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Optimization of routes for a fleet of plug-in hybrid vehicles
Mathematical modeling and solution
JONATHAN RUFFIEUX
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract
We have developed mathematical models and optimization methods for the problem
of routing a fleet of plug-in hybrid vehicles. This problem is referred to as the hybrid
vehicle routing problem (hybrid VRP) and it is a generalization of the traditional
VRP, which regards only one type of propellant. The most cost-efficient routes for
hybrid vehicles may differ substantially from corresponding routes for other types
of vehicles. Our models consider a homogeneous fleet of plug-in hybrid vehicles,
constrained by both load capacity limits and time windows for delivery. Recharging
of the vehicle’s battery is optional, and can be done only at special recharging sites
(nodes). We consider the recharging times being either constant or dependent on
the battery charge level at arrival at the recharging node.
The hybrid VRP has not yet been studied to a large degree. To the best of

our knowledge, there is no successful implementation of a mathematical solution
procedure for the hybrid VRP including separate customer and recharging nodes.
The hybrid VRPs considered are modeled as mixed integer linear programs and
solved using column generation, which separates each problem into a set covering
master problem, and a shortest path subproblem.
Our tests show that the hybrid VRPs are time-consuming to solve exactly using

conventional branch-and-cut methods. Our column generation approach combined
with the dominance criteria reduces, however, the solution times considerably.

Keywords: hybrid vehicle routing problem, hybrid VRP, column generation, plug-in
hybrid vehicles, recharging time, dominance criteria.
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1
Introduction

Global warming, ozone layer depletion, water eutrophication, acid rain — the nega-
tive impacts man has had on the environment are many. Today, we are more aware
of the consequences our lifestyles have on nature, and slowly our society has started
to change to reduce these negative effects. In the United Nations’ Climate Change
Conference 2015, a global agreement on the reduction of climate change was created
and finally signed by 174 countries in 2016 [1]. The main goal with the agreement
is to restrict the global warming to less than two degrees Celsius. A lot of changes
have to be done to reach these goals, not the least in the transportation sector. Still,
in the European Union one-fifth of all CO2 emissions are estimated to be caused by
road transports, and according to the European commission the transport sector is
the only major sector in which greenhouse gas emissions are still rising [2]. While
vehicle manufacturers improve their products to make them more environmental
friendly, an increase of emissions could likely be explained by a growing transporta-
tion sector. It is therefore likely that more efficient logistic planning, would have a
great potential of reducing the hazardous effects the transportation sector has on
the environment.
The idea of making transportation more efficient is not a new idea; the first

vehicle routing problem (VRP) was introduced by Dantzig and Ramser already in
1959 [3] and is now a very well studied mathematical problem. This problem was
formulated as a delivery problem, where a fleet of vehicles must be scheduled to
satisfy the demand of some given costumers, while minimizing the total traveling
distance. For a long time the main focus when studying different vehicle routing
problems remained a pure profit optimizing one. But in later years, in tact with
governmental regulations and appearance of new technologies, an additional focus
on more direct environmental aspects of vehicle routing has been considered.
The way to go from studying environmental friendly routing problems, to imple-

ment these in large scale in real life may however be a long one. For a company it
may not just be the big investment of the new fleet of vehicles, but they might be
forced to adjust their business to a possible limited infrastructure for these vehicles
in the areas where the company is active. This might especially be the case for
electric vehicles, since they have a rather short reach per charge and are thus highly
dependent on a dense net of recharging stations. As a possible easier option than
changing the fleet fully to alternative fuel vehicles (such as electric, gas or ethanol),
could be to consider the usage of hybrid vehicles, that is, vehicles that can run on
more than one type of fuel. The possible advantages with this is that the new fleet,
while still more environmental friendly, is less dependent on the new infrastructure
than electric vehicles, for example. In this way the use of hybrid vehicles can serve
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1. Introduction

as a bridge between the use of old and new technology while making less of a change
for companies.
Since 1959 many different variants of the VRP have been studied and solved by

different techniques. VRPs with hybrid vehicles have not yet been widely researched,
especially, not much has been done in terms of exact solution methods for these type
of problems. In this thesis we therefore focus on the routing of plugin-hybrid vehicles
(i.e. hybrid vehicles where the battery can be charged at recharging stations), for
which we present two slightly different mixed integer linear vehicle routing models
and also present a way to solve these using column generation combined with a
dynamic programming algorithm. The subject was proposed and carried out as a
collaboration between Chalmers University of Technology and Volvo Group Trucks
Technology (GTT).
To be able to optimize their products it is of great use for Volvo AB to learn more

about how their vehicles are used. With logistic planning for new types of vehicles,
it may be possible to find driving patterns that are unique to these types of vehicles.
This may give further insights of how the use of these new kinds of vehicles may differ
form how other vehicles are used. With this report I hope to contribute by providing
some more insight in the routing or hybrid vehicles. However, when modelling a
real life problem mathematically, one must in general compromise between how
well the model should describe reality, how easy it is to solve the problem and
the ease of interpreting the results. In this report we therefore focus on adapting
column generation methods for two rather idealized problems (one with the simpler
assumptions of fixed recharging times, and the other where the recharging time
depends on the battery level at arrival to the recharging station), future work in the
area could suggestively be to apply this on more realistic data.
In this thesis we make the following restrictions:
1. The fuel and the electricity usage are assumed to be directly proportional to

the distance travelled with the respective propellant.
2. When a recharge is undertaken it must be continued until the battery is full.
3. We also assume that one freely can choose when to drive on what propellant.

The outline of this thesis is as follows. First, in Chapter 2, a literature study is
conducted, which gives an overview of the literature of VRPs that puts environmen-
tal questions in focus. Then we describe the two hybrid vehicle models that will
be treated in this thesis, along with a mathematical formulation of each of them.
Chapter 4 will present some optimization methods that will be used to solve the
problems and Chapter 5 decomposes the two hybrid VRPs into a column genera-
tion form in terms of master- and subproblems. In Chapter 6 the implementation
of the column generation method for the hybrid VRPs are presented. The largest
part of this chapter is devoted to the solution method of the subproblems, which is
an dynamic programming algorithm. For this dynamic programming algorithm we
present problem specific dominance criteria, which are stronger than the dominance
criteria generally used when solving VRP. In Chapter 7 the tests and results are
presented and in Chapter 8 the conclusions and outlooks are presented.
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2
Literature Study

Since around the beginning of the 21st century a new focus for VRPs has been
researched, the so called green VRPs. The green VRPs are simply VRPs that takes
environmental aspects, like greenhouse gas emissions, into account. This chapter
presents an overview of the study of green VRPs. Section 2.1 gives a brief overview
of areas in which green VRPs that have been studied, while Section 2.2 specifically
treats the written work on routing of hybrid vehicles.

2.1 A Brief Overview of green VRP Literature

Today, there is an increased focus on the environment and a pressure to decrease
the amount of emissions of greenhouse gases. This can be seen in an increase of
publications of VRP literature with focus on different environmental aspects, start-
ing fifteen years back ([4] contains a review of publications until 2013 aiming at the
reduction of fuel consumption).
In this text existing surveys on the green VRPs are summarized and some new

interesting literature on the green VRPs is added.
The survey by Choy et al. 2014 [5] describes green VRP (denoted in this text as

G-VRP) as follows,
“G-VRPs are characterized by the objective of harmonizing the environ-
mental and economic costs by implementing effective routes to meet the
environmental concerns and financial indexes.”

and divides the green VRP into three groups:
• “Green VRP” (G-VRP): Deals with the optimization of energy consumption

of transportation
• Pollution Routing Problems (PRP): VRP that aims to find routes with less

pollution
• VRP in Reverse Logistics: Focus on the distribution aspects of reverse logis-

tics1

In Bektas̨ et al. 2016 [6], however, the green VRP is described as:
“Green vehicle routing is a branch of green logistics which refers to vehi-
cle routing problems where externalities of using vehicles, such as carbon
dioxide-equivalents emissions, are explicitly taken into account so that
they are reduced through better planning.”

1The logistics that is concerned with collection and recycling of waste products.
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2.1.1 Limitations
Neither in [6] nor in the earlier literature survey by Bektas, Demir and Laporte [4] is
reverse logistics regarded as a part of green VRP. The decision not to include these
problems in the definition of green VRP seems reasonable as these problems are not
mainly concerned with environmental-friendly vehicle routing. The “green part” in
VRP in Reverse Logistics is mainly about waste and end-of-date goods collection
for recycling and not environmental friendly routing. I have thus decided to review
the literature as follows. I will present literature from and related to the groups
Green VRP ands PRP presented in [5], however I will not sort them into separate
groups as the line between them gets very vague. The literature concerning reverse
logistics is left out.

2.1.2 Green VRP literature
Energy minimization A rather straightforward way to approach the influence
on the environment in a VRP is to directly minimize energy consumption.
This was done by Kara et al. [7] in what they call the Energy Minimizing Vehicle

Routing Problem (EMVRP), modelled as an integer linear program. They formu-
lated a capacitated VRP (CVRP), in which the nodes have demands that must be
met and the vehicles have capacity limits. The objective is to minimize the total
energy consumed (total work done by the vehicles) instead of the total distance
travelled or total cost of the routes. The work done by the vehicle is calculated
as the work done by overcoming the vehicle’s friction forces and was thus assumed
only to depend on the weight of the vehicle and some friction constant. For a set
of test instances, solutions to the EMVRP were compared with solutions to corre-
sponding distance minimizing VRP; the latter model resulted in up to 13% shorter
paths. For a set of test instances, solutions to the EMVRP were compared with
solutions to corresponding distance minimizing VRP; the latter model resulted in
up to 13% shorter paths. Obviously,the most environmental friendly route is not
necessarily the shortest one, which shows the need for new objectives to study the
environmental aspects of vehicle routing.
Fukasawa et al. (2016) [8] present two alternative mixed integer linear program-

ming formulations of the EMVRP presented in [7]. They also propose two exact
solution methods; one branch-and-cut algorithm (see [9, Ch. 12]), and one branch-
cut-and-price algorithm (see [9, Ch. 13]) for the EMVRP, the latter showing espe-
cially good performance.

Fuel/Emission minimization A more commonly used approach to reduce the
environmental impact is to minimize the fuel consumption or the emissions directly.
However, both the fuel consumption and the total emissions of a vehicle are very
complex to model. In [10] the authors put several different fuel consumption models
from the literature to test. Six different models describing fuel consumption under
constant speed were tested w.r.t. how well some collected data was predicted. The
data used varied in both mean speed and in total weight of the vehicle. The results
showed that none of the models could describe the collected data for all instances.
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Four of the models always overestimated the fuel usage while the two others under-
estimated it. This suggests that one ought to be careful when interpreting results
from literature where fuel consumption estimation plays a great roll. The results
also show that it is hard to compare models in terms of “success of reducing emis-
sions” if their fuel consumption models differ. However, in [10] the behavior of the
models was also analyzed separately. The conclusion was that all of them follow the
general properties of fuel consumption: increased fuel consumption per km at low
speeds due to inefficient energy usage, at high speeds due to increased air drag, and
for heavier vehicles due to increased friction.
The article [4] also reviews fuel consumption models. It also lists factors that

have been shown to influence the fuel consumption. A short version of the list of
factors is (in the order from most to least commonly used in the literature): Speed,
Payload, Congestion, Fleet Size and Mix, Gradient, Driver Profile.
Bektas and Laporte [11] present the so-called Pollution Routing Problem (PRP)

as an extension of the VRP with time windows (VRPTW), which takes a broader
view on the costs involved.2. The PRP is modelled as a non-linear mixed-integer
optimization problem which is linearized and solved for small instances with objec-
tives that include fuel, emission, and driver costs, using speed and load as decision
variables. Demir et al. [12] also develop a two-stage adaptive large-neighborhood
heuristic to solve this PRP for large instances. They also introduced a new set of
test instances for PRP and on which the heuristic is tested. Koç et al. [13] further
extends the PRP by considering a heterogeneous vehicle fleet, which they solve using
a metaheuristic.
Xiao et al. [14] present the Fuel Consumption Rate CVRP (FCVRP) where the

total fuel consumption is minimized. As in [7], the only factors affecting the cost (in
this case in terms of fuel consumption) of a route are the distance traveled and the
vehicle weight. The fuel consumption is calculated using a Fuel-Consumption-Rate
that depends on the load, and is modeled using linear regression on statistical data.
The model is solved for some test instances for CVRPs with Fuel-Consumption-Rate
and the results show that the FCVRP model can reduce fuel consumption by 5%
on average compared to the regular CVRP model.
Kuo [15] presents a time dependent VRP (TDVRP) that aims to minimize fuel

consumption. In this model the vehicle speed is time dependent and thus the travel-
ing time between nodes varies over time. The model fulfills a non-passing property,
which means that leaving a node earlier must result in also reaching the next node
earlier. The fuel consumption is here modeled to depend both on the weight of the
vehicle and its travel speed. The problem is solved using simulated annealing and
the results suggest a 24.6% and 22.7 % reduction in fuel consumption compared
with the method based on minimizing travel time and distances, respectively.
Demir et al. [16] presented a bi-objective version of the PRP which aims to mini-

mize the total travel time and the fuel consumption. An adaptive large-neighborhood
search algorithm combined with a speed optimizing procedure is used to solve this
problem. Test results show that energy savings can be done at the cost of travel
time, showing that 9.7% increase in driving time can decrease the energy require-

2A VRPTW is a VRP in which the customers specify time intervals during which they should
be visited.
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ment by 27%.
Another view of time dependent speeds and emissions is to consider traffic con-

gestions. Maden et al. [17] present a CVRP with the objective to minimize the total
travel time under influence of congestion. The case study included showed about 7%
reduction in CO2 emissions as compared to a model that assumed constant speed.
Franceschetti et al. [18] contribute with a model that minimizes fuel consumption

while also taking congestion into consideration. The model is an extension of the
PRP presented in [11] and is presented as a time dependent integer linear program,
using the fuel consumption model presented in [11]. The congestion part is modeled
in a very simple way; two time periods are considered, the first with congestion and
the second without. Speed and departure times for customers are decision variables
in the model.
A later article in the same direction of study is presented by Xiao and Konak [19],

who formulate a time-dependent heterogeneous G-VRP. The objective is to minimize
CO2 emissions and a weighted tardiness penalty for delivery after due date. The
emission rate is not modeled to depend on payload, but they are assumed to be
time and vehicle dependent. The authors also present a meta-heuristic combining a
genetic algorithm for the routing part of the problem with a dynamic programming
algorithm for the scheduling part, seemingly with good results.
Yet another publication that models congestion is [20]. The speed is considered

as a decision variable and the objective is to minimize greenhouse gas emissions.
The authors present a column generation based tabu search algorithm to solve the
problem and the results show a reduction in emissions by 3% as compared to when
the total travel time is minimized.

Alternative-Fuel Powered VRP A relatively new field that has become popular
to study is alternative-fuel VRP (AF-VRP). These problems model, for example,
electrically or natural gas driven vehicles, which can help to reduce the negative
effects freight transports has on nature. There has been a lot of studies concerning
different kinds of vehicles in VRPs through the years, especially in the heterogeneous
VRPs, where the vehicle capacity is one of the parameters that has been varied most.
The usage of alternative fuel vehicles differs from conventional fuel vehicles in most
of these studies in the aspect that they have a limited driving range or that refueling
stations are in general scarce. There is thus a big difference between these problems
and the traditional VRPs as AF-vehicles can get stranded if the routes are not short
enough or if refueling is not planned ahead. This means that the AF-VRP in general
can not be modeled as a traditional VRP or be solved by the same solution methods.
Erdogan and Miller-Hooks [21] present a VRP, in which there is a recharging/re-

fueling option for the AF-vehicles to be be able to use them for longer routes. The
objective is to minimize the total travel distance and the problem is modelled as
a mixed integer linear program. The fuel consumption is modeled to depend only
on traveled distance and vehicle weight, and a fixed recharging/refueling time is
assumed. Two different heuristics are suggested to solve the problem: a Modified
Clarke-and-Wright Savings Heuristic (see [22]) and a Density-Based Clustering Al-
gorithm.
Schneider et al. [23] suggest a mixed integer linear program for electrical vehicles
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with time windows which considers non-fixed charging times at recharging stations.
Here, the time it takes to charge the battery is dependent on how much charge
there is left when reaching the recharging station. The recharging speed is for the
simplicity of the model assumed to be constant, even though the last 10–20% of the
charge quantity process takes longer time ( Marra et al. [24]). As solution method
they present a hybrid heuristic combining a variable neighborhood search algorithm
with a tabu search heuristic.
Further AF-VRP literature includes among others [25], in which the battery con-

sumption is modeled more thoroughly (so it depends on vehicle speed, road slopes,
and vehicle weight), [26] and [27], in which bi-fuel vehicles are used, and [28], which
considers the possibility to recharge electric vehicles at all customer nodes.

2.2 Literature on VRP with plug-in hybrid vehi-
cles

In this section some more details on literature concerning VRP with plug-in hybrid
vehicles is given. To the best of our knowledge only three written works exist in this
subject. These are a MSc thesis by Abdallah [29], a paper by Lebeau et al. [30],
and an unpublished paper by Mancini [26]. A summary of these works is given here
along with some short notes on how they relate to this thesis.
The VRP considered in [29] assumes that the vehicle batteries can be recharged at

any customer node. The recharging can take place either before or after a customer
is served and partial recharging of the batteries is allowed (i.e. the recharging time
is a decision variable). The objective is to minimize the cost arising from travelling
on conventional fuel and no cost is considered for driving on electricity. Both a
tabu-heuristic and a commercial solver are used to solve different Lagrange relaxed
versions of the problem.
The paper [30] takes another modelling approach compared to [29]. Here, recharg-

ing of vehicles can only be undertaken at the depot, and the recharging time depends
linearly on the battery level. The objective is to minimize the total cost, which is
the sum of vehicle cost, propellant cost, and cost of drivers. The propellant cost
is considered to be a fixed price per kilometer, hence it does not make any differ-
ence between the cost of running on conventional fuel and running on electricity. A
savings heuristic similar to the one presented in [22] is used to solve the problem.
In [26], recharging of vehicles may be undertaken only at special recharging sta-

tions, similar to the AF-VRPs presented in [21, 23]. A difference to those works
is, however, that there is nothing that forces a visit to a recharging node, since a
plug-in hybrid vehicle can simply switch propellant when needed to. The recharging
time is here assumed to be constant and driving on conventional fuel corresponds
to a cost in the objective function. The solution method suggested in [26] is a Large
Neighborhood Search heuristic.
Both [30] and [26] have, however, some inconsistency between the models de-

scribed in the texts and their corresponding mathematically formalized models. In
[30] nothing seems to promote the usage of electricity, which results in optimal so-
lutions where electricity is never used. In [26] only non-positive battery levels are

7
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allowed, by resetting the battery level to zero in recharging nodes; this results in a
strange objective penalty cost, which in the objective function that depends on the
battery level and the distance to the closest recharging node.
A paper that closely relates to hybrid VRPs is [31] by Arslan et al., present-

ing a shortest path problem (SPP) with plug-in hybrid vehicles—containing both
recharging nodes and battery switching nodes. In addition, in [32] by Arslan et al.
the problem of placing recharging nodes for the SPP with plug-in hybrid vehicles is
presented. Both these problems are solved using heuristic solution methods.
The hybrid VRPs in this thesis will, similarly to [26], consider special battery

recharging nodes. We present two problem versions, one with fixed recharging times
and the other with recharging times that directly depend on the battery level at
arrival to the recharging node. In both problems the objective is to minimize the
total cost of propellant used (both electricity and conventional fuel) while serving
the customers. The solution method used is a column generation method, in which
the subproblems—elementary shortest path problems with resource constraints—
are solved with a dynamic programming algorithm. For comparison, the original
problem formulations (being network flow models) are also solved directly with a
commercial solver.
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3
Problem formulation

In this chapter the two hybrid vehicle routing problems that are considered in this
thesis are formalized, along with their flow representations. Later, in Chapter 5
set covering formulations of the problems will be presented (in terms of master and
subproblems resulting from a Dantzig-Wolfe decomposition).

3.1 Two hybrid vehicle routing problems
The hybrid vehicle routing problems treated in this report can be regarded as re-
laxed electrical vehicle routing problem, such that driving with an empty battery is
possible but corresponds to another (higher) cost per mileage. Due to these simi-
larities almost the same problem setup is regarded in our case as for the electrical
VRPs described in [23].
In terms of a graph G our problem contains three different types of nodes: First

there is the depot, node 0, at which all vehicles start and end their routes; second
the set of recharging nodes, Vrec = {1, . . . ,m} containing the nodes in which the
vehicles are able to recharge their batteries; and finally the set of customer nodes,
Vcus = {m + 1, . . . , n} which all must be visited to get their demands met. Each
customer node has a time window related to it which specify between what times
the node must be visited, as well as a certain demand that must be satisfied by
the visiting vehicle. The depot and the recharging nodes have no demands to be
met, however they do also have time windows; for the depot this time window is the
period of time in which all routes must be covered, and for each recharging node it
says if a battery recharge can start.
The way the hybrid VRP differs from the electrical VRP is only in the kind of

vehicles used. While the electrical VRP considers vehicles that only can drive on
battery, we consider plug-in hybrid vehicles which can run on either battery or some
conventional fuel like diesel. We assume that the driver can choose freely what
propellant to use at what time; if the battery is empty, however, the only choice
is to run on fuel. Figure 3.1 shows an example of a hybrid VRP where the routes
shown may be partly covered by the use of electricity and partly by conventional
fuel, and Figure 3.2 shows the same example for electric vehicles.
The objective of our hybrid VRPs is to minimize the total cost while assuming

that the cost of running on electricity, in terms of cost per kilometer, is cheaper
than to run on conventional fuel.1 However, as a downside the maximum driving

1This is the case today in Sweden and has been for a while due to the fact that conventional
fuels are heavily taxed.
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distance of one full battery charge is quite limited at the same time as a recharging
takes long time, and the recharging stations remain rather scarce. This may make
it beneficial to use a mixture of both the cheaper option (driving on electricity) and
the more expensive, but less time consuming, option of using conventional fuel.
The vehicle fleet we consider is homogeneous, meaning that only one kind of

vehicle is present in the fleet. Each vehicle starts at the depot with a fully charged
battery, with a fuel level regarded as unlimited2, and cargo loaded to its maximum
capacity. Finally, we allow each vehicle to visit each recharging node at most once,
and that when a recharge is undertaken it may not be stopped before the battery
capacity is reached.

Figure 3.1: Example of problem setup for a hybrid VRP with different nodes. The
last line for each vehicle route that connects it to the depot is admitted to show in
what direction the vehicle moves. The dashed line in this illustration shows the part
covered on diesel instead of battery.

2The reason why we regard the fuel level for a vehicle to be unlimited is that, a refueling takes
much shorter time than a recharge. Further, one usually do not have to take long detours to find
a refueling station, as is assumed often to be the case for recharging stations.

10



3. Problem formulation

Figure 3.2: Example of a solution the problem in Figure 3.1 for electric vehicles
(with the same battery capacity as the hybrid vehicles considered in Figure 3.1). As
no part can be covered with diesel a third vehicle is needed to visit all nodes.

In this thesis we look at two different problems. Both describing the routing of
hybrid vehicles, but which models the recharging time in different complexity. The
simpler problem, Problem A, in which the recharging time is set to the time for a full
recharge, and the more complex one, Problem B, the recharging time depends on
the battery level upon arrival at the recharging node. The modelling of recharging
time is important as a full recharge of a vehicle is very time consuming. Problem
B is more accurate in the description of recharging times than Problem A, but as a
consequence Problem B is also harder to solve. How the recharging time is modelled
really makes a difference, and because of this we will look at both of these problems.
The two problems are modelled below using flow formulations.

11



3. Problem formulation

3.2 Flow formulations of the hybrid VRPs
In this section the two hybrid VRP problems described in the previous section are
presented mathematically as vehicle folow formulations. In Table 3.1 sets, parame-
ters, and variables needed to formulate our problems are given.

Table 3.1: Definition of sets, parameters and variables used for formulation of
Problems A and B

Notation Description
Sets
V = {0} ∪ Vrec ∪ Vcus The set of all nodes in the graph
K = {1, . . . , Fmax} The set of all vehicles
A ⊆ V × V The set of all arcs in the graph
Parameters
Fmax Size of vehicle fleet (number of vehicles)
Tmax Latest time be return to the depot [h]
Umax Cargo storage capacity in each vehicle [kg]
Qmax Battery capacity [kWh]
cfu/cel Cost of fuel/electricity [e/litre]/[e/kWh]
rfu/rel Consumption rate of fuel/electricity [litre/km]/[kWh/km]
tij Traveling time over arc (i, j) ∈ A [h]
pi Service time at node i ∈ V [h]
qi Demand of cargo in node i ∈ V [kg]
dij Length of arc (i, j) ∈ A [km]
ei Earliest time at which the service in node i ∈ V can start [h]
li Latest time at which the service in node i ∈ V can start [h]
M A large enough number [h]
Variables
xkij = 1 if arc (i, j) ∈ A is used by vehicle k ∈ K, = 0 otherwise
τ ki Arrival time at node i ∈ V \ {0} for vehicle k ∈ K [h]
uki Amount of cargo in vehicle k ∈ K at arrival in node i ∈ V [kg]
yki Battery level for vehicle k ∈ K upon arrival in node i ∈ V [kWh]
zFu,k
ij /zEl,k

ij Amount of fuel/electricity used on arc (i, j) ∈ A by vehicle
k ∈ K [litre]/[kWh]

Here it is enough if parameter M = 2Tmax. This is the case as we will only solve the
problems for test instances where the travelling time between two nodes is less than
2Tmax−maxi∈V{pi}. Further, the service time, pi, for recharging nodes we define as
the time it takes for a full recharge.
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Problem A: The hybrid VRP with fixed recharging time
Given the notations in Table 3.1, problem A is defined as to

minimize
x,τ,u,y,z

∑
k∈K

∑
(i,j)∈A

(
cFuzFu,k

ij +cElzEl,k
ij

)
, (A1)

subject to

∑
k∈K

∑
j∈V:(i,j)∈A

xkij = 1, i ∈ Vcus, (A2)
∑

j∈V:(i,j)∈A
xkij ≤ 1, i ∈ V , k ∈ K, (A3)

∑
j∈V:(i,j)∈A

xkij =
∑

j∈V:(j,i)∈A
xkji, i ∈ V , k ∈ K, (A4)

∑
k∈K

∑
j∈Vrec∪Vcus

xk0j ≤ Fmax, (A5)

ei ≤ τ ki ≤ li, i ∈ V , k ∈ K, (A6)
Tmax − (ti0 + pi) ≥ τ ki , i ∈ V \ {0}, k ∈ K, (A7)

τ ki + (tij + pi)−M(1− xkij) ≤ τ kj , j ∈ V \ {0, i}, i ∈ V , k ∈ K, (A8)
uk0 ≤ Umax, k ∈ K, (A9)

uki − qixkij + Umax(1− xkij) ≥ ukj , j ∈ V \ {0, i}, i ∈ V , k ∈ K, (A10)
zFu,k
ij /rFu + zEl,k

ij /rEl = xkijdij, (i, j) ∈ A, k ∈ K, (A11)
yki − z

El,k
ij +Qmax(1− xkij) ≥ ykj , i ∈ Vcus, j ∈ V , k ∈ K, (A12)

Qmax − zEl,k
ij +Qmax(1− xkij) ≥ ykj , i ∈ V \ Vcus, j ∈ V , k ∈ K, (A13)

xkij ∈ {0, 1}, (i, j) ∈ A, k ∈ K. (A14)
zEl,k
ij , zFu,k

ij ≥ 0, (i, j) ∈ A, k ∈ K, (A15)
τ ki , u

k
i , y

k
i ≥ 0, i ∈ V , k ∈ K. (A16)

The objective (A1) of the model is to minimize the total driving cost for the fleet of
vehicles. Constraints (A2)–(A4) are the node balance constraints, where constraint
(A2) ensure that each customer node is visited once, (A3) that each vehicle may
visit any node at most once, and (A4) that a vehicle that arrives at a node must also
leave the same node. The number of vehicles used is limited by (A5) and the arrival
times are given by (A6)–(A8); where (A6) and (A7) assure that every node is visited
within its time window and (A8) defines the order of arrival times at nodes and by
this also prohibits subtours. The demand at nodes is met without overriding the
cargo capacity of the vehicle, according to (A9) and (A10), and the battery charge
level at arrival at a node and the usage of electricity between two nodes is regulated
by (A11)–(A13). Constraint (A11) says that enough propellant must be used to
cover the distances travelled, while (A12) and (A13) gives the battery level for each
vehicle and node. Finally, (A14) says that each arc is either travelled on or not by
vehicle k, (A15) that we can not use a negative amount of propellant, and (A16)
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3. Problem formulation

says that the battery level and the amount of cargo is never negative, and that the
arrival time at any node is after time 0h.

Problem B: The hybrid VRP with the recharging time dependent on the
battery level

To model the recharging time as dependent of the battery charge level at arrival
of a node, we introduce the variable ski for the recharging time for vehicle k in node
i ∈ Vrec, then let the parameter g denote the recharging rate (h/kWh). Problem B
can then be expressed as Problem A where the time constraints (A7)–(A8), for each
k ∈ K, are replaced by the constraints

τ ki ≤ Tmax − (ti0 + pi), i ∈ Vcus, (B1)
τ kj ≥ τ ki + (tij + pi)−M(1− xkij), j ∈ V \ {0, i}, i ∈ V \ Vrec, (B2)
τ ki ≤ Tmax − (ti0 + ski ), i ∈ Vrec, (B3)
τ kj ≥ τ ki + ski + tij −M(1− xkij), j ∈ V \ {0, i}, i ∈ Vrec, (B4)
ski ≥ g(Qmax − yki ), i ∈ Vrec, (B5)

ski , τ
k
i ≥ 0, i ∈ V . (B6)

The constraints (B1) and (B2) fill the same functionality as (A7) and (A8) in the
flow formulation of Problem A, while in constraints (B3) and (B4) the service time
is replaced by a recharging time variable. Finally, the constraint (B5) makes the
recharging time long enough to fully recharge the battery, and (B6) says that both
the arrival time at all nodes and all recharging times are non-negative.
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4
Methodology

In this section we describe some theory that can be used to solve different types
of linear optimization problems. First we present the simplex method, which can
be used to solve linear problems with continuous variables. Then we look at the
branch-and-bound and branch-and-cut methods, which can be used to solve integer
linear problems (ILP). In the last part of this chapter we present the basics of column
generation, which is a decomposition method that can be used to tackle very large
linear programs. The column generation method is primarily aimed for solving linear
optimization problems with continuous variables. But it is also possible to apply
it to mixed integer optimization problems (MILP), like Problem A and Problem
B, defined in Chapter 3. In this case, however, there will be no guarantee that an
optimal solution is found.1

4.1 Simplex method
Linear programs (LP) are often solved by some variant of the simplex method. We
present the basics of the simplex method, based on the description in [34].
Consider the linear program to

minimize
x

z = cTx,

s.t. Ax = b,

x ≥ 0,
(4.1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and x ∈ Rn. This problem is stated in its standard
form.2 Assume that rank A = m; then, if m < n, a solution to Ax = b, x ≥ 0 (if one
exists) can be found for which at most m variables are non-zero; we denote these m
variables as xB (these are called basic variables). Further let xN denote the n−m
non-basic variables (all taking the value zero). This kind of solution is called a basic
feasible solution (BFS), while more generally such a solution to the system Ax = b,
without the sign restriction of x, is called a basic solution (BS) to (4.1). For any BS
is possible to partition the matrix A into the matrices N and B, where we let the
matrix N ∈ Rm×(n−m) consist of the columns of A that corresponds to the non-basic

1Given enough time and memory it is possible to guarantee an optimal solution even for an
integer optimization problem if the column generation is incorporated with the branch-and-bound
method, leading to what is called the branch-and-price method [33]. This is however not described
in this report.

2Any linear program can be rewritten into this form by the introduction of slack variables.
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variables xN , and the matrix B ∈ Rm×m (being of full rank) consists of the columns
corresponding to the basic variables xB. Given this partition of the matrix A, the
program (4.1) can be rewritten as to

minimize z := cT
BxB + cT

NxN ,

s.t. BxB +NxN = b,

xB, xN ≥ 0.
(4.2)

Given a BFS to (4.2), the next step in the simplex method is to find a non-
basic variable that will improve the objective value if introduced among the basic
variables. If no such variable can be found then the present BFS is an optimal
solution to (4.2). To find out if it is possible to improve the solution, and in that
case also what variable to include in the basic variables, we take a closer look at the
objective function. Let us therefore start by writing the objective function (z) in
terms of non-basic variables only: First, xB can be expressed in terms of xN , since
BxB + NxN = b⇔ xB = B−1(b−NxN), and inserting this in the expression for z
we get z = cT

B(B−1(b−NxN)) + cNxN = cT
BB
−1b+ (cT

N − cT
BB
−1N)xN .

The new expression for our objective function shows that a non-basic variable,
xj, would improve the objective value when its value is increased (i.e., if it was
turned into a basic variable) only if (cT

N − cT
BB
−1N)j < 0. The expression c̃j :=

(cT
N − cT

BB
−1N)j is called the reduced cost of the variable xj. For example, one

could iteratively pick the non-basic variable with the lowest reduced cost to enter
the set of basic variables until an optimum (or unboundedness) is found. Each time
a non-basic variable is added to the set of basic variables an old basic variable must
leave the basis. When the value of xj ∈ xN is increased it affects the values of the
variables in xB as xB = B−1(b−NxN). Given that (B−1Nj)i > 0 for some xi ∈ xB,
the variable to leave xB is the one which value (B−1(b−Nj))i reaches 0 first when
increasing the value of xj (i.e., xi ∈ xB with the smallest value of (B−1b)i/(B−1Nj)i
while (B−1Nj)i > 0).

4.2 Branch-and-bound and Branch-and-cut

ILPs are in general much harder to solve than LPs; many of these problems are
actually NP hard (see, e.g., [35]) while there exists polynomial time methods for
solving LP ([36]). A method that can be used to solve ILPs and MILPs is the
branch-and-bound method. The idea behind this method is to exploit the fact that
an LP is relatively easy to solve. The branch-and-bound method therefore iteratively
divides the problem into subproblems which are solved after relaxing their integrality
constraints. Another popular method is the branch-and-cut method, which is a
generalization of the branch-and-bound method, where extra constraints can be
added to enhance the convergence to an integer solution. In this section we first
look at the branch-and-bound method after which we look at an additional cut that
can be used for the branch-and-cut method. The theory presented in this section is
based on [9, Ch. 11–12].
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4.2.1 Branch-and-bound
Consider the following ILP (S) and its relaxation to an LP (SLP):

minimize
y

z := cTy,

s.t. ATy = b, (S)
y ∈ Z≥0,

minimize
y

zLP := cTy,

s.t. ATy = b, (SLP)
y ≥ 0.

For the problems (S) and (SLP) we define the following notations:

y∗ = an optimal solution in S,
z∗ = optimum objective value for S,
z = lowest upper bound on z∗ found,
z = highest lower bound of z∗ found,
yLP = an optimal solution to SLP,
zLP = the optimal objective value for SLP,
Θ = {y ∈ Z≥0 | ATy = b}, the solution space for S
ΘLP = the solution space for SLP.

In the solution process, S is divided into subproblems, such that the combined
solution space of all subproblems is the same the solution space for S, while the
combined solution space for all integer relaxed subproblems is a subset of the so-
lution space to SLP. The LP relaxed subproblems are then solved to improve the
knowledge about optimal solutions of S. We let Sk denote the kth subproblem of
S and SkLP its LP relaxation. The branching of the problem S into subproblems,
which in turn are branched in to new subproblems yields a tree structure of problems,
where each problem is commonly referred to as a node. Further some more notations

zk = optimum objective value for Sk,
zk = lowest upper bound found on zk,
zk = highest lower found on zk,
ykLP = an optimal solution to SkLP.
zkLP = the optimal objective value for SkLP,
Θk = the solution space for Sk,
Θk

LP = the solution space for SkLP.
With these notations the Branch-and-bound procedure for solving S can be de-
scribed as follows.

Algorithm 1 Branch-and-bound

1. Initialize bounds: Let the highest lower bound of z∗ be z := −∞ and the
lowest upper bound be z :=∞.

2. Solve SLP and update bounds: Solve SLP. If the solution is integer, termi-
nate as this solution is also optimal to S. If SLP is infeasible, terminate as S is
also infeasible. Otherwise, update the lower bound z := zLP and go to step 3.

17



4. Methodology

3. Branch S: Branch the problem S into subproblems (Sk) in such a way that
y∗ ∈ ⋃

k
Θk and yLP /∈ ⋃

k
Θk

LP. This can be done in many different ways, but a
common way is to branch it on a single variable, yj, which does not take an
integer value in yLP. Let yj = y0

j be this non–integer value, then the two new
problems that this node branches into each contain an additional constraint;
one with the constraint yj ≥ by0

j c, and the other with the constraint yj ≥ dy0
j e.

4. Choose an untreated node: Pick a node Sk that has not yet been treated.

5. Solve SkLP and update bounds: Solve SkLP. If ykLP is an integer solution and
zkLP < z then update the upper bound to z := zkLP.

6. Prune node k if possible: Prune the node k if possible, i.e., regard it as
fully treated with no need to branch the problem further. A node Sk can be
pruned for one of three different reasons:
(a) Prune due to infeasibility. If Sk is infeasible it cannot contain an

optimal solution to S and can thus be disregarded.
(b) Prune because of integer solution. If solving SkLP results in an integer

solution there is no need to continue branching node k as this could not
result in a better integer solution.

(c) Prune because of worse bounds. If the lower bound from Sk is worse
(higher) than the best known upper bound for the problem S, an optimal
solution to S can not exist in node k.

7. Branch node k: If SkLP was pruned, then mark it as treated and continue to
step 8. Otherwise, branch the node into new subproblems before marking SkLP
as treated and then continue to step 8.

8. Check for untreated nodes: If there exist untreated nodes, return to step 4,
else terminate as the best integer solution found so far is optimal for S.

4.2.2 Branch-and-cut
The branch-and-bound method is an exact solution method and will thus in the-
ory always reach an optimal integer solution (given enough time, memory etc.).
The branch-and-cut method is, as mentioned above, a generalization of the branch-
and-bound, which in addition to the branching also can include extra inequalities
(so-called cuts). These cuts may either be globally valid (such that they hold for all
subproblems) or locally valid (subproblem specific cuts), such that the cuts do not
change the optimal integer solution but hopefully speed up the convergence towards
it. A simple cut that can be added is one based on the objective value, by adjusting
the parameters in the problem Sk such that they are all integers, the optimal objec-
tive value for Sk must then also be integer3. If the optimal objective value to SkLP is

3Given that the problem is an ILP and not a MILP, in which case one should regard just the
integer variable part of the objective function.
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not an integer, i.e., zkLP = z̃ /∈ Z, then the cut zkLP = cTy ≥ dz̃e can be added to Sk
to cut away this solution to SkLP, (while not changing the solution space of Sk.

4.3 Column generation

4.3.1 Non-integer linear optimization problems (LPs)
In this section we present the theory behind column generation in terms of Dantzig-
Wolfe decomposition. Most of the theory here is based on [37, Ch. 10].
We will show how a general LP can be decomposed into master and subproblems,

as a column generation problem. Consider the linear program (4.1) The constraints
Ax = b in (4.1) can be split into two sets of constraints, A1x = b1 and A2x = b2,
with AT = [AT

1 , A
T
2 ], A1 ∈ Rm1×n, A2 ∈ Rm2×n and bT = [bT

1 , b
T
2 ], b ∈ Rm1×1, and

b ∈ Rm2×1. The problem (4.1) can then be rewritten as to

minimize
x

z = cTx,

subject to A1x = b1,

A2x = b2,

x ≥ 0,

(4.3)

which can be expressed as the problem to

minimize
x

z = cTx,

subject to A1x = b1,
(4.4)

subject to the additional constraints

A2x = b2,

x ≥ 0.
(4.5)

The set of variables that fulfill (4.5) is a convex polyhedron, and any x feasible in
(4.5) can be expressed as a convex combination of its extreme points and a positive
linear combination of its extreme rays. This is mathematically expressed as for all
x ∈ {x ∈ Rn : A2x = b2, x ≥ 0} there exists λ, µ such that the following hold:

x =
L∑
i=1

λiui +
M∑
j=1

µjvj, (4.6)

L∑
i=1

λi = 1, (4.7)

λi, µj ≥ 0, i ∈ {1, . . . , L}, j ∈ {1, . . . ,M}, (4.8)

where ui, vj ∈ Rn are the extreme points and extreme rays, respectively, of the
polyhedron defined by (4.5). The problem (4.1) can thus be written in terms of
extreme points and extreme rays of (4.5), as the master problem to
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minimize
λ,µ

z :=
∑
i:ui∈Ω

(cTui)λi +
∑

j:vj∈Λ
(cTvj)µj,

subject to
∑
i:ui∈Ω

(A1ui)λi +
∑

j:vj∈Λ
(A1vj)µj = b1,

∑
i:ui∈Ω

λi = 1,

λ, µ ≥ 0,

(MP)

where Ω = {u1, . . . , uL} and Λ = {v1, . . . , vM}.
For large LPs the sizes of Ω and Λ, i.e., the number of variables to consider

(commonly referred to as columns4) can be so large that it is extremely hard to solve,
and in some cases it can even be impossible to state all variables explicitly. However,
while (MP) may have a very large number of columns, often only a relatively small
number of them are needed to express an optimal solution. This property is what
the column generation method exploits.
To handle the inconvenience with a very large number of variables in (MP) a

smaller version of the problem with a subset of all variables is constructed. This
problem is referred to as the restricted master problem (RMP) and is mathematically
expressed as to

minimize
λ,µ

z :=
∑
i:ui∈Ω̃

(cTui)λi +
∑

j:vj∈Λ
(cTvj)µj,

subject to
∑
i:ui∈Ω̃

(A1ui)λi +
∑

j:vj∈Λ̃
(A1vj)µj = b1,

∑
i:ui∈Ω̃

λi = 1,

λ, µ ≥ 0,

(RMP)

where Ω̃ ⊆ Ω and Λ̃ ⊆ Λ.
The idea of the column generation method is then to iteratively generate new

columns to be added to (RMP) such that its optimal objective value is improved.
When there are no more columns that can improve the objective value of RMP the
optimal solution to RMP is also optimal in MP. This way one can find an optimal
solution to the MP while only considering a hopefully relatively small number of
columns in the corresponding RMP.

4.3.2 The subproblems
The efficiency of the column generation method is highly dependent on how fast new
columns that improves the RMP-objective can be found and added to the problem.
To be able to find these new columns for RMP we construct a so-called subproblem.
The subproblem of RMP is to find an extreme point (ui) or extreme ray (vj) of (4.5)
which is not yet in the set Ω̃∪ Λ̃ and that would improve the optimal objective value
of RMP the most.

4Variables in MP are often referred to as columns as each variable correspond to a separate
column in the constraint matrix A1.
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To find the next variable to enter into RMP one can reason in terms of the simplex
method. First let us rewrite MP in a more compact form. Let ∑

i:ui∈Ω
(cTui)λi +

∑
j:vj∈Λ

(cTvj)µj := [cTu cTv]
[
λ
µ

]
, and let cT

MP := [cTu cTv] and xMP :=
[
λ
µ

]
; the

objective function of MP can then be rewritten as z = cT
MPxMP. In a similar manner

we rewrite the constraints of MP as AT
MPxMP = bMP, xMP ≥ 0. Then MP can then

be rewritten as to

minimize
xMP

z = cT
MPxMP,

s.t. AT
MPxMP = bMP, (MP compact)
xMP ≥ 0.

With this compact form of the MP we can now directly apply the theory from
section for the simplex method to get a criterion for what columns to generate
for RMP. Consider x̄ to be the optimal BFS for the current RMP, then x̄ also
corresponds to a BFS for MP (however not necessarily an optimal one). Imagine
now that MP is solved using the simplex method, and that the method has reached
the point where the best solution found is x = x̄. Let xB denote the basic variables
for this solution, let the corresponding objective coefficients be cB and let B be
the corresponding part of AT

MP. Similarly, let xN denote its non-basic variables in
x, and cN and N the corresponding objective coefficients and part of AT

MP. Then,
given that x̄ is not an optimal BFS for MP, the next step in the simplex solution
scheme is to improve this solution by including a non-basic variable (xN)j, which
has a negative reduced cost (i.e., such that c̃j := (cT

N− cT
BB
−1N)j < 0), to the set of

basic variables. But to make this step in the simplex method for MP is equivalent
to adding this non-basic variable (xN)j to RMP and doing the same simplex step
there. Thus, the criterion for a column to be added to RMP in order to improve the
optimal solution to RMS, is that it has a negative reduced cost. So the subproblem
of finding a column to add to RMP can be written as to

minimize
j∈N: xj∈Ω∪Λ

c̃j := (cT
N − cT

BB
−1N)j.

The reduced cost is often written in terms of the dual variables of (RMP), which is
also the form that it will be referred to in the remainder of this thesis. We therefore
conclude this section by deriving this alternative expression for the reduced cost.
First let us have a quick reminder about duality theory for LPs: Any linear

optimization problem (P) has a corresponding linear dual problem (D), such that, if
(P) is written on the form

minimize
x

zP := cTx,

s.t. ATx = b,

x ≥ 0,
(P)

its linear dual problem (D) is to
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maximize
π

zD := bTπ,

s.t. Aπ ≤ c,

π free,
(D)

.
and the optimal objective values of (P) and (D) are equal z∗P = cTx∗ = bTπ∗ = z∗D,
which also means that strong duality hold. Then, writing (RMP) and its dual in
compact form we get,

minimize
xRMP

cT
RMPxRMP,

s.t. AT
RMPxRMP = bRMP,

xRMP ≥ 0,

(RMP compact)

maximize
π

bT
RMPπ,

s.t. ARMPπ ≤ cRMP,

π free.

(RMP dual)

We then have that cT
RMPx

∗
RMP = cT

BxB = cT
BB
−1b = bT(B−1)TcB = bTπ∗, where the

third equality holds as cT
BB
−1b is scalar and last equality holds due to strong duality

(note that (π∗)T = cT
BB
−1. Then the reduced cost c̃j can be rewritten as

c̃j := (cT
N − cT

BB
−1N)j = (cT

MP − cT
BB
−1AMP)j = (cT

MP − π∗TAMP)j, (4.9)

So the subproblem of (RMP) is the problem of finding the column with lowest
negative value of c̃j := (cT

MP − π∗TAMP)j, out of all columns in (MP).5

4.3.3 Integer linear optimization problems
In the previous section it was assumed that the problem was a continuous LP. In
this case the column generation method will in theory eventually reach an optimal
solution. However, if the problem would also have integer variables the column
generation method can not be directly applied. This is because the column genera-
tion method must not have any integer variables in the master problem, or else the
pricing of columns that builds upon LP duality and the simplex method will not
work.
An ILP will still result in an integer master problem, even if the integer constraints

on the variables is put into the subproblem. We will show this, without loss of
generality, for a binary ILP. Let (S) be the integer problem we wish to solve using
column generation. We then have that the problem to

minimize
x

z := cTx,

subject to A1x = b1,

A2x = b2,

x ∈ {0, 1},

(S)

5The optimal solution for the subproblem is thus the column that corresponds to the most
violated constraint in the dual of the master problem (MP).
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can be expressed as the problem to

minimize
x

z := cTx,

subject to A1x = b1,
(S1)

subject to the additional constraints

A2x = b2,

x ∈ {0, 1}.
(S2)

Assume that the feasible set defined by (S2) is bounded, and let ui ∈ Ω be the
extreme points of its convex hull (the convex hull being the smallest convex set
containing the set at hand). Then it is true that any x that satisfy the constraints in
(S2) can be written as a convex combination of the points ui ∈ Ω. It is, however, not
true that any convex combination of, ui ∈ Ω, will be a valid point for (S2). To ensure
that no convex combination of extreme points (i.e., columns in the master problem)
is used such that the solution becomes infeasible in (S2), a binary constraint on λ
must be added, so that the master problem becomes to

minimize
λ,µ

z :=
∑
i:ui∈Ω

(cTui)λi,

subject to
∑
i:ui∈Ω

(A1ui)λi = b1,∑
i:ui∈Ω

λi = 1,

λ ∈ {0, 1}|Ω|.

(MP)

So we can see that placing all binary constraints of the original problem in the
subproblem did not result in an LP master problem. However, even though the
problem (S) can not be solved directly by using column generation, it is possible to
make an LP relaxation of (S) (denoted SLP) and generate columns for this problem
instead. But as it is a relaxation of the original problem, its optimal value is only
a lower bound on the optimal objective value of (S). While if the RMP is resolved
with integer constraints (given all the generated columns from before) the optimal
solution (if a solution exists) will just give an upper bound on the optimal value of
(S). There is thus no guarantee that the method will reach an optimal solution to
an ILP, but it will give an interval for its optimal objective value. However, it often
been shown to generate good solutions, where the duality gap is never larger than
the gap one gets from relaxing the integer constraints in the original problem. If
there is no gap between the upper and lower bound of S, then the optimal solution
found for SLP is also optimal for S.
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5
Column generation formulation

Problems A and B can be solved in the form that they are stated in Chapter 3 with
some branch-and-cut method provided by optimization software, like CPLEX ([38,
39]). However, as the number of integer variables for these problems increase quickly
for large numbers of vehicles and nodes, it soon becomes very time-consuming to
solve the problems with a direct application of the branch-and-cut method. In this
chapter we therefore present a column generation formulation of the two problems in
the hope of improving the solution speed by decomposing the problems and solving
their different parts separately.
The restricted master problem presented here is solved using the default solu-

tion methods of CPLEX, while the subproblems, so called elementary shortest path
problems with resource constraints (ESPPRC) [40], are solved with a dynamic pro-
gramming algorithm (Chapter 6.2) implemented in C++. Dynamic programming
algorithms have been shown to solve many combinatorial problems really efficiently,
among them shortest path problems with resource constraints [40, 41].

5.1 The master problem
In this section we present the master problem for problems A and B, with con-
straints regulating the number of vehicles used and the number of visits to customer
nodes. The decomposition into master and subproblems is done in such way that
all constraints being vehicle specific in the flow formulation enters the subproblems,
while the remainder of the constraints forms the master problem. This results in a
set covering master problem (which is easier to solve than if it was a set partitioning
problem [42, pg. 108]), where each column represent a feasible route, and a shortest
path subproblem with all constraints that defines a feasible route for the problem.
The reason for this choice of decomposition is that it results in a simple master prob-
lem with few constraints, while, at the same time, yielding a type of subproblem
that has been known to be solved rather efficiently using dynamic programming. By
adding only vehicle specific constraints to the subproblem we can separate it into
one problem for each vehicle. Further, as the vehicles are all identical, it is enough
to solve only one of these subproblems to generate routes to the master problem.
Problem A and B only differs in how the recharging time is modelled, in terms of

master problems this difference only show in the set of all feasible nodes (where the
set of feasible routes for problem A is a subset of that set for problem B).
As problem A and B are MILPs we present the integer master problem (IMP),

the non-integer master problem (MP), and the restricted master problem (RMP).

25



5. Column generation formulation

In Table 5.1 additional sets, parameters, and variables that are used to state the
master problems are given.

Table 5.1: Additional sets, parameters, and variables introduced for the column
generation formulation of Problem A and B

Notation Description
Sets
R The set of all feasible routes
Parameters
cr Cost of route r (cost of propellant consumption) [e]
γir = 1 if route r ∈ R visits node i ∈ V , = 0 otherwise
Variables
λr = 1 if route r ∈ R is used, = 0 otherwise
α Dual variable corresponding to the constraint for the

number of vehicles allowed in the master problem
βi Dual variable corresponding to the constraint for

the number of visits to customer i ∈ V

The routes in the master problem are defined by the sequence of nodes visited and
the corresponding travelling cost.1 As we regard a homogeneous fleet of vehicles the
routes in R are not vehicle specific, instead they are all feasible for any vehicle.
In the IVP presented here each costumer must be visited at least once, and at

most Fmax vehicles can be used. Mathematically we present this problems as to

minimize
λ

∑
r∈R

crλr

s.t.
∑
r∈R

γirλr ≥ 1, i ∈ Vcus,∑
r∈R

λr ≤ Fmax,

λr ∈ {0, 1}. r ∈ R

(IMP)

To enable pricing of columns we present MP where the integrality of λr in IMP
is relaxed. The subproblem solution then yields one or several new columns (i.e.,
vehicle routes) to add to the restricted master problem. The continuous master
problem is thus defined as to

minimize
λ

∑
r∈R

crλr,

s.t.
∑
r∈R

γirλr ≥ 1, i ∈ Vcus∑
r∈R

λr ≤ Fmax,

λr ≥ 0, r ∈ R

(MP)

1The cost of the route depends on how much of the different propellants that was used when
covering the distance.
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5. Column generation formulation

and the corresponding LP dual problem is to

maximize
α,β

∑
i∈Vcus

βi + αFmax,

s.t.
∑
i∈Vc

βiγir + α ≤ cr, r ∈ R

α ≤ 0, βi ≥ 0. i ∈ Vcus

(MP-dual)

Finally, the restricted master problem (RMP) is then to

minimize
λ

∑
r∈R̃

crλr,

s.t.
∑
r∈R̃

γirλr ≥ 1, i ∈ Vcus

∑
r∈R̃

λr ≤ Fmax,

λr ≥ 0, r ∈ R̃

(RMP)

where R̃ ⊆ R. The RMP is solved in terms of its LP dual, the optimal variable
values of which are used in the subproblem.

5.2 Subproblems
As stated before, in the subproblems we put all constraints from the flow formula-
tions that are vehicle specific. Each subproblem then becomes a kind of shortest
path problem with capacity constraints, which can be solved efficiently using dy-
namic programming algorithms like in [40]. The subproblems then generates feasible
routes that are sent, in terms of new columns, to the restricted master problem. In
this section we present (I) subproblem A, where the recharging time is constant and
thus independent of the battery level, and (II) subproblem B where the recharging
time depends linearly on the battery level.
Note that all constraints that we choose to include in the subproblems are vehicle

specific. Then, as the objective function of the subproblems, which in accordance
to Section 4.3.2 becomes (sA1), is a linear function of costs for each vehicle, the
subproblem can be split into Fmax separate subproblems (one for each vehicle). As
problems A and B both consider a homogeneous vehicle fleet, all these vehicle specific
problems are in fact identical. Thus it is enough to solve only one of these problems
as they all will yield the same solutions.
Next we give the expressions for subproblems A and B.

Subproblem A: Find the cheapest vehicle route when the recharging time
is constant
The objective function (sA1) in this subproblem corresponds to the reduced cost for
a route r in the master problem (i.e., c̃r := (cT

MP−π∗TAMP)r as defined in (4.9)). The
reduced cost for this problem consists of three parts: (1) the cost of propellant (diesel
and electricity) needed to travel the route; (2) a negative contribution (a “bonus”)

27



5. Column generation formulation

of −βi for visiting customer node i (βi, i ∈ Vcus, are variables from (MP-dual), while
we let βi = 0 for i ∈ V \ Vcus); (3) a constant term −α, which is also a variable
from (MP-dual). The constraints (sA2) says that each node may be visited at most
once, while (sA3) assures that if the vehicle arrives at a node it must also leave
the node. The time constraints (sA4)–(sA6) assures that no sub-tours are made,
that the vehicle arrives in time to nodes and that all routes starts and ends at the
depot. The constraints (sA7) and (sA8) treat the cargo balance (the cargo decreases
when serving a customer node) and the propellant constraints (sA9)–(sA11) assure
that enough propellant is used to cover the route, and that the amount of battery
used does not exceed the amount the vehicle has. Finally (sA12)–(sA14) keeps all
variable values positive and adds binary constraints on the x-variables.

minimize
x,y,zFu,zEl,τ,u

c̃ :=
∑

(i,j)∈A
(cFuzFu

ij + cElzEl
ij − βixij)− α, (sA1)

subject to∑
j∈V:(i,j)∈A

xij ≤ 1, i ∈ V , (sA2)
∑

j∈V:(j,i)∈A
xji =

∑
j∈V:(i,j)∈A

xij, i ∈ V , (sA3)

ei ≤ τi ≤ li, i ∈ V , (sA4)
τi ≤ Tmax − (ti0 + pi), i ∈ V \ {0}, (sA5)
τj ≥ τi + (tij + pi)−M(1− xij), j ∈ V \ {0, i}, i ∈ V , (sA6)
u0 ≤ Umax, (sA7)
uj ≤ ui − qixij + Umax(1− xij), j ∈ V \ {0, i}, i ∈ V , (sA8)

xijdij = rFuzFu
ij + rElzEl

ij , (i, j) ∈ A, (sA9)
yj ≤ yi − zEl

ij +Q(1− xij), i ∈ Vcus, j ∈ V , (sA10)
yj ≤ Q− zEl

ij +Q(1− xij), i ∈ V \ Vcus, j ∈ V , (sA11)
xij ∈ {0, 1}, (i, j) ∈ A, (sA12)

zEl
ij , z

Fu
ij , ≥ 0, (i, j) ∈ A, (sA13)

τi, yi, ui ≥ 0, i ∈ V . (sA14)

Subproblem B: Find the cheapest vehicle route when the recharging time
depends on the battery level
The objective function (sB1) in subproblem B is again the reduced cost for the col-
umn r. The constraints (sB2) allow the vehicle to arrive at each node at most once,
(sB3) says that if a vehicle visits a node it must also leave it. The time constraints
(sB4)–(sB6) are the same as for subproblem A for non-recharging nodes, while
(sB7)–(sB9) are similar time constraints regulating the time spent at each recharg-
ing node. The constraints (sB10)–(sB11) treat the cargo balance and (sB12)–(sB14)
treat the propellant balance. Lastly (sB15)–(sB17) makes all variables positive and
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5. Column generation formulation

adds binary constraints to the x-variables.

minimize
x,y,zFu,zEl,s,u,τ

c̃ :=
∑

(i,j)∈A
(cFzFu

ij + cElzEl
ij − βixij)− α, (sB1)

subject to∑
j∈V:(i,j)∈A

xij ≤ 1, i ∈ V , (sB2)
∑

j∈V:(j,i)∈A
xji =

∑
j∈V:(i,j)∈A

xij, i ∈ V , (sB3)

ei ≤ τi ≤ li, i ∈ V , (sB4)
τi ≤ Tmax − (ti0 + pi), i ∈ Vcus, (sB5)
τj ≥ τi + (tij + pi)−M(1− xij), j ∈ V \ {0, i}, i ∈ V \ Vrec, (sB6)
τi ≤ Tmax − (ti0 + si), i ∈ V \ {0}, (sB7)
τj ≥ τi + si + tij −M(1− xij), j ∈ V \ {0, i}, i ∈ Vrec, (sB8)
si ≥ g(Q− yi), i ∈ Vr, (sB9)
u0 ≤ Umax, (sB10)
uj ≤ ui − qixij + Umax(1− xij), j ∈ V \ {0, i}, i ∈ V , (sB11)

xijdij = rFuzFu
ij + rElzEl

ij , (i, j) ∈ A, (sB12)
yj ≤ yi − zEl

ij +Q(1− xij), i ∈ Vcus, j ∈ V , (sB13)
yj ≤ Q− zEl

ij +Q(1− xij), i ∈ V \ Vcus, j ∈ V , (sB14)
xij ∈ {0, 1}, (i, j) ∈ A, (sB15)

zEl
ij , z

Fu
ij ≥ 0, (i, j) ∈ A, (sB16)

τi, sj, yi, ui ≥ 0, i ∈ V , j ∈ Vrec. (sB17)

The objective in each of the two subproblems is to find the route that correspond to
the most violated constraint in the problem (MP-dual), given the optimal dual vari-
able values of (RMP). The rest of the constraints are similar to the ones presented
in the VRP flow formulation of problem a presented earlier, with the restriction that
only one vehicle may be used and not all costumers have to be visited.
Also, observe that even though the objective of the subproblems is to minimize

the reduced cost function (i.e., c̃ := (cT
MP − π∗TAMP)r), this is not the cost of the

route that is sent back to the RMP. The cost corresponding to a route in RMP is
the actual cost of travelling the route (cr := ∑

(i,j)∈A:xr
ij=1

(cFuzFu
ij + cElzEl

ij )), i.e., the

cost of the propellant used for the route.
We have now presented the column generation formulation for both Problem A

and B. In the next chapter we present a way to solve our hybrid VRPs when they
are given in this form. Our main focus lays in solving the shortest path problems
using a dynamic programming algorithm.
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6
Solving the hybrid-VRP

In this section we present some details on how to solve the hybrid VRPs presented
by means of column generation. The solution scheme applied for the hybrid-VRPs
using column generation is illustrated in Figure 6.1.

Generate initial
columns for (RMP)

Solve (RMP)

Update objective func-
tion in subproblem

Add column(s) to (RMP)
Solve subproblem

Found
improving
column(s)?

Finish by solving (RMP)
with integer constraint

yes

no

Figure 6.1: The solution scheme used to solve the hybrid VRP with column gen-
eration

The solution scheme in Figure 6.1 starts by using a simple greedy heuristic to
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6. Solving the hybrid-VRP

attain a feasible starting solution for the RMP. Then RMP is solved and the sub-
problem’s objective function is updated with the new optimal dual variable values of
RMP. After that the subproblem is solved in order to find columns that can improve
the optimal solution of the RMP; if such columns are found, they are sent to RMP.
Once no more columns can be found for the RMP, the algorithm is terminated after
solving RMP with integer requirements on the variables (as it is for the IMP). The
solving of RMP without integer requirements gives a lower bound on the optimal
value of IMP, and RMP with integer requirements gives an upper bound of it.
Solving the subproblem is often the most time consuming step in the column

generation procedure. However, as it is not necessary to return the optimal route
in each iteration it is possible to reduce the time spent solving subproblems by
terminating these early. Another common way to speed up the solution process is
to send more than one column (if available) to the RMP each time the subproblem
is solved [43]. This way the number of columns generated increases faster, which
could result in a faster convergence to an optimal solution to the MP.
For our problems we apply these ideas with the following rules. A column is sent

to the restricted master problem while solving a subproblem if
• its reduced cost of a found column is negative, and
• it has the best (lowest) reduced cost of all columns checked for this iteration

of the column generation procedure.
Further, the solution of the subproblem is terminated if either of the following two
criteria hold

1. Ten new columns have been sent to the RMP in the present column generation
iteration

2. At least one new column has been sent to the RMP and the time it has taken
to solve the subproblem has past a given upper time limit.

6.1 Solving the subproblems
Both subproblem A and B are elementary shortest path problems with resource
constraints (ESPPRC). Resources in these problems being time, cargo, and battery,
all being limited by constraints in the subproblem. The solution method that will
be used to solve these problems is a so called labeling algorithm, similar to the one
presented in [40]. This method and its application to subproblems A and B are pre-
sented in this section. However, first we introduce some new notations and formally
define our use of the terms path and route.

Definition 1. A path is an ordered set of nodes.

Definition 2. An elementary path is a path without subtours, i.e., such that no
node (except for the depot) is visited more than once.

Let pil := {0, l1, l2, . . . , i} denote a path that starts in the depot (i.e., node 0) and
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6. Solving the hybrid-VRP

ends in node i, and where the notation ln denotes the nth node in path l. For con-
venience we let a path that starts and ends in the depot (denoted p0l) be referred
to as a route.

Definition 3. A node j is unreachable from path pil if pil is not allowed to visit this
node next. There are four different reasons that would make a node j unreachable
for pil:

1. Node j is in the path pil (j ∈ pil)
2. The vehicle would arrive to the node after its time window defined in problem

A and B.
3. There is not enough cargo left to meet the demand of the node that is specified

in the problem.
4. A visit to the node would result in an arrival to the depot which is later than

the latest return time specified by the problem.

Definition 4. Let Til := {T 1
il, . . . , T

w
il } denote the set of resources, Vil := {V 1

il , . . . , V
n
il }

be the set of variables that shows the reachability of nodes (where V j
il = 1 if node

j ∈ V is unreachable, and V j
il = 0 otherwise), and let cil denote the reduced

cost of the path. We then define the label of a path pil as Lil := (Til,Vil, cil) =
(T 1

il, . . . , T
w
il , V

1
il , . . . , V

n
il , cil).

With these definitions we can describe a labeling algorithm as associating labels
Lil to paths pil and then extending these paths. When no more labels can be created
the algorithm terminates, and the optimal path is the one with the lowest reduced
cost in the label at the end node.
The labeling algorithm used in this report make use of dominance criteria, which

decrease the number of paths to be extended. Dominance of a path occures if the
dominance criterion holds true. When a path pi1 dominates pi2, the path pi2 will no
longer be considered in the solution procedure.
We here give an example of dominance criterion that can be used when solving a

SPPRC, when T kil is the amount of resource k that has been used for path l until
the visit of node i. The dominance criterion says that path pi1 dominates pi2 if the
following dominance inequalities hold:

T ki1 ≤ T ki2, k ∈ {1, . . . , w}, (D.1)
V j
i1 ≤ V j

i2, j ∈ V , (D.2)
ci1 ≤ ci2, (D.3)

For this dominance criterion it has been proven ([40]) that Claim 1 holds true.

Claim 1. It is enough to consider only the non-dominated paths in the label setting
algorithm in [40] to be able to guarantee optimality for the solution of a SPPRC
where the T kil denotes the use of resources. �
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With the terms given in this section we will in the next section present the dynamic
programming algorithm used to solve our subproblems.

6.1.1 The dynamic programming algorithm
Now some last expressions that are needed before presenting the dynamic program-
ming algorithm. After which the labeling algorithm is presented in pseudo code.

• Successor node: A successor node to i ∈ V is a node j ∈ V such that
(i, j) ∈ A, i.e., it is possible to travel directly from i to j.

• Extension of labels: A label Lil corresponding to the path pil = {0, l1, l2, . . . , i}
is said to be extended to node j if a new label is created at node j correspond-
ing to the path pjl = {0, l1, l2, . . . , i, j}.

• Treated labels: A label Lil is said to be treated if it is extended to all
possible successors of node i.

• Efficient labels: A label Lil is said to be efficient with respect to a node i
if it is not dominated by any label in the node.

Setup for the algorithm:

• Λi: Set of non-treated efficient labels at node i

• Λ̂i: Set of treated efficient labels in node i

• Γ(i): Set of successors of node i

• L0: Starting label for the depot node

• Extend(Lil, j): The label resulting from an extension of Lil to node j, (Lil, j) =
∅ if the extension is infeasible (which cannot be an efficient label).

• Dominated(Λj)/Dominated(Λ̂j): The set of non-treated/treated labels of
node j that are no longer efficient.

Algorithm 2 Solving Subproblem
1: /* Initialization */
2: Λ0 ←− {L0};
3: for i ∈ V \ {0} do
4: Λi ←− ∅;
5: end for
6:
7: /* Labeling algorithm */

34



6. Solving the hybrid-VRP

8: while
n⋃
i=0

Λi 6= ∅ do
9: for i ∈ V do

10: if Λi 6= ∅ then
11: Choose L ∈ Λi

12: for j ∈ Γ(i) do
13: if (Extend (L, j) efficient label of node j) then
14: Λj ←− Λj∪ Extend(L, j);
15: Λj ←− Λj\Dominated(Λj);
16: Λ̂j ←− Λ̂j\Dominated(Λ̂j);
17: end if
18: end for
19: Λi ←− Λi \ {L};
20: Λ̂i ←− Λ̂i ∪ {L};
21: end if
22: end for
23: end while

Algorithm 2 in words:
• Initialize by adding a “0-path label”1 in the depot as an untreated label, and

define all other nodes to be empty (containing no labels).
• As long as untreated paths exist, repeat the following:

– Chose a node i ∈ V and pick an untreated label from it (if no such labels
exist, chose another node and repeat).

– Loop through all successors of node i and check if the chosen label can
be extended to these nodes (if the extended label is efficient in the new
node). If the extended label is dominated by an existing label it is not
added to the node. Else, add the extended label to the set of untreated
labels and remove any labels dominated by the new label.

– Move the treated label from the set of untreated labels in node i to the
set of treated labels in node i.

This algorithm can be used in simplicity without any dominance criteria, which
would result in a brute force solution method (enumerating all possible solutions).
This approach is, however, of course a very inefficient way of solving problems, being
impractical to use even for very small problem instances. But when some dominance
criteria, like (D.1)–(D.3), is used it results in far fewer paths to consider and the
solution speed of Algorithm 2 would thus greatly increase. For subproblem A the
criteria (D.1)–(D.3) translate into

1With 0-path label means a label representing a vehicle before the start of a route, with all of
its resources at their respective optimal levels; in our case time = 0, the battery is fully charged,
and the cargo is filled to its capacity.
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time(Li1) ≤ time(Li2) (6.1)
cargo(Li1) ≥ cargo(Li2) (6.2)

battery(Li1) ≥ battery(Li2) (6.3)
V j
i1 ≤ V j

i2, j ∈ V (6.4)
ci1 ≤ ci2 (6.5)

which would be enough to guarantee an optimal solution from Algorithm 2. It is
however possible to strengthen the dominance criteria further for our hybrid prob-
lems, which is highly desirable, since it may speed up the solution process of the
subproblem even further. Therefore, we next present our stronger dominance criteria
for subproblems A and B and prove that Claim 1 holds even for these criteria.

6.2 Dominance criteria for subproblems A and B
It is necessary to have a consistent rule for creating labels in Algorithm 2. The
labels must also hold enough information about the path, such that valid dominance
criteria can be applied and the optimal path is not lost. For subproblems A and B
it is not obvious how to construct such labels. We next present the idea for creating
these labels for a path pil; more details are given in Sections 6.2.1 and 6.2.3.
For problem A it is always preferable to leave each node as early as possible; hence

the departure time of node i should be the earliest possible. The use of battery does
not affect the travelling time but it allow the vehicle to cover distances cheaply; it
is therefore always preferable to use as much battery as possible when traveling.
Therefore, the cost of the path should be as low as possible the lowest cost possible
—the battery level is a direct result of this cost. The amount of cargo is a direct
result of the path, and the unreachable nodes result from the path taken and the
departure time at node i.
In subproblem B, however, there is a trade-off between a low cost and an early

departure time from node i; this is a result of the recharging times being dependent
on the battery charge level on arrival at a recharging node. So using more battery
will keep the cost relatively low, but to the expense of more time spent at the
recharging nodes, and vice versa. To solve this dilemma we store the following
information in the labels: Save the lowest possible cost for the path, which defines
the battery level as well as the departure time from node i. In order to keep the
information about the earliest possible departure time for path pil, save also the
information of how much the departure time could be improved. This is done by
defining a resource flex, which is how much the departure time can be improved by
spending less time recharging the battery. The cargo is a direct result of the path
taken, and the set of unreachable nodes results from the path taken and the earliest
possible departure time from node i.
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These rules for creating labels provide the information needed to define our dom-
inance criteria for subproblems A and B.2
Before we present the dominance criteria for subproblem A, recall the notations

defined in Tables 3.1 and 5.1.

6.2.1 Labels in subproblem A
In accordance to the description of our labels in the previous section we let the labels
for subproblem A contain the following information:

Table 6.1: Description of the labels for subproblem A

Description Descriptive label Notation
Lowest possible cost for path l at node i [e] cost(Lil) cil
Earliest possible departure time from node i [h] time(Lil) til
Battery level at departure from node i [kWh] battery(Lil) bil
corresponding to the lowest possible cost
Amount of cargo at departure from node i [kg] cargo(Lil) qil
Set of unreachable nodes from node i when unreachable(Lil) Ωil

path l has been used

The battery level in the label Lil is a result of the driving pattern for path l that
results in the cost cil, and the amount of cargo depends on what customer nodes
were visited.

6.2.2 Dominance criteria for subproblem A

Definition 5. The following inequalities must hold if label Li1 dominates Li2:

qi1 ≥ qi2, (C.1)
ci1 ≤ ci2 −max{0, H(bi2 − bi1)}, (C.2)
ti1 ≤ ti2, (C.3)

Ωi1 ⊆ Ωi2, (C.4)

where H := (cFurFu/rEl − cEl) > 0. The inequality (C.1) says that there is more
cargo left for path 1 compared to path 2. The inequality (C.2) guarantees lower cost
for all extensions of path 1 compared to those of path 2. Inequality (C.3) assures
that the departure time from node i is earlier for path 1 than for path 2. Finally,
inequality (C.4) says that if a node is unreachable from node i, if attained via path
1, it is unreachable also if node i is attained via path 2.

2 Subproblems A and B can be solved using using the dominance criterion (D.1)–(D.3) combined
with the labels described in Section 6.2. The dominance criteria in Section 6.2 are stronger than
(D.1)-(D.3), and are therefore likely to speed up Algorithm 2 (see the comparison in Chapter 7).
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The parameter H denotes the extra cost associated with covering a distance using
diesel instead of using electricity. For example, if a distance could be fully covered
using electricity with an electricity consumption of ∆b kWh, then covering the same
distance using diesel would cost eH∆b more. Dominance inequality (C.2) therefore
says that the cost of path 1 is so low that even if path 2 results in a higher battery
level, it is not possible get a better cost from extending path 2 than for the same ex-
tension of path 1. Example 6.2.1 illustrates how this dominance criterion is stronger
than the criterion (D.1)–(D.3).

Example 6.2.1. Consider the scenario in Figure 6.2 where two different paths are
compared, both starting in the depot d and visiting customers c1 and c2, but path 2
also visiting a recharging station r. The different lines mark what kind of propellant
that was used to cover that distance; a dotted/solid line illustrates the distance

Path1 (battery)

Path2 (battery)

Path2 (fuel)

3

4

5

4

Figure 6.2: A scenario of two different paths starting in the depot node d and
ending in the costumer node c2. The number written next to each arc denotes its
length (in km)

traveled by conventional fuel/electricity. We now wish to investigate whether path
1 can be a better start than is path 2 for any route passing through customer nodes
c1 and c2. To be able to compare path 1 and 2, let t be the time it takes to travel
one unit of distance and tr be the time for recharging. Further, let b be the capacity
of the battery and assume that the battery is empty for the vehicle taking path 1
when it reaches node c2 (which means that a vehicle on path 2 travels on fuel for
two units of distance between the nodes c1 and r). Moreover, let cE (cF) be the cost
for traveling one unit of distance using electricity (by fuel). We compare the two
routes by using the information given to construct–for each of the two paths–the
labels in node c2.
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Lc21:

unreachable(p1) = {c1, c2}
cost(p1) = (4 + 3)cE = 7cE
time(p1) = (4 + 3)t = 7t
battery(p1) = 0

Lc22:

unreachable(p2) = {c1, c2, r}
cost(p2) = 11cE + 2cF
time(p2) = 13t+ tr

battery(p2) = 3
7b

From the computed labels it follows that unreachable(p1) ⊆ unreachable(p2),
cost(p1) ≤ cost(p2), and time(p1) ≤ time(p2), which indicate that p1 dominates p2,
but in terms of battery level we have that battery(p1) ≤ battery(p2).
The question is now whether a path extended from path 2 can have a lower cost

than the same extension of path 1 (as a result of the higher battery level resulting
from path 2)? The maximal cost improvement that path p2 can have relative to
path p1 is 3(cF − cE) which is sufficient for resulting in a better overall cost if and
only if 3(cF − cE) > 4cE + 2cF , which in turn holds if and only if it holds that
cF > 7cE. Hence, provided that cF ≤ 7cE any path that extends p1 will always
be better than the same path extension of p2, this means that p1 dominates p2.
Which shows that dominance criterion (C.1)–(C.4) gives domination of paths when
the criterion (D.1)–(D.3) does not (as the later requires battery(p1) ≥ battery(p2)
for domination).

Claim 2. For subproblem A it is enough to regard only non-dominated labels, given
dominance criteria (C.1)–(C.4), to find the optimal route using Algorithm 2.

Proof. The claim will be proved by showing that any extension of a dominated
label to a feasible node will always be dominated by a label of some other path.
Specifically, if Li1 dominates Li2, then the extension of pi2 to node j /∈ Ωi2 will
be dominated by the extension of pi1 to this node. The proof treats the different
criteria one at the time.

Criterion (C.1) Prove that the implication

Li1 dominates Li2 =⇒ qj1 ≥ qj2 (6.6)

holds true.

Subproof 1. According to the definitions in Section 6.2.1, the cargo at departure
from node i is qi1 for path 1 and qi2 for path 2. Let dj be the demand of node j. The
cargo left after serving node j is then qj1 := qi1 − dj and q

j
2 := qi2 − dj, respectively.

It follows that
qj1 = qi1 − dj ≥ qi2 − dj = qj2,

which proves implication (6.6). �
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Criterion (C.2) Prove the implication

Li1 dominates Li2 =⇒ cj1 ≤ cj2 −max{0, H(bj2 − bj1)} (6.7)

where H = cFurFu/rEl − cEl > 0.

Subproof 2. Let cij denote the cheapest cost of travelling from node i to node j for
path 1 (given its battery level in node i). The lowest cost for path 2 to travel the
same distance may be lower than cij if a larger part of the distance can be covered
using electricity compared to path 1. Let ε ≥ 0 denote how much can be gained
(in cost) by travelling the arc (i, j) in the way done for path 2 compared to path
1. If it is not cheaper to travel arc (i, j) for path 2 compared to path 1 then ε = 0,
else ε denotes that cost difference. With these notations the cost for paths 1 and 2,
respectively, extended by node j, fulfill cj1 = ci1 + cij and cj2 ≥ ci2 + cij − ε, where
max{0, H(bi2− bi1)} ≥ ε ≥ 0. The new difference in battery level in node j equals in
the case of a non-recharging node max{0, bj2− bj1} = max{0, bi2− bi1}−

ε

H
≥ 0, or in

the case of a recharging nodes, max{0, bj2 − bj1} = 0. It follows that

cj1 = ci1 + cij

≤ ci2 + cij −H max{0, (bi2 − bi1)}

= ci2 + cij − ε−H
(

max{0, (bi2 − bi1)} − ε

H

)
≤ cj2 −max{0, H(bj2 − bj1)}.

The first equality holds per definition, while the second line is true as H ≥ 0
(it is cheaper to drive on electricity than diesel). The third row is a simple rewrit-
ing of the second row. Finally, the last inequality holds as max

{
0, bj2 − bj1

}
=

max {0, bi2 − bi1} −
ε

H
when j is not a recharge node and max {0, bi2 − bi1} −

ε

H
≥ 0

for the case when j is a recharging node. �

Criterion (C.3) Prove that the implication

Li1 dominates Li2 =⇒ tj1 ≤ tj2 (6.9)

holds true.

Subproof 3. Let tij denote the time it takes to travel from node i to node j, dj the
service time in node j and ej let the earliest visit time for node j. The departure
times for the two paths at node j can then be written as tj1 = max{ej, ti1 + tij}+ dj
and tj2 = max{ej, tj2 + tij}+ dj. It follows that

tj1 = max{ej, ti1 + tij}+ dj ≤ max{ej, ti2 + tij}+ dj = tj2

where the inequality holds as ti1 ≤ ti2 due to dominance in node i. �
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Criterion (C.4) Prove that the implication

Li1 dominates Li2 =⇒ Ωj1 ⊆ Ωj2 (6.10)

holds true.

Subproof 4. The set Ωil of unreachable nodes in label Lil can be decomposed into
three different sets of nodes, as Ωil = Ωv

il ∪ Ωtw
il ∪ Ωd

il, where Ωv
il denotes the set

of nodes which has already been visited by the path, Ωtw
il denotes the set of nodes

that can not be reached within the time windows for the respective nodes, and Ωd
il

denotes the set of nodes for which a visit would result in a too late return to the
depot. Comparing these subsets of unreachable nodes yields:

Ωv
j1 = Ωv

i1 ∪ {j} ⊆ Ωi1 ∪ {j} ⊆ Ωi2 ∪ {j} ⊆ Ωj2

Ωtw
j1 ⊆ Ωtw

j2

Ωd
j1 ⊆ Ωd

j2

where the second inclusion follows since it holds that ti1 + tij ≤ ti2 + tij and the third
since tj1 ≤ tj2 holds. It then follows that

Ωj1 = Ωv
j1 ∪ Ωtw

j1 ∪ Ωd
j1 ⊆ Ωj2 ∪ Ωtw

j2 ∪ Ωd
j2 = Ωj2,

which proves implication (6.10). �

Thus it has been shown that ”Li1 dominates Li2” =⇒ ”Lj1 dominates Lj2” and
hence we have proven Claim 2. �

6.2.3 Labels in subproblem B
In Problem B the recharging time is dependent on the battery level at arrival in the
recharging node. Therefore, using less electricity before the recharging decreases
the time spent at the recharging node. This trade-off between time and cost should
be taken into account when creating the dominance criteria (in problem A there
is no trade-off between time and cost). The labels for problem B must thus also
contain information on the time that can be gained at a higher cost. Each label
LB
il in subproblem B contains the same cost, cargo and set of unreachable node

information as the labels for problem A has. In addition the labels contain:

Table 6.2: Description of the additions to the labels for subproblem B

Description Descriptive label Notation
Departure time corresponding to the time(Lil) til
“best cost alternative” [h]
How much departure time can be improved flex(Lil) f il
at the price of a higher cost [h]
Battery at departure for the best cost battery(Lil) bil
alternative [kWh]
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In the case without time windows flex represents the accumulated time spent
recharging, which one can avoid by driving more on diesel.3 The trade–off between
time and cost is affine and we can thus express the departure time as a linear
function of cost t(c) = kc + t0, for some constants k < 0 and t0 ≥ 0. This trade-off
is illustrated in Example 6.2.2.
The coefficient k can be expressed in terms of the recharging rate g, the propel-

lant costs cEl and cFu, and the propellant consumption rates rEl and rFu, according
to the following. Covering some distance using ∆b kWh of battery corresponds to
∆t = g∆b more time spent at the next recharging node, and ∆c = −H∆b saved
compared to the same distance covered using diesel (where H = (cF rF/rE−cE) > 0
represents the cost of replacing one unit of battery usage with diesel). The coeffi-
cient of the time-cost trade-off lines can thus be written as k = ∆t/∆c = −g/H.

Example 6.2.2. The trade-off between cost and time Consider a label LB
i1

(corresponding to a path pi1) with cost(LB
i1) = ci1, time(LB

i1) = ti1 and flex(LB
i1) = f i1.

This means that the lowest cost possible for a vehicle to travel the path pil is ci1,
and given this cost the vehicle can depart from node i at the earliest at the time
ti1. However, the departure time can be earlier if less time is spent recharging
the battery. As f i1 denotes the total time spent recharging the battery, the earliest
possible departure from node i (when traveling the path pi1) is ti1−f i1, corresponding
to the case when pi1 is travelled only on diesel. But to reduce the travel time in this
way the vehicle must cover larger distances than necessary using diesel, which will
increase the cost of the route. This time-cost trade-off is illustrated in Figure 6.3.

Figure 6.3: A visualisation of the trade-off between cost and time in the label Li1.

The solid line in Figure 6.3 is the part of the line t(c) = kc + t0 that represents
the possible time-cost combinations for path pi1. The cost that corresponds to the
earliest possible departure time, ti1 − f i1, becomes ci1 − f i1/k where k = −g/H.

3When time windows are considered, otherwise feasible departure times can be made infeasible,
which may decrease the amount of time flex.
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6.2.4 Dominance criteria for Problem B without time win-
dows

The tighter the time (i.e., resource) constraints in the ESPPRC are, the more ef-
ficient can the algorithm in [40] be expected to solve it. The reason for heavily
constrained problems being easier to solve is that tighter constraints typically re-
duce the number of feasible solutions. This algorithm is therefore not likely to
perform well as applied to Problem B without time windows; hence we will not re-
port solutions to any of these instances. Nevertheless, we present dominance criteria
for solving Problem B without time windows but with a maximum duration limit
of each route. The reason for this is twofold: The dominance criteria clarify the
concept of the parameter flex in the label. It also clarifies why dominance criteria
for Problem B (with time windows) must compare the battery levels in the labels
directly, and not indirectly as for Problem A.
For problem B without time windows the following dominance criteria must hold

if label LB
i1 dominates label LB

i2:

qi1 ≥ qi2, (C.5)
ci1 ≤ ci2 −max{0, H(bi2 − bi1)}, (C.6)

ti1 − f i1 ≤ ti2 − f i2 −max{0, g(bi2 − bi1)}, (C.7)
ti1 − kci1 ≤ ti2 − kci2 −max{0, g(bi2 − bi1)}, (C.8)

Ωi1 ⊆ Ωi2. (C.9)

with H = cF rF/rE − cE > 0 and k = −g/H < 0.
Dominance criteria (C.5) and (C.9) are equivalent to the corresponding criteria

for Problem A (there denoted (C.1) and (C.4)). Criteria (C.6)–(C.8) assure that for
any possible "cost-time combination" of Li2 there exists a "cost-time combination"
for Li1 in which both cost and time are better (lower). The "max" operators further
assures that this would still be the case if both paths (pi1 and pi2) where extended
in the same way to other nodes.
In Figure 6.4, criteria (C.6)–(C.8) are illustrated in a time-cost trade-off plot; in

the area AC criteria (C.6) and (C.8) hold, in BC criteria (C.7) and (C.8) hold and
in area ABC all three criteria hold. For path 1 (pi1) to dominate path 2 it is then
enough that dominance criteria (C.5) and (C.9) hold and that path 1’s trade-off line
lays either (at least partly) in the area ABC or both partly in AC and partly in BC
(see Example 6.2.3).
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Figure 6.4: Illustration of the regions where dominance criteria (C.6)–(C.8) hold
for domination of Li2, and the time-cost trade-off line for label Li2

Example 6.2.3. Assume that the relations qi1 ≥ qi2 and Ωi1 ⊆ Ωi2 hold and that the
battery level of Li1 is greater than or equal to that of Li2, i.e., that max{0, bi2−bi1} =
0. Figure 6.5 illustrates criteria (C.6)–(C.8) for some values ti1, ci1, . . . , in such a case,
in which Li1 dominates Li2 as the line for pi1 lies in both regions AC and BC, which
means that criteria (C.6)–(C.8) are fulfilled.

Figure 6.5: Illustration of the criteria (C.6)–(C.8) when max{0, bi2 − bi1} = 0.
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Assume instead that max{0, bi2 − bi1} = ∆b > 0; this scenario is illustrated in
Figure 6.6. Now, criterion (C.6) is no longer satisfied, i.e., ci1 > ci2 − H(bi2 − bi1).
This means that the potential cost improvement of pi2 relative to pi1, is so large
that it can not be guaranteed that all extensions of pi1 will have lower costs than
all corresponding extensions of pi2. Hence, Li1 will not dominate Li2.

Figure 6.6: Illustration of the criteria (C.6)–(C.8) when max{0, bi2−bi1} = ∆b > 0.

Given these new dominance criteria Claim 3 holds.

Claim 3. When solving subproblem B without time windows it is enough to consider
only non-dominated paths as defined by the dominance criteria (C.5)–(C.9).

Proof. We will show—by extending the dominating path analogously to the dom-
inated path that a dominated path—can only possess dominated child paths. Let
pi1 denote the dominating path in node i and pj1 the extension of the path pi1 to
node j, and analogously pi2 the dominated path and pj2 its extension.
For proofs of Criteria (C.5) and (C.6) see the proof for the dominance criteria of

subproblem A.

Criterion (C.7)
Prove that the implication

Li1 dominates Li2 =⇒ tj1 − f
j
1 ≤ tj2 − f

j
2 −max{0, g(bj2 − bj1)} (6.9)

holds.
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Subproof 1. The best possible departure time from node i for pil is til−f il , as til is the
departure time corresponding to the lowest cost and f il denotes the largest possible
decrease (at additional cost) of this departure time. The earliest possible departure
time from node j for the two paths 1 and 2 can then be expressed as

tj1 − f
j
1 = ti1 − f i1 + tij + dj

and
tj2 − f

j
2 ≥ ti2 − f i2 + tij + dj − ε,

respectively, where dj denotes the service time for path 1 at node j (observe that dj
is battery dependent if j is a recharging node), tij is the traveling time of arc (i, j),
and ε denotes the difference—between paths 1 and 2—of the time spent in node j
(ε = 0 whenever j is not a recharging node). Note that the inequality

max{0, g(bj2 − bj1)}+ ε = max{ε, g(bj2 − bj1)} ≤ max{0, g(bi2 − bi1)}

hold. This inequality comes from the fact that the battery difference between two
paths can not increase when traveling the same arc, which in turn gives us the
relation ε ≤ max{0, g(bi2 − bi1)}. Hence, with this information, the inequalities

tj1 − f
j
1 = ti1 − f i1 + tij + dj

≤ ti2 − f i2 + tij + dj −max{0, g(bi2 − bi1)}
≤ ti2 − f i2 + tij + dj − ε−max{0, g(bj2 − bj1)}
≤ tj2 − f

j
2 −max{0, g(bj2 − bj1)}

hold, and implication (6.9) is proven. �

Criterion (C.8)
Prove that the implication

Li1 dominates Li2 =⇒ tj1 − kc
j
1 ≤ tj2 − kc

j
2 −max{0, g(bj2 − bj1)} (6.10)

holds.

Subproof 2. Define ∆btravel to be how much more battery path 2 uses on arc (i, j)
compared to path 1. Also define ∆brecharge to be how much more kWh that path
1 charges in node j compared to path 2. Note that ∆btravel = 0 if path 2 does not
use more battery than path 1 over arc (i, j), and ∆brecharge = 0 if path 1 does not
spend more time recharging—compared to path 1—at node j or if node j is not a
recharging node. Given these definitions it holds that

max{0, bi2 − bi1} = max{0, bj2 − bj1}+ ∆btravel + ∆brecharge. (6.13)

By denoting the cost of traveling arc (i, j) for path 1 as cij, the traveling time as
tij and its service time in node j as dj, the lowest cost for path 1 and path 2 to node
j can then be written as

cj1 = ci1 + cij (6.14a)
cj2 ≥ ci2 + cij −H∆btravel (6.14b)
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respectively. The corresponding departure times can be written as

tj1 = ti1 + tij + dj (6.15a)
tj2 = ti2 + tij + dj − g∆brecharge. (6.15b)

Hence, the relation

tj2 − t
j
1 − k(cj2 − cj1) ≥ ti2 + tij + d− g∆brecharge − (ti1 + tij + d)− k(cj2 − cj1)

= ti2 − ti1 − g∆brecharge − k(cj2 − cj1)
≥ ti2 − ti1 − g∆brecharge − k(ci2 + cij −H∆btravel − (ci1 + cij))
= ti2 − ti1 − g (∆brecharge + ∆btravel)− k(ci2 − ci1)
= ti2 − ti1 − g

(
max{0, bi2 − bi1} −max{0, bj2 − bj1}

)
− k(ci2 − ci1)

≥ gmax{0, bi2 − bi1} − g
(
max{0, bi2 − bi1} −max{0, bj2 − bj1}

)
= gmax{0, bj2 − bj1}

hold, which concludes the proof of (6.10). The two first inequality comes from
insertion of the expressions (6.14a),(6.14b),(6.15a), and (6.15b). The third equality
results from (6.13), and the last inequality is true due to the dominance criterion
(C.8) in node i. �

Criterion (C.9)
Prove the implication

Li1 dominates Li2 =⇒ Ωj1 ⊆ Ωj2. (6.14)

Subproof 3. The set Ωil of unreachable nodes in label Lil, for Problem B without
time windows, can be decomposed into two different sets, as Ωil := Ωv

il ∪ Ωd
il; where

Ωv
il denotes the set of nodes already visited in the path, and Ωd

il denotes the set of
nodes for which a visit would result in a too late return to the depot. Then we have

Ωd
j1 ⊆ Ωd

j2
Ωv
j1 = Ωv

i1 ∪ {j} ⊆ Ωi1 ∪ {j} ⊆ Ωi2 ∪ {j} ⊆ Ωj2

where the first inclusion is a result of the fact that tj1− f j1 ≤ tj2− f
j
2 . It follows that

Ωj1 = Ωv
j1 ∪ Ωd

j1 ⊆ Ωj2 ∪ Ωd
j2 = Ωj2,

which proves the implication (6.17). �

This concludes the proof of Claim 3. �

6.2.5 Dominance criteria for Problem B with time windows
For subproblem B with time windows we must in addition to the criteria for the
case without time windows also include a criterion concerning the battery levels.
We then have the following criteria that must hold if label Li1 shall dominate Li2:
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bi1 ≥ bi2, (C.10)
qi1 ≥ qi2, (C.11)
ci1 ≤ ci2, (C.12)

ti1 − f i1 ≤ ti2 − f i2, (C.13)
ti1 − kci1 ≤ ti2 − kci2, (C.14)

Ωi1 ⊆ Ωi2, (C.15)

with k = −g/H < 0 and H = cF rF/rE − cE > 0.

Criterion (C.10) requires a dominating path to have more battery than the path
it is dominating. Criteria (C.11)–(C.15) are the same criteria as (C.5)–(C.9) under
the assumption of a larger battery level for the dominating path. The reason why
the battery criterion must be added when considering time windows (in addition to
the depot’s time window) is illustrated in Example 6.2.4.

Example 6.2.4.
Consider the scenario in Figure 6.7, where Criteria (C.6)–(C.8) hold, and assume
that even criteria (C.11) and (C.15) hold. This is enough for label 1 (Li1) to dom-
inate label 2 (Li2) when there are no time windows. Assume now that node i has
an associated time window such that serving of the node is not possible before the
earliest possible arrival time of path pi2.

Figure 6.7: Dominance criteria (C.6)–(C.8) without time windows.
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6. Solving the hybrid-VRP

Figure 6.8 shows how this time window has shortened the trade-off line for path
pi1, so that the best departure times for the paths pi1 and pi2 are the same. If
label Li2 has a higher battery level than Li1 (i.e. bi1 < bi2), the result could be an
extensions of Li2 having better (earlier) departure times than extensions of Li2 (in
the case a recharging node is visited after node i). However, if we add the criterion
bi1 ≥ bi2, then extensions of Li1 are still guaranteed to have departure times at least
as early as for the corresponding extensions of Li2.

Figure 6.8: Dominance criteria (C.6)–(C.8) with time windows.

Example 6.2.4 shows the need of Criteria (C.10) for Problem B. Next we will
show that these dominance criteria are enough for Algorithm 2 to return an optimal
solution.

Claim 4. When solving subproblem B with time windows it is enough to consider
only non-dominated paths as defined by the dominance criteria (C.10)–(C.15).

Proof. Let pi1 denote the dominating path in i and pj1 the extension of this path pi1
to node j, and analogously pi2 the dominated path and pj2 its extension. The proof
for Criterion (C.11) is identical to that of the corresponding criterion in Problem
A, and is therefore omitted here. The proof of Criterion (C.15) differs from that of
Problem A only in the expression tj1 − f j1 (rather than tj1) of the earliest departure
time from node j; hence, it is also left out here.

Criterion (C.10)
Prove the implication

Li1 dominates Li2 =⇒ bj1 ≥ bj2. (6.17)
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6. Solving the hybrid-VRP

Subproof 1. The proof of (6.17) is trivial when node j is a recharging node, we
therefore assume this is not the case. Define ∆b to be the amount of battery needed
to cover the entire arc (i, j) fully on battery. The battery levels for path 1 and path
2 in node j are then bj1 = bi1−min{∆b, bi1), and bj2 = bi2−min{∆b, bi2}, as the battery
level in the label correspond to the cheapest cost of the paths.
In the case min{∆b, bi1} = bi1 it implies that min{∆b, bi2} = bi2 as ∆b ≥ bi1 ≥ bi2,

and hence bj1 = bj2 = 0. If, instead, min{∆b, bi1} = ∆b it implies that bj1 = bi1−∆b ≥
min{0, bi2 −∆b} = bi2 −min{bi2,∆b} = bj2, which concludes the proof of (6.17). �

Criterion (C.12)
Prove the implication

Li1 dominates Li2 =⇒ cj1 ≤ cj2. (6.18)

Subproof 2. Define cij to be the cost for path 1 to travel arc (i, j), and cij − ε to be
the cost of path 2 to travel arc (i, j), where ε ≥ 0 as battery(Li1) ≥ battery(Li2).
The cost of the paths pj1 and pj2 can then be written as

cj1 = ci1 + cij −
1
k

max{0, ti1 + tij − lj}

and
cj2 = ci2 + cij + ε− 1

k
max{0, ti2 + tij − lj},

where the “−1/kmax{. . . }” terms is the cost that must be sacrificed to reach node
j within its time window.
Extending cj1 − cj2 now gives us

cj1 − c
j
2 = ci1 − (ci2 + ε)− 1

k

(
max{0, ti1 + tij − lj} −max{0, ti2 + tij − lj}

)

=



ci1 − ci2 − ε− 1
k
· 0, ti1, t

i
2 ≤ lj − tij, (6.19a)

ci1 − ci2 − ε− 1
k
· (−(ti2 + tij − lj)), ti1 ≤ lj − tij ≤ ti2, (6.19b)

ci1 − ci2 − ε− 1
k
· (ti1 + tij − lj), ti1 ≥ lj − tij ≥ ti2, (6.19c)

ci1 − ci2 − ε− 1
k
· (ti1 − ti2), ti1, t

i
2 ≥ lj − tij. (6.19d)

The expression in (6.19a) is less than zero since ci1 ≤ ci2 and ε ≥ 0. For (6.19b) it is
true that ti2 + tij − lj ≥ 0 and thus − 1

k
· (−(ti2 + tij − lj)) ≤ 0, so

ci1 − ci2 − ε−
1
k
· (−(ti2 + tij − lj)) ≤ ci1 − ci2 − ε ≤ 0.

In (6.19c) we want to show that ci1− ci2− ε− 1
k
· (ti2 + tij − lj) ≤ 0, which is the same

thing as proving k(−ci1 + ci2 + ε) + ti1 + tij − lj ≤ 0. We then get

k(−ci1 + ci2 + ε) + ti1 + tij − lj ≤ k(−ci1 + ci2 + ε) + ti1 + tij − lj − (ti2 + tij − lj)
= k(ci2 − ci1)− (ti2 − ti1) + kε

≤ kε ≤ 0,
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6. Solving the hybrid-VRP

where the first inequality holds because max{0, ti2 + tij − lj} = 0, the second due to
dominance in node i giving ti1−kci1 ≤ ti2−kci2, and the final inequality is valid since
k ≤ 0. Finally, for (6.19d) the dominance criteria ti1 − kci1 ≤ ti2 − kci2 we get

ci1 − ci2 − ε−
1
k
· (ti1 − ti2) ≤ ci1 − ci2 − ε−

1
k
· k(ci1 − ci2) = −ε ≤ 0.

Hence, we have proven the implication (6.18). �

Criterion (C.13)
Prove the implication

Li1 dominates Li2 =⇒ tj1 − f
j
1 ≤ tj2 − f

j
2 . (6.20)

Subproof 3. It has been shown for Criterion (C.8) that the implication (6.20) holds
for Problem B without time window in node j. Let f̂ j1 and f̂ j2 denote the flex of
the paths pj1 and pj2, respectively, in the case of no time window in node j.If the
earliest visit time of node j (ej) is later than earliest arrival time of path 1 to node
j, then the earliest departure time possible for path 1 from node j would be ej + dj,
where dj is the service time at j for the path. The earliest departure times for path
1 and 2 from node j in the presents of time windows then becomes

tj1 − f
j
1 = max{ej + dj, t

j
1 − f̂

j
1}

and
t21 − f

j
2 = max{ej + dj + ε, tj2 − f̂

j
2}

respectively, where dj + ε with ε ≥ 0 is the service time for path 2 (possibly longer
than the service time for path 1 due to battery difference). As it holds that tj1− f̂ f1 ≤
tj2 − f̂

j
2 it follows that

tj1 − f
j
1 = max{ej + dj, t̂

j
1 − f̂

j
1} ≤ max{ej + dj + ε, t̂j2 − f̂

j
2} = tj2 − f

j
2 ,

which proves implication (6.20). �

Criterion (C.14)
Prove the implication

Li1 dominates Li2 =⇒ tj1 − kc
j
1 ≤ tj2 − kc

j
2. (6.21)

Subproof 4. Let tij denote the time it takes to travel the arc (i, j), and recall that
the time window for node j is [ej, lj]. Further, let cij denote the cheapest cost—given
the battery level left in node i—for path 1 to cover the arc (i, j), the lowest cost for
path pj1 then becomes

cj1 = ci1 + cij −
1
k

max{0, ti1 + tij − lj}, (6.22)

where the term 1
k

max{0, ti1 + tij − lj} is the cost of the improvement in arrival time
that must be made to reach node j in time (i.e. the cost of used flex). The, for this
cost, corresponding departure time of path p1j becomes

tj1 = ti1 + tij + dj + max{0, ej − (ti1 + tij)} −max{0, ti1 + tij − lj}, (6.23)
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where max{0, ej−(ti1+tij)} is how much too early node j is reached, and max{0, ti1+
tij − lj} is how much the arrival time must be decreased for the vehicle to arrive in
time to node j. The expression tj1 − kcj1 can then be rewritten as

tj1 − kc
j
1 = ti1 + tij + dj + max{0, ej − (ti1 + tij)} −max{0, ti1 + tij − lj}

− k(ci1 + cij −
1
k

max{0, ti1 + tij − lj})

= ti1 + tij + dj + max{0, ej − (ti1 + tij)} − k(ci1 + cij) (6.24)

=
{
ti1 + tij + dj + 0− k(ci1 + cij), ti1 ≥ ej − tij,
ej + dj − k(ci1 + cij), ti1 ≤ ej − tij,

where the first equality comes from the insertion of (6.22) and (6.23), and where the
last equality gives the two possible cases of the max term. Similarly, with dj + ε1
as the service time for path 2 in node j and cij + ε2 as the cost for path 2 to travel
arc (i, j) (with4 ε1 ≥ 0, ε2 ≥ 0), tj2 − kcj2 can be rewritten as
tj2 − kc

j
2 = ti2 + tij + (dj + ε1) + max{0, ej − (ti2 + tij)} − k(ci2 + (cij + ε2))

=
{
ti2 + tij + (dj + ε1)− k(ci2 + (cij + ε2)), ti2 ≥ ej − tij,
ej + dj − k(ci2 + (cij + ε2)), ti2 ≤ ej − tij.

(6.25)

Finally we can prove (6.21) by rewriting the expression (tj1 − kcj1) − (tj2 − kcj2)
by the use of (6.24) and (6.25), and show that it is less than zero. This giving the
expression

(tj1 − kcj1)− (tj2 − kcj2) =

=


ti1 − ti2 − k(ci1 − ci2 − ε2)− ε1 ≤ kε2 − ε1 ≤ 0
ti1 − ti2 − k(ci1 − ci2) + ti2 + tij − ej + kε2 ≤ ti2 + tij − ej + kε2 ≤ kε2 ≤ 0
ej − ti2 − tij − ε1 − k(ci1 − ci2 − ε2) ≤ −k(ci1 − ci2) + kε2 − ε1 ≤ 0
k(ci2 − ci1 + ε2) ≤ 0

The first row corresponds to max{0, ej − (ti1 + tij)} = max{0, ej − (ti2 + tij)} = 0.
The first inequality holds as ti1 − kci1 ≤ ti2 − kci2 (comming from dominance in node
i). Row two treats the case when max{0, ej − (ti1 + tij)} = ej − (ti1 + tij) and
max{0, ej− (ti2 + tij)} = 0, where the later gives the second inequality in the line. In
the third row max{0, ej − (ti1 + tij)} = 0 and max{0, ej − (ti2 + tij)} = ej − (ti2 + tij).
The first inequality in the third row holds true as ej − (ti2 + tij) ≥ 0. In the last row
max{0, ej − (ti1 + tij)} = ej − (ti1 + tij) and max{0, ej − (ti2 + tij)} = ej − (ti2 + tij).
The inequality in the fourth line is true as the dominance criteria ci1 ≤ ci2 hold in
node i and ε2 ≥ 0. �

This concludes the proof of Claim 4. �

In this section we have presented dominance criteria for the solution of subprob-
lems A and B, and proven that by using these criteria the optimal route will never be
lost (dominated). In Chapter 7 these dominance criteria will be tested and compared
to the use of the weaker dominance criteria (D.1)–(D.3).

4Note that the cost of travelling the arc (i, j), and the service time at node j are both—for
path 2—greater or equal to those for path 1, due to the battery difference between them in node
i (battery(Li1) ≥ battery(Li2)).
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6. Solving the hybrid-VRP

6.3 Speeding up the solution process
While the solution process presented in this chapter can be used as is, some changes
to it can be made to it in an attempt to improve the solution speed. In this section
we present some suggestions of changes that could be used.

6.3.1 Solve a non-elementary shortest path problem
The ESPPRC is an NP-hard problem (in the strong sense) [40]; it is thus a problem
that is highly time consuming to solve to optimality for large problem instances.
The solution time could be reduced if non-elementary paths where allowed to be
generated (i.e., paths containing cycles), which would turn the subproblem into
a SPPRC (shortest path problem with resource constraints) for which there exist
pseudo-polynomial time algorithms [41]. However, the lower bounds on the optimal
objective value obtained by solving a SPPRC column generation subproblem will
in general be weaker than if the subproblem is an ESPPRC; also the upper bound
resulting from this approach will in general be weaker. One can tighten these bounds
by implementing a compromise between the SPPRC and the ESPPRC, by forbidding
the paths to have short cycles (a common approach is to exclude cycles including
only two nodes).

6.3.2 Early termination of the column generation algorithm
Another approach to speed up the solution process is early termination. E.g. when
the upper and lower bounds are very close, so that any further time spent on solving
could only result in a small improvement. Since the column generation is applied to a
continuous relaxation of a mixed integer optimization problem, there is no guarantee
anyway that the resulting solution will be optimal to the original problem. An upper
bound for the optimal objective value to the IMP is the best objective value for RMP
with integer constraints (IRMP) that is found. Next, we derive a lower bound on
the optimal value of the IRMP, in line with the presentation in [44].
Given the (RMP) program with its dual variables βi ≥ 0 and α ≤ 0, corresponding

to its constraints, the inequality

z −
∑
i∈Vc

βi − Fmaxα ≥
∑
r∈R̂

λr(cr −
∑
i∈Vc

γirβi − α)

holds. Letting fr := cr −
∑
i∈Vc

γirβi − α, r ∈ R, it follows that

z −
∑
i∈Vc

βi − Fmaxα ≥
∑
r∈R̂

λrfr ≥ min
r∈R
{fr}

∑
r∈R̂

λr ≥ min
r∈R
{fr}Fmax,

where the last inequality holds since min
r∈R

fr ≤ 0. Finally we arrive at the lower
bound on z, given by

z ≥ min
r∈R
{fr}Fmax +

∑
i∈Vc

βi + Fmaxα.

53



6. Solving the hybrid-VRP

Even though this allows us to terminate the column generation process after fewer
iterations, it is time consuming to obtain these lower bounds as the subproblem must
be solved to optimum to get the value of min

r∈R
{fr}. One way to reduce this time loss

is to update the lower bound, not in every iteration but for example every 10th
iteration, or by generating bounds on separate (detached) strings. Another idea is
to solve the SPPRC to optimality instead, to get a (weaker) lower bound as these
problems can be solved faster than the EPPRC (when the subproblem is large).

6.3.3 Other small tweaks
• Relax some of the dominance criteria in the subproblems in the beginning of

the column generation. This will cause dominance to happen more often and
fewer routes needed to be checked each time the subproblem is solved. In
the end, however, the subproblem must be solved with the correct dominance
criteria to guarantee an optimal solution, if one wants to derive lower bounds
for the RMP.

• Delete non-used columns. When the column generation has been running for
some iterations the number of generated routes (i.e., columns) may be so large
that the RMP becomes impractical to solve. As many of these columns are
never used in the solution of the RMP one could consider to remove some of
them. This does not change the lower bound for the hybrid VRP, but it can
make the upper bound weaker. Implementation of this must,however, be done
carefully as this may create an infinite loop of inserting and removing certain
columns in RMP.

• Warm-start the dynamic programming algorithm by the use of a heuristic to
find good paths quickly. Doing this in the beginning of the procedure is likely
to considerably decrease the number of labels created as it will yield dominance
at an early stage.
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7
Tests and Results

We examine the use of studying hybrid VRPs, as well as how hard the problems
are to solve, and how effective the column generation procedure is for solving these
problems. This is done by solving problems A and B for some test instances. We
have used the test instances for electrical VRP with time windows presented in [23]
and found here.

7.1 The test setup
The test instances are created such that all of them possess a feasible solution
for routing of electric vehicles, and hence also for VRPs with hybrid vehicles with
the same battery functionality. The instances solved are chosen at random from a
collection of differently structured problems. The nodes for each instance are either
generated in clusters (marked with a “c” in the beginning of the name), random in
a uniform matter (marked with “r”), or a mixture of these (marked with “rc”). The
number of customer nodes are denoted by C# in the end of the name, where # is
the number of customers. Finally, a testing instance is either tightly constrained in
terms of time windows (the time windows for the customer nodes are small) or not.
The instances with small time windows are denoted by a three-digit number < 200
and the other with a three-digit number ≥ 200. For example, in the testing instance
r204C15 all the nodes are uniformly random positioned, large time windows and
comprises fifteen customer nodes.
To enable a reconstruction of the calculations, we have made the following as-

sumptions for the parameters: We assume a diesel price of e1.35 per litre, an
electricity price of e0.03 per kWh and a ten times higher electricity consumption
rate (kWh/km) than fuel consumption rate (l/km).1
All problem instances where solved on an Ubuntu 14.04 machine, Intel® Xeon®

CPU E5− 2683 v3 @ 2.00GHz× 56, 132GB RAM. The modelling software AMPL
12.1.0 with the optimization solver CPLEX 12 [45, 39] has been used to solve the
RMP as well as the flow formulations of Problems A and B. The dynamic pro-
gramming algorithm for solving subproblems (Algorithm 2) has been implemented
in C++. All communication between C++ and AMPL is done using AMPL API for

1The electricity and diesel prices where taken in June 2016, from www.elspot.nu and
www.bensinpriser.se respectively. The idea that electricity consumption rate is 10 times higher
than the fuel consumption rate (rEl = 10rFu) is based on approximate values used in an internal
Volvo report ER-59278. Here, the relation between fuel and electricity consumption is given as
rEl = rFu ·Qdiesel/(3.6 · 106) where Qdiesel = 3.6 · 107J/l is the energy density of the diesel.
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C++(beta version). CPLEX runs on multiple threads by default while the dynamic
programming algorithm runs on a single thread.2
An upper time limit of ten seconds was used for the solution of subproblems, such

that the solving of the subproblem was terminated if a route with negative reduced
cost was found and the problem had been running for more than ten seconds.

7.2 Solving hybrid VRPs

Section 7.2.1 presents computational results for different the ways of solving Problem
A and B, while in Section 7.2.3 the results from the hybrid VRPs are compared to
solutions for electric as well as for conventional fueled vehicles. When solving the
problems we let the maximum number of routes equal the number of customer nodes,
i.e., Fmax := |Vcus|.

7.2.1 Comparison of different solution methods
We compare the following methods for solving Problems A and B

• CG: The problems are solved using column generation, as described in Chapter
6, where the RMP is solved using CPLEX and the ESPPRC subproblem is
solved using Algorithm 2, using the dominance criteria from Section 6.2.

• CG Basic: Column generation is used and the subproblems are solved with
the basic dominance criteria (D.1)–(D.3) (used as reference to our stronger
dominance criteria).

• FLOW: The flow formulation of problems A and B are solved directly using
AMPL and CPLEX.

• CG Relaxed: The column generation procedure with the dominance criteria
from Section 6.2, but where the battery and cargo criteria are relaxed in the
beginning of the column generation process. The relaxed criteria are reinforced
when no more column with a negative reduced cost can be found without these.

• CG 2-cycles: Column generation where the elementary requirement of the
routes generated is relaxed, to allow for subcycles containing more than two
nodes.

All usage of the CPLEX solver is done with the default CPLEX options. Solution
times and objective values for Problem A are presented in Tables 7.1 and 7.2 for the
different solution methods. The results for Problem B are analogously presented in
Tables 7.3 and 7.4. A two hours limit on the computing time (not CPU time) has
been used, such that any instance running longer than this limit is canceled. When
the solution process has been canceled due to a too long execution time, the time is
marked as “—”; if an objective value is given, it is simply the best objective value

2Running the dynamic programming algorithm on more than one thread would be a logical step
if there where more than one kind of subproblem to solve.
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found up to this time. The solution times in Table 7.1 (Problem A) are compared
in Figure 7.1, while the solution times in Table 7.3 are plotted in Figure 7.2.

Table 7.1: Results from solving Problem A for a selection of problem instances.
Upper and lower bounds on the optimal objective values received by the CG and the
CG Basic methods and the corresponding solution times (CPU seconds). For the
solution to the flow formulation the best objective value found is presented along
with its corresponding solution time (CPU seconds).

CG CG Basic Flow model

Instance z z t [CPU s] z z t [CPU s] z t [CPU s]

c101C5 240.6 240.6 0.0482 240.6 240.6 0.0160 240.6 3.02
r202C5 128.8 128.8 0.104 128.8 128.8 0.132 128.8 4.56
rc108C5 264.2 264.2 0.0520 264.2 264.2 0.0523 264.2 57.1
c101C10 386.9 383.1 0.344 386.9 383.1 0.252 386.3 2.13 ·103

c104C10 279.9 279.9 2.88 279.9 279.9 5.80 279.9 5.40 ·104

r102C10 262.9 262.9 0.408 262.9 262.9 0.448 262.9 6.17 ·104

r103C10 197.5 197.5 1.08 197.5 197.5 1.52 197.5 1.61 ·105

rc102C10 427.0 427.0 0.140 427.0 427.0 0.176 427.0 4.81 ·104

rc108C10 346.9 346.9 0.744 346.9 346.9 0.592 346.9 3.58 ·104

c103C15 369.9 367.8 8.71 369.9 367.8 8.54 369.9 —
c106C15 289.2 289.2 1.10 289.2 289.2 1.63 289.2 8.85 ·104

c202C15 384.3 384.3 10.1 384.3 384.3 21.3 384.3 —
c208C15 300.5 300.5 5.52 300.5 300.5 12.5 300.5 1.12 ·105

r102C15 409.0 409.0 1.75 409.0 409.0 2.16 409.0 —
r105C15 338.3 336.2 1.86 338.3 336.2 1.32 338.3 —
r202C15 358.0 358.0 61.1 358.0 358.0 72.8 376.3 —
r209C15 273.1 273.1 37.0 273.1 273.1 83.2 273.1 —
rc103C15 393.9 393.9 5.50 393.9 393.9 4.40 393.9 —
rc108C15 378.4 378.4 4.74 378.4 378.4 9.36 381.9 —
rc202C15 396.9 396.9 6.87 396.9 396.9 17.3 396.9 —
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Table 7.2: Bounds on the optimal objective values of instances (for Problem A)
and corresponding CPU times for the CG Relaxed and CG 2-cycle methods.

CG Relaxed CG 2-cycle

Instance z z t [CPU s] z z t [CPU s]

c101C50 240.6 240.6 0.020 240.6 240.6 0.016
r202C50 128.8 128.8 0.092 157.0 124.1 5.66
rc108C50 264.2 264.2 0.048 297.5 231.4 0.064
c101C10 386.9 383.1 0.220 386.9 383.1 0.308
c104C10 279.9 279.9 4.42 322.6 255.4 3.08
r102C10 262.9 262.9 0.224 268.2 253.8 0.308
r103C10 197.5 197.5 0.752 197.5 197.3 1.73
rc102C10 427.0 427.0 0.152 427.0 427.0 0.171
rc108C10 346.9 346.9 0.396 450.6 303.7 0.576
c103C15 375.8 367.8 6.02 382.8 352.9 4.88
c106C15 289.2 289.2 0.556 289.2 283.7 0.996
c202C15 384.3 384.3 8.61 427.7 380.4 6.08
c208C15 300.5 300.5 3.68 349.4 251.0 32.3
r102C15 409.0 409.0 0.944 409.8 407.8 1.25
r105C15 338.3 336.2 0.448 338.3 336.2 1.00
r202C15 358.0 358.0 26.2 391.7 291.7 115
r209C15 273.1 273.1 18.3 301.9 249.7 1.09 ·103

rc103C15 393.9 393.9 2.54 395.6 393.2 5.12
rc108C15 378.4 378.4 4.55 489.5 294.0 20.4
rc202C15 396.9 396.9 4.95 470.6 288.5 25.6
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Table 7.3: Bounds on the optimal objective values and the corresponding CPU
time, for the instances for Problem B, solved with the CG and CG Basic methods.
For the FLOW model solution the best feasible objective value found is presented
along with the solution time.

CG CG Basic Flow model

Instance z z t [CPU s] z z t [CPU s] z t [CPU s]

c101C50 240.6 240.6 0.048 240.6 240.6 0.212 240.6 3.02
r202C50 128.8 128.8 0.180 128.8 128.8 5.62 128.8 4.56
rc108C50 253.9 253.9 0.124 253.9 253.9 0.820 253.9 9.56
c101C10 386.9 383.1 1.72 386.9 383.1 1.37 ·102 386.3 —
c104C10 273.9 273.9 14.7 — — — 273.9 5.49 ·104

r102C10 249.2 249.2 1.20 249.2 249.2 28.8 249.2 —
r103C10 197.5 197.5 2.45 197.5 197.5 2.82 ·102 197.5 —
rc102C10 422.3 422.3 0.308 422.3 422.3 9.78 422.3 —
rc108C10 345.9 345.9 1.03 345.9 345.9 67.2 345.9 1.01 ·105

c103C15 370.3 360.0 67.9 — — — 361.2 —
c106C15 275.1 275.1 3.91 275.1 275.1 3.60 ·102 275.1 2.63 ·104

c202C15 376.5 371.4 37.2 — — — 371.5 —
c208C15 300.5 300.5 16.8 — — — 300.5 —
r102C15 409.0 408.4 8.49 409.0 408.4 2.63 ·104 408.4 —
r105C15 336.2 329.4 3.71 339.7 329.4 1.35 ·104 336.2 —
r202C15 358.0 358.0 145 — — — 358.0 —
r209C15 273.1 273.1 108 — — — 273.1 —
rc103C15 393.9 393.9 5.97 393.9 393.9 7.16 ·102 393.9 —
rc108C15 364.2 364.2 23.2 — — — 364.2 —
rc202C15 396.9 396.9 22.6 — — — 396.9 —
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Table 7.4: Bounds on the optimal objective values and solution (CPU) times are
presented here for Problem B solved using the CG Relaxed and CG 2-cycle methods.

CG Relaxed CG 2-cycle

Instance z z t [CPU s] z z t [CPU s]

c101C50 240.6 240.6 0.032 240.6 240.6 0.216
r202C50 128.8 128.8 0.056 161.9 119.4 34.5
rc108C50 253.9 253.9 0.068 308.2 206.1 0.156
c101C10 386.9 383.1 1.07 397.2 373.6 10.6
c104C10 273.9 273.9 5.54 318.9 239.6 15.7
r102C10 249.2 249.2 0.344 249.2 248.8 1.08
r103C10 197.5 197.5 0.556 197.5 197.3 3.50
rc102C10 422.3 422.3 0.164 422.3 422.3 0.316
rc108C10 345.9 345.9 0.396 419.2 292.2 1.71
c103C15 370.3 360.0 18.2 370.9 343.5 17.41
c106C15 275.1 275.1 1.24 275.1 275.1 5.40
c202C15 371.5 371.4 7.47 390.9 354.4 24.0
c208C15 300.5 300.5 5.08 — — —
r102C15 409.0 408.4 3.09 409.8 407.8 5.33
r105C15 338.3 329.4 0.98 360.3 302.9 3.60
r202C15 358.0 358.0 29.1 384.8 283.2 5.04 ·104

r209C15 273.1 273.1 19.1 — — —
rc103C15 393.9 393.9 2.94 405.6 356.5 18.1
rc108C15 364.2 364.2 8.94 480.5 293.7 64.1
rc202C15 396.9 396.9 7.01 470.6 288.5 98.7

We also solved Problems A and B using CG Relaxed for the three instances given
in Appendix B of slightly larger size than the instances regarded in Tables 7.1–
7.4. The results are presented in Table 7.5 and shows further how solution times of
Problem B are longer than for Problem A.

Table 7.5: Objective values and solution times (CPU time) for Problem A and
B for the test instances presented in Appendix B, solved using the CG Relaxed
method. The computations were terminated after exceeding ten hours of computing
time.

CG Relaxed (Problem A) CG Relaxed (Problem B)

# customers # recharging nodes z z t [CPU s] z z t [CPU s]

20 4 269.24 269.24 224 269.24 269.24 553
26 7 438.49 401.27 780 — — —
30 7 362.67 326.16 18600 341.22 325.87 23200

The hybrid VRPs, Problem A and Problem B, are seemingly heavy to solve.
For the flow formulations a few of the larger instances of Problem A and more
than two thirds of all instances of Problem B were not solved within two hours of
CPLEX computing. Column generation with the domination criteria from Section
6.2 (CG), on the other hand, solves each instance for both problems within two and
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a half minute. The use of the stronger dominance criteria from Section 6.2 reduces
the solution time for Problem B a lot compared to the basic criteria (D.1)–(D.3)
(instances with solution times over two hours for CG Basic are solved within three
minutes for CG; see Table 7.3). For Problem A, however, based on the data in
Tables 7.1 and 7.2, there seems to be little difference between the use of the basic
criteria and the tighter ones. We also see, from the data in Tables 7.1–7.4, that
relaxation of some dominance criteria in the beginning of the column generation
seems to reduce the solution time, while still in general reaching as small optimality
gaps as with all criteria present.
The classical approach when solving VRPs using column generation is to solve a

relaxation of the subproblem, that allows non-elementary routes to be generated.
The reason for this is that pseudo polynomial algorithms exist for these. This means
that the solution times for solving large instances of these kinds of problems is likely
not to increase as much as when considering elementary shortest path problems.
In this report, however, we have not implemented any of these pseudo-polynomial
algorithms in CG 2-cycles procedure. Instead, CG 2-cycles is a generalization of the
CG method, such that visited nodes are only made temporarily unreachable. The
reason for considering CG 2-cycles is to find out how much larger the optimality
gaps resulting from solving these (weaker) subproblems is likely to become. The
optimality gaps resulting from CG are typically much smaller than those from CG
2-cycles; which is the reason that we have focused on ESPPTW as subproblems
instead of SPPTW.

7.2.2 The effect of time window sizes
It is not only the number of nodes that affects the solution time. Figure 7.3
illustrates—for the CG relaxed method—the solution times as functions of the num-
ber of customer nodes, for Problems A and B, with large as well as tight time
windows. As can be seen, the solution times for the column generation method is
greatly dependent on the number of nodes in the problem, but also how tight the
constraints are.
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Figure 7.3: The solution time increases for Problems A and B when new customer
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time windows being equal to the depot time window, while the solid lines correspond
to the tighter time windows from r102_21.
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7.2.3 Comparison of solutions to the hybrid VRP to solu-
tion for problems with differently powered vehicles

In order to answer the question “Would routing of electric or conventional fuel
vehicles generate routes comparable to the routes for hybrid vehicles?”, we compare
solutions from VRPs with electric as well as diesel vehicles to the ones for hybrid
vehicles. To enable this comparison we solve the testing instances as electric VRPs
as well as conventional fuel VRPs and look at the cost of using these routes with
hybrid vehicles.
Table 7.6 shows the relative increase (in %) of the cost when optimally routing

(i.e., the best solution found) the hybrid vehicles as being either pure electric or
pure diesel. The first entry in this table can be understood in the following way:
The cost of routing a fleet of hybrid vehicles the same way as is optimal to route
a fleet of electric vehicles, gives a 3.86% higher total cost than if the problem was
solved as a hybrid VRP (for problems with fixed recharging time).

Table 7.6: Improvement when optimizing for hybrids compared to running hybrids
on solutions optimized for electric or diesel vehicles, respectively. Entries where
optimum is not confirmed for the Electricity or Diesel solutions are marked with a
dagger (†), while a double dagger (‡) marks non-confirmed solutions for the hybrid
problems.

Problem A Problem B

Instance Electricity Diesel Electricity Diesel
[%] [%] [%] [%]

c101C50 2.70 7.03 2.70† 7.03†
r202C50 0 28.92 0 28.92
rc108C50 16.65 13.59† 0 18.20†
c101C10 3.86 15.50 1.94‡ 15.50‡
c104C10 0 17.22 0 19.79
r102C10 0 9.03 0 15.02
r103C10 2.73 16.01 2.73 16.01
rc102C10 2.13 11.39† 2.84 12.63
rc108C10 12.78 25.21 0 25.57†
c103C15 0.49‡ 7.92‡ 2.91‡ 10.52‡
c106C15 5.98† 5.57 0 10.98†
c202C15 3.62 24.37† 0‡ 28.65‡
c208C15 0 25.43 0 25.43
r102C15 2.69 6.82 2.84 6.98
r105C15 1.74‡ 15.49‡ 0‡ 16.22‡
r202C15 0 32.37 0 39.13
r209C15 7.36† 30.91 7.36 30.91
rc103C15 0.96 9.79† 0.96 9.79
rc108C15 0 13.67 1.65 19.19
rc202C15 2.17† 31.73 2.17† 31.73†
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We can see how the routes between hybrid, electric and diesel vehicles can vary by
looking at the solutions of instance r102C15 for the different problems, see Figures
7.4–7.8.
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Figure 7.4: Best solution found to
Problem A for the instance r102C15.
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Figure 7.5: Best solution found for Prob-
lem A solved as an electric VRP for the
instance r102C15.
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Figure 7.6: Best solution found to
Problem B for the instance r102C15.
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Figure 7.7: Best solution found for Prob-
lem B solved as an electric VRP for the
instance r102C15.
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Figure 7.8: Best solution found for Problems A and B solved with diesel as the
only propellant for the instance r102C15.

Table 7.6 reveals that the best routes found for electric vehicles often, but not
always, are seemingly faire routes for hybrid vehicles too (this is, however, of course
dependent on the scale of the problems). The electric VRPs seem to yield routes
that are more useful for hybrid vehicles than the diesel VRPs do. The need for
solving hybrid VRPs still remain though, not least as electric VRPs might not even
have feasible solutions.
Lastly, electric vehicles are more dependent on recharging nodes than hybrid ve-

hicles are. We investigated this by solving hybrid and electric VRP instances with
varying numbers of recharging nodes. Figure 7.9 shows the best objective values
found for an instance with fifteen customer nodes and 1–15 recharging stations.
The positions of the recharging stations as well as of the customer nodes were cho-
sen uniformly random. The blue dots represent the objective value for the best
solution found for Problem B and the red line is the same for the electric VRP
(Problem B without the diesel option).
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Figure 7.9: The costs of the best solutions found for a fleet of electric and cor-
responding hybrid vehicles, for different numbers of recharging nodes. For the full
test instance, see Appendix B.
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In this thesis we presented two VRPs with a homogeneous fleet of plug-in hybrid
vehicles: Problem A, assuming fixed recharging times, and Problem B, in which the
recharging times are assumed to depend on the battery charge level at arrival at
the recharging station, the latter assumption being more realistic. The recharge of
the vehicles’ batteries can only take place at special recharging nodes, which are
optional for the vehicles to visit. Refueling is not considered in the models as these
type of stations are (generally) far more common compared to recharging stations,
and the time for refueling is negligible compared to recharging times. To the best
of the author’s knowledge, neither of these models have been studied previously.
The seemingly small difference between Problems A and B makes them differently
hard to solve. The difference in complexity between Problems A and B is illustrated
by the time required to solve their respective flow formulations. For Problem A,
55% of the instances tested (with up to 15 customer nodes, 5 recharging nodes and
15 vehicles) were solved within two hours of computing time, the corresponding
figure for Problem B being 30%. With the flow formulations as our starting point
we have formulated corresponding column generation models, which can be solved
much faster.
The need for studying hybrid VRPs becomes evident when comparing their solu-

tions with those of pure electric VRPs and pure conventionally fuelled VRPs. At a
first glance, the electric VRP seems to serve as a good enough approximation of the
hybrid VRP, in the sense that their respective optimal routes are similar. Indeed,
for some instances this seems to be the case: when considering the recharging times
being dependent on battery charge level, for only one out of our 20 test instances
the best objective value found for the electric VRP is more than 3% higher than
the corresponding value for the hybrid VRP. But, the electric VRP seems to be
very sensitive to sparsity of the recharging stations, while the hybrid VRP does not.
This suggests that routing hybrid vehicles as pure electric vehicles would be a bad
idea, if the recharging nodes are scarce. Routing hybrid vehicles as conventional fuel
vehicles seems to generate bad routes in general, which is natural since these routes
will not visit any recharging nodes.
We solve the hybrid VRP using column generation, which divides the problem

into a cardinality constrained set covering master problem and an elementary short-
est path subproblem with resource constraints. The subproblems are solved using a
labelling dynamic programming algorithm based on the one presented in [40], and
for which our main contribution is to provide stronger (problem specific) dominance
criteria which considerably improves the performance of the algorithm. The col-
umn generation algorithm yields tight bounds on the optimal value for all of the
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test instances solved, and the solution times are generally much shorter than those
emerging from solving the flow formulations directly using the CPLEX solver. While
column generation using the basic dominance criteria from [40] in most cases solves
the problems faster than the flow formulation solutions, it took over two hours to
solve some of the instances with 10–15 customer nodes. The usage of the stronger
dominance criteria greatly improves the solution speed, with the result that all in-
stances were solved within three minutes.
Although the column generation method enables a faster solution of the hybrid

VRPs than by solving their flow formulations directly using the default branch-
and-cut method in CPLEX, we believe it to hold further improvement potential.
Some changes that have not been implemented in this work, but that seem likely to
improve the solution speed, are to “warm up” the subproblem solution by using a
heuristic to create promising initial paths. To be able to tackle larger instances one
could also terminate the column generation when the difference between the upper
and lower bounds is below some threshold value. To generate lower bounds we need
to solve the subproblems to optimality. In order not to slow down the solution
process by solving all subproblems to optimality, one could generate these bounds
on a separate detached thread, such that the column generation procedure does not
have to wait for the new lower bound before it can continue on a new iteration.
A natural next step would be to apply the model on real data, such that the

fully theoretical problem studied here is applied to routing of vehicles in real life.
Other interesting areas would be to look at further extensions of the hybrid VRP,
such as models with weight dependent fuel and electricity consumption rates or
considering (time dependent) traffic congestion. Another interesting research topic
is the optimization of the positioning of the recharging nodes, enabling a more
efficient routing for both electric and hybrid vehicles.
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Appendix A

Detailed derivation of master and subproblem

The master and subproblem for column generation for Problems A and B presented
in this report can be derived through the theory presented on column generation
and Dantzig-Wolfe decomposition in Chapter 4.3. We show this here for Problem
A, Problem B can be treated similarly.
Problem A can be expressed as to

minimize
x,τ,u,y,z

∑
k∈K

∑
(i,j)∈A

(cFuzFu,k
ij + cElzEl,k

ij ), (A1)

subject to
∑
k∈K

∑
j:(i,j)∈A

xkij = 1, i ∈ Vcus, (A2)
∑
k∈K

∑
j∈Vrec∪Vcus

xk0j ≤ Fmax, (A5)

xkij ∈ {0, 1}, (i, j) ∈ A, k ∈ K (A14)

subject to the additional constraints (A3)–(A4),(A6)–(A13),(A15)–(A16).
The set described by the additional constraints is not a convex set, however every

point in this set can still be written as a convex combination of its extreme points of
the convex hull (i.e., the smallest convex set that includes all points in the additional
constraint set). Denote these extreme points as ul, l ∈ L, and note that each of
these extreme points represents a schedule specifying a route for each vehicle k ∈ K
(such that not all costumers has to be visited). We then end up with the master
problem to

minimize
λ

∑
l∈L

c(ul)λl, (A11)

subject to
∑
l∈L

χi(ul)λl = 1, i ∈ Vc, (A12)∑
l∈L

µ(ul)λl ≤ Fmax, (A13)∑
l∈L

λl = 1, (A14)

λl ∈ 0, l ∈ L, (A15)

where Ωu denotes the set of all schedules (extreme points) ul, c(ul) denotes the
cost of schedule ul, χi(ul) denotes the number of times node i is visited for schedule
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ul, and µ(ul) denotes the number of vehicles used for schedule ul. But there is
no real need to regard columns (i.e., variables ul) that represent schedules for the
whole fleet of vehicles; instead we will consider separate schedules for each vehicle.
Therefore, by letting vr represent the route of a vehicle, and letting R := {r :
vr is a (by the additional constraints) feasible route } be the index set of all possible
routes, our master problem can be expressed as to

minimize
λ

∑
r∈R

c(vr)λr, (G1)

subject to
∑
r∈R

χi(vr)λr = 1, ∀i ∈ Vc, (G2)∑
r∈R

λr ≤ Fmax, (G3)

0 ≤
∑
r∈R

λr ≤ Fmax, (G4)

λr ≥ 0, r ∈ R, (G5)

where (G4) is true since a schedule (ul) for all vehicles contain up to Fmax vehicles,
the other relations being straightforward to check. Obviously, the constraint (G4)
is redundant, and we can thus rewrite the problem (G) as to

minimize
λ

∑
r∈R

c(vr)λr, (G1)

subject to
∑
r∈R

χi(vr)λr = 1, ∀i ∈ Vc, (G2)∑
r∈R

λr ≤ Fmax, (G3)

λr ≥ 0, r ∈ R. (G5)

Finally, as the VRP instance solved are defined such that it is never cheaper to
pass through a customer node than to skip it, we may, without loss of generality,
allow more than one visit to each customer node. Then by letting the number of
visits to a node i by route vr be written as γir, we end up with the same master
problem as (IMP), namely to

minimize
λ

∑
r∈R

c(vr)λr, (G1)

subject to
∑
r∈R

γir(vr)λr ≥ 1, ∀i ∈ Vc, (G2)∑
r∈R

λr ≤ Fmax, (G3)

λr ≥ 0, r ∈ R. (G5)

With the objective of finding the route that is most violated in the latest solution
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of the dual to the MP we receive the subproblem to

minimize
x,y,u,τ,z

∑
(i,j)∈A

(cF zFij + cEzEij − βi)− α

subject to

the constraints (A3)–(A4),(A6)–(A13), (A15)–(A16).
The cost of the propellant used to cover the route is ∑

(i,j)∈A
(cF zFij + cEzEij ), while α

and βi are linear programming dual variables to the master problem, corresponding
to constraints (G3) and (G2), respectively.
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Three larger problem instances made by random selection of nodes from problem
instance r102_21 (by M. Schneider, A. Stenger, and D. Goeke.).

20 customer nodes, total 25 nodes:
xcoord ycoord demand ReadyTime DueDate ServiceTime

0 40.0 50.0 0.0 0.0 1236.0 0.0
1 40.0 50.0 0.0 0.0 1236.0 0.0
2 73.0 52.0 0.0 0.0 1236.0 0.0
3 90.0 55.0 0.0 0.0 1236.0 0.0
4 55.0 79.0 0.0 0.0 1236.0 0.0
5 15.0 80.0 10.0 455.0 513.0 90.0
6 30.0 50.0 10.0 0.0 1136.0 90.0
7 30.0 52.0 20.0 0.0 1135.0 90.0
8 28.0 52.0 20.0 0.0 1133.0 90.0
9 28.0 55.0 10.0 13.0 70.0 90.0
10 25.0 50.0 10.0 0.0 1131.0 90.0
11 25.0 52.0 40.0 158.0 232.0 90.0
12 25.0 55.0 10.0 672.0 744.0 90.0
13 23.0 52.0 10.0 263.0 311.0 90.0
14 23.0 55.0 20.0 438.0 510.0 90.0
15 20.0 50.0 10.0 0.0 1126.0 90.0
16 20.0 55.0 10.0 0.0 1125.0 90.0
17 10.0 35.0 20.0 0.0 1112.0 90.0
18 10.0 40.0 30.0 0.0 1114.0 90.0
19 50.0 30.0 10.0 980.0 1064.0 90.0
20 50.0 35.0 20.0 0.0 1127.0 90.0
21 50.0 40.0 50.0 0.0 1131.0 90.0
22 48.0 30.0 10.0 0.0 1124.0 90.0
23 72.0 55.0 10.0 0.0 1113.0 90.0
24 70.0 58.0 20.0 0.0 1114.0 90.0
m := 4; # The number of recharging nodes
maxCharge := 79.69;
LoadCapacity := 200.0;
rateElConsump := 1.0;
RechargeRate := 3.39;
AverageSpeed := 1.0;
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26 customer nodes, total 34 nodes:

xcoord ycoord demand ReadyTime DueDate ServiceTime :=
0 40.0 50.0 0.0 0.0 1236.0 0.0
1 40.0 50.0 0.0 0.0 1236.0 0.0
2 73.0 52.0 0.0 0.0 1236.0 0.0
3 13.0 31.0 0.0 0.0 1236.0 0.0
4 59.0 17.0 0.0 0.0 1236.0 0.0
5 73.0 23.0 0.0 0.0 1236.0 0.0
6 74.0 32.0 0.0 0.0 1236.0 0.0
7 90.0 44.0 0.0 0.0 1236.0 0.0
8 45.0 68.0 10.0 0.0 1127.0 90.0
9 42.0 65.0 10.0 950.0 1026.0 90.0
10 40.0 69.0 20.0 683.0 741.0 90.0
11 40.0 66.0 20.0 0.0 1130.0 90.0
12 50.0 40.0 50.0 0.0 1131.0 90.0
13 48.0 30.0 10.0 0.0 1124.0 90.0
14 48.0 40.0 10.0 67.0 139.0 90.0
15 47.0 35.0 10.0 1068.0 1129.0 90.0
16 47.0 40.0 10.0 0.0 1133.0 90.0
17 45.0 30.0 10.0 0.0 1125.0 90.0
18 45.0 35.0 10.0 0.0 1130.0 90.0
19 95.0 30.0 30.0 390.0 444.0 90.0
20 95.0 35.0 20.0 481.0 543.0 90.0
21 53.0 30.0 10.0 904.0 954.0 90.0
22 92.0 30.0 10.0 287.0 361.0 90.0
23 53.0 35.0 50.0 78.0 142.0 90.0
24 45.0 65.0 20.0 0.0 1130.0 90.0
25 90.0 35.0 10.0 575.0 639.0 90.0
26 88.0 30.0 10.0 534.0 600.0 90.0
27 88.0 35.0 20.0 0.0 1095.0 90.0
28 87.0 30.0 10.0 0.0 1094.0 90.0
29 85.0 25.0 10.0 637.0 689.0 90.0
30 60.0 60.0 10.0 0.0 1123.0 90.0
31 67.0 85.0 20.0 459.0 519.0 90.0
32 55.0 80.0 10.0 836.0 896.0 90.0
33 55.0 85.0 20.0 744.0 798.0 90.0

;

param m := 7; # The number of recharging nodes
param maxCharge := 79.69;
param LoadCapacity := 200.0;
param rateElConsump := 1.0;
param RechareRate := 3.39;
param AverageSpeed := 1.0;
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30 customer nodes, total 38 nodes
xcoord ycoord demand ReadyTime DueDate ServiceTime

0 40.0 50.0 0.0 0.0 1236.0 0.0
1 40.0 50.0 0.0 0.0 1236.0 0.0
2 39.0 96.0 0.0 0.0 1236.0 0.0
3 23.0 80.0 0.0 0.0 1236.0 0.0
4 28.0 13.0 0.0 0.0 1236.0 0.0
5 39.0 31.0 0.0 0.0 1236.0 0.0
6 48.0 11.0 0.0 0.0 1236.0 0.0
7 59.0 17.0 0.0 0.0 1236.0 0.0
8 45.0 68.0 10.0 0.0 1127.0 90.0
9 45.0 70.0 30.0 499.0 553.0 90.0
10 42.0 66.0 10.0 0.0 1129.0 90.0
11 42.0 68.0 10.0 584.0 656.0 90.0
12 42.0 65.0 10.0 950.0 1026.0 90.0
13 40.0 69.0 20.0 683.0 741.0 90.0
14 40.0 66.0 20.0 0.0 1130.0 90.0
15 38.0 68.0 20.0 1057.0 1125.0 90.0
16 38.0 70.0 10.0 958.0 1040.0 90.0
17 35.0 66.0 10.0 779.0 845.0 90.0
18 35.0 69.0 10.0 869.0 941.0 90.0
19 25.0 85.0 20.0 176.0 228.0 90.0
20 20.0 50.0 10.0 0.0 1126.0 90.0
21 20.0 55.0 10.0 0.0 1125.0 90.0
22 10.0 35.0 20.0 0.0 1112.0 90.0
23 10.0 40.0 30.0 0.0 1114.0 90.0
24 8.0 40.0 40.0 355.0 437.0 90.0
25 8.0 45.0 20.0 0.0 1113.0 90.0
26 5.0 35.0 10.0 655.0 725.0 90.0
27 5.0 45.0 10.0 0.0 1110.0 90.0
28 2.0 40.0 20.0 569.0 619.0 90.0
29 0.0 40.0 30.0 472.0 532.0 90.0
30 0.0 45.0 20.0 0.0 1105.0 90.0
31 35.0 30.0 10.0 143.0 199.0 90.0
32 35.0 32.0 10.0 0.0 1127.0 90.0
33 33.0 32.0 20.0 0.0 1126.0 90.0
34 33.0 35.0 10.0 789.0 849.0 90.0
35 32.0 30.0 10.0 0.0 1124.0 90.0
36 30.0 30.0 10.0 0.0 1123.0 90.0
37 30.0 35.0 10.0 698.0 754.0 90.0

m := 7; # The number of recharging nodes
maxCharge := 79.69;
LoadCapacity := 200.0;
rateElConsump := 1.0;
RechargeRate := 3.39;
AverageSpeed := 1.0;
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Instance with large number of recharging nodes
The full instances used for the test with different number of recharging nodes.

xcoord ycoord demand ReadyTime DueDate ServiceTime
0 35.0 35.0 0.0 0.0 230.0 0.0
1 35.0 35.0 0.0 0.0 230.0 0.0
2 28.0 62.0 0.0 0.0 230.0 0.0
3 51.0 7.0 0.0 0.0 230.0 0.0
4 63.0 12.0 0.0 0.0 230.0 0.0
5 33.0 49.0 0.0 0.0 230.0 0.0
6 66.0 4.0 0.0 0.0 230.0 0.0
7 16.0 31.0 0.0 0.0 230.0 0.0
8 0.0 7.0 0.0 0.0 230.0 0.0
9 54.0 54.0 0.0 0.0 230.0 0.0
10 55.0 5.0 0.0 0.0 230.0 0.0
11 59.0 69.0 0.0 0.0 230.0 0.0
12 27.0 8.0 0.0 0.0 230.0 0.0
13 19.0 45.0 0.0 0.0 230.0 0.0
14 12.0 27.0 0.0 0.0 230.0 0.0
15 44.0 9.0 0.0 0.0 230.0 0.0
16 31.0 52.0 27.0 25.0 35.0 10.0
17 55.0 5.0 29.0 97.0 107.0 10.0
18 67.0 5.0 25.0 0.0 176.0 10.0
19 17.0 34.0 3.0 0.0 201.0 10.0
20 26.0 52.0 9.0 166.0 176.0 10.0
21 53.0 43.0 14.0 150.0 160.0 10.0
22 45.0 65.0 9.0 77.0 87.0 10.0
23 20.0 26.0 9.0 138.0 148.0 10.0
24 50.0 35.0 19.0 177.0 187.0 10.0
25 45.0 20.0 11.0 0.0 201.0 10.0

m := 15; # The number of recharging nodes
maxCharge := 60.63;
LoadCapacity := 200.0;
rateElConsump := 1.0;
RechareRate := 0.49;
AverageSpeed := 1.0;
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