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Multimodal deep learning for diagnosing sub-aneurysmal aortic dilatation
SARA FINATI & ELIN LJUNGGREN
Department of Computer science and engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Abdominal Aortic Aneurysm (AAA) is a localized enlargement of the abdominal
aorta that can progress to a rupture, which will cause an internal bleeding that is
fatal in the majority of the cases. To save more lives, a nationwide screening program
invites all men at 65 to measure their largest aortic diameter during an ultrasound
examination. The diagnosis is based solely on this diameter and if it is below 30
mm the patient is declared healthy and discarded from any follow-up monitoring.
However, recent studies have shown that patients with a diameter within 25–29 mm,
a sub-aneurysm, run an elevated risk of developing a full-size aneurysm and hence
might need further surveillance.

This thesis is a collaboration between the product development company QRTECH
AB and Västra Götalandsregionen (VGR). It proposes a novel solution for predicting
which sub-aneurysms that might grow into a full-size aneurysm with the help of an
ultrasound image complemented by patient data including aortic diameter, number
of years of smoking and snus, blood pressure and medications. The solution consists
of a multimodal deep learning algorithm that classifies the sub-aneurysms as either
healthy or sick and thereby suggests patients that should be kept under surveillance.

Due to lack of any follow-up data for the men with sub-aneurysms a comparison
with meta-studies, examining how many sub-aneurysms that progressed into a full-
size aneurysm, was carried out. The results from those studies did not agree with
the results obtained from classifying the sub-group in this project. A feasible expla-
nation is the limited data set which most likely affected the learning. However, the
evaluation of the model’s performance was still promising and indicates the potential
of using neural networks for diagnosing AAA.

Keywords: multimodal deep learning, abdominal aortic aneurysm (AAA), sub-
aneurysmal aortic dilatation, VGG19, Keras, heatmaps, permutation importance.
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1
Introduction

This chapter starts by introducing the background of this thesis, followed by a
clarification of the purpose and what it aims to accomplish. Lastly, a section about
related research is covered.

1.1 Background

Abdominal Aortic Aneurysm (AAA) is a localized enlargement of the abdominal
aorta and considered life-threatening. A rupture of such aneurysm will cause an
internal bleeding that is fatal in the majority of the cases [1]. The condition is not
reversible but change of lifestyle could halt the progression of the aneurysm and
consequently reduce the mortality risk [2].

To minimize the death rate, a screening program was initiated in Sweden in 2006
and reached nationwide coverage in 2015. It has been very successful since it is a
cost-efficient way for early detection of AAA [3]. The program focuses on the high
risk population, hence all men at 65 years of age are invited to do an ultrasound
examination of the abdominal aorta to measure its largest diameter [1]. If the
diameter is 30 mm or larger, the man is diagnosed with AAA. To this day, a
total of 302, 957 men have been called for examination, 84% have attended, and
the prevalence of detecting AAA is currently 1.5%. Though, this does not reflect
the whole society since the compliance is lower in areas with low socioeconomic
status [2]. The screening program is predicted to annually prevent 90 premature
deaths from aortic aneurysms and to gain 577 quality-adjusted life years [3].

Today, the diagnosis of AAA is solely based on the diameter of the aorta as men-
tioned above. Although this way of diagnosing has high specificity and sensitivity,
there is room for improvement. One disadvantage is the case of overdiagnosis. This
can for example mean that a dilatation ≥ 30 mm is diagnosed as an aneurysm
even though it will never grow to a critical size (usually ≥ 55 mm) where it might
rupture. Obtaining such a diagnosis can lead to psychosocial deterioration due to
unnecessary anxiety [1]. Another disadvantage is the strict limit of 30 mm since all
men with an aortic diameter less than this are discarded from further examinations
as they are perceived to be low-risk subjects. But recent studies have shown that
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1. Introduction

the sub-group with a sub-aneurysmal aortic dilatation of 25–29 mm runs an elevated
risk to develop a full-size aneurysm [2]. In addition, the increasing life expectancy
makes the risk even higher [4].

There is still an uncertainty regarding how cost-efficiency, and the life quality of
the men in the sub-group, will be affected if they would be incorporated into the
follow-up monitoring provided by the screening program [2]. Since it is desirable to
keep both the cost and cases of overdiagnosis down, it would be beneficial to try
to find which of the men in the sub-group that run a risk of actually developing an
aneurysm. It is therefore of interest to investigate if there are any underlying causes
that might conclude which sub-aneurysms would progress further.

A well suited machine learning algorithm for this type of purpose is Artificial Neural
Network (ANN). This algorithm has recently found many uses within applications
regarding medical diagnosis since it in many ways enhances doctors’ ability to an-
alyze medical data [5, 6]. From the screening program, patient data such as age,
smoking habits, diameter of the aorta and blood pressure can be obtained together
with the images from the ultrasound examinations. The patient data and the images
belong to two different modalities. By analyzing these parameters in a neural net-
work, so called multimodal deep learning, features indicating AAA could potentially
be found that otherwise would have been left unseen. These features may be a first
step to develop a more individualized diagnosis and treatment of AAA among the
men having sub-aneurysms.

1.2 Aim

The aim of this project is to investigate if a neural network can help determine
which of the patients in the sub-aneurysm group are most likely to develop a full-
size aneurysm and therefore need further surveillance.

1.3 Specification of issue under investigation

This project is a collaboration between the engineering company QRTECH and
Västra Götalandsregionen (VGR), with the main focus to investigate if the ultra-
sound images together with patient data can indicate which of the men with a
sub-aneurysmal aortic dilatation that should be kept under surveillance. Since the
provided data set does not contain any information whether these patients actu-
ally will develop a full-size aneurysm or not, the obtained results cannot be fully
verified. Instead a comparison with meta-analyses, which studies how many of the
sub-aneurysms that progressed to an aneurysm within five and ten years, will be
carried out. Due to the lack of monitoring data, it is also essential to analyze what
the neural network will base its decisions on.

2



1. Introduction

The main questions covered in this thesis are:

• How well do the results agree with the meta-analyses? Will the percentage of
how many sub-aneurysms that progressed into a full-size-aneurysm coincide
with how many of the men in the sub-group that are classified as sick?

• What image features will the network find most important?

• Which of the input parameters yield the highest significance?

To answer these questions a multimodal deep learning algorithm will be implemented
to classify the sub-group as either sick or healthy. The structure will consists of two
branches, one analyzing the image data and the other analyzing the patient data
before being combined to a joint decision.

Regarding the second question, saliency maps and heatmaps will be employed to
visualize what image features the network will find important. These maps will
highlight the pixels or regions that contribute the most to the classification.

Finally, a technique called permutation importance will be applied to identify how
significant each input parameter is. This is done by shuffling one input column
leaving the others unaffected, all inputs are then fed to the network to be classified
as either sick or healthy. How much the accuracy is degraded will determine the
significance of the shuffled parameter.

1.4 Limitations

Due to the limited time frame of this thesis the neural network will not be built
from scratch. Instead, an existing network architecture will be used as foundation
and adjusted in order to fit the problem covered in this project. Further, the al-
gorithm will be developed to only perform binary classification, meaning that the
patients having sub-aneurysms will only be classified as either sick or healthy. A
sick classification means that the patient will develop an aneurysm over 30 mm and
a healthy will not. Hence, the neural network will not be able to predict which of
the sub-aneurysms that will progress to a critical size where it might rupture.

The provided data originates from VGR and is part of the aforementioned screening
program. It will therefore be limited in both age and gender but also geographically.
Since socioeconomic factors affect the compliance and prevalence, the data set might
not represent the true population and the obtained results might differ from the
meta-analyses.
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1. Introduction

1.5 Related work

Following sections will first introduce a successful implementation of multimodal
deep learning combining images and non-image data for improving a medical diag-
nosis. Secondly, the meta-analyses will be presented, which will be compared to the
results obtained from this project.

1.5.1 Multimodal deep learning for cervical dysplasia diag-
nosis

An application for multimodal deep learning in the medical domain is discussed in
the paper by Xu et al. [7] from 2016 regarding diagnosis of cervical dysplasia. During
the patient’s screening visit, a digital image of the cervix is collected together with
clinical test results. Previous research showed that these modalities could provide
complementary information and consequently improve the diagnostic accuracy [8, 9].
However, the image data and the clinical data were trained separately and then
fused together to yield the final decision [7]. This approach does not fully exploit
the implicit correlations across the modalities, which is why the authors proposed an
improved framework. A Convolutional Neural Network (CNN) was implemented to
convert the image data to a feature vector which can be fused with non-image data.
The network was then concatenated with joint fully connected layers to learn the
non-linear multimodal correlations. The final network was able to predict cervical
dysplasia with an accuracy of 88.91%, sensitivity of 87.83%, and specificity of 90%.
These results significantly outperform other methods that only uses single modality
information.

1.5.2 Sub-aneurysmal aortic dilatation

In most screening programs patients diagnosed with a sub-aneurysm are left with
no further examinations. But sub-aneurysmal dilatation do not represent a normal
aortic diameter and it has been discovered that these persons are likely to develop a
full-size aneurysm. Therefore, investigations have been made to explore the benefits
of follow-up surveillance of patients with sub-aneurysms and to study how sub-
aneurysms grow. Two studies that have investigated this are meta-analytical in
their character, i.e., the studies by et al. [10] 2013 and et al. [11] 2018.

et al. [10] collected data from eight screening programs in England, Denmark and
Finland which all had made long term follow-up of their participants. The meta-
analysis ended up with N = 1, 696 patients with sub-aneurysms, having a median
age of 66 years at the first examination and 66 of them being females. These patients
were followed up with a median time of every 4 years and 1, 011 of the 1, 696 subjects
(59.6%) developed aneurysms (mean time of 4.7 years). At 5 years of surveillance
even more of the patients had developed aneurysms (67.7%). Reaching the point
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after 10 years where 96% of the patients had developed an aneurysm [10].

How many of the patients in the screening program that developed an aneurysm> 50
mm and were suited for surgical repair was also investigated by et al.. But in this
sample only 11.5% developed an aneurysm of this size (mean time of approximately
11 years). Seven of the screening programs provided additional data for how many of
patients’ aortas that progressed to a rupture. There were 14 reported ruptures and
the mean time from the first examination to the rupture was 18.7 years. Although
there could be a risk that this number is under-reported since the patients were
under surveillance and would have had preventive surgical repair before [10].

In the study by et al. [11] collection of data from different screening programs and
studies was also performed. This resulted in 37 studies performed on males with
participant size ranging from 3 to 52, 690. In these studies the prevalence of sub-
aneurysms ranged from 1.14% to 8.53% and by the 5-year follow-up 55% to 88% of
these progressed to an aneurysm [11]. Four of the studies also reported the number
of participants with sub-aneurysms that proceeded to surgical repair. Out of these,
10% had elective surgery and 1% had emergency surgery after rupture [11].

The conclusion from both of these investigation whether or not to include patients
with sub-aneurysms in follow-up programs was ambiguous. et al. [11] could not
confidently say that the patients should be kept in surveillance while et al. [10]
recommended to include them.

1.6 Thesis outline

Chapter 2 will present the theoretical foundation this thesis relies on. It will
provide an overview of the disease AAA as well as introducing the key concepts of
ANN.

In Chapter 3 the methods used for implementing and evaluating the multimodal
deep learning algorithm are described thoroughly, while the obtained results will be
displayed in Chapter 4. Chapter 5 presents an analysis of the results and Chap-
ter 6 discusses the questions stated in Section 1.3. The threats to this project’s
validity is covered in Chapter 7. Lastly, Chapter 8 will provide concluding re-
marks and ideas for future work.
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2
Theory

This chapter will introduce the theoretical foundation that will be necessary in
order to fully understand the upcoming work. A further explanation of the concept
of Abdominal Aortic Aneurysm will be given, followed by a presentation of the key
concepts of Artificial Neural Network.

2.1 Abdominal aortic aneurysm

Abdominal Aortic Aneurysm (AAA) is an enlargement of the aorta usually located
below the vessels leading to the kidneys, see Figure 2.1 [2].

There are usually no symptoms characterizing AAA. The causes of AAA are believed
to be degradations of connective tissue proteins like elastin and collagen, or chronic
inflammation in the middle layer of the vessel wall. This will reduce the strength of
the wall and in the end cause it to erupt [2]. Risk factors causing AAA are mainly
smoking, but also male sex, high blood pressure (hypertension), age, high BMI and
high cholesterol. Heredity and family history can also be contributing factors [2, 12].
The formation of small aneurysms have been associated with diabetes but these
usually grow slower than aneurysms in a non-diabetic patient [13].

The number of diagnosed AAA cases has been decreasing the past 10–20 years and
today the occurrence in Europe and USA are 2–3% for men between 65–70 years. In

Figure 2.1: Schematic visualization of the location of an AAA. As the figure
shows the aneurysm is usually located in the abdomen beneath the vessels leading

to the kidneys.
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2. Theory

Sweden the corresponding number is 2%, women are not included in these numbers
since AAA is 4–6 times more common among men. The decrease of AAA cases is
believed mainly to be the result of a decreased amount of smokers in the general
population [2].

An aneurysm grows slowly but the speed increases as the aneurysm gets larger. The
annual growth is estimated to 5–10% of the diameter, though there is a high vari-
ability and the aneurysm does not grow continuously. Its way of growing is instead
characterized by growth periods. The same risk factors for causing the aneurysm are
also believed to increase its growth speed, with the exception of diabetes [2]. Previ-
ous studies have also shown that a thrombus located in the infrarenal aorta, in the
aorta below the kidneys, can promote a faster growth. A large thrombus stimulates
inflammation and the production of Reactive Oxygen Species (ROS) and Extra Cel-
lular Matrix (ECM) degradating enzymes. These are all molecular processes that
are involved in the development of AAA [14].

There are no specific treatments for preventing the aneurysm from growing or slow-
ing down its growth. Trials have been made with several different medications and
compounds, though the sample sizes in each trial have been quite small and there
has been no significant effects on the primary outcomes [14]. Today the only rec-
ommendations for slowing down the growth of aneurysms is to quit smoking or in
some suitable cases treat the patient for hypertension [2].

If the aneurysm keeps growing it will eventually erupt and to prevent this a surgi-
cal intervention is made when the aneurysm reaches 50–55 mm in diameter. These
aneurysms are usually detected by an ultrasound examination as part of a screening
program. The patient then gets a remittance to a vascular surgeon and a CT-scan
is made to validate the aneurysm’s diameter from the ultrasound examination. If
the diameter is still > 55 mm, a surgical intervention is made [2]. This surgi-
cal intervention is the same as when the aneurysm ruptures, either open surgery
or EndoVascular Aortic Repair (EVAR). Both of these interventions replace the
aneurysm with a vascular prosthesis, but they differ when it comes to type of pros-
thesis inserted and the procedure. Open surgery is an anaesthetic procedure where
the abdomen is cut open and a synthetic graft is sewn to the aorta. When in-
stead using EVAR, a catheter is entered from the groin arteries into the aorta and
through this a stent graft is inserted and hooked to the wall of the aorta. EVAR is
the currently most used method and has the best short term effect due to its low
risk of immediate complications of the surgery. But complications from the stent
graft itself is more common than when using a synthetic graft and thereby requires
more surveillance. This implies that the long term effect between the two methods
is negligible [2].

The risk of rupture increases as the aneurysm grows and is believed to be around
10% for aneurysms > 60 mm. Due to the lack of symptoms the most common case
is to discover it during screening or, in worst case, when the aneurysm ruptures. If
it ruptures, the patient can experience pain beaming from the abdomen to the back
and the sides and then quickly lose consciousness. The only way to treat a ruptured
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Figure 2.2: A graphical representation of a perceptron corresponding to equation
O = g(B) = g (∑n

i=1 wixi + Θ).

aneurysm is by surgical intervention either by open surgery or EVAR. But even
though the patient gets to the hospital and receives treatment the total mortality
rate is 70–80% [2].

2.2 Artificial neural networks

Diseases, like AAA, usually consist of complex relations that need to be analyzed in
order to explain why they occurred and how they will progress. One way of analyzing
these relations is by Artificial Neural Networks (ANNs) which have emerged more
and more lately. This method has been used in industry and research for many years
and has now also entered the healthcare business [15, 16]. The concept of ANN is
inspired by how the neurons in the human body store input data and learn from
it. Artificial neurons have the same main features as the biological neuron which
are parallelism and high connectivity and are called perceptrons. They are fed with
an input signal, xi, that is weighted using the synaptic weights, wi, and summed
together. A bias, Θ, is introduced that pushes the sum in the direction of the neuron
output. This gives the local field, B, which is inserted into an activation function,
g(B), and equals the final output, O [17]. The corresponding equation of the model
can be seen below in equation (2.1)

O = g(B) = g

(
n∑

i=1
wixi + Θ

)
, (2.1)

while a graphical representation is illustrated in Figure 2.2.

ANNs consist of several processing units that represent the perceptrons and are
linked together by many forward directed interconnections, i.e., artificial synapses.
The interconnections are weighted using synaptic weights that determine the impor-
tance of the different synapses. As the network learns, these weights are adjusted
according to the input data. The structure of ANNs is what makes them suited
for classification and prediction tasks since they can extract relationships between
several variables in the targeted application [15].
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Input Layer � �³ Hidden Layer � �� Hidden Layer � �� Hidden Layer � �� Output Layer � �¹

Figure 2.3: Example of a multiple layered perceptron with one input layer, three
hidden layers and one output layer.

A network can consist of a single layer or multiple layers of perceptrons, where the
latter is called Multiple Layer Perceptron (MLP). MLPs usually have one input
layer, a number of hidden layers and an output layer. An example of this kind
of network can be seen in Figure 2.3, where all the neurons are connected with
the neurons in the previous and in the next layer. This type of hidden layers are
described as fully connected layers and they build up a fully connected network [17].

Networks with two or more hidden layers are usually referred to as deep networks and
can be trained to solve complex classification tasks with high accuracy. One type of
a deep network that is commonly used in image analysis is the Convolutional Neural
Network (CNN). In these networks the different layers consist of feature maps that
recognize different geometrical features in the images [17].

2.2.1 Convolutional neural networks

CNNs are designed for object recognition and pattern detection as they take an
input image and then the layers of neurons, the filters, detect local features, like
edges or corners, and create feature maps. Since similar features occur in different
parts of the image, one type of filter can be used in multiple areas. This means that
a certain filter detects only one certain feature, for example one filter might detect
edges while another one detects corners [17]. In this way the filters are translation
invariant, implying that the network can learn the object features irrespective of
where they are [18]. With this knowledge the number of weights can be greatly
reduced compared to regular fully connected networks since the weights are shared
between the neurons in the filter [19]. This is the most important characteristic of
CNNs since it makes them cheaper to train regarding computational power and it
also reduces the risk of overfitting [17].

The feature map created from one filter is fed to the next where the mathematical
operation convolution is performed, creating a new feature map. The filter perform-
ing convolution is referred to as convolutional layers, hence the name Convolutional
Neural Network. These networks also consist of other types of layers, for example
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Figure 2.4: A demonstration of how max pooling works. It can be seen in the
figure how the max pooling layer reduces the size of the feature map and creates a

smaller, translation invariant representation of the map.

pooling layers that are connected directly to a convolutional layer. Pooling layers
simplify the output from the convolutional layer which can be done in different ways,
for example by the use of max pooling [17]. This method gives the maximum output
within a neighborhood making the representation of the feature map invariant to
small translations of the input. In Figure 2.4 an illustration of how a max pooling
layer works is shown [18].

Most images share the same type of low-level features like edges, geometric shapes,
changes in lighting, etc. This can be utilized for the purpose of transfer learning
where a pre-trained network can be retrained to perform a different task than pre-
viously trained to do. It is often applied in cases where the data set associated with
the new task is small. Therefore it could be an advantage if the network has already
learned the basic features and is only fine-tuned on the data set corresponding to
the new task [18].

In CNNs most of the basic features are learned by the lower layers which means that
these layers will be shared for most image dependent tasks and the upper will be
task dependent. This is why it is, in most cases, sufficient to only retrain the upper
layers when doing transfer learning [18]. There are several different open source
pre-trained networks available that can be used for transfer learning, for example
the Google Inception, Microsoft ResNet and Oxford VGG-networks [20, 21, 22].

VGG19 is a well-known and well-established CNN architecture for image classifi-
cation tasks, where the number 19 stands for the number of weight layers in the
network. The network was developed by Simonyan and Zisserman and their team
VGG for the competition ImageNet Challenge 2014 [22].

For the competition it was trained on the data set from the 2012 edition of the
ImageNet Challenge. This set is a subset from the large ImageNet dataset and
contains 1,000 classes where the training set consists of 1.3 million images, the
validation set of 50,000 images and the test set of 100,000 images. Since the network
performs a multiple classification task it has a softmax function as output layer
that classifies the input image into one of the 1,000 classes from the dataset. The
architecture of the VGG19 network is presented in Figure 2.5 together with the size
of each feature map and the input image [22].
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Figure 2.5: The VGG19 network architecture with its corresponding filter sizes.

There are networks that are a lot deeper than VGG19, like GoogLeNet and Incep-
tionV3. These networks consist of 22 and 48 weight layers respectively and have also
been tested on the 2012 ImageNet challenge with acceptable results [23, 24]. Re-
cently, large networks have been increasingly doubted and it has been investigated if
there are smaller networks that can perform at the same level. Usually when larger
networks are trained a technique called pruning is employed where neurons with
small contributions are removed and the network is thereby decreased in size.

Frankle and Carbin [25] have presented a technique for retrieving a smaller sub-
network contained within a larger network that yields equal or higher performance
while the size is reduced by 10–20%. The sub-network is formed by the remain-
ing neurons from pruning a trained network. By then resetting the weights of
the sub-network with the same weights as when initializing the original larger net-
work, Frankle and Carbin succeeded to either meet or exceed the original network’s
performance. Though when randomly initializing the weights all over again the
sub-network performed far worse, implying that structure alone cannot explain the
success [25].

2.2.2 Multimodal deep learning

Usually when making more complex decisions or classification tasks more than one
type of information, modality, is used. For example when diagnosing diseases, in-
formation from X-ray or MRI scans is weighted together with blood samples, ex-
amination results and other types of interventions before taking a final decision. In
machine learning this is called multimodal deep learning and has been used in several
different applications for example when diagnosing cervical dysplasia, as mentioned
in Section 1.5.1 [9].

There are different ways of performing multimodal deep learning. Specifically there
are several techniques for when and how to merge the different kinds of modalities,
for example late or early fusion, hybrid fusion or model ensemble. These methods
have in common that the features, either final or intermediate, are joint together to
make a final decision [26].

The two most common methods are late and early fusion. Late fusion implies that
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the two separate networks give separate decisions that are merged together to give a
final decision. When doing early fusion, features are taken out from the two separate
networks and merged together into a new vector. This vector is used as input into
another network with more hidden layers and an output layer that gives a final
decision [9].

2.2.3 Training

Neural networks require training before they are able to perform certain tasks such
as classification or segmentation. The training is an iterative process and can be
divided into two subgroups: supervised and unsupervised.

Supervised learning means that there exists defined outputs. The network takes the
inputs and desired outputs and updates its internal state in order for the predicted
output to be as close as possible to the true value [18]. Contrarily, unsupervised
learning does not require any knowledge about the outputs. In this case, the goal is
instead for the network to learn the underlying patterns of the input data to identify
subsets that contain similarities [15].

Before the training phase can start the hyperparameters have to be set. These
parameters refer to the settings of the network and determine the structure such
as number of layers and hidden units but they also determine the learning pro-
cess [18]. The latter include among others the learning rate, optimization method,
cost function and activation function which all will be explained in following sec-
tions. Another set of hyperparameters are the weight and bias initialization. Since
the optimal values are unknown at this point, prior to training, the weights are
usually chosen randomly [17] and the biases may be set to zero [18]. When applying
the technique of transfer learning, described in Section 2.2.1, the weights and biases
from a pre-trained network are used for the initialization instead. This implies that
the network has already learned certain image features and will not have to start
from zero.

The choice of hyperparameters is essential for the performance of the model but
finding the best values is challenging. One approach is to split the original data set
into three subsets: training, validation, test and then manually tune the parameters
based on the validation set performance. The validation set will initially provide an
unbiased evaluation of the model since it is not used during training. However, as the
tuning proceeds the network will become progressively more biased as information
from the validation set will be incorporated into the model settings. The purpose of
the test set is therefore to work as a final and completely unbiased evaluation [27].

Optimizer

The training process can be seen as an optimization problem where the optimal
values of the weights and biases minimizes the cost function, C. In many cases it
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is sufficient to stop training when the cost is small enough instead of when it has
reached global minimum, implying that the obtained solution does not have to be
unique [17]. A typical approach for finding a solution is to apply gradient descent,
meaning that in each iteration small increments δwl is added to the weight vector
wl in layer l as seen in equation (2.2)

wl ← wl + δwl, δwl = −η ∂C
∂wl

, (2.2)

where the increment equals the partial derivative of the cost function with respect
to the weight of interest multiplied by a learning rate η > 0 [19]. The idea is to take
steps in the steepest descent direction, hence the minus sign in front of the learning
rate, until hopefully the global minimum of the cost function is reached [17]. The
learning rate translates to the step size and has to be chosen wisely since it is a
compromise between the speed of convergence and the accuracy of the learning. A
common practice is therefore to employ a decaying learning rate which tends to
optimize this trade-off. The biases are updated in a similar fashion, also adding
small increments at each iteration.

A more efficient way of optimizing the parameters is to use Stochastic Gradient
Descent (SGD). SGD allows for faster convergence since only a single input is used
for updating the parameters instead of the entire training set. The step direction
will not necessarily point downhill but fluctuate instead, yielding a stochastic path
through the weight and bias space. This makes the algorithm less likely to get stuck
in local minima [17]. However, due to the stochastic behavior the final performance
may be worse than gradient descent. A common practice is therefore to use a
small number of randomly chosen inputs, a mini-batch. This approach works as a
compromise between gradient descent and SGD since it still ensures fast convergence
but also improves the accuracy. Even though SGD only uses one input or a smaller
sub-set called mini-batch for updating the parameters, new inputs are chosen at
each iteration so eventually the whole training set will be passed to the network. A
complete pass of the training data is called an epoch [15].

Momentum is a popular technique to use together with SGD which speeds up the
convergence further without sacrificing the accuracy. Instead of updating the pa-
rameters based only on the current gradient, it also utilizes past gradients. The step
size will increase towards the global minimum if the gradients point in the same
direction [19]. However, applying momentum results in yet another hyperparameter
to set in terms of the percentage of gradients retained in every iteration.

Adam optimizer is another gradient-based optimization algorithm and utilizes an
adaptive learning rate. Learning rate is believed to be the most important hy-
perparameter [18], but tuning it can be a tedious process. Since Adam computes
individual learning rates for each parameter, it will not only entail faster convergence
but also make it more robust to the initialization of the hyperparameters. This is
an advantage compared to SGD which requires careful tuning [28]. Nonetheless, all
methods have their flaws. In the paper by Wilson et al. [29], experiments show
that Adam generalize worse to test data than SGD despite its accurate training
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Figure 2.6: Illustration of a simple artificial neural network with inputs xi,
hidden neurons Vj and output O. The weights wji and wj are also displayed

corresponding to the different layers.

performance.

Backpropagation

In order to efficiently compute the gradients from Equation (2.2) an algorithm known
as backpropagation is employed. This technique has been proven very successful for
many different methods, including deep neural networks [17]. Backpropagation is
about understanding how changes of the weights and biases affect the performance
of the network. It propagates errors from the output layer back to previous layers
and, while going backwards, the contribution to the overall cost of each weight and
bias is calculated. These parameters are then consequently adjusted in such a way
that the cost is minimized [19].

The mathematics behind backpropagation is simply the chain rule. For the network
in Figure 2.6, the gradient for updating weight wj leading from neuron Vj in the
hidden layer to the output O = g(B) = g(∑3

j=1 wjVj + Θ) is computed as

∂C

∂wj

= ∂C

∂O

∂g(B)
∂B

∂B

∂wj

= ∂C

∂O
g′(B)Vj. (2.3)

Accordingly, the choice of the cost function, C, and activation function, g, will hence
affect the outcome.

Moving backwards to weight wji leading from the input xi to the hidden neuron
Vj = g(bj) = g(∑2

i=1 wjixi + θj), the gradient is now calculated as

∂C

∂wji

= ∂C

∂O

∂g(B)
∂B

∂B

∂Vj

∂Vj

∂wji

= ∂C

∂O
g′(B)wjg

′(bj)xi. (2.4)

The term ∂C
∂O
g′(B) in Equation (2.3) is referred to as the error related to the out-

put layer. As described above it is propagated backwards to the previous layer
which Equation (2.4) confirms by showing the presence of that term. Similarly is
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∂C
∂O
g′(B)wjg

′(bj) the error associated with the hidden layer. The errors are thereby
determined recursively in terms of the error from the layer to the right [17]. If the
model would have been deeper, containing additional layers, the errors from each
layer would have kept propagated backwards all the way back to calculating the
error related to the first hidden layer.

When all parameters in all layers have been updated, a new iteration begins. The
input data is now fed forward through the network and the cost is calculated at the
output using the updated weights and biases. Then again the errors will propagate
backwards, updating the parameters once more. These cycles will continue until the
training process terminates after a user defined number of epochs.

Cost function

The purpose of the cost function, also referred to as loss function, is to measure
the performance of the network. As mentioned earlier, the goal is to minimize the
cost and it is therefore crucial that the chosen function is suitable for the upcoming
task [18].

Cross-entropy functions measure dissimilarities between the predicted label and the
true label distribution and works well for classification tasks. The binary cross-
entropy is to prefer for binary classification problems [19] and is defined below:

C = −
∑

i

yi log ŷi + (1− yi) log(1− ŷi). (2.5)

Here, y is the true label assigned either 0 or 1 whereas ŷ and (1−ŷ) is the probability
of the output belonging to class 0 or 1 respectively. The output of the equation will
be close to zero if the prediction is close to the true label for all inputs i [19].

Activation function

Activation functions can be both linear and non-linear but the ones included in the
latter group are essential for the learning of complex data such as images. The non-
linearity allows for creating complex mappings between the inputs and the outputs.
Without them only linear transformations can be applied, reducing solvability of
complicated tasks [18]. Nevertheless, adding complexity to the model will increase
its ability to overfit on random effects that might only be present in the training
data and hence fail to generalize to unseen data.

A common activation function for the output layer is the sigmoid function defined
in equation (2.6) [17]

σ(b) = 1
1 + e−b

. (2.6)
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It outputs a single value between 0 and 1 making it suitable for binary classification
problems. If more than two classes are included in the classification task, another
activation function called softmax is preferable since it outputs probabilities for each
class [17].

Rectified Linear Units, ReLU(b) = max{0, b}, has lately been preferred as acti-
vation function in the hidden layers since it is computationally efficient [19]. The
ReLU function has piece-wise constant derivatives which makes it faster to evaluate
compared to, for example, the sigmoid function [17].

Overfitting

Overfitting is a common consequence when training neural networks. What happens
is that the model starts to learn more specific features of the training data instead
of just general characteristics. The model will thus become too closely fitted to the
current data but will fail spectacularly on previously unseen data [19]. An example
of this is the quote by John von Neumann [30]:

With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk.

This means that there are four relevant parameters that give all the information
needed to capture the shape of an elephant. But the fifth and last parameter is less
important since it only wiggles the elephant’s trunk.

Deeper networks have a higher tendency to overfit since they contain more neu-
rons which imply a more thorough representation of the fine details of the training
set [17]. However, reducing the size of the network is not a preferable approach for
avoiding this problem since shallow networks are not as powerful and the efficiency
will decrease [19].

To reduce overfitting regularization methods are applied. These can also be com-
bined in order to further improve the performance. L2-regularization or weight
decay encourages the network to choose smaller weights by adding an extra term in
the cost function that will work as a constraint in the optimization problem. The
idea is that smaller weights will reduce the importance of less important features
and hence suppress overfitting [17].

Dropout is another popular regularization method that is surprisingly effective de-
spite its simplicity. At each iteration in the training process the network randomly
selects a subset of hidden neurons that will be temporarily ignored, preventing both
the incoming and outgoing weights of these neurons to be updated [19]. The dropout
process corresponds to training different networks in each iteration. These networks
will overfit differently but by averaging over them the net effect will hopefully reduce
overfitting [19].

Overfitting can also be reduced by simply training on a larger data set since this

17



2. Theory

will help the network to generalize. However, available data is often limited but an
idea is to generate data artificially which is referred to as augmentation. Common
image-based augmentation techniques include rotating, flipping, scaling and blurring
etc. [17].

2.2.4 Evaluation

Evaluation of neural networks and machine learning algorithms can be performed
in several different ways. In this section two main techniques will be explained, per-
formance metrics and visualization. In the concept of performance, different kinds
of metrics are included for example accuracy and recall. Visualization comprises
saliency maps and heatmaps.

Performance metrics

The most intuitive way to quantify the performance of an ANN is by calculating
its accuracy. This measures the total number of correct classifications with respect
to the total number of classifications made. This can however be misleading if
there is an imbalance between the classes in the data set. Additional evaluation
metrics are therefore often essential and the most commonly used are presented in
Equations (2.7)–(2.9). The acronyms TP, TN, FP, FN stand for True Positive, True
Negative, False Positive, and False Negative respectively.

recall = TP
TP+FN (2.7)

specificity = TN
TN+FP (2.8)

precision = TP
TP+FP (2.9)

Recall, also called sensitivity or True Positive Rate (TPR), measures a model’s abil-
ity to correctly classify the positive samples whereas specificity, the True Negative
Rate (TNR), is the ability to correctly classify the negatives. Precision is instead
considered as the exactness of the model, it tells how many of the predicted positive
samples were actually classified correctly [31].

Other metrics used for evaluating a binary classification model are the Receiver
Operating Characteristic (ROC) curve and the precision-recall curve [32]. The
ROC is a curve of probabilities where the TPR is plotted against the False Positive
Rate (FPR), i.e., one minus specificity, at all classification thresholds. Figure 2.7
illustrates an example of two distributions together with this threshold. When mov-
ing the vertical line, the classification ratios change yielding different values for TPR
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Figure 2.7: An example of distribution curves of a positive and negative class.
Moving the threshold will yield different True Positive Rate (TPR) and False

Positive Rate (FPR) from which a Receiver Operating Characteristic (ROC) curve
can be calculated. The acronyms TP, TN, FP, FN stand for True Positive, True

Negative, False Positive and False Negative respectively.

and FPR from which the ROC curve can be made. More separated distributions im-
plies a better classifier [33]. The Area Under the ROC Curve (AUC) value indicates
how good the classifier is at distinguishing between the classes and ranges from 0 to
1. Hence, a larger value equals a larger area which corresponds to a better model.
Similarly, the precision-recall curve is constructed by plotting the precision against
the recall at all possible thresholds. This curve outputs an Average Precision (AP)
value between 0 and 1 which, as the name suggests, is the average precision for the
different thresholds [34].

Visualization

One of the disadvantages with deep learning models is that they are usually con-
sidered to be ‘black boxes’. This means that it is, in general, difficult to distinguish
what the model actually learns and what types of features it interprets as impor-
tant. Though for CNNs there are methods to understand what the network finds
interesting, two of these are saliency maps and heatmaps.

Saliency maps highlights areas of an image with respect to a given class. This is
done by calculating a class score function Sc(I) based on an image I0 and a class
c and then ranking the pixels of the image I0 based on their influence on the class
score. Class score can be calculated in different ways depending on what is suitable
for the model [35]. An example of a class score is the linear score model which can
be calculated for a class c as in Equation (2.10):

Sc(I) = wT
c I + bc. (2.10)

where wc is the weight vector and bc is the bias for the model [35].
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Heatmaps, on the other hand, are created from a technique that is called Class
Activation Map (CAM) visualization. This technique introduces CAM in the image
by creating a 2D grid belonging to a certain class where the grid visualizes the
gradient of the class score [27]. The class score is obtained from the last convolutional
layer and the gradient is calculated with respect to the feature map from this layer.
These gradients are then averaged over the whole image to obtain the importance
of certain areas corresponding to the class. This creates a coarse heatmap with the
same size as the last feature map which can be enlarged and applied to the original
image to visualize important areas for the specific class in the image [36].

2.2.5 Keras

Keras is a deep learning framework written in Python that provides an easy and user-
friendly way to build and train deep-learning models. It supports CNNs, recurrent
neural networks and other deep learning models with both single and multiple input
and outputs. It is a model-level library which means that it only creates the building
blocks of the model and needs to be supplemented with a low-level library to handle
operations like tensor manipulation and differentiation. A low-level library is called
backend engine and has a well-optimized tensor library to handle the previously
mentioned operations. Keras is currently compatible with three different backends;
Tensorflow, Theano and CNTK where Tensorflow is developed by Google, Theano
by the MILA lab at Université de Montréal and CNTK is developed by Microsoft [27].
Tensorflow has Keras as its official frontend which means that it works seamlessly
with its workflow [37].

The Keras framework is distributed under open MIT license which means that it
can be and has been used in several commercial projects by all ranges of users, from
students to larger companies [27].
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Method

This chapter contains four main sections. First, the study is placed in a context
concerning the employed research methodology. Then sections on Data, Implemen-
tation and Evaluation are presented. In the Data section the provided data sets will
be described together with the preparation of them. The section on Implementation
covers the chosen deep learning framework, network structure and training details.
Lastly, the different methods used for measuring the performance of the network are
presented in Section 3.4 (Evaluation).

3.1 Research methodology

In the ABC framework for Software Engineering Research by Stol and Fitzgerald
[38], research is classified by the level of Obtrusiveness and Generalizability within
the categories “Actors” (A), “Behaviour” (B) and “Context” (C). Obtrusiveness
refers to how much the researcher intrudes on the research setting, the data collec-
tion, and how much the data is manipulated. Generalizability concerns the result
of the outcome and how it can be applied in other settings and if any statistically
generalizing conclusion can be drawn from the research [38].

Stol and Fitzgerald [38] grades eight different research methodologies after how
obtrusive and generalizable they are for each ABC. For this project the methodology
is applied to less obtrusive research since the data is provided by VGR without any
intrusion in the data collection. These characteristics apply to both “Field studies”
and “Sample studies”. Field studies involve researching in a real-world setting for
studying a specific phenomenon which means that it will capture realistic context,
C. The research will be very specific for this setting and thereby the generalizability
over the actors, A, is low. In the concept of Sample studies the generalizability
over A is high while C is low since the research setting is neutral and same for
all samples. Therefore, the most suitable research methodology for this project is
Sample studies since it gives a high generalizability for the whole population and
the research setting; the ultrasound examination, is the same for all the patients in
the screening program [38].
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3.2 Data

The data used in this project was acquired from a prospective cohort study called
Gothia 3A made by VGR and is also a part of the screening program mentioned
in Section 1.1. This database has ethical approval and the participants have given
their consent to share their data for research purposes. The data is completely
anonymized and can not be tracked back to a specific person.

The data consists of ultrasound images of the abdominal aorta generated at the
screening visit together with complementary information about the patients such as
smoking habits, medications and blood pressure. Table 3.1 presents the full list of
parameters from the database that were used as inputs. Note that the explanations
in Table 3.1 correspond to the input parameters after pre-processing. Each patient
is related to one ultrasound image that is taken in either the sagittal plane, from
the side, or the axial plane, from above. Figure 3.1a and Figure 3.1b illustrates
examples of these different angles.

Table 3.1: The table shows the patient data used as inputs to the non-image
branch of the network together with an explanation.

Patient data Description
Aortic diameter Largest diameter of the aorta in mm.

Smoking Years of smoking, regardless of
the patient being an active smoker or not.

Snus Years of using snus, regardless of
the patient is active or not.

Trombyl Anticoagulant medication. Yes or no.

Statin Cholesterol lowering medication. Yes or no.

Blood pressure Patient is classified as having
either high or normal blood pressure.

Of a total of 204 participants, 142 were diagnosed as sick. The rest, 63 men, were
considered healthy based on their aortic diameter, however 11 of these have a sub-
aneurysmal dilatation in between 25–29 mm as explained in Section 1.1. This sub-
group was removed from the data and set aside until the final classification. The rest
of the patients were split into training, validation and test sets as seen in Table 3.2.
These splits were based on finding a good ratio between positive and negative images
to help the network learn features from both classes and classify them equally likely.
It was also considered important to reach a final split after augmentation of 80/20
between the training and validation set.
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(a) An example of a sagittal
ultrasound image.

(b) An example of an axial
ultrasound image.

Figure 3.1: Examples of the provided ultrasound images.

Table 3.2: This table presents how many samples that were used for training
(before any augmentation techniques have been applied), validating and testing
the network. The ratio between the positive and negative classes (P/N) are

displayed within the parentheses.

Pre-training set (P/N) Final set (P/N)
Training 232 (18/214) 76 (56/20)
Validation 143 (18/125) 96 (70/26)
Test 28 (9/19) 21 (15/6)

Additional ultrasound images of the abdominal aorta were also received, originating
solely from the screening program and were not part of the prospective study. A
total of 403 images were used of which 45 were classified as sick and 358 as healthy.
These were used for pre-training of the CNN described in Section 3.3.1 and were
also split into the three subsets according to Table 3.2. The division was justified
similarly as above.

3.2.1 Preparatory tasks

The ultrasound images contained the largest measured aortic diameter identified by
the technician during the screening visit. This can be seen in the top left corner of
the images in Figure 3.1. Since they were used as input parameters to the neural
network, they needed to be collected. The text extraction was carried out using the
existing Optical Character Recognition (OCR) tool for Python, that is Pytesseract
which runs on Google’s Tesseract-OCR engine.

In this project, only supervised learning was employed meaning that the data sets
had to be annotated. The pre-training data was therefore labeled as one of the two
classes, either 0 or 1 depending on if the patient was declared healthy or diagnosed
as sick. These classes will also be referred to as the negative and positive class
further on in this report. This decision was solely based on the aortic diameter with
30 mm as limit. A slightly modified annotation was employed for the data set used
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Figure 3.2: The left image shows the raw ultrasound image while the right shows
the same image after clean-up.

for the final model. The limit for a healthy classification was now lowered to 25
mm instead of 30 mm. The reason for doing this was that the patients within the
interval of 25–29 mm, have a sub-aneurysmal aortic dilatation. These cases were
not labeled in order to see whether the network would classify the sub-aneurysms
as sick or healthy and since this sub-group did not take part in the training phase,
labels were not required.

3.2.2 Pre-processing of data

Before feeding images to a CNN it is preferable to select and enhance the region of
interest and eliminate any other possible distractions.

In addition to the imprinted value, there was a colored dashed line located on the
aorta representing that measurement and a scale along the side of the ultrasound
image that also needs to be removed. Similar to the text extraction another Python
tool was utilized to reduce the appearance of the dashed line, namely OpenCV. To
further help erase it, the final images were converted to gray scale. By cropping
the images in a trapezoidal shape the remaining imprinted measurement and scale
were removed. The result of these steps are demonstrated in Figure 3.2. Lastly,
the images were re-sized to the shape (224, 224, 3) since a pre-trained network was
used, which required specific size and dimension.

Pre-processing the non-image data included simplification of the smoking habits
and the blood-pressure data. The smoking habits were converted by combining two
categories answering if the patient smokes today and if so for how many years as
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well as if the patient has been smoking and if so for how many years. The final
category will now instead only answer for how many years the patient has been
smoking independent of his current usage.

The blood pressure data was translated into a binary category where 1 represents
high blood pressure and 0 normal or low. The choice of combining normal and low
into one category was due to the fact that only high blood pressure will affect the
growth of an aneurysm. Finally, the non-image data was also normalized and scaled
to unit variance, N(0,1), by removing the mean due to its varying scale across the
six inputs.

Augmentation

Partly because the training data was imbalanced between the classes and partly
because it was relatively small, various image augmentation techniques were applied
to even out the difference and to expand the data set. This will also help to prevent
overfitting as discussed in Section 2.2.3. Horizontal flipping, histogram equalization
and adjustment of the brightness were chosen as methods and applied to the whole
negative set. To prevent the data set being biased and to expand it further, a smaller
amount of the positive images were also augmented. There were now a total of 776
images in the training set with a positive/negative-ratio of 456/320. Figure 3.3
demonstrates the results of the different techniques that were employed.

Similarly, the same augmentation techniques were applied to the training data used
for pre-training. However, in that case the negative class included a lot more samples
than the positive, thus only a small part of the negative set while the whole positive
set were augmented. This resulted in a total of 700 images whereof 288 were positive
and 412 negative.

For Figures (B) and (C) in Figure 3.3 OpenCV’s modules flip and
createCLAHE were used and for Figure (D)–(F) the package and module
skimage.exposure.adjust_gamma were used. The createCLAHE module applies
something that is called Contrast Limited Adaptive Histogram Equalization
(CLAHE) meaning that it adjusts the contrast of certain parts in the image depend-
ing on the surrounding area.

There are several other types of augmentation techniques that could be employed,
like vertical flipping, rotation, zooming, sharpening, or adding noise. But since
ultrasound images have the characteristic trapezoidal shape and are quite noisy
from the beginning, those methods were not deemed to be suitable in this case.
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Figure 3.3: The three different augmentation techniques used. Figure (A) shows
the original image, Figure (B) the flipped one and Figure (C) the histogram
equalized image. Figure (D), (E) and (F) shows different levels of brightness

adjustment.

3.3 Implementation

This section describes the implementation of the network used in this project and the
training procedure. Since two modalities, ultrasound images and patient data were
used as inputs, the neural network consisted of two branches before being combined
to a single output. A CNN was implemented for the image branch while a net-
work including only one fully connected layer was used for analyzing the non-image
data. The structure of the full network was inspired by Xu et al. [7] algorithm for
diagnosing Cervical dysplasia and Bonnett [39] for classifying e-commerce products.

All implementations were done using Python’s deep learning framework Keras ver-
sion 2.2.4 with Tensorflow version 1.10.0 as backend. The training was then carried
out on a computer with a NVIDIA Titan X graphics card with a memory of 12 GB.

3.3.1 Pre-training

Since the provided data set was relatively small even after augmentation, it was
decided to use a pre-trained network as basis for the image branch and then fine-
tune it to fit the classification task in this project. From Keras Applications
module, three different network structures with pre-trained weights and biases were
downloaded: InceptionV3, VGG16 and VGG19. These were all initially tested to
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get an overview of their performance and a final network was selected for further
tuning.

VGG19 qualified to the more comprehensive tuning and was initialized with the
weights and biases obtained from training on the ImageNet database. Since the
network should perform a binary classification, the activation function in the output
layer was changed from softmax to sigmoid in order to only generate one output.
The cost function was then set to binary cross-entropy.

Besides being pre-trained on ImageNet, the network was trained on the additional
ultrasound images obtained from the screening program. This helped the network
learn more image features related to the final classification task. Different choices
of hyperparameters were employed to find which setup yielded the most satisfac-
tory results and the corresponding weights and biases were saved. As optimizer
both mini-batch SGD and Adam were tested while altering the values of the re-
maining hyperparameters. Dropout and L2-regularization were both applied to the
second to last fully connected layer of the structure. The complete list of adjusted
hyperparameters is:

• Learning rate
• Learning rate decay
• Momentum
• Mini-batch size
• Epochs
• Trainable layers
• Dropout rate
• L2-regularization

3.3.2 Combining and training the final network

As described earlier the final network consisted of two branches, one fully-connected
neural network and one CNN with a structure as presented in the previous sec-
tion. This structure was inspired by the networks used for Bonnett’s e-commerce
application [39] and Xu et al.’s algorithm for diagnosing cervical dysplasia [7]. The
complete architecture of the final network is shown in Figure 3.4.

The merging of the two branches is done using the Keras layer Concatenation and
by applying the technique of early fusion. This means that the branches’ output fea-
tures are merged together without performing any classification. The classification
will instead take place after the features have passed through an additional fully-
connected layer. Both of the branches were designed to output the same number
of features, six, which corresponds to the number of different input parameters of
the patient data. As above, different settings of the hyperparameters were tested,
but now the image branch was initialized with the saved pre-trained weights and
biases. L2-regularization was applied to the last three fully connected layers of the
image branch while dropout only was applied to the last two of them to replicate

27



3. Method

Figure 3.4: The final structure of the combined network. The image branch is a
Convolutional Neural Network based on the VGG19 structure presented in

Figure 2.5 and the non-image branch consists of one fully-connected layer. These
are both combined into an output layer performing binary classification.

the implementation in Bonnett [39].

3.4 Evaluation

During the training phases the network’s performance was monitored every epoch by
four different metrics: loss, accuracy, precision, and recall, in order to observe how
they changed over time. The weights and biases related to the best metrics on the
validation set were saved for further evaluation. For this part a ROC curve with a
corresponding AUC-value was made using the scikit-learn package. An optimal
threshold was determined that would maximize the TPR and minimize the FPR
of the validation set. A precision-recall curve was also built of the validation set
and provided an AP-value using the same scikit-learn package. Another optimal
threshold was obtained from this curve that maximizes both the precision and the
TPR.

Heatmaps and saliency maps were used to see what the network found interesting
in the images. These were calculated by CAM and from the class score respectively.
A technique called permutation importance was employed to identify which of the
input parameters that had the biggest impact on the output. Each column of the
input data was randomly shuffled while the rest were left untouched. The model
then classified this modified data and the new accuracy was compared to the original
value. Ten shuffles was carried out per column allowing a mean value of how much
the metrics decreased to be calculated. This function was built from scratch but
influenced by the pre-defined function found within the eli5 package. There, the
number of shuffles was set to five by default but in this case it was slightly increased
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Table 3.3: This table shows statistics from the meta-studies in Section 1.5.2 that
will be used as comparison to the results obtained from classifying the sub-group.

The percentages correspond to how many of the men’s sub-aneurysm that
progressed into a full-size aneurysm with a diameter ≥ 30 mm within 5 and 10

years, respectively.

Number of years Full-size aneurysm
5 55–88 %
10 96 %

to obtain more precise estimates.

After evaluating the final network’s performance for different settings, the best set of
hyperparameters was used for the classification of the test set. Another classification
using the thresholds obtained from the ROC-curve and the precision-recall curve
was also made to see if the results improved. The network was also applied on
the group with a sub-aneurysmal aortic dilatation to try to predict which men will
most likely develop a full-size aneurysm. This prediction was then compared to the
results from the meta-studies mentioned in Section 1.5.2 and a summary of the most
relevant statistics is presented in Table 3.3. Marcus Langenskiöld, vascular surgeon
at Sahlgenska University Hospital, was consulted for verification of the results.
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4
Results

This chapter presents the results obtained from training and evaluating the network
during both pre-training and the final training. Manual tuning of the hyperpa-
rameters was applied in both cases to achieve a satisfactory performance based on
the different evaluation metrics. By a satisfactory performance a high accuracy,
precision and recall paired with a low loss is intended.

4.1 Pre-training

The values of the hyperparameters that yielded the most satisfactory performance
during pre-training are displayed in Table 4.1.

The set of hyperparameters was chosen as most optimal based on the precision and
recall for the validation set since these are important when working with medical
diagnoses. This decision was confirmed by Marcus Langenskiöld, mentioned in Sec-
tion 3.4. A high value of these metrics imply that a few number of both sick and
healthy people are misclassified. Also, the accuracy and the loss tended to stay
around the same levels in most settings while precision and recall varied within a
larger interval.

Table 4.2 presents the corresponding results of the evaluation metrics for the train-

Table 4.1: Hyperparameters used for both pre-training and for the final model.

Hyperparameters Pre-training
Learning rate 1× 10−4

Decay 1× 10−5

Optimizer SGD
Momentum 0.5

Mini-batch size 32
Total number of epochs 50

Trainable layers Upper 6
Dropout 0.2

L2-regularization 0
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Table 4.2: Results for training, validation and test from pre-training of the
Convolutional Neural Network obtained from the last epoch.

Metric Training Validation Test
Accuracy 100% 95.8% 93.0%
Loss 0.013 0.168 0.290
Precision 100% 85.8% 100%
Recall 100% 79.9% 78.0%
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Figure 4.1: The plots show the performance metrics during the pre-training of
the convolutional neural network when using the best set up of hyperparameters.

ing, validation, and test sets.

Figure 4.1 shows the trends of the different performance metrics during training
using the setup in Table 4.1. As seen, both the accuracy and the loss are relatively
stable while minor spikes are present for precision and recall. In Appendix A.1
(Figure A.1), the performance metrics monitored over time for pre-training with
another setup of the hyperparameters can be found.

4.2 Final model

As with the pre-training, the final model was tested with different setups of the
hyperparameters and evaluated on the validation set. The values of the hyperpa-
rameters yielding the most optimal performance are summarized in Table 4.3, and
Figure 4.2 illustrates the trends from using this setup during training. Compared to
the results from pre-training there are stronger fluctuations present for all metrics
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Table 4.3: Hyperparameters used for the final model.

Hyperparameters Final training
Learning rate 1× 10−5

Decay 1× 10−6

Optimizer Adam
Mini-batch size 32
Total number of epochs 100
Best epoch 65
Trainable layers All
Dropout 0.5
L2-regularization 1 ∗ 10−4
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Figure 4.2: Visualization of the training performed using the hyperparameters
listed in Table 4.3. The evaluation metrics are plotted for every epoch for both the

training and validation set.

now. Additional trends from training with other setups of hyperparameters can be
found in Appendix A.2, (Figures A.2–Figure A.4).

Epoch 65/100 performed best during training with the aforementioned hyperparam-
eters and the corresponding weights and biases were saved and used for evaluating
the test set. The resulting performance metrics for each sub-set are shown in Ta-
ble 4.4. Even though some epochs from the training presented in Appendix A.2
generated better values of the performance metrics than the ones presented in Ta-
ble 4.4, the overall trends were more satisfactory for the chosen setup. This was
especially true for the validation loss.

Below follows images that were misclassified in the test and validation set. Figure 4.3
shows a sick patient that has been misclassified as healthy whereas Figure 4.4 demon-
strates the healthy images misclassified as sick. It seems that the network tends to

33



4. Results

Table 4.4: Resulting evaluation metrics for the training, validation and test set
from evaluating the final network obtained from epoch 65/100.

Metric Training Validation Test
Accuracy 85.2% 96.90% 95.2%
Loss 0.296 0.150 0.849
Precision 80.6% 100% 93.8%
Recall 98.4% 92.4% 100%

Figure 4.3: Image from the test set. A healthy patient misclassified as sick.

misclassify patients whose images were taken in the sagittal plane.

Turning now to the evaluation using the ROC-curve and precision-recall curve. Fig-
ure 4.5a demonstrates the obtained ROC-curve together with the AUC-value of 0.99.
The most optimal threshold was calculated to 0.38 which coincides with the distri-
bution curves of the validation set in Figure 4.5b. It is clearly seen that the number
of misclassifications are minimized using this threshold, no FNs and only two FPs
occurred. However, when this threshold was applied for reclassifying the test set,
the performance metrics did not change. The precision-recall curve is illustrated in
Figure 4.5c with its average precision-value of 1.00. Calculating the most optimal
threshold from this curve resulted again in 0.38.

The results from visualization using heatmaps and saliency maps are demonstrated
in Figure 4.6. Figure 4.6a shows an example of a correctly classified healthy patient
with the heatmap rendered from the network and the image’s corresponding saliency
map. An example of a correctly classified sick patient is displayed in Figure 4.6b.

When the patients were misclassified the heatmaps could instead look like in Fig-
ure 4.7. Here Figure 4.7a shows the heatmap for a healthy patient classified as sick
while the heatmap for a sick patient misclassified as healthy is shown in Figure 4.7b.

Figure 4.8 shows the images’ saliency maps from the misclassified patients mentioned
in the previous paragraph. The misclassified healthy patient is shown in Figure 4.8a,
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Figure 4.4: Images from the validation set that were misclassified as healthy.

Table 4.5: The values represent how much the model’s performance decreased in
average in terms of accuracy with a random shuffling.

Feature Train Validation Test
Images 0.470± 0.022 0.240± 0 0.238± 0
Aortic diameter 0 0 0
Smoking 0 0 0
Snus 0 0 0
Trombyl 0 0 0
Statin 0 0±0.004 0.010 ±0.019
Blood pressure 0 0 0

and Figure 4.8b demonstrate the saliency map of the misclassified sick patient.

Based on the heatmaps in Figure 4.6 and Figure 4.7, for a healthy classification the
network tends to miss the aorta completely while it registers at least parts of it for
a sick classification.1 The saliency maps are slightly highlighted in the area of the
aorta regardless of classification as seen in Figure 4.8. Though the result is varying
and some of the saliency maps’ highlighting is less distinguishable, examples of these
are shown in Appendix A.4.

The results from the permutation importance are summarized in Table 4.5. The
ultrasound images appeared to have the highest impact out of all input parameters
since they decreased the accuracy the most when shuffled. Remaining inputs did
not seem to affect the results at all.

Finally, the network was used to predict if the patients with sub-aneurysms would
develop a full-size aneurysm. Out of these 11 patients all of them were predicted to
do so, i.e. 100%. This percentage does not agree entirely with any of the statistics
in Table 3.3 obtained from the meta studies.

1Additional heatmaps can be found in Appendix A.3.
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(a) ROC-curve and corresponding AUC value generated
from the validation set.

(b) Distribution curves of sick and healthy classes
of the validation set with the most optimal

threshold located at 0.38.

(c) Precision-recall curve of the validation set with
its Average Precision (AP) value of 1.00.

Figure 4.5: Graphical representations of the evaluation for the final model.
Figure 4.5a shows the ROC-curve together with its corresponding AUC-value while
Figure 4.5b demonstrates the distribution curves of the sick and healthy classes.

Finally, Figure 4.5c illustrates the precision-recall curve.
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(a) Heatmap and saliency map from a
correctly classified healthy patient.

(b) Heatmap and saliency map from a
correctly classified sick patient.

Figure 4.6: Heatmaps and saliency maps for correctly classified patients.
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(a) Healthy patient misclassified as
sick.

(b) Sick patient misclassified as
healthy.

Figure 4.7: Examples of heatmaps from misclassified patients.

(a) Healthy patient misclassified as
sick.

(b) Sick patient misclassified as
healthy.

Figure 4.8: Examples of saliency maps from misclassified patients.
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Analysis

This chapter will provide an analysis of the results from the previous chapter. The
pre-training step and the final model will be discussed here.

5.1 Pre-training

During pre-training, the validation set contained spikes in the trends for both preci-
sion and recall as seen in Figure 4.1. The classification of this set is also performed
using mini-batches and since they are chosen randomly, several images that will be
misclassified might end up in the same batch. This could have a degrading impact
of these metrics resulting in the visible spikes. However, the overall trends and
the performance metrics from the pre-training were promising and provided a solid
foundation for constructing and training the final network.

5.2 Final model

As seen from the general trends in Figure 4.2, and from the performance metrics
acquired from the best epoch in Table 4.4, the network succeeded to classify the
data from both the validation and the test set more accurately and with higher
precision than for the training set. At a first glance this might seem strange since
the network has been optimized according to the training data. But one possible
explanation is the dropout regularization. Dropout basically forces the network
to become a collection of weaker classifiers. One individual weak classifier will
have a poor predictive performance compared to when they are used altogether
as an ensemble model. This technique is only applied during training making the
corresponding accuracy suffer. When classifying the validation set or the test set, the
dropout is turned off allowing weak classifiers to be combined. Hence the accuracy
will improve. Another explanation is that the training set is a lot larger than the
validation and the test set. It is therefore more likely to contain patients that are
harder to classify and those possible misclassifications will decrease the accuracy.

Regarding the fluctuations of the validation data seen in Figure 4.2, it is most likely
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due to the small number of samples included in the set compared to the training
set. But an increase of the data in the validation set would have led to a decrease
in training data which was undesirable. Even though additional augmentation tech-
niques could have been applied in order to increase the training set, it is preferable
to train on as many unique images as possible. A larger variety of the images im-
plies a better generalization to new data. Despite the oscillations, the overall trends
were satisfactory. Since the validation set is relatively small, a local minimum is
most likely just noise due to the randomness when choosing the mini-batches. If the
model would have been modified based on that, it might overfit and, hence, fail to
generalize to the test set.

The misclassifications seen in Figures 4.3–4.4, that seemed to be based on the elon-
gated shape of the aorta, might be due to unevenly distributed training, validation
and test sets. When the data set was divided into the sub-sets, the ratio of sagit-
tal/axial images was never controlled for. The division was thereby unbiased but
if a predominant amount of axial images ended up in the training set, the network
might run a higher risk of failing to generalize to the sagittal images in the validation
and test set and, thus, classify them incorrectly. The misclassifications could also
be due to the fact that ultrasound images are very subjective; what is captured in
the images depends on the technician that controls the probe. How close the aorta
is to the probe or if the technician chooses to zoom will affect the appearance of the
aorta and might even mislead the network to perceive it as larger or smaller than it
actually is.

Evaluation using the ROC-curve and precision-recall curve resulted in almost a per-
fect classification algorithm due to the high values of the AUC and AP. However,
these results might be a bit deceptive due to the relatively small validation set. The
algorithm does not necessary have to perform as well if more data was available.
When reclassifying the test set using the optimal threshold obtained from the val-
idation set, nothing changed. Dropping the threshold from the default level at 0.5
to 0.38 made no improvements since the model turned out to be very confident in
its decisions, i.e. all outputs are either very close to 0 or almost equal to 1.

From the heatmaps, a classification pattern can be seen. A sick classification implies
that the network found the aorta or parts of it, and a healthy did not find it at all.
This can be due to the darkness of the aorta and its rounded shape, which would
give a sharp gradient at the border of it. The network will then connect this shape
to the disease and classify the patient as sick. So in other words, the network is quite
good at finding aortas with a round shape as the one in Figure 4.61. The results
from the saliency maps were harder to interpret. Sometimes the maps were good
at highlighting which areas the aorta was located in, as seen in Figure 4.8, but in
other cases it showed nothing in particular as in Appendix A.4 (Figures A.6b–A.6c).
The explanation for this was not fully understood and therefore more attention was
directed towards the results from the heatmaps.

The results from the permutation importance demonstrated that the ultrasound

1This is also valid for the images in Appendix A.3, Figure A.5a, A.5b and A.5d
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images have the largest impact on the network’s decision while the rest of the input
parameters are negligible. This however, indicates that the two modalities being fed
to the network are not equally important even though that was intended.

When classifying the sub-group using the trained network the entire set was di-
agnosed sick, i.e., 100%. This does not entirely coincide with the statistics from
the meta-studies presented in Table 3.3, though the percentage of progressed sub-
aneurysm after ten years (96%) is close to the obtained results. Since the positive
samples in the training data were predominant, the network might be more inclined
to vote for a sick classification rather than a healthy and especially since the ma-
jority of the diameters were closer to 30 than 25 mm. However, the result would
most likely have been different if the sub-group contained a lot more patients. Nev-
ertheless, since no knowledge about these patients actually developing an aneurysm
is given, it is impossible to state whether or not the obtained result is inaccurate.
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6
Discussion

This thesis investigated three main questions regarding the prediction of further
development of sub-aneurysmal aortic dilatation, most important image features
and the significance of the different input parameters. The first question covers
the comparison between the obtained result from classifying the sub-group in this
project and the ones summarized from the meta-studies. As presented, all men in the
sub-group were classified as sick, which does not entirely agree with the percentages
provided by the studies. However, as discussed in Section 2.1 an aneurysm grows
faster the larger it is. This implies that the network classifying all sub-aneurysm as
sick is not completely unfeasible as the sub-aneurysm would behave and grow the
same way as a small full-size aneurysm, like an aneurysm of 30–35 mm.

The second question regarded the investigation of important image features and
provided a lot of valuable information. The heatmaps used for this purpose showed
that the network tends to find sick aortas but miss the healthy ones. Furthermore,
the network also seems to base its decision on the shape of the aorta rather than the
actual diameter. It can be discussed whether this gives an accurate prediction since
the shape mostly depends on from what plane the image was captured in and not
the actual anatomical shape of the aorta. This brings up the topic of subjectiveness
of ultrasound images once again since the shape of the aorta also depends on the
angle from which the ultrasound operator finds the largest diameter.

Permutation importance was employed to answer the last question about which of
the input parameters that turned out to be most significant. The results stated that
the image was the most important, which was interesting since ultrasound images
are very subjective as mentioned above. Contradictory to how the real diagnosis
is made, the patient data, and especially the aortic diameter, is not affecting the
outcome. Smoking is considered to be the most important risk factor according to [2],
thus it was also surprising that it did not receive any attention from the network.
Once again, this outcome was not completely unexpected as the ultrasound images
are what change the most between the patients due to them being subjective.

To summarize the answers and connect to the aim of this thesis; as stated above the
result of all sub-aneurysms being classified as sick is not unreasonable. Therefore, the
approach of using a neural network that combines information from two modalities
seems promising even though the lack of follow-up data makes it hard to confirm
the classifications.
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The investigation of important image features and input parameters was an essential
part of this thesis. In a future algorithm implemented in the health care it would
be necessary to understand and explain to the patients why they were diagnosed as
sick or declared healthy. This is very important across the whole medical domain
and not just in this project. The software should provide explanations of why it
predicted as it did.

For example, if two patients with similar symptoms are classified differently, the
doctors can check that it makes sense and thereby be convinced. If an algorithm
makes a prediction or suggestion, the doctors need to be able to motivate why in
order for it to be reliably. The implemented algorithm in this project is not quite
there yet, it needs to be further developed to be more reliable in its decisions and
be better at explaining the outcomes. It is not enough by just showing that it found
the aorta and therefore the patient is sick since, hopefully, all examined patients
have an aorta.

6.1 Justification of methods

One of the most important factors to have in mind when working with medical
data is patient privacy, implying that there are a lot of legal processes that need to
be handled. These processes are time consuming and in our case they resulted in
receiving the data late in the project and, thus, limiting the time for fine-tuning of
the hyperparameters. In addition, this meant that the testing of different backends
and frontends was excluded from the project.

Also due to the lack of time, most of the inspiration for the network’s structure was
retrieved from Bonnett’s blog post about merged networks for classification in the
e-commerce business from [39]. The only thing changed from this structure is the
number of output features from each network. This part was instead taken from the
network structure by Xu et al. [7], where the number of features from each branch
were the same. The aim of this was to make the two modalities equally important.

VGG19 was implemented as an image branch in this project, with the weights
corresponding to the training on ImageNet. This meant that the network already
had learned general image features. It was then trained on additional ultrasound
images to teach the network more ultrasound specific image features.

The splitting of the data set was performed to yield a good trade-off between sick
and healthy patients in the three different sub-sets. Even though this would create
biased data sets, it was carried out with the ambition to help the network learn
features from both classes.
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Threats to validity

In the upcoming sections, threats against the validity of the project are presented.
They are divided into: Threats to internal validity, Threats to external validity,
Threats to construct validity, and Threats to conclusion validity. Threats to in-
ternal validity corresponds to causes that have effected the outcome [40]. Threats
to external validity explains different factors that can influence the generalizability
of the project. Threats to construct validity presents changes made to the project
with an intention to influence the results of it, for example the pre-processing of the
image data. Threats to conclusion validity introduces factors that had a statistically
significant effect on the outcome of the project.

7.1 Threats to internal validity

The biggest threat to the validity of this project’s result is the lack of data. As
mentioned, the data set was collected from VGR’s research database Gothia 3A. It
originally contained 824 patients, but due to some hospitals missing from VGR’s
image register and some images being of too poor quality, only 205 of the patients
were available for the project. Although it is possible to augment the training data,
the validation and test set will still be very small and the results from these sets
might be biased.

Pre-processing of the non-image data can also be considered a threat since it involved
modifying some of the input parameters. For instance, the smoking input was
simplified into number of years of smoking. This meant that it will probably not
reflect the complete picture and the result can be misleading. For example if a
patient has been smoking two or three cigarettes every day for 10 years and another
patient has been smoking 10 or more cigarettes per day during the same time period,
these patients will obtain the same input value even though the latter patient has
potentially caused more physical harm to himself.

The VGG19 network was used in this project but as mentioned in Section 2.2.1, large
networks like this has lately been considered unnecessarily computational expensive.
Instead, shallow networks are more and more investigated as the paper by Frankle
and Carbin [25] discusses. This is something that could probably have been em-
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ployed in this project and might yield a better performing network. It could also
have been further developed by additional pre-training on other ultrasound images,
not only showing abdominal aortas. This would imply that the network could learn
even more ultrasound specific features before specializing on abdominal aortas.

The structure was reproduced from Bonnett [39] and Xu et al. [7] with minimal
amount of changes. Though, larger adjustments, which perhaps might have im-
proved the network’s performance further, could have been applied if there would
have been more time.

Another threat originating due to the lack of time was the tuning of the hyper-
parameters. There can be hyperparameters that were not tested but which would
have yielded better results. Similarly, only one type of backend and deep learning
framework was used. There are other types that could have been tested but instead
the focus was directed towards data processing and finding hyperparameters that
were good enough.

7.2 Threats to external validity

Since the data used in this project originates from Sweden, which is not included
in the meta-studies referred to in Section 1.5.2, the generalizability of the results
might not be valid for the comparison. In those countries the lifestyle might differ
from Sweden, which could explain deviating results [11, 10]. The data was also only
acquired from a small region and the patients were unevenly distributed across it
as compliance for the screening program is better in higher socioeconomic areas [2].
This meant that there was a geographical limitation to the project and the results
might not reflect the entire population of Sweden.

7.3 Threats to construct validity

The division of the training, validation and test set can be considered as a threat
since it was not randomly generated. Instead it was performed to yield biased data
sets and will not reflect the natural occurrence of the disease in Sweden.

The pre-processing of the images can also be a threat against the validity in many
ways. Firstly, when shrinking the images to (224,224,3) it can give rise to artifacts.
These are partly avoided when using OpenCV’s re-sizing algorithm with the method
INTER_AREA. This method re-samples the image using pixel area relations which
are supposed to minimize artifacts, especially line patterns that can emerge due to
shrinking.

Secondly, artifacts can also be created when the dashed line in the images is re-
moved. Attempts to avoid these have been made by trying to make the lines into
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uniform color, in this case white, and then use the OpenCV in-painting technique
INPAINT_TELEA. This technique replaces the dashed line’s pixels by a normalized
weighted sum of all known pixels in its neighbourhood. It also ensures that the
pixels near the boundary of the lines are replaced first and receive the most contri-
bution from the known pixels. This was supposed to prevent artifacts from forming,
though some traces of the dashed line were still visible.

7.4 Threats to conclusion validity

Another factor that could affect the validity of the results is the lack of follow-up
data. This meant that a comparison to other studies had to be made, in this case
two meta-studies. Since the sub-group was very small (11 patients) the network’s
prediction might contradict the result from those studies as they contained a more
extensive amount of patients.
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8
Conclusion

This thesis investigated if a multimodal deep learning algorithm could assist in the
diagnosis of sub-aneurysmal aortic dilatation. The results from the network did not
agree entirely with the results obtained from meta-studies, though the algorithm
still has potential to evolve and become a useful tool for diagnosing AAA.

Despite the conflicting results of the sub-aneurysmal group, the performance metrics
from evaluating the network on the test set were promising. Also, the heatmaps
rendered in the project clearly showed which image features the network found most
important. They unwrapped the black box aspects of the image branch of the
network and contributed to an easy explanation of its decisions. To analyze both
the branches and find which input parameter that yielded the highest significance,
permutation importance was employed. It showed that the image was the most
important which strengthened the results from the heatmaps.

The main weaknesses with this study was the restricted access to data, especially
the image data, and the lack of follow-up data for the patients with sub-aneurysms.
These challenges limited the extent of the project and made it more difficult to carry
out. It also made it harder to interpret the results as both uncertainty and bias were
introduced. Two valuable lessons can be learned for the future when working with
deep learning and health care. Firstly, be sure to have access to the data from the
beginning and secondly, legal processes take time.

The prevalence of AAA is currently decreasing which means that the cost per quality-
adjusted life year will increase and eventually it will not be profitable to keep screen-
ing to the same extent we do today. A decision support system could help decrease
this cost by planning the visits of the follow-up examinations. The system presented
in this work is a first step, which can be used for this purpose by predicting and
diagnosing AAA.

8.1 Future work

Suggestions for future work involve everything from improving the existing algorithm
to investigate other areas of use. For improving the existing algorithm further, more
data is required. A larger data set introduces a higher variability, which will help
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8. Conclusion

the network to generalize better.

Another improvement would be to access other types of patient data such as BMI,
diabetes and heredity. This would yield a deeper knowledge of the disease profile
and the training might be improved, resulting in more reliable predictions. A more
certain evaluation of the results could also be achieved if follow-up data of the sub-
aneurysms was available.

An interesting area to investigate is if algorithms like this can be used to create
a more personalized follow-up plan for monitoring AAA. One solution could be
to train the network to perform a multi-class classification instead, dividing the
patients into healthy, sub-aneurysm, sick without a growing aneurysm, and sick
with a growing aneurysm.

Another suggestion would be to predict the growth of the aneurysms. Since the
growth is nonlinear and unpredictable, an accurate prediction may contribute to a
more personalized follow-up plan for the patients. Both these solutions could help
exclude patients whose aneurysm will never rupture and thereby prevent overdiag-
nosis. It might also allocate resources to more needed areas.
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A
Appendix

In the upcoming sections additional training results from both pre-training and
the training of the final network are shown. The difference in the settings of the
hyperparameters, compared to the values yielding the best performance, is described
in the caption.

A.1 Results from pre-training

Additional trends from the pre-training can be seen in Figure A.1.

A.2 Results from training of the final network

Additional trends from the training of the final network can be seen in Figure A.2, A.3, A.4.

A.3 Additional heatmaps

In Figure A.5 additional heatmaps to the ones presented in Section 4.2 are shown.
They are produced using the same CAM-algorithm as describe in Section 3.4.

A.4 Additional saliency maps

In Figure A.6 additional saliency maps to the ones presented in Section 4.2 are
shown. They are produced using the same class score as describe in Section 3.4.
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Figure A.1: The figure shows the performance metrics of the pre-trained network
when using l2-regularization= 10−5.
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Figure A.2: The figure shows the performance metrics of the final network when
using l2-regularization= 10−5.
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Figure A.3: The figure shows the performance metrics of the final network when
using a decay rate= 10−5 and l2-regularization= 10−5.
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Figure A.4: The figure shows the performance metrics of the final network when
using a decay rate= 10−5.
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(a) (b)

(c) (d)

Figure A.5: Additional heatmaps to the ones presented in Section 4.2.
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(a)

(b)

(c)

(d)

Figure A.6: Additional saliency maps to the ones presented in Section 4.2.
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