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Abstract

The discovery of an extremely high effective electron mass in CeAl3 by Andres et al
in 1975 was the starting point for Heavy Fermion physics. One possible theory for
explaining this heavy fermion behaviour is the Kondo lattice model which is investigated
in this master thesis. With a slave boson mean field approach using Green’s functions,
a set of mean field equations are derived and solved. The solutions of these equations
determine the model behaviour as a function of various input parameters. In addition,
a system where the Kondo lattice model is in close proximity to a Scanning Tunneling
Microscope is considered. By the use of non-equilibrium Keldysh formalism, a tunneling
current and differential conductance is calculated. The differential conductance is seen
to map out the Kondo lattice density of states.

Keywords: Heavy fermion, Kondo lattice, mean field theory, slave boson, Green’s
function, Scanning Tunneling Spectroscopy, differential conductance
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1

Introduction

O
ne of the greatest triumphs of modern theoretical physics has been the re-
ductionism principle. The main key of this philosophy is the idea that by
knowledge about the constituent parts of a system, it can be modelled in an
accurate way. High energy physicists and string theorists who in their quest

for grand unified theories, theories aiming to explain the plethora of particles and four
known fundamental interactions in our universe, are highly motivated by the reduction-
ism principle.

However, during the nineteenth and twentieth century, by the introduction of statistical
mechanics, it has become apparent that systems containing large numbers of particles
exhibit fundamentally new properties - properties that could not be expected from the
well known laws that rule the individual particles. This insight has been well summarized
by P.W. Anderson who in a well-cited article [1] pin-pointed the concept into the following
sentence:

More is different

It has also become apparent that not only number, but energy and dimensional scales, all
contribute to the development of new and fascinating system properties. As an example,
the microscopic theory of conventional superconductivity, the BCS-theory (named after
its inventors Bardeen, Cooper and Schreiffer), explains the formation of dissipationless
electrical currents in certain metals at low temperatures by electrical Coulomb attraction
between electrons. Since the Coulomb force normally is repulsive between equal charges,
it is not until the metal is sufficiently cold that the positive ions in the crystal lattice can
participate in mediating an attractive interaction between the electrons. The formation
of attracted electron pairs, Cooper-pairs, is the basic condition for the rise of the
remarkable properties of a superconductor. The well understood Coulomb interaction
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CHAPTER 1. INTRODUCTION

allows the system to exhibit new non-expected phenomena simply because scales (in this
case the temperature scale) have changed.

The description above can be classified as phenomena of holism or emergence, the
idea that natural systems sometimes must be viewed as a whole, rather than consisting
of a collection of parts. For an instructive discussion on holism, see [2].

The description of a system containing great numbers of electrons at low temperatures
is usually given by the Fermi liquid theory. This framework treats interacting electrons
as non-interacting quasiparticles, electrons with renormalized dynamical properties
such as mass or magnetic moment [3]. Although the Fermi liquid theory has been very
successful, there are classes of systems where the theory breaks down. One class of such
systems is called strongly correlated electron systems, where the interaction energy
between electrons is by far greater than their kinetic energy. The strongly correlated
electron systems constitute a wide class of physical systems that exhibit many interesting
electronic and magnetic phenomena such as unconventional superconductivity, metal-
insulator transitions, the Kondo effect and quantum hall effects.

There is a huge research effort in the understanding of these systems. Both from pure
curiosity but also since the development of techniques for fabricating low dimensional
nano-structures has made it possible to realize these strongly correlated systems in a
laboratory. By exploiting the effects arising from strong electron interaction there is a
possibility that completely new electronic devices and materials can be fabricated.

1.1 Heavy fermion systems

Andres, Graebner and Ott made a remarkable discovery in 1975 [4]. Measurements of the
low temperature specific heat in CeAl3 revealed electronic effective masses of more than
a hundred times the ordinary electron mass. Some years later, in 1979, Steglich, Aarts,
Bredl, Lieke, Meschede, Franz and Schäfer found a superconducting state in CeCu2Si2,
a material which also showed a large electron effective mass [5]. Steglich et al coined the
property of large electron mass heavy fermion behaviour.

However, apart from the heavy fermion behaviour, the superconducting state they had
found was remarkable in the sense that CeCu2Si2 is a paramagnetic material. Until
the discovery that Steglich et al made, superconductivity was considered impossible for
magnetic materials. Since magnetic moments in these materials breaks time-reversal
symmetry, the Cooper-pairs would become unstable due to spin-flipping scattering on
the moments and the superconductivity would be suppressed.

These discoveries made a big impact since this unconventional superconductivity could
not be explained by the BCS-theory and could be originating from a pairing-mechanism
different from the phonon-mediated one. Later, the discovery of high temperature su-
perconductivity, [6], would intensify the pursuit for this unknown pairing mechanism.
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1.2. ANDERSON FORMATION OF MAGNETIC MOMENTS

Studying heavy fermion systems, could therefore improve the understanding of one of
the most important unsolved problems of condensed matter physics, high temperature
superconductivity.

Since Andres et al and Steglich et al, many more condensed matter systems displaying
the heavy fermion behaviour have been discovered. The common feature of the systems
is that they are compounds containing rare-earth metals such as cerium or ytterbium and
actinides like uranium or plutonium [7]. Although these metal compounds commonly
display heavy fermion behaviour, they also exhibit various different properties such as
superconductivity, anti-ferromagnetism and insulator behaviour.

One reason for the increased research of these heavy fermion systems is that it have been
apparent that by external pressure and magnetic fields, it is possible to drive transitions
between anti-ferromagnetism and heavy fermion behaviour [8]. This transition is called
a quantum critical point and was discovered in 1995 [9]. Apart from fundamentally
interesting, the heavy fermion systems may be suitable for creating new devices exploit-
ing the materials exotic behaviour. For further reading about heavy fermion systems,
consider [8, 10, 11].

Andres et al suggested that a lattice version of the Kondo effect might be responsible
for the heavy fermion behaviour. To understand what this means, a brief discussion of
magnetic moments and the Kondo effect is given below.

1.2 Anderson formation of magnetic moments

This discussion follows the work of [8]. In order to understand the physics that governs
the Kondo lattice it is crucial to understand why magnetic moments arise in the atoms
building the lattice. The most used model for describing the formation of magnetic
moments is the Anderson model:

H =
∑
kσ

εkc
†
kσckσ + εfnf + Unf↑nf↓ +

∑
kσ

Vkσ

[
f †σckσ + c†kσfσ

]
. (1.1)

The first term describes a conduction electron band, the second and third an ion with
localized f-electrons and the last term describes hybridization between the c- and f-
electron states. This Hamiltonian models a system of two f-electron states in an atom
hybridizing with an embedding sea of conduction electrons.

Considering the atom part of the Hamiltonian

Hatom = εfnf + Unf↑nf↓, (1.2)

where there are four possible quantum states: |f0〉, |f2〉, which are non-magnetic since
there is no net spin in any of the states.
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CHAPTER 1. INTRODUCTION

Figure 1.1: The figure shows the four different states of the f-orbital with their respective
energies. The states that are magnetic are the ones with a single occupancy.

The magnetic states are |f1 ↑〉 and |f1 ↓〉, where there is a net spin due to the sin-
gle occupation. See figure 1.1. When calculating the energy of these states one finds
that:

E(f0) = 0,

E(f2) = 2εf + U,

E(f1) = εf .

(1.3)

If the groundstate is magnetic, the cost for removing or adding an electron in the f-orbital
is given by:

removing: E(f0)− E(f1) = −εf > 0,

adding: E(f2)− E(f1) = εf + U > 0.
(1.4)

The difference between these energies ∆E = U/2 ± (εf + U/2) gives the condition for
keeping the local moment: provided that

U/2 > |εf + U/2| (1.5)

the energy is lowest when there is one single electron in the orbital, and thus a non-zero
spin - a magnetic moment. As can be seen in equation 1.5, the criteria is fulfilled for large
U . There is yet another requirement for keeping the local moment, that the surrounding
temperature is of the scale kBT < max(εf +U,− εf ) so that no thermal excitations may
break the single occupancy of the orbital. For an ion of this kind inserted in a sea of
conduction electrons, some spectacular effects can take place. This is the topic of the
next section below.
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1.3. THE KONDO EFFECT

1.3 The Kondo effect

In a normal metal, the behaviour of the conduction electrons is well described by Lan-
dau’s theory of Fermi liquids. This theory predicts that when the temperature, T ,
decreases, the electrical resistance, ρ, of the metal will drop according to

ρ(T ) = ρ0 + aT 2 + bT 5 (1.6)

for small T . The constant zero temperature resistance, ρ0, is mainly due to impurities
and defects of the metal, the T 2-term, where a is some constant, describes scattering of
electrons against other electrons and the bT 5- term describes electron-phonon scattering,
where b is an another constant.

Figure 1.2: The figure shows the Kondo interaction. The magnetic moment, depicted in
red, is situated at ~r = 0 and interacts with the spins of surrounding conduction electrons
with an interaction of strength J .

However, when some metals are doped with impurities having magnetic moments, the
temperature dependence of the resistance changes for decreasing T . Instead of con-
verging to a constant value as above, the resistance increases again below some specific
temperature, Tmin, and stops at a finite value at T = 0. In other words, a resistivity
minimum arises [12].

This phenomenon is named after the Japanese physicist Jun Kondo, who in 1964 was
the first to explain the origin of the resistance minimum [13]. His approach was second
order perturbation theory on the so called sd-Hamiltonian,

Hsd =
∑
k,σ

εkc
†
kσckσ + J ~Sd ·

∑
kk′σσ′

c†kσ~σσσ′ck′σ′ (1.7)

which describes a free magnetic moment, ~Sd at ~r = 0 interacting with a conduction
electron sea, see figure 1.2. He could then argue that the increase in resistance below Tmin
is due to electron spin-flip scattering events against the inserted magnetic impurities.
This is called the Kondo effect. Kondo showed that these events changes the resistance
low temperature dependence to
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CHAPTER 1. INTRODUCTION

ρ(T ) = ρ0 + c ln
µ

T
+ bT 5 (1.8)

where c and µ are additional constants. This additional logarithmic term will produce
a minimum resistivity Tmin = ( c5b)

1
5 which agrees very well with experiments [13].

Although Kondo could explain the resistivity minimum, a problem in his model imme-
diately developed. The logarithmic term is divergent as T goes to zero. Therefore the
Kondo model could not be valid for extremely low temperatures. Additional work and
calculations by Wilson, using renormalization group methods, could modify the the-
ory to give a finite value at T = 0 [14]. Kondo’s model is thus only valid high above a
certain temperature, the Kondo temperature Tk. This Kondo temperature is also the
temperature at which the impurity and conduction electrons spins begin to condensate
into singlet states. These states will modify the density of states spectrum, by a so called
Kondo resonance, which is manifested by a temperature dependent peak at the Fermi
level in the spectrum.

1.4 Scanning Tunneling Spectroscopy

Scanning Tunneling Spectroscopy, STS, is an experimental technique for acquir-
ing information about a materials local density of states, LDOS [15]. As a simplified
conceptual setup, consider an extremely thin metal tip that is put at a certain height
above a sample to be investigated, see figure 1.3. If the metal tip is sufficiently close to
the sample, the electron wave functions of the tip begin to overlap with the wave func-
tions in the sample. By applying a voltage between the tip and the sample, a tunneling
current will develop. The simplest information that can be obtained is this current as a
function of the voltage which determine how many electrons that are allowed to tunnel.
Under certain ideal circumstances, such as low temperature, low noise and low energy
dependence on the wavefunction overlap matrix elements, the current as a function of
voltage is approximately given by:

I ∝
∫ eV

0
Dtip(ε− eV )Dsample(ε)dε (1.9)

If the density of states, D, in the tip is approximately constant, a feature that is highly
desirable, the differential conductance is given by

dI

dV
∝ Dsample(ε− eV ) (1.10)

and maps out the sample LDOS at the position of the tip. There are various other
experimental techniques by using tunneling microscopy, but these are out of the scope
of this thesis. For an instructive introduction to tunneling microscopy, see [15].
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1.5. OBJECTIVE AND OUTLINE

I

V

Figure 1.3: The figure shows a simple STS-setup. An applied bias voltage between the tip
and the sample will alter the tunneling current between them. The differential conductance,
dI/dV maps under ideal circumstances out the sample local density of states.

1.5 Objective and outline

There are two topics considered in this thesis. The first is the investigation of a Kondo
lattice model, which is thought to be the underlying theory for a description of heavy
fermion behaviour. Secondly, the Kondo lattice coupled to a metallic tunneling tip is
investigated. By allowing electrons to tunnel from the tip into the lattice, a tunneling
current and differential conductance can be calculated. This configuration is a
simple model of a STS-setup.

The outline of the thesis is:

Chapter 2 - Theory Toolbox describes the theoretical framework required for solving
the problems of this thesis. First, a brief introduction to second quantization is
given followed by a description of mean field theory and the pictures of quantum
mechanics. Then the concept of Green’s functions is described, both in equilibrium
and non-equilibrium where finally the Keldysh formalism is introduced.

Chapter 3 - The Kondo lattice contains the study of the first problem. With a slave
boson mean field approach, the self consistency equations for the mean field parameters
are derived, allowing for studies of the model behaviour as a function of various input
parameters.

Chapter 4 - Tunneling into the Kondo lattice is devoted to the second problem.
Here the non-equilibrium techniques are used to derive equations for the current and
differential conductance of the tunneling process.

Chapter 5 - Results and conclusions presents and discusses the results of the two
problems addressed in the two previous chapters.

Chapter 6 - Summary and outlook summarizes the thesis and discusses further
progress in investigating the problems.

7



2

Theory toolbox

T
his chapter is devoted to the theoretical framework that underlines the work in
this thesis. First, a quick introduction to the second quantization language
is presented. This is the mathematical framework used in this thesis to describe
quantum mechanics. Secondly a description of mean field theory, which is a

procedure that greatly simplifies complex problems in condensed matter, is given followed
by an overview of the pictures of quantum mechanics. These pictures are three different
ways of treating time in quantum mechanics, of which the interaction picture is the one
used in this thesis.

The main theoretical study for this thesis has been the understanding of Green’s func-
tions, both in thermal equilibrium at arbitrary temperatures but also in non-equilibrium.
The former of these situations is well described by the Matsubara Green function
formalism while the Keldysh formalism is suitable for the latter. A description of
these topics follows.

2.1 Second quantization

This section closely follows and summarizes the most important parts of section 2.1 in
[16]. Second quantization is a language of quantum mechanics based on the algebra of
ladder operators and is suitable for dealing with many-body systems. Within the second
quantization formalism, many body quantum states with N particles are described by
“N -letter words” on the form

|4, 2, 1, 0, 7, 9, ...〉 (2.1)

8



2.1. SECOND QUANTIZATION

where the ith number describes how many particles that occupy the single particle state
i. For fermions, which obey the Pauli exclusion principle, the occupation numbers take
only the value 0 or 1. This defines the occupation number representation where the
basis states in the Hilbert space FN , the space containing all N-particle states, are given
by |n1, n2, n3, ...〉. For a fixed number of particles, the equation

∑
i ni = N is fulfilled.

Any state in FN can be generated by a superposition of the basis states:

|ψ〉 =
∑

n1,n2,...

cn1,n2,...|n1, n2, ...〉 (2.2)

with the constraint
∑

i ni = N .

To relax the condition of a fixed number of particles, a Hilbert space big enough to
household any number of particles has to be constructed. The space

F =
∞⊕
N=0

FN (2.3)

will do the trick. This space is called the Fock space and contains F 0 which denotes
the vacuum space, the part of the theory where no particles are present anywhere. This
space has only one basis state which is denoted as |0〉 and is usually called the vacuum.
The formation of states in the Fock space works just as before but the constraint can
now be dropped, which means that a general state |ψ〉 can be a superposition of states
containing different number of particles.

To extend the representation, a creation, a†i , and an annihilation operator ai are de-
fined to each corresponding single particle state i. The operators are defined through:

a†i |n1, ..., ni, ...〉 ∝ |n1, ..., ni + 1, ...〉. (2.4)

By the repeated use of creation operators on the vacuum, every basis state in the Fock
space can be obtained:

|n1, n2, ...〉 =
∏
i

1√
ni!

(a†i )
n|0〉 (2.5)

Note, that since fermions can only occupy one state each, the action of a creation oper-
ator onto an already occupied state gives zero. The distinction between this fermionic
behaviour and bosonic properties can remarkably simply be imposed by commutation
relations for the two operator classes:

[ai,aj ]ζ = 0, [a†i ,a
†
j ]ζ = 0, [ai,a

†
j ]ζ = δij (2.6)

9



CHAPTER 2. THEORY TOOLBOX

where [A,B]ζ = AB−ζBA is the commutator for bosons, ζ = 1, and the anticommutator
for fermions ζ = −1. One very beneficial property of the second quantization language
is that the symmetry between fermions and bosons is captured by the symmetry of these
operator commutation relations.

To formulate quantum mechanics in the second quantization language, some more in-
vestigations must be done. The first one is to be able to transform between one single
particle basis {λ} to another, {λ̃} and see what consequences this has on the operator
algebra. By using the resolution of identity

∑
λ |λ〉〈λ| one can show that the transfor-

mation law is given by:

a†
λ̃

=
∑
λ

〈λ|λ̃〉a†λ, aλ̃ =
∑
λ

〈λ̃|λ〉aλ (2.7)

For continuous sets of quantum numbers, such as position or momentum, the sums above
translates to integrals. The commutation relations, equation 2.6, are preserved by the
transformation law.

Next, the single particle operators are to be expressed in the second quantization lan-
guage. These operators, Ô1, when acting in a N-particle Hilbert space FN generally
takes the form Ô1 =

∑N
n=1 ôn where ôn is a single particle operator, such as kinetic en-

ergy or an external scalar potential, acting on the nth particle. For the purpose of finding
a representation of the single particle operator it is convenient to define the number
operator

n̂λ = a†λaλ (2.8)

which simply counts the number of particles in the single particle state |λ〉.

Assuming that the operator Ô1 is diagonal in the basis {λ}, that is Ô1 =
∑

i oλi |λi〉〈λi|
with oλi = 〈λi|ô|λi〉. Then for one particular number of particles

〈n′λ1 , n
′
λ2 , ...|Ô1|n′λ1 , n

′
λ2 , ...〉 =

∑
i

oλinλi〈n
′
λ1 , n

′
λ2 , ...|n

′
λ1 , n

′
λ2 , ...〉

= 〈n′λ1 , n
′
λ2 , ...|

∑
i

oλi n̂λi |n
′
λ1 , n

′
λ2 , ...〉 (2.9)

Utilizing this result to a state with any number of sets of states the operator can be
generalized to

Ô1 =
∑
λ

oλn̂λ =
∑
λ

oλa
†
λaλ. (2.10)

10



2.2. MEAN FIELD THEORY

The interpretation of this formulation is that the operator simply counts the number of
particles in the state |λ〉 and applies the single particle operator an appropriate number
of times. From the diagonal basis a transformation to a general basis yields:

Ô1 =
∑
µν

〈µ|ô|ν〉a†µaν . (2.11)

To describe pairwise interactions such as Coulomb-interaction or electron-phonon inter-
action, two body operators need to be introduced. The procedure is somewhat more
cumbersome than the single particle operator and the result is simply stated here in a
general basis as:

Ô2 =
∑
λλ′µµ′

Oµµ′λλ′a
†
µa
†
µ′aλaλ′ (2.12)

where Oµµ′λλ′ = 〈µ,µ′|Ô2|λ,λ′〉. Although operators for n-body interactions are possible
to describe in the second quantization language, they are rarely used in condensed matter
physics and are therefore not described here.

2.2 Mean field theory

Describing the dynamics of a many-body system consisting of mutually interacting par-
ticles can be a very difficult problem. Only in rare cases, such as the Ising model in
1-D or 2-D can the solution be determined exactly.

Although the mutual interactions can be very strong, sometimes a more simplified ap-
proach can produce accurate results. Instead of considering the system of mutual in-
teractions, it is possible to view the particles as almost free, and only experiencing the
average interaction with the other particles. This procedure reduces the problem from
a many-body problem to an effective one particle problem, which is in principle always
solvable.

As an example of the mean field approach, consider a system consisting of two kinds
of particles, a- and b-types that only interact with the other kind [17]. The second
quantization Hamiltonian would then have the following form:

H =
∑
ν

εaνa
†
νaµ +

∑
µ

εbµb
†
µbµ +

∑
νν′µµ′

Vνµν′µ′a
†
νaν′b

†
µbµ′ . (2.13)

The third term, the interaction term, consists of four operators in pairs. This is what
makes the problem hard to solve. If it can be assumed that the density operators a†νaν′ ,
b†µbµ′ deviate only little from their expectation value the four-operator terms can be
written as:

11



CHAPTER 2. THEORY TOOLBOX

a†νaν′b
†
µbµ′ =

(
〈a†νaν′〉+ (a†νaν′ − 〈a†νaν′〉)

)(
〈b†µbµ′〉+ (b†µbµ′ − 〈b†µbµ′〉)

)
≈

〈a†νaν′〉b†µbµ′ + a†νaν′〈b†µbµ′〉 − 〈a†νaν′〉〈b†µbµ′〉. (2.14)

In the step above, the term where the deviations are multiplied together is considered
small and is neglected. With this mean field approach, the Hamiltonian can now be
written as:

HMF = H0 + VMF (2.15)

where

H0 =
∑
ν

εaνa
†
νaµ +

∑
µ

εbµb
†
µbµ (2.16)

and

VMF =
∑
νν′µµ′

Vνµν′µ′
[
〈a†νaν′〉b†µbµ′ + a†νaν′〈b†µbµ′〉 − 〈a†νaν′〉〈b†µbµ′〉

]
. (2.17)

Since the Hamiltonian now is quadratic it can be solved by a unitary transformation.
The expectation values have to be solved self-consistently by calculating the averages
self consistently:

n̄aνν′ = 〈a†νaν′〉,
n̄bµµ′ = 〈b†µbµ′〉

(2.18)

or by minimizing the free energy FMF = − 1

β
ln(Tr e−βHMF ):

〈a†νaν′〉 :
∂FMF

∂〈a†νaν′〉
= 0

〈b†µbµ′〉 :
∂FMF

∂〈b†µbµ′〉
= 0

(2.19)

These two different ways can in fact be shown to be identical [17]. But how is it possible
to decide if the mean field theory treatment gives reasonable results? The answer is to
use the neglected deviations as perturbations to the theory and check if the result is
close to the expectation value. If it is not, the mean field theory either fails or other
mean fields have to be chosen.
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2.3. PICTURES OF QUANTUM MECHANICS

2.3 Pictures of quantum mechanics

When treating time dependence in quantum mechanics, its useful to distinguish be-
tween three different kinds of treatments, so called pictures. It is possible to transform
between the pictures and they are useful in different contexts. A brief introduction,
following [18], to these pictures is given below.

The Schrödinger picture: Here, quantum mechanical operators are considered sta-
tionary, O(0) = OS(0) while the quantum states evolve in time according to the Schrödinger
equation, i∂t|ψ(t)〉S = H|ψ(t)〉S .

The Heisenberg picture: The Heisenberg picture is the opposite to the Schrödinger
picture in the sense that quantum states are stationary, |ψ(t)〉 = |ψ(0)〉H and the oper-
ators depend on time according to OH(t) = eiHtOS(0)e−iHt.

The interaction picture: This picture can be seen as a mixture of the pictures
above. For a Hamiltonian on the form H = H0 + VI(t), the states evolve with the
complicated interaction part VI according to |ψ(t)〉I = eiH0te−iHt|ψ(0)〉S ⇒ i∂t|ψ(t)〉I =
VI(t)|ψ(t)〉I . The operators on the other hand, depend only on the non-interacting part
of the Hamiltonian: OI(t) = eiH0tOS(0)e−iH0t ⇒ i∂tOI(t) = [OI(t),H0].

In the interaction picture, the quantum state time evolution can be formulated by the
introduction of the time evolution operator

U(t) = eiH0te−iHt (2.20)

which evolves states from time 0 to t. To evolve from another time than t = 0 the
operator

S(t,t′) = U(t)U †(t′) = eiH0(t−t′e−iH(t−t′) (2.21)

is defined. This operator can be shown to obey the equation

i∂tS(t,t′) = VI(t)S(t,t′) (2.22)

with the solution

S(t,t′) = T{exp(−i
∫ t

t′
dt′′VI(t

′′))}, (2.23)

13
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where T is the time ordering operator which puts operators in order from later times
to earlier times. The reason for all this work is that it makes it possible to calculate how
a well known system, H0 changes when VI(t) is turned on. The key to the solution of
this problem is the Gell-Mann Low theorem which states that if the interaction is
turned on adiabatically (slowly) the H0 ground state |Φ〉 will evolve into the full system
ground state |Ω〉 according to

|Ω〉 = S(0,−∞)|Φ〉, 〈Ω| = 〈Φ|S(∞,0) (2.24)

A two point correlation function or Green’s function (see next section) on the form

G(x,x′,t,t′) = −i
〈Φ|T{ψH(x,t)ψ†H(x′,t′)}|Φ〉

〈Φ|Φ〉
(2.25)

will then by interactions evolve into

G(x,x′,t,t′) = −i
〈Ω|T{ψH(x,t)ψ†H(x′,t′)}|Ω〉

〈Ω|Ω〉
=

− i
〈Φ|T{ψH(x,t)ψ†H(x′,t′)exp(−i

∫∞
−∞ dt

′′VI(t
′′))}|Φ〉

{Φ|T{exp(−i
∫∞
−∞ dt

′′VI(t′′))|Φ〉
. (2.26)

The S-operator can then be expressed as a Taylor-expansion of the exponential where a
desirable amount of the terms can be considered. This is usually the starting point for
many perturbative calculations. When doing the expansion it is convenient to express the
terms with a diagrammatic representation known as Feynman diagrams. Calculations
show that diagrams that are not topologically connected cancel by the denominator in
the Green’s function expression. Hence, calculations can be done by summing connected
diagrams. For further reading, consider [19], chapter 4.

2.4 Equilibrium Green’s functions

Consider the following differential equation

Lxf(x) = λ(x), (2.27)

where Lx is a linear differential operator, f(x) is the sought function and λ(x) is another
function. To solve this equation, it is very convenient to assign a so called Green’s
function to the operator Lx with the following definition:

LxG(x) = δ(x), (2.28)

14
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where δ(x) is the Dirac delta function. If this equation can be solved, the solution to
(2.27) can obtained for every λ(x) as

f(x) =

∫
G(x− x′)λ(x′)dx′ (2.29)

since the linearity of Lx assures that

Lxf(x) = Lx

∫
G(x−x′)λ(x′)dx′ =

∫
LxG(x−x′)λ(x′)dx′ =

∫
δ(x−x′)λ(x′)dx′ = λ(x).

(2.30)

Obtaining the Green’s function is usually simpler than solving the differential equation
itself which makes the Green’s function method very useful.

In the realm of thermal equilibrium many-body quantum mechanics, the use of the word
Green’s function is slightly different from the description above. Here it is useful to
define three Green’s functions [20] as:

GR(t,t′) = −iθ(t− t′)〈[A(t),B(t′)]ζ〉
GA(t,t′) = iθ(t′ − t)〈[A(t),B(t′)]ζ〉
GC(t,t′) = −i〈T{A(t)B(t′)}〉

(2.31)

where A(t) and B(t′) are operators in the Heisenberg picture, 〈...〉 denotes the average
with respect to the ground state by 〈A〉 = Z−1Tr(ρA) and T is the time ordering
operator. The Green’s functions are in order, the retarded, advanced and casual
Green’s functions and are most useful at zero temperature. The usefulness of the Green’s
functions are that they are related to observable quantities such as currents or the
density of states.

It can be shown that if the Hamiltonian is independent of time, all Green’s functions
only depend on time differences, i.e. G(t,t′) = G(t − t′). This can be used to define a
Fourier transform for the Green’s function in the following way:

GR,A(ω) =

∫ ∞
∞

G(t− t′)eiω±(t−t′)d(t− t′). (2.32)

where ω± = ω ± is, s→ 0± to account for the retarded and advanced Green’s function
different time domains.
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Effects of interaction

When introducing interactions in a theory as described in section 2.3, the Green’s func-
tion of the full theory, G can be related to the free theory Green’s function, G0, by an
equation called the Dyson equation:

G = G0 +G0 · Σ ·G, (2.33)

where the “·” denotes a convolution over the used representation variables (for example
position and time) and the quantity Σ is called the self-energy and encodes the effects
of interaction. By the Dyson equation, the task of investigating interactions reduces to
finding the self-energy. It can be shown that for a free theory with the following retarded
Green’s function:

GR0 (k,ω) =
1

ω − εk + iδ
, (2.34)

the effect of introducing interactions modifies the Green’s function to

GR(k,ω) =
1

ω − εk − Σ
. (2.35)

The number δ is a small, positive and real quantity that is to be taken to zero after
calculations. It ensures the analyticity of the Green’s functions and is required for
convergence in computer calculations. It is not needed here in the full Green’s function
expression and can be taken to zero immediately. Next, it is useful to introduce a concept
called the spectral function, which describes how the energy of a particle is distributed
over the energy domain. It is defined as

A(k,ω) = −2Im
[
GR(k,ω)

]
. (2.36)

For the free electrons, the spectral density can be calculated to be

A0(k,ω) = −2Im
[
GR0 (k,ω)

]
= −2δ(ω − εk), (2.37)

which is a series of delta peaks distributed over the single particle energies.

By the introduction of interactions by Σ, the spectral function is modified to

A(k,ω) =
2Γ

σ2 + Γ2
, σ = ω − εk − Re [Σ] , Γ = −Im [Σ] . (2.38)

The density of states can be obtained from the spectral function from the following
definition:
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D(ω) =
1

2π
TrA(k,ω). (2.39)

The interpretation of the density of states is that it is a measure of how many available
states there are per energy interval for each energy. It is a quantity that is observable
through experiments such as STS, see section 1.4. By comparing the expressions (2.37)
and (2.38), it can now be observed that the effect of interactions transforms the delta
function into a Lorentzian function. Thereby, the interactions shift the single particle
spectrum by the real part of the self-energy and give a broadening, which is interpreted
as the particle life time, by the self-energy’s imaginary part.

Matsubara Green’s functions

In addition to the three Green’s functions above it is convenient to define an additional
temperature or Matsubara Green’s function as:

G(τ,τ ′) = −〈Tt{A(−iτ)B(−iτ ′)}〉. (2.40)

It has been found to be most useful for computing properties of condensed matter sys-
tems at finite temperatures. The Matsubara Green’s function is a remarkable entity in
the sense that it depends on a complex time. Matsubara made the identification that
the Boltzmann factor , exp(βH), in the density matrix, and the time evolution operator,
exp(−iHt) have similar structures [21]. By going to a complex time t→ −iτ this simi-
larity can be exploited in calculations. A consequence of this so called Wick rotation
is that inverse temperature is put to equal footing with time.

Performing a Wick rotation and considering a time independent Hamiltonian it can be
shown that also the Matsubara Green’s function only depends on the difference between
the time variables; G(τ,τ ′) = G(τ − τ ′). By similar argumentation as for the zero
temperature Green’s functions, a Fourier transform may be defined on the form:

G(τ − τ ′) = G(τ) =
1

β

∑
n

Ḡ(iωn)e−iωnτ (2.41)

where n ∈ Z and ωn = 2(n + 1)π/β for fermions and ωn = 2nπ/β for bosons. These
are called the Matsubara frequencies and encodes the statistical differences between
bosons and fermions.
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Figure 2.1: The figure shows the Keldysh time contour consisting of two branches, C1 and
C2. The contour goes from t = −∞ to t =∞. In this particular configuration t1 < t2 < t3
but along the contour t1 <C t3 <C t2.

2.5 Non-equilibrium Green’s functions

In the above section, equilibrium was considered. When investigating systems in non-
equilibrium one wants to know how they change with time. Following [18] again, a
time-dependence is introduced by an additional part added to the Hamiltonian by:

H = h+H ′(t), (2.42)

where h is the equilibrium Hamiltonian. The term H ′(t) is the time-dependent part
which is switched on at time t0 and is thus breaking the equilibrium. To calculate how a
system behaves in non-equilibrium, one usually defines the so called Contour ordered
Green’s function:

G(1,1′) ≡ −i〈Tc{ψH(1)ψ†H(1′)}〉, (2.43)

where the notation (1) = (t1,~x1) is used. This Green’s function is defined on a complex
time contour depicted in figure 2.1.

The time-ordering symbol TC orders operators according to where t1 and t1′ lies on the
contour. Times that appear on the upper part of the contour, C1 is defined as earlier
than times on the lower part, C2. The contour ordered Green’s function can then be
seen to contain four different functions depending on where the times are ordered on the
contour, see figure 2.2:

G(1,1′) =



Gc(1,1
′) if t1,t1′ ∈ C1

G>(1,1′) if t1 ∈ C2,t1′ ∈ C1

G<(1,1′) if t1 ∈ C1,t1′ ∈ C2

Gc̃(1,1
′) if t1,t1′ ∈ C2

(2.44)

These Green’s functions are defined as:
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Figure 2.2: The figure shows the different parts of the contour ordered Green’s function.
The contour ordered Green’s function depends on how the time variables are distributed
among the contour branches.

Gc(1,1
′) = −iθ(t1 − t1′)〈ψH(1)ψ†H(1′)〉 − ζiθ(t1′ − t1)〈ψ†H(1′)ψH(1)〉

G>(1,1′) = −i〈ψH(1)ψ†H(1′)〉
G<(1,1′) = ζi〈ψ†H(1′)ψH(1)〉
Gc̃(1,1

′) = −iθ(t1′ − t1)〈ψH(1)ψ†H(1′)〉 − ζiθ(t1 − t1′)〈ψ†H(1′)ψH(1)〉

(2.45)

which in order are the casual-, greater-, lesser- and anti-casual Green’s functions.
In fact, the functions are not independent which can be seen from the fact that Gc+Gc̃ =
G> + G<. This means that there are only three independent functions which implies
a freedom to choose different conventions. Among these, a popular one is to introduce
two new functions, the retarded and advanced Green’s functions:

GR(1,1′) = θ(t1 − t1′) [G>(1,1′)−G<(1,1′)]

GA(1,1′) = θ(t1′ − t1) [G<(1,1′)−G>(1,1′)] .
(2.46)

It can be shown that the equilibrium and non-equilibrium treatments of interactions are
structurally equivalent and that the difference only lies in replacing ordinary time inte-
grals with integrals on the time contour. For more reading, consider [18, 22, 23].

2.6 Keldysh Formalism

By neglecting any initial correlations it is possible to take care of the contour ordering
by the use of 2x2-matrices. This is called the Keldysh formalism. There are many
ways of doing this but one popular choice order the Green’s functions in the following
way:
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G→ Ǧ =

[
Gc G<

G> Gc̃

]
. (2.47)

Here, any variable dependence of the functions have been suppressed for simpler notation.
The ordering into this type of matrix has one disadvantage though, and that is that it
contains the redundancy from the linear dependence of the functions. To overcome this,
it is convenient to make a unitary transformation in this Keldysh space, which allows
this matrix to be put on a simpler form according to:

Ǧ =

[
GR GK

0 GA

]
. (2.48)

where GR and GA are the retarded and advanced Green’s functions and GK is the
Keldysh Green’s function which has the form

GK(1,1′) = G>(1,1′) +G<(1,1′) = −i〈[ψH(1),ψ†H(1′)]ζ〉. (2.49)

The two different orderings of the functions are connected by the following identi-
ties:

G>< =
1

2
(GK)±GR ∓GA). (2.50)

These formulas will be useful in chapter 4.
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3

The Kondo lattice

I
n this chapter we will study a Kondo lattice system. First, we define a model
Hamiltonian and introduce the concept of slave-bosons. The Hamiltonian is
then treated by the mean field scheme which effectively defines a single-electron
problem in which the Hamiltonian can be diagonalized in momentum space due

to translational invariance. By using Green’s functions, the equations governing the
behaviour of this system can be derived. The solution to these equations are presented
in the results chapter. This chapter is inspired by the work of [10, 11, 24].

3.1 The Hamiltonian and slave-boson construction

Our starting point is the Anderson-Heisenberg Hamiltonian on the form:

H = −
∑
ijσ

(tij + µδij)c
†
iσcjσ +

∑
ijσ

[
Vijc

†
iσf̃jσ +H.c.

]
+ U

∑
i

nfi↑n
f
i↓+

+
∑
iσ

(εf − µ)f̃ †iσf̃iσ +
JH
2

∑
ij

~Si · ~Sj . (3.1)

The operator c†iσ (ciσ) creates (annihilates) a conduction electron at site i with spin pro-

jection σ and f̃ †jσ (f̃jσ) represents similarly a localized f-electron. The hopping amplitude
for conduction electrons between sites are denoted as tij , µ is the chemical potential, εf
is the local energy of the f-orbitals and the hybridization between a conduction electron
at site i and a localized f-orbital at site j is represented by Vij . The Coulomb repulsion
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Figure 3.1: A conceptual picture of the Kondo lattice model on a two-dimensional square
lattice. The red balls describe localized magnetic moments placed at the lattice sites, while the
yellow balls represent conduction electrons. The magnetic moments interact among them-
selves with interaction strength JH and itinerant electrons hybridize with the magnetic mo-
ments by the interaction Vij.

strength for double occupancy in the magnetic moment orbital is given by U and nfiσ is
the f-electron number operator for spin projection σ at site i.

The exchange interaction with strength JH/2 between lattice sites is represented by
the last term, where the f-electron spins are represented by Abrikosov pseudo-fermions
as

~Si =
1

2

∑
αβ

f̃ †iα~σαβ f̃iβ (3.2)

where ~σ is the vector of Pauli-matrices. This representation fulfill the SU(2)-spin alge-
bra:

[Si,Sj ] = iεijkSk. (3.3)

where now i,j,k are the spin vector components. By this choice, we have fixed our
magnetic moments to be spin 1/2.

In this thesis, we study the case where U → ∞, the so called infinite-U model. This
limit excludes any double occupancy in the f-orbitals at every site in the lattice. Al-
gebraically, this limit is enforced by excluding the U-term from the Hamiltonian and
instead introducing a slave-boson representation. We then replace the f-electron oper-
ator f̃iσ with two auxiliary operators fiσb

†, where fiσ is a fermionic operator and b† is
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bosonic. The bosons operators work as projectors onto a reduced Hilbert space in the
following way:

Consider for simplicity a single site in a conduction electron sea and suppose the system
is in the state |b1f0〉; that is one boson and zero f-electrons present. If the transformed

hybridization term operator f †σciσb acts on this state, it will become |b0f1〉. All other
terms in the Hamiltonian either leave the state unaltered or annihilate it. Acting again
with the Hamiltonian will by f †σciσb destroy the state |b0f1〉 but the operator c†iσfσb

†

brings |b1f0〉 back again.

If the system is initiated in either |b1f0〉 or |b0f1〉 it will never leave this subspace by the
slave-boson construction. However, if the system starts in the state |b1f1〉, a forbidden
double occupancy state |b0f2〉 would be created. To eliminate the possibility of such
states we have to employ the following local constraint:

b†ibi +
∑
σ

f †iσfiσ = 1. (3.4)

The constraint can be included into the Hamiltonian by a Lagrange multiplier term on
the form ∑

i

λi(b
†
ibi +

∑
σ

f †iσfiσ − 1). (3.5)

With this construction, every site in the Kondo lattice will be singly occupied and
therefore have a magnetic moment, cf section 1.2.

3.2 Mean field treatment

Next, we turn our attention to the exchange term. By using the Pauli-matrix identity
~σαβ · ~σγδ = 2δαδδβγ − δαβδδγ , one can show that up to a chemical potential shift (that is
terms proportional to the number operator) the exchange term becomes:

~Si · ~Sj = −1

2

∑
α

f̃ †iαf̃jα
∑
β

f̃ †jβ f̃iβ. (3.6)

We now employ the mean field treatment to this four-operator term and by denoting

χij =
JH
2
〈f †iσfjσ〉 we get:

JH
2

∑
ij

~Si · ~Sj ≈ −
1

2

∑
ijσ

(χij f̃
†
jσf̃iσ + χ∗ij f̃

†
iσf̃jσ) +

∑
ij

|χij |2

JH
. (3.7)

The last term is just a total energy term and will not be considered in further calcula-
tions.
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One further step in the mean field treatment is to assume that the slave bosons are
frozen and replaced by their expectation values: bi = 〈bi〉 = b and b†i = 〈b†i 〉 = b. We
also assume a site-independent Lagrange multiplier λi = λ.

Our total Hamiltonian can now be written as:

H = −
∑
ijσ

(tij + µδij)c
†
iσcjσ + b

∑
ijσ

[
Vijc

†
iσfjσ +H.c.

]

−
∑
ijσ

[χij − (εf + λ− µ)δij ] f
†
iσfjσ +

∑
i

λ(b2 − 1). (3.8)

The constraints determining the values of the mean fields can be deduced by minimizing
the free energy of this Hamiltonian for each parameter θ. By using the Hellmann-
Feynman theorem, ∂〈H〉/∂θ = 〈∂H/∂θ〉, taking the expectation value and differentiating
with respect to λ and setting this equal to zero, we obtain:

N(b2 − 1) +
∑
iσ

〈f †iσfiσ〉 ⇔
1

N

∑
iσ

〈f †iσfiσ〉+ b2 = 1. (3.9)

This is the averaged constraint we initially imposed. Differentiating with respect to b
yields the following equation:

Nbλ+
∑
jσ

Vji〈c†jσfiσ〉 = 0. (3.10)

The chemical potential µ must be determined such that it gives the desired average
electron number per site, ν:

ν =
1

N

∑
iσ

〈c†iσciσ〉+
1

N

∑
iσ

〈f †iσfiσ〉 (3.11)

These averages are most conveniently calculated by using Green’s functions. Our next
step is to diagonalize the Hamiltonian in momentum space and to calculate the mean
field single electron Green’s functions.

3.3 Diagonalization and Green’s functions

So far, we have said nothing about the actual lattice of the system. In this thesis, we
consider a two-dimensional square lattice. The conducting electron hopping between
the sites is restricted to nearest neighbour hopping only, i.e. tij = tδi,i+a, where a
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denotes a nearest neighbour lattice vector. The same restriction is made to the exchange
interaction so that only sites that are neighbours interact: χij = χδij . This means that
every site has four nearest neighbours denoted by a1, a2, a3 and a4. We set the lattice
spacing equal to 1 and thus use this as our reference of length. The nearest neighbour
vectors are then x̂, −x̂, ŷ and −ŷ.

The conduction electron part of the Hamiltonian becomes in this nearest neighbour
approach:

Helectron = −t
∑
iσ

c†iσ(ci+a1,σ + ci+a2,σ + ci+a3,σ + ci+a4,σ)− µ
∑
iσ

c†iσciσ (3.12)

If we now Fourier-transform the operators into momentum-space by

ciσ =
1√
N

∑
k

e−ixi·kckσ (3.13)

where N is the number of sites and k denotes a two-dimensional momentum-vector, we
get:

Helectron = − t

N

∑
kk′σi

c†kσck′σ(eikx + e−ikx + eiky + e−iky)− µ

N

∑
kk′σ,i

c†kσck′σe
ixi·(k−k′)

=
∑
kσ

εkc
†
kσckσ, (3.14)

where εk = −2t(cos(kx) + cos(ky))− µ is the electron dispersion relation.

Here we have used the identity

∑
i

eixi·(k−k
′) = Nδkk′ (3.15)

in the last step. This identity will be frequently used in the following calculations.

Next, we consider the hybridization-term. Here we assume an on-site electron hybridiza-
tion only: Vij = V δij . The hybridization term can then by the same calculation above
be Fourier-transformed and becomes:

Hhybrid = bV
∑
kσ

(c†kσfkσ + h.c.). (3.16)

The third term of the Hamiltonian is treated in the same way and yields:
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Hexchange =
∑
kσ

χkf
†
kσfkσ (3.17)

where the f-electrons now have acquired a dispersion on the form χk = −2χ(cos(kx) +
cos(ky)) + εf + λ− µ.

By dropping all constant terms generated above, the Hamiltonian has now been brought
to a diagonal form:

H =
∑
kσ

(
εkc
†
kσckσ + bV (ckσf

†
kσ + fkσc

†
kσ) + χkf

†
kσfkσ

)
. (3.18)

This can more conveniently be written in matrix-form as:

H =
∑
kσ

(c†kσ, f
†
kσ)

[
εk bV

bV χk

]
︸ ︷︷ ︸

K

(
ckσ

fkσ

)
(3.19)

where we have denoted the 2x2-matrix above by K. The eigenvalues of the Hamiltonian
can now straight forwardly be obtained and we find them to be given by:

E±k =
1

2
(εk + χk ±

√
(εk − χk)2 + 4b2V 2) (3.20)

To investigate the dynamics of the Hamiltonian we use the imaginary time, τ , equations
of motion for an operator A:

∂τA = [A,H]− (3.21)

Using the commutation relation [A,BC]− = A [B,C]± − ζ [A,C]±B (where ζ = +1 for
fermions and ε = −1 for bosons), the equations of motion lead to the following differential
equations for the annihilation operators of the mean field Hamiltonian:

∂τ ck,σ = εkckσ + bV fkσ (3.22)

∂τfkσ = χkfkσ + bV ckσ (3.23)

The equations of motion for the creation operators can be obtained simply by complex
conjugation.

26



3.3. DIAGONALIZATION AND GREEN’S FUNCTIONS

To proceed, we recast the operators in a two component spinor representation:

Ψ†kσ = (c†kσ, f
†
kσ) , Ψkσ =

(
ckσ

fkσ

)
(3.24)

Then we can combine the equations of motions for the operators as a matrix equa-
tion:

∂τΨkσ =

[
εk bV

bV χk

]
Ψkσ ≡ KΨkσ (3.25)

Next, we define the temperature Green’s function as follows:

G(k,τ,σ) = −〈TτΨkσ(τ)Ψ†kσ(0)〉 = − 〈Tτ

(
ckσ

fkσ

)
(c†kσ, f

†
kσ)〉

= −

[
〈Tτ ckσ(τ)c†kσ(0)〉 〈Tτ ckσ(τ)f †kσ(0)〉
〈Tτfkσ(τ)c†kσ(0)〉 〈Tτfkσ(τ)f †kσ(0)〉

]
(3.26)

where Tτ is the imaginary time ordering operator. The differential equation satisfied by
this Green’s function can be shown to be:

(−∂τ −K)G(k,τ,σ) = δ(τ)

which can be solved by Fourier transformation into Matsubara space:

G(k,τ,σ) =
1

β

∑
ωn

e−iωnτ Ḡ(k,ωn,σ)

where
1

β
= kBT is the inverse thermal energy and ωn = (2n+ 1)

π

β
, where n ∈ Z, are the

fermionic Matsubara frequencies. The differential equation transforms into an algebraic
one:

(iωn −K)Ḡ(k,ωn,σ) = 1 (3.27)

or more explicitly:[
iωn − εk −bV
−bV iωn − χk

][
Ḡcc(k,ωn,σ) Ḡcf (k,ωn,σ)

Ḡfc(k,ωn,σ) Ḡff (k,ωn,σ)

]
= 1 (3.28)
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CHAPTER 3. THE KONDO LATTICE

The constraints determined in section 3.2 can after a Fourier-transform be expressed in
terms of the Green’s functions:


λb+ V

1

N

∑
kσωn

Ḡcf (k,ωn,σ) = 0

1− b2 − 1

N

∑
kσωn

Ḡff (k,ωn,σ) = 0

ν − 1

N

∑
kσωn

Ḡcc(k,ωn,σ)− 1

N

∑
kσωn

Ḡff (k,ωn,σ) = 0

(3.29)

These are the equations we are going to solve to investigate the model. The input
parameters are the hopping amplitude t, the hybridization strength V , the spin liquid
parameter χ, the temperature T , the f-orbital local energy εf and the filling factor ν.
The output values acquired are the Lagrange multiplier λ, the average slave boson field
b and the chemical potential µ.
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4

Tunneling into the Kondo lattice

I
n this chapter a simple model of the Kondo lattice in close vicinity to a tunneling
microscope is considered. The tip is considered to be of a simple metal material
such as the density of states can be approximated as constant. With the use of
non-equilibrium Green’s functions, a formula for the tunneling current and the

differential conductance can be derived. All results are presented in chapter 5.

4.1 Derivation of the tunneling current and conductance

We begin by considering a joint system consisting of the Kondo lattice described in the
previous chapter, a metal tip representing the microscope and a possibility of tunneling
between the tip and the Kondo lattice. See figure 4.1. This system is modelled by the
following Hamiltonian:

H = HKL +Htip +Htunnel (4.1)

where

HKL =
∑
kσ

(
εkσc

†
kσckσ + bV (ckσf

†
kσ + fkσc

†
kσ) + χkσf

†
kσfkσ

)
, (4.2)

is the Kondo lattice Hamiltonian,

Htip =
∑
kσ

ε̃kσe
†
kσekσ (4.3)
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CHAPTER 4. TUNNELING INTO THE KONDO LATTICE

tc
tf

Figure 4.1: The figure shows a simple description of a tunneling experiment. Electrons
from the tip (represented by orange balls) can tunnel into the localized f-electron states, red
balls, or itinerant electron states, yellow balls. This allows for two separate tunneling paths
with amplitudes, tf and tc respectively, and one path where electrons tunnel in a superposition
of the two separate paths.

is the tip Hamiltonian and

Htunnel =
∑
kσ

[
tcc
†
kσekσ + tff

†
kσekσ +H.c.

]
(4.4)

describes the coupling between tip electrons and the states in the Kondo lattice. The
amplitudes of tunneling into conduction electron states and localized f-states are denoted
as tc and tf respectively.

Quantum mechanically, the tunneling current, I(t,t′) is given by the change in particle
number of the tip times the electric charge. The time derivative is given by the Heisen-
berg equation of motion which gives the following expression for the current:

I(t,t′) = −e〈 ˙Ntip〉 = − ie
~
〈[H,Ntip]〉 = − ie

~
〈[Htip,Ntip]〉 (4.5)

since Ntip commutes with the other parts of the Hamiltonian. Performing the commu-
tator gives:

I(t,t′) =
ie

~
∑
kσ

[
tc〈e†kσ(t)ckσ(t′)〉+ tf 〈e†kσ(t)fkσ〉(t′)−H.c.

]
=
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4.1. DERIVATION OF THE TUNNELING CURRENT AND CONDUCTANCE

e

~
∑
kσ

[
tcG

<
tc(k,σ,t,t

′) + tfG
<
tf (k,σ,t,t′)− t∗cG<∗ct (k,σ,t,t′)− t∗fG<∗ft (k,σ,t,t′)

]
=

2e

~
∑
kσ

Re
[
tcG

<
tc(k,σ,t,t

′)) + tfG
<
tf (k,σ,t,t′)

]
(4.6)

where the definition of the lesser Green’s functions have been used together with the fact
that G<ij = −G<∗ji . To proceed, we consider a steady state current, that is t = t′ = 0,
and we can perform a Fourier transform into the energy domain. The current is then
given by:

I(0) = I =
2e

~
∑
kσ

∫
dω

2π
Re
[
tcG

<
tc(k,σ,ω) + tfG

<
tf (k,σ,ω)

]
(4.7)

The task of calculating the current and conductance is now reduced to calculating two
lesser Green’s functions. Since the current is a non-equilibrium process due to the po-
tential difference between the tip and the Kondo lattice, a Keldysh approach can be used
to calculate the non-equilibrium Green’s functions. We start with the Dyson equation
in the joint system space:

G = G0 +G0 · T ·G (4.8)

where “·” denotes a convolution in real time. The matrices are the full and equilibrium
Green’s functions ordered as:

G =

Ǧtt Ǧtc Ǧtf

Ǧct Ǧcc Ǧcf

Ǧft Ǧfc Ǧff

 , G0 =

ǧtt 0 0

0 ǧcc ǧcf

0 ǧfc ǧff

 , T =

 0 Ťtc Ťtf

Ťct 0 0

Ťft 0 0

 (4.9)

and where the “check” symbol denotes a Keldysh matrix on the form

ǧ =

[
gR gK

0 gA

]
. (4.10)

With this construction, the tunneling amplitude terms Ťij , are diagonal in Keldysh
space:

Ťtc = 12x2tc. (4.11)
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CHAPTER 4. TUNNELING INTO THE KONDO LATTICE

The Dyson equation connects the sought non-equilibrium Green’s functions to the equi-
librium ones, which are known from the previous chapters. The Green’s functions we
are looking for are ǧtc and ǧtf . By calculating these, we can obtain the lesser Green’s
functions from the following identity:

G<ij =
1

2
(GKij −GRij +GAij). (4.12)

For a steady state and translationally invariant system, the Dyson equation is purely
algebraic and can be solved by pure algebraic means. Solving for the lesser Green’s
functions gives the following final result for the current:

I =
4e

~

∫
dω

2π

[
(t2cDcc(ω) + 2tctfDcf (ω) + t2fDff (ω))Dtt(ω)(ftip(ω + eV )− fKL(ω))

]
(4.13)

Here, we have neglected terms of order t4c/f and used the fact that GRij −GAij = −2iDij ,
where Dij is the density of states corresponding to conduction electrons and f-electrons.
The term Dfc is a quantity similar to a density of states, but it contains terms of the
type 〈c†f〉 and is related to the hybridization. As will be seen in chapter 5, this term
represents interference in the tunneling process which produces a very significant appear-
ance of the differential conductance. The function f(ω) denotes the Fermi distribution
function.

The differential conductance is defined as G(V ) = dI/dV . It is obtained by straightfor-
ward differentiation of equation 4.13.
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5

Results and conclusions

I
n this chapter the results of the two previous chapters are presented. First, the
Kondo lattice model from chapter 3 is considered. The solutions to equations 3.29
are presented by calculations of the excitation spectra, hybridization dependence,
temperature dependence and the density of states.

Secondly, the tunneling current and differential conductance from chapter 4 is calcu-
lated for some specific Kondo lattice parameters. In addition, the differential conduc-
tance dependence on the tunneling parameters tc and tf is investigated for a simple
configuration.

The energy scale is defined by the Kondo lattice conduction electron hopping amplitude
by setting t = 1 in all calculations. Temperature, frequency and energy are all measured
in the same units by setting kB = ~ = 1.

5.1 The Kondo lattice model

The main results for the Kondo lattice model are the solutions to the equations 3.29.
From them, the mean field parameters λ, b and µ can be calculated. These are obtained
as a function of input parameters χ, T , ef , ν, which in order are: the spin-liquid param-
eter, the temperature, the energy levels of the localized states and the filling factor. A
summary of all parameters is presented for reference in table 5.1.

To solve the mean field equations, a multidimensional Newton method has been used.
Since the system has translational symmetry, to solve for a single site is sufficient and

integrations over the first Brillouin-zone are transformed into sums on the form
1

N

∑
k

in the computer calculations. Here, N ∼ 500 is the number of sampling-points used
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CHAPTER 5. RESULTS AND CONCLUSIONS

Table 5.1: The table shows the various input and output parameters of the Kondo lattice
model.

Parameter Description Output/Input

t Conduction electron hopping amplitude Input

χ Spin liquid parameter Input

T Temperature Input

ef Local moment energy level Input

ν Filling factor Input

λ Lagrange multiplier Output

b Slave boson mean field Output

µ Chemical potential (Fermi level) Output

in k-space. No significant changes in calculations for different N of this order have
been observed. The low N is also chosen with computation time in consideration. All
calculations have been done in MATLAB, Java and Fortran 90.

The complex part of the Green’s function energy variable, denoted by δ (see section 2.4),
can not be taken to zero in computer calculations. Instead, it must be chosen sufficiently
small so that divergent peaks are made finite and distinguishable. This choice may be
different for different calculations. As a consequence, scales in the density of states and
differential conductance are arbitrary, and in this thesis, it is the qualitative features
that are important and not specific values.

Excitation spectra

In the following we consider the excitation spectra for kx only and therefore set ky = π/2
which removes all cos(ky)-terms in the dispersion relations. This gives two-dimensional
graphs to study instead of three-dimensional which makes the qualitative features easier
to visualize.

Equation 3.20 describes the quasiparticle excitation spectrum as two bands separated
with a gap of size

√
(ef + λ)2 + 4b2V 2) at kx = π/2. In figure 5.1, the bands in the kx-

direction are plotted together with the conduction electron dispersion, the local moment
dispersion and the chemical potential. The range kx ∈ [0,π] is chosen since the spectrum
in the chosen direction is symmetric around kx = 0 and has a period of 2π.

The behaviour of the quasiparticles is for small kx very similar to f -electrons while for kx
close to π, the Brillouin-zone edge, the behaviour is c-electron- like. However, in the mid
section of the kx-range, it can be observed that the quasiparticles consists of a mixture
of c- and f -electrons.
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Figure 5.1: The figure shows, in the kx-direction for ky = 0, the excitation spectrum of a
two-dimensional square lattice mean field Kondo lattice model. The top filled black line is
the quasiparticle top band dispersion E+(kx), while the lower filled black line is the lower
quasiparticle band dispersion E−(kx). The f-dispersion is represented by the blue striped line
and the c-dispersion by the red striped line. The chemical potential is the black striped line.
The parameters chosen are V = 1.0, T = 0.01, ef = 0 and ν = 1.5 for all three plots and
χ = −0.1, 0.0, 0.1 for the figures a, b, c respectively. The mean field parameters obtained
are for a: λ = 0.68, b = 0.79, µ = 0.09. For b: λ = 0.69, b = 0.79, µ = 0.21 and for c:
λ = 0.70, b = 0.79, µ = 0.32.

From the dispersion-relations, it is possible to calculate the mass-enhancement from
formation of these quasiparticles. This is however not done in this thesis. See [3] for
further reading. The mass-enhancement can be observed in various experiments such as
[3]:

• Renormalization of the Sommerfeld specific heat coefficient γ →∼ m∗
m
γ.

• Renormalization of the Pauli susceptibility χpauli →∼
m∗
m
χpauli.

• A separation of the Drude optical conductance spectrum into two components
separated by a gap. The relaxation rate is also enhanced by the formation of the
heavy electrons.
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CHAPTER 5. RESULTS AND CONCLUSIONS

Hybridization strength dependence

In this section, we investigate how the the slave boson field and effective f-site energy
depends on the hybridization V . The results are presented in figures 5.2, 5.3 and 5.4.
The filling factor is kept constant in contrast to [24] which fixes the chemical potential at
µ = 0 and lets the filling adapt differently to every configuration. With our calculations,
the filling may instead be chosen, in order to more easily model a simple material.
However, the qualitative features of [24] are reproduced in our model.
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Figure 5.2: The figure shows the effective f -electron energy (red dotted line) and the slave
boson field (black dotted line) as a function of the hybridization V . The fixed parameters are
χ = −0.1, ef = 0 and ν = 1.5 for all three plots and T = 1, T = 0.1 and T = 0.01 for the
figures a, b, c respectively.
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Figure 5.3: The figure shows the effective f -electron energy (red dotted line) and the slave
boson field (black dotted line) as a function of the hybridization V . The fixed parameters are
χ = 0.0, ef = 0 and ν = 1.5 for all three plots and T = 1, T = 0.1 and T = 0.01 for the
figures a, b, c respectively.

Our model gives that both the effective f -electron energy, λ+ef −µ and the slave boson
field, b, decreases with lower hybridization strength, V .
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Figure 5.4: The figure shows the effective f -electron energy (red dotted line) and the slave
boson field (black dotted line) as a function of the hybridization V . The fixed parameters are
χ = 0.1, ef = 0 and ν = 1.5 for all three plots and T = 1, T = 0.1 and T = 0.01 for the
figures a, b, c respectively.

Temperature dependence

The temperature dependence of the mean field parameters is presented in this section.
For the fixed parameters, we have chosen the following configuration: V = 1.0, χ = 0.0,
ef = 0.2 and ν = 1.5.
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Figure 5.5: For the t = 1.0, V = 1.0, χ = 0.0, ef = 0.0 and ν = 1.5, the values of λ, b and
µ are plotted as a function of temperature.

The parameters are seen to not change very much in this temperature range, but to
investigate lower temperatures, a more efficient solution method must be developed to
decrease the computation time. As can be seen in 3.29, the calculations require infinite
summations over Matsubara frequencies which must truncated in computer calculations.
In this thesis, the truncation limit is set to 100/T . This means the lower the temperature,
the more frequencies to sum over. To be able to do computations for lower temperatures,
a more efficient programming method must be utilized.
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Density of states

The density of states can be obtained from the Matsubara Green’s function according
to:

D(ε) = − 1

π
lim
δ→0

Im [ Tr G(iωn, k,σ)|iωn→ε+iδ] (5.1)

where δ denotes a very small number, Im denotes the imaginary part and Tr is the trace
which represents in our diagonal momentum and spin representation a summation over
k and σ. G(iωn, k,σ) is the Matsubara Green function in momentum space.

For three different configurations of our Kondo lattice model, the density of states is
plotted in figure 5.6. The most significant feature is the formation of a hybridization gap
for χ = 0.0 and χ = −0.1. The density of states calculations reproduce similar results
to [24].
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Figure 5.6: The figures show the conduction electron (in black) and the f-electron density
of states for three different setups of the two-dimensional square Kondo lattice model. The
parameters chosen are V = 1.0, T = 0.01, ef = 0 and ν = 1.5 for all three plots and
χ = −0.1, 0.0, 0.1 for the figures a, b, c respectively. A value of δ = 0.005 has been used for
all three figures.
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5.2 Tunneling into the Kondo lattice

In this section, the results of the tunneling setup described in chapter 4 are presented.
To obtain the tunneling current and conductance for the Kondo Lattice - tunneling tip
system, some approximations have been made. First and most importantly, the tunneling
amplitudes are considered to be real and energy independent. Secondly, the tip density
of states, Dtt(ω), is assumed to be constant (this is what is sought when designing good
tunneling tips) and is set equal to 1 for simplicity. This approximation is equivalent to
setting the tip Green’s functions to:

g
R/A
tt = ∓iDtt = ∓i (5.2)

Further, the voltage difference between the sample and the tip is denoted by V where V
is measured in units of energy by setting the electric charge e = 1.

Tunneling current and differential conductance

The tunneling current and differential conductance have been calculated for three dif-
ferent setups of the Kondo lattice, and for three different temperatures for each setup.
The results are presented in figures 5.8, 5.9 and 5.7. From these figures, it is evident
that the typical Fano-shape emerges. This is a phenomena that arises from interference
of the tunneling paths and is consistent with [25–27].
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Figure 5.7: The figure shows the current (blue line) and differential conductance (red line)
for a two-dimensional square Kondo lattice. The parameters chosen are V = 1.0, χ = −0.1,
ef = 0 and ν = 1.5. The temperature is T = 1, T = 0.1 and T = 0.01 in order from left to
right. The tunneling parameters have been set to tc = tf = 0.1.
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Figure 5.8: The figure shows the current (blue line) and differential conductance (red line)
for a two-dimensional square Kondo lattice. The parameters chosen are V = 1.0, χ = 0.0,
ef = 0 and ν = 1.5. The temperature is T = 1, T = 0.1 and T = 0.01 in order from left to
right. The tunneling parameters have been set to tc = tf = 0.1.
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Figure 5.9: The figure shows the current (blue line) and differential conductance (red line)
for a two-dimensional square Kondo lattice. The parameters chosen are V = 1.0, χ = 0.1,
ef = 0 and ν = 1.5. The temperature is T = 1, T = 0.1 and T = 0.01 in order from left to
right. The tunneling parameters have been set to tc = tf = 0.1.

Tunneling amplitude dependence

The dependence of the tunneling parameters tc and tf is depicted in figures 5.10 and
5.11 for the case of χ = 0.0. Notice that when one of the tunneling amplitudes are set
to zero, the differential conductance reproduces the density of states for the non-zero
tunneling path, compare with figure 5.6(b). This is due to the constant tip density
of states approximation, equation 5.2, which agrees good with the STS-description in
chapter 1.

In a real STS experiment, the amplitude for tunneling into the conduction band would
be larger than the f-states, due to the latter’s highly localized nature.
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5.2. TUNNELING INTO THE KONDO LATTICE
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Figure 5.10: The figure shows the differential conductance as function of the voltage V and
the tunneling ratio tc/tf for tc = 0.1. The parameters chosen are V = 1.0, χ = 0.0, ef = 0,
T = 0.01 and ν = 1.5.
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Figure 5.11: The figure shows the differential conductance as function of the voltage V
and the tunneling ratio tf/tc for tf = 0.1. The parameters chosen are V = 1.0, χ = 0.0,
ef = 0, T = 0.01 and ν = 1.5.
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6

Summary and outlook

T
he Kondo lattice model is thought to be a good candidate for describing heavy
fermion behaviour. In this thesis, the purpose has been to study a simple
version of this model which consists of itinerant electrons hybridizing with
localized electrons. The localized electrons constitute a square two-dimensional

lattice and interact with their nearest neighbours. This Kondo lattice model has been
treated with a mean field slave boson approach and solved self-consistently with Green’s
functions. The model is found to exhibit a two-band quasiparticle dispersion separated
by a gap that depends on the hybridization strength. This gap is also manifested in the
density of states.

Further, a system where the Kondo lattice is in close proximity to a tunneling tip has
been considered. By employing the Keldysh formalism machinery, a non-equilibrium
tunneling current and differential conductance has been calculated. The tunneling setup
is seen to give rise to a Fano-lineshape structure of the conductance. In addition, the
conductance calculations can, in a single path tunneling configuration, be seen to map
out the density of states.

To expand the presented Kondo lattice model, many assumptions can be withdrawn
and a more thorough treatment can be made. For example, the mean field approach is
usually a very first approximation and attempts to abandon the mean field treatment
will probably give more accurate results to be compared with experiments. Further, all
Lagrange multipliers and the slave boson field are considered as site-independent which
is a crude approximation and can be abandoned for further progress.

In addition, this model only treats a lattice consisting of spin-1/2. Since this is not at
all true for most materials of the heavy fermion type, a more general spin-N approach
is required for investigating more complicated systems. This is usually done with the so
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called large N -expansion which would be interesting to employ to the model considered
here.

Another interesting approach to this Kondo lattice model would be to include a supercon-
ducting pairing term to the Hamiltonian. This might reveal additional properties which
would be exciting to explore. It would also be interesting to calculate the enhancement
of the mass of the formed quasiparticles.

Regarding the tunneling calculations, some of the assumptions made, such as constant
density of states and constant tunneling amplitudes may be relaxed to improve the
accuracy of the results. Other tunneling channels and background noise and background
conductance could be added to the system for a more realistic model of a tunneling
process.

Generally, it would be interesting to explore the parameter ranges more thoroughly than
done in this thesis, and for this reason a more efficient scheme for setting up computer
computations would be beneficial.

As a final and perhaps most important point, it is interesting to compare results of the
model, both in its present state and by including some of the proposals above, with some
experiments. Some general features though, such as the Fano-lineshape is definitely seen
in tunneling experiments on the heavy fermion compound URu2Si2 [27].
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[9] H. v. Löhneysen, T. Pietrus, G. Portisch, H. G. Schlager, A. Schröder, M. Sieck,
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