs) = myreverse xs ++ [x]
-- Suggestion
myreverse [] = []
myreverse (x : xs) = ? ++ ?
========================================
-- Input
dupli :: [Int] -> [Int]
dupli [] = []
dupli (x:xs) = ? : ? : ?
-- Generated solution
dupli [] = []
dupli (x : xs) = x : x : dupli xs
-- Suggestion
dupli [] = []
dupli (x : xs) = x : x : dupli ?
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