
Lidar-based simultaneous localisation
and mapping in marine vehicles
Handling the complex motions in a marine setting

Master’s thesis in Complex Adaptive Systems

Artur Engström and Domenic Geiseler

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Lidar-based simultaneous localisation and
mapping in marine vehicles

Handling the complex motions in a marine setting

ARTUR ENGSTRÖM
DOMENIC GEISELER

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology
Gothenburg, Sweden 2022

Lidar-based simultaneous localisation and mapping in marine vehicles
Handling the complex motions in a marine setting
ARTUR ENGSTRÖM, DOMENIC GEISELER

© ARTUR ENGSTRÖM, DOMENIC GEISELER 2022.

Supervisor: Ola Benderius, Department of Mechanics and Maritime Sciences
Examiner: Ola Benderius, Department of Mechanics and Maritime Sciences

Master’s Thesis 2022:31
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Figure illustrates a point cloud from the lidar near the shore. The details
depicts part of a jetty and two boats.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Digitaltryck
Gothenburg, Sweden 2022

iv

Lidar-based simultaneous localisation and mapping in marine vehicles
Handling the complex motions in a marine setting
ARTUR ENGSTRÖM, DOMENIC GEISELER
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
To perform precise and safe manoeuvres in an autonomous vehicle, it is important
to be able to extract its position in relation to its surroundings. Furthermore, an
accurate depth representation of the environment using a lidar scanner helps to
detect distances and possible dangers. Simultaneous localisation and mapping
(SLAM) is a well-researched tool to aid autonomous cars in operation and data
collection to solve both of these tasks at once. The less explored domain of SLAM
on a marine vessel presents more complex kinematic movements and is vulnerable
to drift in the vertical plane. This master thesis is part of the Reeds data set
project, which aims to provide researchers with sensor data to support projects in
marine settings. In this work, it was investigated how to reduce this vertical drift
using hardware and software-based approaches and what the minimal conditions
for performing SLAM are. The baseline performance was built on the lidar-only
NDT and ICP registration algorithms. Data loggings were recorded using a
high-performance lidar with additional sensor data from an inertial measurement
unit and a global navigation satellite system. The latter sensors were fused in an
Unscented Kalman filter to estimate the sensor position and thereby improve
mapping. The hardware-based approach used a gimbal stabiliser to constrain
movement to rotations on the yaw axis. In the analysis, it was shown that both
approaches were able to significantly reduce deviation compared to the lidar-only
approach. While the UKF state estimation performed better in situations with
very sparse point clouds, the gimbal approach offered computational advantages
due to the rotational restrictions. Both approaches can be combined to benefit
from each other. The minimal conditions for SLAM were bound to the point-cloud
density and velocity, as was shown by correlation. These findings can aid in future
data recordings regarding the building of a sensor platform.

Keywords: SLAM, UKF, Gimbal, Mapping, Localisation, Marine systems,
Marine datasets, Lidar.

v

Acknowledgements
We would like to express our sincerest gratitude to our supervisor and examiner,
Ola Benderius, for his continued support throughout this project. Ola’s enthusiasm
and uplifting attitude have been invaluable for us in our work. His coaching during
our weekly meetings has helped us maintain a high pace and he also provided great
details regarding the peculiarity that goes into the academic process. Also, we
thank Christian Berger for the help. He assisted us during the initial phase of this
project by providing his expertise in creating the interface to the lidar. We express
thanks to Krister Blanch and Ted Sjöblom for helping us during the recording and
collection of our data sets. They provided help, both during the installation of the
sensor set-up and in driving the vessel. We would like to thank the whole team
at Reeds and Revere for letting us be a part of their work when collecting and
working with data from their sensors. We are grateful for the weekly meetings; as
they provided great insight into the research and challenges that one has to face
when working within the maritime industry. We show great appreciation to Fredrik
von Corswant for helping us create the mounting for the sensor set-up, it came
to great use. We also thank Varun Ganapati Hegde and Liangyu Wang for the
time they took to consult and present their previous work, which this project was
based on. It accelerated our understanding of the SLAM algorithm and provided a
great overview of the challenges ahead. Lastly, we want to thank Ebaa Asaad, Sara
Larsson, and Heegyeong Kim for brainstorming ideas during our meetings. These
discussions have both been fun and educative.

Artur Engström, Domenic Geiseler, Gothenburg, June 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

ADAS Advanced Driving-Assistance Systems
AV Autonomous Vehicle
CD Continuous Deployment
CI Continuous Integration
CTRV Constant Turn Rate Velocity
CV Constant Velocity
DOF Degrees of Freedom
DNN Deep Neural Network
EKF Extended Kalman Filter
GNSS Global Navigation Satellite System
ICP Iterative-Closest-Point
IMU Inertial Measurement Unit
KF Kalman Filter
lidar Light Detection and Ranging
NDT Normal Distribution Transform
PDF Probability Density Function
PF Particle Filter
SLAM Simultaneous Localisation and Mapping
UKF Uncented Kalman Filter

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Research question . 3
1.2 Limitations . 3
1.3 Outline . 3

2 Background 5
2.1 Data sets for autonomous vehicles . 5

2.1.1 Explicit and implicit factors 5
2.1.2 Overview . 6

2.2 Sensors . 7
2.2.1 Camera . 7
2.2.2 Light detection and ranging 7
2.2.3 Global navigational satellite system 8
2.2.4 Intertial measurement unit . 9

2.3 Gimbal . 10
2.4 Simultaneous localisation and mapping 10

2.4.1 Scan registration . 11
2.4.2 State estimation . 12

2.4.2.1 Sensor fusion . 12
2.4.2.2 Extended Kalman filter 12
2.4.2.3 Unscented Kalman filter 13

2.4.3 Kinematic problems . 14
2.5 Containerised software and microservices 15

3 Methods 17
3.1 SLAM . 17

3.1.1 Point cloud preprocessing . 17
3.1.1.1 Crop box filter . 17
3.1.1.2 Statistical outlier removal 18

3.1.2 Point cloud registration . 19
3.1.2.1 Normal distribution transform 19

xi

Contents

3.1.2.2 Iterative-closest-point 22
3.1.3 UKF . 24

3.1.3.1 Initialisation . 24
3.1.3.2 Prediction step . 24
3.1.3.3 Update step . 26
3.1.3.4 Heading approximation 27
3.1.3.5 Velocity approximation 27

3.2 Software architecture . 28
3.2.1 Algorithms . 28
3.2.2 Interfacing the Ouster OS2-128 sensor 29

3.3 Experiments . 30
3.3.1 Vessel experiment . 30

3.3.1.1 Hardware setup - Vessel 31
3.3.2 Gimbal experiment . 32

3.3.2.1 Hardware setup - Laboratory 32
3.4 Evaluation of results . 33

4 Results 35
4.1 Vessel experiment . 35

4.1.1 UKF performance . 36
4.1.2 Mapping . 38
4.1.3 Localisation . 39

4.1.3.1 First run . 39
4.1.3.2 Second run . 43

4.2 Gimbal experiment . 46
4.2.1 Mapping . 46
4.2.2 Localisation . 46

4.3 SLAM requirements . 48

5 Discussion 49
5.1 UKF performance . 49
5.2 SLAM . 49

5.2.1 Mapping . 50
5.2.2 Localisation . 50

5.3 Hardware versus software solutions 51
5.4 SLAM requirements . 52
5.5 Social and ethical impact . 52
5.6 Future work . 53

6 Conclusion 55

Bibliography 57

A Appendix 1 I
A.1 First run . I
A.2 Second run . IV

xii

List of Figures

2.1 Example images taken from the Caltech data set (left), KITTI data
set (middle) and Daimler data set (right). 6

2.2 Velodyne HDL-64E lidar (left) and Sick MRS6000 lidar (right). . . . 8
2.3 Illustration of the multi-path reception error. 9
2.4 Ronin-SC gimbal for remote control and 3-axis stabilisation. 10
2.5 Kinematic movement and terminology of a vessel. 14

3.1 Two-dimensional illustration of the NDT algorithm. Points from the
reference frame are divided into multiple voxels. The red ellipses
illustrates the Gaussian distribution in each voxel generated by the
points from the reference frame. When the new target frame is
generated, it is then matched with the Gaussian distribution from
the reference frame. A transformation is then performed between
the target and reference frame, maximising the overlapping score. . . 21

3.2 First panel displays the reference frame (black) and the target frame
(gray). Second panel illustrates how the ICP algorithm finds a
pointwise correspondance between the reference frame and the
target frame , where the dotted red lines is the shortest Euclidean
distances between points. Third panel highlights the center of mass
for both set of points, according to Eq. 3.12. Forth panel shows the
resulting translation and rotation after one iteration where the
center of mass for both set of points have overlapped. 23

3.3 Illustration of how the heading ϕ in Eq. 3.27 is computed. The
current position of the vessel (black) is compared with the position
two seconds earlier (grey). The coordinate system is rotated according
to the setup of the lidar, see Fig. 3.5. 27

3.4 Overview of this papers SLAM algorithms. Algorithm 1 is
implementing a only lidar-approach while Algorithm 2 is
implementing sensor fusion. 28

3.5 The left figure displays a top-down view of the lidar Coordinate
Frame. The figure on the right displays a side view of the lidar
coordinate frame. 29

3.6 SSRS-1100, the vessel that was used to collect data. 30
3.7 Path followed in first and second run. 31
3.8 Sensor platform setup for the vessel run, containing a Ouster-OS2-128

lidar, an IMU and a GNSS antenna. 31

xiii

List of Figures

3.9 Sensor platform setup for the laboratory run, containing a Ouster-
OS2-128 mounted on a DJI Ronin-SC gimbal. 32

4.1 Velocity of the vessel in the first and second run. The velocity was
computed from the GPS data, according to Eq. 3.28. 35

4.2 Size of the point clouds over different frames for the first and second
run. 36

4.3 Illustration of the UKF performance from the first and second run.
The zoomed in segments highlight when the vessel was heading
straight ahead and in turns. It is also illustrated that the filtered
trajectory from the UKF delivers a smoother path compared to the
zigzag characteristics of the GPS. 36

4.4 Upper figure: Pointcloud registration with NDT as basis. Lower
figure: Pointcloud registration with UKF as basis. The point clouds
are viewed diagonally from the side, hence illustrating the stacking
effect of points in the upper figure. 38

4.5 Top view of the registered point cloud aligned with the corresponding
coastline. The red curve shows the path that was traversed. The
mapping was performed with the lidar-only based approach. 39

4.6 First run: frame 4,250–5,250. 40
4.7 First run: frame 7,250–8,250. Note the y-axis in the bottom left plot,

the spike between frame 506–507 had a range of 5,000 units. 40
4.8 First run: frame 11,250–12,250. Note that, in the bottom left plot, the

two spikes between frame 700–800 had a range of 300 units, respectively. 41
4.9 First run: frame 15,250–16,250. 41
4.10 Second run: frame 6,000–7,000. Note the plot in the bottom right,

the point cloud size is immensely less compared to the other figures. . 43
4.11 Second run: frame 12,000–13,000. 44
4.12 Left: Top-view mapping of the stabilised run. Right: Top-view

mapping of the unstabilised run. 46
4.13 Third run: frame 0-559. 47
4.14 Forth run: frame 0-569. Note the y-axis for the top right and bottom

left plot compared to Fig. 4.13. 47
4.15 The left panel illustrates how the RMSE changes with different

point cloud sizes. Middle panel illustrates how the Z-deviation
changes with different point cloud sizes. The right panel illustrates
how the Variance-of-Z-acceleration changes with different point
cloud sizes. The y-axis is set in log-scale. The dotted line display
the fitted exponential function for each dataset. 48

4.16 The left panel illustrates how the RMSE changes with different
point cloud sizes. Middle panel illustrates how the Z-deviation
changes with different point cloud sizes. The right panel illustrates
how the Variance-of-Z-acceleration changes with different point
cloud sizes. The y-axis is set in log-scale. The dotted line display
the fitted exponential function for each dataset. 48

A.1 First run: frame 4,250–5,250. I

xiv

List of Figures

A.2 First run: frame 5,250–6,250. I
A.3 First run: frame 6,250–7,250. I
A.4 First run: frame 7,250–8,250. I
A.5 First run: frame 8,250–9,250. II
A.6 First run: frame 9,250–10,250. II
A.7 First run: frame 10,250–11,250. II
A.8 First run: frame 11,250–12,250. II
A.9 First run: frame 12,250–13,250. II
A.10 First run: frame 13,250–14,250. III
A.11 First run: frame 14,250–15,250. III
A.12 First run: frame 15,250–16,250. III
A.13 First run: frame 16,250–17,250. III
A.14 First run: frame 17,250–18,250. III
A.15 Second run: frame 2,000–3,000. IV
A.16 Second run: frame 4,000–5,000. IV
A.17 Second run: frame 6,000–7,000. IV
A.18 Second run: frame 7,000–8,000. IV
A.19 Second run: frame 8,000–9,000. IV
A.20 Second run: frame 9,000–10,000. V
A.21 Second run: frame 10,000–11,000. V
A.22 Second run: frame 11,000–12,000. V
A.23 Second run: frame 12,000–13,000. V

xv

List of Figures

xvi

List of Tables

3.1 Logging data from the four recordings. 33

4.1 RMSE between filter and GNSS, average velocity for sections of the
first run. 37

4.2 RMSE between filter and GNSS, average velocity for sections of the
second run. 37

4.3 Lidar-only based registration performance for the first run. 42
4.4 UKF based registration performance for the first run. 42
4.5 Lidar-only based based registration performance for the second run. . 45
4.6 UKF based based registration performance for the second run. 45
4.7 Registration performance for stabilised and unstabilised runs 46

xvii

List of Tables

xviii

1
Introduction

With a surge in hardware and software improvements in recent years, autonomous
transportation has become a growing research field [1]. The demand for
autonomous vehicles (AV) is expected to continue to expand with a compound
annual growth rate of 63.1% between 2021 and 2030 [2]. Rapid expansion creates
great opportunities for the AV sector. However, the doubts and challenges that
remain to be overcome are still huge, as the implementation of an autonomous
driving environment encompasses not only complex automotive technology, but
also human behaviour, ethics, traffic management strategies, policies and
liabilities [3]. An AV should be able to manoeuvre in various road conditions, as
different surfaces could be highly unpredictable and vary for different
environments. It should also be able to handle varying weather and traffic
conditions, since the presence of, for example, rain or fog should not interfere with
the decision-making of AVs.

It is of great interest to create an algorithm that enables an AV to navigate in an
unknown environment while considering the naturalistic settings it might encounter.
This is a problem often described as simultaneous localisation and mapping (SLAM),
which is a technique used for AVs to build a map of an unknown environment while
simultaneously localising the vehicle position. A successful implementation of the
SLAM problem would allow the robot to perform tasks such as path planing and
obstacle avoidance, which would be particularly useful when the AV would explore
new environments without any prior knowledge. It has even been concluded that a
solution to the SLAM problem could be seen as a holy grail for the mobile robotics
community since it would provide the means to make a robot truly autonomous [4].

Although the SLAM problem has been considered a closed problem in some
scenarios, it is still not possible to apply a single robust algorithm that fits all
environments [5]. The main issue originates from the fact that the sensor readings
are not completely accurate and have been shown to accumulate drift over time [6].
The drifts in localisation are most common in the vertical direction since sensor
correction is more common in the horizontal plane due to the sensors’ field of view,
where the vertical field of view of most sensors is limited in comparison to the
horizontal. These drifts of the trajectories are usually bounded when operating
within an indoor environment due to correction of the walls, floor and roof, but
could theoretically diverge in an outdoor environment [7].

Since most of the available literature presents research that has been focused
on road vehicles [8][9], the objective of this paper is to investigate how the SLAM
algorithm would perform in a marine environment. This is particularly interesting
because a vessel in water will have substantially more complex movement compared

1

1. Introduction

to a vehicle on the road, due to the increased complexity of the pitch, roll, and
heave. The marine environment is also intriguing due to the different reflective
characteristics of water in comparison to solid ground, since the water cannot give
direct reflection when hit with a light beam. This is important since the light
detection and ranging (lidar) sensors will not be able to detect the ground, which
is a distinct difference from how a similar sensor would operate on land. This
circumstance of not detecting the ground enables an unbounded vertical region.
This leads to the investigation on how to reduce the drift in the vertical direction.

Moreover, software-based state estimation algorithms have been proposed to
be used to improve localisation and mapping [10]. These solutions often
incorporate a methodology named sensor fusion, which is the process of combining
multiple external sensors to reduce the resulting uncertainty of the measurement.
This combination has been shown to improve the resulting performance of SLAM
algorithms, if one can obtain reliable sensor readings. However, this is not always
the case in the marine environment. For example, a GPS signal is shown to fail to
produce an accurate signal when the GPS antenna is within the vicinity of tall
structures, or within indoor environments [11]. Erroneous sensor readings could,
for example, occur if the vessel is traversing along a tall cruise ship or passing
under a bridge. Another problem is that most sensor setups are stationary
mounted on the AV, causing potential drifts in the SLAM algorithm due to offsets
of the global frame. Since most algorithms compare two consecutive frames when
performing SLAM, the first frame of the recording will usually be considered as
the origin. This is a problem if the initial frame is not aligned with the global
frame, which furthermore might cause inaccurate trajectory predictions. This
creates a demand for producing solutions that can incorporate a simplistic
implementation by replacing external sensors, which rely on a software-based
fusion, with a hardware-based solution that can compensate for the complex
kinematic movement of the vessel and disregard the dependence from the GPS.

Further concerns have previously been expressed about the limited datasets
available for benchmarking and comparing the performance of robot perception
algorithms [12], this is especially evident for the maritime industry. Therefore, it is
of high interest to investigate the minimal conditions that would be needed to
perform SLAM in a marine environment since this has not yet been done. It is also
of interest to explore how the algorithm behaves over a longer time, as most data
sets introduced in the past are relatively small and specialised [13, 14, 15].

To answer the proposed research questions, this master’s thesis is in cooperation
with the Reeds project [16], which is a collaboration between Chalmers University
of Technology, University of Gothenburg, Research Institute of Sweden, and the
Swedish Maritime Administration.

2

1. Introduction

1.1 Research question
This project aims to investigate the following research questions:

RQ-1: How to reduce the deviation in the vertical plane when implementing SLAM
on a vessel?

RQ-2: How does a software-based solution compare to a hardware-based solution for
reducing the deviation in the vertical plan?

RQ-3: What are the minimum conditions for implementing SLAM in a marine
environment?

1.2 Limitations
The aim of the project was to perform live processing and restricted its focus to
lidar sensors, not to cameras or radar. Data from the global navigation satellite
system (GNSS) and the inertial measurement unit (IMU) were used, however, the
authors were not responsible for creating an interface for these sensors since this
had already been done by the team at Reeds. Some SLAM implementations require
a 9-axis IMU and multiple GNSS antennas [17][18], this project, however, only had
access to a 6-axis IMU and a single antenna. Furthermore, SLAM was restricted to
only use point clouds from a single lidar sensor.

1.3 Outline
Following this introduction, the remaining part of this report is organised as
follows. Sect. 2 provides a brief background on existing data sets for AVs (2.1),
continued by a description of common sensors that are used for control and
perception algorithms (2.2) together with the description of a sensor
stabilizer (2.3). The SLAM problem is then explained (2.4) before concluding with
the description of containerised software (2.5). Sect. 3 presents the methodology
used in this work, where the implemented SLAM algorithms are detailed (3.1),
together with an overview of the software architecture (3.2). The experiments for
the proposed research questions are then described (3.3), followed by how they
were planned to be evaluated (3.4). Sect. 4 presents the results regarding the
vessel experiment (4.1), gimbal experiment (4.2) and SLAM requirements (4.3).
Sect. 5 contains the discussion of the results followed by the conclusion in Sect. 6.

3

1. Introduction

4

2
Background

In the first part of this section, there is a general introduction to the work related
to collecting and using various data sets for AV, Sect. 2.1. Then, a description of
the most common sensors and previous studies connected to control and perception
algorithms are covered in Sect. 2.2. Furthermore, the description of localisation
and mapping algorithms are explained in Sect. 2.4. This section concludes with a
discussion of the practical implementation of containerised software in Sect. 2.5.

2.1 Data sets for autonomous vehicles
When designing control and perception algorithms, one would prefer to directly use
existing data sets collected by other researchers, since data acquisition can be quite
time-consuming and cumbersome. Not only is this a matter of convenience, it also
helps researchers to use various data sets as benchmarks to evaluate and compare
the performance of different algorithms.

2.1.1 Explicit and implicit factors
The development of robust methods and novel metrics depends, in part, on having
access to large-scale naturalistic and diverse driving data sets. It is of high
importance that the collected data be as natural and diverse as possible in order to
fairly represent realistic driving scenes. Naturalistic settings that one needs to
consider to improve the driveability of an AV can often be categorised into either
explicit/environmental factors or implicit/behavioural factors [8]. Explicit factors
that would affect the AV could, for example, be due to weather, illumination, road
geometry, road condition, lane marking, traffic conditions, etc. Implicit factors
include vehicle behaviour, pedestrian behaviour, driver behaviour,
motorcyclist/bicyclist behaviour, etc. Handling each factor presents its own
research challenge, and according to previous research, existing approaches are still
far from delivering robust solutions that consider all factors in their data sets [8].

5

2. Background

2.1.2 Overview
Previous literature has presented an overview of the available data sets that have
been collected on public roads. Two papers have presented a detailed overview of
54 and 27 data sets, respectively. These data sets are supposed to represent the
most popular ones, used by researchers when developing control and perception
algorithms for AV [8][9]. All data sets are collected from platforms that have been
mounted on road vehicles. It can be observed that most of these data sets were
collected for object detection, object tracking, and semantic segmentation, which
are some of the early research fields for autonomous driving. It is also concluded
that only a few data sets can be used to analyse implicit factors, which is a
research topic that has been studied insufficiently [8].

There are three data sets that clearly outrank the remaining data sets in
popularity [9]. These are Caltech (2009) [14], KITTI (2012) [19], and Daimler
pedestrian (2006-2016) [20]. While Caltech and Daimler focused on urban traffic,
specifically pedestrian detection, KITTI is used in a broader perspective.
Specifically, targeting the development of perception algorithms for autonomous
road vehicles. KITTI also provides canonical benchmarks for testing and
comparison of baseline algorithms that can help the development of tasks like
optical flow, visual odometry/ SLAM and 3D object detection. It serves as an
open platform on which other researchers can upload evaluation results of their
own algorithms to compare their results with others of similar types.

Figure 2.1: Example images taken from the Caltech data set (left), KITTI data
set (middle) and Daimler data set (right).

To aid in further research on the topic, new data sets are needed. Since many of
the data sets were collected more than a decade ago, there has been concern about
outdated hardware [21]. Additionally, most of the available data sets only pertain to
road vehicles. There has been interest in expanding data sets for govering maritime
vehicles, since this is a research field that only has a few publicly available data
sets. However, availability is not the only issue. The data sets within the maritime
domain are often not diverse enough, on-board recordings are rare, and are not
created with ship autonomy in mind [22, 23, 24]. It is therefore of great interest
to investigate further on how control and perception algorithms would perform in
these types of settings.

6

2. Background

2.2 Sensors
The perception of the environment is one of the major challenges of AV. When
designing control and perception algorithms, one has to decide on what type of data
is to be used to provide solutions to the desired task.

The following sections present a summary of the most common sensors that are
used for AV when gathering data. It is followed by a brief summary of the different
benefits and challenges that one might encounter when using each sensor. A detailed
description of the control and perception algorithms that have been focussed on in
previous research is provided for each sensor.

2.2.1 Camera
Cameras are starting to become the most used device, as they can provide a visual
sense of the environment in the same way humans do with vision. The increase in
popularity comes from the development of neural networks and its ability to handle
multiple camera inputs [25].

Cameras, in comparison to lidar systems, have the benefit of being cheaper
and are less affected by weather conditions such as fog, rain, and snow. Here, the
latter can be both good and bad, depending on the situation. The limitation of
cameras originates from the fact that they only provide raw image data, which
means that they usually lack the depth and exact location of different objects.
However, researchers have investigated the possibility of estimating a distance using
only camera sensors [26].

For most of the available data sets, there is a balanced use of monocular and
stereo cameras, where the primarily focus has been on object and road detection [8].
There is also some research that has focused on 3D reconstruction and vision-based
SLAM [27][28].

2.2.2 Light detection and ranging
Historically, most AV companies have relied heavily on light detection and ranging
(lidar) sensors as their primary perception sensor [29]. lidar sensors operate by
emitting pulsed light waves into the surrounding environment. By measuring the
time it takes for each pulse to return to the sensor after colliding with an object, the
sensor obtains a distance. By repeating this process millions of times per second,
the lidar is able to create a precise 3D map of its environment.

One of the primary advantages of lidar is accuracy and precision; in contrast
to the beams of, for example, radars and sonars, a laser beam can be made highly
focused, without sidelobes. [29]. Compared to cameras, lidar is not affected by
shadows, bright sunlight, or other illumination. However, since lidar uses visible
lasers to measure distance, it cannot work well in bad weather conditions, such as
heavy rain, snow, and fog [30]. The expensive cost of the lidar system is also an
issue.

In combination with the camera, two major approaches are pursued. These are
extractions of more weather-invariant vision features [31][32], and sensor fusion using

7

2. Background

both camera and lidar data [33]. Among the available data sets for AV, Velodyne 64
and Sick were the most popular lidar models [9].

Figure 2.2: Velodyne HDL-64E lidar (left) and Sick MRS6000 lidar (right).

2.2.3 Global navigational satellite system
A Global navigational satellite system (GNSS) uses satellites to provide autonomous
geo spatial positioning. By using time signals that are transmitted by radio, GNSS
is able to determine the longitudinal and latitudinal position with high precision.
To provide continuous global positioning capability, a constellation of at least four
satellites must be simultaneously electronically visible at all times [34]. This means
that areas with limited satellite signals, such as caves and tunnels, will interfere with
the GNSS from producing valid output.

It has also been shown that in dense urban environments, there are propagation
variations of the resulting GNSS signal [11]. This results in multipath reception
errors and degrades positioning accuracy, sometimes causing error messages [21].
Multipath errors are generated when a signal arrives by different routes, caused by
the antennas’ proximity of nearby structures that reflects the signal; see Fig 2.3 for
an illustration of the multipath reception error.

8

2. Background

Figure 2.3: Illustration of the multi-path reception error.

GNSS can also be used to verify and aid various state estimation algorithms
[21][35]. These estimation algorithms are often needed in cases where the GNSS
either loses signal or gives an erroneous output. To provide valid navigation, the
GNSS is often complemented by statistical methods and recursive algorithms to
handle vehicle localisation problems. Some examples of these state estimation
algorithms are Kalman Filter (KF), Extended Kalman Filter (EKF), Uncented
Kalman Filter (UKF) and Particle Filter (PF), see Sect 2.4.2.

2.2.4 Intertial measurement unit
An inertial measurement unit (IMU) is an electronic device that is capable of
measuring the specific angular rate, orientation, and acceleration of a body by
using gyroscopes, accelerometers, and sometimes magnetometers. IMUs are
generally classified according to the amount of sensors that they have built-in.
Units consisting of a gyroscope and an accelerometer are called
6-degrees-of-freedom (DOF) IMUs. Although the use of the accelerometer allows
tracking of relative rotatinal changes, it is not capable of measuring the absolute
rotational position in pitch, roll, and yaw. This is only possible by adding a
magnetometer. These advanced devices are known as 9-DOF IMUs.

The gyroscope operates by producing a high-update rate attitude solution by
integrating the angular rate measurements. The magnetometer is similar to a
magnetic compass, thus providing an orientation reference. The accelerometer
measures the linear acceleration in each direction, according to the Cartesian
coordinate system. However, since the accelerometer also records the gravitational
acceleration, it has to be subtracted by the gravitational acceleration to obtain the
linear acceleration of the system due to motion in all directions [36]. The
subtraction can be made by using estimates of the system’s attitude.

It is possible to use an IMU for navigation. The position of the system can
be obtained by integrating the velocity, where the velocity in each direction can be
obtained by integrating the acceleration measurement. The disadvantage of using

9

2. Background

IMUs for navigation is due to the accumulated errors that occur over time when
integrating the acceleration. This means that any measurement error, which is
constant, will cause a linear error growth in velocity and a quadratic error growth
in position. It has also been illustrated that a constant error in the gyroscope
attitude rate will result in a growth of both quadratic and cubic error for velocity
and position, respectively [37].

2.3 Gimbal
A hardware system used to stabilise sensors (in particular cameras) is known as a
gimbal, see Fig. 2.4. It consists of a platform with three motors, corresponding to
the rotational axes, that can correct any rotational offset to a desired fixed
position. It uses an internal 9-DOF IMU to calculate the forces needed to stabilise
the device. Gimbals are not commonly used in sensor setups, as most sensors are
usually mounted in fixed positions. Since a vessel displays much more movement
in pitch and roll compared to onshore vehicles due to currents and waves, a gimbal
could act as a stabiliser, possibly compensating for the complex kinematic
movements.

Figure 2.4: Ronin-SC gimbal for remote control and 3-axis stabilisation.

2.4 Simultaneous localisation and mapping
Simultaneous localisation and mapping (SLAM) is a technique used for AVs that
constructs a map of an unknown environment while simultaneously localising the
position of the vehicles. The acronym SLAM was first introduced in 1995 in a mobile
robotics survey paper and has since been widely researched within different areas
of robotics [38]. It has been reported that a solution to the SLAM problem can be

10

2. Background

seen as holy grail for the mobile robotics community, as it would provide the means
to make a robot truly autonomous [4]. A successful implementation of SLAM would
allow the AV to perform tasks such as path planning and obstacle avoidance. This
would make the robot capable of exploring new environments without any prior
knowledge.

The main problem with SLAM is that no sensor reading is perfect. That is,
regardless of accuracy, there will always be an error in the estimation of both the
vehicle position and the map, which might cause a deviation over time. In
addition, the methods used for SLAM depend on both the sensor data and the
environment of each AV. This problem is especially evident for boats, in part due
to the different characteristics that water provides compared to solid ground, but
mainly due to the increased complexity in the direction of movements (pitch, roll,
heave1). For example, a SLAM algorithm that uses lidar data will not be able to
see the surface of the water due to the penetration of light beams. Therefore, it is
important to consider the application scenario when performing SLAM. In the
following subsections, various methods that are used for SLAM are explained.

2.4.1 Scan registration
Scan registration is the procedure of matching multiple scans of data when the
relative pose difference is unknown [39]. It includes finding the spatial
transformation that consists of translating and rotating scans such that they can
be merged into a globally consistent coordinate frame. A scan is typically defined
as raw 3D point cloud data which, for most cases, are obtained from either lidars
or depth cameras [40].

The most commonly used registration algorithm is the iterative closest point
(ICP) algorithm which minimises the point-wise distances of the scans in order to
align frames [41]. This algorithm performs well when there is sufficient overlap
between scans where it converges to a local minimum [42]. However, the
disadvantages are that, since it is a point-based method, it does not consider local
features of the surface around each point, where it is also susceptible to statistical
outliers. If the initial frames are not sufficiently aligned, ICP may fail to find the
global minimum, and hence result in erroneous transformation. As a result of this,
other methods are often combined with the ICP to find an initial estimate of the
transformation [21][43].

The main issue with scan registration algorithms is that the transformation is
usually non-trivial due to the difficulty of obtaining a point-wise correspondence
between frames. Other drawbacks include that novel scan matching algorithms
are usually limited to an application-specific environment and that the resulting
registration is only computed over a small number of scans [44].

1Traversal in the vertical direction, even when the vessel is stationary

11

2. Background

2.4.2 State estimation
State estimation is the procedure of estimating the internal states of a system. In
the case of SLAM, this constitutes of estimating the AVs trajectory in the map based
on different measurements from the external sensors.

2.4.2.1 Sensor fusion

Sensor fusion is the process of combining multiple sensor data from external
sources such that the resulting information has less uncertainty, compared to the
case where the data from each sensor would be used individually. It is common to
complement the use of a GNSS with an IMU, which creates a GNSS-aided inertial
navigation system (GNSS + INS). This combination has been shown to improve
the performance of the position, velocity, and attitude estimates of the AV [45].
Sensor fusion is important since it can help stabilise occasionally noisy data, such
as the multipath reception error.

2.4.2.2 Extended Kalman filter

Extended Kalman filter (EKF) is the nonlinear version of the Kalman filter (KF)
which uses a series of sensor measurements, including noise and other inaccuracies, to
produce estimates of unknown variables. It is a standard technique that is frequently
used in various applications when the motion model of the AV is nonlinear [10]. The
framework of the EKF can be described by the discrete nonlinear Markov model in
Eq. 2.1

xk = F (xk−1,uk) +wk−1 (2.1)
yk = G(xk) + vk

where xk denotes the state vector and uk is the control vector that holds the sensor
data from the GNSS and IMU. wk is the n-dimensional process noise vector that
adds to the uncertainty of the motion model, vk is the p-dimensional observational
noise vector that adds to the uncertainty of the measurements, both are assumed to
have zero mean and Gaussian noises with covariance Qk and Rk respectively. The
nonlinear dynamics of the system is described by F and G, which are assumed to
be known.2 yk is the noisy output vector of the system.

The objective of the model in Eq. 2.1 is to recursively estimate the state
vector xk from the accumulated collection of noisy measurements y1, ...,yk. This is
carried out by implementing a first-order Taylor expansion of the nonlinear system
and recursively performing a prediction step and an update step. Let the notation
x̂k|k−1 represent the estimate of xk at time k, given k−1 noisy estimates, see Eq. 2.2

x̂k|k−1 = E(xk|y1:k−1) (2.2)

2If the system model is inaccurate of not well known, then it is better to implement a particle
filter, which utilises a Monte Carlo method.

12

2. Background

The prediction step is then performed according to Eq. 2.3

Predicted state estimate x̂k|k−1 = F (x̂k−1|k−1,uk) (2.3)
Predicted covariance estimate Pk|k−1 = FkPk−1|k−1F

T
k +Qk

and the update step is performed according to Eq. 2.4

Measurement residual z̃k = yk −G(x̂k|k−1) (2.4)
Residual covariance Sk = GkPk|k−1G

T
k +Rk

Kalman gain Kk = Pk|k−1G
T
kS
−1
k

Update state estimate x̂k|k = x̂k|k−1 +Kkz̃k

Update covariance estimate Pk|k = (I −KkGk)Pk|k−1

where Fk and Gk are the Jacobians, defined according to Eq. 2.5

Fk = ∂F

∂x

∣∣∣∣
x̂k−1|k−1,uk

Gk = ∂G

∂x

∣∣∣∣
x̂k|k−1

(2.5)

It has been concluded that the EKF is the most widely used state estimator for non-
linear systems [46]. However, since the EKF approximates the state distribution
by a random Gaussian variable and propagates it analytically through the first-
order linearisation of the non-linear system, it can introduce large errors in the true
posterior of the mean and covariance [10]. This may lead to sub-optimal performance
and divergence of the EKF. In order to address this, there have been modified
versions of the EKF that better capture the non-linearities of the system dynamics.

2.4.2.3 Unscented Kalman filter

Unscented Kalman filter (UKF) is a modified version of the EKF that addresses
the problem with the first-order linearisation by introducing a deterministic
sampling approach. Instead of propagating a first-order Taylor expansion around
the mean through the nonlinear system, the UKF selects a minimal set of carefully
chosen sample points, called sigma points, which are then propagated instead. The
transformation of the sigma points is intended to estimate the posterior
distribution with greater precision.

By performing this methodology, it has been proven that the UKF is capable of
capturing the posterior mean and covariance to an accuracy of a third-order Taylor
expansion, in contrast to the first-order accuracy of the EKF [10]. It should also be
noted that no explicit calculation of any Jacobians or Hessians is necessary and that
the computational complexity of the UKF is identical to that of the EKF. The only
disadvantage of implementing a UKF over an EKF is that, in practise, the latter is
slightly more computationally efficient, yielding faster computation; otherwise, the
UKF is more robust to nonlinear transformation and should be the desired choice
[47]. The implementation of the UKF is covered in Sect. 3.1.3.

13

2. Background

2.4.3 Kinematic problems
While SLAM has been considered a closed problem in some scenarios, it is not yet
possible to apply a single algorithm that is applicable to all types of
environments [5]. The main issue that arises when performing SLAM on a boat is
due to the accumulated drift that occurs from the false estimations of various state
estimation algorithms [48]. Another way to describe the same phenomenon is that
most algorithms fail to converge to an optimal solution, hence converging to a
local minimum instead of a global minimum. This is a common problem when the
motion model of the AV is described by a non-linear system. It has also been
concluded that the convergence of an algorithm strongly depends on having a
sufficient number of features and that the initial guess of the estimation must be
sufficiently close to the global minimum at the beginning of the algorithm [48].

Figure 2.5: Kinematic movement and terminology of a vessel.

Given that most SLAM algorithms use a methodology that compares the
relationship between two scans, there have been problems with estimating the
initial pose and orientation of the first scan [48]. This has been illustrated to cause
drifts in localisation due to an rotational between the coordinate systems of a
lidar, and other sensor readings like GPS. The drifts are most common in the
vertical direction, as sensor corrections are more common in the horizontal plane
[6]. This is a particular issue in maritime outdoor environments, as the robot
usually lacks ground-truth features from the ground and the roof. These
inaccuracies might cause a theoretical unbounded drift in the vertical plane, while
still being able to give reasonable results in the projected horizontal plane [7]. The
complex movements of a vessel are illustrated in Fig. 2.5

14

2. Background

2.5 Containerised software and microservices
Containerising an application is the concept of packaging a software binary
together with its dependencies so that it can run reliably on computers with
varying operating systems [49]. The principle of containerisation works well with
the microservice software architecture pattern, where each microservice can be
containerised individually. The principle of this paradigm is to divide the
programme into several microservices, whose objective is to perform a single action
with specified inputs and outputs. The conception of microservices can be thought
of as an independent function that interacts via messages [50], where each
microservice is responsible for performing a specific task. This methodology is a
common course of action among developers when working with large projects, as it
allows continuous integration and deployment (CI/CD), which is the concept of
effectively building, testing, and merging programme code.

A common approach for performing the containerisation is through Docker,
which is a set of open-source platform services that utilises virtualisation at the
OS level to deliver software in packages. Docker has become the leading reference
technology for building containers and is widely used within the industry [51].3 A
container can be realised through a Docker image, which is a set of instructions that
acts as a blueprint for building the container.

3https://www.docker.com/

15

2. Background

16

3
Methods

This section describes the methodology used in this project. First, the used SLAM
algorithm is detailed in Sect 3.1, including the preprocessing, registration, and sensor
fusion using an UKF. Furthermore, the software architecture is explained in Sect.
3.2. The two experiments concerning a software and hardware solution are described
in Sect. 3.3.1 and Sect. 3.3.2. Lastly, Sect. 3.4 explains how the results govering the
research questions were evaluated.

3.1 SLAM
The SLAM algorithm is divided into its sequential steps. Sect. 3.1.1 covers the
preprocessing of the point cloud. Sect. 3.1.2 covers the normal distribution
transform (NDT) and iterative-closest-point (ICP) algorithms, and Sect. 3.1.3
covers the Unscented Kalman filter (UKF) algorithm.

3.1.1 Point cloud preprocessing
The point cloud was pre-processed prior to registration (Sect. 3.1.2) in order to
remove redundant points. The purpose was to remove the dynamical movement of
the vessel together with noisy data. The filtering methods are described below.

3.1.1.1 Crop box filter

The crop box filter was used to retain points within the region of interest, where
the input point cloud was filtered within a given box of defined minimum and
maximum boundaries. The purpose of this filter is to exclude points that are
either far away or close to the lidar, since these points are much noisier due to
environmental interference.

Since the lidar was installed on the bow of the vessel, the points from the rear
end of the cabin had to be removed to prevent the dynamical movement of the
vessel from being continuously mapped. The removal of unnecessary points can also
improve the processing speed of the algorithm and increase the performance of the
mapping.

17

3. Methods

3.1.1.2 Statistical outlier removal

Due to measurement errors, certain data sets present a large number of shadow
points, also known as noisy points, which complicate the estimation of local
features of the point cloud [52]. The cause of these errors might be due to noisy
measurement of the lidar, environmental interference, or object reflection
characteristics. By performing a statistical analysis on each point’s neighbourhood,
outliers can be filtered by removing those points that do not meet certain criteria.

The methodology of this filter is to compute the distribution of each point’s
distances to its neighbours from the input point cloud. The algorithm iterates
through the input point cloud twice, where during the first iteration the average
distance is computed of each point to its nearest k neighbours. Assuming that
the average distance between all points in the input point cloud and its nearest k
neighbouring points meets the Gaussian distribution. During the next iteration,
points are considered to be inliers or outliers depending on if their mean neighbour
distance is below or above the threshold; see Algorithm. 1.

Algorithm 1 Statistical outlier removal
Input: Pi, k, α
Output: Pf

1: Pi represents the input point cloud
2: k represents the number of closest points around point xi
3: α represents the standard deviation multiplier
4: for every xi ∈ Pi do
5: Find the location of the k nearest neighbours to xi
6: Compute the mean distance di from xi to its k nearest neighbours
7: end for
8: Compute the mean µd of the distances di
9: Compute the standard deviation σd of the distances di

10: Compute the threshold T = µd + α · σd
11: for every xi ∈ Pi do
12: if di > T then
13: Eliminate xi
14: end if
15: end for
16: return Filtered point cloud Pf

18

3. Methods

3.1.2 Point cloud registration
The methods described in this section are based on an approach that only uses point-
cloud data, and will denote the baseline method in this project. The registration is
performed through a combination of the normal distribution transform (NDT) and
iterative-closest-point (ICP) algorithm.

3.1.2.1 Normal distribution transform

Normal distribution transform (NDT) was first proposed by Biber and Straßer in
2003 as a method for 2D scan registration [53]. It is a common registration algorithm
that is used in many fields for aligning poses. The NDT algorithm provides a rough
registration of point clouds by matching the target cloud (a new frame scanned by
the lidar) to a reference cloud according to a Gaussian distribution. The Gaussian
distribution is generated by splitting up points from the reference cloud into voxels,
where a voxel is a three-dimensional equivalent of a pixel. A probability density
function (PDF) is computed for each cell, based on the point distribution within the
cell. By assuming that the location of the reference scan points were generated by
a normal random process, the likelihood of observing a particular point xi is

p(xi) = 1
(2π) 3

2

√
|Σ|

exp
(−(xi − µ)TΣ−1(xi − µ)

2

)
(3.1)

where µ and Σ denotes the mean vector and covariance matrix of the points within
a voxel, see Eq. 3.2 and Eq. 3.3

µ = 1
|Pvox|

|Pvox|∑
i=1

yi (3.2)

Σ = 1
|Pvox| − 1

|Pvox|∑
i=1

(yi − µ)(yi − µ)T (3.3)

where yi=1...,|Pvox| denotes the points within a voxel.
When using NDT for point cloud registration, the goal is to find the

transformation matrix T (~p,xi) that maximises the likelihood of the target point
cloud compared to the reference point cloud, see Fig. 3.1, where

~p = [tx, ty, tz, φx, φy, φz] (3.4)

is the set of parameters that describes the translation and rotation, and

T (~p,xi) =

 cycz −cysz sy
cxsz + sxsycz cxcz − sxsysz −sxcy
sxsz − cxsycz cxsysz + sxcz cxcy

xi +

txty
tz

 (3.5)

is the transformation matrix, where ci = cosφi and si = sinφi. The best
transformation should therefore be the one that maximises the following likelihood
function

Ψ =
|Pt|∏
k=1

p(T (~p,xk)) (3.6)

19

3. Methods

or equivalently, minimises the negative log-likelihood of Eq. 3.6

s(~p) = − log Ψ = −
|Pt|∑
k=1

log
(
p(T (~p,xk)

)
(3.7)

where p() is the PDF defined in Eq. 3.1 and T () is the transformation matrix defined
in Eq. 3.5. The size of the target point cloud is denoted as |Pt|. The optimal value
of Eq. 3.7 can be found by using Newton-Raphsons method to find the parameters
of Eq. 3.4. This is done by iteratively solving

H∆~p = −~g
~p = ~p+ ∆~p

(3.8)

where H and ~g is the Hessian and gradient vector of Eq. 3.7, which are defined as

Hij = ∂2s

∂pi∂pj
(3.9)

gi = ∂s

∂pi
(3.10)

The advantage of using the NDT algorithm is that it provides a computationally
fast estimate compared to other methods [54]. Due to NDTs averaging effect, it is
also robust to noisy data. However, the performance of the algorithm is sensitive
to the size selection of the voxels, meaning that the voxel size needs to be tuned
depending on both the sensor and environmental conditions. For data collected in
this work, a voxel size of 4.5× 4.5× 4.5 [m3] was used.

In previous work, NDT has been concluded to provide accurate results when
faced with scan data that has little overlap and weak geometric features [55]. It
is therefore used as an initial transformation before continuing further with more
precise alignments, see Algorithm 2.

20

3. Methods

Figure 3.1: Two-dimensional illustration of the NDT algorithm. Points from the
reference frame are divided into multiple voxels. The red ellipses illustrates the
Gaussian distribution in each voxel generated by the points from the reference frame.
When the new target frame is generated, it is then matched with the Gaussian
distribution from the reference frame. A transformation is then performed between
the target and reference frame, maximising the overlapping score.

Algorithm 2 Normal distribution transform (NDT)
Input: Pr, Pt

1: Pr represents the previous point cloud.
2: Pt represents the latest point cloud.
3: Divide Pr into voxels bi of a specified size
4: for every voxel do
5: Compute the mean µ (see Eq. 3.2)
6: Compute the covariance matrix Σ (see Eq. 3.3)
7: end for
8: while not converged do
9: score← 0

10: ~g ← 0
11: H ← 0
12: for every xk ∈ Pt do
13: Find the voxel bi that contains T (~p,xk)
14: score← score+ p(T (~p,xk))
15: Update ~g (see Eq. 3.10)
16: Update H (see Eq. 3.9)
17: end for
18: Update parameters (see Eq. 3.8)
19: end while

21

3. Methods

3.1.2.2 Iterative-closest-point

Iterative-closest-point (ICP) is a refine registration pointwise algorithm that operates
by matching different frames. The methodology of ICP is to compute the refine
transformation between the reference and target point cloud by minimising the error
of point-wise distances [42]. This is performed by minimising the sum of squared
differences between the coordinates of the matched pairs through iteration, where
the algorithm searches through a combination of rotations and translations; see
Eq. 3.11

~qR, ~qT = arg min
~qR, ~qT

1
|Pr|

∑
i

∣∣∣∣∣∣∣∣P i
t −

(
R(~qR) · P i

r + ~qT
)∣∣∣∣∣∣∣∣2 (3.11)

where, Pt, Pr denotes the target (previous) and reference (latest) frame, and ~qR, ~qT
are vectors that describe rotation and translation. The first step of the algorithm
is to define the pointwise correspondence of the target scan with the reference scan.
This is done by pairing each point in the target scan with the closest neighbour
in the reference scan, according to the Euclidean distance. After computing the
pointwise correspondance, the mean point for both point sets is computed according
to Eq. 3.12

µr = 1
N

N∑
i=1
xi and µt = 1

M

M∑
i=1
x̃i (3.12)

where N = |Pr| and M ∈ [1, N] is the number of points matched between the
reference frame and the target frame,1 the values given in Eq. 3.12 represents the
centre of mass for each frame. The optimal rotation and translation of Eq. 3.11 is
then found using a quaternion-based method [56]. This includes first computing the
cross-covariance matrix Σrt of the reference and target set according to Eq. 3.13

Σrt = 1
N

N∑
i=1

[
(x̃i − µt)(xi − µr)t

]
(3.13)

By then using the cyclic components of the antisymmetric matrix Aij = (Σrt−ΣT
rt)ij

to form the column vector ∆ = [A23, A31, A12]T , the following symmetric 4×4 matrix
is constructed

Q(Σrt) =
[
Tr(Σrt) ∆T

∆ Σrt + ΣT
rt − Tr(Σrt)I3

]
(3.14)

where Tr denotes the trace of a matrix and I3 is the 3 × 3 identity matrix. The
optimal rotation can now be obtained by computing the unit quaternion eigenvector
~qR =

[
q0 q1 q2 q3

]t
corresponding to the maximum eigenvalue of Eq. 3.14, where

q0 ≥ 0 and q2
0 + q2

1 + q2
2 + q2

3 = 1. The optimal translation vector ~qT is then given by

~qT = µr −R(~qR)µt (3.15)

where the rotation matrix generated by a unit quaternion is defined as in Eq. 3.16

R(~qR) =

q
2
0 + q2

1 − q2
2 − q3

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − q2

1 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2

 (3.16)

1In the example given in Fig. 3.2, N = 7 and M = 3.

22

3. Methods

Figure 3.2: First panel displays the reference frame (black) and the target
frame (gray). Second panel illustrates how the ICP algorithm finds a pointwise
correspondance between the reference frame and the target frame , where the dotted
red lines is the shortest Euclidean distances between points. Third panel highlights
the center of mass for both set of points, according to Eq. 3.12. Forth panel shows
the resulting translation and rotation after one iteration where the center of mass
for both set of points have overlapped.

By iteratively updating and refining the relative poses according to Eq. 3.11, the
ICP algorithm is able to provide a more precise fit compared to NDT. However, the
drawback is that it is computationally heavy, especially when working with dense
clouds. Due to the non-convexity of the ICP optimisation, the performance of the
algorithm is strongly dependent on the initial estimate between frames [57], which
is a limitation with this approach. The nearest-neighbour point generally does not
correspond to the same point on the scanned frame, which means that if the poses
in the ICP algorithm are too far apart, the algorithm may fail to converge. See
Fig. 3.2 for an illustration of the first iteration.

To run efficiently, the alignment of two frames must have a sufficient overlap,
where it has been concluded that the algorithm always converges to a local minimum
[42]. Therefore, NDT was performed prior to ICP as an initial estimation prior to
further refinement. It is noted that ICP does not require having equally sized frames
since it automatically takes care of point-wise correspondence due to using the closest
pair, see Algorithm 3.

Algorithm 3 Iterative-closest-point (ICP)
Input: Pr, Pt

1: Pr represents the previous point cloud.
2: Pt represents the latest point cloud.
3: while not converged do
4: Find a pointwise correspondence between Pr and Pt
5: Compute the mean points µr, µt of both sets (see Eq. 3.12)
6: Compute the cross-covariance matrix Σrt (see Eq. 3.13)
7: Compute the rotation ~qR and translation ~qT (see Eq.3.14,3.15,3.16)
8: end while

23

3. Methods

3.1.3 UKF
The Unscented Kalman Filter (UKF) was implemented to calculate a state estimate
based on the sensor data recorded. The difference in position between two frames
is then used to calculate an initial transformation for the ICP algorithm, where the
implementation of the UKF will denote the software-based approach in this project.
The UKF uses data from the IMU and GNSS to predict the future pose of the
vessel. It operates by recursively propagating a random variable x, which describes
the states, through a non-linear function y = g(x), which describes the dynamics
of the model.

3.1.3.1 Initialisation

The UKF starts by initialising its current pose (X, Y, v, θ, ψ, ϕ) based on the
measurements of the GNSS and IMU, where X, Y denotes the transformed
longitudinal and latitudinal coordinates from the GNSS, v denotes the velocity of
the vessel in the plane, and θ, ψ, ϕ denotes the pitch, roll, and yaw measurements
from the IMU. The other states (Z, θ̇, ψ̇, ϕ̇, ηv̇, ηZ̈ , ηθ̇, ηψ̇, ηϕ̇) are initialised as zero,
where Z denotes the altitudinal position of the vessel, θ̇, ψ̇, ϕ̇ denotes the pitch,
roll, yaw rate, ηv̇, ηZ̈ denotes the noise of the acceleration in both the vessels and
the altitudinal direction, ηθ̇, ηψ̇, ηϕ̇ denotes the noise of the angular rate of pitch,
roll, and yaw. The total number of states is shown in Eq. 3.17.

x = (X, Y, Z, v, θ, ψ, ϕ, θ̇, ψ̇, ϕ̇, ηv̇, ηZ̈ , ηθ̇, ηψ̇, ηϕ̇) (3.17)

The state covariance matrix P which is of size 15×15, that describes the uncertainty
of the states and the performance of the filter, is initialised to a large value.

3.1.3.2 Prediction step

The nonlinear pose transformation f of the vessel was described by a combination
of a constant velocity (CV) model [58] and a constant turn rate velocity (CTRV)
model [59]. The CTRV model is chosen to describe the dynamics when the yaw rate
is above a certain threshold; otherwise, the CV model is chosen. This particular
methodology has previously been shown to successfully predict the movement of
road vehicles with six degrees of freedom and was therefore replicated here [21].

24

3. Methods

The prediction step starts with the generation of 2N + 1 sigma points Xi with
their corresponding weights Wi, where N = 15 is the number of states in the model.
This is done according to Eq. 3.18

X0 = x̄k−1 (3.18)

Xi = x̄k−1 +
(√

(N + λ)Pk−1
)
i

i = 1, ..., N

Xi = x̄k−1 −
(√

(N + λ)Pk−1
)
i−N

i = N + 1, ..., 2N

W
(m)
0 = λ/(N + λ) (3.19)
W

(c)
0 = λ/(N + λ) + (1− α2 + β)

W
(m)
i = 1/

(
2(N + λ)

)
i = N + 1, ..., 2N

W
(c)
i = 1/

(
2(N + λ)

)
i = N + 1, ..., 2N

where x̄k denotes the mean point of the states at timestep k, λ = α2(N + κ) − N
is a scaling parameter where κ ≥ 0 and α ∈ [0, 1) are parameters that influence
how far the sigma points are away from the mean. β is used to describe the prior
distribution of states, where it has been concluded that β = 2 is optimal for Gaussian
distributions [10]. (

√
(N + λ)Pk−1)i is the i:th row of the square root of the matrix,

where A =
√
D is a square root of the matrix if D = AAT holds. The superscripts

m and c of the weights in Eq. 3.19 denote the abbreviation for sigma points and
covariance.

The sigma points are then propagated through the non-linear transformation
function f according to Eq. 3.20

X̃i = f(Xi) i = 0, ..., 2N (3.20)

The propagated sigma points X̃i are then weighted to produce the mean and
covariance of the posterior, see Eq. 3.21

X̂ =
2N∑
i=0

W
(m)
i X̃i (3.21)

P̂x =
2N∑
i=0

W
(c)
i (X̃i − X̂)(X̃i − X̂)T +Q

whereQ is the covariance of the noise from the motion model. Given the predictions
in Eq. 3.21, a new set of sigma points Si and weights W is calculated. These
new points are then transformed through the measurement function h according to
Eq. 3.22

Ỹi = h(Si) i = 0, ..., 2N (3.22)

where h is the function that updates the states depending on the obtained sensor
measurement.

25

3. Methods

3.1.3.3 Update step

The mean and covariance of the transformed points from Eq. 3.22 are then calculated
according to Eq. 3.23

Ŷ =
2N∑
i=0

W
(m)
i Ỹi (3.23)

P̂yy =
2N∑
i=0

W
(c)
i (Ỹi − Ŷ)(Ỹi − Ŷ)T +R

P̂xy =
2N∑
i=0

W
(c)
i (S̃i − X̂)(Ỹi − Ŷ)T

where R is the covariance matrix of the measurement noise. To update the final
mean and covariance estimates, the Kalman gain K is first calculated according to
Eq. 3.24

K = P̂xyP̂
−1
yy (3.24)

The final update is then computed according to Eq. 3.25

X́ = X̂ +K(S − Ŷ) (3.25)
Pk = P̂x −KP̂yyKT

When the new states of the vessel have been updated, the scan of the point cloud
is transformed by translating every point to the new predicted UKF position. The
rotation of the cloud is then obtained by first performing an Euler to quaternion
conversion of the roll ψ, pitch θ and yaw ϕ angle according to Eq. 3.26 [60]

~qR =

q0
q1
q2
q3

 =

cos ψ

2 cos θ
2 cos ϕ

2 + sin ψ
2 sin θ

2 sin ϕ
2

sin ψ
2 cos θ

2 cos ϕ
2 − cos ψ

2 sin θ
2 sin ϕ

2
cos ψ

2 sin θ
2 cos ϕ

2 + sin ψ
2 cos θ

2 sin ϕ
2

cos ψ
2 cos θ

2 sin ϕ
2 − sin ψ

2 sin θ
2 cos ϕ

2

 (3.26)

The final rotation is then generated by an quaternion rotation, identical to that
described in Eq. 3.16. Finally, the steps of the UKF prediction and update are
summarised in Algorithm 4–5.

Algorithm 4 UKF prediction
1: Generate sigma points
2: X = [x̄k−1, x̄k−1±

√
(N + λ)Pk−1]

3: Predict future state
4: X̃ = f(X)
5: X̂ = ∑

iW
(m)
i X̃i

6: Predict error covariance
7: P̂x =

∑
i W

(c)
i (X̃i − X̂)(X̃i − X̂)T +Q

8: Recalculate sigma points
9: S = [¯̂xk, ¯̂xk ±

√
(N + λ)Px]

10: Continue with update step

Algorithm 5 UKF update
1: Predict future state
2: Ỹ = f(S)
3: Compute Kalman gain
4: Ŷ = ∑

iW
(m)
i Ỹi

5: P̂yy =
∑

i W
(c)
i (Ỹi − Ŷ)(Ỹi − Ŷ)T +R

6: P̂xy =
∑

i W
(c)
i (S̃i − X̂)(Ỹi − Ŷ)T

7: Update states and covariance
8: X́ = X̂ +K(S − Ŷ)
9: Pk = P̂x −KP̂yyKT

10: Return to prediction step

26

3. Methods

3.1.3.4 Heading approximation

Since a 6-axis IMU can only deliver a relative direction, the absolute direction of
the vessel was computed according to Eq. 3.27

ϕ = arctan(X, Y) (3.27)

where the positional coordinates were obtained from the GNSS. The longitude and
latitude reading of the GNSS was transformed into Cartesian coordinates (X, Y)
according to the Mercator projection [61], where (X, Y) denotes the current position
of the vessel and the origin is the position two seconds prior. The delay of two seconds
was introduced to acquire a smoother variation; see Fig. 3.3.

Figure 3.3: Illustration of how the heading ϕ in Eq. 3.27 is computed. The
current position of the vessel (black) is compared with the position two seconds
earlier (grey). The coordinate system is rotated according to the setup of the lidar,
see Fig. 3.5.

3.1.3.5 Velocity approximation

Since it was not possible to obtain a velocity reading from the sensors, the vessel
velocity in frame t was computed according to Eq. 3.28

v(t) = 1
50

49∑
i=0

s(t− i) · dt (3.28)

where dt is the reciprocal of the GNSS frequency and s(t) is the difference in GNSS
distance between frames t and t− 1. The latter is computed according to Eq. 3.29

s(t) = 2R arcsin
(√

sin2
(ϕt − ϕt−1

2
)

+ cosϕt−1 · cosϕt · sin2
(λt − λt−1

2
))

(3.29)

where ϕt−1, ϕt is the latitude and λt−1, λt is the longitude, in radians, of the position
of the vessels in frame t − 1 and t. The radius of the Earth is denoted by R. To

27

3. Methods

reduce the noise of the GNSS data in Eq. 3.28, the instantaneous velocity was
computed as a mean over 50 frames (5 s).

3.2 Software architecture
Since the team at Reeds has previously emphasised the positive effects of using
containerised design principles when creating algorithms for AVs [62], it was
decided to implement a containerised software framework in order to realise the
SLAM algorithm. The framework was divided into two different microservices,
where one of the services was responsible for the NDT and ICP algorithm, and the
other for the UKF algorithm. Data capture, communication and hardware
interfacing were achieved using the OpenDLV software framework [63], powered by
libcluon.2 Each microservice was built and run as a docker container. Both
services were started by using a docker-compose file, which ensures that all services
are run in parallel.

3.2.1 Algorithms
The algorithms used for SLAM in this paper are summarised in Fig. 3.4. Algorithm 1
is only utilising lidar data while performing NDT and ICP. Algorithm 2 is utilising
lidar data together with IMU and GNSS data, where the UKF acts as an initial
transformation prior to the ICP if the predicted yaw deviation is below a threshold;
otherwise, the registration will continue with the NDT.3

Figure 3.4: Overview of this papers SLAM algorithms. Algorithm 1 is
implementing a only lidar-approach while Algorithm 2 is implementing sensor
fusion.

2https://github.com/chrberger/libcluon
3In the continuation of this report, Algorithm 1 and Algorithm 2 will be referred to as only

lidar and UKF, respectively.

28

https://github.com/chrberger/libcluon

3. Methods

3.2.2 Interfacing the Ouster OS2-128 sensor
In order to utilise the point cloud data for the algorithms, an interface was created
for the lidar sensor. The conversion of sensor data to point cloud data was performed
according to Eq. 3.30.

r = range_mm (3.30)
n = LiDAR_to_beam_orgin_mm

θencoder = 2π ·
(
1− encoder_count

90112
)

θazimuth = −2π beam_azimuth_angles[i]
360

φ = 2π beam_altitude_angles[i]
360

x = (r − n) cos(θencoder + θazimuth) cos(φ) + n cos(θencoder)
y = (r − n) sin(θencoder + θazimuth) cos(φ) + n sin(θencoder)
z = (r − n) sin(φ)

where the specific details of the lidar sensor are illustrated in Fig. 3.5 [64].

Figure 3.5: The left figure displays a top-down view of the lidar Coordinate Frame.
The figure on the right displays a side view of the lidar coordinate frame.

29

3. Methods

3.3 Experiments
The experiments are divided into a vessel recording, which focuses on a software-
based approach with additional sensors in order to perform a UKF state estimation,
as well as laboratory recordings with a gimbal-stabilised setup. Both runs are also
referred to as software-based (UKF) and hardware-based (gimbal).

3.3.1 Vessel experiment
The initial data logging was an essential part of evaluating the problems that arise
when trying to perform SLAM in a complex kinematic environment. As a vessel on
any body of water has significantly more movement in most degrees of freedom
compared to automotive vehicles, this step was important to identify the
shortcomings of a lidar-based SLAM.

It was decided to perform two data logging sessions along the coastline of
Gothenburg, specifically starting from Långedrag, Västra Frölunda. These two
sessions are referred to as first run and second run. When recording different runs,
it was essential to capture multiple different conditions and situations. Therefore,
these varied in velocity, amount of observable features, dynamic objects, and
special cases like loop-closing scenarios, docking, and static behaviour. The raw
data from the runs are summarised in Sect 4.1. The aim of constructing these runs
was to focus on how the algorithms would perform in the relatively calm bay area.

The vessel used in this project can be seen in Fig. 3.6, it was a 13 m long
boat that is specially designed for rescue missions. The vessel was equipped with
supporting sensors on a compact tripod to evaluate the odometry, the sensor setup
is illustrated in Fig. 3.8 and is fully described in Sect. 3.3.1.1.

Figure 3.6: SSRS-1100, the vessel that was used to collect data.

30

3. Methods

The paths of the evaluated runs are illustrated in Fig. 3.7, where the first run
included multiple loops near the pier and the second run included higher speeds
while traversing along the coast.

11.842 11.844 11.846 11.848 11.850 11.852
Longitude

57.667

57.668

57.669

57.670

57.671

57.672

La
tit

ud
e

First run
GPS odometry

11.85 11.86 11.87 11.88 11.89 11.90
Longitude

57.675

57.680

57.685

57.690

La
tit

ud
e

Second run
GPS odometry

Figure 3.7: Path followed in first and second run.

3.3.1.1 Hardware setup - Vessel

The hardware in this experiment included an Ouster OS2-128 lidar, an external 6-
axis IMU and a Trimble SPSx61 modular GPS receiver together with a single GA530
antenna. See Fig. 3.8. The lidar obtained a resolution of 128 beams in the vertical
axis and 1024 increments on the horizontal plane at a frequency of 10 Hz. The
field of view was 22.5° in the vertical direction and 360° in the horizontal direction.
The IMU composed of a 3-axis gyro with a 3-axis accelerometer and operated at
a frequency of 100 Hz. The GNSS obtained latitude and longitude readings while
operating at a frequency of 20 Hz.

Figure 3.8: Sensor platform setup for the vessel run, containing a Ouster-OS2-128
lidar, an IMU and a GNSS antenna.

31

3. Methods

3.3.2 Gimbal experiment
As the vessel used for the previous experiments broke down due to an engine failure,
further experiments were performed in the Revere laboratory. The goal was to
evaluate how a gimbal-stabilised sensor platform would compare to an unstabilised
one. In order to simulate the conditions on a vessel, the gimbal was programmed to
rotate the lidar on the x- and y-axis in a sinus-wave pattern during the unstabilised
run. This results in a larger change of the perceived vertical point cloud window. The
main concern of this experiment was to observe whether any significant deviations in
the vertical plane would occur with the use of a gimbal and how they compare to the
simulated vessel movement. Using a gimbal, the rotational position is restricted to
movement in the yaw direction. Any changes in pitch and roll should be continuously
adjusted by the motors and can be assumed to be equal to zero. Due to this,
the alignment between two frames is reduced from six to four dimensions, hence
expecting to result in more accurate tracking of the sensor odometry.

For the recording session, the sensor platform was placed on a cart and driven
through the laboratory in the shape of an eight. Due to the environment, it was
not possible to record GNSS data and therefore it was not possible to evaluate the
deviation in the horizontal position.

3.3.2.1 Hardware setup - Laboratory

Once again, the Ouster OS2-128 lidar was used. The internal IMU of the lidar data
was recorded, but it was disregarded, as it differs in quality from the IMU used in
the other recording sessions. With a mounting plate, the lidar was attached to a
DJI Ronin-SC. This cost-efficient gimbal is usually used for mirrorless cameras, but
due to the low weight of the Ouster lidar, it was able to stabilise it without much
effort. Some careful planning with the cable setup was required as it can shift the
centre of gravity, possibly resulting in force overload for the gimbal motors.

Figure 3.9: Sensor platform setup for the laboratory run, containing a Ouster-
OS2-128 mounted on a DJI Ronin-SC gimbal.

32

3. Methods

First run Second run Third run Forth run
Frames 18635 14161 560 570
Algorithm Time (s) 1863.5 1461.1 56.0 57.0
Speed (m/s) 0.0-3.8 0-4.9 - -
Distance (m) 3086 4923 40 40
Lidar Freq. (Hz) 10 10 10 10
Lidar Mode 1024 1024 2048 2048
In water Yes Yes No No
GNSS Yes Yes No No
Min Cropbox (±5,±5,±3) (±5,±5,±3) (±2,±2,±2) (±2,±2,±2)
Max Cropbox - - (±40,±40,±8) (±40,±40,±8)

Table 3.1: Logging data from the four recordings.

3.4 Evaluation of results
In order to evaluate the proposed algorithms, it was important to evaluate multiple
metrics. As a SLAM method always consists of mapping and localisation, both parts
must perform well.

Evaluating the performance of the localisation is done mainly by analysing the
computed trajectory of the lidar. As a 6-DOF IMU was used in the experiments, the
starting positions of the rotational angles are unknown. Therefore, the coordinate
system of the lidar does not correlate to the global frame. If the tracked movement of
the lidar exerts a constant decrease in the z-axis, this does not necessarily correspond
to a bad localisation. It just means that due to the rotational offset between the
coordinate systems, that it moves in the vertical axis of the global frame. Therefore,
a constant velocity in the z-axis is an indicator for a well-performing localisation.
To evaluate the performance of the vertical drift, the acceleration on the z-axis was
computed to track any orthogonal offsets that would occur. That is the key indicator
used to assess the deviations. Note that the main reason for choosing to evaluate
the acceleration, and not the velocity, was because the prior is easier to compare
between runs. Furthermore, the evaluation of the movement was split into the
horizontal and vertical plane. The movement in the horizontal plane was compared
with the ground truth of the GNSS data, while the movement in the vertical plane
was compared with the ground truth of zero, based on the assumption that the
logging area was flat. The reason for splitting up the evaluation of the movement
was because previous studies had claimed that sensor corrections were common in
the horizontal plane, while still deviating in the vertical plane [6].

The performance of the mapping was evaluated through a comparison with
chart data taken from OpenSeaMap [65]. When the alignment of two frames results
in failed registration, the accumulated offsets cause smearing effects on the stitched
point cloud. These offsets will either result in erroneous rotation or stacking of the
points, where the performance of the latter was evaluated through observation.

In order to examine the performance of the SLAM algorithms in different
conditions, the error metrics from the localisation was compared to the average

33

3. Methods

velocity of the sensor and to the density of the point cloud. The goal was to
investigate whether there existed any correlation in the SLAM performance
between the environmental factors.

The evaluation of how the software- versus hardware-based solution performed
was carried out by comparing the error metrics between the experiments described
in Sect. 3.3.1 and Sect. 3.3.2, and how they affected a proposed sensor platform.

34

4
Results

This chapter is divided into the parts for each experiment and are benchmarked
with the lidar-only based approach described in Sect. 3.2. Sect. 4.1 is concered with
the vessel experiments, and its evaluation of the mapping and localisation. Sect. 4.2
details the results of the gimbal stabilised run. Finally the findings about minimal
SLAM conditions are presented in Sect. 4.3.

4.1 Vessel experiment
The Vessel experiment included two data logging sessions along the coastline of
Gothenburg. The total distances from the first run and the second run were 3.086 m
and 4.923 m, and each run took thirty and twenty-five minutes respectively. The
velocities of the vessel in the first and second run are illustrated in Fig. 4.1, and the
features of each run is illustrated in Fig. 4.2. Note that the vessel was static during
the first 4,250 frames of the first run and last 1,000 frames of the second run, the
static portions of each run were not evaluated.

As data sets like KiTTI are usually split into multiple smaller runs, the data
logging sections for the localisation presented are divided into sections of 1000 frames
each, which equate to 100 s of recording. This is longer than the average length in
such data sets in order to investiage the behaviour under extended periods of time.

0 2500 5000 7500 10000 12500 15000 17500
Frame [0.1s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ve
lo

cit
y

[m
/s

]

First run - Velocity

0 2000 4000 6000 8000 10000 12000 14000
Frame [0.1s]

0

1

2

3

4

5

Ve
lo

cit
y

[m
/s

]

Second run - Velocity

Figure 4.1: Velocity of the vessel in the first and second run. The velocity was
computed from the GPS data, according to Eq. 3.28.

35

4. Results

0 2500 5000 7500 10000 12500 15000 17500
Frame [0.1s]

0

10000

20000

30000

40000

50000

60000

70000
First run - Size point cloud

0 2000 4000 6000 8000 10000 12000 14000
Frame [0.1s]

0

10000

20000

30000

40000

Second run - Size point cloud

Figure 4.2: Size of the point clouds over different frames for the first and second
run.

4.1.1 UKF performance
Fig. 4.3 depict the trajectory obtained from the UKF localisation of the first and
second run, compared to the ground truth from the GNSS data. The sensor fusion
was using data from the IMU and GNSS. It is illustrated that the filtered trajectory
has a sub-meter accuracy during the straight segments while having some deviation
when the vessel is turning. It is also shown that the UKF localisation is able to
compensate during the cases when the GNSS data is faulty.

Figure 4.3: Illustration of the UKF performance from the first and second run.
The zoomed in segments highlight when the vessel was heading straight ahead and
in turns. It is also illustrated that the filtered trajectory from the UKF delivers a
smoother path compared to the zigzag characteristics of the GPS.

36

4. Results

The performance of the UKF, measured by the root mean square error between
GNSS and the filtered state, was computed for each section of the first run in Table.
4.1, and for the second run in Table. 4.2. The vessel’s average velocity was also
included in both tables.

Frame RMSE [m] Velocity [m s−1]
4,250–5,250 0.38 1.19
5,250–6,250 0.88 1.60
6,250–7,250 0.43 1.72
7,250–8,250 2.56 1.38
8,250–9,250 4.98 3.08
9,250–10,250 1.66 1.83
10,250–11,250 4.39 1.65
11,250–12,250 0.60 0.92
12,250–13,250 1.82 1.31
13,250–14,250 4.91 3.11
14,250–15,250 3.62 3.30
15,250–16,250 3.83 3.00
16,250–17,250 4.80 3.60
17,250–18,250 3.94 2.19

Table 4.1: RMSE between filter and GNSS, average velocity for sections of the
first run.

Frame RMSE [m] Velocity [m s−1]
0–1,000 0.28 3.60

1,000–2,000 2.26 4.38
2,000–3,000 7.05 4.67
3,000–4,000‡ - 4.53
4,000–5,000 14.04 4.20
5,000–6,000 13.95 4.11
6,000–7,000 14.72 3.96
7,000–8,000 16.66 3.93
8,000–9,000 17.33 3.70
9,000–10,000 16.57 3.70
10,000–11,000 14.30 3.62
11,000–12,000 11.47 3.18
12,000–13,000 5.58 1.51
‡ This sequence failed to register data for the UKF algorithm.

Table 4.2: RMSE between filter and GNSS, average velocity for sections of the
second run.

37

4. Results

4.1.2 Mapping
While performing SLAM during the experiment, it was possible to accurately map
out the environment. When following a lidar-based approach, the mapping was
vulnerable to accumulated deviations in the vertical plane, as well as to pitch and
roll offsets. Such an occurrence can be seen in Fig. 4.4.

Furthermore, performing a longer run enabled the mapping of the coastline
of the first experiment, which is displayed in a top-down view in Fig. 4.5. This
particular mapping was obtained from the lidar-only based approach over a 332.5 s
recording, evaluated between frames 4,250–7,575.

Figure 4.4: Upper figure: Pointcloud registration with NDT as basis.
Lower figure: Pointcloud registration with UKF as basis. The point clouds are
viewed diagonally from the side, hence illustrating the stacking effect of points in
the upper figure.

38

4. Results

11.843 11.844 11.845 11.846 11.847 11.848 11.849 11.850 11.851
Longitude

57.667

57.668

57.669

57.670

57.671

57.672

La
tit

ud
e

Evaluated run
GPS odometry

Figure 4.5: Top view of the registered point cloud aligned with the corresponding
coastline. The red curve shows the path that was traversed. The mapping was
performed with the lidar-only based approach.

4.1.3 Localisation
This section presents the results of the localisation during the vessel experiment.
Every plot contains data from runs following only a lidar-based SLAM, as well as
with state estimation through UKF data. An important metric is the z-deviation,
which displays the lidar odometry on the z-axis. Even more significant is the z-
acceleration az =(m s−2). It shows the changes in the z-drift. Complementary, the
point size is provided for every run, which correlates with the available in each frame.
While all runs can be found in the appendix, the most relevant are highlighted in
this section.

4.1.3.1 First run

For all sections of the fist run, the z-acceleration proved to be significantly lower
for the UKF based method, compared to a lidar-only approach. The segment from
frames 4,250–5,250 has the second largest point clouds sizes of the run, and both
approaches proved to be stable in terms of horizontal localisation.

During the first run, the boat turned around, starting from frame 5,600. While
performing this manoeuvre, only faint features in the distance were visible to the
lidar. Due to this, a dip in point cloud features can be observed in Fig. 4.7. While
the NDT method loses the target, it was possible to track the curve with the UKF
approach while maintaining a significantly lower z-deviation.

39

4. Results

0 5 10 15 20 25
x [m]

0
10
20
30
40
50
60
70

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

2
0
2
4
6
8

10

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure 4.6: First run: frame 4,250–5,250.

60 50 40 30 20 10 0
x [m]

60
50
40
30
20
10

0
10
20

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

20

40

60

80

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure 4.7: First run: frame 7,250–8,250. Note the y-axis in the bottom left plot,
the spike between frame 506–507 had a range of 5,000 units.

The following two segments, displaying frames 11,250–12,250 and 15,250–16,250
illustrates scenarios where the UKF approach proved to be much more stable in

40

4. Results

regards to the vertical deviation, but faced issues accurately tracking the horizontal
trajectory.

0 2 4 6 8 10 12 14 16
x [m]

60
50
40
30
20
10

0

y
[m

]
Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

5

4

3

2

1

0

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure 4.8: First run: frame 11,250–12,250. Note that, in the bottom left plot,
the two spikes between frame 700–800 had a range of 300 units, respectively.

40 20 0 20 40 60 80 100
x [m]

25
0

25
50
75

100
125

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20
10

0
10
20
30
40

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure 4.9: First run: frame 15,250–16,250.

41

4. Results

For further analysis of each methods performance, both methods are compared
by the RMSE between lidar-odometry and GNSS, range of z-deviation, variance of
the z-acceleration and point cloud size. Tables 4.3 and 4.4 list the metrics with bold
values corresponding to better performance. In general, the UKF approach delivered
a much more stable z-acceleration and z-range. With regards to the horizontal
localisation, the lidar-only based approach usually performed better.

Frame RMSE
Lidar vs GPS

Range [m]
z-deviation

Variance
z-acceleration

Average
PCL size

4,250–5,250 1.34 11.09 12.3 30,646
5,250–6,250 8.76 20.47 187.4 11,476
6,250–7,250 28.67 15.60 530.1 5,987
7,250–8,250 34.00 82.16 228.9 5,157
8,250–9,250 34.91 36.36 2,786.3 4,909
9,250–10,250 9.39 43.65 260.0 10,350
10,250–11,250 24.62 49.56 3,470.5 10,439
11,250–12,250 1.48 4.90 6.4 41,517
12,250–13,250† 1.99. 11.71 15.4 25,279
13,250–14,250 29.44 19.21 423.3 8,023
14,250–15,250 6.67 77.75 194.0 14,542
15,250–16,250 16.37 51.15 1,243.1 11,023
16,250–17,250 19.21 41.85 615.7 7,283
17,250–18,250 11.02 68.30 1,167.3 11,435
† This sequence failed to register data for the UKF algorithm.

Table 4.3: Lidar-only based registration performance for the first run.

Frame RMSE
Lidar vs GPS

Range [m]
z-deviation

Variance
z-acceleration

Average
PCD size

4,250–5,250 2.45 4.35 2.3 30,646
5,250–6,250 20.58 10.39 7.4 11,476
6,250–7,250 39.77 3.13 11.4 5,987
7,250–8,250 6.83 9.23 40.8 5,157
8,250–9,250 70.43 40.83 31.3 4,909
9,250–10,250 10.41 6.49 13.5 10,350
10,250–11,250 32.98 11.96 55.6 10,439
11,250–12,250 4.12 3.17 0.6 41,517
13,250–14,250 48.99 19.85 11.2 8,023
14,250–15,250 34.43 82.58 25.2 14,542
15,250–16,250 38.35 27.12 212.8 11,023
16,250–17,250 49.40 84.70 112.7 7,283
17,250–18,250 21.28 20.25 24.1 11,435

Table 4.4: UKF based registration performance for the first run.

42

4. Results

4.1.3.2 Second run

This section shows the results for the second run. As most data parts of the run
contained much sparser point clouds than the first run, only two sections are further
highlighted here. This is because the lidar-only approach fails entirely to follow the
actual trajectory in case of very sparse point clouds.

The part from frames 6,000–7,000 contained almost no features, as the boat was
quite far away from the coastline, see Fig. 4.10. It can be seen that the lidar-only
based approach had issues correlating these and failed to follow any trajectory, while
the UKF method was able to follow the path for larger parts of the run. It is evident
that the vertical drift was clearly worse for the lidar-only based approach.

200 100 0 100 200 300 400 500
x [m]

300

200

100

0

100

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

200
150
100
50

0
50

100
150

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

6000
4000
2000

0
2000
4000
6000

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure 4.10: Second run: frame 6,000–7,000. Note the plot in the bottom right,
the point cloud size is immensely less compared to the other figures.

From frames 12000–13000, the boat was performing a prolonged left turn. While
the localisation using the UKF data was worse, it can be seen that the deviation
correlates with the x-axis, implicating a global frame offset.

43

4. Results

70 60 50 40 30 20 10 0
x [m]

80
70
60
50
40
30
20
10

0

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

14
12
10
8
6
4
2
0

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure 4.11: Second run: frame 12,000–13,000.

44

4. Results

Analogue to the first run, the metrics of both methods are listed in Table 4.5
and 4.6. As most of the runs had very few features, the RMSE is higher. It can be
seen that the UKF approach performed better on almost all metrics.

Frame RMSE
Lidar vs GPS

Range [m]
z-deviation

Variance
z-acceleration

Average
PCL size

0–1,000‡ - - - 149
1,000–2,000‡ - - - 380
2,000–3,000 240.39 502.98 2.82 · 106 601
3,000–4,000‡ - - - 708
4,000–5,000 390.71 369.28 6.39 · 104 535
5,000–6,000‡ - - - 213
6,000–7,000 302.52 344.99 2.00 · 106 536
7,000–8,000 281.63 683.57 3.41 · 106 307
8,000–9,000 155.13 284.00 7,112.0 2,576
9,000–10,000 121.23 152.85 2.02 · 104 3,902
10,000–11,000 130.92 96.77 1,472.7 1,567
11,000–12,000 66.65 29.32 445.62 9,334
12,000–13,000 3.38 13.75 16.7 35,753
‡ These sequences failed to register data for both the lidar-only and UKF algorithm.

Table 4.5: Lidar-only based based registration performance for the second run.

Frame RMSE
Lidar vs GPS

Range [m]
z-deviation

Variance
z-drift

Average
PCL size

2,000–3,000 206.36 174.91 1,320.6 601
4,000–5,000 234.04 191.7 471.0 535
6,000–7,000 116.45 62.38 483.3 536
7,000–8,000 114.79 241.36 3,838.0 307
8,000–9,000 99.67 94.00 583.2 2,576
9,000–10,000 182.69 40.32 205.9 3,902
10,000–11,000 58.29 35.38 131.6 1,567
11,000–12,000 191.34 28.31 39.6 9,334
12,000–13,000 10.80 4.10 2.0 35,753

Table 4.6: UKF based based registration performance for the second run.

45

4. Results

4.2 Gimbal experiment
The experiment in the laboratory environment, utilising a gimbal setup was analysed
in the same manner as prior. It is important to note that the runs had slightly
different lengths. The recording using pitch and roll correction is referred to as the
third run, while the logging using artificially introduced roll and pitch movement is
referred to as the fourth run. As can be seen, the range of z-movement, as well as
the z-acceleration are significantly lower for the stabilised run. As this run did not
contain any GNSS data, there is no comparison to the ground truth. The localisation
will rather be evaluated on the basis of the z acceleration.

4.2.1 Mapping
Although both approaches were able to map out the environment, the stabilised
approach resulted in a preciser registration compared to the simulated vessel
movement run. As can be seen in Fig. 4.12, the unstabilised run had many
occurrences of smearing. A difference in some captured elements of the laboratory
is present between the two figures as the unstabilised run observed a broader view
of the environment due to the rotational movement.

Figure 4.12: Left: Top-view mapping of the stabilised run.
Right: Top-view mapping of the unstabilised run.

4.2.2 Localisation
The localisation of the gimbal proved to be quite stable as expected. With the
z-acceleration orders of magnitudes lower and a range of below 10 centimeters, it
clearly outperformed the unstabilised run.

Run Range [m]
z-deviation

Variance
z-acceleration

Average
PCL size

Stabilised 0.09 5.7 · 10−5 193,687
Unstabilised 1.39 2.0 200,084

Table 4.7: Registration performance for stabilised and unstabilised runs

46

4. Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

0
1
2
3
4
5

y
[m

]

Lidar odometry
Lidar

0 100 200 300 400 500
Frame [0.1s]

0.00

0.02

0.04

0.06

0.08

z [
m

]

Z deviation
Lidar

0 100 200 300 400 500
Frame [0.1s]

0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

z [
m

/s
²]

Z Acceleration
Lidar

0 100 200 300 400 500
Frame [0.1s]

170000

180000

190000

200000

210000
Third run - Size point cloud

Figure 4.13: Third run: frame 0-559.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

0
1
2
3
4
5
6

y
[m

]

Lidar odometry
Lidar

0 100 200 300 400 500
Frame [0.1s]

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

z [
m

]

Z deviation
Lidar

0 100 200 300 400 500
Frame [0.1s]

10

5

0

5

10

z [
m

/s
²]

Z Acceleration
Lidar

0 100 200 300 400 500
Frame [0.1s]

160000

170000

180000

190000

200000

210000

220000
Forth run - Size point cloud

Figure 4.14: Forth run: frame 0-569. Note the y-axis for the top right and bottom
left plot compared to Fig. 4.13.

47

4. Results

4.3 SLAM requirements
The following figures illustrate how the different metrics from Sect. 4.1 are correlated
to the point cloud size and velocity.

Figure 4.15: The left panel illustrates how the RMSE changes with different point
cloud sizes. Middle panel illustrates how the Z-deviation changes with different
point cloud sizes. The right panel illustrates how the Variance-of-Z-acceleration
changes with different point cloud sizes. The y-axis is set in log-scale. The dotted
line display the fitted exponential function for each dataset.

Figure 4.16: The left panel illustrates how the RMSE changes with different point
cloud sizes. Middle panel illustrates how the Z-deviation changes with different
point cloud sizes. The right panel illustrates how the Variance-of-Z-acceleration
changes with different point cloud sizes. The y-axis is set in log-scale. The dotted
line display the fitted exponential function for each dataset.

It was observed from Fig. 4.15 that the RMSE, z-deviation and the variance of
the z-acceleration decreased as the point cloud size increased. The algorithm that
only utilised lidar data seemed to yield lower RMSE compared to the algorithm
that included the UKF, while the z-deviation and variance of the z-acceleration
were higher.

It was observed from Fig. 4.16 that the RMSE, z-deviation and the variance
of the z-acceleration increased as the velocity of the vessel increased. There was no
evident advantage of any of the algorithms with regards to the RMSE. However,
the UKF-based algorithm seemed to yield lower z-deviation and variance of the
z-acceleration in comparison to the lidar only.

48

5
Discussion

The discussion regarding research questions 1 and 2 about deviations in the vertical
plane is detailed in Sect. 5.1 and 5.2. Furthermore, it is divided into mapping,
localisation, and general performance of the sensor fusion. The findings of which
requirements are needed for SLAM, regarding research question 3 are discussed in
Sect. 5.4. The rest of the discussion is focused on the social and ethical impacts in
Sect. 5.5 and possible future work on the project in Sect. 5.6.

5.1 UKF performance
The trajectory resulting from the sensor fusion to track the kinematic state of the
vessel performed well for most sections of the logging, as can be seen in Table. 4.1 and
Fig. 4.3. Occasionally, the offset is slightly larger due to the discrete nature of the
GNSS data. As the data is coming in at 20 Hz and does not have the same fidelity
as the UKF, there will always be a slight difference between the two trajectories. As
the logging sessions used a minimalistic sensor setup, with only an IMU and a GNSS
with one antenna, there was no data available for tracking the z-deviation like an
altimeter. Therefore, the predicted z-position was always close to zero. Accurate
tracking of our kinematic state is important for evaluating the performance of the
registration in the next step.

As the platform used a 6-DOF IMU, the initial global coordinate system is
unknown. This is the case as the rotational axes can only be measured using a
magnetometer. Therefore, the discussion and evaluation of the registration are
focused on whether the mapping and localisation follow a constant drift in the
vertical plane, which equals to a constant rotational offset between the coordinate
systems of the registration and the coordinate system of the UKF, which assumes
no pitch or roll offset.

5.2 SLAM
To evaluate the effectiveness of the SLAM algorithm, it was important to take
into account both the localisation and mapping parts. One could follow the UKF
trajectory by heart and make a case for a good localisation. This will however
result in worse point cloud registration, as the sensor-fusion on its own is neither
sufficient nor reliable at all times. Nevertheless, it was occasionally possible to
receive a good registration for a short time, albeit with terrible localisation. A

49

5. Discussion

good visual indicator for this was the combined point cloud registration and the
three-dimensional trajectory, as it combines the two aspects.

5.2.1 Mapping
To establish a baseline, the lidar-only method was used for registration. Although
this method performs well for a short period of time, it does accumulate deviations,
especially in pitch and vertical movement. The effect of this can be seen in Fig. 4.4a.
This smearing effect in the vertical plane has negative impacts on the details and
accuracy of the resulting point cloud and affects any further usage of the data. As
the lidar-only based approach does not use any knowledge about the kinematic state
of the platform, it establishes its guess purely on the comparison of the current and
previous frame. This can be vulnerable to changes in features, as elements in the
point cloud enter or leave the frame. Aligning point clouds with different elements
will result in small errors that accumulate over time.

The software-based approach delivered less stacked point cloud data, as can be
seen in Fig. 4.4b. Provided that the sensor data was accurate and sufficient, the
first transformation step in the registration yielded a better approximation of the
current frame. This is especially evident with respect to shifts in the vertical plane.
As the UKF algorithm provides a more accurate estimate of the translation and
rotational movement, the ICP algorithm converges to transformations that produce
less stacking of features in the final point cloud. Occasionally, the UKF method
accumulated some offsets in the horizontal plane. This usually occurred in cases
where the filtering under-performed and was bound to the limited sensor setup. It
is assumed that this will improve with a more advanced setup, namely with an
attitude sensor and a GNSS system with a second antenna. This will improve the
estimation of the heading and z-coordinate and allows for a preciser registration
during the ICP step.

Looking at the data from the laboratory platform, the use of a stabilisation
resulted in a much more accurate point cloud compared to the run with introduced
kinematic movement. This ties together with the assumption that the NDT
algorithm will fail in situations with changing available features. As more objects
in the lab are exposed during the course of the run, offsets in the trajectory
resulted in a worse overall mapping. This does not occur in the gimbal-stabilised
run, as the rotational movements are estimated to be zero, thus resulting in
preciser transformation preceding the ICP part.

5.2.2 Localisation
Taking the NDT method as a baseline, the algorithm was able to follow the
horizontal plane fairly well. As the method depends on the number of available
points, it failed to follow the actual trajectory in case of declining point cloud sizes
and changes in the point cloud. This results in huge deviations in all dimensions.
This is especially evident in the section from frames 7,250–8,250 in the first run as
can be seen in Fig. 4.7. As the point cloud size dips to less than 1,000 points, the
lidar odometry starts drifting at the wrong direction and cannot keep track of the

50

5. Discussion

curve of the trajectory.
Using the UKF data, on the other hand, resulted in a better lidar-odometry

in situations where the features alone were not enough to track it otherwise. The
current heading was able to provide much better input for the ICP algorithm in
these cases, as can be seen in Fig. 4.7.

Observing the vertical acceleration az, it can be concluded that the UKF
approach was much more stable in terms of vertical deviation. While a constant
drift can still occur due to offsets in the coordinate systems, the usual stable
acceleration proved that the lidar-odometry was moving mostly in a single plane
and had rarely actual offsets in the orthogonal movement. This correlation to the
coordinate offset is especially evident in Fig. 4.8, since the vertical positions of
frame 620 and 800 are similar as the vessel returns to its previous position at (x, y)
= (3 m, -52 m).

For the gimbal setup, the lidar-odometry could not be compared to the
ground truth trajectory as it was not possible to record with the full sensor
platform. However, comparing the vertical movement clearly shows that the
complex kinematic movement is handled with high accuracy, as the range of below
10 cm and the acceleration is orders of magnitude lower compared to the
unstabilised approach. The introduced artificial movement in pitch and roll for the
other run resulted in many changes regarding the feature and produced much more
deviations, and thus performed much worse.

5.3 Hardware versus software solutions
Comparing hardware and software solutions is not trivial, as they were performed
under slightly different conditions. During the recording sessions on the vessel, there
were additional sensors present that provided ground truth to the movement in the
horizontal plane. As the laboratory logs did not contain GNSS, this was not possible.
It is nevertheless possible to analyse the performance of the registration and vertical
movement.

The biggest advantage with the gimbal setup is that the movement in roll and
pitch are negligible due to the correction from the motors. This results in the
reduction of the kinematic equation from six to four dimensions. Looking at the
ICP algorithm, a lower dimensionality can improve performance and computation
speed in live situations.

A filtered state from the UKF has likewise been proven to improve lidar
odometry compared to an NDT approach. This is due to the shortcomings of the
NDT method. It was also able to follow paths better with few points in the
available point cloud. Although this was not tested with the gimbal, it is assumed
to perform worse as it is still using the NDT algorithm.

It can be noted that a combination of both hardware and software solutions
can be beneficial in performing SLAM on a vessel as they can deal with different
situations. While the gimbal approach can improve computation time and eliminates
offsets in pitch and roll, the UKF method can deal with smaller point clouds and
keep track of the trajectory with better accuracy.

51

5. Discussion

5.4 SLAM requirements
When analysing the deviations in the vertical and horizontal planes, it was evident
that there was some correlation between the number of available points and the
error of the registration trajectory. As Fig. 4.15 illustrates, there is a clear
connection between these metrics. As explained in previous sections, this stems
mainly from the shortcomings of the NDT method. Furthermore, it can be
concluded that data-logging sessions are vulnerable to the recording environments.
Especially in situations where the vessel needs to turn around and is mostly bound
to face water for an extended amount of time, neither of the proposed algorithms
can track the odometry accurately. There is room for further improvements, where
the trajectory is set entirely to the UKF movement in case of a point cloud size
below a certain threshold.

Another correlated metric was the vessel velocity. As a higher speed results in
larger differences in the point cloud, it also affects the performance of the
registration. In Fig. 4.16, it can be observed that a lower average velocity
generally results in lower z-accelerations. This is especially evident at speeds above
3.5 m s−1.

With regard to lidar settings, this presents a trade-off between the lidar
frequency and the step increment. As the Ouster OS-2 comes with the option for
operation in either 10 or 20 Hz, as well as capturing from 512 to 2,048 horizontal
beams, it could be beneficial to adapt these settings according to the recording
situation. In the case of many features in the environment, it is generally advised
to use a higher lidar frequency, compared to situations with less information.
Using a smaller horizontal increment might improve the registration for this case.

5.5 Social and ethical impact
While SLAM is only a part of a wide array of systems in a self-driven vehicle, it
forms an important part in enabling safer automatic manoeuvres and estimating
distances. Even though the first fully autonomous vehicles seem to be available in
the near future, in the case of vessels, there is still lots of work left.

As with all emerging technology, there are certain risks and possibilities
associated with autonomous vessels. On the upside, it can reduce emissions with
steering algorithms that learn to adapt to weather and currents. Furthermore, it
can increase the safety of crew members, with monitoring systems and optimised
behaviour in complex situations. As crew members face high-risk rates at their
job, this can both increase operational safety and prevent accidents with massive
economic and environmental implications. A core issue associated with the
emergence of autonomous vessels is the threat of a cyber-attack. As more of the
control and steering is relegated to autonomous systems, these can be vulnerable
to hacks and attacks on information systems. This could result in the hijacking of
the ship or even an intentional accident. As more responsibility is given to
automation, the issue of cyber-security becomes equally as important.

52

5. Discussion

5.6 Future work
Possible future work in regards to this project can be related to the combination of
a hardware and software solution. As both proposed methods had different benefits,
it might be interesting to investigate the combined effect of both systems being used
simultaneously. As a gimbal can be easily installed on a tripod, this should not
pose any complex setup and can easily be integrated into the previously used sensor
platform.

In addition, to further improve performance, the platform can be enhanced
with additional sensors. As mentioned above, the use of an altimeter can provide
a reliable height measurement that can be used for the state estimation. Another
improvement would be the use of a second antenna for the GNSS system to enhance
stability and provide accurate heading measurement.

With these improvements in place, further research can for example be
performed on loop closing or handling dynamic objects. As small errors
accumulate over time and the vessel returns to a previous position, the point cloud
cannot be easily aligned. This opens a domain of research for handling these
situations. Dynamic objects are for example other boats or animals that move
relative to the environment. Handling those situations is important for mapping,
as these objects will clog up the resulting point cloud because their position
changes for every frame and they will be added to every point cloud frame.

53

5. Discussion

54

6
Conclusion

This project investigated the performance of two different SLAM algorithms in a
marine environment, while using point cloud data from a lidar scanner. The first
algorithm only used lidar data while performing NDT and ICP, while the second
algorithm used lidar data together with IMU and GNSS data through the
implementation of a UKF. Two experiments were performed, each investigating a
software and hardware-based solution compared to the lidar-only based approach.
It can be concluded that both of the proposed methods that implemented an UKF
algorithm and a gimbal, have shown to reduce deviations in the vertical plane
compared to a lidar-only based approach. Although the baseline method, using
only a lidar, performed well during shorter time periods, the differences were
evident when looking at longer runs, as was done in this research. The
software-based approach, using a UKF state estimation, has proven to perform
better in the key metric, the z-acceleration. It also resulted in less smearing of the
point clouds. Including a gimbal stabilisation indicated to reduce the
z-acceleration significantly, as the point cloud registration performs better due to
more precise alignment of consecutive frames. When comparing the two methods,
it was concluded that both have different benefits. The UKF state estimation was
able to follow the actual sensor trajectory to some degree in cases where the point
clouds were quite sparse. This was not possible with the baseline NDT algorithm,
which is also used for the gimbal approach. The stabilised solution, on the other
hand, offered the benefit of reducing the transformation problem between frames
from six to four dimensions, as the pitch and roll movements are constrained.
Furthermore, the gimbal stabilisation can easily be part of a tripod setup and
eliminates the need for an external IMU. Both approaches can also be combined to
benefit from both solutions.

While investigating the minimal conditions for performing a reliable
localisation and mapping, it was clear that the biggest indicator was the point
cloud size. A clear correlation was shown between the z-acceleration and the
RMSE, between the calculated trajectory and the ground truth. Another
impacting factor was the velocity, as it correlates with the difference in point cloud
frames between registration. To perform SLAM with the proposed algorithms, it is
therefore important to capture as many points as possible with the lidar. This
should be kept in mind when thinking about any visual constraints on the sensor
platform, route planning, and sensor frequency. The performance is also assumed
to improve when using additional sensors like an altimeter for vertical position
logging, a second antenna for preciser heading data, and a 9-DOF IMU for
absolute rotational positions. Future work on the issue could be centred around

55

6. Conclusion

how to deal with situations with very sparse point clouds and implementing
loop-closing.

56

Bibliography

[1] Chaiwoo Lee et al. “Consumer Knowledge and Acceptance of Driving
Automation: Changes over Time and across Age Groups”. In: Proceedings of
the Human Factors and Ergonomics Society Annual Meeting. Vol. 65. 1.
SAGE Publications Sage CA: Los Angeles, CA. 2021, pp. 1395–1399.

[2] Grand View Research. Autonomous Vehicle Market Size, Share & Trends
Analysis Report By Application (Transportation, Defense), By Region (North
America, Europe, Asia Pacific, South America, MEA), And Segment
Forecasts, 2021 - 2030. 2020. url:
https://www.grandviewresearch.com/industry-analysis/autonomous-
vehicles-market.

[3] Margarita Martınez-Dıaz and Francesc Soriguera. “Autonomous vehicles:
theoretical and practical challenges”. In: Transportation Research Procedia
33 (2018), pp. 275–282.

[4] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous localization and
mapping: part I”. In: IEEE robotics & automation magazine 13.2 (2006),
pp. 99–110.

[5] Udo Frese. “Interview: Is slam solved?” In: KI-Künstliche Intelligenz 24.3
(2010), pp. 255–257.

[6] Sammy Omari et al. “Dense visual-inertial navigation system for mobile
robots”. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2015, pp. 2634–2640.

[7] Brian Clipp et al. “Parallel, real-time visual SLAM”. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2010,
pp. 3961–3968.

[8] Junyao Guo, Unmesh Kurup, and Mohak Shah. “Is it safe to drive? an overview
of factors, metrics, and datasets for driveability assessment in autonomous
driving”. In: IEEE Transactions on Intelligent Transportation Systems 21.8
(2019), pp. 3135–3151.

[9] Hang Yin and Christian Berger. “When to use what data set for your self-
driving car algorithm: An overview of publicly available driving datasets”.
In: 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC). IEEE. 2017, pp. 1–8.

[10] Eric A Wan and Rudolph Van Der Merwe. “The unscented Kalman filter for
nonlinear estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat. No.
00EX373). Ieee. 2000, pp. 153–158.

57

https://www.grandviewresearch.com/industry-analysis/autonomous-vehicles-market
https://www.grandviewresearch.com/industry-analysis/autonomous-vehicles-market

Bibliography

[11] N. Viandier et al. “Gnss Performance Enhancement in Urban Environment
Based on Pseudo-range Error Model”. In: 2008 IEEE/ION Position, Location
and Navigation Symposium. 2008, pp. 377–382. doi: 10.1109/PLANS.2008.
4570093.

[12] Ola Benderius, Christian Berger, and Krister Blanch. “Are we ready for
beyond-application high-volume data? The Reeds robot perception
benchmark dataset”. In: arXiv preprint arXiv:2109.08250 (2021).

[13] Zhifeng Liu. “Performance evaluation of stereo and motion analysis on rectified
image sequences”. In: (2007).

[14] Piotr Dollár et al. “Pedestrian detection: A benchmark”. In: 2009 IEEE
conference on computer vision and pattern recognition. IEEE. 2009,
pp. 304–311.

[15] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. “Semantic object
classes in video: A high-definition ground truth database”. In: Pattern
Recognition Letters 30.2 (2009), pp. 88–97.

[16] Reeds Project. https://reeds.opendata.chalmers.se. Accessed: 2022-02-
23.

[17] Tixiao Shan et al. “LIO-SAM: Tightly-coupled Lidar Inertial Odometry via
Smoothing and Mapping”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 5135–5142.

[18] Tixiao Shan and Brendan Englot. “LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2018, pp. 4758–4765.

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for
autonomous driving? the kitti vision benchmark suite”. In: 2012 IEEE
conference on computer vision and pattern recognition. IEEE. 2012,
pp. 3354–3361.

[20] Daimler pedestrian benchmark dataset. http://www.gavrila.net/Datasets/
Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.
html. Accessed: 2022-03-02.

[21] Liangyu Wang and Varun Ganapati Hegde. “Mapping and 3D reconstruction
based on lidar”. In: (2021).

[22] Bogdan Iancu et al. “Aboships-an inshore and offshore maritime vessel
detection dataset with precise annotations”. In: Remote Sensing 13.5 (2021),
p. 988.

[23] Dilip K Prasad et al. “Video processing from electro-optical sensors for
object detection and tracking in a maritime environment: a survey”. In:
IEEE Transactions on Intelligent Transportation Systems 18.8 (2017),
pp. 1993–2016.

[24] Zhenfeng Shao et al. “Seaships: A large-scale precisely annotated dataset for
ship detection”. In: IEEE transactions on multimedia 20.10 (2018),
pp. 2593–2604.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems 25 (2012).

58

https://doi.org/10.1109/PLANS.2008.4570093
https://doi.org/10.1109/PLANS.2008.4570093
https://reeds.opendata.chalmers.se
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html

Bibliography

[26] Apoorva Joglekar et al. “Depth estimation using monocular camera”. In:
International journal of computer science and information technologies 2.4
(2011), pp. 1758–1763.

[27] Shahram Izadi et al. “Kinectfusion: real-time 3d reconstruction and
interaction using a moving depth camera”. In: Proceedings of the 24th annual
ACM symposium on User interface software and technology. 2011,
pp. 559–568.

[28] Thomas Lemaire et al. “Vision-based slam: Stereo and monocular approaches”.
In: International Journal of Computer Vision 74.3 (2007), pp. 343–364.

[29] Lidar vs Cameras. https : / / www . autopilotreview . com / lidar - vs -
cameras-self-driving-cars/. Accessed: 2022-03-08.

[30] Why LiDAR is Doomed. https://www.voltequity.com/article/why-
lidar-is-doomed. Accessed: 2022-03-09.

[31] Axel Gern, Rainer Moebus, and Uwe Franke. “Vision-based lane recognition
under adverse weather conditions using optical flow”. In: Intelligent Vehicle
Symposium, 2002. IEEE. Vol. 2. IEEE. 2002, pp. 652–657.

[32] Zheyuan Wang, Guo Cheng, and Jiang Yu Zheng. “All weather road edge
identification based on driving video mining”. In: 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC).
IEEE. 2017, pp. 1–6.

[33] Unghui Lee et al. “Development of a self-driving car that can handle the
adverse weather”. In: International journal of automotive technology 19.1
(2018), pp. 191–197.

[34] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and Elmar Wasle.
GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and
more. Springer Science & Business Media, 2007.

[35] Federico Grasso Toro et al. “Particle Filter technique for position estimation
in GNSS-based localisation systems”. In: 2015 International Association of
Institutes of Navigation World Congress (IAIN). 2015, pp. 1–8. doi: 10.1109/
IAIN.2015.7352236.

[36] GNSS-AIDED INERTIAL NAVIGATION SYSTEM (GNSS/INS). https://
www.vectornav.com/resources/inertial-navigation-primer/theory-
of-operation/theory-gpsins. Accessed: 2022-03-16.

[37] Bruno Siciliano, Oussama Khatib, and Torsten Kröger. Springer handbook of
robotics. Vol. 200. Springer, 2008.

[38] Hugh Durrant-Whyte, David Rye, and Eduardo Nebot. “Localization of
autonomous guided vehicles”. In: Robotics Research (1996), pp. 613–625.

[39] Martin Magnusson. “The three-dimensional normal-distributions transform:
an efficient representation for registration, surface analysis, and loop
detection”. PhD thesis. Örebro universitet, 2009.

[40] Ankit Dhall et al. “LiDAR-camera calibration using 3D-3D point
correspondences”. In: arXiv preprint arXiv:1705.09785 (2017).

[41] Yanghai Tsin and Takeo Kanade. “A correlation-based approach to robust
point set registration”. In: European conference on computer vision. Springer.
2004, pp. 558–569.

59

https://www.autopilotreview.com/lidar-vs-cameras-self-driving-cars/
https://www.autopilotreview.com/lidar-vs-cameras-self-driving-cars/
https://www.voltequity.com/article/why-lidar-is-doomed
https://www.voltequity.com/article/why-lidar-is-doomed
https://doi.org/10.1109/IAIN.2015.7352236
https://doi.org/10.1109/IAIN.2015.7352236
https://www.vectornav.com/resources/inertial-navigation-primer/theory-of-operation/theory-gpsins
https://www.vectornav.com/resources/inertial-navigation-primer/theory-of-operation/theory-gpsins
https://www.vectornav.com/resources/inertial-navigation-primer/theory-of-operation/theory-gpsins

Bibliography

[42] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”. In:
Sensor fusion IV: control paradigms and data structures. Vol. 1611. Spie. 1992,
pp. 586–606.

[43] Xiuying Shi et al. “The iterative closest point registration algorithm based on
the normal distribution transformation”. In: Procedia Computer Science 147
(2019), pp. 181–190.

[44] Kaustubh Pathak et al. “Evaluation of the robustness of planar-patches
based 3D-registration using marker-based ground-truth in an outdoor urban
scenario”. In: 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2010, pp. 5725–5730.

[45] Siavash Hosseinyalamdary. “Deep Kalman filter: Simultaneous multi-sensor
integration and modelling; A GNSS/IMU case study”. In: Sensors 18.5 (2018),
p. 1316.

[46] Freek Baalbergen, Madeleine Gibescu, and Lou van der Sluis. “Modern state
estimation methods in power systems”. In: 2009 IEEE/PES Power Systems
Conference and Exposition. 2009, pp. 1–6. doi: 10.1109/PSCE.2009.4840003.

[47] Matthew Rhudy et al. “Sensitivity analysis of extended and unscented Kalman
filters for attitude estimation”. In: Journal of Aerospace Information Systems
10.3 (2013), pp. 131–143.

[48] Shoudong Huang and Gamini Dissanayake. “A critique of current
developments in simultaneous localization and mapping”. In: International
Journal of Advanced Robotic Systems 13.5 (2016), p. 1729881416669482.

[49] Anna Petersson. “Vision-based state estimation of autonomous boats”. In:
(2021).

[50] Nicola Dragoni et al. “Microservices: yesterday, today, and tomorrow”. In:
Present and ulterior software engineering (2017), pp. 195–216.

[51] Theo Combe, Antony Martin, and Roberto Di Pietro. “To docker or not to
docker: A security perspective”. In: IEEE Cloud Computing 3.5 (2016),
pp. 54–62.

[52] Point Cloud Library Module filters. 2022. url: https://pointclouds.org/
documentation/group__filters.html (visited on 05/04/2022).

[53] Peter Biber and Wolfgang Straßer. “The normal distributions transform: A
new approach to laser scan matching”. In: Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003)(Cat. No. 03CH37453). Vol. 3. IEEE. 2003, pp. 2743–2748.

[54] Feng Huang et al. “Point wise or Feature wise? Benchmark Comparison of
Public Available LiDAR Odometry Algorithms in Urban Canyons”. In: arXiv
preprint arXiv:2104.05203 (2021).

[55] Martin Magnusson et al. “Beyond points: Evaluating recent 3D
scan-matching algorithms”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2015, pp. 3631–3637.

[56] Berthold KP Horn. “Closed-form solution of absolute orientation using unit
quaternions”. In: Josa a 4.4 (1987), pp. 629–642.

[57] Haggai Maron et al. “Point registration via efficient convex relaxation”. In:
ACM Transactions on Graphics (TOG) 35.4 (2016), pp. 1–12.

60

https://doi.org/10.1109/PSCE.2009.4840003
https://pointclouds.org/documentation/group__filters.html
https://pointclouds.org/documentation/group__filters.html

Bibliography

[58] Yuhong Yang, Junchuan Zhou, and Otmar Loffeld. “Quaternion-based Kalman
filtering on INS/GPS”. In: 2012 15th International Conference on Information
Fusion. IEEE. 2012, pp. 511–518.

[59] Michael Roth, Gustaf Hendeby, and Fredrik Gustafsson. “EKF/UKF
maneuvering target tracking using coordinated turn models with
polar/Cartesian velocity”. In: 17th International Conference on Information
Fusion (FUSION). IEEE. 2014, pp. 1–8.

[60] Logah Perumal. “Quaternion and its application in rotation using sets of
regions”. In: International Journal of Engineering and Technology Innovation
1.1 (2011), p. 35.

[61] E Grafarend. “The optimal universal transverse Mercator projection”. In:
Geodetic Theory Today. Springer. 1995, pp. 51–51.

[62] Christian Berger, Björnborg Nguyen, and Ola Benderius. “Containerized
development and microservices for self-driving vehicles: Experiences & best
practices”. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW). IEEE. 2017, pp. 7–12.

[63] Ola Benderius and Christian Berger. OpenDLV. https : / / opendlv . org/.
2022.

[64] Ouster Datasheet. 2022. url: https://ouster.com/downloads/ (visited on
05/04/2022).

[65] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org. https://www.openstreetmap.org. 2017.

[66] Paul Newman and Kin Ho. “SLAM-loop closing with visually salient features”.
In: proceedings of the 2005 IEEE International Conference on Robotics and
Automation. IEEE. 2005, pp. 635–642.

[67] Mengshi Zhang et al. “Deeproad: Gan-based metamorphic testing and input
validation framework for autonomous driving systems”. In: 2018 33rd
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE. 2018, pp. 132–142.

[68] V.C. Chen et al. “Micro-Doppler effect in radar: phenomenon, model, and
simulation study”. In: IEEE Transactions on Aerospace and Electronic
Systems 42.1 (2006), pp. 2–21. doi: 10.1109/TAES.2006.1603402.

[69] Arnold Pompos. Why can radio waves pass through a wall but light cannot?
Kernel Description. 2022. url: https : / / www . fnal . gov / pub / science /
inquiring/questions/mikep.html (visited on 03/31/2022).

[70] Taohua Zhou et al. “MMW radar-based technologies in autonomous driving:
A review”. In: Sensors 20.24 (2020), p. 7283.

[71] Murray Rosenblatt. “Remarks on a multivariate transformation”. In: The
annals of mathematical statistics 23.3 (1952), pp. 470–472.

[72] K Somani Arun, Thomas S Huang, and Steven D Blostein. “Least-squares
fitting of two 3-D point sets”. In: IEEE Transactions on pattern analysis and
machine intelligence 5 (1987), pp. 698–700.

[73] Berthold KP Horn, Hugh M Hilden, and Shahriar Negahdaripour. “Closed-
form solution of absolute orientation using orthonormal matrices”. In: JOSA
A 5.7 (1988), pp. 1127–1135.

61

https://opendlv.org/
https://ouster.com/downloads/
 https://www.openstreetmap.org
https://doi.org/10.1109/TAES.2006.1603402
https://www.fnal.gov/pub/science/inquiring/questions/mikep.html
https://www.fnal.gov/pub/science/inquiring/questions/mikep.html

Bibliography

[74] Michael W Walker, Lejun Shao, and Richard A Volz. “Estimating 3-D location
parameters using dual number quaternions”. In: CVGIP: image understanding
54.3 (1991), pp. 358–367.

62

A
Appendix 1

A.1 First run

0 5 10 15 20 25
x [m]

0
10
20
30
40
50
60
70

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

2
0
2
4
6
8

10

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.1: First run: frame 4,250–5,250.

80 60 40 20 0
x [m]

80

60

40

20

0

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

15

10

5

0

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.2: First run: frame 5,250–6,250.

100 80 60 40 20 0
x [m]

120
100

80
60
40
20

0

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

8
6
4
2
0
2
4
6
8

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.3: First run: frame 6,250–7,250.

60 50 40 30 20 10 0
x [m]

60
50
40
30
20
10

0
10
20

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

20

40

60

80

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.4: First run: frame 7,250–8,250.

I

A. Appendix 1

0 50 100 150 200
x [m]

0
25
50
75

100
125
150
175
200

y
[m

]
Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

40

30

20

10

0

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

200

100

0

100

200

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.5: First run: frame 8,250–9,250.

40 30 20 10 0 10 20 30
x [m]

80
60
40
20

0
20

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.6: First run: frame 9,250–10,250.

20 0 20 40 60 80 100
x [m]

0
10
20
30
40
50
60

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

40

30

20

10

0

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.7: First run: frame 10,250–11,250.

0 2 4 6 8 10 12 14 16
x [m]

60
50
40
30
20
10

0

y
[m

]

Lidar odometry
GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

5

4

3

2

1

0

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.8: First run: frame 11,250–12,250.

50 40 30 20 10 0 10
x [m]

40

20

0

20

40

60

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

10
5
0
5

10
15
20
25
30

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

100
75
50
25

0
25
50
75

100

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.9: First run: frame 12,250–13,250.

II

A. Appendix 1

175 150 125 100 75 50 25 0
x [m]

200

150

100

50

0
y

[m
]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20
15
10

5
0
5

10

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.10: First run: frame 13,250–14,250.

160 140 120 100 80 60 40 20 0
x [m]

200

150

100

50

0

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

80

60

40

20

0

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.11: First run: frame 14,250–15,250.

40 20 0 20 40 60 80 100
x [m]

25
0

25
50
75

100
125

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20
10

0
10
20
30
40

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.12: First run: frame 15,250–16,250.

0 25 50 75 100 125 150 175 200
x [m]

0

50

100

150

200

250

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

80

60

40

20

0

20

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

100

50

0

50

100

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.13: First run: frame 16,250–17,250.

0 20 40 60 80
x [m]

0

20

40

60

80

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

70
60
50
40
30
20
10

0

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.14: First run: frame 17,250–18,250.

III

A. Appendix 1

A.2 Second run

300 200 100 0 100 200
x [m]

100
0

100
200
300
400
500

y
[m

]

Lidar odometry
GPS
Lidar
Lidar + UKF

0 100 200 300 400 500 600 700
Frame [0.1s]

200

100

0

100

200

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 100 200 300 400 500 600 700
Frame [0.1s]

8000
6000
4000
2000

0
2000
4000
6000
8000

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.15: Second run: frame 2,000–3,000.

400 300 200 100 0 100 200 300
x [m]

0
50

100
150
200
250
300
350
400

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

100
50

0
50

100
150
200
250
300

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

2000
1500
1000

500
0

500
1000
1500

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.16: Second run: frame 4,000–5,000.

200 100 0 100 200 300 400 500
x [m]

300

200

100

0

100

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

200
150
100

50
0

50
100
150

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

6000
4000
2000

0
2000
4000
6000

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.17: Second run: frame 6,000–7,000.

400 300 200 100 0 100 200
x [m]

400

200

0

200

400

y
[m

]

Lidar odometry
GPS
Lidar
Lidar + UKF

0 100200300400500600700800
Frame [0.1s]

200
100

0
100
200
300
400
500

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 100200300400500600700800
Frame [0.1s]

7500
5000
2500

0
2500
5000
7500

10000

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.18: Second run: frame 7,000–8,000.

0 100 200 300 400
x [m]

50
25

0
25
50
75

100
125

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

100
50

0
50

100
150

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

600
400
200

0
200
400
600

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.19: Second run: frame 8,000–9,000.

IV

A. Appendix 1

0 100 200 300 400 500
x [m]

0
20
40
60
80

100
120
140

y
[m

]
Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

60
40
20

0
20
40
60
80

z [
m

]

Z deviation
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

1000

500

0

500

1000

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.20: Second run: frame 9,000–10,000.

0 50 100150200250300350400
x [m]

60
40
20

0
20
40
60
80

y
[m

]

Lidar odometry
GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

80
60
40
20

0
20

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

300
200
100

0
100
200
300

z [
m

/s
²]

Z Acceleration

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.21: Second run: frame 10,000–11,000.

300 200 100 0 100
x [m]

80

60

40

20

0

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

30
25
20
15
10

5
0
5

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

150
100

50
0

50
100
150
200

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.22: Second run: frame 11,000–12,000.

70 60 50 40 30 20 10 0
x [m]

80
70
60
50
40
30
20
10

0

y
[m

]

Lidar odometry

GPS
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

14
12
10

8
6
4
2
0

z [
m

]

Z deviation

Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

20

10

0

10

20

z [
m

/s
²]

Z Acceleration
Lidar
Lidar + UKF

0 200 400 600 800 1000
Frame [0.1s]

0

10000

20000

30000

40000

50000

Size point cloud

Figure A.23: Second run: frame 12,000–13,000.

V

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Research question
	Limitations
	Outline

	Background
	Data sets for autonomous vehicles
	Explicit and implicit factors
	Overview

	Sensors
	Camera
	Light detection and ranging
	Global navigational satellite system
	Intertial measurement unit

	Gimbal
	Simultaneous localisation and mapping
	Scan registration
	State estimation
	Sensor fusion
	Extended Kalman filter
	Unscented Kalman filter

	Kinematic problems

	Containerised software and microservices

	Methods
	SLAM
	Point cloud preprocessing
	Crop box filter
	Statistical outlier removal

	Point cloud registration
	Normal distribution transform
	Iterative-closest-point

	UKF
	Initialisation
	Prediction step
	Update step
	Heading approximation
	Velocity approximation

	Software architecture
	Algorithms
	Interfacing the Ouster OS2-128 sensor

	Experiments
	Vessel experiment
	Hardware setup - Vessel

	Gimbal experiment
	Hardware setup - Laboratory

	Evaluation of results

	Results
	Vessel experiment
	UKF performance
	Mapping
	Localisation
	First run
	Second run

	Gimbal experiment
	Mapping
	Localisation

	SLAM requirements

	Discussion
	UKF performance
	SLAM
	Mapping
	Localisation

	Hardware versus software solutions
	SLAM requirements
	Social and ethical impact
	Future work

	Conclusion
	Bibliography
	Appendix 1
	First run
	Second run

