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A machine-particle interaction study via a co-simulation technique
The embodiment of the bucket to rock dynamics in a wheel loader through a
coupling method assisted by the use of Functional Mock-up Unit

MARSEL BALLA
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
A wheel loader is a heavy equipment used to perform granular material handling
operations. The complete machine model is developed in Matlab/Simulink®, mean-
while a discrete element method (DEM) solver, modelling unbound granular ma-
terials is developed in Demify®. Virtual development technologies allow for more
efficient testing of the machine and its sub-systems. Therefore, the implementation
of models between different software is required, though there is a lack of standard-
ized interfaces. At this step, FMUs are the leading component making up for a
possible integration between different working environments. The work focuses in
creating an interface between the two software so the sharing of information is possi-
ble. The granular material was previously modelled with the DEM solver GRAPE,
which is based on a spherical shaped particle representation to model soil material.
On the other hand, crushed rock aggregates which we are working with, require a
well-resolved rock particles’ representation of the irregular and angular shape.
A new GPU solver for complex particle shape based on non-convex polyhedral trian-
gulation has been implemented, allowing for high fidelity rock shape representation.
In this project, the created FMU files contain the information needed to relief the
communication issue between the software and make the co-simulation possible. The
DEM solver Demify® provides high fidelity results in terms of material contact force
detection, while Multi-Body Dynamics (MBD) Simulink® integrates the equations
of motion. The computational performance, involving the computational cost and
the physical fidelity, is a pivotal factor used to evaluate and optimise the design
of a new level machine-particle interaction. Reliable and computationally effective
results are obtained in the interaction between machine and non-convex shaped rock
particles. In addition, a realistic and an efficient communication between the two
software is reached.

Keywords: FMU, Wheel loader, Demify®, Matlab/Simulink®.
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1
Introduction

1.1 Background
Construction equipment is essential in the infrastructure, mining, and energy sector,
where Volvo Construction Equipment is an integral part of the worldwide market.
Loaders are heavy equipment used to move or load granular materials such as sand,
rock and soil to a different location or into another machine, e.g. an aggregate truck.
The modern wheel loader is a four-wheeled articulated loader with hydraulically op-
erated tools such as a bucket in front.

In the Vinnova InfraSweden 2030 project DigiRoad, Fraunhofer-Chalmers Centre
(FCC) and Volvo CE have collaborated on modelling unbound granular materials
using the discrete element method (DEM) solver Demify®. Virtual development
technologies have been an essential method of further developing construction ma-
chinery. Virtual representations of the complete machine or delimited sub-systems
allow for efficient product development and testing. In order to translate the opera-
tion and handling of rock and soil materials to a CAE (Computer-Aided Engineering)
framework, Volvo CE has strived towards developing high fidelity models of both
the machine and the granular material. Currently, Volvo CE is performing multi-
body dynamics modelling of the wheel loader mechanics and control using Simulink
Multibody. The granular material was previously modelled with the DEM solver
GRAPE, collaborating with Fraunhofer ITWM [19]. The solvers were coupled for
co-simulation between GRAPE and Simulink using an S-function as described ac-
cording to Matthias[21] and Burger[20]. The GRAPE solver is based on a spherical
representation of the particle material and developed to model soil material specifi-
cally. While the approach is well proven for soil materials, crushed rock aggregates
require a well-resolved representation of rock particles’ irregular and angular shape
[25], [24].

InfraSweden 2030 aims to improve the transport infrastructure by funding innova-
tive projects, which aim to obtain ambitious results in the Swedish building and
infrastructure industry. The innovation project DigiRoad was initiated in 2018 to
develop a novel methodology for modelling rock materials and investigating quality
aspects of the key handling processes of unbound aggregates from the quarry to the
compacted layers in the road. DigiRoad has been the backbone among other research
projects to develop the novel DEM solver Demify®, developed at the computational
engineering and design department at Fraunhofer-Chalmers Centre (FCC). Today

1



1. Introduction

Demify® is used for various problems related to powders, rock materials and other
particle-based systems [22], [23]. Furthermore, since 2020, a new GPU solver for
complex particle shape based on non-convex polyhedral triangulations has been im-
plemented, allowing for high fidelity rock shape representation [1]. This project
will develop a coupling technique between Demify® and Simulink for DEM-MBD
co-simulation using Functional-Mock-Up Interface (FMI). The idea is motivated by
the projected capability of using the complete machine model in Simulink with the
high-resolution rock particle model in Demify® and how this would enable design
evaluation and optimisation on a new level.

The work also includes developing test procedures to assess the influence of particle
shape and sizes of typical crushed materials to be used in the simulations. Also, to
better assess the material characteristics, the irregularities and shape of the virtual
rock particles need to be captured alongside the typical size distribution.

1.2 Load prediction in Construction Equipment
The main notion behind this section is the comprehension of the theoretical method-
ology tailed with the aim of obtaining the desired results. The use of DEM and the
two software, is to relate the granular material characteristics to the wheel loader
dynamics. Demify® arises new feasible simulation results, in terms of rock par-
ticle quality and physics characteristics representation. On the other hand, Mat-
lab/Simulink® represents the wheel loader mechanical, hydraulic, electrical and elec-
tronic components, generating high fidelity simulation results. Hence, finding a link
between the two software is of high interest in order to approach better results.

The industry standing behind the use of construction equipment is broad, so there
is a research field of high interest. Hence, load quantification is a valuable physical
parameter to be studied. To this extent, there have been significant studies aiming
to reach various techniques that could be used to understand the dynamics behind
a construction machine. Studies show that using computer based simulations with
an integration of physical motion laws give promising results [20].

1.3 Research outline
There are various research supports where this project could be expanded from. Such
different research perspectives are related to particle-based simulation using DEM,
automation in construction, multi-body dynamics, road construction, co-simulation
and simulation-based design. The outcomes of this project are closely related to the
research methods and academic relevance throughout a heedful integration of the
initial knowledge to the expected results.

The methodological approach instead, is accompanied by key research questions,
which are represented below:

2



1. Introduction

1. The current state-of-the art in the literature as regards DEM-MBD coupling.
2. The critical computation performance aspects in large scale DEM-MBD sim-

ulations.
3. Influence of high fidelity rock particle model on the relevant wheel loader op-

erational performance response variables.

In addition, the completion of this project is based upon a list of literature and
practical tasks, which are going to be introduced and described in more details in
the following chapters. Initially, a thorough scrutiny of Discrete element method,
Multi-body dynamics and FMI for co-simulation was performed. This was followed
by a supplementary work in modelling and simulation, where multiple DEM simu-
lations in Demify® were performed. Additionally, Simulink Multibody model of a
wheel loader and FMI for co-simulation were investigated contemporaneously.

A further quest is the verification and validation phase, where the calibration of
the rock material model, the implementation verification tests and supporting case
application investigation and validation arise.

1.4 Scope and objectives
The goal of this project is to validate a co-simulation solution for Simulink Multibody
and Demify®. The accomplishment of the identified goal, is reached by upholding
the following objectives.

1. Development of wheel loader model with MBD/DEM co-simulation interface.
2. Verification of the FMI interface.

1.4.1 Delimitations
This thesis comprises many research topics, so it is important to confine the research
and keep within certain boundaries to limit the extensiveness of the project. The
main reason behind it, is to prioritise the core of the thesis to cover the main re-
search topic efficiently. This leads to the following delimitations.

1. No development of the DEM model or related code is planned to be included
in the scope. If such actions are needed, the DEM team at FCC will support
the project accordingly.

2. The project will not focus on developing experimental data sets of for instance
wheel loader bucket load/force data for validation purposes. Such data is
expected to be available or generated external to the master thesis project.

3. Existing MBD models of the complete wheel loader will be the core resource for
machine modelling. Additional modelling in Simulink will be either simplified
configurations or archetypic case configurations for testing and verification.

4. The project does not pinpoint the development of new numerical integration
schemes for the co-simulation.

3





2
Computational granular

mechanics

2.1 Contact Mechanics
Modelling and designing whole structures or full vehicles is a complex process, since
it often leads to difficult and complex equations which require more effort and time
to converge to a realistic solution.
Hence, the use of an approach responsible for mapping the dynamics of the system
is needed. There are two methods of solving the physics of a system constituted by
different particles and bodies. The first one is FEM, acronym for Finite Element
Method, and the other one is DEM, acronym for Discrete Element Method. FEM is
a numerical solving method which computes at an approximate level the solution of
the whole system, by applying the physical laws at relatively small finite elements
of the bigger system. Note that, this method could be time inefficient when a huge
number of contacts is present.

On the other hand, DEM portrays the bulk in separate rigid bodies, accumulating
each single contribution to determine the overall dynamics. Instead, the dynamics
between the rigid bodies is simpler as it is solved in an explicit manner assuming
binary contacts. This is the most feasible way of retrieving converging results, where
a simple trade-off between computation time and reliable results is also considered
[11].

Solid Mechanics is a dominant research topic, and contact mechanics is unarguably
one of the main subjects behind it. This section illustrates the mechanics between
the rigid bodies in contact. It is of high importance to discuss the deformation and
the contact area between them, so the transmitted energy into the system could be
evaluated. In this work, the energy transmitted between the bucket and the rocks
is to be evaluated and investigated. Early studies of DEM were based on Hertzian
contact theory, used to find the contact area and the indentation depth between sim-
ple geometries, like spheres or cylinders. Alongside it, Hertz-Mindlin-Deresiewicz is
another approach used to quantify the dynamics between the rigid bodies, which is
the one followed in this work. Hereafter, we set up the integration method of the
particle state, where we use a second-order explicit Verlet velocity method.

In addition, Newton’s second law is another fundamental concept which is being

5



2. Computational granular mechanics

used. A completely independent integration of each particle using Newton’s sec-
ond law computes the new state. Equations 2.1 and 2.2 represent the linear and
rotational motion of a single rigid body simulated. Thornton[14] gives a thorough
insight of the particle kinematics, which is represented below in a compact form.

mi
d2~xi
dt2

=
∑
j

~Fcontactij + ~Fgravityi (2.1)

where we could see the mass mi, the translational acceleration d2~x
dt2 , the gravitational

force ~Fgravityi and the contact force due to the neighbouring rigid body j, ~Fcontactij .

Ii
d~ωi
dt =

∑
j

~Mij (2.2)

where we introduce the mass moment of Inertia Ii of each rigid body i, followed by
the variation in time of the rotational velocity ~ωi and the reacting moment ~Mij, rigid
body j has on rigid body i.

In order to solve the system of equations a second order Verlet Velocity scheme
is applied, which is a method used to integrate the Newton’s equations of motion.
Referring to this technique, Grønbech – Jensen[26] introduces Equations 2.3 and
2.4 which are used to calculate the position ~x and velocity ~v of a rigid body at a
frequency equal to the value of the DEM time-step ΔtDEM. Both of the equations
are represented for the sole reason of illustrating the integration of the equation of
motion 2.1.

~xi(t +ΔtDEM) ≈ ~xi(t) + ~vi(t)ΔtDEM + 1
2~ai(t)Δt2DEM (2.3)

where ~xi(t) is the position of particle i at time t, ~xi(t +ΔtDEM) is the new position
of particle i at time t + ΔtDEM , ΔtDEM is the DEM time-step and ~ai(t) is the
acceleration of particle i.
Whereas the acceleration of particle i at time t + ΔtDEM could be derived from
the interaction using the particle position xi(t +ΔtDEM), hence dependent on the
contact force and position of particle i.

~vi(t +ΔtDEM) ≈ ~vi(t) +
~ai(t) + ~ai(t +ΔtDEM)

2 ΔtDEM (2.4)

where ~vi(t) is the velocity of particle i at time t, ~vi(t +ΔtDEM) is the new velocity
of particle i at time t +ΔtDEM and ~ai(t +ΔtDEM) is the acceleration of particle i
at time t +ΔtDEM.

On the other hand, MBD involves the integration of both translational (2.1) and
rotational equation of motion (2.2). In addition, it is fundamental to state the
importance of the DEM time-step ΔtDEM and MBD step size ΔtMBD when con-
sidering the stability of the simulation. On one hand, the time step size should not
be too high, since it might lead to jagged results, not being able to detect all of the
contacts occurring between the rigid bodies. Also, choosing a very small time step
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2. Computational granular mechanics

is not favorable in terms of computational performance. The latter would lead to
very accurate results, but inefficient overall computational performance. Its selection
procedure is to be addressed to Section 3.2.1, where possible ΔtDEM are introduced.

2.2 Material Geometry
Geometry plays an important role when running a simulation, since it is directly
related to the computational cost and the results reliability. The more complex
it is, the more reliable the results would be, but accompanied with a substantial
computational cost increase. This statement, stimulates a compromised solution
between the computational cost and the results fidelity. Bilock[1] introduces the
typical rigid body geometry representations in DEM. That is where the core of this
work is based on. The most common geometry representations are spheres, multi-
spheres and polyhedrons. The latter could be depicted as a convex or non-convex
shaped polyhedron. Below the possible geometries are briefly introduced.

Spheres - A relatively simple geometry, generating high computational advantages,
compared to the other two cases. Its simple geometry stands as a valid reason
for being used, so the interaction is depicted easily enough. Hertzian contact is a
method used to detect the contact and the force distribution.

Multispheres - An incorporation of sub-spheres. Bilock[1] introduces an overall con-
ception behind the use of this model. The spheres are bundled together so they act
as a full rigid body. The contact instead is detected at an individual scale, regard-
ing each sub-sphere individually. The latter gives rise to accumulation of contacts
which lead to higher contact forces, defining an overlapping volume generating non-
converging results as could be seen in Bilock’s[1] work.

Convex and non-convex polyhedrons - The computational effort needed to calculate
the contacts present becomes a real problem when it comes to simulating millions
of rigid bodies. Also, the detection approach could lead to distortion of the force
magnitudes. Anyhow, this is the leading geometry to very reliable results. Hence,
a non-convex polyhedron geometry is what we also use.

After, this brief introduction to the possible rigid body geometries, we have a clearer
idea of what could give more efficient results. Figure 2.4 shows a synopsis of the
aforementioned geometrical representations and directs us to the most appropriate
geometry selection, by maintaining a good trade-off between computational effort
and physical reliability.

7
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Figure 2.1: A graphical illustration of the relation between the computational cost
and physical fidelity of the different rock geometries, introduced in Section 2.2.

The figure shows a linear increase of the computational cost with the physical fidelity.
This gives rise to one of the main research questions behind this work, concerning,
the most suitable geometry we could use. The geometry selected is the non-convex
polyhedron, which has proven to be a fairly good example as could also be seen from
Figure 2.2.

Figure 2.2: Representation of a real rock in the left, alongside its virtual represen-
tation via Demify based on non-convex polyhedral triangulation in the right.

2.3 Contact detection
The geometric problem arising behind contact detection is a topic of interest. The
main scope is to use the most appropriate methods so complex physical systems
motion is represented in an effective and simplified way. Contact could be easily
identified when using spherical geometries, but the contact detection becomes quite
challenging when the complexity increases. The main goal is to reach a proper con-
tact detection method, so we refer to studies already being accomplished. Figure
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2. Computational granular mechanics

2.3 indicates the steps followed in order to detect the contact and retrieve the data
for each rigid body i, until we reach the end of the simulation. Another factor worth
mentioning is the time-step ΔtDEM which is further discussed in the next sections.

Bilock[1] reports a detailed work verifying the physics followed to detect the contact,
at various levels of shape irregularities, discussed also in section 2.2. As regards the
physics, Govender[4] explains in a thorough extent the technique to the contact de-
tection. A technique composed of two phases, the broad and the narrow one. The
former deals with an estimation on potential contacts between two polyhedrons,
whereas the latter does a more detailed job in filtering for contacts.

T = t
Contact forces
Acceleration

Velocity
Position

T = 0
Simulation 

start

T = t = t0

Particle 
localization

t  =  t0 +  ∆tDEM

i  =  i  +  1 

T = t
Data for each 

particle

T = t 
Broad phase

T = t
Narrow phase

T = tend

Simulation end

Figure 2.3: The steps performed by the algorithm to map the contact mechanics.
Note that particles are denoted by i and incremented by 1 until the simulation ends,
accompanied by an incremental time step ΔtDEM.

Wilke[7], Bilock[1] and Govender[4] explain how the contact is retrieved following
the broad and narrow phase approach.
The broad phase simplifies the complexity by considering 2 rigid bodies i and j as
possibly being in contact. The narrow phase verifies if the two rigid bodies are
in contact, which could be edge-to-edge, face-to-face or vertex-to-face.The latter is
determined on whether an overlapping volume is present. Figure 2.4 shows a 2-D
drawing of 2 simple polyhedrons i and j, and their overlapping area.
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2. Computational granular mechanics

1

2

Figure 2.4: A 2D representation of the overlapping area of two polyhedrons in
contact with each other.

Contact forces between the particles and the particles and the rigid objects are
resolved on the basis of the Hertz-Mindlin-Deresiewicz (HMD) force. Now let us
introduce the Equations used to get the normal and tangential force. Equation 2.5
represents the formula used to get the elastic normal force.

Fn,e =
4
3E
∗R1/2

δ
3/2 (2.5)

where Fn,e is the elastic force in the normal direction, E* is the effective modulus,
which is computed as shown in Equation 2.6, R is the effective radius and δ is the
overlapping distance.

1
E∗ = 1 – ν21

E1
+ 1 – ν22

E2
(2.6)

where ν is the Poisson’s ratio. Instead when it comes to computing the effective
radius in case of polyhedrons relation expressed in Equation 2.7 is used.

V ≈ πδ2R (2.7)
where V is the overlap volume.

Another normal force is the dissipative one, which is computed as can be seen from
the Equation 2.8 shown below.

Fn = 4
3
√
π
E∗
√
Vδ+ 2γ

√
m∗knvn (2.8)

where m* is the effective mass, γ is the proportionality constant between the friction
force and the velocity, vn is the normal velocity and kn is the normal spring constant,
which both are computed using the relations below.

kn = 2E∗
√
Rδ

m∗ = m1m2
m1 +m2

On the other hand, when it comes to the tangential force computation Equation 2.9
comes to help by first introducing the elastic tangential force.

Fnt,e = Fn–1t,e + kntΔδt if ΔFn ≥ 0

Fnt,e = Fn–1t,e

 knt
kn–1t

+ kntΔδt otherwise
(2.9)
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where kt is the tangential spring constant and G* is the effective shear modulus.
Instead, both are solved by using the expressions below.

kt = 8G∗
√
Rδ,

1
G∗ = 1 – ν21

G1
+ 1 – v22

G2
= 2(1 – v1)

E1
+ 2(1 – v2)

E2
To sum up the tangential force term, the total tangential force is introduced, and it
could be evaluated using Equation 2.10.

Ft = Fnt,e + 2γ
√
m∗ktvt

if Ft < μFn
Ft = μFn

otherwise

(2.10)

where μ is the friction coefficient, Ft,e is the elastic tangential force and Ft is the
total tangential force.

2.4 Particle size and Distribution
Particle Size Distribution often referred as PSD, is an important parameter dealing
with the allocation of the material over a specified size range. Packing density, being
the fraction of space made up by the material of interest, is affected by the PSD.
In the evolution of different simulations, it is one of the main parameters to vary in
order to see the resulting differences.
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3
Wheel loader handling

granular material

3.1 Multi-body machine dynamics
A wheel loader is a construction machine which requires accurate physical represen-
tation. It is composed of a driving and hydraulic system, which make the physics
complex. Although, developing a proper full model machine could be challenging, it
is of high industrial interest to improve the mathematical and physical models. This
is where Multi-Body Dynamics (MBD) comes into play. Hence, the study of MBD
is of high interest due to its capability of relating ideas to computer simulations,
and so retrieving cost efficient and fast feedback.
In order to have a visual interpretation of the wheel loader, Figure 3.1 comes to help
with a view in the x – z plane.

Figure 3.1: A representation of the full wheel loader model in Simulink. This is
the wheel loader which is to be used for the co-simulations performed in Section 5.

The focus of this work is framed at representing the dynamics of the bucket in a
multi-body system environment is the main domain of interest. Kim[8] introduces
the components making up the wheel loader and gives validated results in terms
of energy flow analysis, which match the real dynamic characteristics of the wheel
loader.
At this step, it is essential to show the interaction between the rocks and the bucket.
This could be done by performing different loading operations of the bucket with
respect to the material being handled. That being said, we could perform a vertical
or horizontal loading operation of the bucket into a pile of rocks, and hereafter
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3. Wheel loader handling granular material

conduct an investigation on the retrieved physical response of the system, which is
furtherly discussed in Chapter 5. Instead, Figure 3.2 illustrates a 2D drawing of the
rocks and the bucket. In addition, forces present due to the motion of the bucket
into the pile of rocks are indicated.

F1

F2

F3

F4

F5

Figure 3.2: A 2D representation of a simplified bucket model interacting with
simple 2D rock particle geometries.

The arrows present in the figure represent the different forces in place. The force of
the rocks moving inside the bucket is denoted by F1, followed by the force applied
at the bucket tip as F2. On the other hand, F3 represents the force due to friction,
meanwhile F4 is related to the force the bucket experiences in the bottom face. In-
stead, F5 represents the gravitational force, which sums up the force investigation
in this 2-D system.

Chapter 2.1 introduces the law of motion, concerning the rigid body dynamics. In
addition, Henriksson[16] gives a detailed investigation of the physics standing behind
it.
Equations 3.1 and 3.2 represent the force equilibrium in direction x and y.

Fx = F1x + F2x + F3x + F4 (3.1)
Fy = F1y + F2y + F3y + F5 (3.2)

This is where the DEM solver starts the force detection and evaluation between the
rigid bodies in contact.

3.2 Discrete element modelling of granular mate-
rial

3.2.1 Time-step
One of the main parameters during the simulation phase is the time step. It is the
principal factor when trying to map the dynamics and create the connection between
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3. Wheel loader handling granular material

the rigid bodies. This comes due to the quick changes of the contact forces, in other
words due to disturbances present in the system. So, we could intuitively say that
the smaller the time step the better and the smoother the results are. Theoretically
speaking this approach works fine, but practice shows that the smaller the time
step, the more computationally difficult it becomes to reach a converging result.
Thornton[14] comes into play with a quite good approximation on a term known as
the critical time step. The latter is based on the minimum particle size and we pick
a value lower than what obtained from Equation 3.3.

ΔtcDEM = πRmin
vR

= πRmin
λ

√
ρ

G (3.3)

where Rmin is the minimum rock radius, ρ is the rock density, G is the rock shear
modulus, vR is the Rayleigh wave speed and π is the constant.
In addition the last term, λ can be obtained by solving Equation 3.4 and then
approximating it to Equation 3.5, where ν is the Poisson’s ratio.

(2 – λ2)4 = 16(1 – λ2)
[
1 – λ2

(
1 – 2ν
2(1 – ν)

)]
(3.4)

λ = 0.8766 + 0.1631ν (3.5)

Thornton[14] uses this technique to have a threshold when it comes to choosing a
good time step. Referring to this method reliable results could be obtained, but
as mentioned beforehand the time step directly affects the computational cost, so
even in this case an overall trade-off between computational effort and time step size
is performed. Table 3.1 relates the time step to the stability of the system, hence
the coordination number. This allows for a selection of the critical time step value
ΔtcDEM.

Coordination number ΔtDEM

High v 20% ·ΔtcDEM

Low v 40% ·ΔtcDEM

Table 3.1: An insight on choosing an appropriate value of ΔtDEM in accordance
with the Coordination number.

On the other hand, Table 3.2 shows possible ΔtcDEM and ΔtDEM values of a trial
case, where Rmin = 0.060m, ρ = 1000 kg

m3 , G = 40MPa, ν = 0.25 and λ = 0.91.
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3. Wheel loader handling granular material

Critical time-step values ΔtDEM

ΔtcDEM 10–3 [s]

20% ·ΔtcDEM 2 ·10–4[s]

40% ·ΔtcDEM 4 ·10–4[s]

Table 3.2: Possible DEM time-step ΔtDEM values with reference to the critical
DEM time-step ΔtcDEM values.

3.3 The machine-particle interaction

3.3.1 FMI co-simulation
In many engineering fields there is a need of implementing models between different
software, but at the same time there is a lack of standardized interfaces. In other
words, models done in one tool are needed in another tool, but there is no bridge to
make the process happen. This is where inefficiencies come into play, and we relate
to performed studies to this problem. Studies show that fragile and missing inter-
faces are part of most problems in getting processes inefficient and not fast enough
to work. The goal is to simulate a complete system, between different modelling and
simulation environments. This implies that different components have to interact
with each other, leading to a common solution which backs up the use of a standard
interface. This is where the so called Functional Mock-up Unit interface comes into
play. The idea behind it is to have fully integrated systems, where is possible to
share information. We could also denote it as a steering member, which reliefs the
communication issue between the different software.

In the previous sections it is introduced the theory behind the DEM and the MBD.
Now, it is time to address the coupling between the two. DEM provides us with high
fidelity results in terms of material contact force detection, while MBD integrates
the equations of motion where we could simulate the dynamical behavior of the
equipment.

3.3.2 Co-simulation setup
This section represents the outline of the main work behind the thesis. Figure 3.3
illustrates the three main elements so a valid co-simulation is reached. It starts with
a case simulation run in IPS Demify. This simulation generates results which could
be read in a python environment. Note that, we could also skip the simulation
in Demify, by typing in the code in Python right away. This python file is then
adjusted and integrated with a python slave file, latter used to create the fmu file.
A Windows PowerShell script is than used to obtain the fmu file. Once the fmu is
created, it could be integrated in a simulation performed in Matlab/Simulink. The
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3. Wheel loader handling granular material

communication between the DEM and MBD continues, since the DEM introduces
the forces to the system and on the other hand MBD updates the position and
velocity of the equipment. This implies that the final result is similar to a loop where
each of the components updates the other, so a feasible behavior of the machine and
of the particles is obtained.

MultiBody 
Dynamics

Matlab/Simulink

Position

Velocity

Demify FMU
FMI 

Interface

Discrete Element 
Method

IPS Demify

Force

Moment

Figure 3.3: Visual interpretation of how the communication between the two soft-
ware occurs. The FMU stands as a bridge in the middle of the two environments,
"translating" and updating the information needed for the co-simulation. It supplies
Simulink with force/moment data from IPS and supplies the latter with motion/ro-
tation updates from Simulink.

Table 3.3 labels the procedure followed in a 6-step method.

1 IPS Demify simulation
2 Python code script
3 Slave python script
4 FMU generation from Windows PowerShell
5 Import fmu file to simulink
6 Run the simulation

Table 3.3: The steps followed to reach the final results.

Once the technique to be followed is introduced the main goal is focusing the atten-
tion at verifying the physics of the obtained results. An iterative procedure is the
main tackling mechanism to better understand the impact of the different parame-
ters present in the simulation.
The main purpose of this section is to further validate the stability of the co-
simulation, thus different set-up cases are performed. Lommen[18] shows a qualita-
tive work, when it comes to coupling and co-simulating two software in a DEM-MBD
interface. It assures the importance of the time step when it comes to performing
different simulations. This is to be additionally verified in the simulations performed
in Chapter 4 and 5.
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4
Model verification

4.1 System dynamics of falling rocks

This is the first verification simulation, where rocks are falling into a box in the
IPS Demify environment. The reason why a box is chosen is because it could be
considered as a simple model of the bucket itself. Figure 4.1 represents the geometry
of the box used in the simulations which follow in the next sections. The goal is to
get a feedback on the physical parameters, such are force applied in the vertical di-
rection and particle population kinetic and potential energy. After evaluating these
parameters, the obtained results convergence is discussed. The reasoning behind
this procedure is to reach reliable and time efficient results. Keeping this in mind,
Section 4.1.1 and 4.1.2 give a further insight into a proper value selection for ΔtDEM
and ΔtMBD.

Figure 4.1: A 3-D representation of the box used for the first verification simula-
tions, where it is considered as a simplified model of the bucket.
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4. Model verification

4.1.1 DEM time-step analysis

The technical procedure is the same as the one described in Section 3.3.2, the only
changes made regard the environment set-up.
In this example a .fmu file is initially created and then imported in Simulink. This
simulation is performed a few times varying only the DEM time-step, and checking
the convergence of the results.

The premise is that of choosing the most suitable ΔtDEM in terms of results solidity
and computational cost. This is why we perform different simulations at different
ΔtDEM size. The verification tests initiate at a range of 10–4s, behind which stands
the theory introduced in Section 3.2.1.

0 0.5 1 1.5 2 2.5 3 3.5 4

Simulation Time (s)

-30

-20

-10

0

V
er

tic
al

 F
or

ce
 (

kN
)

Time-step = 1.25e-4 s
Time-step = 5.0e-5 s
Time-step = 1.0e-6 s

Figure 4.2: Force applied on the box in the vertical direction at different DEM
time steps ΔtDEM.

Figure 4.2 represents the forces exerted in the system in the vertical direction at
different DEM time steps. A divergence could be seen when a relatively big time
step is chosen, which could be the blue curve representing a time step value of
ΔtDEM = 1.25 · 10–4s. Instead, when a range of 10–5s is reached the convergence
of the results seems more feasible. In this case, we introduce around 2000 kg of
material into the box. Also, nothe that the spikes are an effect of the particle-
particle dynamics, so when they crash with each other creating lifting for short
instants, and in addition to this to instabilities issues.
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Figure 4.3: Particle Kinetic Energy present in the system at different DEM time
steps ΔtDEM.

The curve represented in Figures 4.3 and 4.4 illustrate the energy levels at the
evolution of a simulation of a duration of 4 seconds. The particles fall within 0 to 2
s time-lapse, and as we can see from the figures they reach high values of energy when
the particles hit the surface of the box and then each other during the remaining
time. After all the rocks have fallen, there is still energy present in the system,
which tends to find a convergent trend as we can see in the respective figures.
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Figure 4.4: Particle Potential Energy present in the system at different DEM time
steps ΔtDEM.

Figures 4.2, 4.3 and 4.4 illustrate the force exerted in the box in z-direction, Ki-
netic and Potential energy. At this part of the project we focus on evaluating the
convergence and reliability of the results. Keeping in mind that at a lower ΔtDEM
the convergence of theory and reality is more alike. Hence, a lower floor reference
ΔtDEM = 1.0e – 6 is possible. The verification of the obtained results starts with
checking whether the physical parameters values fulfill the law of motion and con-
servation of energy. This is followed by evaluating a suitable value for ΔtDEM.
To this extent, the error distribution comes to help. The reference point is set as the
one with the lowest ΔtDEM. Figure 4.5 is of high importance since it answers to one
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of the first questions, the retrieval of reliable results with relatively low computation
time, which eases the system effort and requirement.
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(a) Kinetic Energy error.
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(b) Potential Energy error.
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(c) Vertical Force error.
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(d) Simulation time dependence.

Figure 4.5: Root mean square errors of Force in the vertical direction, Kinetic and
Potential Energy and wall clock execution time, used to decide between which of
the time-steps ΔtDEM is the most suitable.

Figures 4.5a, 4.5b and 4.5c label the behaviour of the error, and try to align it with
time at a proper ΔtDEM value. All of the three show a converging trend when the
ΔtDEM is in the range 10–5 to 10–4, which also gives the minimum error with respect
to the preset reference values from a ΔtDEM = 10–6 (considered as the most reliable
one in terms of theory-reality convergence). Anyhow, there is to be highlighted
Figure 4.5d which gives a very thorough version of the computational time effort.
As expected, the shorter the time-step the higher the wall clock time per simulation
tends to be. This being said, now it is time to choose a suitable time-step value
which makes up for an acceptable computational fidelity and cost, so a trade-off
between the two.
Confronting all the graphs we can come up with a ΔtDEM = 5 · 10–5, which seems
to be appropriate at obtaining reliable results and also a good computational effort,
so a good wall clock time per simulation time ratio.
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4.1.2 Co-simulation step size analysis

Simulink step size is the other parameter to be discussed. In a co-simulation, where
Simulink is the primary working environment, choosing an abiding value is of high
importance. In this case, we perform the simulations directly importing the fmu
files in Simulink, where the communication step size ΔtMBD is tuned, in order to
inspect the merging of the curves. As in the ΔtDEM choice, a high reliability value
of ΔtMBD = 10–3s is chosen, hence forces applied on the box alongside the Kinetic
and Potential energy are investigated.
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Figure 4.6: Force applied on the box in the vertical direction at different MBD
step-sizes ΔtMBD.

The communication step size could be related to the rate the system performs the
exchange of information, implying that for a higher rate the result quality would be
higher, but at the same time would add up a further cost in terms of computational
effort and time. As we can see from the Figures 4.6, 4.7 and 4.8, the calibre of
the results deteriorates when ΔtMBD = 5 · 10–2s, this leads to another choice. The
trend anyhow is positive since the more the value diminishes the more the reliability
and uniformity of results increases. Another thing to note down, as mentioned in
the time step analysis in Section 4.1.1, are the instabilities of the spikes which are
mainly present at high co-simulation step-size values, and this comes due to the
quick changes of the contact forces between the rigid bodies. In other words, when
the communication time is high, and contact mechanics is complex, then a lot of
information is not taken into account, leading to less reliable results, as it could be
seen with the blue curve representing a communication step-size of 5 · 10–2s.
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Figure 4.7: Particle Kinetic Energy present in the system at different MBD step-
sizes ΔtMBD.

Instead, in Figures 4.7 and 4.8 the Kinetic and Potential Energy are represented.
Note that in Figure 4.7 a co-simulation time range between 1 and 2 seconds is
chosen, even though the simulation time is 4 seconds. This is intentionally done,
so the difference between the different communication step sizes is clearly seen.
As expected and as formerly explained in the Force graphs, also in the energy
representation we have a deteriorating trend when the step-size is at a range of
5 · 10–2s. Thus, the other communication step-sizes give quite converging results,
and smaller errrors, which could also be seen in the error representation in Figure
4.9.
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Figure 4.8: Particle Potential Energy present in the system at different MBD
step-sizes ΔtMBD.

Figure 4.9 instead reproduces a similar approach used in the ΔtDEM calculation.
It is noticeable, that the lower the ΔtMBD the lower the error is and therefore the
better the obtained results we could retrieve are.
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(a) Kinetic Energy error.
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(b) Potential Energy error.
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(c) Vertical force error.
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(d) Simulation time dependence.

Figure 4.9: Root mean square errors of Force in the vertical direction, Kinetic and
Potential Energy and wall clock execution time, used to decide between which of
the step-size ΔtMBD is the most suitable.

Again, a trade-off between the co-simulation step size and the wall clock time needed
per performed simulation time is the reasonable approach to be followed, which sug-
gests a value of ΔtMBD = 10–3s.

4.2 Falling particles into a box supported by a
spring-damper system

It is time to obtain results of a different scale, when it comes to the complexity of
the verification case. That is why, we choose to perform the same test of Section
4.1 accompanied by a spring-damper mass system. The simulation consists of rocks
falling in a box which is supported by a translational spring and damper. Figure
4.10 shows a simple drawing, where all the components of the simulations which are
to be performed are illustrated. In detail, the box supported by a spring(k) and
damper(c), the generator from which the rocks are falling from and the respective
vertical falling distance (h) could be seen. Note also, the positive direction of the
position z(t) and velocity ż(t) of the box over time.
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Figure 4.10: A drawing which shows the box supported by a spring(k) and
damper(c), the generator from which the rocks are falling from and the respec-
tive vertical falling distance (h). Note also, the positive direction of the position
z(t) and velocity ż(t) of the box over time.

Figure 4.11 shows the particles falling in the box, which results are retrieved after
running the simulation in Simulink.

Figure 4.11: A visual representation of the rocks falling into the box in the IPS
Demify environment. The color of the rocks relates to the velocity magnitude in the
vertical direction, which is set as a contour on the side.
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The two figures above give just a smooth introduction to what the simulations are
being performed on. In this section the focus is to have the convergence of the
results fully validated. This is done by varying the simulation parameters so to
check the response of the system. The results obtained from Section 4.1.1, confirm
the convergence of realistic results at the following time-steps: ΔtDEM = 5 · 10–5s
and ΔtMBD = 10–3s.

4.2.1 Spring-Damper parameters assessment
In this section, 4 different simulations at different spring stiffness and damping
coefficient values are performed.

Case 1 2 3 4 [units]

Spring stiffness 32700 32700 21800 21800 N
m

Damper coefficient 2060 1370 2060 1370 N
m/s

Table 4.1: Spring and Damping coefficients used for the different demo simulations.

Table 4.1 depicts the values used for the 4 different simulation cases. These values
were chosen empirically after stating a specific box positioning in the vertical direc-
tion.
The figures hereafter show the obtained results.
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Figure 4.12: Force applied to the box in the vertical direction at a time-step
ΔtDEM = 5·10–5s and a step-sizeΔtMBD = 10–3s for different stiffness and damping
coefficients.

Figure 4.12 shows that the force is obtained differently in the first 2 seconds when
the rocks are falling, and then a converging point is reached when the Kinetic energy
in the system is conserved.
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Figure 4.13: Total Kinetic Energy of the whole rock particles at a time-step
ΔtDEM = 5·10–5s and a step-sizeΔtMBD = 10–3s for different stiffness and damping
coefficients.

Figure 4.13 represents the Kinetic Energy trend during the different simulations
performed. Note the dependence that it has to the spring stiffness, where we have
similar levels of energy when the spring stiffness is the same, not depending on the
damping coefficient. Another thing to note are the repeated spikes in the system
which come due to the quick contact forces occurring during the simulation and
the dynamics of the rock themselves, making it difficult to have a very smooth
curve. Anyhow, the energy levels seem quite feasible, and could be furtherly verified
when they reach a converging trend. In addition, during the end of the simulation
a divergence tentative of the trend could be seen, and this could happen to the
instability of the structure. Another difference could be seen in Figure 4.14 where
the variation in the stiffness parameter changes the energy stored by the spring. The
dependence in the damping coefficient when it comes to Potential energy is fairly
negligible.
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Figure 4.14: Total Potential Energy of the whole particles at ΔtDEM = 5 · 10–5s
and ΔtMBD = 10–3s for different stiffness and damping coefficients.
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Figure 4.15: Position of the box in the vertical direction at a time-stepΔtDEM = 5·
10–5s and a step-size ΔtMBD = 10–3s for different stiffness and damping coefficients.

In Figure 4.15 instead, the box kinematics to the falling rocks is shown. Here we
could detect the convergence of theory into practice, since with a high stiffness value
the box moves less in the vertical position. When it comes to damping we could see
an amplitude difference only, having to deal with quite similar frequencies. Both
Figure 4.15 and 4.16 verify that at a high damping value the energy dissipated
is higher, leading to a smother movement of the box, which also implies a lower
amplitude.
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Figure 4.16: Velocity of the box in the vertical direction at a time-stepΔtDEM = 5·
10–5s and a step-size ΔtMBD = 10–3s for different stiffness and damping coefficients.

4.2.2 Particle mass variation
It is of interest to check the physics fidelity when different particle masses are intro-
duced into the system. In Section 4.2.1 we refer to a non-varying mass value which
is set as mtot = 200kg. This time some constant values to the general parameters
are assigned. Table 4.2 depicts the constant values which were used in the following
simulations.
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ΔtDEM 5 · 10–5 s
ΔtMBD 10–3 s

Box density 1000 kg/m3

Particle mean radius 0.075 m
Young’s modulus 100 MPa

Translational spring stiffness 25000 N
m

Damping coefficient 2000 N
m/s

Table 4.2: Constant parameters for the simulations, which results can be seen in
Figures 4.18, 4.19, 4.20, 4.21 and 4.22.

The 3 simulations run at a different mass entering the system, where each mass is
respectively m1 = 300kg, m2 = 500kg and m3 = 700kg.
Introducing various masses also brings up to the variation of other parameters.
In order to have a balanced and non-oscillating system we need to check also the
damping ratio. Various damping scenarios are possible, which include undamped,
under-damped, critically damped and over-damped system. This condition is deter-
mined by the oscillations exerted onto the system and the damping ratio, denoted
by ζ. The latter being the ratio between the damping coefficient and the critical
damping coefficient. We tend to have an under-damped scenario in the simulations,
where the parts hit back and forth the spring-damper system after each loop, until
the available energy in the system dies. In the initial simulations in Section 4.2.1, a
damping ratio ζ = 0.16 is used, which is kept constant also in the next simulations.

ζc = 2
√
Km (4.1)

where ζc is the critical damping coefficient, K is the spring constant kept at a con-
stant value of 32700 N

m and m is the mass introduced in the system.
Then we use the predefined damping ratio to obtain an appropriate damping coef-
ficient value for each of the introduced masses, as shown in Table 4.3.

m [kg] ζc [Ns
m ] ζ [Ns

m ]
1367.5 13374 2140
1567.5 14318 2292
1767.5 15204 2433

Table 4.3: The damping coefficient magnitude for each of the simulations per-
formed under varying particle total mass.

Figure 4.17 shows the amount of material entering the box. Here we could see the
effect of the size of the box and the volume flow rate of the falling rocks. Initially, we
opt for 300, 500 and 700 kg of material entering the box, but the collision between
the rocks and the size of the box, make the latter to be filled only partially. This
is to certify the reason why the force on the box represented in Figure 4.18 is not
linear to the increase in mass, due to the diminution of the mass present.
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Figure 4.17: Total mass of rocks entering the box at a time-step ΔtDEM = 5·10–5s
and a step-size ΔtMBD = 10–3s.

In order to stay linear with the physical response obtained, in Figure 4.17 the real
mass entering the system at each different case is represented. As could be seen from
the Figure 4.17, the mass generation phase takes place during the first 2 seconds of
the co-simulation. Also, in the legend attached there could be seen the real value of
the mass entering the box.
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Figure 4.18: Force applied to the box in the vertical direction at a time-step
ΔtDEM = 5 · 10–5s and a step-size ΔtMBD = 10–3s for different masses entering the
box.

Figure 4.18 represents the vertical force applied onto the box from the falling rocks.
Note also, that the box is supported by a spring-damper system. As expected, the
blue curve shows a lower vertical force than the other two curves due to the lower
amount of mass introducing into the box.
In addition, as expected the kinetic and potential energy present in the system is
higher for a bigger mass. The latter also affects the position of the box in the vertical
direction, which is depicted in Figure 4.21.
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Figure 4.19: Total Kinetic Energy of the whole rock particles at a time-step
ΔtDEM = 5 · 10–5s and a step-size ΔtMBD = 10–3s for different masses entering the
box.

The Kinetic Energy could be seen in Figure 4.19, where a similar trend for the
different masses could be seen, and spikes could be seen when the rocks are falling
into the box, making the trend complex, but still physically reliable. Also, note that
for a Mass of 365 kg the system undergoes an overall interface instability.
Alongside the Kinetic Energy, Potential Energy is shown in Figure 4.20. We start
at 0 level of potential energy then increasing with the rock height and the time they
fall. Once, the stability is reached and a converging trend could be seen from second
2.5 and onward. Anyhow, the energy as could be seen is negative. This happens
due to the movement of the box in the negative vertical direction, hence leading to
a negative value of the Potential Energy.
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Figure 4.20: Total Potential Energy of the whole rock particles at a time-step
ΔtDEM = 5 · 10–5s and a step-size ΔtMBD = 10–3s for different masses entering the
box.

32



4. Model verification

0 0.5 1 1.5 2 2.5 3 3.5 4

Simulation Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

P
os

iti
on

 in
 z

 d
ire

ct
io

n 
(m

)
Mass 300 Kg
Mass 354 Kg
Mass 365 Kg

Figure 4.21: Position of the box in the vertical direction at a time-step ΔtDEM =
5 · 10–5s and a step-size ΔtMBD = 10–3s for different masses entering the box.

Figure 4.21 instead represents the position of the box in the vertical direction, which
as expected moves downwards due to the force exerted by the rocks mass. Note that
the converging point of the box, is directly dependent on the spring constant co-
efficient. As we choose to keep a constant value for all the simulations performed
the results that could be seen from the Figure 4.21, are only related to the mass
entering the system, hence depending on the mass variation.

On the other hand, apropos of the box velocity, the mass entering the system has a
negligible effect to the frequency or amplitude variation, leading to a rather negligible
overall impact.
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Figure 4.22: Velocity of the box in the vertical direction at a time-step ΔtDEM =
5 · 10–5s and a step-size ΔtMBD = 10–3s for different masses entering the box.
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4.2.3 Particle size examination
This section focuses in evaluating the particle size effects in the physical parameters
we are looking into. The approach is the same as that of Section 4.2.2. Three differ-
ent rocks mean radius are introduced, respectively Rm1 = 0.060m, Rm2 = 0.090m
and Rm3 = 0.120m. Instead, table 4.4 introduces all the non-varying parameters
which are being used in the co-simulations which results are to be shown in the
following pages.

ΔtDEM 5 · 10–5 s
ΔtMBD 10–3 s

Box density 1000 kg/m3

Introduced mass 250 Kg
Young’s modulus 100 MPa

Translational spring stiffness 25000 N
m

Damping coefficient 2000 N
m/s

Table 4.4: Constant parameters for the simulations, which results can be seen in
Figures 4.23, 4.24, 4.25, 4.26 and 4.27.

The figures represented below depict the effect of particle size in the convergence of
the simulation technique used. In Figure 4.23 there is represented the force applied
on the box in the vertical direction at different rock mean radius. The results show a
very small dependence of the rock mean radius to the force obtained. But, this could
be also due to the fact that the mean radius variation is small when compared to the
bucket size and the mass introduced to the system, therefore the results are difficult
to diverge at different values. Bigger sizes of rocks could lead to possible physical
results fluctuations, but anyhow without affecting the validity and the fidelity of the
interface.
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Figure 4.23: Force applied to the box in the vertical direction at a time-step
ΔtDEM = 5 · 10–5s and a step-size ΔtMBD = 10–3s for different rock particle sizes.
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Figure 4.24: Total Kinetic Energy of the whole rock particles at a time-step
ΔtDEM = 5 · 10–5s and a step-size ΔtMBD = 10–3s for different rock particle sizes.

In addition to Force, there is possible to see the effect the rocks mean radius has
on the Kinetic and Potential Energy, respectively shown in Figures 4.24 and 4.25.
Kinetic Energy shows a very small dependency on the particle size chosen, thus the
reason could be the same as the one regarding the force in the vertical direction.
Anyhow, in Figure 4.24 a divergence of the Kinetic Energy could be seen in the end
of the simulation when a rock mean radius of 90mm is chosen. This could be prone
to the interface instability, which is also the main contributor to the fluctuating
effect in Figure 4.24.
As regards the Potential Energy, it has a very converging trend for any of the chosen
sizes. But, as expected it tends to diverge during the end of the simulation, as it
did for the Kinetic Energy, when a rock mean radius of 90mm is being used. Other
than that, the Potential Energy as expected, also in this case reaches a negative
value, due to the negative displacement of the overall system, containing the rocks
and the box, in the end of the simulation.
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Figure 4.25: Total Potential Energy of the whole rock particles at a time-step
ΔtDEM = 5 · 10–5s and a step-size ΔtMBD = 10–3s for different rock particle sizes.
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Figure 4.26: Position of the box in the vertical direction at a time-step ΔtDEM =
5 · 10–5s and a step-size ΔtMBD = 10–3s for different rock particle sizes.

As we can see for each of the performed simulations the dependence on particle size
is relatively small and negligible, as we reach a converging curve for the physical
parameters of interest. The box velocity and position remain quite unaffected from
the variation of the rock dimension. In Figure 4.26 the box starts at at a 0 vertical
position then we could see a vertical negative displacement due to the weight of the
box itself, which in turn is supported by the spring-damper system, and over time it
tries to reach a converging and stable point trend when the rocks are entering it. A
final convergence point could be seen when we reach 3 seconds of the simulation. The
latter is furtherly confirmed when referring to the velocity in the vertical direction
represented in Figure 4.27, which tries to settle down and reach a converging velocity
of approximately 0 m/s after 4 seconds of simulation.
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Figure 4.27: Velocity of the box in the vertical direction at a time-step ΔtDEM =
5 · 10–5s and a step-size ΔtMBD = 10–3s for different rock particle sizes.
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5
Bucket load predictions

5.1 General load cases data and components

In this chapter the focus is representing the final results. The implementation of
the overall interface reliability is discussed. The dynamics of the wheel loader in
Simulink® and of the bucket to particles coupling is verified after each co-simulation
set-up. Two versions of simulation cases are being introduced in each of the two
sections, 5.2 and 5.3. But, let us first have a visual representation of the bucket itself.
Subsequently, Figure 5.1 shows a sketch of the bucket in two different standpoints.
Beyond, Figure 5.2 gives a 3D representation of the bucket, in IPS Demify®.

(a) Scene in x-y plane. (b) Scene in x-z plane.

Figure 5.1: The sketch of the bucket used in the final simulations reported in
Sections 5.2 and 5.3.
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Figure 5.2: A 3-D representation of the bucket used in the simulations reported
in Sections 5.2 and 5.3.

Both the Figures show the geometry mesh of the bucket. Bigger meshes could be
noticed in planar surfaces, whereas much smaller mesh size at the corners and areas
where the dynamical load prediction is more difficult. As regards the time steps, a
DEM time-stepΔtDEM = 5·10–5s is used, whereas a MBD step-sizeΔtMBD = 10–3s
is chosen.

5.2 Vertical loading of stand still machine
In order to have an understanding of the physics between the bucket and the rocks,
the choice of having a simple bucket to rock interaction seems a reasonable approach,
so the converging forces and moments are clearly seen and thus assuring the coupling
method fully converges.

That being said, in this section a simulation in which a vertical falling of the rocks
into the bucket for a specified interval of time is being carried out. This stand still
bucket course precedes a vertical movement of the bucket and the particles inside
it. Following the dynamics of the rocks and the bucket, we get a full record of the
forces, moments and velocities present in the system.

As previously mentioned, the communication time step and step-size are respec-
tively ΔtDEM = 5 · 10–5s and ΔtMBD = 10–3s. In addition, a rock density of 1000
kg/m3 is chosen, followed by a steel density of 7000 kg/m3, both with a Poisson’s
ratio of 0.25. As regards, the rock to rock interaction a friction coefficient of 0.6 is
chosen, followed by a restitution coefficient of 0.15. Instead, the rock to bucket in-
teraction is composed of friction coefficient of 0.4, alongside a restitution coefficient
of 0.15. The bucket is initially positioned at a rotated angle of 65◦ with respect
to the y-axis. On the other hand, the rocks have a mean size diameter of 75 mm,
with a lower and upper limit of 60 mm and 90 mm. Besides the particles are gener-
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ated for a time duration of 1 second, frequency of 200 Hz and a mass rate of 180 kg/s.

Having introduced the set of specifications of the simulation, the obtained physical
parameters are to be represented. The figures shown below give a visual feedback
related to the kinematics of the system.
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Figure 5.3: Force exerted on the bucket in all the directions while performing a
vertical loading simulation.

Figure 5.3 represents the force applied on the bucket in all the directions. As ex-
pected, the amount of the force in the vertical direction is the major constituent.
The impact of the rocks to the bucket is a main contributor to the graph, and it
could be noted that in the first seconds of the simulations there is a bump of vertical
force. This force reaches a stable and converging point as soon as the rocks stop
falling and thus the vertical force applied to the bucket could be associated solely
with the weight of the rocks. Also note the trend of the blue curve representing
the Force in the longitudinal direction. That comes due to the contact between
the rocks and the bucket itself, having the latter lifted, the overall impact of the
falling rocks inside the bucket cause a slight movement of the bucket in the positive
and negative direction, which comes from the presence of a force in that direction.
Anyhow, this force reaches a zero trend as soon as the rocks are fully generated.
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Figure 5.4: Moment applied on the bucket while performing a vertical loading
simulation.

Figure 5.4 instead, represents the moment progress over simulation time. It can
be clearly seen its dependence to the forces being applied to the bucket. Also, in
this graph we see the partition of the moment in all the 3 directions, with a major
reach in the y direction. Note that during the last 10 seconds of the co-simulation
a moment change could be observed. This comes due to the lifting of the bucket in
the vertical direction, hence leading to a movement of the rocks inside the bucket,
which in turn give rise to a variation applied in the y direction. Another thing of
interest, is the slight moment there is present around the x direction mainly in the
initial stage of the simulation, which is prone do the minimal mass variation present
inside the bucket with respect to its center line standing in the middle of the bucket.
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Figure 5.5: Velocity of the bucket in all directions while performing a vertical
loading simulation.
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On the other hand, the velocity of the bucket is represented in Figure 5.5. Velocity
is the parameter which is computed in Simulink® and right after transmitted to
Demify®, which promptly updates the force applied to the bucket, via the DEM
solver. It could be observed that in x direction the presence of an impact force due
to the rocks slightly varies the wheel loader velocity. Anyhow, the main velocity rise
comes with the hydraulics which lifts the bucket.

5.3 Horizontal loading of the machine
In this second example, the simulation conditions are marginally modified. The
mean size of a rock particle is Rmean = 0.4m, accompanied by a Poisson’s ratio of
0.28, Young’s modulus of 10 MPa and density of 2700 kg

m3 . The total amount of rock
material is 6500 Kg. As regards the time step and step-size, they remain the same,
the DEM time-step is ΔtDEM = 5 ·10–5s and the MBD step-size is ΔtMBD = 10–3s.
In this instance, the wheel loader performs a horizontal movement into a pile of
rocks, as might be seen in Figure 5.6. Here, the particle to particle and particle
to bucket interaction is more integral so a more elaborate inspection of the forces,
moments and velocities could be conducted.
Figures 5.7, 5.8 and 5.9 show the co-simulation results from Simulink, whereas Figure
5.6 shows an instant of the co-simulation in IPS Demify.

Figure 5.6: A visualization in x-z plane of the bucket entering a pile of rocks,
loading and exiting from it in the negative x-direction.

The simulation time is set to be 20 s, which is the time the bucket enters the pile,
withdraws the material and then leaves the pile.

Figure 5.7 shows the forces applied on the bucket in all the directions. As expected,
there is almost no force present in the y-direction. The interaction between the
bucket and rocks occurs mainly in the longitudinal-x and vertical-z directions. Note
that, there is a high presence of force in the longitudinal direction, due to the
presence of a huge amount of rocks, which weight makes it difficult for the bucket
to move forward. This force tends to converge to zero, when the bucket performs a
vertical loading movement. At this point, there is a presence of force in the vertical
direction, which then converges to the force applied by the weight of the material
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remaining inside the bucket until the end of the simulation. In the trend of the
vertical force, two spikes could be noticed. This comes to the material movement
inside the bucket, when a velocity gradient is applied onto the bucket. In other terms,
some of the material inside the bucket lifts up when perceiving a quick change of the
velocity of the bucket and then gets back into the bucket, leading to the same peak
height, hence the same weight of material. The curve then performs a decreasing
trend which comes due to the dropping of some of the rocks inside the bucket.
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Figure 5.7: Force exerted on the bucket in all the directions while performing a
horizontal loading simulation.

In Figure 5.8 instead, the moment in all directions is represented. A large moment
value is present around y axis, since a high amount of load is applied in the x
and z directions, making the rotation around y-axis difficult and heavy loaded, thus
creating a moment around y-axis. Also in this case a moment spike could be noticed
during the same simulation time, as present in the Force graph. As explained in
advance, this is a result of the absent force, in this case in the vertical direction,
which leads to a double spike formation. Anyhow, it is conserved, even though the
moment around y-axis converges to a lower value due to the diminishing of the forces
present, hence dropping of the rocks from the bucket.
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Figure 5.8: Moment applied on the bucket while performing a horizontal loading
simulation.

On the other hand, Figure 5.9 depicts the velocity of the bucket in all the directions.
To note, the velocity in the vertical-z direction when the bucket performs a lifting
operation so to make the loading possible. The blue curve instead represent the
overall bucket movement in the longitudinal direction, where a positive trend could
be seen when approaching the pile to make the loading possible, and a negative
trend could be seen after the loading is performed. Instead, there is no velocity
present in the y direction.
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Figure 5.9: Velocity of the bucket in all directions while performing a horizontal
loading simulation.

Overall, the results obtained from the loading operation cases represent a verifica-
tion step when it comes to the functioning of the coupling between Demify® and
Simulink®.
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6.1 Discussion
The procedure deployed in this research adjusts to the different simulation cases,
depending on the needs related to the aim of a chosen project. In Chapter 5, simple
material handling operations are performed. Although, the simulations could be
additionally enhanced by implementing more elaborate wheel loader operations, the
goal in this project is that of retrieving results, in terms of physical reliability and
computational performance, hence a functioning coupling.

The co-simulation target is reached by developing a coupling technique derived by
the use of Functional Mock-up Units, which stands as a solid bridge between the
DEM solver Demify® and the MBD solver in Matlab/Simulink®. The pioneering
step is the enactment of FMU, being the main ingredient of the whole recipe. The
use of a new GPU solver for complex shaped particles, in this case non-convex poly-
hedrons, gives rise to high well-founded rock shape representation. This, in parallel
with a firm DEM solver, making up for the interactions and motions between the
rocks and the bucket, bring about a strong starting point for the solution. The latter
is packed into FMUs being a suitable language for Simulink® where it is imported,
making rise to a coupling between the two, where the communication per simulation
is imminent.

Obtaining reliable results is not the only curb to take into consideration, because the
computation performance is also of high interest. That being said, all the simulation
strategy follows a DEM time step and MBD step-size analysis, where the simulation
time is used as a performance checker throughout all the performed load cases, up
to Chapter 5, where fixed values of DEM time step and MBD step-size are set.

6.2 Final Remarks
The challenges behind the design and co-simulation of heavy equipment machines
start with the complex nature of the material these machines will face, followed by
the remarkably high amount of particles generated per simulation. Keeping in mind
the goal, which is to meet the needs of engineers, makes the process even more chal-
lenging and tempting. In addition to that, almost every aspect of a wheel loader’s
component performance is dependent to some degree to the material being handled.
Hence, it is crucial to ensure a functional design to then opt for high performance
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efficiency.

As a result, the study of the rock particle characterization is vital in this project as
they stand behind the dynamics of the system. In addition, a work-flow for Demify®
and Simulink® is developed. The strategy used in this work does not only verify a
new approach to a reliable and computationally effective match of the reality via a
virtual elaboration technology, but also puts into play new co-simulation performers
such are FMUs, which stand as the new and reliable play makers of the software
coupling methods.
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