; Y
Vi GNANCES)¢
N y
20

N 82 s

A Distributed, Parallel and Fault Tolerant BGP
Routing Daemon

Master of Science Thesis at the Department of Computer Science and
Engineering

ERIK BERGSTROM
MARTIN MILLNERT

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, June 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

A Distributed, Parallel and Fault Tolerant BGP Routing Daemon

(In alphabetical order)
ERIK BERGSTROM
MARTIN MILLNERT

© ERIK BERGSTROM, June 2015
© MARTIN MILLNERT, June 2015

Examiner: Sally A. McKee

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

“Partial map of the Internet based on the January 15, 2005 data found on opte.org. Each
line is drawn between two nodes, representing two IP addresses. The length of the lines
are indicative of the delay between those two nodes. This graph represents less than 30%
of the Class C networks reachable by the data collection program in early 2005.” -
https://commons.wikimedia.org/wiki/File:Internet_ map 1024 - transparent,_inverted.png

Department of Computer Science and Engineering
Goteborg, Sweden June 2015

Acknowledgements

We would like to extend our gratitude to Sally A. McKee, for her help in this
work. We would also like to extend our gratitude to the great folks on the
IRC chat rooms of #networker, as well as #erlang.

Martin would like to extend his greatest gratitude to Behnaz Pirzamanbein,
for all her loving support and encouragement that eventually led to here.
Erik would like to send a big thank you to his wife Yalda Bergstrom, for all
her love and support.

Abstract

The protocol that has delivered the Internet to the world suffers from aged im-
plementations in current core routers. The implementations lack proper fault
tolerance and suffer from single-threaded processing, underutilizing multi-
core processors. While a lack of multi-core processing capabilities was not
a notable deficit 20 years ago, today a modular router is a small compute
cluster in itself with multiple multi-core processors.

This thesis identifies first that in order to simplify, scale and improve fault
tolerance in a BGP implementation, it can be decomposed into smaller parts.
This thesis also shows that the processing of a BGP implementation’s criti-
cal path can be parallelized down to a per-prefix level and distributed over
multiple nodes in a cluster implementation of a distributed RIB. Using the
ErlBGP architecture, greater stability could be achieved in the Internet.

Contents

:1 2 Research Quesﬁ(m.zl 4
[.3 Scope and Limitations for the prototypd 4

5

5

6

6

7

8

8

8

2.2 Brief historv of IP router’s technologvi. 9
irst generation routerd 9
ccond generation routers L. 10

hird generation routerd 11

4 _Head-of-line blocking and Virtual Output Queued . . . 12
Recent developmentd L. 12
2.2.5.1 _Warehouse-Scale (“omputer’ﬂ 13

P32 BGP Fundamentald 17
2.321 BGP Message Typed ... 17
b322 BGP Finite S Machind

£.4.6 Tvpical concurrency in modern routing plane softward

. >
) buted svstems and the CA heorem| L L.
Distributed storage of conficuration stata
) buted storage of objects

|2 6 Erlana

261 Erlang/OTH.

2.6.2 Distributed Erlang

4.3 Parallelized and Distributed UPDATE message processing . .
—. = -

D,
DA message Proce

44 A Distributed RIB

4.4.1 Replication strategy overviewl

4.4.2 Distributed RIB and Routing Storage Daemons clustexl

4.5 Decomposition of BGP with multi-process, distributed Er-

lang/OTP prototype

4.6 ErIBGP - multi-process, distributed Erla&%}_’l}’_pﬂm;mﬁ] .
4.6.1 Decomposition into multiple processed
4.6.2 ErlBGP walkthroughl

14.6.21 Distributed Erlang & Multiple Noded

4.6.2.2 The ErlBGP application and a node’s super-

visor tree
4.6.2.3 The erlbgp_peerfsm and erlbgp_peerrecv rela-

tionship
4.6.2.4 Critical path and BGP UPDATE message pro-

CESSING e

i

I5_Discussion

(5.1 Omn using the right tool for the o . .
5.2 Differences with (HIDELL) and (ONOSY

5.3 Future workl L

15.3.1 Improve Fault Tolerancd o oo v

. —
mplement D buted RIB

5.3.4 Look into TCP Socket Migration solutiond
5.3.5 Configuration Management and API

5.3.7 Application of ErlBGP to a real-world router hardware
platform

1l

59
29
61
62
62
62
63
63
63
64

64

65

67

75

77

80

Glossary

Here we present some terminology used in the report.

Adj-RIB-In Adjacency RIB, in. A RIB which stores the incoming route
updates.

Adj-RIB-Out Adjacency RIB, out. A RIB which stores the information
already sent or to be sent to a peer.

AS Autonomous System. An entity that controls a set of prefixes.

ASN Autonomous System Number. A usually globally unique and regis-
tered number connected to an AS.

AS path A list of ASN that describes a path between two networks.

BGP Border Gateway Protocol. A protocol for routers to exchange network
reachability information.

BGP speaker A system that implements BGP.

EGP External Gateway Protocol. Routing protocols that are used exter-
nally, between AS’es. The only relevant protocol today is BGP.

FSM Finite State Machine. A model for computations in software that uses
different states.

Less specific route A less specific route, Ry, relative another route, Rs, is
a route to a shorter prefix, i.e. a shorter bitmask (less most signifi-
cant ones). The prefix R; points to is a superset of the IP addresses
contained within the prefix Ry points to.

Loc-RIB Local Routing Information Base. Where the locally selected best
routes are stored.

IGP Internal Gateway Protocol. Routing protocols that are used within an

AS.

IP Internet Protocol. The most commonly used protocol to address network
devices on the Internet.

IS-IS Intermediate System to Intermediate System. An IGP.

MAC address Media Access Control address. A unique address bound to
a network interface.

More specific route A more specific route, Ry, relative another route, Ro,
is a route to a longer prefix, i.e. a longer bitmask (more most significant
ones). The prefix R; points to is a subset of the IP addresses contained
within the prefix Ry points to.

Next hop address A protocol address to send IP packets via.

NLRI Network Layer Reachability Information. Information containing
prefixes.

OSPF Open Shortest Path First. An IGP.

RFC Request For Comments. A publication from the Internet Engineering
Task Force (IETF) for standards.

RIB Routing Information Base. A table with routing information.

RIP Routing Information Protocol. An IGP.

Route A prefix with a next hop address.

Routing Table A datastructure organizing storage of routing information.
Path Here: another word for route.

Peer A BGP speaker, A, that is connected to another BGP speaker, B, is
said to “peer” with B. B is thus also a peer of A.

Prefix A network address with an attached network bitmask, such as 192.0.2.0/24.

192.0.2.0 is the network address, and /24 means to apply a 24 bit long
1s bitmask for the most significant bits filled with 8 zeroes. Apply-
ing this bitmask on an address within the subnet specified (192.0.2.0
- 192.0.2.255) using a bitwise or operation will return the network ad-
dress, 192.0.2.0.

TCP Transmission Control Protocol. A transport layer protocol on top of
the Internet Protocol.

1 Introduction

Today, BGP version 4 is the single protocol responsible for the roughly 50
000 networks being connected |15] in the Internet.

BGP runs between routers sitting on the edges (hence “border”) of IP net-
works, enabling communication between networks. The routing protocol
exchanges network reachability information between networks which then
propagates towards all connected networks. The implementations of BGP
in routers today have to process a fair amount of information, which is only
expected to increase ﬂﬁ]

1.1 Problem statement

While processing large amounts of information is not a challenge in itself to
the protocol, all known existing implementations of it processes information
completely in serial, in a single master process on each router.

This presents two challenges:
1. Fault tolerance and,
2. performance and scalability.

Some implementations addresses fault tolerance by having a single backup
process running, and strategies have been proposed to address the perfor-
mance and scalability challenge by partitioning the information to multiple
serialized processes. The current answers to the fault tolerance problem do
not address the performance and scalability issues, and, conversely, the cur-
rent proposed answers to the performance and scalability challenge, we argue,
do not properly address the fault tolerance challenge. We have found one
proposal on partitioning that attempts to also address the fault tolerance
challenge, however, this proposal, while on the right track, is high level and
does not go deep enough to address the core of the problem: Decoupling the
very internal functions of BGP such that they do not need to run on a single
physical host with shared memory.

Lack of processing power to apply to this information reduces the amount
of sanity checking that is possible to achieve, which reduces the accuracy of
the routing information, negatively affecting the Internet with outages.

We research a design for a very granular decoupling of the internal functions
of BGP, attempting to address both the fault tolerance and the performance
and scalability challenges. In our experimental work we use the distributed
programming toolbox of the Erlang programming language to show a proof

of concept. We identify the design’s critical path and outline areas for further
improvement.

1.2 Research Questions

We have defined the following Research Questions that we address in this
work:

RQ.1 Is it feasible to implement a distributed BGP daemon that address the
two challenges above?

RQ.2 Can the critical path of a BGP daemon be parallelized?

RQ.3 Is it feasible to partition a RIB over multiple nodes?

To accomplish this work, we had to first research how to build distributed
programs efficiently, as well as research BGP and related published work
thoroughly. We will answer RQ.1 by implementing a prototype using the
functional programming languange Erlang.

1.3 Scope and Limitations for the prototype

Our prototype will show the core aspects, the decoupling of the internal
functions, and that:

e the distributed system can connect to a peer
e a peer can connect to the distributed system
e we can maintain established peers

e our system exhibits some of the fault tolerance properties, and au-
tonomously restarts dead processes

Specifically, we will not:

e implement route import / export policies

e implement a distributed, highly available, strongly consistent state stor-
age

— though we will research the requirements

e implement a distributed, highly available, strongly consistent RIB

— though we will research the requirements
e make any attempts to optimize the critical path for speed

e implement any BGP extensions

2 Background and literature study

In this chapter we first give a brief history of the evolution of IP router tech-
nology, both hardware and software. We introduce the reader to BGP. We
refer to relevant related research work where appropriate for further reading.

2.1 IP Router Building blocks

An IP router is a device that forwards, or routes, packets between different
IP subnets towards their destination, according to its routing table. It may
use dynamic routing protocols to exchange network reachability information
with other routers, to populate its routing table. IP routers form routed IP
networks, and different administrative domains operate distinct networks.
Multiple distinct networks connected together form an internetwork and a
very famous such internetwork is the Internet @]

A network can internally use a dynamic routing protocol, called an Internal
Gateway Protocol, to dynamically exchange network reachability informa-
tion. When exchanging routes externally, conversely an External Gateway
Protocol should be used. This has since the 90s been standardized to the
“Border Gateway Protocol”, from being on the border of a network, talking
to other, foreign networks.

The major building blocks of an IP router are:
e Network interfaces

Packet buffers

Switch fabric

Control processor

Routing tables

Packet Forwarding Engine

Control Plane}

Routing

protocols

Routing
Table

Incoming Outgoing
Packets Packets

Packet forwarding
engine

Forwarding Plane

Figure 1: IP Router Building blocks

2.1.1 Network interfaces

Network interfaces are the translators between physical signals and the logical
packetizations of these signals for a networked device, such as a computer,
router or switch. Network interfaces are typically said to have a certain
“bandwidth”, and what is typically referred to is not the strictly physical
signals bandwidth, e.g. frequency range of signaling, but the data rate.

A network interface that has a “bandwidth” of 10 gigabits per second, has
actually a data rate of 10 gigabits per second. This means that on the physical
layer, the interface will be transmitting one bit every 0.1 nanosecond. The
device’s physical apparatus, called “PHY”, will, depending on modulation
format of the signal and implementation, for example run at a clock rate of
10 GHz and decode 1 bit at a time when receiving a frame (packet). The
device will stitch together a stream of bits to form the frame, typically with
Ethernet framing, and make these frames available for the host machine.

2.1.2 Packet buffers

To illustrate the role of packet buffers in packet network devices, we will de-
scribe a device without any. For simplicity, there are more than two network
interfaces, they are all of identical data rate and there is a single pipeline
processing a stream of packets from input ports to their output ports.

Lacking any packet buffers, packets that arrived at any other port than the

one whose packet was picked up by the pipeline, are discarded. There is
no possibility for either collisions or congestion within the device, but the
aggregated throughput is also limited to the data rate of a single interface,
despite having more than two ports.

If the data rate of a selected output port for a stream of packets is a tenth
of the data rate of the packets’ input port(s), it is only possible to forward a
tenth of the received packets.

If, for every discrete time slot, the pipeline would pick up an input packet
from more than one port, it could only dispatch them to non-identical out-
put ports. From this it is apparent that with the introduction of a so-called
scheduler, we could optimistically improve the aggregated throughput of the
device in case the necessary output ports during a given time slot are more
than one.

With the addition of packet buffers, either input buffers, output buffers or
a combination of input and output buffers, it is possible to improve the ag-
gregated throughput of a network device considerably. By increasing the
probability that a received packet can be queued either at the ingress inter-
face, the egress interface or a combination of them, the ability of the egress
interface to be transmitting packets at every time slot increases. This reduces
the packet loss rate.

2.1.3 Switch fabric

An efficient IP router contains a non-blocking switch, between the ingress
interfaces and the egress interfaces, meaning it can send from any ingress
port to any egress port without inherent contention in the switch fabric.

Any switch device can experience natural contention, when the total ingress
bandwidth for a certain set of packet flows is larger than the available band-
width on the flows’ egress interfaces:

BWeotatingressFiows = 9 BW (i),i = flownumber (1)
i=0

BW avaitableEgress = »_ AvailableBW (j), j = egressinter face (2)
7=0

BWTotalIngressFlows > BWAvailableEgress (3)

Since network traffic arrives to a network device stochastically, packet buffers
greatly reduces the packet loss probability. However with ideal traffic pat-
terns and/or infinite buffers, there is a potential bottleneck in the intercon-
nection between all ingress and egress ports. There are many designs for
these interconnections, such as: shared bus, shared memory, distributed out-
put buffered and crossbar.

2.1.4 Control processors

An IP router must manage several control functions, such as primarily the
various routing protocols they run. These typically run on a dedicated control
processor of a modern router, which is a generic CPU. These CPUs are
basically provided in the form of a generic server and manage the router’s
various attached devices.

2.1.5 Routing tables

The router exchange network reachability information, also known as routing
information, with other routers and store this information in routing tables.
Each network destination, called “prefix” for short, is kept at least once in
these tables, together with information about which so called next hop IP
address the router should use direct traffic towards the destination. In total,
this information is called a “route”. It also keeps a set of metadata together
with each route that the router can use to make policy decisions about which
one of multiple possible routes to select for a given prefix. To “select a route”
means to use it for packet forwarding and potentially propagation to neigh-
bor devices.

A router’s protocols keep their own set of routing tables, in addition to the
main routing table.

The routing tables in the control plane are called the Routing Information
Base, or RIB.

2.1.6 Packet forwarding engine

In routers with a so called “control plane and forwarding plane separation”,
the main routing table is not used for the forwarding of packets by the for-
warding plane, it is only used for forwarding of control plane traffic. Instead,
the forwarding plane uses a packet forwarding engine, a set of hardware with
an accelerated routing table which the control plane keeps in sync. The

routing tables in the forwarding plane are called the Forwarding Informa-
tion Base, or FIB. The packet forwarding engine will for each received IP
packet perform lookups of the IP packet’s destination address against this
accelerated routing table.

2.2 Brief history of IP router’s technology

In this section a brief history of the evolution of IP router architecture is
given, concluding with the latest designs that have a good fit with this re-
search project.

A few core parameters of an IP router that limits its aggregated throughput:
e Cost

e Power consumption / heat dissipation

Internal interconnection capacity

Total interface capacity

Forwarding route lookup performance

Amount of packet buffer memory

Degree of reliability and fault tolerance

Packet handling flexibility in fast path

Constructing a high performance router could be seen as a linear equation
system on these variables, where some are given, some should be minimized,
others maximized.

An aspect that was alluded to in the introduction above that is very im-
portant, is the scheduling and contention resolution strategies of routers.

2.2.1 First generation routers

First generation routers were basically PCs with multiple network interfaces.
The network interfaces were attached to a common bus with a fixed through-
put shared between connected devices. Received packets were stored in the
main memory of the router, and the regular CPU was used both for running
the routing protocols and to perform the packet forwarding, including route
lookups.

[CPU } [Route table } .
Main memory

A
A
Y Y
3 ; 5
. Line Line Line
interface interface interface
MAC MAC MAC

Figure 2: First generation routers

2.2.2 Second generation routers

When the utility of connecting networks together grew as more resources
became networked, the requirement for increased aggregated throughput
through the routers consequently increased as well.

It was immediately obvious that using the main memory as a packet buffer
and the CPU as the forwarding engine constituted a single set of resource
bottleneck, and especially with a shared bus, the IP packets are sent twice
over it: to and from the packet buffer.

The first incremental improvements on this design constitute a second gen-
eration of routers.

In order to relieve the main memory and the CPU, both packet buffers
and forwarding offloading was added to the network interfaces. Due to lim-
ited memory capacity, the forwarding offload could only handle a subset
of all possible routes in the actual forwarding table, meaning a subset of
the routes could be cached - forming a forwarding cache. In the event of
a cache hit, packets could be sent directly from the incoming interface to
the outgoing interface over the bus without going to main memory. This
offloaded the contention between the main memory and the bus and allowed
for greatly increased utilization of the shared bus and led to increased aggre-
gated throughput of the routers.

10

'SR

9]

T

c
—
'SR

Route table)
Main memory

A
Y A

[y v v

Line Line Line
interface interface interface

Buffer
memory

Buffer
memory

Buffer
memory

Forwarding
cache

Forwarding
cache

Forwarding
cache

MAC MAC MAC

Figure 3: Second generation routers

2.2.3 Third generation routers

With the central packer buffer contention partially resolved, the next through-
put limitation was the shared bus. A shared bus implies some form of Time-
Division-Multiplexing (TDM) for allowing multiple connected interfaces to
speak over the bus. While it is possible to run the bus at a proportionally
higher bandwidth and clock rate than the connected interfaces to compen-
sate for TDM effect, this uses more power and is more costly.

In order to further increase throughput, third generation routers improved
on the second generation by addressing this bottleneck. The solution was to
replace the shared bus with a crossbar switch. Into this crossbar switch, so
called “Line Cards” were plugged. Line cards are improved network inter-
faces, basically small computers of their own, that may even have more than
one network interface on them. The line card fits the entire forwarding table,
has larger local buffers needed to support sending and receiving traffic over
the crossbar to other line cards. @]

11

Switched backplane

A A A

A 4 V A 4 A 4

. N .

Line Line
interface CPU interface
-/

Buffer Buffer
memory () memory
Route table
Forwarding — J Forwarding
cache cache
MAC MAC

Figure 4: Third generation routers

2.2.4 Head-of-line blocking and Virtual Output Queues

The first incarnations of the crossbar switches however suffered from head-
of-line blocking.

Head-of-line blocking is a situation where the input line card is unable to
transmit the packet at the head of its crossbar output queue, due to the
receiving line card on the crossbar’s corresponding input queue being full of
packets. There is a single output queue to the crossbar and it is sufficient for
a single of all other line cards having its input queue full, to block any other
line card.

This was addressed by the development of the Virtual Output Queues where
each line card has one virtual output queue to the crossbar for every destina-
tion line card’s input buffer. The transmission scheduler then can loop over
the physical output queue and transmit not just the packet at the head of
the queue, but the packet at the head of each Virtual Queue. }

2.2.5 Recent developments

In this section modern high-scale datacenter infrastructure is briefly reviewed
as a lead-in to some very recent developments which are very relevant to the
thesis research work.

12

2.2.5.1 Warehouse-Scale Computer’s
To quote Barroso et al. 14 from Google:

As computation continues to move into the cloud, the computing
platform of interest no longer resembles a pizza box or a refriger-
ator, but a warehouse full of computers.

In these warehouse-scale computers, the networking fabric is an essential
component since there can be 10s of thousands of servers in hundreds of
racks. While a top-of-rack switch can provide non-blocking switching per-
formance between the nodes within the same rack, providing non-blocking
switching performance from any server to any other server in a data center
in a single device is extremely costly. Instead, a large networking fabric is
constructed with many smaller building blocks.

Citing Aweya m]

It is generally accepted that large router switch fabrics of 1 ter-
abits per second (Thps) throughput or more cannot be realized
simply by scaling up a fabric design in size and speed. Instead,
large fabrics must be constructed by interconnection of switch
modules of limited throughput. The small modules may be de-
signed following any approach, and there are various ways to
interconnect them.

Designs of non-blocking switches has been known since at least Clos@].
Clos networks, as the suggested method above, is a way to connect mul-
tiple smaller-capacity switches together in multi-stage levels to construct a
larger switching fabric. This type of design is fundamentally how designs
of large datacenter fabrics looks today, 2015@]] [@] Facebook, Microsoft
and Google have all realized variations of [P-based Clos networks to create
datacenter fabrics. The most common design of these IP-based Clos networks
use E-BGP between the network devices, due to a few of BGP’s properties:
Many vendors have compatible implementations, operators know how to use
it, and it limits the size of the broadcast domains.

Alternative design proposals have been published, such as the Portland de-
sign, which rather than via MAC-in-MAC encapsulation instead perform
MAC address translation to form very large layer 2 networks. We have not
been able to find any reference to an actual implementation of the envisioned
100,000 servers’ large broadcast domain, whereas the IP E-BGP-based Clos
designs have proven popular.[@]

13

2.2.5.2 OCS Networking

During 2015, Facebook has taken the Open Compute System@] further for-
ward by open sourcing the designs for their “Six-pack”, a modular, simple,
8-slot 1.2 Thps/slot data center switch.ﬂﬂ] [|E]

Each line card is based on the Facebook “Wedge” design@], which hosts
an OCS Micro-Server for control plane@]. The “Six-pack” has a backplane
speaking plain Ethernet allowing the line card to talk to each other using
regular Ethernet frames.

The Open Compute System organisation have today a number of system
designs pending review, primarily for 1RU top of rack switches. There is at
the time of writing more competent hardware available. There is however a
lack of software choices to manage the equipment.

Based on the available switch designs, a common specification for control
CPU have circa 2GHz quad-core CPUs with 2x8 GB RAM - obvious multi-
processor availability. In the case of the “Six-pack”, there are a total of 8 line
cards Micro Servers + 2 backplane switching boards with 2 Micro Servers
each; a total of 12 CPUs which, using the commonly seen specifications could
result in a total of 48 cores and 192GB RAM available totally in the system.
Clearly, a distributed system could take advantage of such a design for high
performance and fault tolerance.

In summary, the OCS Networking project is picking up speed when it comes
to available hardware designs, but the software choices are lacking.

2.3 Border Gateway Protocol

In this section we give a brief introduction to the Border Gateway Protocol
and review a couple of its key functions slightly more in-depth.

2.3.1 Introduction to BGP

BGP is the protocol for exchanging reachability information between differ-
ent ISP’s on the Internet. The protocol allows operators to define a so called
Autonomous System (AS), a representation of an administrative domain such
as a company, a service provider or a government agency.

To better understand where BGP fits in among the routing protocols, it

14

helps to briefly mention a couple other protocols.

Network operators typically use an Internal Gateway Protocol (IGP) for
exchanging routes between routing elements within their network dynami-
cally. Common ones used today include Routing Information Protocol (RIP,
specifically version 2), Open Shortest Path First (OSPF, version 2 and 3)
and Intermediate System to Intermediate System (IS-IS).

OSPF and IS-IS are both link state routing protocols — they advertise links,
not routes, that each participating node can populate a reachability matrix
that describes its reachability to the other nodes in the network. It then runs
Dijkstra’s Shortest Path First Algorithm to compute its best routes based
on the information it received.

RIP is a distance vector routing protocol, meaning it works by advertising
and re-advertising (distance, vector) per prefix, i.e. a metric for how far away
it is to the originating network device of a certain prefix, and which next-hop
interface that should be used.

BGP on the other hand, is a Path Vector Routing protocol (sometimes
called Distance Vector). Path Vector means the protocol will, as operators
announce network prefixes and they propagate through multiple networks,
build a path list, called the AS PATH, of networks through which the prefix
is reachable. That is, a participating network in an internetwork of AS’s
will receive reachability information containing information on over which
AS PATH a specific prefix is reachable through.

—
;- 192.0.2.0/24
v 9

Router 4

Router 2 Router 3

Figure 5: A diagram of three connected autonomous systems
An AS is, as the name suggests, autonomous. Its operators define for it a

15

certain routing policy, consisting of import and export routing policies. The
policy defines what set of reachability information it will propagate to its
peer networks, and possibly what, if any, local modifications it will apply to
these informations.

When an AS has announced reachability information about a certain IP pre-
fix to its peer networks in accordance with its export policy, this announce-
ment will propagate through networks in accordance with those networks’
respective policies. In the case of the Internet and an announcement of an
allocated globally unique IP prefix registered with an address registration
authority (RIR), eventually all properly connected networks will be able to
receive this announcement.

If the only installed routes a network has in its BGP speaking routers, except
directly connected routes from locally configured interfaces, are the ones it
has dynamically learned using BGP, it will prior to receiving this reacha-
bility information not know where to send an IP packet with a destination
IP address in said IP prefix. Routers configured in such a way, with only
dynamically configured routes, especially lacking a so called route of last re-
sort, are said to be “participating in the Default-Free Zone”. Packets with
a destination [P address for which the router lacks reachability information,
will be discarded. E.g. just discard it. Depending on configuration, ICMP
messages will be returned to the source IP address indicating the router does
not know where to send the packet.

16

Prefixes announced
on the Internet

600000 pP————T— T T T T T T

500000

400000

300000

Prefixes

200000

100000

N e N N I T T T
1991 1994 1997 2000 2003 2006 2009 2012 2015
Date

Figure 6: Number of prefixes announced to the Internet, e.g. the “Default-
Free Zone” ((CC), Wikipedia user Mro)

However, once the announcement from the AS doing the original announce-
ment has reached another network, this network will be able to send packets
towards the origin network, passing through networks according to whichever
resulting AS PATH. Thus, a network controls incoming traffic through which
announcements it sends to peer network.

2.3.2 BGP Fundamentals

The BGP protocol uses TCP to transport messages between two so called
BGP speakers. A BGP speaker must always be listening on an IP address
on TCP port 179. Two BGP speakers that are configured to establish a
connection between each other are said to be “peers” to one another.

2.3.2.1 BGP Message Types

BGP speakers communicate with each other using four well defined message
types. These are:

e OPEN - Initial message sent by each speaker to its peer when attempt-
ing to establish a connection - contains session attributes

17

e KEEPALIVE - Message sent in a negotiated interval between peers to
allow peers to continuously monitor the liveness of each other

e UPDATE - The message type carrying exchange of routing information,
either new routes or withdrawn routes

e NOTIFICATION - message sent when a peer initiates the closing of a
BGP connection - indicating why it was closed

Open Message Update Message
Version Withdrawn Routes Length
My ASN Withdrawn Routes
Hold Time Total Path Attribute Length
BGP Identifier Path Attributes
Parameters length NLRI

Optional Parameters

KeepAlive Message Notification Message

Error Code
Error Subcode

Data

Figure 7: BGP Message Types

2.3.2.2 BGP Finite State Machine

In BGP, there is a well-defined finite state machine (FSM) that consists of
the 6 states shown in figure § Idle, Connect, Active, OpenSent, OpenConfirm
and Established.

18

L

Established 4—\
~——
(7\
OpenSent H[OpenConfirm
K’x J

A
A\) f)
4 ~\
Connect](—) Active

Figure 8: The six states in the FSM

These six states are a fusion of the state changes experienced by two different
sides of a BGP connection, into one unified FSM:

e the state changes of a BGP speaker initiating a connection to the other
(the active side of the connection), and,

e the state changes of the BGP speaker receiving an incoming connection
(the passive side of the connection).

With the combined six states two BGP speakers may establish a peer rela-
tionship. There is a corner case where both peers have initiated a connection
with each other and a so called connection collision occurs. The specifica-
tion defines a method for the speakers to determine which of the connections
should be kept and removed, respectively.

2.3.2.3 BGP Timers and Events

The transitions from a state, to either itself or a different state, is event-
driven. There are over 20 defined events that can occur, that drive state
changes. Some of these events are the result of a timer firing and there are
a couple of especially important timers in the protocol, such as:

e KeepaliveTimer - When this timer fires, a keepalive message should be
sent to the peer

e HoldTimer - When this timer fires, a BGP speaker hasn’t heard from
its peer for too long, and the connection is reset

19

e ConnectRetryTimer - This timer is used when the connection is being
set up in the early states, for example between active and connect
states.

e DelayOpenTimer - (Optional) This timer is used to delay the sending
of an open message to the peer, to reduce the likelihood that both peers
initiate one connection each

e IdleHoldTimer - (Optional) This timer is used to keep the FSM in
the Idle state for a prolonged time to control peer oscillation - which
is when a peer is oscillating between established and not established
states continuously.

These timers are reset as a result of certain events happening in the system,
such as for example when receiving a Keepalive message from the peer, the
HoldTimer is reset.

While in the Established state of the FSM, a speaker sends UPDATE mes-
sages to its peers, to update them with what reachability information it has.
These messages are the result of routing policies applied on the Routing
Information Base, RIB, of the speaker.

2.3.2.4 BGP’s Routing Information Bases

BGP contains the following three types of Routing Information Bases, RIBs:
e Adj-RIB-In - where received updates are processed and stored

e Loc-RIB - where the results of the BGP route selection, using the local
import policy, applied to the routes from Adj-RIB-In, are stored

e Adj-RIB-Out - where the routes to keep peers in synch about are kept,
resulting from the local export policy being applied to the Loc-RIB

20

Routing
algorithm

Routing
algorithm

Loc-RIB

Local Import Local Export
Policies Policies

Figure 9: BGP: RIB

The BGP RFC defines these three distinct database types but does not man-
date a specific implementation of them, only that the externally visible be-
havior is conformant with the specifications. Given that the information
carried together with a route throughout the three RIBs changes only very
little, there are good opportunities in an implementation to perform data
reduction by storing the various information pieces only once.

A RIB implementation must support a few operations such as insert route,
delete route, lookup route.

2.3.2.5 BGP Decision Process and Update-Send Process

The BGP Decision Process is the name of a set of procedures in BGP respon-
sible for selecting one route per prefix as the active route, although there are
later extensions to BGP to allow multiple paths to be selected[82]. It does
this by processing received UPDATE messages” NLRI lists and Withdraw
lists respectively.

When receiving a NLRI or Withdraw in an UPDATE message, a BGP
speaker first process the information to the Adj-RIB-In according to:

e Any present routes in the Withdraw list, shall be removed (or marked
for removal) from the Adj-RIB-In,

e If the NLRI of the new route is identical to one that is currently stored,
the new route replaces the old, which implicitly withdraws the old one
(i.e. deleted),

21

e [f the NLRI of the new route has no current matching entry in the
Adj-RIB-In, the new route will simply be stored in the Adj-RIB-In,

The decision process then takes over. It has three stages that corresponds to
a path’s progress through the Adj-RIB-In, the Loc-RIB and the Adj-RIB-Out

tables.
e Phase 1: Calculate degree of preference for route; keep it in Adj-RIB-In.

e Phase 2: Route selection - considering local policy, calculate the best
path for a prefix, among all paths to the prefix present in all Adj-RIB-
Ins, to install to Loc-RIB,

e Phase 3: Route dissemination - per peering session, select paths from
the Loc-RIB to the session’s corresponding Adj-RIB-Out based on local
policy

After the decision process, the Update-Send process takes place, which dis-
tributes any changes in any peer’s Adj-RIB-Out to the peer.

BGP Speaker P1 BGP Speaker P2

Loc-RIB

Local Export
Policies

Figure 10: BGP Decision Process and UPDATE message processing

BGP Speaker A

Phase 2 includes the often referenced best path selection algorithm, which
basically selects the available path or paths to the prefix with the highest

22

preference. If more than one path is tied with the highest preference, it addi-
tionally performs a tie breaking algorithm to select just one of the available
routes - the best path.

Only available paths are taken into consideration as the best path. A path
to a prefix is said to be available when the router can determine an output
interface on which to forward the traffic to the prefix over. Such a path is
said to be resolvable by the router. Route resolvability then, is the ability of
a router to, by performing a direct or recursive lookup on a next hop address,
resolve an output interface for the forwarding.

By performing the route resolvability check on a path prior to selecting it
as potentially the best path, the router can avoid installing bad forwarding
information to the forwarding plane, which would result in so called “black
holing” of traffic - i.e. sending traffic destined for a certain prefix into a black
hole, where the packet are lost.

The Update-Send process is responsible for creating BGP UPDATE mes-
sages per Adj-RIB-Out. The process includes a construct of minimum delay
between message sent, which allows routers to pack multiple NLRIs or With-
drawn routes per message. This batching of information per message is a
processing versus latency trade off, in that it acts to amortize the processing
overhead of a message over multiple carried information pieces.

2.3.3 BGP Extensions

BGP has a number of extensions defined over the base standard that are
optional for an implementation to include. A few such extensions relevant to
a production environment today includes:

e The BGP Multiprotocol Extension, RFC 4760@]
e The 4-byte ASN extension, RFC 4893@]

e The Graceful Restart Mechanism, RFC 4724@]

2.3.3.1 BGP Multiprotocol Extension, RFC 4760

Recognizing that the NLRI defined in RFC 4271 only support I[Pv4 next hop
addresses, aggregators and prefixes, the Multiprotocol Extension extends the
support for multiple additional Address Families. It adds a new attribute
called MP_REACH_NLRI that supports prefix and next hop addresses each
up to 255 bytes long, as well as one called MP_UNREACH_NLRI, used to

23

signal the unreachability (withdrawal) of a route. BGP speakers advertise
their capability to handle multiprotocol sessions by setting a Capabilities
Optional Parameter in their OPEN messages, one parameter per address
family supported. The extension specifies that the addition of this capability
is additive, i.e. many distinct Address Families can be supported in a single
session.

2.3.3.2 4-byte ASN extension, RFC 4893

The 4-byte ASN extension extends the range of possible ASN, from the ear-
lier fixed-length 16-bit ASN field, via a new capability, providing a new 32-bit
ASN field. To maintain backwards compatibility with routers that do not
support the extension, a special reserved ASN, 23456, is encoded in the regu-
lar AS_PATH attribute. A new optional and transitive attribute, AS4 PATH,
carries 4-byte as well as 2-byte ASNs. A BGP speaker with a 32-bit ASN
cannot peer with a BGP speaker that is incapable of understanding 32-bit
ASNSs.

2.3.3.3 Graceful Restart Mechanism in BGP

A relevant BGP extension applicable for fault tolerance designs is the Grace-
ful Restart Mechanism. The basics of the mechanism is that speakers when
establishing a peer advertises a capability of being able to perform graceful
restart. When later one of the BGP speakers, called the restarting speaker,
terminates the session, the other speaker, called the receiving speaker, will
maintain the routes advertised from the restarting speaker for some time. De-
pending on what capability flags the restarting speaker advertised on session
initiation, the receiving speaker can keep forwarding to next hops associ-
ated with the restarting speaker during the restart. Likewise, the restarting
speaker can keep forwarding according to its FIB as it existed before restart-
ing the BGP processes.

There are mechanics in the restarting procedures to reduce the stress on
recalculating best route selections, both in the receiving and the restarting
speakers. These are assisted by the addition of a so called End-of-RIB marker
- a special NLRI UPDATE message that is sent as the last update message
when bringing up a session and advertising the Adj-RIB-Out to a peer, such
that the peer can learn that the entire initial RIB has been transferred. This
is useful in BGP implementations to hold off any BGP route selection com-
putations until the entire Adj-RIB-Out has been transferred.

24

It is up to an implementation to decide whether to support continued for-
warding while BGP is being restarted.

Advantages of Graceful Restart includes reduced computational load on
routers and thus reduced cascading BGP UPDATE messaging, by removing
cycles of withdrawal of routes followed by the re-announcement of largely the
same routes. This reduces churn among the connected networks considerably.

Disadvantages of Graceful Restart include the risk of a receiving speaker
to be forwarding traffic to a restarting speaker that does not properly for-
ward the received traffic - there is e.g. a risk of black holing traffic when
using the feature.

2.4 Routing plane software architecture evolution

In this section the evolution of IP router software architecture [@] [@] ﬂﬁ] ﬂﬂ} @]
is briefly reviewed, without which it is difficult to fully understand and ap-
preciate the position from where this thesis work is building upon.

From first to third generation IP routers, the software went from control-
ling all forwarding to managing forwarding offload components, resulting in
modularization of the software as a whole. The control processor became a
control plane where forwarding eventually could continue even if the control
plane restarts.

At this point, around 2003, standardization of control and forwarding plane
separation became a hot research topic. An IETF working group, “Forward-
ing and Control Element Separation” (ForCES), was formed, that worked on
developing standardized protocols for ways for Control Elements to talk to
Forwarding Elements.

This description is supported by “The Road to SDN” M] that describes the
evolutionary path to today’s SDN going through three phases:

1. Active networking, mid-1990s to early 2000s, introducing programmable
functions to the network,

2. Separating Control and Data planes, 2001-2007, developing open inter-
faces between control and data plane (ForCES)

3. the OpenFlow API and network operating systems

25

There is an old argument in research papers over many years NE] for breaking
up the “holistic” routing software implementations seen today on commer-
cial routing platforms into modularized sub-systems. Such a modularization
would allow for specialized focused development on subsystems creating a
place for integrators to put these standardized subsystem components to-
gether instead.

From 2010 and forward this started to become reality, in large due to ex-
tremely large I'T companies such as Google and Facebook increasingly buying
so called white label network devices and putting their own software on top.

Some companies specialize in providing a Hardware Abstraction Layer, HAL,
for these companies internal development to interface with. @] @] ﬂéé] @] @] [@]

Throughout all these developments in router software architecture, very little
has happened with BGP software implementations. With system throughput
in the largest routing platforms with multiple line cards at multiple terabits
per second today, the exchange between internal and external routing in-
formation using the BGP4 protocol is typically always handled by a single
BGP process on the N%yastern. There are regularly bugs detected in the various

implementations @] | [@] @] @] @] :

For example a simple BGP message parser bug triggered on one of several
hundred BGP peering sessions crashes the entire BGP process, disrupting
network forwarding.

The latest developments in this field relates to past years efforts around
Software Defined Networking (SDN), where a controller function manages
multiple network devices in some form. A granular method for SDN is the
OpenFlow standards where the controller can program the actual forward-
ing tuples on the network devices. The ideas in SDN and OpenFlow are
recognizable from earlier ForCES and modularization efforts.

2.4.1 Early days monolithic software

(Cisco’s first router operating system[@], IOS, wasn’t originally envisioned or
intended to become what it became — it was just the OS that ran a Cisco
router. As demand for IP routers increased, so did the demand for adding
more features to the routers, which Cisco did by adding piece after piece onto

10S.

26

(@]
£
c o
2w
Packet s 2
Processes buffers 0 5
T n
©
L
Kernel Device drivers

Hardware

Figure 11: Cisco 10S system architecture overview

As TIOS was originally built for embedded system it lacks some safeguards
such as inter-thread memory protection. This was a conscious decision at
Cisco since the CPU was a very limited resource and maximum cycles were
required for packet processing.

Having no inter-process or inter-thread memory protection, all threads can
access each other’s memory regions. IOS is like a large monolithic single
process system, where the processes within the operating systems are more
similar to threads within the OS process. An IOS process has precisely one
thread.

For process scheduling, IOS uses a run-to-completion scheduling mechanism
with 4 priorities: Critical, High, Medium and Low.

The TOS kernel runs alongside the rest of 10S,; all in user space with full
system access. The kernel handles the process priority scheduler which has
six process queues: Idle, Dead and one Ready queue per process priority.

Processes communicate with each other by writing binary blobs directly to
each other’s memory regions. IOS only exists for 32-bit MIPS CPU archi-
tectures.

IOS was first released in the mid-1980s and it is still being maintained for a

range of Cisco products. As it was designed for performance at the expense
of fault tolerance and security there was room to improve upon.

27

2.4.2 Data- and control plane separation

Due to the complexities and reliability concerns of a monolithic routing
system@] such as the Cisco IOS, where a crash in one part of the control
system would also stop forwarding, there was a push to separate the control
functions from the forwarding functions. As seen by the IP router technology
evolution (chapter 2.2)), there was a basic need to scale performance upwards
which drove more intelligence out to the network interfaces, now line cards.
Having the network interfaces manage local copies of the forwarding tables,
were done in two ways. Cisco modified IOS to manage sending routes to the
forwarding hardware on these line cards. The other approach was to rewrite
the network router operating system from scratch and much more clearly
than before separate the control plane from the forwarding plane. The latter
approach was taken by Juniper Networks, who began in 1996 to build their
new operating system called JunOS, which was released 1998 together with
their first router.

Academia discussed data- and control plane separation and researchers wanted
access to plug in to the router architecturesﬂgj]] on both the data plane
and the forwarding plane. “Router plugins” demonstrated a modular data
plane where per-flow plugins could be installed to handle distinct flows dif-
ferently. The “Click” modular forwarding design was a novel design at its
time, modeling a pluggable forwarding architecture as a (Directed Acyclic
Graph) DAG where each simple IP forwarding function was modeled as a
small function with n inputs and moutputs. These micro functions, that
the authors call elements, connect to each other to form a DAG from initial
packet inputs to terminal packet outputs. This is very similar to the designs

of ASICs, etc.

The IETF listened to the discussions and ideas of the industry and researchers
alike and chartered the Forwarding and Control Element Separation working
group in July 2001 @] The idea was to formalize and standardize the vari-
ous protocols and nomenclature involved in separating the control plane from
the forwarding plane of a router. The working group was concluded March
2015. Unfortunately, there was never much traction for ForCES outside the
standardization body and research world, in the scope of a single router.

2.4.3 Decentralization of control plane components

Plain separation of forwarding and control planes happened naturally to a
limited degree by vendors’ need to control dedicated forwarding hardware

28

from the control plane software, though no commercial implementation was
open for others to plugin to. The commercial vendors are protective of this
ability, as suggested by ForCES not being very successful, and one can only
draw more or less informed conclusions as to why they didn’t implement any
such features to any reasonable standard this far.

Markus Hidell’s doctoral thesis is titled

“Decentralized Modular Router Architectures” [42]. It is a work that is closely
related to the work we’ve performed, that we were unaware of at the begin-
ning of our own work.

Hidell argues in the closing remarks:

We believe that there is a gain in allowing components to evolve
independently and that modularization may be a way to pro-
vide such a scenario. Such a modularization could, if it proves
successful, have impact on the router industry. A modular and
decentralized approach to building routers would ultimately open
up for sub-system vendors to develop specific parts of a router and
for system vendors to focus on integration of modules, choosing
whatever modules may best fit their needs.

This modularization of components have taken place within some very large
IT companies.

Some of Hidell’s main findings are:

e System designs and a prototype implementation of a decentralized
router framework

e That a decentralized router framework in the ForCES model can be
built using standard parts such as a PC computer

e That a previous monolithic system, the Zebra open source routing suite,
can be decomposed into pieces

e That processing times can be greatly reduced by distributing the work-
load on multiple processing units

e That the penalties of using TCP-based multicast distribution protocols
are increasing as the number of receivers scales up compared with e.g.

NORM, NACK Oriented Reliable Multicast (RFC5740[4])

Hidell’s findings include noting future areas of interest to research as:

29

e A continuation of the BGP-specific work
e Decompose additional protocols in addition to BGP
e The internal data network between the distributed component

Hidell’s work regarding BGP is based on taking an open source routing dae-
mon suite, Zebra, and decomposing the BGP implementation, “bgpd”, into
a frontend and a backend process. This is explained in Hidell’s chapter 4.2.1.
Hidell names the backend process “service process” and the frontend pro-
cess “session manager”. The frontend process keeps the responsibility for
running the FSM with the peers, and processes incoming BGP updates. It
then appears to be peering with one or many backend processes, by means
of almost standard BGP. A couple of methods of distributing prefixes over
multiple backends for computation speedup are attempted, and it is noted
that the prefix distribution in the DFZ today on the Internet is uneven both
in terms of number of prefixes per prefix length, and in terms of number of
prefixes per region of the IPv4 address space. Hidell’s figure 4.15 and 4.16
shows this distribution.

In “Distributed implementation of control protocols in routers and switches.” ﬂﬁ]
the authors claim a distributed control plane but not decentralized. The
claim relates to the existence of a single control point with multiple con-
trolled points, e.g. forwarding functions. This is the basic concept that
appeared in the second phase of the router technology evolution.

Other Work[@] discusses a solution to an iBGP route scalability issue where
a Routing Control Platform would control the BGP route selection for an
entire network. The authors stretched the work as far as including the effects
of distributing and replicating the state of the RCP function (chapter 3.2),
and showed that it would still produce consistency in the steady state. Dis-
tributing and replicating the function for fault tolerance is absolutely vital,
for a network-wide controller function.

2.4.4 Software Defined Networking

Software Defined Networking ﬂﬁ] @] is a relative new term for the networking
industry that has gone through a recent hype cycle and confusion about what
it would mean for network operators @] In “Road to SDN” M], SDN is
defined as:

1. “An SDN separates the control plane (which decides how to handle

30

the traffic) from the data plane (which forwards traffic according to
decisions that the control plane makes)”

2. “An SDN consolidates the control plane, so that a single software con-
trol program controls multiple data plane elements,”

According to this definition of SDN, this thesis work arguably qualifies as an
SDN.

The SDN phase involves:

1. The vision of a network operating system

2. Distributed state management techniques

The authors of RCP have continued their work and published “the Intelligent
Route Service Control Point”, which externalises path computation from
BGP itself. [Onix; 46] published the first concept of a Network Information
Base, that the network operating system can use for storing its network state.
It is important to point out that this thesis’ work is not aimed towards a
Network Operating System, but specifically at a, preferably modular, single-
device control plane architecture architecture.

2.4.5 Typical Fault Tolerance in modern routing plane software

Traditional fault tolerance constructs of BGP build on the Graceful Restart
(GR) feature explained in 23331 A BGP speaker implementing GR can
either support continued forwarding while restarting, or not.

Coﬂ%mercial vendors have commonly implemented Fault Tolerance based
on[22]:

o Graceful Restart, a BGP speaker restarts sessions gracefully, and either
supports continued forwarding or not while restarting,

e Non Stop Routing, state synchronization from primary to backup node,
that coupled with Graceful Restart allows either planned or unplanned
restarts without causing best path selection churn which risks program-
ming cycles on the FIB,

Based on these features, vendors have commonly implemented features for
upgrading the software on a router while in service.

31

Both Juniper and Cisco utilize a primary to backup state synchronization
replication scheme. Arista in EOS have separated state storage from the in-
dividual processes which simplifies the restarting of agents ﬂﬁ], however, Arista
has not developed any replication features for Sysdb so it is a very vulnerable
centralized database of each router.

In “Routers for the Cloud”, hidden BGP migration is researched using TCP
socket migration, which would allow a BGP speaker to hide its BGP peer
process / TCP socket migrations from its peers, which further reduces failure
exposure to peers ﬂa]

2.4.6 Typical concurrency in modern routing plane software

As seen in section[2.2], early router software architectures were single-threaded
as a whole, whereas second generation architectures had multiple processes
running. In the case of JunOS however, virtually all processing related to
routing was still handled by a single process called rpd, the Routing Protocol
Process@].

IOS XR implements the different routing protocols (BGP, OSPF, OSPv3)
and RIBv4, RIBv6 as independent processes|76]. This is an incremental im-
provement on JunOS, which is natural given that the architecture of IOS XR
is younger than JunOS.

JunOS was built by modifying a regular FreeBSD kernel, IOS XR is built on
top of a QNX kernel and Arista’s EOS is built on top of a regular Linux Ker-
nel. Arista’s EOS is an incremental evolution on IOS XR, that simplifies the
multi process state management by implementing an in-memory database

called Sysdb|g].

None of these approaches address the multiprocessing opportunity within
each process, such as BGP, which this report covers in chapter

2.5 Distributed systems and the CAP theorem

Brewer@] defined a theorem on consistency (all the nodes have the same
data), availability (the system will always answer) and partitioning tolerance
(nodes still work after separation), which is known as the CAP-theorem. It
states that a distributed system must choose between two out of these three.

32

CA
Consistency Availability
CP AP

Partition tolerance

Figure 12: Consistency, availability and partitioning tolerance

We identify two distinct needs for distributed state storage in our thesis work:

e Distributed, highly available, strongly consistent e.g. configuration
state storage

e Distributed, highly available, strongly consistent RIB

The state storage problem is old, by now. Brewer identified it as future work
year 2000. Today, 2015, there has been work done even in the field of dis-
tributed network operating systems, in for example Onyx@] and ONOS @]

Both define two types of state storage, a type of strongly consistent state
storage and a more loosely consistent one-hop DHT for faster access. ONOS
pick off the shelf open source software components for both tasks; Apache
Cassandra for the latter and Apache Zookeeper for the former.

2.5.1 Distributed storage of configuration state

When building a typical distributed systems there are a couple of com-
monly recurring challenges, such as naming, distributing synchronization and
group communication. Several network controllers have chosen to use Apache
ZooKeeper for this purpose[@].

xThe Apache ZooKeeper project ﬂﬂ] describes itself:

ZooKeeper is a centralized service for maintaining configuration
information, naming, providing distributed synchronization, and

33

providing group services. All of these kinds of services are used
in some form or another by distributed applications. Each time
they are implemented there is a lot of work that goes into fix-
ing the bugs and race conditions that are inevitable. Because
of the difficulty of implementing these kinds of services, applica-
tions initially usually skimp on them, which make them brittle
in the presence of change and difficult to manage. Even when
done correctly, different implementations of these services lead to
management complexity when the applications are deployed.

This readily available component satisfies the needs of this thesis work.

2.5.2 Distributed storage of objects

Whereas Onix and ONOS use eventually consistent storage consistency for
the Network Information Base of a off-the-shelf open source component, this
thesis work cannot use the same consistency model for a distributed RIB im-
plementation. The increased risk of state loss due to failure exposure while
only being stored at one node, is too severe for the level of fault tolerant this
work is targeting. Therefore this work requires a novel approach to a spe-
cific distributed state storage application, specifically designed for the RIB
use case, where there exists no previous work to the knowledge of the authors.

If we reduce the distributed RIB problem to a strongly consistent object
storage problem, there is previous work. Weil et al. @] developed a pseudo-
random data distribution algorithm called Controlled Replication Under Scal-
able Hashing and using this developed the storage system Ceph@], which
achieves strongly consistent object storage in a cluster without a central point
of failure.

Ceph distributes data to its RADOS cluster@] using the CRUSH hash func-
tion.

RADOS and CRUSH, simplified, specify a hierarchy of cluster placement
information:

e Cluster contains object storage daemons (OSDs)
e Cluster contains a set of pools
e A pool contain a set of Placement Groups (PGs)

e PGs have a dynamic map of OSDs

34

e Replication levels and placement strategy is maintained on the pool
abstraction level

e The placement function, CRUSH, controls the selection of PGs for a
write of an object in a pool

The benefits are a strongly consistent storage system with single network hop
access to read data. Writes are directed at a primary which then replicates,
resulting in a two-hop latency for writes.

This thesis work adapts this work for the specific use in a distributed RIB in
section [4.4]

2.6 Erlang

Erlang was developed by Ericsson and first appeared in 1986. Erlang is a
functional programming language for developing concurrent, distributed and
fault-tolerant applications.

Functional programming forbids code with side effects. Side ef-
fects and concurrency don’t mix. You can have sequential code
with side effects, or you can have code and concurrency that is
free from side effects. You have to choose. There is no middle
way.

Erlang is a language where concurrency belongs to the program-
ming language and not the operating system. Erlang makes par-
allel programming easy by modeling the world as sets of parallel
processes that can interact only by exchanging messages. In the
Erlang world, there are parallel processes but no locks, no syn-
chronized methods, and no possibility of shared memory corrup-
tion, since there is no shared memory.

Erlang programs can be made from thousands to millions of ex-
tremely lightweight processes that can run on a single processor,
can run on a multicore processor, or can run on a network of
Processors.

Joe Armstrong, Programming Erlang - Software for a Concurrent world,

2007[9]

35

2.6.1 Erlang/OTP

Erlang/OTP is a framework to help build Erlang programs. It contains some
modules, behaviors, libraries and a general design of how to write the pro-
gram.

The most common behaviors are:
e gen server - A framework for building a simple server application.
e gen fsm - A framework for building a finite state machine.

e supervisor - A framework for building a supervisor that is responsible
for monitoring its child processes.

2.6.2 Distributed Erlang

Erlang is distributed by design. When communicating between processes in
Erlang it does not matter if the process is local or on another node/host.

3 Methodology

In this chapter we explain how we organized our project work and which tools
and methods we use when we researched and developed our application.

3.1 Method

First of all it is important to mention that we have several years of work
experience with networks and BGP. Even so, we started out with advancing
our knowledge on routers and BGP by further research, with an evolutionary
angle. We mainly did this by studying the BGP RFCs over and over again,
and reading research articles.

We then learned the programming language Erlang using an online tutorial @]
written by Fred “MononcQc” Hébert and Programming Erlang: Software for
a Concurrent world], by Joe Armstrong.

Our next step was setting up a test environment per author, consisting of
two BGP speakers: JunOS (Olive) and ExaBGP[52]. JunOS is a FreeBSD-
based network operating system from Juniper Networks that can be run in
an unsupported lab environment directly on a PC or VM, called “Olive”.

We established an Ethernet VPN tunnel between our two lab locations over

36

which we let our respective Olive’s peer. We connected one of the locations to
an ISP to receive a live full table BGP feed to support our development. By
working directly on the live data feeds we are able to avoid making incorrect
assumptions about either performance of our application or the distribution
of prefix lengths etc. Additionally, we're able to expose our software to the
full nature of all transitive BGP attributes that exist in the wild today.
=< Internet
Iil Service
Yoar upaates

Provider
VPN
/ \ el / \
with BGP

m— . fam— Host running dat = Host running o f
Host updates

[!]I ExaBGP with !Jl JunOs (olive) [!]I JunOs (olive) _}I E"’Ség‘g""_“%
— A==/ with full BGP A=/ with full BGP —_— o
D— a few routes — \ablo — \able l——— a few routes

7 7

— Hosts running _L — Hosts running _L

-I our ErBGP [EI -I our ErBGP [EI
F—t software — —p software —

\J AN /

Figure 13: The lab setup

We have been using a number of distributed collaboration tools to support
our work, such as Google Docs @] for distributed report writing, Kanbanﬂow[|2__4|]
for “To-do list management”, the Git[@] protocol for source code control,
Githubﬂﬂ] for Git repository hosting, appear.inﬂﬂ] video chat for telepres-
ence. In addition to these distributed tools, we program in Emacs and built
the final report in IXTEX.

4 Results

In this chapter we present our findings including our proof-of-concept.

It is structured as follows: First we present our resulting blueprint for a
complete implementation in section LIl Then we present the characteris-
tics of distributed state storage of our system in more depth, in section
Following that we present our findings on parallelizing and distributing the
critical path of a BGP program, e.g. the BGP UPDATE message processing
in section In section 4] we propose a design for implementing a dis-
tributed RIB, which builds on the learnings from section and 3] The
next section is - where we present our findings on decomposition of BGP
components. In the final section of the chapter, [£.6] we describe our proto-
type implementation, written in distributed Erlang/OTP.

37

4.1 Goal Design of the Total System

In this section we give a high level view of our so called Goal Design of the
Total System, which encompasses pieces we have spent research time on de-
veloping prototype specifications for, as well as pieces we have prototyped in
software. We have also discovered areas of future work that are of interest
but further from the core functionality we’re trying to achieve, that are none
the less part of the Goal Design as an option.

During our research and prior to starting the experimental work, we have
noted a number of weaknesses or deficits in current and popular BGP im-
plementations such as: Run-to-completion scheduling, single-threaded im-
plementations, lack of scale-out performance and complex perhaps overly
optimized tightly coupled implementations that results in fault tolerance
challenges with master /slave redundancy strategies. Additionally, from work
experience, and what is essentially an established truth in the operator com-
munity, we have learned that so called Non-Stop Service Upgrades, e.g. in-
flight software upgrades, essentially does not work in practice.

We are designing a novel BGP implementation to address the shortcomings
we listed in the previous paragraph: Parallel (multiple layers) & distributed
execution, scale-out performance, Fault Tolerance.

By using knowledge from the fields of networking, distributed systems, par-
allel processing and message based programming, we have arrived at a goal
design of our total system.

Parallel & distributed execution:

e We decompose the internal functions of BGP into multiple smaller
processes responsible for specific sub-parts of the whole

e We employ message passing for communication between these processes
Scale-out performance. By -

e identifying the critical path of a BGP speaker, and,

e utilizing per-prefix level granularity of work partitioning, and,

e partitioning work over many participating nodes,

we achieve scale-out performance characteristics that unlock substantially
more processing power to be employed to process each route than previously

38

available in implementations.

Improved Fault Tolerance model:
e Distributed, replicated and fault-tolerant state storage
e Distributed, replicated and fault-tolerant specific RIB storage

e independent, supervised PeerF'SM processes, 1 per peering session,
with minimalistic internal state, suitable for replication

We define fault tolerance as being able to hide or repair errors such that
peers do not learn an error did in fact occur.

We develop a prototype, proof-of-concept implementation of a decomposed
BGP speaker implementation in a feasibility study. Figure [I4] shows how our
prototype can fit in on a real-world system.

Peer A Peer B

A A

A 4 A 4

ErlBGP on Node A |[«—>»{ ErIBGP on Node B

sy 7

/ v v Node C \

‘ ErIBGP ’ ‘ IS-IS daemon

Incoming Packets

Figure 14: Prototype

4.2 Distributed state storage systems

Our system design requires two distinct distributed state storage systems:

39

e Distributed, highly available, strongly consistent state storage - i.e.
configuration state and similar

e Distributed, highly available, strongly consistent RIB

Highly available: Replication such that failures of individual member nodes
does not make the service unavailable.

Strongly consistent: All “up” nodes in the system agree on the state. Il.e.
once the cluster has ACK:ed a write to a storage client, it has reached its
desired replication factor. In the case of state storage, the simplest way to
orchestrate writes while delivering this availability-guarantee is to block them
until they have achieved the desired replication factor.

The state storage could be served by a more generic key/value type storage
mechanism, such as the Zookeeper library, whereas the RIB has additional
requirements, for example scaling efficiently and high in both storage capac-
ity (bytes of memory per route stored) and performance (updates per second).

In both cases, consumers of the storage systems must see consistent data.
I.e. a read operation must always return the latest available version of an
object that has been written anywhere to the cluster. Thus the requirement
of strong consistency.

The RIB however, is on the critical data path, and there is a much higher
requirement for high throughput. Here there are gains to be made with
asynchronous messaging, which requires the client to keep a buffer with sent
messages until they’ve been ACK:ed. In addition to asynchronous messag-
ing, to achieve speedup in performance we need to make sure clients can
parallelize writes to the storage system.

4.3 Parallelized and Distributed UPDATE message pro-
cessing

In this section we begin with describing what the (performance) critical path
of a BGP speaker program is. Then we show that this path is fully paral-
lelizable and distributable and what consequences such a design would have
on e.g. the RIB.

4.3.1 Ciritical data path - BGP UPDATE message processing

The critical path in a BGP speaker is the processing that occurs between
having received an UPDATE message from a peer, until the BGP speaker

40

has possibly disseminated the NLRI’s to other peers.

BGP Speaker P1 BGP Speaker P2

Local Export
Policies

Figure 15: BGP UPDATE message processing

BGP Speaker A

It involves the following steps:

1.

2.

BGP Speaker P1 sends an UPDATE message to BGP Speaker A.

BGP Speaker A parses the UPDATE message and stores its NLRI’s
in P1’s corresponding Adj-RIB-In, and marks any routes in the With-
drawal section of the UPDATE message for removal.

. The BGP Decision Process runs its first phase - and computes prefer-

ences for newly added routes to Adj-RIB-In.

. Directly upon completion of phase 1, phase 2 - best path selection -

commences. This phase validates new routes’ validity and uses local
policy to determine which routes to install into Loc-RIB.

Phase 3 commences upon completion of Phase 2 and decides, using
protocol specification and local policy, which routes to export to the

41

various peer speakers’ respective Adj-RIB-Out’s. This includes routes
that are no longer to be announced - e.g. withdrawn.

6. Finally, the Update-Send process creates outgoing UPDATE message
for each peer speaker that so requires, i.e. having NLRI’s or Withdrawn
routes to communicate.

The RFC in chapter 9 gives a high level model of a reference implementation
of the BGP Decision and Update-Send Process. Per usual, other implemen-
tations are also allowed, as long as they exhibit the same externally visible
behavior.

4.3.2 Parallelization of Critical Path

In this section we address our RQ.2, “Can the critical path of a BGP daemon
be parallelized?” by showing the feasibility of parallelization of the critical
path execution. We show that equivalent behavior of the RFC’s description
can be achieved without the use of locking.

The reference high-level implementation mentions, for the various phases,
among other:

e Lock the Adj-RIB-In’s while phase 1 is running

e Upon completion of phase 1, immediately start phase 2

Lock the Loc-RIB while phase 2 is running
e When running phase 2, prohibit phase 3 from running
e When finishing phase 2, start phase 3

e When running phase 3, prohibit phase 2 from running

The RFC suggests using locking in phase 2 and 3.

We define five key properties of the NLRI / Withdraw processing:

1. The main computations on a prefix are done without consideration for
any other prefix

2. Work units can be partitioned down to the unit of a single prefix

3. NLRI's and Withdraws from a peer concerning a single prefix must be
applied in order

42

4. Phase 2 of the Decision Process performs a route resolvability check

5. BGP additionally specifies a route aggregation functionality
These properties are derived from the RFC’s 9th chapter.

From property 2 we learn that we cannot for example run two best path se-
lection computations for two routes to one common prefix in parallel - com-
putations pertaining a common prefix must be ordered (serialized). From
property 1 we learn that we need not take into account other prefixes or
routes when computing on a prefix. From property 3 we note there are no
strict ordering requirements on UPDATESs from different peers, and, for UP-
DATE’s from a specific peer it can only be inferred from the locking that
there are serial ordering requirements on a per prefix basis.

Based on property 1, 2 and 3, alone, it is clear updates pertaining to distinct
prefixes are independent from each other. This means parallelization, this
far, is possible.

Property 4 simply means that a route lookup or equivalent is required on
the next hop address in order to determine the validity of the route to a
specific prefix. This is a read-only requirement on the RIB, or parts of the
RIB depending on implementation. No locking is required when performing
route lookups.

Property 5 relates to a feature where a BGP speaker in phase 3 of the Deci-
sion Process may choose to aggregate neighboring routes, that share certain
information, to a combined less specific route, before they are placed in the
Adj-RIB-Outs.

When a BGP speaker is configured, e.g. by policy, to aggregate routes in
certain prefixes or from certain peers, it will generate less specific routes that
covers the more specific member routes. For example, if a BGP speaker is
configured to aggregate routes under 192.0.2.0/24 and it has received only
192.0.2.0/25, no aggregate route should be generated, since it would pro-
vide false reachability information as the BGP speaker lacks reachability
information regarding 192.0.2.128/25. If and when reachability information
regarding 192.0.2.128/25 arrives to the speaker, it can attempt to generate
the aggregating 192.0.2.0/24 route, since the entire prefix is covered by con-
tributing member routes.

The validation steps are read-only, but the generated route needs to be writ-
ten to the relevant Adj-RIB-Out’s.

43

Considering these five properties overall, it is in fact possible to perform
update processing in parallel. As long as addition and removal of routes to
a specific prefix are done in per sending peer order, there is no need for an
implementation to lock the RIB for writes as this processing is performed.
A simple FIFO queue fulfills the ordering requirements as there is no need
in BGP to guarantee ordering between updates to different prefixes. It is
possible to consider an UPDATE message’s contents’ traversal through the
Critical Path as “atomic” units of work - there is no hard requirement to
perform batch processing the way described by the RFC.

4.3.3 Distributed processing of Critical Path

In this section we validate that UPDATE’s message processing can in ad-
dition to be parallelized, also be distributed over multiple hosts, i.e. if im-
plementing a distributed RIB where route information is partitioned over
multiple hosts with no shared memory.

The difference between simple multi-threaded execution on one host and
execution on multiple hosts is primarily the lack of shared memory in the
latter case. The largest consequence of distributed computation is therefore
the added latency of network communication, which makes synchronization
events, including locking, very expensive in terms of performance. In order
to reduce round trip latency over the network, which synchronization events
result in, it is necessary to not rely on synchronized state over multiple dis-
tributed hosts in the Decision Process computations. The first property of
the previous section supports this. E.g. only the route resolvability and
aggregation functions require consideration taken of other prefixes, and pri-
marily it is reads that are required.

A BGP speakers’ main routing table is responsible for mapping routes’ next
hop addresses to interfaces, whereas the BGP RIB only has to validate that
the next hop addresses actually resolves to interfaces - physical interface in-
formation is not a direct concern of the BGP speaker.

When the state of a next hop address changes, for example due to the inter-
face’s link going down, the main routing table must inform the BGP about
this fact. In this event, but also in the case of an indirect next hop address
pointing to a route that is withdrawn, the Decision Process has to re-run
for all affected routes. It is up to an implementation to make the necessary
computation time-, memory- and latency-tradeoffs in implementing this.

44

For good performance of a distributed system such as a distributed RIB,
it is important to consider what state is useful to keep at each participating
node to avoid network communication, while considering what added state
synchronization complexity doing so leads to. A good candidate of such state
is state that is changed infrequently but used often in the Decision Process.
The policy information is a top candidate, as well as local system routing
table data, i.e. locally connected interfaces, their prefixes and state.

4.4 A Distributed RIB

In this section we present a novel draft scheme for implementing a Distributed
RIB, based on the findings in the previous section and those used in an ear-
lier object data storage system.

To achieve our fault tolerant requirement we are required to replicate the
state contained in the system, including the RIB contents, such that node
failure or failures - depending on configured redundancy - does not lead to
data loss.

4.4.1 Replication strategy overview

The replication requirement means more than 1 node must keep replicas of
the written information. However, if all nodes are keeping all replicas, in
memory, we have reduced the possible storage capacity of the system to that
of the node of the participating nodes with the least amount of available
memory, which is contrary to our capacity scalability requirement.

Instead, we could map each RIB onto a subset of all available nodes. Since
the storage system must be able to heal when a node fails, the map must be
dynamic such that a failed node can be replaced by another node. However,
this still maps the entirety of a single RIB onto a set of nodes, fully repli-
cated to each node, which does not allow us to scale capacity beyond the
limitations of a single participating node. Additionally, if multiple RIBs are
mapped to a single node, without care for the amount of available memory,
this becomes a problem. A more scalable approach, then, is to make the unit
of replication more granular, for example each individual prefix.

What is required then is a function that maps a prefix to a set of nodes
that it should be replicated to:

f(prefiz) = {ny,na,...,n;} (4)

What are the objectives with such a mapping function?

45

We claim it should:
e Provide a balanced and adaptive replication to all cluster nodes
e Enable the user to control the amount of replication

e Enable the storage system to dynamically maintain the replication sta-
tus, per prefix stored

CRUSH have achieved a simplification of the above general problem by split-
ting it into two functions. One that maps a so called placement group to a
deterministically priority ordered list of nodes:

f(pgi) = {ni, niz, ... nij} (5)

And another that maps an object to a placement group, rather than to nodes
directly:

f(object) = py (6)
This approach decouples the objects from the replication infrastructure.
There are many (>million) objects and relatively few PGs (<million). This
reduces both memory and computation requirements for the replication in-
frastructure significantly. If the user defines a replication level of 3, CRUSH
returns {n;1, no, ..., n;; } with more than 3 OSDs in a pseudo-random man-
ner that additionally adheres to the placement requirements of the CRUSH
map. It then selects the first 3 available nodes to store data on. The first
available node is selected as the primary node, and all read /write operations
goes through it, providing a serialization point which fulfills the per-prefix
ordering requirements. An effect of this design is that when nodes become
unavailable, CRUSH instructs the system to begin replicating to the next
available nodes according to the list of nodes.

4.4.2 Distributed RIB and Routing Storage Daemons cluster

By adopting a similar design as CRUSH and RADOS, we arrive at a logical
structure as follows:

e The widest construct is the cluster

o A cluster consists of a number of Routing Storage Daemons (RSDs)
and a number of monitor daemons

— RSDs have a defined capacity in terms of available memory

46

A cluster defines a number of RIB instances (RI)

An RI defines a number of placement groups (PGs)

Each RI’s PGs are mapped to a deterministic priority-ordered list of
RSDs

Each RI consists of a dynamic set of Adj-RIB-Ins, Adj-RIB-Outs and
a Loc-RIB.

— This the conceptual representation - for efficiency the RIB data
structure will maintain them within the nodes of a single n-way
Trie, or similar.

Routes are stored to RIs using cluster client code that writes directly
to the primary (i.e. first available) RSD, which acts as a serialization
point.

Similarly to the monitors in RADOS, the cluster’s monitor daemons keeps
track of the state of the cluster at all times, including the state of the RSDs,
the RlIs as well as the state of the RI’s PGs.

The critical path for an UPDATE message through our prototype design
of a Distributed RIB (D-RIB) becomes similar to that shown in Figure [I6

47

BGP Speaker P1 BGP Speaker P2

UPDATE | | 1 8 UPDATE

Y
peer process
(P2) Update-
Sen

peer process (P1)/
. D-RIB Client Lode

Rrsp dVIFE) —‘
(][]

:G(route

RSD A@@
[l

EIE [2][e]fre]
i -
5
[Monitor 2) |[RSD] [rsp FOFIFTE]
2] (][] [+][e][]
< Monitor 3 E g |E|
[=nannnzn:] -/ [=nannznaa]
D-RIB N Al
BGP Speaker A 6 7

Figure 16: Distributed RIB critical path operation

An example processing flow as per figure [[6] contains the steps:

1. BGP Speaker A receives an UPDATE message from BGP Speaker
P1 in its corresponding peer process, parses an NLRI from it, runs
“write(NLRI=<nlri >)” which calls the hashing function to learn that
the placement group for this NLRI is 7, then runs the local lookup func-
tion to see that the primary RSD for PG 7 is RSD E and thus puts it
in the output buffer towards RSD F.

2. BGP Speaker A’s peer process asynchronously transmits the NLRI to
RSD F as a write operation, where the command and payload is parsed
and it is placed in the input write queue,

3. The write processor on RSD FE sees that the write operation was to PG
7, and directs it there,

4. When the operation reaches PG 7, phase 1, 2 and 3 of the Decision
Process is run, where the local policy database is consulted for import

48

policy. Route resolvability checks are also done, and in the example
above there’s a hit on a next hop table cache local to the node, which
avoids network communication for the check,

5. RSD F then sends the result of the resulting operation on its underlying
data structure, after the decision process communication phase 1 and
2, to the replica PG’s, in this case housed on RSD A and RSD B,

respectively

6. BGP Speaker A, where asynchronous communication is in use, does
not remove the operation from its PI peer process output queue until
it receives an acknowledgement, which RSD F now transmits to peer
P1’s peer process,

7. RSD E has finished phase 3 and the resulting change to the Adj-RIB-
Out is moved to an output queue in the peer process for P2,

8. The peer process for P2 performs the Update-Send process and con-
structs UPDATE messages using information reduction techniques, etc.,
based on its input queue,

Using this type of design, in the example we have 12 unique PG’s in 6 RSD’s.
As only a PG’s primary node performs the Decision Process that means po-
tentially 6 RSD processes and 12 PG threads that can process the incoming
routes, from multiple peers, achieving fairly good load balancing.

The end-to-end latency is bounded by step 2 (one-way) + 5 (round trip)
+ 7 (one way), in cases of ideal TCP communication, except for cases with
indirect next hops where a network route resolvability check is necessary in
phase 2. Asynchronous communication where appropriate can hide the la-
tency by filling a pipeline of requests, increasing throughput when processing
a large number of messages.

From a network latency experiment shown in Appendix B, we note an aver-
age ping-pong round trip latency over TCP of 74 microseconds for a 100 byte
message over GbE networking. Thus, in the end-to-end example in the pre-
vious paragraph, we could expect a lower bound application-to-application
communication latency of 74 - (1/2 + 1 + 1/2) = 148 microseconds. It might
not seem like much, but during this time a regular 3.0 GHz CPU will have
passed 444 000 cycles.

While end-to-end UPDATE processing latency, from received UPDATE to

49

resulting sent UPDATE, will inherently always be higher for a distributed
RIB implementation than a fast regular single process implementation, pro-
vided asynchronous messaging is used successfully in the implementation,
the communication processing overhead will be more than compensated by
increased availability of processing power. Conversely, since the network
communication processing overhead is a fair amount of cycles per route pro-
cessed, it is in relative terms inexpensive to increase the amount of policy
processing per route.

We obtain redundancy and therefore fault tolerance of the data stored in the
RIB, and we have decoupled the heavy processing parts of a BGP program
from the rest of the program. This means that under stress, i.e. resource
(CPU) starvation, we can prioritize e.g. keepalive sending and processing as
more important than for example route processing, which will avoid at least
one type of common problem in traditional BGP implementations that leads
to peer sessions going down, causing even more CPU load due to the increase
of required processing.

Implementing this distributed RIB remains a future work effort. We im-
plement a mock-up RIB in our prototype.

4.5 Decomposition of BGP with multi-process, dis-
tributed Erlang/OTP prototype

In this section we present our findings on identifying relatively distinct com-
ponents within a BGP speaker, suitable for breaking up into components
with distinct roles.

We have identified that a BGP speaker consists of the following components:

e Finite State Machine with timers and events

e Socket IO processing and BGP message parsing

e RIBs

e BGP UPDATE message processing with locally configured policy
e Communication with system main routing table

e Configuration state storage

e Configuration management

20

e User interfaces / APLs

These distinct roles in most cases have only very loose coupling with each
other, often with fairly clear and clean interfaces in between each other. In
other words they lend themselves to be implemented as separate modules or
components. In our choice of language, Erlang/OTP, with its light-weight
processes, it is straight forward to implement these components as distinct
processes. An immediate consequence of doing this is the loss of shared
memory between the different processes, which mandates the need of defin-
ing clear API’s between processes, and furthermore assists in understanding
which pieces of the actual code belongs where.

4.6 ErlBGP - multi-process, distributed Erlang/OTP
prototype

In this section we present our prototype implementation using Erlang/OTP
applications and supervisor trees. We present our decomposition and moti-
vate our choices. We also describe which parts, in accordance with our scope
and limitations that remain to be implemented.

4.6.1 Decomposition into multiple processes

We have chosen to implement our distributed BGP implementation, ErlBGP,
by decomposing it into the following processes:

e crlbgp - in which we have implemented:

— User interfaces / APIL:s

— Configuration management
e crlbgp_peerrecv - in which we have implemented:

— Socket 10 processing and BGP message parsing
e crlbgp peerfsm - in which we have implemented:

— Finite State Machine with timers and events
e crlbgp_worker (RIB) - in which we have implemented:

— RIBs
— BGP UPDATE message processing with locally configured policy

51

e crlbgp_tepserv - in which we have implemented:

— Socket 1O

We have chosen to keep the Finite State Machine as simple as possible
and perform socket 10, BGP message processing and UPDATE message han-
dling outside of this process. We, by following the critical path of the BGP
UPDATE message, have made a decomposition that scales out to many pro-
cesses as number of peers increase.

We have not implemented the Distributed RIB described in section 4] in-
stead our RIB as implemented now is a rudimental implementation for de-
velopment and testing purposes, that neither performs any advanced local
import/export policy processing nor have we fully implemented the BGP
Decision Process. It is left as future work to implement the Distributed RIB.

These processes are managed using an Erlang/OTP supervisor tree:
e crlbgp_supersup

— erlbgp_peersup
— erlbgp_tcplistensup

The following components are not implemented:
e Communication with system main routing table
e Configuration state storage

As described in section [4.2] the state storage in a distributed application can
for example be implemented using an appropriate library such as Apache
Zookeeper, discussed in section We need communication with the sys-
tem’s main routing table in order to perform the route resolvability check of
phase 2 of the decision process.

4.6.2 ErlBGP walkthrough

In this section we perform a walkthrough of the components in ErIBGP and
how they interact with each other. We also show how the processing of the
critical path is performed, i.e. BGP UPDATE message processing.

52

- -
=

erlbgp_supersup

erlbgp_peersup erlbgp_tcplistensup
v v

[erlbgpfpeerfsm] [erlbgpfpeerfsm] [erlbgpfpeerfsm]

i ¢
[erlbgp_peerrecv] [erlbgp_peerrecvl [erlbgp_peerrecv]

v / e » Router \
y ~\

s N s
Node 1 Node 2
A J A J
(1 ~\ 4 1 ~\
Node 3 Node 4

L J k))
Figure 17: ErIBGP as implemented

Erlang/OTP programs with supervisor trees tend to look similar to Node 1
in the picture above. We will now walk through the various components and
describe them.

4.6.2.1 Distributed Erlang & Multiple Nodes

Using Distributed Erlang we support running multiple nodes with one in-
stance such as shown by Node 1 in each of them. Each node carries its very
own supervisor tree, else we would still be suffering from single point of fail-
ure risks, if we instead used a global supervisor process that manages other
nodes. Our code is written such that the processes can communicate with
each other on any node, and Erlang takes care of the Inter-Process Commu-
nication (IPC) messaging.

There are two caveats to this:

1. We currently only globally register the first mockup RIB to start, and

93

the distributed application will therefore always refer to just this node
- there is no replication or similar, and

2. we have not yet implemented distributed configuration management.

4.6.2.2 The ErlBGP application and a node’s supervisor tree

On each node, there is a top process, erlbgp. erlbgp contains some API calls
to manage the program, and on first instantiation on a node, creates the
erlbgp_supersup, a supervisor of supervisors. At this point it manages two
supervisors, the peer supervisor, erlbgp_peersup, and a TCP listener supervi-
sor, erlbgp_teplistensup, for every local IP address that has a peer configured.

erlbgp_teplistensup keeps a number of child processes ready (“pre-forked”),
waiting for an incoming TCP connection from a peer. When receiving an
incoming connection, one of the erlbgp_tcpserv’s are unblocked and creates a
new erlbgp_peerfsm via a call to the peer FSM supervisor, erlbgp_peersup.

4.6.2.3 The erlbgp_peerfsm and erlbgp_peerrecv relationship

When a FSM is created, it also creates a linked child process, an erlbgp_peerrecv,
a process in charge of the socket communication including outbound message
formatting and inbound message parsing. In the case of an incoming con-
nection, the erlbgp_tcpserv will transfer socket ownership of the accepted
socket to the correct erlbgp_peerrecv process. A TCP listener supervisor can
of course be involved in setting up multiple peer connections.

When configuring a peer, ErlBGP will in addition to enabling a TCP lis-
tener supervisor with its child processes, if the peer is configured as active,
instantiate a local erlbgp_peerfsm and initialize it.

The erlbgp_peerrecv process will parse incoming UPDATE messages and for-
ward the contained data to the RIB using Erlang terms. This assures that
any parse errors will at worst only crash the victim erlbgp_peerrecv process.

4.6.2.4 Critical path and BGP UPDATE message processing

Our BGP UPDATE message processing path looks as follows:

1. Peer process A receives an UPDATE message from Peer A. peerrecv
will process the message and extracts any contained path attributes,
any contained NLRI and any contained Withdrawn route.

o4

2. peerrecv generates BGP event #27, UpdateMsg, and sends to peerfsm,
which restarts the hold timer in the FSM,

3. peerrecv sends the NLRI and their attributes and withdrawn routes to
the worker process, which adds to or removes them from the Adj-RIB-
In belonging to Peer A. It then performs part of the Decision Process
and possibly installs them into the Loc-RIB, and also the Adj-RIB-Out
of Peer B,

4. The worker process notifies the peerrecv of Peer process B about the
new information,

5. peerrecv sends the new information to Peer B

Worker process

RIB
4
Peer processes A Peer processes B
3
peerfsm peerfsm
2 N
peerrecv peerrecv
1 5

Figure 18: ErlIBGP: Update path

This is largely according to our goal design, with the exception of the lack
of the Distributed RIB and the main system routing table communication.
It works for us for the moment but there are some immediate changes we

95

need to perform. For instance, when receiving a full BGP table that is to
be propagated to Peer B, step 4 leads to the sending of approximately 550
000 messages to the Erlang inbox of peerrecv. This only takes a couple of
seconds.

Then however, step 5, when generating the UPDATE messages to send to
Peer B, ExaBGP in our test setup, takes longer than 90 seconds. We haven’t
yet determined the cause for this long processing time. We currently suspect
that our Update-Send implementation in peerrecv has poor performance.

Additionally, currently, in step 2, peerrecv will generate one UpdateMsg
events for every UPDATE message Peer A sends to our ErIBGP. Our plan
is to add a dampening effect that reduces the amount of UpdateMsg events
sent - it is not strictly necessary to inform the FSM thousands of times per
second.

4.6.3 ErlBGP Usage Examples

In this section we show a couple of sample screenshots from the application.
We show that the distributed system can connect to a peer and conversely,
that a peer can connect to the distributed system. Additionally, we show
that we can maintain established peers over time and that our system ex-
hibits some of the fault tolerance properties, and autonomously restarts dead
processes.

o6

berra@mars: ~/doc/documents/exjobb/erlbgp -0
File Edit View Search Terminal Help

berra@mars:~/doc/documents/exjobb/erlbgp$./run.sh
Erlang/0TP 17 [erts-6.1] [source] [64-bit] [smp:4:4] [async-threads:108] [hipe] [kernel-poll:false]

Eshell V6.1 (abort with ~G)

(erlbgp@mars) 1> application:start(erlbgp) .

erlbgp@mars, <0.43.0>, 1434563459700, erlbgp: ets created

ok

(erlbgp@mars) 2> erlbgp:configure_peer({node(), "192.168.1.87", 179, 64572, "192.168.1.12", 179, 64571, a
ctive}) .

erlbgp@mars, <0.39.0>, 1434563469332, erlbgp_supersup: begin_listen_on: node: erlbgp@mars, IPAddress: {1
92,168,1,87}, Port: 179

erlbgp@mars, <0.44.0=, 1434563469334, erlbgp_tcplistensup: start_link({local, 'erlbgp_tcplistensup:lListe
n:192.168.1.87:179"'}, erlbgp_tcplistensup, {{192,

168,
1,
87},
179,
'erlbgp_tcplist
ensup:Listen:192.168.1.87:179'})
erlbgp@mars, <0.52.0>, 1434563469365, erlbgp_peerfsm: init: starting FSM
ok
(erlbgp@mars) 3> erlbgp@mars, <0.53.0>, 1434563469374, erlbgp_peerrecv: connectioncollision ok

(erlbgp@mars)3> erlbgp:print_info() .

LocallP PeerIP State In Out
192.168.1.87 192.168.1.12 established 42 [¢]
ok

(erlbgp@mars) 4= ||

Figure 19: Screenshot of an ErlBGP node with one peer

berra@mars: ~/doc/documents/exjobb/eribgp -0
File Edit View Search Terminal Help

berra@mars:~/doc/documents/exjobb/erlbgp$./run.sh
Erlang/0TP 17 [erts-6.1] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe] [kernel-poll:false]

Eshell V6.1 (abort with ~G)
(erlbgp@mars) 1> application:start(erlbgp).
erlbgp@nars, <0.43.0>, 1434563541712, erlbgp: ets created
ok
(erlbgp@mars) 2> erlbgp:configure_peer({node(), "192.168.1.87", 179, 64572, "192.168.1.12", 179, 64571, a
ctivel}).
erlbgp@mars, <0.39.0>, 1434563541723, erlbgp_supersup: begin_listen_on: node: erlbgp@mars, IPAddress: {1
92,168,1,87}, Port: 179
erlbgp@mars, <0.44.0>, 1434563541725, erlbgp_tcplistensup: start_link({local, 'erlbgp_tcplistensup:Liste
n:192.168.1.87:179'}, erlbgp_tcplistensup, {{192,
168,
1,
87},
179,
'erlbgp_tcplist
ensup:Listen:192.168.1.87:179'})
erlbgp@mars, <0.52.0>, 1434563541743, erlbgp_peerfsm: init: starting FSM
ok
(erlbgp@mars) 3> erlbgp:configure_peer({node(), "127.0.10.1", 179, 64572, "127.0.0.1", 179, 64573, passiv
e}) .
erlbgp@nars, <0.39.0>, 1434563541745, erlbgp_supersup: begin_listen_on: node: erlbgp@mars, IPAddress: {1
27,0,10,1}, Port: 179
erlbgp@mars, <0.44.0=, 1434563541745, erlbgp_tcplistensup: start_link({local, 'erlbgp_tcplistensup:lListe
n:127.0.10.1:179'}, erlbgp_tcplistensup, {{127,
a,
10,
i1,
179,
‘erlbgp_tcplisten
sup:Listen:127.0.10.1:179'})
ok
(erlbgp@mars) 4> erlbgp@mars, <0.53.0>, 1434563541753, erlbgp_peerrecv: connectioncollision ok

(erlbgp@mars) 4> erlbgp@mars, <0.69.0>, 1434563557728, erlbgp_peerfsm: init: starting FSM
erlbgp@mars, <0.70.0>, 1434563557729, erlbgp_peerrecv: connectioncollision ok

(erlbgp@mars) 4> erlbgp:print_info().

LocalIP PeerIP State In Out
192.168.1.87 192.168.1.12 established 42 2]
127.0.10.1 127.0.0.1 established 9 42

ok
(erlbgp@mars)5=> i

Figure 20: Screenshot of an ErIBGP node with two peers

o7

berra@mars: ~/doc/documents/exjobb/erlbgp x

File Edit View
Erlang/0TP 17 [erts-6.1]
ipe] [kernel-poll:false]

Search Terminal

Help

[source] [64-bit] [smp:4:4] [async-threads:18] [h

Eshell V6.1 (abort with ~G)

(erlbgp@mars) 1> erlbgp:configure_node(erlbgp2@laptop) .

true

(erlbgp@mars)2> application:start(erlbgp) .

erlbgp@mars, <0.49.0>, 1434563715396, erlbgp: ets created

ok

(erlbgp@mars)3> erlbgp:configure_peer({node(), "182.168.1.87", 179, 64572,
"192.168.1.12", 179, 64571, activel}).

erlbgp@mars, <0.39.0>, 1434563727749, erlbgp_supersup: begin_listen_on: no
de: erlbgp@mars, I[PAddress: {192,168,1,87}, Port: 179

erlbgp@mars, <0.50.8>, 1434563727751, erlbgp_tcplistensup: start_link({lec

al, ‘erlbgp_tcplistensup:Listen:192.168.1.877179'}, erlbgp_tcplistensup, {
{192,

168,

1,

87},

179,

‘erlbgp_tcplistensup:Listen:192.168.1.87:179'})
erlbgp@mars, <0.58.8>, 1434563727764, erlbgp_peerfsm: init: starting FSM
ok

(erlbgp@mars) 4> erlbgp@nars, <0.59.0>, 1434563727770, erlbgp_peerrecv: con
nectioncollision ok

(erlbgp@mars) 4> erlbgp:print_info() .
LocalIP Peerl State In out
192.168.1.87 192.168.1.12 established 42 9

ok
(erlbgpemars) 5= []

Figure 21: Screenshot of two nodes

berra@laptop: ~/exjobb/erlbgp x

File Edit View Search Terminal Help
berra@laptop:~/exjobb/erlbgp$./run-othernode.sh
Erlang/0TP 17 [erts-6.2] [source]l [64-bit] [smp:2:2]
ernel -poll:false]

[async-threads:10] [k

Eshell V6.2 (abort with ~G)

(erlbgp2@laptop) 1> application:start(srlbgp) -

erlbgp2@laptop, <0.46.0>, 1434563721330, erlbgp: ets created

ok

(erlbgp2@laptop) 2> erlbgp:configure pser({rode(), "18.0.20.20", 179, 64572
, "10.06.20.11", 179, 64573, passive}).

erlbgp2@laptop, <0.39.0>, 1434563733300, erlbgp_supersup: begin_listen_on:
node: erlbgp2@laptop, IPAddress: {10,0,20,20}, Port: 179

erlbgp2@laptop, <0.47.0>, 1434563733301, erlbgp_tcplistensup: start_link({
Tlocal, 'erlbgp_tcplistensup:listen:10.0.20.20:179'}, erlbgp_tcplistensup,
{{10,

‘erlbgp_tcplistensup:listen:10.0.20.20:179'})
ok
(erlbgp2@laptop)3> erlbgp2@laptop, <6.61.8>, 1434563745873, erlbgp_peerfsm
: 1nit: starting FSM
erlbgp2@laptop, <0.62.0>, 1434563745882, erlbgp_peerrecv: connectioncollis
ion ok

(erlbgp2@laptop)3> erlbgp:print_info() .
Locall cerl State In out
10.0.20.20 10.6.20.11 established 9 42

ok
(erlbgp2@laptop) 4> [l

of ErIBGP with one peer each. We

haven’t implemented a unified multi-node output view from one command

yet.

Observer -

File Trace Nodes Help

kernel

(<8890.42.0=}{'<8890.43. 0=} erlbgp_supersupH

-|arlbgp_peersu,,

erlbgp@mars =

System | Load Charts Applications | Processes Table Viewer Trace Overview

<BB90.52.0>

<B890.53.0>
<B8890.75,0=

<B8890,74.0=>

<BB90.63.0>

<B8890,64.0=>

H(erlogp_teplistensup:Listen:127.0.10.1:179—{ <8890.66.0=)

<BB90,67.0=>

<B8890,73.0=

<BB90.50.0>

<B8890,55.0=>

-(arlbgp_tcpl\stansup:L\stsn:lgz.lﬁﬁ.l‘37:179)-

erlbgp_worker

<B8890,57.0=>

<BB90.58.0>

f'L\
A
@
@
@
=]
on
&
=

W

Figure 22: Screenshot of Erlang Observer

Screenshot22] of the Erlang Observer connected to the host “mars”, show-
ing the ErlIBGP application and its various processes. It has two configured

o8

peers, seen as the two processes <8890.52.0> and <8890.74.0> respec-
tively. These are peerfsm processes. They have each one peerrecv process,
<8890.53.0> and <8890.75.0>, respectively. Also worth noting is that Erl-
BGP has created two erlbgp_tcplistensup processes, one per configured peer
as they are peering using different local IP addresses. They each use a pool
of 5 erlbgp_tcpserv processes to handle incoming connections.

5 Discussion

This thesis has presented an approach for achieving both fault tolerance and
performance scalability of a BGP routing daemon, by decomposing the crit-
ical path at a granular level. The result is a partition of work that enables
parallel processing on each route processed in a distributed RIB implemen-
tation.

The prototype implementation, ErIBGP, is written in a high-level language
which is on the order of 10-20 times more time efficient to develop in than a
regular low-level language such as C. Section [5.1] drills down in this aspect.

The thesis has accomplished something to the authors knowledge not at-
tempted before, in making a completely novel implementation of BGP in
order to support a granular level of decomposition and distributed process-
ing. The thesis is demonstrably distinct from the two perhaps most closely
related works, Hidell@] and ONOS @] See section for more details.

The risk of this approach is that the effort is not continued, but there are a
couple of strategies available to mitigate that risk, including Open Sourcing
the platform. It has not been decided to Open Source the software at this
point.

This work opens up for a number of continuation efforts that are outlined in
section

5.1 On using the right tool for the job

We believe a routing protocol suite implemented in a concurrent, message
passing language suitable for distributed operations offers the foundation for
realizing this proof of concept. We try to map out the pieces of the puzzle
required to accomplish this new architecture.

29

We pick a certain relatively self-contained and clear piece of the puzzle, BGP,
and show that it is possible, with very limited resources, to come pretty far
towards the objective, by just using the right tools for the job.

In Appendix C we have attached a sloccount comparison between our pro-
gram and Quagga’s bgpd. It reports bgpd consists of 46000 lines of 100%
ANSI C, whereas our program consists of 3500 lines of 100% Erlang. Our
implementation is not complete, but it is not unlikely that we will only grow
the program 5x before we have feature parity with bgpd. And bgpd does not
contain all relevant code for actually running Quagga with bgpd — for ex-
ample Zebra is required as well, for communicating with the main routing
table, managing configuration, etc. Zebra adds 21000 lines of 100% ANSI C
code additionally.

People unaware of the benefits of programming in a language such as FEr-
lang, often criticize it for being slow. The fact is that the language does run
in a VM, like Java, but it is not inherently slow if used correctly. For most
programs, the majority of the code is not involved in a program’s critical data
path. Similarly, a program’s top “hot spots”, e.g. parts in a program where
for example simply the ability to do very tight loops on a CPU is a great
contributing factor to the performance of the program, are often solvable in
Erlang as well with so called Native Implemented Functions - C handoffs.

Programs written in low level languages, such as C, are easy to make rel-
atively fast as single process programs, but also easy to make unsafe and
buggy. Programmers spend a considerable amount of time getting memory
management right, even though there are good tools to guide them. Writing
concurrent programs in C is challenging. Programmers instead tend to write
structured and modularized source code, but often it will still end up a rel-
ative large binary responsible for, for example, the entire BGP protocol, for
all peers, including all communication with them.

This leads to the so called “blast zone” of failures within the program to be
essentially the entire program. A bug in a section of the program may cause
unexpected side-effects on the remainder of the program, or even crash the
program.

With Erlang, such programs can be broken apart into multiple smaller pro-
cesses, each responsible for only a small part of the whole. What’s more, it
is easy to achieve this using Erlang.

In the context of BGP, there are only a few such pieces, primarily the dif-
ferent parts of processing UPDATE messages and applying route policy to

60

the RIBs. These parts of a BGP implementation are mostly stressed when a
peering session goes up or down, since it provokes a long queue of messages
to be handled. A typical C implementation would simply queue them in a
single-threaded program and process one route at a time. With a concurrent
and distributed Erlang implementation, the RIBs would be accessible and
replicated according to some strategy to multiple processing elements, and
there are inherent abilities that makes it easy to let a number of workers
work in parallel to consume these queues.

The lack of multithreading or multiprocessing in typical C implementations
of BGP are fitting to the earlier years when resources in general in a router
were really scarce, processors were rather slow and most of all, always single-
core.

Using a functional language such as Erlang, it is within time scope of a
Master’s Thesis to write a BGP router daemon from scratch in completely
new ways compared to before. Free of the burden of having written a BGP
router daemon before, we can enable ourselves to solve the typical problems
in ways made possible by this toolbox for concurrent software developing,
Erlang.

5.2 Differences with (HIDELL) and (ONOS)

The method Hidell employed to control route dissemination to the various
backends are all based on regular “bgpd” route filters in the frontend process,
a method that scales quite poorly and is fairly imprecise. Hidell concludes
the route filter implementation scales poorly. The reason for this is simply
that Hidell relies on the BGP Decision Process to perform load sharing to
the actual BGP backend process, and the policy implementation in Quagga,
or any other BGP daemon, aren’t designed for this scale.

The main differentiation between our work and that of Hidell can be sum-
marized as:

e We implement BGP from scratch with full control over all aspects of
the software - Hidell makes patches on top of “bgpd” and is thus con-
strained by it

e We do not follow ForCES - Hidell does

e Our equivalent to Hidell’s frontend process is made using two processes
- we have a dedicated process for socket ownership, message parsing and

61

message formatting - Hidell have essentially full BGP implementation
running in the frontend process, yet still propagate the BGP UPDATESs
as-is to the service processes. Our method breaks apart the UPDATE
messages very early.

e The communication between our peerrecv process and our state storage
is not based on a regular BGP peer with BGP UPDATE messages -
Hidell’s is.

In (ONOS) a distributed Network Controller is demonstrated. ErlBGP has
some similarities with ONOS in its highly distributed nature of, but the use
case is different - ErIBGP is not a network controller, it’s a BGP routing
daemon.

5.3 Future work

ErIBGP, being a prototype, requires further work in several areas, some of
which are discussed here. In order to become a fully functional production
capable distributed routing daemon, a number of areas need further work:

e Distributed policy processing,

e A number of BGP extensions adopted for distributed operation, Mul-
tiprotocol, 4-byte ASN, VPN, MPLS

e Main routing table communication process

A prototype of the main routing table communication process can easily be
developed using off the shelf open source projects @] ﬂﬁ

5.3.1 Improve Fault Tolerance

ErlIBGP needs further work for fully deliver on the proposed fault toler-
ance. There are two areas of work, which regards to the state storage and
distributed RIB, in addition to BGP Graceful Restart. Once those are ad-
dressed, the work can continue towards TCP Socket Migration architectures,
which is described in [£.3.4

5.3.2 Implement Distributed RIB

This thesis describes a novel approach to a distributed RIB implementation.
It has to be developed to deliver on the total system design.

62

5.3.3 Further Performance Optimizations

The critical data path needs optimizations in memory, latency and process-
ing. Erlang supports using what is called Native Interface Functions, NIFs,
that are C interfaces. These should be deployed in processing hot spots or
to represent efficient, pointer based, storage data structures.

When developing a routing daemon, care must be taken to prioritise tasks
and processes against each other, else there is a risk that less time criti-
cal bulk computations such as BGP UPDATE message handling starves out
more important keepalive messages, and similar. The Erlang VM supports
scheduling priorities between tasks.

5.3.4 Look into TCP Socket Migration solutions

The BGP Graceful Restart mechanism allows for BGP speakers to implement
various methods of performing in-service upgrades and in general reduce the
network churn when faults happen. Thus it improves fault tolerance. It is
however not transparent to the receiving speaker. In a truly fault tolerant
implementation of BGP, a single BGP speaker can hide or mask faults from
peers entirely, including at the TCP layer.

To mask failures at the TCP endpoint on a host, or in our case on a set
of hosts, the hosts’ TCP implementation need to support TCP Socket Mi-
gration.

This is useful both for planned maintenance of sockets when for example
a node will restart and also for crashes. The feature is much assisted by
an ability to also direct incoming IP packets to the correct host, before and
after a socket relocation. This would be quite straightforward to accomplish
if a system allows granular control over how to move IP addresses around
between nodes, or, perhaps even better, steer incoming packets based on a
TCP 4-tuple: IP source address, IP destination address, TCP source port,

TCP destination port [ﬂ] ﬂﬁ] ﬂﬁ} ﬂﬂ]

5.3.5 Configuration Management and API

If the project were to be moved forward, there would be a real need for proper
configuration management and APIs to manage configuration. These are to-

day standardized into the Network Configuration Protocol@] (NETCONF),
which would be an obvious protocol to implement, of which there are more

63

than one Erlang implementations alreadyﬂ] @] [@] Network operators to-
day expect configuration management to provide them with versioning, can-
didate configurations with commit/rollback functions @]

Fortunately, a configuration data modeling language, called YANG, have
been standardized that fits with NETCONF[@]. Using YANG and NET-
CONTF together today increases the chances that existing management tools
can work with a system. There are Erlang implementations of YANG avail-
able as wellﬁ].

5.3.6 Application of heavy BGP policy computations

Using ErlBGP opens up for more heavy policy processing per prefix, which
can benefit Internet stability, especially for core Internet routers that have
tremendous packet throughput but still haven’t seen improvements in policy
processing capabilities.

The lack of CPU resources for policy processing in the core of the Internet
affects its stability severely. Existing methods to address this include using
Internet Routing Registry data, (a set of databases where networks register
their prefixes and peering relationships), to compute valid registered paths
of announcements. This method is completely dependent on the quality of
the data and very good heuristics need to be available before an operator
can decide to reject a received route as malicious.

Malicious routes are addressed by the PATHSEC work of the IETF [@], which
adds cryptographic computations to each UPDATE and NLRI. Both the In-
ternet Registry Data approach and the PATHSEC approach require good
computational power attached to routers, and the closer to the core of the
Internet a router is the more important is it to handle high BGP UPDATE
message volumes quickly. The two approaches have in common that it is in-
tractable to pre-compute all possible available paths due to extremely large
storage requirements.

Both approaches need on-demand computation in a router. Integrating this
into ErIBGP is an interesting task.

5.3.7 Application of ErIBGP to a real-world router hardware plat-
form

In practical terms, a real-world hardware routing platform needs many more
functions than a BGP daemon, such as chassis inventory and management

64

functions, internal routing protocols, main routing table.

ErIBGP could become a piece in such a puzzle. This requires additional
extensions of the main routing table communication software.

6 Conclusion

In this thesis a design has been defined and tested that address two core
challenges with previous BGP implementations:

1. Fault tolerance, and
2. Performance and scalability

The very core challenge of satisfying both problems simultaneously were early
identified as a problem of decoupling the internal functions of BGP. Three
Research Questions were defined:

RQ.1 Is it feasible to implement a distributed BGP daemon that address the
two challenges above?

RQ.2 Can the critical path of a BGP daemon be parallelized?

RQ.3 Is it feasible to partition a RIB over multiple nodes?

Answers to the questions above:

RQ.1 As evident by this thesis work, it is feasible with a very limited amount
of resources, as well as technically feasible.

RQ.2 Yes — the critical path of a BGP daemon can definitely be parallelized,
in fact it even lends itself well to the point.

RQ.3 Yes, this thesis extends earlier work which has shown it feasible but
not optimal, to show that it is promising in terms of performance by
using asynchronous unicast communication in the cluster.

The major findings of the reports are the answers to the research questions
above, shown via both a prototype ErlBGP implementation as well as a novel
design for a distributed RIB, supporting granular decomposition of route up-
dates to per-prefix levels.

In addition to these research questions the following six criteria were defined
at the very beginning of the thesis work:

65

1. Without crashing any other process, crash and restart the policy pro-
cess.

2. Without crashing any other process, crash and restart the Peer A pro-
cess.

3. Without crashing any other process, crash and restart the Peer B pro-
cess.

4. Be able to run the processes on separate hosts.
5. Establish peers with Peer A and Peer B.

6. Receive, process and propagate BGP UPDATE messages between these
two peers.

The ErIBGP prototype meets each of these criteria.

All known implementations of BGP processes the protocol’s critical path
serially in a single process with poor fault tolerance implementation. Lack
of processing capabilities results in much simpler sanity checking of route
announcements than otherwise possible. This, due to the trusting nature of
BGP, in turn leads to instability in the Internet with outages as a result, and
not just in the edge of the Internet, but in its core as well.

The ErlBGP architecture provides better fault tolerance and scale-out pro-
cessing capabilities than existing implementations of BGP. Using the ErlBGP
architecture would allow for an important improvement in the stability of the
Internet as a whole.

66

7
1]

2]

3]

[4]

[9]

[10]

[11]

[12]

Bibliography

Netconf implementation using Erlang. URL https://code.google.
com/p/netconf-erlang/.

Network benchmarking utility. URL https://github.com/Mellanox/
sockperf/.

Yang parser and validator. URL https://github.com/travelping/
yang.

B. Adamson, C. Bormann, M. Handley, and J. Macker. Nack-oriented
reliable multicast (norm) transport protocol. Technical report, IETF
RFEC5740, 20009.

A. Agapi, K. Birman, R. M. Broberg, C. Cotton, T. Kielmann, M. Mill-
nert, R. Payne, R. Surton, and R. van Renesse. Routers for the cloud.
Internet Computing, 15(5), 2011.

M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. ACM SIGCOMM Computer Communica-
tion Review, 38(4):63-74, 2008.

Apache Software Foundation. Apache ZooKeeper. URL https://
zookeeper.apache.org/.

Arista Networks, Inc. EOS: The next generation extensible op-
erating system. URL https://www.arista.com/assets/data/pdf/
EOSWhitepaper.pdf.

J. Armstrong. Programming Erlang: Software for a concurrent world.
Pragmatic Bookshelf, 2007.

J. Aweya. On the design of IP routers part 1: Router architectures.
Journal of Systems Architecture, 46(6):483-511, 2000.

Y. Bachar. Introducing 6-pack: the first open hardware modular
switch. URL https://code.facebook.com/posts/717010588413497/
introducing-6-pack-the-first-open-hardware-modular-switch/.

Y. Bachar. Facebook wedge.
URL http://files.opencompute.org/oc/public.php?
service=files&t=cbcb6082857b154a157aa46cdcb4b9bl.

67

https://code.google.com/p/netconf-erlang/
https://code.google.com/p/netconf-erlang/
https://github.com/Mellanox/sockperf/
https://github.com/Mellanox/sockperf/
https://github.com/travelping/yang
https://github.com/travelping/yang
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://www.arista.com/assets/data/pdf/EOSWhitepaper.pdf
https://www.arista.com/assets/data/pdf/EOSWhitepaper.pdf
https://code.facebook.com/posts/717010588413497/introducing-6-pack-the-first-open-hardware-modular-switch/
https://code.facebook.com/posts/717010588413497/introducing-6-pack-the-first-open-hardware-modular-switch/
http://files.opencompute.org/oc/public.php?service=files&t=cbc56082857b154a157aa46cdcb4b9b1
http://files.opencompute.org/oc/public.php?service=files&t=cbc56082857b154a157aa46cdcb4b9b1

[13]

[14]

[15]

[16]

[21]

22]

Y. Bachar. Introducing 6-pack, the first open hardware modular switch.
URL https://www.youtube.com/watch?v=uiilLMt09nW8.

L. A. Barroso, J. Clidaras, and U. Holzle. The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture, 8(3):1-154, 2013.

T. Bates, P. Smith, and G. Huston. CIDR report. URL http://www.
cidr-report.org/as2.0/#General_Status.

T. Bates, R. Chandra, D. Katz, and Y. Rekhter. Multiprotocol exten-
sions for BGP-4. Technical report, IETF RFC4760, 2007.

M. Bjorklund. Yang — a data modeling language for the network config-
uration protocol (netconf). Technical report, IETF RFC6020, October,
2010.

V. Bollapragada, C. Murphy, and R. White. Inside Cisco 10S software
architecture. Cisco Press, 2000.

E. A. Brewer. Towards robust distributed systems. In PODC, volume 7,
2000.

M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and implementation of a routing control plat-
form. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design € Implementation-Volume 2, pages 15-28. USENIX As-
sociation, 2005.

S. Calo, E. M. Nahum, and D. Verma. Software implementation of
network switch /router, Apr. 12 2013. US Patent App. 13/861,850.

Cisco Systems, Inc. Graceful restart, non stop routing and IGP routing
protocol timer manipulation solution overview. URL http://www.
cisco.com/c/en/us/products/collateral/ios-nx-os-software/
high-availability/solution_overview_c22-487228.html.

C. Clos. A study of non-blocking switching networks. Bell System
Technical Journal, 32(2):406-424, 1953.

CodeKick AB. Kanbanflow. URL https://kanbanflow.com/.

A. Cohen, S. Rangarajan, and H. Slye. On the performance of TCP
splicing for URL-aware redirection. In Proceedings of the 2nd conference

on USENIX Symposium on Internet Technologies and Systems-Volume
2, pages 11-11. USENIX Association, 1999.

68

https://www.youtube.com/watch?v=uiiLMtO9nW8
http://www.cidr-report.org/as2.0/#General_Status
http://www.cidr-report.org/as2.0/#General_Status
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/high-availability/solution_overview_c22-487228.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/high-availability/solution_overview_c22-487228.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/high-availability/solution_overview_c22-487228.html
https://kanbanflow.com/

[26]

[27]

28]

[29]

[30]

[31]

37]

D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A
software architecture for next generation routers. In ACM SIGCOMM

Computer Communication Review, volume 28, pages 229-240. ACM,
1998.

A. Elangovan, A. S. Agilandan, and A. Lakkshmanan. Building a ro-
bust software based router. In Advanced Computing, Networking and
Informatics-Volume 2, pages 181-188. Springer, 2014.

R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Network
configuration protocol (netconf). Technical report, IETF RFC6241,
2011.

Ericsson AB. Erlang manual: ct_netconfc. URL http://www.erlang.
org/doc/man/ct_netconfc.html.

A. Farrel. Forwarding and control element separation Working Group.
URL https://datatracker.ietf.org/doc/charter-ietf-forces/.

N. Feamster, J. Rexford, and E. Zegura. The road to SDN: An intel-
lectual history of programmable networks. ACM SIGCOMM Computer
Communication Review 44.2 (2014)

S. Garrison. White box switch OS. URL http://www.pica8.com/
white-box-switches/white-box-switch-os.php.

S. Garrison and S. Crehan. The rise of white-box switches.
URL http://www.infoworld.com/article/2609937/sdn/
the-rise-of-white-box-switches.html.

GitHub, Inc. Github. URL https://github.com/.
Google. Google docs. URL https://docs.google.com/.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VI2: a scalable and flexible data
center network. In ACM SIGCOMM computer communication review,
volume 39, pages 51-62. ACM, 2009.

M. Handley, O. Hodson, and E. Kohler. Xorp: An open platform for
network research. ACM SIGCOMM Computer Communication Review,
33(1):53-57, 2003.

69

http://www.erlang.org/doc/man/ct_netconfc.html
http://www.erlang.org/doc/man/ct_netconfc.html
https://datatracker.ietf.org/doc/charter-ietf-forces/
http://www.pica8.com/white-box-switches/white-box-switch-os.php
http://www.pica8.com/white-box-switches/white-box-switch-os.php
http://www.infoworld.com/article/2609937/sdn/the-rise-of-white-box-switches.html
http://www.infoworld.com/article/2609937/sdn/the-rise-of-white-box-switches.html
https://github.com/
https://docs.google.com/

[38]

M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov. De-
signing extensible IP router software. In Proceedings of the 2nd confer-

ence on Symposium on Networked Systems Design € Implementation-
Volume 2, pages 189-202. USENIX Association, 2005.

D. Harley. Data center: Battleground for traditional vs white box eth-
ernet switch vendors. URL http://tinyurl.com/nkk8wk3.

F. Hebert. Learn you some Erlang. URL http://learnyousomeerlang.
com/.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: Saving energy in data center
networks. In NSDI, volume 10, pages 249-264, 2010.

M. Hidell. Decentralized modular router architectures. Diss. KTH Royal
Institute of Technology, 2006.

G. Huston. BGP in 2014. URL https://labs.apnic.net/7p=568.

K. Ishiguro. Quagga routing suite. URL http://www.nongnu.org/
quagga/.

A. Joe. Programming Erlang: Software for a concurrent world. Prag-
matic Bookshelf, 2007.

M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus output
queueing on a space-division packet switch. Communications, IEEE
Transactions on, 35(12):1347-1356, 1987.

S. Kent and A. Chi. Threat model for BGP path security. Technical
report, IETF RFCT7132, 2014.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Transactions on Computer Systems (TOCS),
18(3):263-297, 2000.

T. Koponen, M. Casado, N. Gude, and J. Stribling. Distributed control
platform for large-scale production networks, Sept. 9 2014. US Patent
8,830,823.

U. Krishnaswamy. Open network operating system.
URL http://www.slideshare.net/umeshkrishnaswamy/
open—-network-operating-system.

70

http://tinyurl.com/nkk8wk3
http://learnyousomeerlang.com/
http://learnyousomeerlang.com/
https://labs.apnic.net/?p=568
http://www.nongnu.org/quagga/
http://www.nongnu.org/quagga/
http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system
http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system

[51]

[52]

[53]

[61]

[62]

B. Kuntz and K. Rajan. MIGSOCK: Migratable TCP socket in Linux.
Carnegie Mellon University, Information Networking Institute, 2002.

T. Mangin. ExaBGP. URL https://github.com/Exa-Networks/
exabgp.

C. Matsumoto. Hyperscale + white box switches: Prepare to be
shocked. URL https://www.sdxcentral.com/articles/news/
hyperscale-white-box-switches-prepare-to-be-shocked/2015/
04/.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achiev-
ing 100% throughput in an input-queued switch. Communications,
IEEE Transactions on, 47(8):1260-1267, 1999.

R. McMillan. Cisco patches bug that crashed 1% of Internet. URL
http://www.computerworld.com/article/25156200/networking/
cisco-patches-bug-that-crashed-1--of-internet.html.

C. Metz. You cant have Google’s Pluto switch, but you can have this.
URL http://www.wired.com/2013/03/big-switch-indigo-switch_
light/.

D. Mills. Exterior gateway protocol formal specification, DARPA net-
work working group report. Technical report, IETF RFC904, M/A-
COM Linkabit, 1984.

J. C. Mogul, P. Yalagandula, J. Tourrilhes, R. McGeer, S. Banerjee,
T. Connors, and P. Sharma. API design challenges for open router
platforms on proprietary hardware. ACM HotNets-VII, 2008.

D. Munjal. So google is building a 10GbE switch? URL http://blogs.
cisco.com/datacenter/so_google_is_building_a_10gbe_switch.

R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable
fault-tolerant layer 2 data center network fabric. In ACM SIGCOMM
Computer Communication Review, volume 39, pages 39-50. ACM, 2009.

Open Compute Project Foundation. Open compute project. URL
http://www.opencompute.org/.

. Pepelnjak. Oversized as paths: Cisco IOS bug. URL http://blog.
ipspace.net/2009/02/oversized-as-paths-cisco-ios-bug.html.

71

https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://www.sdxcentral.com/articles/news/hyperscale-white-box-switches-prepare-to-be-shocked/2015/04/
https://www.sdxcentral.com/articles/news/hyperscale-white-box-switches-prepare-to-be-shocked/2015/04/
https://www.sdxcentral.com/articles/news/hyperscale-white-box-switches-prepare-to-be-shocked/2015/04/
http://www.computerworld.com/article/2515200/networking/cisco-patches-bug-that-crashed-1--of-internet.html
http://www.computerworld.com/article/2515200/networking/cisco-patches-bug-that-crashed-1--of-internet.html
http://www.wired.com/2013/03/big-switch-indigo-switch_light/
http://www.wired.com/2013/03/big-switch-indigo-switch_light/
http://blogs.cisco.com/datacenter/so_google_is_building_a_10gbe_switch
http://blogs.cisco.com/datacenter/so_google_is_building_a_10gbe_switch
http://www.opencompute.org/
http://blog.ipspace.net/2009/02/oversized-as-paths-cisco-ios-bug.html
http://blog.ipspace.net/2009/02/oversized-as-paths-cisco-ios-bug.html

[63]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

C. Petersen. Micro-server card. URL http://www.opencompute.org/
wiki/Motherboard/SpecsAndDesigns#System_on_Chip_.28SoC.29_
Servers.

R. Pienaar. Netconf library for Erlang. URL https://github.com/
FlowForwarding/enetconf.

M. Prince. Today’s outage post mortem. URL https://blog.
cloudflare.com/todays-outage-post-mortem-82515/.

B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and
S. Shenker. Software-defined internet architecture: Decoupling architec-
ture from infrastructure. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, pages 43-48. ACM, 2012.

F. Y. Rashid. Bug in Juniper router firmware update causes massive
internet outage. URL http://tinyurl.com/7279kjx.

Y. Rekhter and T. Li. A Border Gateway Protocol 4 Technical report,
[ETF RFC1771, 1995.

Y. Rekhter, T. Li, and S. Hares. Border gateway protocol 4. Technical
report, IETF RFC4271, 2006.

S. Sangli, E. Chen, R. Fernando, J. Scudder, and Y. Rekhter. Graceful
restart mechanism for BGP. Technical report, IETF RFC4724, 2007.

M. Schlager. The remote socket architecture: A proxy based solution
for TCP over wireless. Diss. Berlin Institute of Technology, 2004.

A. Schultz. gen netlink. URL https://github.com/travelping/gen_
netlink.

S. Sezer, S. Scott-Hayward, P.-K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao. Are we ready for SDN?
implementation challenges for software-defined networks. Communica-
tions Magazine, IEEE, 51(7):36-43, 2013.

A. Singla and B. Rijsman. OpenContrail architec-
ture document. URL http://www.opencontrail.org/
opencontrail-architecture-documentation/.

J. Sonderegger, O. Blomberg, K. Milne, and S. Palislamovic. Junos High
Availability: Best Practices for High Network Uptime. ” O’Reilly Media,
Inc.”, 2009.

72

http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns#System_on_Chip_.28SoC.29_Servers
http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns#System_on_Chip_.28SoC.29_Servers
http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns#System_on_Chip_.28SoC.29_Servers
https://github.com/FlowForwarding/enetconf
https://github.com/FlowForwarding/enetconf
https://blog.cloudflare.com/todays-outage-post-mortem-82515/
https://blog.cloudflare.com/todays-outage-post-mortem-82515/
http://tinyurl.com/7279kjx
https://github.com/travelping/gen_netlink
https://github.com/travelping/gen_netlink
http://www.opencontrail.org/opencontrail-architecture-documentation/
http://www.opencontrail.org/opencontrail-architecture-documentation/

[76]

[77]
78]

[79]
[80]

[81]

[84]

[85]

[86]

[87]

[88]

M. Tahir, M. Ghattas, D. Birhanu, and S. N. Nawaz. Cisco 10S XR
Fundamentals. Pearson Education, 20009.

Telenor Digital. appear.in. URL https://appear.in/.

M. Terpstra. SDN and gartner’s hype cycle. URL http://www.plexxi.
com/2015/01/sdn-gartners-hype-cycle/.

L. Torvalds. Git. URL https://git-scm.com/.

Q. Vohra and E. Chen. BGP support for four-octet AS number space.
Technical report, IETF RFC4893, 2007.

S. Wallin and C. Wikstrom. Automating network and ser-
vice configuration using netconf and yang. URL http://
www.tail-f.com/wordpress/wp-content/uploads/2013/02/
Tail-f-Presentation-Netconf-Yang.pdf.

D. Walton, A. Retana, E. Chen, and J. Scudder. Advertisement of
multiple paths in BGP. URL https://datatracker.ietf.org/doc/
draft-ietf-idr-add-paths/.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Proceed-
ings of the Tth symposium on Operating systems design and implemen-
tation, pages 307-320. USENIX Association, 2006.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. Crush: Con-
trolled, scalable, decentralized placement of replicated data. In Proceed-
ings of the 2006 ACM/IEEE conference on Supercomputing, page 122.
ACM, 2006.

S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn. Rados: a
scalable, reliable storage service for petabyte-scale storage clusters. In
Proceedings of the 2nd international workshop on Petascale data storage:
held in conjunction with Supercomputing’07, pages 35-44. ACM, 2007.

U. Wiger. libnl binding. URL https://github.com/Feuerlabs/
netlink.

R. Yavatkar and S. Bakshi. Distributed implementation of control pro-
tocols in routers and switches, Jan. 4 2002. US Patent App. 10/039,279.

E. Zmijewski. Longer is not always better. URL http://research.
dyn.com/2009/02/longer-is-not-better/.

73

https://appear.in/
http://www.plexxi.com/2015/01/sdn-gartners-hype-cycle/
http://www.plexxi.com/2015/01/sdn-gartners-hype-cycle/
https://git-scm.com/
http://www.tail-f.com/wordpress/wp-content/uploads/2013/02/Tail-f-Presentation-Netconf-Yang.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2013/02/Tail-f-Presentation-Netconf-Yang.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2013/02/Tail-f-Presentation-Netconf-Yang.pdf
https://datatracker.ietf.org/doc/draft-ietf-idr-add-paths/
https://datatracker.ietf.org/doc/draft-ietf-idr-add-paths/
https://github.com/Feuerlabs/netlink
https://github.com/Feuerlabs/netlink
http://research.dyn.com/2009/02/longer-is-not-better/
http://research.dyn.com/2009/02/longer-is-not-better/

[89] E. Zmijewski. Reckless driving on the Internet. URL http://research.
dyn.com/2009/02/the-flap-heard-around-the-world/.

74

http://research.dyn.com/2009/02/the-flap-heard-around-the-world/
http://research.dyn.com/2009/02/the-flap-heard-around-the-world/

—_

O © 00 O U= Wi

16

17
18
19
20

A Decision Process Pseudo Code

phase_1_decision_process(rib adj_rib_in, list (route)new_routes,
preference LOCALPREFERENCE, policy bgp_policy):

lock (adj_-rib_in)

for each route in new_routes:
if is_internal(route):
if preference(bgp-policy (route)) != LOCALPREFERENCE:

adj_rib_in.setpreference (route,

else:

bgp_policy (route))

adj_rib_in.setpreference (route, LOCALPREFERENCE)
else: // route is external
if preference(bgp_policy (route)) = INELIGBLE_ROUTE:

adj_rib_in.setineligible (route)

else:

adj_rib_in.setpreference (bgp_policy (route))

unlock (adj_rib_in)

Listing 1: Pseudo-code representation of the RFC4271 Decision Process
Phase 1 (chapter 9.1.1).

phase_2_decision_process(rib loc_rib

list (rib)adj-ribs_in

preference LOCALPREF, policy bgp_policy, asn LOCAL_AS):

for each rib

in adj_ribs_in:

lock (adj_rib_in)

set_mutex (phase_2_or_3)

for adj-rib_in in adj_-ribs_in:
for route in adj_rib_in.eligible_routes:
if unresolveable(route.nexthop) or
would_become_unresolveable (route.nexthop):
set_unresolveable(route)
continue

if contains(route.as_path, asn):

continue

if has_highest_preference (route,

only route is

and

highest preference

is_tie_breaking_winner (route):

loc_rib.install (route)

for each rib

in adj_ribs_in:

75

adj_ribs_in) // being the

// having

21 unlock (adj_rib_in)
22
23 clear_mutex (phase_2_not_3)

Listing 2: Pseudo-code representation of the RFC4271 Decision Process
Phase 2 (chapter 9.1.2).

1 phase_3_decision_process(list (rib) adj-ribs_out, rib loc_rib ,
policy bgp_policy):

set_mutex (phase_2_or_3)

2

3

4

5 for route in loc_rib:

6 if unresolvable (route):
7
8

continue

for adj_rib_out in adj_ribs_out:
9 case pass_policy (bgp—policy , route, adj_rib_out) of
10 reject:
11 adj_rib_out.withdraw_if_exist (route)
12 accept:
13 adj_rib_out .install (route)
14

15 clear_mutex (phase_2_or_3)

Listing 3: Pseudo-code representation of the RFC4271 Decision Process
Phase 3 (chapter 9.1.3).

76

ST W N

B Gigabit Ethernet Ping-Pong Latency test

Using Mellanox’ sockperf @], we performed a simple ping-pong latency test
over TCP, where a 100 byte message is sent from a test client to a test server,
and then sent back by the test server.

Test equipment per the below data:

Server host: Lenovo X1 Carbon with i7-4600U CPU @ 2.10GHz, Intel
[218-LM Network Controller,
Server kernel: Linux kepler 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt9-
3 deb8ul (2015-04-24) x86_64 GNU /Linux
Client host: Asus P9X79 WS with i7-3820 CPU @ 3.60GHz, Intel 82574L
Network Controller
Client kernel: Linux pishuli 3.2.0-4-amd64 #1 SMP Debian 3.2.65-1+deb7u2
x86-64 GNU/Linux
Switch: Netgear GS116E

anticimex@kepler /usr/local/src/sockperf/src [sockperf_v2] § ./
sockperf server —tcp —i 192.168.120.128 —p 5000

sockperf: = version #2.5. —

sockperf: [SERVER] listen on:

[0] TP = 192.168.120.128 PORT = 5000 # TCP

sockperf: Warmup stage (sending a few dummy messages) ...

sockperf: [tid 16109] using recvirom() to block on socket(s)

Listing 4: Server output

anticimex@pishuli /usr/local/src/sockperf/src |
sockperf_v2] § ./sockperf pp —tcp —i
192.168.120.128 —p 5000 —m 100 —t 10s

sockperf: = version #2.5.exported —

sockperf [CLIENT| send on:sockperf: using recvfrom () to
block on socket (s)

[0] TP = 192.168.120.128 PORT = 5000 # TCP
sockperf: Warmup stage (sending a few dummy messages)

sockperf: Starting test ...

sockperf: Test end (interrupted by timer)
sockperf: Test ended

77

10

11

12

13
14

15
16

17
18
19
20
21
22
23
24
25
26
27

sockperf: [Total Run] RunTime=10.100 sec; SentMessages
=61539; ReceivedMessages=61538

sockperf: =——————= Printing statistics for Server No:
0

sockperf: [Valid Duration] RunTime=10.000 sec;
SentMessages=60938; ReceivedMessages=60892

sockperf: > avg—lat =463.248 (std—dev=17175.763)

sockperf: # dropped messages = 0; # duplicated messages
= 0; # out—of—order messages = 38

sockperf: Summary: Latency is 463.248 usec

sockperf: Total 60892 observations; each percentile
contains 608.92 observations

sockperf: —— <MAX> observation = 774111.815
sockperf: —> percentile 99.99 = 774080.229
sockperf: ——> percentile 99.90 = 149.773
sockperf: —> percentile 99.50 = 104.138
sockperf: ——> percentile 99.00 = 98.445
sockperf: —> percentile 95.00 = 89.097
sockperf: —> percentile 90.00 = 85.468
sockperf: ——> percentile 75.00 = 83.422
sockperf: —> percentile 50.00 = 81.392
sockperf: ——> percentile 25.00 = 79.310
sockperf: ——> <MIN> observation = 64.171

Listing 5: Client output, using blocking sockets

anticimex@pishuli /usr/local/src/sockperf/src [sockperf_-v2] § ./
sockperf pp —tcp —i 192.168.120.128 —p 5000 —m 100 —t 10s —

nonblocked

sockperf: = version #2.5.exported —

sockperf [CLIENT] send on:sockperf: using recvfrom () to block on
socket (s)

[0] TP = 192.168.120.128 PORT = 5000 # TCP

sockperf: Warmup stage (sending a few dummy messages) ...

sockperf: Starting test ...

sockperf: Test end (interrupted by timer)

sockperf: Test ended

sockperf: [Total Run] RunTime=10.100 sec; SentMessages=68534;
ReceivedMessages=68533

sockperf: =—————= Printing statistics for Server No: 0

sockperf: [Valid Duration] RunTime=10.000 sec; SentMessages
=67898; ReceivedMessages=67898

sockperf: > avg—lat= 73.612 (std—dev=5.491)

sockperf: # dropped messages = 0; # duplicated messages = 0; #

78

15
16

17
18
19
20
21
22
23
24
25
26
27

out—of—order messages = 0

sockperf:
sockperf:

678.98
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:

Summary: Latency is

Total 67898 observations;

observations

73.612 usec

—> <MAX> observation

—> percentile 99.
——> percentile 99.
——> percentile 99.
——> percentile 99.
——> percentile 95.
——> percentile 90.
—> percentile 75.
——> percentile 50.
——> percentile 25.

99
90
50
00
00
00
00
00
00

——> <MIN> observation

Listing 6: Client output, using non-blocking sockets

79

528.
234.
112.
95.
89.
80.
77.
75.
73.
70.
48.

each percentile contains

548
570
286
101
179
247
279
222
113
800
711

15

16
17

18
19
20
21
22
23
24
25

26
27

S T W N

C “sloccount” comparison

anticimex@kepler /usr/local/src/quagga [master] $ sloccount bgpd

Creating filelist for bgpd
Categorizing files.

Finding a working MD5 command. ...
Found a working MD5 command.
Computing results.

SLOCDirectorySLOC—by—Language (Sorted)
45949 bgpd ansic=45949

Totals grouped by language (dominant language first):
ansic: 45949 (100.00%)

Total Physical Source Lines of Code (SLOC) =
45,949

Development Effort Estimate, Person—Years (Person—Months) =
11.13 (133.54)

(Basic COCOMO model, Person—Months = 2.4 x (KSLOCx*x1.05))
Schedule Estimate, Years (Months) = 1.34

(16.06)

(Basic COCOMO model, Months = 2.5 % (person—months*%0.38))
Estimated Average Number of Developers (Effort/Schedule) = 8.
Total Estimated Cost to Develop =3

1,503,251

(average salary = $56,286/year, overhead = 2.40).

SLOCCount, Copyright (C) 2001—-2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software, licensed under
the GNU GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome
to
redistribute it under certain conditions as specified by the GNU
GPL license;

see the documentation for details.

Please credit this data as ‘‘generated using David A. Wheeler’s
"SLOCCount’. ’”’

Listing 7: sloccount of Quagga’s bgpd M]

32

anticimex@kepler /usr/local/src/quagga [master] $ sloccount
zebra/

Creating filelist for zebra

Categorizing files.

Finding a working MD5 command. ...

Found a working MDb command.

Computing results .

80

10
11
12
13
14

15

16
17

18
19
20
21
22
23
24
25

26
27

0 O Ui W=

o T o S S e
=W N = OO

—_
Ut

SLOCDirectorySLOC—by—Language (Sorted)
21396 zebra ansic=21396

Totals grouped by language (dominant language first):

ansic: 21396 (100.00%)

Total Physical Source Lines of Code (SLOC) =
21,396

Development Effort Estimate, Person—Years (Person—Months) = 4.99
(59.85)

(Basic OOCOMO model, Person—Months = 2.4 % (KSLOCx%1.05))
Schedule Estimate, Years (Months) = 0.99

(11.84)

(Basic OOCOMO model, Months = 2.5 % (person—months*%0.38))
Estimated Average Number of Developers (Effort/Schedule) = 5.06
Total Estimated Cost to Develop =3

673,738

(average salary = $56,286/year, overhead = 2.40).

SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software, licensed under
the GNU GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome
to

redistribute it under certain conditions as specified by the GNU
GPL license;

see the documentation for details.

Please credit this data as ‘‘generated using David A. Wheeler’s
"SLOCCount’. 7’

Listing 8: sloccount of Quagga’s zebra

anticimex@kepler “/code/erlang/erlbgp [master] $ sloccount src/
Creating filelist for src

Categorizing files.

Finding a working MD5 command. ...

Found a working MD5 command.

Computing results.

SLOCDirectorySLOC—by—Language (Sorted)
3473 src erlang=3473

Totals grouped by language (dominant language first):
erlang: 3473 (100.00%)

Total Physical Source Lines of Code (SLOC) =
3,473

Development Effort Estimate, Person—Years (Person—Months) = 0.74
(8.87)

81

16
17

18
19
20
21
22
23
24
25

26
27

(Basic OOCOMO model, Person—Months = 2.4 % (KSLOCx%1.05))

Schedule Estimate, Years (Months) = 0.48
(5.73)
(Basic COCOMO model, Months = 2.5 % (person—months*%0.38))
Estimated Average Number of Developers (Effort/Schedule) = 1.
Total Estimated Cost to Develop =3
99,858

(average salary = $56,286/year, overhead = 2.40).

SLOCCount, Copyright (C) 2001-2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software, licensed under
the GNU GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome
to
redistribute it under certain conditions as specified by the GNU
GPL license;

see the documentation for details.

Please credit this data as ‘‘generated using David A. Wheeler’s
"SLOCCount’. ”’

55

Listing 9: sloccount of ExIBGP

82

	Glossary
	Introduction
	Problem statement
	Research Questions
	Scope and Limitations for the prototype

	Background and literature study
	IP Router Building blocks
	Network interfaces
	Packet buffers
	Switch fabric
	Control processors
	Routing tables
	Packet forwarding engine

	Brief history of IP router’s technology
	First generation routers
	Second generation routers
	Third generation routers
	Head-of-line blocking and Virtual Output Queues
	Recent developments
	Warehouse-Scale Computer's
	OCS Networking

	Border Gateway Protocol
	Introduction to BGP
	BGP Fundamentals
	BGP Message Types
	BGP Finite State Machine
	BGP Timers and Events
	BGP’s Routing Information Bases
	BGP Decision Process and Update-Send Process

	BGP Extensions
	BGP Multiprotocol Extension, RFC 4760
	4-byte ASN extension, RFC 4893
	Graceful Restart Mechanism in BGP

	Routing plane software architecture evolution
	Early days monolithic software
	Data- and control plane separation
	Decentralization of control plane components
	Software Defined Networking
	Typical Fault Tolerance in modern routing plane software
	Typical concurrency in modern routing plane software

	Distributed systems and the CAP theorem
	Distributed storage of configuration state
	Distributed storage of objects

	Erlang
	Erlang/OTP
	Distributed Erlang

	Methodology
	Method

	Results
	Goal Design of the Total System
	Distributed state storage systems
	Parallelized and Distributed UPDATE message processing
	Critical data path - BGP UPDATE message processing
	Parallelization of Critical Path
	Distributed processing of Critical Path

	A Distributed RIB
	Replication strategy overview
	Distributed RIB and Routing Storage Daemons cluster

	Decomposition of BGP with multi-process, distributed Erlang/OTP prototype
	ErlBGP - multi-process, distributed Erlang/OTP prototype
	Decomposition into multiple processes
	ErlBGP walkthrough
	Distributed Erlang & Multiple Nodes
	The ErlBGP application and a node’s supervisor tree
	The erlbgp_peerfsm and erlbgp_peerrecv relationship
	Critical path and BGP UPDATE message processing

	ErlBGP Usage Examples

	Discussion
	On using the right tool for the job
	Differences with (HIDELL) and (ONOS)
	Future work
	Improve Fault Tolerance
	Implement Distributed RIB
	Further Performance Optimizations
	Look into TCP Socket Migration solutions
	Configuration Management and API
	Application of heavy BGP policy computations
	Application of ErlBGP to a real-world router hardware platform

	Conclusion
	Bibliography
	Decision Process Pseudo Code
	Gigabit Ethernet Ping-Pong Latency test
	``sloccount'' comparison

