
DF

Multimodal Image-to-Image Translation
for Driver Monitoring System Development
Synthesizing diverse human faces in the near-infrared domain
using Conditional Generative Adversarial Networks

Master’s thesis in Complex Adaptive Systems

Jonathan Bergqvist

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Multimodal Image-to-Image Translation for
Driver Monitoring System Development

Jonathan Bergqvist

DF

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2020

Multimodal Image-to-Image Translation for Driver Monitoring System Development
Synthesizing diverse human faces in the near-infrared domain using Conditional
Generative Adversarial Networks
Jonathan Bergqvist

© Jonathan Bergqvist, 2020.

Supervisors:
Patrik Larsson, Smart Eye AB
Huu Le, Department of Electrical Engineering

Examiner:
Christopher Zach, Department of Electrical Engineering

Master’s Thesis 2020
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Encoder-decoder generator architecture

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Multimodal Image-to-Image Translation for Driver Monitoring System Development
Jonathan Bergqvist
Department of Electrical Engineering
Chalmers University of Technology

Abstract

Driver Monitoring Systems (DMS) are vehicle safety systems that improve road
safety by tracking driver behaviour and issuing warnings when signs of drowsiness
or distraction are detected. Today, many DMS use machine learning to track the
eye, face and head movements of the driver and depend on large amounts of data to
achieve sufficient generalization and performance. However, collecting, cleaning and
labeling large amounts of data can often be time-consuming and expensive. As an
alternative, this thesis investigates whether Conditional Generative Adversarial Net-
works (CGANs) can be used to create synthetic training data by deriving a mapping
between paired images of a computer-generated 3D model and real human faces in
the near-infrared domain. The thesis proposes a framework for multimodal image-
to-image translation capable of generating diverse and realistic images of human
faces while preserving domain-invariant attributes, e.g. head pose and gaze direc-
tion. Additionally, the framework is able to extract and approximate the appearance
of previously unseen subjects when generating images. The thesis concludes that
image synthesis using CGANs can be a viable method for obtaining customizable
training data for DMS development.

Keywords: Driver Monitoring Systems, Machine Learning, Deep Learning, Genera-
tive Adversarial Networks, Image-to-Image Translation, Synthetic-to-Real

v

Acknowledgements

First and foremost, I would like to thank my industrial supervisor at Smart Eye,
Patrik Larsson, for his dedicated supervision over the course of working on and
writing this thesis. His guidance and advice has been invaluable, and without his
support, the completion of this thesis would not have been possible. Additionally, I
would like to thank everyone else at Smart Eye who I have been in contact with for
helping me succeed and making me feel welcome from day one.

I would also like to thank my academic supervisor, Huu Le, who has also supported
me throughout the thesis. His knowledge and advice has been incredibly helpful in
choosing which paths to pursue, and our discussions led to many insights and new
ideas. Furthermore, I want to express my gratitude to my examiner, Christopher
Zach, who also provided me with valuable advice and guidance.

Lastly, I want to thank my incredible family and friends for encouraging me to
pursue my interests and work hard. I am so grateful to have you all in my life.

Jonathan Bergqvist, Gothenburg, December 2020

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related work . 2
1.3 Problem statement . 3
1.4 Thesis scope . 4
1.5 Thesis outline . 4

2 Theory 7
2.1 Introduction . 7

2.1.1 Deep learning . 7
2.1.2 Generative modeling . 8
2.1.3 Data distributions . 9

2.1.3.1 Distribution of a dataset 9
2.1.3.2 Generative models 10
2.1.3.3 Distance between two distributions 10

2.2 Generative Adversarial Networks . 11
2.2.1 How does a GAN work? . 12
2.2.2 The Goodfellow GAN . 12
2.2.3 Training a GAN . 13

2.2.3.1 Adversarial loss function 13
2.2.3.2 Global optimum . 14
2.2.3.3 GAN training algorithm 15
2.2.3.4 Alternative adversarial loss functions 15

2.2.4 Mode collapse . 16
2.3 Conditional GANs . 17

2.3.1 Generator . 17
2.3.2 Discriminator . 18

2.3.2.1 Image-to-image translation 18
2.4 Architectures . 18

2.4.1 Residual networks . 19
2.4.2 Normalization . 20

2.4.2.1 Batch normalization 20
2.4.2.2 Instance normalization 20
2.4.2.3 AdaIn - Adaptive Instance Normalization 21
2.4.2.4 SPADE - Spatially Adapative Normalization 22

ix

Contents

2.4.3 Network architectures . 23
2.4.3.1 Decoder . 23
2.4.3.2 Encoder . 24
2.4.3.3 Encoder-decoder . 24
2.4.3.4 SPADE decoder . 25

3 Method 27
3.1 Dataset . 27

3.1.1 Source domain . 27
3.1.2 Target domain . 28
3.1.3 Dataset creation . 29
3.1.4 Data cleaning . 29
3.1.5 Data preprocessing . 30

3.1.5.1 Random augmentation 31
3.1.6 Training and test sets . 31

3.2 Framework . 31
3.2.1 Multimodal image-to-image translation 32
3.2.2 CGAN framework . 32

3.2.2.1 Mode collapse . 33
3.2.2.2 Diversity regulization 33

3.2.2.2.1 Latent reconstruction loss Llr 33
3.2.2.2.2 Style diversity loss Lsd 34

3.2.2.3 Entangled latent space 35
3.2.2.4 Disentangling the latent space 36

3.2.2.4.1 Style mapping network L 36
3.2.3 Reconstructing identities . 36
3.2.4 Perceptual similarity metrics 37

3.2.4.1 Perceptual loss . 38
3.2.4.2 Perceptual networks 38

3.2.4.2.1 VGG-19 classification network 38
3.2.4.2.2 ResNet-50 facial identification network . . . 38

3.2.5 Full loss function . 39
3.2.6 Training the framework . 39

3.2.6.1 Network optimization 39
3.2.6.2 Training algorithm 40

3.3 Evaluating the framework . 40
3.3.0.1 Fréchet Inception Distance 41
3.3.0.2 Learned Perceptual Image Patch Similarity 42

3.3.1 Evaluation procedures . 42
3.3.1.1 Realism evaluation 42
3.3.1.2 Diversity evaluation 42

3.4 Network architectures . 43
3.4.1 Discriminator . 43
3.4.2 Generator . 45
3.4.3 Latent encoder network E . 47
3.4.4 Style mapping network . 47

x

Contents

3.5 Experiments . 48
3.5.1 Default model settings . 49
3.5.2 Framework configuration . 49
3.5.3 Framework analysis . 50

3.5.3.1 Attribute preservation 50
3.5.3.2 Latent space exploration 50

3.5.3.2.1 Latent space interpolation 50
3.5.3.2.2 Latent space arithmetic 51

4 Results 53
4.1 Framework configurations . 53

4.1.1 Generator architecture . 54
4.1.2 Adversarial loss . 54
4.1.3 Perceptual loss . 55
4.1.4 Diversity regularization . 57

4.1.4.1 Latent reconstruction loss 57
4.1.4.2 Style diversity loss 58

4.1.5 Style mapping . 59
4.1.6 Identity reconstruction loss . 60
4.1.7 Summary . 61

4.2 Framework analysis . 63
4.2.1 Attribute preservation . 63

4.2.1.1 Head pose . 63
4.2.1.2 Gaze direction . 63

4.2.2 Latent space exploration . 66
4.2.2.1 Latent space interpolation 66
4.2.2.2 Latent space arithmetic 67

5 Discussion 69
5.1 Discussion of results . 69

5.1.1 Framework configuration . 69
5.1.2 Framework analysis . 71

5.2 Future work . 72
5.3 Main contributions . 73
5.4 Ethical, societal and environmental implications 74

6 Conclusion 77

Bibliography 79

Bibliography 79

A Appendix I

xi

Contents

xii

1
Introduction

This section is intended to serve as an introduction to the topic of the thesis and
the problem it aims to solve. It begins by providing the reader with the necessary
context and background to the problem statement as well as the chosen approach for
solving it in Chapter 1.1. This is followed by a review of related work in Chapter 1.2.
Next, Chapter 1.3 provides the main problem statement together with the research
questions that are investigated. Lastly, Chapter 1.4 specifies the scope of the thesis
and Chapter 1.5 presents an outline of the remaining sections.

1.1 Background

Driver monitoring systems (DMS) are vehicle safety systems that monitor the state
of the driver using cameras or other sensors. Their primary purpose is to prevent ac-
cidents by issuing warnings when potentially dangerous driver behaviour is detected,
such as distraction or drowsiness. DMS have become an important component tech-
nology in the ongoing effort to prevent traffic accidents and are included in a growing
number of modern vehicles. In the future, they are also expected to play an impor-
tant role in partially automated vehicles, where a DMS can for instance be used to
confirm that the driver is attentive to the road before a vehicle-initiated handover
is performed.

Smart Eye AB (from now on referred to as Smart Eye) is a Swedish software com-
pany that provides DMS as a part of its offering to the automotive market segment.
Their system builds an understanding of the state of the driver by tracking at-
tributes such as gaze direction, facial expression and head position from image data
provided by near-infrared cameras. These features are inferred using machine learn-
ing models, which require large amounts of real-world data for training in order to
achieve sufficient generalization and prediction accuracy. In the case of a DMS, this
amounts to near-infrared image data of faces from a diverse set of people and envi-
ronments. However, collecting, cleaning and labeling large amounts of high quality
data remains a challenge for Smart Eye and makes up a big part of the development
process.

Because of this, Smart Eye is investigating whether it is feasible to instead use
computer generated 3D models as training data for their DMS, as this would allow

1

1. Introduction

the company to create customizable training data to fit their needs. However, a
problem with this approach is that the 3D models lack the realistic attributes needed
for the systems to generalize to real data.

To solve this problem, this thesis investigates if generative models can be used
to increase the realism of the 3D models by formulating it as an image-to-image
translation problem. This refers to the problem of learning a mapping between
two image domains, where each domain contains images that can be grouped as
a visually distinctive category [1, 2]. In particular, the thesis focuses on using
deep generative models called Generative Adversarial Networks (GANs) to derive
a mapping between RGB images of a 3D model and near-infrared images of real
human faces.

1.2 Related work

Generative Adversarial Networks, or GANs for short, were originally proposed by
Ian Goodfellow et al. [3] and are deep generative models consisting of two neural
networks; a generator that produces images and a discriminator that tries to tell
generated images apart from real ones. The two networks are trained as adversaries
in an unsupervised manner, competing against each other in a type of game that
in theory ultimately results in the generator learning to synthesize images that are
indistinguishable from real ones. GANs are currently among the state-of-the-art in
generative modeling and have been shown to be capable of producing photo-realistic
images of great diversity [4, 5, 6]. Furthermore, a variation called conditional GANs
(CGANs) has been shown to lend itself well to image-to-image translation tasks [2, 7,
8] and to be capable of learning a variety of mappings, e.g. synthesizing photos from
label maps, reconstructing objects from edge maps and colorizing images [2].

The idea of using synthetic data to train machine learning models has previously
been studied for a variety of tasks. The simplest approach is arguably to directly
train models on raw synthetic data, e.g. 3D models created by a game engine or
CAD software, and has previously been explored for a variety of tasks, such as object
detection [9, 10], gaze estimation [11], human pose estimation [12] and hand pose
estimation [13, 14] to name a few. However, in most applications, the synthetic data
is not realistic enough, leading to the models learning details only present in the
synthetic data and failing to generalize properly to real data [15].

To address this issue, multiple studies have proposed methods for obtaining more
realistic synthetic data. One approach for doing this is to use generative models
to increase the realism of the synthetic data, so called synthetic-to-real refinement
[16]. [15] proposed a method similar to the now standard CGAN method for in-
creasing the realism of synthetic 3D model eye regions. GazeGAN [17] worked on
a similar task, but instead used a framework based on CycleGAN [18] and showed
that gaze estimation algorithms for mobile devices saw an increase in performance
when trained with the resulting refined synthetic data. [19] used a GAN-based al-
gorithm for pixel-level domain adaptation of synthetic datasets for both classication

2

1. Introduction

and pose estimation and showed that models trained on the refined synthetic data
outperformed those trained on only synthetic data as well as refined data from pre-
vious methods. [20] also used a framework similar to CycleGAN [18] to improve
the realism of synthetically generated scenes used for semantic segmentation and
reactive obstacle avoidance.

There is, however, limited research on improving the realism of synthetic data in the
form of entire 3D model faces. StyleRig [21] used a modified version of StyleGAN
[4] to take so called 3D Morphable Face Models (3DMMs) as input and produce
realistic, controllable human faces. However, the framework did not allow for con-
trollable gaze direction and used a complicated architecture to control the output
of the pretrained StyleGAN model. Furthermore, the framework was not capable of
perfectly preserving changes in the synthetic faces, possibly due to bias in the data
that the StyleGAN model had been trained on. The study was also limited to gener-
ating faces in RGB and not in near-infrared, which is the format commonly used in
driver monitoring systems. Because of this, there is a need for further research into
using GAN frameworks to improve the realism of synthetic 3D model faces while
preserving domain invariant attributes, e.g. head pose and gaze direction, while
simultaneously mapping the resulting images to the near-infrared domain.

1.3 Problem statement

The thesis will investigate whether GANs can be used to perform image-to-image
translation between the two following image domains: the source domain, consisting
of RGB images of a synthetic 3D model face, and the target domain, consisting of
near-infrared images of real human faces. The generated images should ideally be
realistic and preserve domain invariant attributes, e.g. head pose and gaze direc-
tion. This would allow Smart Eye to generate customizable, realistic and diverse
training data that could be used to train their DMS and possibly reduce the need
for collecting real data.

The research questions that the thesis attempts to answer include:

• How can a GAN framework be implemented for the purpose of image-to-image
translation from the source domain to the target domain?

• How can the diversity of the generated faces be improved?

• Can domain-invariant attributes such as gaze direction and head position be
preserved by the framework?

• Can the appearance of the generated faces be made controllable?

3

1. Introduction

1.4 Thesis scope

The thesis focuses on using conditional GANs (explained in Chapter 2.3) to imple-
ment the mapping between the two image domains. This is because the available
dataset consists of paired images from the two domains and therefore lends itself
well to a conditional approach. Other studies have approached similar problems by
instead using methods inspired by CycleGAN [18], where preservation of domain-
invariant attributes is enforced by a so called cycle consistency loss. However, a
cycle consistency loss is typically used for learning a mapping between image do-
mains when paired images are not available. Because it requires the identity of each
image to be retrievable in its corresponding mapped image, using it for this applica-
tion could lead to less diversity in the generated faces and cause them to be similar
in appearance to the 3D model instead of spanning a wide variety of different ap-
pearances. Thus, using a CGAN was seen as the more appropriate approach.

However, the thesis will not compare a broad range of different CGAN frameworks.
Instead, the architectures that are seen as the most promising for this particular
application will be chosen and used to attempt to answer the above research ques-
tions.

Furthermore, the thesis aims to have the CGAN framework implement a multimodal
mapping, meaning that the 3D model can map to a variety of different faces. The
3D model is therefore analogous to a “rig” that provides control over the adjustable
attributes, e.g. its head position and gaze direction. Because of this, the appearance
of the 3D model is not important, so only a single appearance will be selected and
used.

Lastly, the spatial resolution of all images will be set to 128 × 128 pixels. This is
because of two reasons: 1) Smart Eye’s other machine learning models that could
come to use the generated images typically operate on this resolution and 2) it limits
training time and VRAM usage.

1.5 Thesis outline

Next, Section 2 reviews the theoretical foundation required to understand the chosen
approach and how it was implemented. It begins with a short summary of the recent
progresses within the field of machine learning and how these relate to generative
modeling. After this introductory part, a thorough derivation of the theory behind
generative modeling and GANs is carried out.

Section 3 describes the methodological procedure, including details of the chosen
approach and the conducted experiments. It begins with a presentation of the two
image domains and a description of how the image data was prepared, cleaned and
preprocessed before it was used to train the GAN framework. Next, the chosen
approach of using a CGAN framework is explained and motivated, followed by a
presentation of the architectures for the neural networks that were apart of it. The

4

1. Introduction

section concludes with an presentation of the conducted experiments together with
the details of how they were performed.

Section 4 presents the results of the conducted experiments and briefly comments
on what is shown. Section 5 gives a more in-depth discussion of the results and
suggestions for how future works could improve on the framework. The section ends
with a summary of the main contributions of the thesis and a discussion of potential
implications. Lastly, the conclusions of the thesis are presented in Section 6.

5

1. Introduction

6

2
Theory

In this section, the theory necessary to understand the topic of the thesis is derived.
It starts with an introduction to deep learning and generative modeling in Chapter
2.1. This is followed by a derivation of the theory behind Generative Adversarial
Networks (GANs) in Chapter 2.2 as well as a modification called Conditional GANs
(CGANs) in Chapter 2.3. Lastly, some common architectures and components used
for the neural networks in GAN frameworks are presented in Chapter 2.4.

2.1 Introduction

This chapter provides a brief review of the recent successes in the field of deep
learning and how this relates to generative modeling, which is the type of machine
learning investigated in this thesis. This is followed by a more in-depth derivation of
the theory behind generative modeling and closely related concepts, such as the no-
tion of a data distribution and distance measures for probability distributions.

2.1.1 Deep learning

Machine learning is a rapidly developing field that has undergone what is often called
a revolution in recent years. One of the earliest breakthroughs that paved the way for
this new phase of machine learning occured in 2012, when a team led by Geoff Hinton
at the University of Toronto won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) using a deep convolutional neural network. This challenge
consists of developing the best algorithms for classifying objects in the ImageNet
dataset, that contains images from a wide variety of real-world environments. At
the time, ImageNet contained over 21 million images with objects from over a 1000
different categories [22]. The deep neural network achieved an error rate of 16 %,
which was significantly better than the previously best result of 26.2 % and came
as a surprise to many in the community [23]. Since then, the field of deep learning
has grown significantly and conquered many problems that previously were seen as
unbeatable by artificial systems.

While the successes of the field of deep learning during the last decade are hard to
understate, there is still a lot of ground left to conquer. In fact, a lot of the problems

7

2. Theory

where deep learning algorithms first outperformed other algorithms tended to be of
a discriminative nature. These are problems in which the model learns to correctly
categorize or value the data that it is given, such as classification or regression [23].
While these problems arise in a wide range of applications and are important for
solving many real-world problems, they are not the full story.

Discriminative models are tasked with assigning correct labels to observed data.
However, they say little about the nature of the observed data itself, i.e. the distri-
bution of the observations. Knowledge of how the content of a dataset is distributed
can give new insights into solving a problem and is therefore an important objective.
Furthermore, if the distribution of observed data itself is known, it can be used to
sample new data instances. The area of machine learning dedicated to finding the
distribution of the observations in a dataset is known as generative modeling, and
is currently one of the areas at the forefront of machine learning research. While it
can be argued that generative modeling is a much harder problem to solve than dis-
criminative modeling, it is also an important one to solve due to the aforementioned
reasons.

2.1.2 Generative modeling

Generative modeling can in theory be applied to datasets of any type, whether it be
multivariate data, natural languages, audio, images or videos. Using images as an
example, we can imagine that any given dataset has a probabilistic distribution that
describes why some images are found in the dataset and other images are not. The
task of a generative model is to approximate this distribution as closely as possible,
and once found, sample from it to generate new unique data observations that look
as if they could have been included in the original dataset [23].

The area of image generation in particular saw rapid improvements during the last
decade, largely due to the invention of Generative Adversarial Networks, or GANs.
As can be seen in Figure 2.1, image generation of realistic human faces has undergone
significant progress even from one year to another. The rightmost image is generated
by the StyleGAN [4] architecture, which is still among the state-of-the-art for image
generation in terms of realism and resolution.

Figure 2.1: Progress of human face generation in the last decade [24].

8

2. Theory

2.1.3 Data distributions

Generative models learn to generate data with the same characteristics as the data
they are trained on. An equivalent definition of this given in [23] is the follow-
ing:

A generative model describes how a dataset is generated, in terms of a
probabilistic model. By sampling from this model, we are able to generate
new data.

While this can be understood intuitively by most, it may not be clear what the
distribution of a dataset actually means. In this chapter, the notion of a distribution
of a dataset will be explained, as well as what it means for a generative model
approximate it as closely as possible.

2.1.3.1 Distribution of a dataset

A dataset consists of a number of observations x1, x2, ..., xN that typically share
some set of characteristic features. In the case of an image dataset, the features are
in the form of pixel values and how these relate to each other. For example, in a
dataset of human faces, most images contain two eyes, a nose, a mouth etc.

Mathematically, the observations xi can be seen as samples from some unknown
probability distribution pr(x) that describes how pixel values are distributed for
images in the dataset. In other words, pr(x) describes a probability mass function
in the high-dimensional space of all images, in which images with every possible
combination of pixel values are elements.

If we for simplicity let this space of images be represented by a two-dimensional
space, the distribution pr(x) can be illustrated by the blue region in Figure 2.2, de-
noting the set of points where the distribution is high (over some threshold value).
The black dots represent the particular observations in the dataset, which as ex-
pected lie within this region.

Figure 2.2: The green and blue regions illustrate the generated distribution pG(x)
and real distribution pr(x), respectively. The goal of a generative model is to maxi-
mize the overlapping of the two regions by varying the parameters θ [25].

9

2. Theory

2.1.3.2 Generative models

The aim of a generative model is to approximate the data distribution pr(x) as
closely as possible. This can be done by having the generative model implement a
parameterized functionGθ(z), and then applying this function to elements z sampled
from some fixed probabilistic distribution p(z), called the prior distribution. In
other words, the generated distribution pG(x) becomes the image of p(z) under the
function Gθ. By changing the parameters θ, the function Gθ, and therefore also the
distribution pG(x), changes. The objective of our generative model can simply be
stated as:

Find parameters θ of Gθ(z) such that the generated and real distributions
are equal, pG(x) = pr(x), for all x.

Going back to the example of image generation in Figure 2.2, the distribution pG(x)
can be represented by the green region in the same way as before. Changing the
parameters θ of Gθ(z) will change the shape of the green region, and the goal is
thus to find parameters θ such that it coincides with the blue region representing
the distribution pr(x).

2.1.3.3 Distance between two distributions

To determine if two distributions are equal, such as the two distributions pr(x)
and pG(x) above, a notion of the distance between the distributions is required. A
quantity that can be used for this is the Kullback-Leibler divergence DKL, or KL
divergence for short. The KL divergence measures how one probability distribution
p(x) diverges from another probability distribution q(x) and is zero when the two
distributions are equal, i.e. when p(x) = q(x) everywhere [26]. The KL divergence
is defined as

DKL (p||q) =
∫
x
p(x) log p(x)

q(x)dx . (2.1)

However, from Equation 2.1 it is apparent that DKL is asymmetric with respect
to the two distributions. In particular, the contribution to DKL is small in cases
where p(x) is close to zero but q(x) is significantly non-zero, so the KL divergence
fails to capture differences between the two distributions in this case. While this is
a desirable property in some applications, it can be problematic in the context of
generative models where an inaccurate measure of the similarity between pr(x) and
pG(x) can lead to undesirable results [26].

A more suitable quantity is the Jensen-Shannon divergence DJS. Similar to the
KL divergence, the Jensen-Shannon divergence measures the similarity between two
probability distributions. It is bounded by [0, 1] and is zero when the two distri-
butions are equal, which makes it appropriate as a distance measure [26]. Most
importantly, it is symmetric with respect to the two distributions and therefore
avoids the above problem with the KL divergence.

10

2. Theory

For two probability density distributions p(x) and q(x), the Jensen-Shannon diver-
gence is given by

DJS (p||q) = 1
2DKL

(
p||p+q

2

)
+ 1

2DKL

(
q||p+q

2

)
. (2.2)

As can be seen, the Jensen-Shannon divergence is defined in terms of the KL di-
vergence to explicitly avoid the asymmetry. Figure 2.3 shows the integrand of the
integrals in Equations 2.1 and 2.2 for the two distributions measured against each
other as well as against the mean distribution m(x) = p(x)+q(x)

2 . As can be seen,
the KL divergence is asymmetric with respect to the two distributions while the
Jensen-Shannon divergence is symmetric.

Figure 2.3: The graphs show the integrand of the integrals in Equations 2.1 and
2.2, for the two distributions p(x) and q(x) measured against each other as well as
against the mean distribution m(x) = p(x)+q(x)

2 [26].

2.2 Generative Adversarial Networks

Generative Adversarial Networks are unsupervised generative models based on deep
learning. Their invention is attributed to Ian Goodfellow, who along with colleagues
published a paper outlining the idea and coining the term in 2014 [3]. At the time,
GANs represented a considerable improvement of the state-of-the-art in generative
modeling and the idea is now regarded as a pivotal moment for the field [23]. GANs
have since then been applied to a wide variety of problems and achieved remarkable
results, especially in the area of image synthesis where they have been shown to be
capable of producing images of striking realism and high resolution [4].

11

2. Theory

Like any generative model, GANs can be used to generate data of many different
types. However, since this thesis will be using GANs for image generation, the theory
behind them will from hereon be explained in the context of image data.

2.2.1 How does a GAN work?

The basic architecture of a GAN consists of two separate models: the generator G
that produces images and the discriminator D that distinguishes between generated
and real images. During training, the two models are opponents, or adversaries, in a
type of game. The goal of the generator in this game is to generate images that the
discriminator cannot tell apart from real images, and the goal of the discriminator
is to correctly classify images it is given as either generated and real. The goals of
the two models are therefore opposite, such that any gain for one of them comes at
the expense of the other.

This scenario is an example of a minimax game (a name will be made clearer in
Chapter 2.2.3.1). It can be shown that this game theoretically results in the genera-
tor ultimately becoming so good at generating images that they are indistinguishable
from real images [3].

Figure 2.4: Schematic diagram of the GAN framework.

2.2.2 The Goodfellow GAN

The original GAN paper [3] suggests to implement the two models as multilayer
perceptrons, or in other words, as fully-connected feedforward neural networks. The
generator is trained to map vectors z from the input domain Z to images x̂ in the
image domain X. The vectors z are randomly sampled from some probability distri-
bution p(z), called the prior distribution, and fed to the generator which produces
images x̂ = G(z) with distribution pG(x̂). The input domain Z generally has a
smaller dimension than the output domain X, and over the course of training, the
generator learns to interpret the lower-dimensional elements z ∈ Z as representations
of features in the generated images. In this case, Z is called a latent space.

Being a neural network, the generator implements a parameterized function Gθ,
where θ are the weights in the network layers. The goal of the generator is to
learn weights θ such that the discriminator cannot distinguish the generated images

12

2. Theory

Gθ(z) from real images x. This is equivalent to learning weights θ such that the
distribution of the generated images pG(x̂) equals the distribution of the images in
the training data set pr(x), i.e. pG = pr, as was shown in Chapter 2.1.3.2.

Similarly, the discriminator is a neural network that maps images, either generated
or real, to a scalar value d that is the estimated probability that the input is real.
It obviously follows that the probability that the image is generated, i.e. not real,
is given by 1 − d. The discriminator is therefore simply a classifier network that
also implements a parameterized function Dφ that takes images x as input and that
ideally outputs Dφ(x) = 1 for real images and Dφ(x̂) = 0 for generated images when
the network weights φ are optimal.

2.2.3 Training a GAN

While the goals of each network have now been determined, it remains to see how the
two networks should be trained in order to achieve them. The answer is to express
each goal in terms of minimizing or maximizing objective functions. The objective
function that is used to train a GAN was in fact one of the main innovations of the
original 2014 study [3] and is derived below.

2.2.3.1 Adversarial loss function

Beginning with the generator, its goal is to produce images x̂ = Gθ(z) that the
discriminator classifies as real, that is

Dφ(x̂) = 1.

Now, let the correct prediction for a given image be denoted by q, i.e. q(x) := 1
for real images x and q(x̂) := 0 for generated images x̂. To quantify the prediction
error of the discriminator, the cross entropy −q(x) logDφ(x) can be used. To fool
the discriminator, the generator’s objective is to maximize the expected value of
the cross entropy, or equivalently, minimize its inverse. Using that x̂ = Gθ(z) for
generated images, the generator’s objective function becomes

min
θ
LG = min

θ
Ex̂∼pG(x̂) q(x̂) logDφ(x̂) = min

θ
Ez∼pz(z) q(Gθ(z)) logDφ(Gθ(z)) (2.3)

where θ are the weights of the generator network. The expression Ex∼p(x) should be
read as “the expected value when x is distributed according to p(x)”.

However, since q(Gθ(z)) = q(x̂) := 0 for generated images, the two rightmost ex-
pressions in Equation 2.3 will be constantly equal to 0, making them meaningless as
objective functions. This can be avoided without changing the objective by replacing
the discriminator’s prediction in Equation 2.3 by 1−Dφ(x) and setting the correct
label for generated images equal to 1 − q(x̂) = 1. Using this, the new equivalent
objective function becomes

min
θ
LG = min

θ
Ez∼pz(z) log

[
1−Dφ(Gθ(z))

]
(2.4)

13

2. Theory

which is the final objective function for the generator.

Next, the objective function for the discriminator is derived. The discriminator has
two independent goals: 1) classify real images x as real, Dφ(x) = 1, and 2) classify
generated images Gθ(z) as “not real”, Dφ(Gθ(z)) = 0. This can be expressed in
terms of the cross entropy as well, but now the objective is to maximize it. This
gives

max
φ
LD = max

φ
Ex∼pr(x)q(x) logDφ(x) + Ez∼pz(z) q(Gθ(z)) logDφ(Gθ(z))

Again, using that q(x) := 1 and employing the trick of reversing the image labels
and discriminator prediction in the rightmost term, we get that the discriminator’s
final objective function is

max
φ
LD = max

φ
Ex∼pr(x) logDφ(x) + Ez∼pz(z) log

[
1−Dφ(Gθ(z))

]
(2.5)

where φ are the weights of the discriminator network.

Notice that the rightmost term in both Equation 2.4 and Equation 2.5 are equivalent,
but the goal is to minimize it in Equation 2.4 and to maximize it in Equation 2.5.
Since the parameters θ and φ of the generator and discriminator can be changed
independently of one another, we can combine the two objective functions into a
single minimax objective function

min
θ

max
φ
LGAN = min

θ
max
φ

Ex∼pr(x) logDφ(x) + Ez∼pz(z) log
[
1−Dφ(Gθ(z))

]
(2.6)

which is the full objective function of the Goodfellow GAN.

2.2.3.2 Global optimum

In the original GAN paper (see Proposition 1 in [3]), it is shown that the optimal
discriminator D∗ for a given generator G is given by the expression

D∗G(x) = pr(x)
pr(x) + pG(x) (2.7)

Using this, [3] shows that the global optimum of the adversarial objective function,
Equation 2.6, results in minimization of the Jensen-Shannon divergence (presented
in Chapter 2.1.3.3) between the real and generated data distributions pr and pG.
This is equivalent to the two distributions being equal, pr = pG, which shows that
the objective function results in the desired outcome for the game between the two
adversarial networks. Thus, even though the derivation in Chapter 2.2.3.1 motivated
the terms in the objective function using cross entropy, there is in fact a rigorous
theoretical motivation for why the objective function is defined exactly in the form
that it is.

14

2. Theory

2.2.3.3 GAN training algorithm

In addition to proposing the objective function in Equation 2.6 and showing that
it is equivalent to minimization of the Jensen-Shannon divergence between pr and
pG, [3] also provides an algorithm for training the two networks such that Equation
2.6 is optimized. In short, the proof (see Proposition 2 in [3]) shows that if the
discriminator is assumed to be optimal at all times, and thus is given by Equation
2.7, Equation 2.6 has a unique optimum that is reachable by performing gradient
descent updates of the generator’s parameters θ.

In practice, however, it is enough that the discriminator remains approximately
optimal as the generator is updated. To stay near optimality, i.e. to accurately
distinguish between generated and real images, the discriminator therefore also has
to be updated using gradient ascent on Equation 2.6 during training. Thus, the
algorithm that [3] proposes suggests that the generator and discriminator networks
are trained in an alternating fashion. For every gradient descent update step of the
generator, the discriminator is also updated using one or multiple gradient ascent
steps. A simplified version of the algorithm proposed by [3] is shown below in Algo-
rithm 1, where the discriminator is updated once for every update of the generator.
In addition to the already declared parameters, ∇ denotes the gradient and h the
learning rate.

Algorithm 1: GAN training algorithm.
for each training iteration do

Sample real images {x1, ..., xN} from the dataset;

Sample latent vectors {z1, ..., zN} from prior distribution pz(z);
Generate fake images {Gθ(z1), ..., Gθ(zN)};
Update discriminator weights φ by stochastic gradient ascent on LGAN

φ← φ+ h∇φ
1
N

∑N
i

[
logDφ(xi) + log

[
1−Dφ(Gθ(zi))

]]
;

Sample latent vectors {z1, ..., zN} from prior distribution pz(z);
Generate fake images {Gθ(z1), ..., Gθ(zN)};
Update generator weights θ by stochastic gradient descent on LGAN
θ ← θ − h∇θ

1
N

∑N
i log

[
1−Dφ(Gθ(zi))

]
;

end

Note that any other standard gradient-based learning rule can be used instead of
stochastic gradient descent (ascent) to update the networks as well.

2.2.3.4 Alternative adversarial loss functions

Although the original adversarial loss function 2.6 captures the goal for each of
the two networks, it has been shown to suffer from shortcomings that can lead to
difficulties during training. One of the biggest disadvantages is that it tends to
result in vanishing gradients when the discriminator is near optimality, which can
cause learning to slow down significantly [27]. Because of this, several modifications

15

2. Theory

to Equation 2.6 that are designed to avoid the problem of vanishing gradients have
been proposed as alternative adversarial loss functions to train GANs.

In the original adversarial loss of Equation 2.6, the discriminator outputs a proba-
bility Dφ(x) ∈ [0, 1] that x is real. In practice, this is done by passing the output of
the discriminator’s last layer y through a function that normalizes it to the range
[0, 1], most commonly the sigmoid function σ(y) = 1

e−y+1 . However, several studies
trace the problem of vanishing gradients to the use of functions like the sigmoid,
that have saturating derivatives for large y [27, 28, 29]. Therefore, many alterna-
tive adversarial losses avoid the use of such normalization functions and are instead
expressed directly in the output y from the discriminator’s last layer.

To see examples of alternative adversarial losses, let Equations 2.4 and 2.5 be ex-
pressed in terms of y on the form

max
D
LD = max

D
f(y) + g(y)

min
G
LG = min

G
h(y) .

Using these expressions, a couple of common alternative adversarial loss functions
are presented in Table 2.11.

Loss function f(y) g(y) h(y)
Original [3] − log(1 + e−y) −y − log(1 + e−y) −y − log(1 + e−y)
Least squares [29] −1

2(y − 1)2 −1
2y

2 1
2(y − 1)2

Hinge [30, 31] min(0, y − 1) min(0,−y − 1) −y
Wasserstein [32] y −y −y

Table 2.1: Alternative adversarial loss functions [33].

An important remark, however, is that a large-scale study by Google Brain [28]
tested a large number of alternative loss functions and demonstrated that none was
superior on all types of problems. Instead, there are advantages and disadvantages
of each, and which one performs the best can vary depending on the problem.

2.2.4 Mode collapse

In Chapter 2.1.3.2, it was shown that the generator ideally learns to accurately
model the data distribution pr(x). When this succeeds, the generator is able to
produce a diversity of images with a broad range of appearances. However, a com-
mon problem during GAN training is that the generator stops producing diverse

1Note that with the sigmoid function applied to y, the terms in the original loss of Equation 2.6
function become log Dφ(x) = log 1

e−y+1 = − log(1 + e−y) and log(1 −Dφ(x)) = log(1 − 1
e−y+1) =

log(e−y

e−y+1) = −y − log(1 + e−y).

16

2. Theory

images and instead only outputs a small number of samples. This is called mode
collapse and occurs when the generator finds one or a few samples, called modes,
that fool the discriminator particularly well, or in other words, lead to a low loss for
the generator. If the benefit is high enough, the generator can learn to only produce
images belonging to this limited set of modes. When this happens, the discrimina-
tor’s best strategy becomes to reject images based solely on whether they belong
to this small set of modes or not, instead of learning to discriminate based on the
high-level features of the images. However, when the discriminator does this, the
generator can then simply shift to another small set of modes to again start fooling
the discriminator. This phenomenon can becomes a vicious cycle that continues
endlessly and that stops the two networks from making progress.

2.3 Conditional GANs

Conditional Generative Adversarial Networks, CGANs, are modifications to the
GAN framework described above. As the name suggests, both the generator and dis-
criminator now produce their outputs conditioned on some additional information,
such as a class label or an image [34].

2.3.1 Generator

In the case of the generator, it no longer produces fake images only using the input
elements as before, where x̂ = G(z). Instead, it takes both the latent vectors z and
an additional piece of information y as input and produces an image conditioned on
y

G(y, z) = x̂|y .

The expression on the right-hand side should be interpreted as “x̂ conditioned on
y” [34].

In the case of image generation, y can represent some feature of the image that
the generator should learn to include. For example, if the generator is trained to
produce pictures of dogs and cats, y can encode the two cases cat and dog and tell
the generator which of the two cases it should produce an image for.

However, only having the generator be conditioned on y would not be sufficient to
make it learn the correct mapping. The generator could simply learn to produce
random fake images without actually making use of y. As long as the generated im-
ages were equally realistic to the real images that are also given to the discriminator,
they would fool it and the behaviour would be encouraged by the loss function.

17

2. Theory

Figure 2.5: Schematic diagram of the conditional GAN framework.

2.3.2 Discriminator

To force the generator to learn the correct mapping G(y, z) = x̂|y, the discriminator
is also trained to be conditioned on y. More specifically, instead of outputting the
probability that an image is real D(x) = d, it is also given the label y and outputs
a conditional probability based on the pair (x, y), that is

D(x, y) = d|y .

Thus, the discriminator learns to both recognize if the image x is real and if it
matches the label y. For real observations, the pair is the real image and its label
(x, y), and for fake observations, it is the generated image and the label used to
generate it (x̂|y, y) [34].

2.3.2.1 Image-to-image translation

In the case of y being an image, the generator learns to produce an output image
x̂ based on the image y and the randomly sampled input z. This type of problem,
where the goal is to learn a mapping from images in a source domain Y to images
in a target domain X, is called image-to-image translation. The input elements z in
the latent space Z then serve as stochastic variations in the generated images that
provide variation.

2.4 Architectures

Up to this point, the generator and discriminator networks have only been discussed
in abstract, without any details regarding their actual implementations as neural
networks. In this chapter, a number of components commonly used as a part of
their architectures are presented.

This chapter will not, however, present a full summary of the basics of deep learning.
The reader is assumed to be familiar with foundational concepts such as artificial

18

2. Theory

neurons, convolutional neural networks (CNNs), common activation functions etc.
See for [35] a brief summary of these concepts. For a more comprehensive review of
deep learning, the author recommends [36] as reading material.

2.4.1 Residual networks

A reoccurring problem when training deep neural networks is the phenomenon of
vanishing gradients, where the gradients of the early layers with respect to the loss
function become very small and give rise to slow learning [23]. In general, this hap-
pens due to the saturating activation functions of subsequent layers occuring in the
expression for the gradient. However, it has been shown that residual networks, or
ResNets, can be trained with hundreds or even thousands of layers without suffering
from the vanishing gradient problem [37]. Deep network architectures are common
in GAN applications, so ResNets are often used in the architectures of both the
generator and discriminator networks.

One way to construct a residual network is to build it from smaller blocks called
residual blocks, or ResBlocks. ResBlocks are usually connected in a sequence, possi-
bly with upsampling or downsampling layers in between to transform the size of the
feature maps depending on the application. The key feature that prevents vanish-
ing gradients is the skip connection included in each ResBlock. The skip connection
bypasses the layers inside the ResBlock and allows information from previous layers
to directly influence subsequent layers. This can be shown to remedy the vanishing
problem problem in the expression for the gradient [37]. The output y of the Res-
Block is the sum of the output from the internal layers F (x) and the skip connection
x, or in other words

y = F (x) + x .

Figure 2.6: A schematic diagram of a ResBlock used to construct residual neural
networks. In this example, the ResBlock has two internal weight layers.

19

2. Theory

2.4.2 Normalization

A neural network can be seen as a composition of many functions that are applied
on top of each other. During training of the network, the parameters of these
functions are updated simultaneously according to some optimization algorithm,
typically some type of gradient descent. However, each component in the gradient
is calculated with the implicit assumption that all other parameters are constant.
When the weights of all layers are changed simultaneously under this assumption,
it can lead to unexpected and explosive changes in the internal activations and even
cause an overall collapse of the network [36]. This is known as the exploding gradient
problem and is especially prominent for deep neural networks [23]. One way to avoid
these explosive changes in the activations is to apply normalization to keep their
statistical properties constant during training2. Normalization can also be used to
control network activations dynamically at runtime, called adaptive normalization.
A couple of normalization methods of these types are presented below.

2.4.2.1 Batch normalization

One way to avoid the problem of exploding gradients due to simultaneous weight
updates is to apply batch normalization [40] before each layer in the network. Batch
normalization is performed by simply calculating the mean and standard deviation
across all data instances in a minibatch and normalizing each instance accordingly.
Since this ensures that the statistical properties of the inputs to all layers remain
unchanged over time, it alleviates the problem of exploding gradients caused by
unexpected changes in previous layers [23].

Let x ∈ RN×C×W×H denote a minibatch of data instances as a tensor. Each element
is then described by four indices: w and h for the spatial dimensions, c for the channel
number and n for the index in the batch. Using this, the channel-wise mean µc and
standard deviation σc for a minibatch of length N are given by

µc = 1
NHW

N∑
n=1

W∑
w=1

H∑
h=1

xnchw σ2
c = 1

NHW

N∑
n=1

W∑
w=1

H∑
h=1

(xnchw − µc)2 .

Using these, batch normalization transforms each element xnchw according to

x′nchw = xnchw − µc
σc

.

2.4.2.2 Instance normalization

Instance normalization is another normalization method similar to batch normaliza-
tion, but instead of normalizing across all instances in a batch, the channel in every

2This is the most common explanations for why normalization improves the stability and per-
formance of neural networks, but it should be remarked that this has not been rigorously proven
[38]. In fact, recent studies [39] suggest completely different reasons for why methods such as batch
normalization improves the performance of neural networks.

20

2. Theory

Figure 2.7: Visual comparison between batch normalization and instance normal-
ization [42].

data instance is normalized separately. It was first introduced in a 2016 study [41]
and was shown to be particularly beneficial for style transfer applications and has
since then been used in many other GAN studies [4, 1].

Again, let x ∈ RN×C×W×H denote a minibatch of data instances indexed by h and
w for the spatial dimensions, c for the channel number and n for the index in the
batch. For instance normalization, each data instance is normalized according to its
channel-wise mean µnc and standard deviation σnc. For a minibatch of length N ,
these are given by

µnc = 1
HW

W∑
w=1

H∑
h=1

xnchw σ2
nc = 1

HW

W∑
w=1

H∑
h=1

(xnchw − µnc)2 .

Instance normalization uses these to transform each element xnchw according to

x′nchw = xnchw − µnc
σnc

.

2.4.2.3 AdaIn - Adaptive Instance Normalization

Adaptive instance normalization [43, 44, 45, 46], AdaIn, is a technique for normaliz-
ing the activations in a network and rescaling them according to learned parameters.
More specifically, the input is first normalized using instance normalization and then
denormalized by the learned adaptive parameters γnc and βnc that apply channel-
wise scaling and biasing.

Using the same notation as before, AdaIn transforms each element according to

x′nchw = γnc
xnchw − µnc

σnc
+ βnc . (2.8)

21

2. Theory

Again, the parameters γnc and βnc are learned and adaptive, meaning that they
are optimized according to some desired objective and can change dynamically at
runtime. Typically, they are outputted by a parameterized function that takes some
external information as input. In particular, this external information can be in the
form of randomly sampled latent vectors z, and is therefore an alternative way to
inject these into a network instead of providing them as input.

Since γnc and βnc are applied channel-wise to each data instance, AdaIn is a technique
of dynamically changing which feature maps are used to generate images at runtime
based on external output, and in this way, enables the style of the output to be
controlled. For example, AdaIn layers were used in the architecture of the StyleGAN
[4] generator to provide control over the appearance of the generated photo-realistic
faces.

2.4.2.4 SPADE - Spatially Adapative Normalization

SPADE [8] is short for spatially-adaptive normalization and is a technique used
to introduce the conditional labels y in image-to-image translation applications,
where y are images. The method works by inferring learned, adaptive and spatially-
dependent parameters from the image y that are used to denormalize the feature
maps inside the network. The learned parameters are spatially-dependent, meaning
that they vary across the spatial coordinates of the feature maps, and adaptive,
meaning that they are calculated dynamically from y. They are also learned, mean-
ing that they are outputted by a parameterized function that is optimized according
to some objective. In short, y is used to calculate a type of learned “filter” that is
applied to the feature maps inside the network at runtime.

In the original study [8], SPADE is implemented as a layer that first normalizes the
input using batch normalization and then denormalizes it according to spatially-
dependent scale and bias factors that are calculated by applying multiple convolu-
tional layers to y, as shown in Figure 2.8. The formula for this is given by

xnchw = γnchw
xnchw − µc

σc
+ βnchw . (2.9)

Comparing with the formula for AdaIn, Equation 2.8, it can be seen that SPADE
differs in two ways: 1) batch normalization is used as the initial normalization and
2) the parameters γnchw and βnchw have spatial dependence. Another difference
is how these parameters are calculated. In AdaIn, they are typically calculated
from randomly sampled latent vectors z, while in SPADE, they are calculated using
convolutional layers applied to the source image y.

22

2. Theory

Figure 2.8: SPADE implemented using batch normalization and convolutional
layers that are applied to the input image to calculate learned spatially-dependent
parameters [8].

2.4.3 Network architectures

The following chapter presents network architectures that are commonly used for
the generator and discriminator networks in GAN frameworks.

2.4.3.1 Decoder

A decoder is a common generator architecture for implementing the mapping from
the latent space Z to the image domain X. A decoder typically consists of a series of
weight layers, e.g. convolutional or fully-connected layers, with upsampling layers in
between. Thus, the inputs z ∈ Z are repeatedly transformed and upscaled until their
dimensions match that of the output image domain X. To allow a deep architecture,
the encoder can also be implemented as a ResNet, i.e. by a series of ResBlocks with
upsampling layers in between.

Figure 2.9: Decoder generator architecture proposed by the DCGAN [47] paper.

The decoder architecture shown in Figure 2.9 using convolutional layers was first

23

2. Theory

proposed by the DCGAN [47] paper. This study proposed several modifications
that significantly improved the performance of GANs at the time (2016) and is
today considered one of the major breakthroughs in the field.

2.4.3.2 Encoder

An encoder is an architecture that takes images as input and maps them to a lower-
dimensional latent space. The architecture is similar to a reversed decoder, i.e.
an encoder typically contains a series of weight layers with downsampling layers
in between. Alternatively, like with the decoder, it can also be constructed using
a series of ResBlocks, each followed by downsampling layers, to allow for deeper
architectures.

In the context of GANs, encoders can be used as the architecture for the discrimi-
nator. However, as will shown in the next Chapter 2.4.3.3, it can also be a part of
the generator during image-to-image translation.

Figure 2.10: An example of an encoder implemented as a ResNet. The input image
is encoded, or compressed, down to a vector representing its high-level features.

2.4.3.3 Encoder-decoder

This architecture is common for the generator during image-to-image translation
and can be thought of as an extension to the decoder architecture explained in
Chapter 2.4.3.1. To allow the generator to take images y as input, an encoder is
appended before the decoder, such that they together form the full generator – an
encoder-decoder. The encoder maps the images y to the intermediate latent space in
the bottleneck, which are in turn passed to the decoder that uses them to produce
the output images.

An encoder-decoder can also be implemented as a ResNet, i.e. a series of ResBlocks
with downsampling and upsampling layers in between, as is shown in Figure 2.12.
This architecture has been shown to work well for image-to-image translation and
has been used in studies such as [2, 1].

24

2. Theory

Figure 2.11: An example of an encoder-decoder implemented as a ResNet, where
the source image is simply given as input to the network.

2.4.3.4 SPADE decoder

An alternative to using an encoder to introduce the images y into the decoder is
to instead use SPADE normalization layers, introduced in Chapter 2.4.2.4. By
removing the need for the encoder, this architecture is more light-weight and has
less parameters. Additionally, the SPADE [8] study found that architectures that
introduce the label images y as direct inputs to the network, as with the encoder-
decoder, tend to “wash away” much of the information when convolutions and other
transformations are applied. By instead using SPADE layers throughout the entirety
of the decoder to introduce y, the full information can be retained even in the deeper
layers.

Figure 2.12: An example of a SPADE decoder implemented as a ResNet, where
the source image is injected using SPADE normalization layers.

25

2. Theory

26

3
Method

This section describes the methodological procedure of the thesis. The section be-
gins by describing the process of preparing and preprocessing the data that is used
for training the framework in Chapter 3.1. Next, the details of the chosen approach
of using a CGAN framework for performing the image-to-image translation are de-
scribed and motivated in Chapter 3.2. Chapter 3.3 explains how the framework
was evaluated and Chapter 3.4 presents the architectures of the framework’s neural
networks. Lastly, the chapter concludes by specifying the experiments that were
performed as well as the motivation behind them in Chapter 3.5.

3.1 Dataset

The CGAN framework was trained to perform image-to-image translation between
two image domains: the source domain, consisting of images of a computer gener-
ated 3D model, and the target domain, consisting of images of real human faces in
near-infrared. This subchapter will present the two image domains in more detail
and explain how they were acquired. Furthermore, it will describe how the image
data was cleaned and preprocessed before it was given to the CGAN framework for
training.

Figure 3.1: Diagram showing image-to-image translation using a generative model.

3.1.1 Source domain

The source domain consists of images of a computer generated 3D model rendered by
a software tool based on the Unity [48] game engine. The 3D model is controllable
such that its head position and gaze direction can be set to any desired value.

27

3. Method

The software tool supports multiple 3D models with different genders, ethnicities
and appearances, and each 3D model can be outfitted with accessories such as
sunglasses, face masks and various clothing. However, since the aim is to have the
CGAN framework produce a wide variety of facial attributes, the appearance of the
3D model was not seen as important, so a single appearance was chosen and used
during training of the CGAN framework. The chosen 3D model appearance is shown
on the left-hand Figure 3.2

Furthermore, to allow the CGAN framework to more easily infer the geometry of
3D model’s face and distinguish the eye region from the rest of the face, the choice
was made to use a color coded mask as texture. The mask uses red, green and blue
to separate the skin, eye whites and irises respectively. The 3D model with color
coded mask is shown on the right-hand side in Figure 3.2, and the three RGB color
channels are shown in Figure 3.3.

Without mask With mask

Figure 3.2: 3D model with and without color coded mask texture.

Red Green Blue

Figure 3.3: RGB color channels of the 3D model with mask.

3.1.2 Target domain

The target domain consists of images of real faces in the near-infrared domain. The
images are extracted from video recordings made with infrared cameras positioned
in a variety of perspectives. Altogether, there are an estimated 500 different unique
subjects in the dataset that span a wide variety of appearances. A sample from the
dataset is shown in Figure 3.4.

28

3. Method

Figure 3.4: Sample images from the target domain. As can be seen, these consist
of faces in the near-infrared domain.

3.1.3 Dataset creation

The dataset that is used to train the CGAN framework consists of paired images from
the two domains. More specifically, the images of the 3D model in the source domain
are synthesized from the images in the target domain. This is done by iterating
through the images in the target dataset and extracting the following features for
each image: the camera’s spatial coordinates, the camera angle, the subject’s head
coordinates, the subject’s head angle and the subject’s gaze direction. These features
are then used to synthesize a source image that is aligned with the target image,
as shown in Figure 3.5. Additionally, for target images with a subject wearing
glasses, the 3D model in the source image is also rendered with a standardized pair
of glasses.

Figure 3.5: Example of an image pair used for training the CGAN framework.

3.1.4 Data cleaning

Since it is the training data that instructs the CGAN framework of what mapping
to learn, it is important to provide it with clean data during training. While most

29

3. Method

images in the two image domains were of high quality, a small portion contained
disturbances such as partially obstructed faces, blur and other disturbances. The
dataset creation process described in 3.1.3 also did not work perfectly and in some
cases resulted in source images that were not properly aligned with the corresponding
real images.

To find images containing visual disturbances or obstructed faces and remove them,
a simple method for data cleaning was employed. The target dataset is organized
into subdirectories for each unique subject and camera they were recorded with.
Since the images in each such subset are similar, they can be statistically compared
against each other to find the few examples with significant disturbances.

Thus, to find and remove image outliers, the mean of each image belonging to
the same subdirectory was calculated and used to compute the interquartile range
IQR = Q3−Q1 from the first and third quartiles Q1 and Q3. Images with means that
were more than 1.5 · IQR below the first or above the third quartile were classified
as outliers and removed from the dataset together with their corresponding paired
images in the other domain. This was done for each subdirectory in both the target
dataset and source dataset separately.

While this was a reasonably effective method for removing images with distinct
visual disturbances, it failed to perfectly capture cases where the source and target
images were misaligned. Luckily, image pairs like these constituted a small portion
of the full dataset and could be removed manually.

3.1.5 Data preprocessing

Before training, the images were downsized to a resolution of 128× 128 pixels. This
was partly done for practical reasons to make the training time shorter and limit
VRAM usage, but also because Smart Eye’s other machine learning models that
could come to use the generated images require this resolution.

Next, the target images were each scaled by a factor µ0/µ in order to normalize
their means to the same value µ0. This was done because of significant lighting
differences in the images recorded from different cameras which was found to make
it difficult for the CGAN framework to learn the data distribution. Since all pixels in
each image were scaled by the same factor, the relationships between them remained
unchanged.

After this, the random image augmentations presented below in Chapter 3.1.5.1 were
applied to each image pair. This can be seen as a way of artificially expanding the
dataset using the existing images. With random augmentations, each image (pair)
is alterered slightly every time before it is given to the CGAN framework and is
therefore never seen twice in exactly the same way. Applying random augmentations
have been shown to reduce overfitting and increase the performance of machine
learning models on computer vision tasks [49]. Since the discriminator is a type of
image classifier, it is less likely to overfit on the dataset when random augmentations

30

3. Method

are used. In a similar way, it prevents the generator from memorizing the correct
output for every source image in the dataset.

Lastly, after the previous alterations had been applied, the images from both do-
mains were scaled to have values in the range [−1, 1] through min-max scaling.
Bounded activation functions such as tanh have been found to result in shorter
training times when applied to the output of the generator, so the image scaling was
done in order to make the pixel values lie within the range of the tanh function’s
output [47].

3.1.5.1 Random augmentation

To reduce the tendency of overfitting and improve model’s ability to generalize,
random augmentations were applied to each pair of images before they were given
to the model. The augmentations were applied in the same way to both images
in each pair in order to preserve their alignment. Table 3.1 shows the random
augmentations used and the probability of applying them to each image pair.

Augmentation Probability Min. Max.
Scale 0.7 1 1.2
Shift 0.7 -0.0625 0.0625
Rotation 0.7 −π/4 π/4
Gamma alteration 0.5 98 102
Horizontal flip 0.5

Table 3.1: Random augmentations applied to image pairs in the dataset.

3.1.6 Training and test sets

After removal of poor images using the data cleaning described in Chapter 3.1.4, the
dataset used to train the CGAN framework consisted of about 180 000 images in
total. These were then split into a training set and a test set by randomly extracting
90% of the image pairs for the training set and using the remaining 10% for the test
set. It should be noted that the full dataset contained multiple images of each
subject, so the above method did allow for the same subject to appear in both the
training and test set.

3.2 Framework

This chapter describes the CGAN framework used to perform the image-to-image
translation from the source domain to the target domain.

31

3. Method

3.2.1 Multimodal image-to-image translation

The CGAN framework was trained to perform image-to-image translation from the
source domain to the target domain. More specifically, it took images of the 3D
model as input and mapped them to images of real faces in the target domain
while preserving domain-invariant attributes, such as head pose and gaze direction.
However, while there is only one appearance for the 3D model, there are a wide
variety of unique subjects in the target domain. When mapping images of the 3D
model, the generator should therefore learn to produce a wide variety of faces with
different appearances. This type of problem is known as multimodal image-to-image
translation.

3.2.2 CGAN framework

The chosen approach for performing the multimodal image-to-image translation is to
use a Conditional Generative Adversarial Network (CGAN), described in Chapter
2.3, trained on the image pairs described in Chapter 3.1.3. Both the generator
and discriminator will therefore produce their respective outputs conditioned on the
source domain images in these pairs.

The generator is thus a neural network that implements a function G that takes the
source images y as well as randomly sampled latent vectors z as input and produces a
generated image G(y, z) = x̂|y. The latent vectors z are sampled from a probability
distribution p(z) that can be set as desired before training.

The purpose of the latent vectors z is to provide the generator with stochastic
variations that enable it to map the source images to a variety of different faces.
Ideally, the generator learns to interpret the latent space Z as a representation of
features of the faces in the target domain. Each latent vector z will then map to
a unique appearance in the target domain and allow the generator to produce a
diverse set of faces. Without the latent vectors z, the generator would simply map
each source image y to a unique target image x̂. Figure 3.7 shows a diagram of the
framework where the effect of the latent vectors z is illustrated.

Figure 3.6: The proposed generator architecture for multimodal image-to-image
translation.

32

3. Method

3.2.2.1 Mode collapse

While the latent vectors z should in theory allow the CGAN generator to produce
a variety of faces with unique appearances as shown in Figure 3.7, this is generally
hard to achieve in practice. In particular, when the conditional information y is
structured and high-dimensional, such as in the case of images, the conditional
generator has a tendency to ignore the lower-dimensional latent vectors z and only
make use of y when generating images [7]. When this happens, the variety of the
appearances in the generated images becomes limited, since it is the latent vectors
z that account for the diversity. This can be seen as a type of mode collapse, which
was explained in Chapter 2.2.4.

Figure 3.7: Mode collapse occurring, where the generated images G(y, z) are of
low diversity.

3.2.2.2 Diversity regulization

There have been numerous proposed methods for solving the problem of mode col-
lapse in CGANs. StarGAN v2 [1] showed that mode collapse can be avoided by
introducing diversity regularization terms in the loss function of the framework.
The study proposes two regularization terms in particular:

3.2.2.2.1 Latent reconstruction loss Llr StarGAN v2 [1], in turn inspired by
[50, 51], showed that the generator can be enforced to make use of the latent vectors
z when generating images G(y, z) by introducing a latent reconstruction loss

Llr = min
G,E
|| z − E(G(y, z)) ||1 (3.1)

where E is an encoder network that takes a generated image G(y, z) as input
and outputs an estimation ẑ = E(G(y, z)) for the latent vector z that was used to
produce G(y, z).

The latent reconstruction loss Llr is minimized when the encoder E can make accu-
rate estimations ẑ. This requires that the latent vectors z can be uniquely retrieved
from each image G(y, z), which prevents the generator from ignoring z when gener-
ating images.

33

3. Method

3.2.2.2.2 Style diversity loss Lsd While the latent reconstruction loss enforces
the generator to use the latent vectors z, it is still possible for z to have a minimal
effect on the style of the generated images. For example, the generator could in
theory minimize Llr by encoding z in the outskirts of the images G(y, z), without z
affecting the actual appearance of the faces they contain.

StarGAN v2 [1], inspired by [7, 52], therefore proposes an additional regularization
term for the loss function, called a style diversity loss Lsd. In order to adopt Lsd,
two latent noise vectors z1 and z2 must be sampled independently at each iteration
during training, which are used by the generator to produce the two images G(y, z1)
and G(y, z2) from the same source image y. Lsd is then given by

Lsd = max
G

[dI(G(y, z1), G(y, z2))
dz(z1, z2)

]
(3.2)

where dz(·, ·) and dI(·, ·) are the measures used to compare the distance between
elements in Z and X respectively.

As can be seen, the expression on the right-hand side of Equation 3.2 is proportional
to the distance dI(G(y, z1), G(y, z2)) between the imagesG(y, z1) andG(y, z2). Thus,
as long as dI(·, ·) reflects differences in the appearance of the generated images, Lsd
will reward the generator for producing more diverse images.

Furthermore, as can be seen, the expression is also inversely proportional to the
distance dz(z1, z2). At first, this might seem counter-intuitive, as it reduces the loss
for larger distances dz(z1, z2), hence providing less incentive for z1 and z2 to map to
different appearances in this case.

However, the main motivation for Equation 3.2 being on this form is that it reduces
the tendency for mode collapse. When this occurs, the generator stops producing
images with diverse appearances and instead only outputs a few limited variations,
so called modes (see Chapter 2.2.4 for an explanation of mode collapse). According
to [7, 52], latent vectors that are close in latent space are more likely to collapse
to the same mode. Thus, by having dz(z1, z2) in the denominator, latent vectors z1
and z2 that are close in the latent domain are more encouraged to map to different
appearances, hence avoiding the problem of mode collapse.

Figure 3.8: Distance measures in the latent space and images space used for
calculating the style diversity loss Lsd.

34

3. Method

a) Example of distri-
bution of features in a
dataset.

b) Distribution of la-
tent vectors z ∈ Z and
mapping to dataset fea-
tures (black lines).

c) Learned distribu-
tion of style vectors s ∈ S
and mapping to dataset
features (black lines).

Figure 3.9: Example of a curved mapping from the latent space Z to features
in image space. a) shows an imaginary distribution of two types of features in a
dataset, e.g. masculinity and degree of facial hair, with the empty region illustrating
that bearded women are absent from the dataset. If latent vectors z are sampled
randomly according to a symmetric distribution, as shown in b), the mapping to
features in image space (black lines) must become curved in order to reproduce the
real distribution. By mapping Z to an intermediate latent space S, as shown in c),
the curvature of the mapping (black lines) can be avoided [4].

3.2.2.3 Entangled latent space

Sampling the latent vectors z from a symmteric probability distribution p(z), for
example a multivariate Gaussian distribution, is a straightforward way to have the
framework perform the multimodal image-to-image translation. However, a problem
with using a symmetric distribution is that it can be difficult for the generator to
learn a mapping from the latent space Z to features in the generated images if some
combination of features are absent in the dataset it is trained on [4].

To illustrate this, imagine that the dataset that the framework is trained on only
contains two types of features: masculinity and degree of facial hair. Assume further
that some combination of the two features, say women with facial hair, is absent
from the observations in the dataset. In this case, the distribution of features in the
dataset will look similar to Figure 3.9 a).

Now, if the latent vectors z are sampled according to a multivariate Gaussian distri-
bution, the distribution will be symmetric along the origin. Thus, in order for the
generator to reproduce the same distribution of features as in the training dataset,
the mapping G(x, z) is forced to become curved, such that no part of the latent
space Z maps to images of women with facial hair. This is illustrated in Figure 3.9
b).

However, a curved mapping from the latent space Z to features in the image domain
is undesirable, as it will make linear separation of features unfeasible. When this

35

3. Method

occurs, combinations of features will vary collectively and it will not be possible to
identify each feature with a unique direction in the latent space Z. The latent space
Z is then said to be entangled.

3.2.2.4 Disentangling the latent space

To solve the problem of an entangled latent space, various methods can be used to
disentangle it. One such method is to introduce a non-linear function L that maps
the latent space Z to another intermediate latent space S, as shown in Figure 3.9 [4,
1]. The latent vectors z can then be randomly sampled according to some simple
symmetric distribution, say a multivariate Gaussian distribution, and be mapped to
elements s ∈ S. Since L is non-linear, it can map the latent space Z such that the
intermediate latent space S accurately matches the distribution of features found in
the dataset. This removes the need for the generator’s mapping G to become curved
and allows features to be linearly independent.

3.2.2.4.1 Style mapping network L The non-linear function L implemented
as a regular fully connected, feed-forward neural network that takes latent vectors z
as input and maps them to vectors s in the new latent space S. The new network is
called a style mapping network, and the vectors s in the new latent space S are called
style vectors. The losses derived prior to this, such as the style diversity loss 3.2 and
style reconstruction loss 3.1, can be used in the same way after simply replacing the
latent vectors z by the style vectors s.

Figure 3.10: Latent vectors z replaced by the style vectors s outputted by the
style mapping network L.

3.2.3 Reconstructing identities

The encoder E used for the latent reconstruction loss 3.1 enables the estimation
of the latent vectors z used for generating images G(y, z) and to encourage the
generator to use the latent vectors z when producing images. However, while it is
possible to also use E to estimate latent vectors of real images x, it is not explicitly
trained to do this. It would however be desirable for the model to have the ability
to extract the appearances of subjects in real images and use it to generate new
images with the same appearance. Because of this, an additional supervised loss is
proposed below in order to encourage the model to estimate accurate latent vectors

36

3. Method

for real images as well.

Identity reconstruction loss Lir The identity reconstruction loss was intro-
duced to make the latent vector estimation and subsequent identity reconstruction
by the generator work better for real images x. To do this, an additional step is
added to each iteration during training. In addition to generating an image from a
randomly sampled latent vector, the generator is also given a reconstructed latent
vector ẑ = E(x) and uses it to generate a reconstructed image G(y, ẑ). Now, the
identity reconstruction is used to both encourage the encoder E to make accurate
estimations ẑ as well as the generator to produce a reconstructed image G(y, ẑ)
similar to the real image x. It is given by

Lir = min
G,E

dI(x,G(y, ẑ)) (3.3)

where dI(·, ·) is some distance metric for the similarity in the image domain and
ẑ = E(x) is the estimated latent vector for the real image x.

3.2.4 Perceptual similarity metrics

Both the style diversity loss 3.2 and identity reconstruction loss 3.3 depend on having
a distance metric dI(·, ·) between images in the target image domain X that quantifies
differences in their appearance. In particular, the metric should quantify differences
in the appearances of the faces, independent of the head pose and perspective.

A simple way to implement such metric is to use a pixel-wise distance such as the L1
distance or Euclidian distance, but a problem is that these do not accurately capture
high-level differences between the images. For example, two identical images offset
from each other by one pixel would be measured as different by a pixel-wise distance,
but would likely be seen as equivalent by a human. Instead, the distance metric
dI(·, ·) relevant for these purposes should quantify perceptual differences between
the images – differences as perceived by a human.

Measuring human-perceived differences in images has proved to be a challenging
computer vision problem, partly because they depend on high-order image structures
but also because they are highly context-dependent [53]. For example, whether a
red circle more similar to a red square or a blue circle is ambiguous. However,
a recent success for measuring perceptual differences is to use the feature space
learned by deep neural networks trained on image classification tasks. When such
a network is trained on diverse image data, it typically learns to identify image
features of abstraction levels; low-level features such as objects or categories in the
earlier layers and high-level features such as edges and colors in the later layers [54].
By passing a pair of images through such a network and averaging the differences
in the internal activations that they give rise to, a measure of their similarity that
correlates well with human perception can be retrieved. Metrics of this type are
called perceptual similarity metrics.

37

3. Method

3.2.4.1 Perceptual loss

Since perceptual similarity metrics capture high-level differences between images,
they can also be used to compare the similarity of the generated and real images
during GAN training. This is in fact one of the original motivations behind the
development of perceptual distance measures and has been demonstrated to lead to
increased image quality when used in combination with the adversarial loss functions
[55, 56, 57]. When implemented like a loss function, it is common to call this a
perceptual loss.

Perceptual losses should not, however, be used as the sole loss function for training
CGAN frameworks. This is because the internal feature representations in a classifier
network typically are contractive in nature, meaning that many images get mapped
to the same feature vector. Thus, for every realistic looking image, there are multiple
non-realistic images that map to the same feature vector. Optimizing for similarity
in the feature space therefore leads to high frequency artifacts. By combining a
perceptual loss with an adversarial loss that encourages realistic images, the best
quality is therefore achieved [55].

If fl are the activations of layer l when the images x1 and x2 are passed through the
network, the perceptual loss is given by

Lp =
layers∑
i

||fl(x1)− fl(x2)||22 (3.4)

3.2.4.2 Perceptual networks

It is common to use classification networks pretrained on large-scale image classifi-
cation tasks for perceptual similarity metrics (and perceptual losses). Additionally,
the feature space of the discriminator can also be used for this purpose which has
been shown to be beneficial for stability and convergence during training when used
as a perceptual loss [58]. Both variants were tried for the framework of this thesis.
The discriminator is presented in Chapter 3.4.1 and the tried classification networks
are presented below.

3.2.4.2.1 VGG-19 classification network A commonly used perceptual net-
work is the VGG-19 [59], a 19 layer deep convolutional neural network, trained on
the ImageNet dataset [22]. Due to its depth, the network’s internal feature maps
represent image features in a wide range of abstraction levels. When using VGG-19
for the perceptual loss, it is common to use a selection of 5 internal convolutional
layers normalized by their channel sizes [60, 54]. Assuming the layers are indexed by
0-18, this implementation will use the L1 distance between the layers 1, 6, 11, 20, 29,
as has been done previously by [61].

3.2.4.2.2 ResNet-50 facial identification network Another network, a ResNet-
50 [37] trained for facial identification, will also be tried as a perceptual network for
the framework. This is a 50 layer deep residual neural network trained to identify

38

3. Method

the faces of the 9131 unique subjects in the 3.31 million images large VGGFace2
dataset [62]. In this implementation, the L1 distance between the 5 feature vec-
tors outputted from each residual block in the network are used (see architecture in
[37]).

3.2.5 Full loss function

The loss functions that have been presented and that were tried for the framework
are summarized in Table 3.2. These were combined to form the full loss function
Lfull accordingly

Lfull = Ladv + λpLp + λlrLlr + λirLir + λsdLsd . (3.5)

Name Symbol Equation
Adversarial loss Ladv 2.6
Perceptual loss Lp 3.4
Latent reconstruction loss Llr 3.1
Style diversity loss Lsd 3.2
Identity reconstruction loss Lir 3.3

Table 3.2: Summary of the loss functions tried for the framework.

3.2.6 Training the framework

The generator and discriminator are trained using alternating gradient descent, i.e.
one network is held constant while the other is updated according to gradient descent
on the full loss function 3.5.

3.2.6.1 Network optimization

During training, weight updates of the networks were performed according to the
Adam optimization scheme [63], as done by many other similar studies [4, 1, 47,
29]. Each of the four networks had separate Adam optimizers and unique learning
rates. Out of these, the learning rate of the style mapping network L was generally
set to a significantly lower value compared to those of the other networks. This was
shown by [4, 1] to be beneficial for convergence as it makes the changes to the style
mapping slow which allows the other networks to stay adjusted to it.

At the beginning of training, the learning rates were set to an initial value and
were held constant for a set number of epochs Kconst. As done by [61], the learning
rates then decay linearly down to zero over Kdecay epochs. Thus, the CGAN is
trained for a total of Ktotal = Kfixed + Kdecay epochs, whose specific values are
hyperparameters.

39

3. Method

3.2.6.2 Training algorithm

The full algorithm for training the framework is shown in Algorithm 2.

Algorithm 2: Algorithm for training the CGAN framework.
for each training iteration do

Sample pairs of source and target images {(y1, x1), ..., (yN , xN)};

Sample latent vectors {z1, ..., zN};
Generate fake images {G(z1, y1), ..., G(zN , yN)};
Compute discriminator losses {L(target)

D ,L(fake)
D };

Backpropagate discriminator losses;

Sample latent vectors {z1, ..., zN};
Generate fake images {G(z1, y1), ..., G(zN , yN)};
if using latent reconstruction loss then

Estimate latent vectors for generated images
{E(G(z1, y1)), ..., E(G(zN , yN))};

end
if using style diversity loss then

Sample additional latent vectors {z∗1 , ..., z∗N};
Generate fake images {G(z∗1 , y1), ..., G(z∗N , yN)};

end
if using identity reconstruction loss then

Estimate latent vectors for real images {E(x1), ..., E(xN)};
Generate fake images {G(E(x1), y1), ..., G(E(xN), yN)};

end
Compute generator losses {LG,Lp,Llr,Lsd,Lir};
Backpropagate generator losses;

end

Discriminator

Generator

Note that if the style mapping network L described in Chapter 3.2.2.4.1 is used, the
latent vectors z are replaced by the style vectors s = L(z).

3.3 Evaluating the framework

Since GANs use an unsupervised learning approach, there is no direct way of com-
paring the performance of different frameworks. One approach is to simply use
the perceived image quality from human annotators, but this is not a very robust
metric since human judgement can vary significantly depending on the setup of the
task.

Because of this, there has been an effort to develop standardized metrics that capture
the quality of the images produced by GANs and other generative models. Today,
the most common method is to use metrics based on perceptual similarity, as was

40

3. Method

described in Chapter 3.2.4, since these have been found to best correlate with human-
perceived quality. Thus, two such metrics were used to evaluate the framework of
this thesis and are described below.

3.3.0.1 Fréchet Inception Distance

The Fréchet Inception Distance, or FID for short, is a metric for the realism of the
generated images. In particular, it compares how similar a set of generated images is
to a set of real images. FID has been shown to correlate well with human-perceived
image quality and to capture many different types of disturbances [64], as shown
in Figure 3.11. It has therefore become on of the de-facto ways of comparing the
performance of generative models and was chosen as the metric for evaluating the
realism of the images generated by the framework described above.

The FID is a type of perceptual similarity metric and is typically evaluated by using
the feature space learned by the Inception-V3 [65] network trained on the ImageNet
dataset [22]. However, instead of directly comparing the activations per layer for
each image pair, the FID is based on comparing the activation statistics of the two
image sets as a whole. More specifically, it is calculated by collecting the desired
activations from Inception-V3 in an activation vector and forming the mean µ and
covariance matrix C for the two image sets that are compared.

With µg, Cg and µr, Cr being the means and covariance matrices of the activations
inside the classification network for the generated and real images respectively, the
FID is given by [64]

FID = ||µr − µg||22 + Trace
(
Cr + Cg − 2(CrCg)1/2

)
. (3.6)

Thus, a low FID score corresponds to a high similarity between the generated and
real images and is therefore an indication that the CGAN framework has learned to
accurately model the real data distribution.

Figure 3.11: FID scores for images with varying amounts of different visual dis-
turbances [64].

41

3. Method

3.3.0.2 Learned Perceptual Image Patch Similarity

While FID is used to evaluate how similar a set of generated images as a whole is
to a set of real images by comparing the activation statistics they give rise to in the
Inception V3 network, it is not typically used as a metric for comparing the similarity
of separate image pairs. Another metric that can be used to do this is the LPIPS
metric, or Learned Perceptual Image Patch Similarity [53]. It is another perceptual
similarity metric, thus also based on the feature space of a classification network,
and has been shown to accurately capture the perceptual similarity of image pairs
[53]. For LPIPS, it is common to use the feature space of the AlexNet [22] network
trained on the ImageNet dataset [22].

The LPIPS score for an image pair is calculated by passing each image through the
classification network and extracting the activation tensors f l(x) ∈ RHl×Wl×Cl for
all L layers. The activations of each layer are then unit-normalized and scaled by a
weight vector in the channel dimension. Lastly, the L2 distance is calculated between
the resulting tensors, and the resulting difference tensor is spatially averaged and
summed over all layers.

Let f lhw(x) ∈ RHl×Wl×Cl denote the activations in layer l for input x that have been
unit-normalized in the channel dimension and wl the weight vector for layer l. �
denotes element-wise multiplication. The LPIPS score for two images x1 and x2 is
given by

LPIPS(x1, x2) =
∑
l

1
HlWl

∑
h,w

||wl �
(
f lhw(x1)− f lhw(x2)

)
||22 (3.7)

3.3.1 Evaluation procedures

The FID and LPIPS metrics were used in the procedures presented below to measure
the realism and diversity of the generated images.

3.3.1.1 Realism evaluation

In order to evaluate the realism of the generated images, the FID was calculated
between the real images of the test dataset and the generated images produced using
each corresponding test source image. More specifically, for each source image yi
in the test set, a latent vector zi was randomly sampled and used by the generator
to produce the generated image Gi = G(zi, yi). The realism evaluation metric was
then formed by calculating the FID between the two sets of generated and real
images.

3.3.1.2 Diversity evaluation

In addition to producing realistic images, the CGAN should be capable of gener-
ating a wide range of appearances for each source image y by sampling different

42

3. Method

latent vectors z. However, since the FID evaluation scheme described above only re-
quires the CGAN to produce a single generated image per source image, it does not
accurately capture the diversity of the generated images. Therefore, an additional
scheme previously employed by StarGAN v2 [1] was used to evaluate the diversity
of the images generated by the CGAN.

First, a set of N source images {y(1), y(2), ..., y(N)} was randomly sampled from the
test dataset. Furthermore, for each source image y(i), a set of M latent vectors
{z(i)

1 , z
(i)
2 , ..., z

(i)
M } was also randomly sampled according to the distribution p(z).

Each y(i) and set {zm}Mm=1
(i) were then used by the generator to produce a set of M

generated images {G(z(i)
1 , y(i)), G(z(i)

2 , y(i)), ..., G(z(i)
M , y

(i))}.

The diversity of each such set was then evaluated by calculating the LPIPS score
between all possible pairs of generated images. In other words, if z(i)

s , z
(i)
t denotes

two different latent vectors sampled for the source image y(i), the quantity

Li = 1(
M
2

) M−1∑
s=1

M∑
t=s+1

LPIPS(G(z(i)
s , y

(i)), G(z(i)
t , y

(i))) (3.8)

was used to evaluate their diversity.

The full diversity evaluation metric was then given by averaging the N diversity
scores Li

L = 1
N

N∑
i=1

Li .

Since diverse generated images result in high pairwise LPIPS scores in Equation
3.8, a high L score for the CGAN framework indicates a more diverse output. For
simplicity, the rest of the thesis will refer to the quantity L simply as “LPIPS”.

3.4 Network architectures

This chapter describes the architectures used for the different networks that make
up the full CGAN framework.

3.4.1 Discriminator

The discriminator used in the framework is called a PatchGAN [2]. It is a type of
classifier that takes images as input and makes predictions by passing them through
a series of convolutional layers. However, instead of making a single prediction for
the image as a whole as being real or fake, like a standard discriminator, a PatchGAN
splits the input image into P × P patches and makes a prediction for each. The
output is then given by the average of these predictions.

The image patch belonging to each prediction is called its receptive field [2]. The

43

3. Method

ResBlock AdaIn ResBlock Multinorm
ResBlock

Figure 3.12: Residual blocks (ResBlocks) used in the network architectures, in-
spired by [1, 8, 66]. The dashed boxes denote learned skip connections that are used
when the in- and output channel sizes are different.

receptive field size can be determined by recursively applying the following relation-
ship between the input and output size of each convolutional layer

receptive field size = (output size− 1) · S +K .

where S is the convolutional stride and K is the kernel size (filter size) [2].

The original study [2] showed that a PatchGAN can be trained effectively even with
very small patch sizes. Since smaller patch sizes correspond to a shallower network,
this means that performance remains high even with very few parameters. This is
beneficial as it makes overfitting less likely, especially for small datasets where larger
networks easily overfit. This is one reason it was adopted for the CGAN framework
of this thesis.

Furthermore, by analyzing image patches instead of the image as a whole, Patch-
GANs can be understood as modelling images as Markov random fields, assuming
that pixels separated by more than a patch diameter are independent [2]. This is
also a common assumption in style and texture models, so the output of a Patch-
GAN can be seen as a type of texture or style loss. This makes it an appropriate
discriminator for image-to-image translation, which is another reason for adopting
it for the framework.

The details of the PatchGAN architecture used in the framework was inspired by
[61] and is shown in Table 3.3. As can be seen, it makes a prediction for a grid

44

3. Method

Table 3.3: PatchGAN discriminator network architecture.

Layer Resample Normalization Activation Output shape
Source & target/generated - - - 128 ×128× 4

Conv - - LeakyReLU 65 ×65× 32
Conv - Instance LeakyReLU 33 ×33× 64
Conv - Instance LeakyReLU 17 ×17× 128
Conv - Instance LeakyReLU 9 ×9× 256
Conv - Instance LeakyReLU 10 ×10× 512
Conv - - - 11 ×11× 1

of 11 × 11 image patches with a size of 12 × 12 pixels each. The predictions are
computed by passing the input through a series of instance normalization layers, each
followed by convolutional layers with so called LeakyReLU [67] activation functions.
Since it should make predictions conditioned on source images, each pair of source
image and generated/real image are stacked channel-wise before being given to the
discriminator. This gives a total channel size of 3 + 1 = 4 for the RGB source image
and grayscale target/generated image.

3.4.2 Generator

Two different architectures were tried for the generator and are presented below.

Encoder-decoder This is an encoder-decoder architecture (see Chapter 2.4.3.3)
inspired by the StarGAN v2 [1] generator. The encoder is built using regular Res-
Blocks followed by average pooling layers (AvgPool) for downsampling and the de-
coder is built using AdaIn Resblocks followed by bilinear interpolation layers for
upscaling. The adaptive instance normalization (AdaIn) layers inside the AdaIn
ResBlocks are used to introduce the latent vectors z (or style vectors s) into the
network. Schematic diagrams of both ResBlocks are shown in Figure 3.12. Further-
more, an illustration of the generator is shown in Figure 3.13 and the details of the
architecture are presented in Table 3.4.

Figure 3.13: Schematic diagram of Encoder-decoder generator architecture.

45

3. Method

Table 3.4: Encoder-decoder generator network architecture.

Layer Resample Normalization Activation Output shape
Input image - - - 128 ×128× 3

Conv - - ReLU 128 ×128× 16
ResBlock AvgPool Batch norm - 64 ×64× 32
ResBlock AvgPool Batch norm - 32 ×32× 64
ResBlock AvgPool Batch norm - 16 ×16× 128
ResBlock AvgPool Batch norm - 8 ×8× 256
ResBlock AvgPool Batch norm - 4 ×4× 256
ResBlock Interpolate up AdaIn - 8 ×8× 256
ResBlock Interpolate up AdaIn - 16 ×16× 128
ResBlock Interpolate up AdaIn - 32 ×32× 64
ResBlock Interpolate up AdaIn - 64 ×64× 32
ResBlock Interpolate up AdaIn LeakyReLU 128 ×128× 16
Conv - - Tanh 128 ×128× 1

Multinorm decoder This architecture is a modified version of the SPADE [8]
decoder (see Chapter 2.4.3.4). Instead of taking random noise as input like the
original architecture, it takes a learned constant input tensor, as is done in the
generator used in StyleGAN [4]. In addition to this, the generator uses a modified
type of ResBlock compared to those described in Chapter 2.4.3.4, called Multinorm
ResBlocks. Figure 3.12 shows a schematic diagram of these. As can be seen, the
Multinorm ResBlocks uses both SPADE layers to inject the source images y and
AdaIn layers to inject the latent vectors z (or style vectors s), with convolutional
and bilinear interpolation layers in between. Figure 3.14 shows an illustration of the
generator and Table 3.5 presents the architecture’s details.

Figure 3.14: Schematic diagram of Multinorm decoder generator architecture.

46

3. Method

Table 3.5: Multinorm decoder generator network architecture.

Layer Resample Normalization Activation Output shape
Latent noise - - - 1 ×1× 512

Linear - - ReLU 1 ×1× 4096
Reshape - - ReLU 4 ×4× 256

Multinorm Resblock Interpolate up SPADE & AdaIn - 8 ×8× 256
Multinorm Resblock Interpolate up SPADE & AdaIn - 16 ×16× 128
Multinorm Resblock Interpolate up SPADE & AdaIn - 32 ×32× 64
Multinorm Resblock Interpolate up SPADE & AdaIn - 64 ×64× 32
Multinorm Resblock Interpolate up SPADE & AdaIn LeakyReLU 128 ×128× 16

Conv - - Tanh 128 ×128× 1

3.4.3 Latent encoder network E

Also inspired by the StarGAN v2 [1] study, the latent encoder E is built using
ResBlocks followed by average pooling (AvgPool) layers for downsampling, as well
as convolutional layer in the beginning and end of the network. The details of the
architecture are shown in Table 3.6.

Table 3.6: Latent encoder network architecture.

Layer Resample Normalization Activation Output shape
Latent noise - - - 1 ×1× 512

Conv - - - 128 ×128× 32
ResBlock AvgPool - - 64 ×64× 64
ResBlock AvgPool - - 32 ×32× 128
ResBlock AvgPool - - 16 ×16× 256
ResBlock AvgPool - - 8 ×8× 512
ResBlock AvgPool - - 4 ×4× 512
ResBlock AvgPool - LeakyReLU 2 ×2× 512
Conv - - LeakyReLU 1 ×1× 512

3.4.4 Style mapping network

The style mapping network L was implemented as a fully connected feed-forward
neural network, as this has been shown to be sufficient by previous studies [4, 1].
Specifically, the implementation used for L had 8 hidden fully connected (linear)
layers with ReLU activation functions for all layers except the last. The details of
the network are shown in Table 3.7.

47

3. Method

Layer Activation Output shape
Latent noise - 1 ×1× 512

Linear ReLU 1 ×1× 512
Linear ReLU 1 ×1× 512
Linear ReLU 1 ×1× 512
Linear ReLU 1 ×1× 512
Linear ReLU 1 ×1× 512
Linear ReLU 1 ×1× 512
Linear ReLU 1 ×1× 512
Linear - 1 ×1× 512

Table 3.7: Style mapping network architecture.

3.5 Experiments

In this chapter, the experiments that were performed to evaluate the performance
of the framework are presented. These were divided into two sections, one for
evaluating different configurations and one for analyzing a selection of these in more
detail.

Parameter name Symbol Value
Epochs total Ktotal 20
Epochs fixed Kfixed 10
Epochs decay Kdecay 10
Batch size N 12

Weight initialization Xavier [68]
Optimizer Adam, β1 = 0.5, β2 = 0.999 [63]
G learning rate lG 1.5 ·10−4

D learning rate lD 4.5 ·10−4

E learning rate lE 1.5 ·10−4

L learning rate lL 4.5 ·10−6

Latent space dimension Dim(Z) 512
Latent distribution p(z) N (0, 1)
Style space dimension Dim(S) 512

Table 3.8: Default hyperparameter settings for the CGAN framework during all
experiments.

48

3. Method

3.5.1 Default model settings

A number of experiments were performed in order to find the best performing model
configuration of the above framework. While each experiment describes the specific
component that is tested in more detail, all of the models share a number of default
parameter settings. These are presented in Table 3.8.

3.5.2 Framework configuration

The experiments described in this part aim to evaluate the performance of different
configurations of the framework and find the best performing configuration in terms
of realism and diversity. This will be done by starting with a simple version of the
framework and successively adding more components and evaluating variations of
each. However, to avoid having to test all possible configurations, the best perform-
ing configuration in each experiment will in general be used as the default for the
following experiments.

The experiment was divided into the following parts, where the realism and diversity
were evaluated by the FID and LPIPS scores as well as perceived visual quality:

1. Generator architecture The two generator architectures presented in
Chapter 3.4.2 are compared after training for 20 epochs with least square
adversarial loss.

2. Adversarial loss Adversarial loss of the types 1) original, 2) least square
and 3) hinge are evaluated for the framework using the encoder-decoder gen-
erator after 20 epochs of training.

3. Perceptual loss Perceptual loss (Chapter 3.2.4.1) based on the feature
spaces of the 1) Discriminator, 2) VGG-19 pretrained on ImageNet and 3)
ResNet-50 pretrained on VGGFace2 are combined with adversarial loss and
evaluated for the framework using the encoder-decoder generator after 20
epochs of training.

4. Diversity regularization The two diversity regularization losses of Chap-
ter 3.2.2.2 are evaluated for the framework using the encoder-decoder generator
after 20 epochs of training.

(a) Latent reconstruction loss and encoder E The latent reconstruc-
tion loss and encoder E is added to the framework and evaluated in
combination with adversarial loss.

(b) Style diversity loss The style diversity loss is added to the above
configuration and evaluated.

5. Identity reconstruction loss The identity reconstruction loss is evaluated
in combination with the latent reconstruction loss and adversarial loss using
the encoder-decoder generator after 20 epochs of training.

49

3. Method

6. Style mapping network L The style mapping network L is added to the
framework and evaluated using a selection of the above configurations trained
for 20 epochs.

3.5.3 Framework analysis

Once the various model configurations described above had been evaluated, this part
selected the best performing configuration and investigated these in more detail.
First, the framework’s ability to preserve domain-invariant attributes such as head
pose and gaze direction were evaluated. Next, the latent space of the framework
was examined for signs of entanglement or mode collapse.

3.5.3.1 Attribute preservation

An important property of the framework is its ability to preserve domain-invariant
attributes, in particular head position and gaze direction. To evaluate how well it
learned to do this, sequences of source images where a single attribute of the 3D
model was varied smoothly were given to the framework. If the framework had
successfully learned to preserve each attribute, the faces in the resulting generated
images should follow the movement of the 3D model in the source images perfectly.
Sequences varying the following attributes were tried:

1. Head pose, horizontally

2. Head pose, vertically

3. Gaze direction, horizontally

3.5.3.2 Latent space exploration

This part investigated the learned latent space Z in more detail. This was done both
to demonstrate the capabilities that a latent space manipulation provides but also
to troubleshoot it for common problems such as entanglement or overfitting. Two
types of latent space manipulation techniques were performed and are presented
below.

3.5.3.2.1 Latent space interpolation Given that the model is trained suc-
cessfully, each latent vector z will map to a unique facial appearance in the image
domain. Ideally, the model has also learned to separate the facial features into
distinct directions in the latent space, such that each feature can be varied indepen-
dently of others – a disentangled latent space. If this is not the case and the latent
space is entangled, multiple features of the generated images will be dependent on
each other and vary collectively.

In the case of a disentangled latent space, it should be possible to smoothly tran-
sition between any two faces by interpolating between their corresponding latent
vectors and generating images for the intermediate latent vectors. To explore this

50

3. Method

concept, latent space interpolation was done for a selection of generated as well as re-
constructed faces. As long as the latent space was disentangled, the transition from
every intermediate latent vector to every other should have been smooth. If features
did not vary smoothly or if noticeably distinctive-looking faces appeared during the
interpolation, it was interpreted as a sign of an entangled latent space.

3.5.3.2.2 Latent space arithmetic Another way to investigate model’s latent
space is through so called latent space arithmetic. This is when latent vectors z
(or style vectors s) are manipulated using basic arithmetic operations in order to
alter and control the features of the corresponding generated images. Analyzing
how such operations affect the features in the generated images can help build an
understanding of how well the framework has learned to encode high-level image
features into the lower-dimensional latent space. Furthermore, if specific features
can be manipulated independently of others through latent space arithmetic, this
further indicates that the latent space is disentangled.

Figure 3.15: Example of two latent vectors z1 and z2 representing a face without
and with a beard respectively. In this case, the difference between the two vectors
zfeat corresponds to the beard feature.

Figure 3.15 shows an example of two latent vectors z1 and z2 representing a face
without a beard and a face with a beard respectively. Suppose z1 and z2 are found
through visual inspection of their resulting faces in the image domain. Now, if
features in the latent space are not entangled, the latent vector representing a beard
should correspond to zfeat, also shown in Figure 3.15, which is retrievable through
simple subtraction, i.e. by

zfeat = z2 − z1 .

By isolating the zfeat of this example in this way, it can be used to attach a beard
to other generated faces by simply adding it to their corresponding latent vectors.
Since zfeat only represents the single facial feature, in this case a beard, the resulting
generated faces should only change with respect to this feature while remaining
otherwise the same. Figure 3.15 shows an illustration of of this.

51

3. Method

This experiment consisted of identifying generated images that differed on such
single facial features, but were otherwise similar. The images were found through
simple visual inspection of a collection of randomly generated samples. Once suitable
image pairs had been found for a given facial feature, their latent vectors were
retrieved and used to derive zfeat corresponding to the difference in the specific
feature. To investigate how well specific features could be extracted in this way,
zfeat was then added to the latent vectors of other generated faces, and the resulting
latent vectors were then used to generate new faces. This was done for a number of
different facial features, again that were all identified through visual inspection.

Figure 3.16: An example of latent space arithmetic. In this case, the latent vector
zfeat corresponds to a beard feature in the image domain. By adding zfeat to z1,
representing a face without a beard, the resulting latent vector z2 will represent the
same face but with a beard added.

52

4
Results

4.1 Framework configurations

In the following chapter, the realism and diversity of various configurations of the
framework were evaluated using the FID and LPIPS scores. Furthermore, to allow
for visual inspection, samples were generated by each configuration using the source
image shown in Figure 4.1 and randomly sampled latent vectors z (or style vectors
s).

Figure 4.1: Source image used to generate the samples shown in Chapter 4.1.

To make reference easier, each configuration was given a unique name on the form
Generator-Loss1-Loss2-Loss3 etc., using the abbreviations shown in Table 4.1.

Abbreviation Meaning
ED Encoder-decoder generator
Mult Multinorm generator
O Original adversarial loss
H Hinge adversarial loss
LS Least square adversarial loss
LR Latent reconstruction loss
SD Style diversity loss
IR Identity reconstruction loss
SM Style mapping network

Table 4.1: Abbreviations used for the configuration names in Chapter 4.1.

53

4. Results

4.1.1 Generator architecture

The first experiment investigated the two generator architectures described in Chap-
ter 3.4.2. The resulting FID and LPIPS scores are shown in Table 4.2 and random
samples generated using a fixed source image are shown in Figure 4.2.

As can be seen, the encoder-decoder generator had both the lowest FID score and the
highest LPIPS score, indicating better realism and greater diversity compared to the
multinorm generator. Inspection of the samples shown in Figure 4.2 also appears to
confirm this. Because of this, the encoder-decoder is chosen as the default generator
architecture to use for the remaining experiments.

Ref. Configuration Generator FID LPIPS
A ED-LS Encoder-decoder 14.75 0.180
B Mult-LS Multinorm 18.75 0.166

Table 4.2: FID and LPIPS scores for the framework using each generator archi-
tecture.

A)

B)

Figure 4.2: Random samples of generated images for the framework using each of
the generators presented in Table 4.2.

4.1.2 Adversarial loss

The next experiment compared the quality of the generated images with different
adversarial losses Ladv for the CGAN framework using the encoder-decoder genera-
tor. Table 4.3 shows the configurations that were tried and the resulting FID and
LPIPS scores of each. Furthermore, Figure 4.3 shows random samples generated by
each of the resulting frameworks using a fixed source image.

As can be seen from both the resulting scores and the random samples, the ad-
versarial loss function plays an important role for the quality and diversity of the
generated images. While the original and the least square losses yielded similar FID
scores, the hinge loss had a significantly higher FID and lower realism.

54

4. Results

At first glance, the hinge loss samples in Figure 4.3 do not seem to be compatible
with an FID score this high. However, by using randomly sampled source images to
generate images, it is revealed that the image generation fails completely for source
images where the 3D model has glasses which explains the high score. Figure 4.4
shows an example of this.

Ref. Configuration Adv. loss FID LPIPS
A ED-O Original 16.5 0.148
B ED-H Hinge 78.5 0.0592
C ED-LS Least square 14.7 0.180

Table 4.3: FID and LPIPS scores for the framework using each of the listed ad-
versarial losses.

A)

B)

C)

Figure 4.3: Random samples of generated images for the configurations presented
in Table 4.3.

4.1.3 Perceptual loss

Next, the addition of perceptual loss Lp investigated. The tests primarily used least
square adversarial loss since it was the best performing in the previous experiment,
but hinge loss was also tried in order to investigate if the instability problem shown
in Figure 4.4 could be remedied. Table 4.4 shows the investigated configurations and
the resulting FID and LPIPS scores of each, and Figure 4.5 shows samples generated
using a fixed source image. Additionally, perceptual loss using the ResNet-50 FaceId
network was also tried but resulted in significant overfitting, so the results were not
included.

55

4. Results

Figure 4.4: Generated images for randomly sampled source images for configura-
tion B in Table 4.3.

Ref. Configuration Adv. loss Network Layers λp FID LPIPS
A ED-H-P Hinge Discriminator 4 & 5 1 18.6 0.134
B ED-LS-P-1 Least square Discriminator 4 & 5 1 18.3 0.151
C ED-LS-P-2 Least square Discriminator All 1 22.5 0.133

D ED-LS-P-3 Least square VGG-19 ImageNet All 1 15.3 0.138

Table 4.4: FID and LPIPS scores for various configurations of the framework using
perceptual loss.

A)

B)

C)

D)

Figure 4.5: Random samples of generated images for the configurations presented
in Table 4.4.

56

4. Results

Figure 4.6: Generated images for randomly sampled source images for configura-
tion A in Table 4.4.

Comparing with the results of Chapter 4.1.2, Table 4.4 shows that the configurations
using least square loss had a higher FID and lower LPIPS score for all perceptual
losses. However, for hinge loss, feature matching resulted in a significantly lower
FID score which indicates that the instability problem was improved. Figure 4.6
shows generated images for the same random sample of source images as in Figure
4.4 and indeed shows that feature matching seems to have stabilized the hinge loss
configuration.

4.1.4 Diversity regularization

This part investigates the diversity regularization presented in Chapter 3.2.2.2, again
for the CGAN framework using the encoder-decoder generator and least square
adversarial loss.

4.1.4.1 Latent reconstruction loss

To begin, the effect of adding the latent reconstruction loss Llr (Chapter 3.2.2.2.1)
to the CGAN framework was investigated. The configurations that were tried are
presented in Table 4.5 together with the resulting FID and LPIPS scores. Figure
4.7 shows random samples generated using a fixed source image.

Ref. Configuration Adv. loss λlr FID LPIPS
A ED-LS-LR-1 Least square 1 14.7 0.179
B ED-LS-LR-2 Least square 2 12.3 0.171
C ED-LS-LR-3 Least square 5 15.4 0.171
D ED-H-LR Hinge 1 18.6 0.135

Table 4.5: FID and LPIPS scores for the framework using latent reconstruction
loss.

Comparison with the results of Chapter 4.1.2 shows that the addition of the latent
reconstruction loss resulted in a lower FID score for all tested configurations, as well
as a slightly lower LPIPS score. Figure 4.7 also seems to indicate that the quality
of the generated images is higher.

57

4. Results

B)

D)

Figure 4.7: Random samples of generated images for the configurations presented
in Table 4.5.

4.1.4.2 Style diversity loss

In this part, the effect of adding the style diversity loss Lsd (Chapter 3.2.2.2) in
addition to the latent reconstruction loss was investigated, as well as using different
distance measures dz(·, ·) and dI(·, ·) in latent space and image space respectively.
Table 4.6 presents the configurations that were tried together with the resulting FID
and LPIPS scores. Figure 4.8 shows random samples generated for each configura-
tion using a fixed source image.

As can be seen in Figure 4.8, addition of the style diversity loss resulted in a break-
down in the generated images for configuration ED-LS-LR-SD, i.e. for the least square
loss. It did, however, lead to a lower FID score for most configurations using hinge
loss. Out of these, configuration ED-H-LR-SD-1 performed best, both in terms of
FID and LPIPS.

As a side point, it is interesting to note that the generated images for configuration A
contain what seems to be distinct patterns. While this would have to be investigated
in more detail to tell for certain, it is possible that each pattern encodes the latent
vector z that was used to generate it, such that the encoder E can still make accurate
estimations ẑ for minimization of the latent reconstruction loss.

Ref. Configuration Adv. loss dI(·) dz(·) λsd FID LPIPS
A ED-LS-LR-SD Least square FaceId ResNet-50 Const 1 1 - -
B ED-H-LR-SD-1 Hinge FaceId ResNet-50 Const 1 1 17.1 0.164
C ED-H-LR-SD-2 Hinge FaceId ResNet-50 L1 1 19.4 0.144
D ED-H-LR-SD-3 Hinge L1 Const 1 1 17.4 0.147
E ED-H-LR-SD-4 Hinge Discriminator Const 1 1 55.8 0.0864
F ED-H-LR-SD-5 Hinge VGG-19 ImageNet Const 1 1 40.5 0.0619

Table 4.6: FID and LPIPS scores for the configurations of the framework using
style diversity loss, including different distance measures dI(·) and dz(·).

58

4. Results

A)

B)

C)

D)

E)

F)

Figure 4.8: Random samples of generated images for the configurations presented
in Table 4.6.

4.1.5 Style mapping

This experiment investigated the addition of the style mapping network L presented
in Chapter 3.4.4. Three different configurations were tried and are presented in Table
4.7 together with the resulting FID and LPIPS scores of each. Random samples from
each configuration are shown in Figure 4.9.

As can be seen, the style mapping did not result in an improvement for the frame-
work, but instead a type of mode collapse. In the baseline configuration A, the style
mapping network seem to map all latent vectors z to a fixed style vector s and pro-
duces images of poor quality. This problem is somewhat alleviated by introduction
of the diversity regularization as in configuration B and VGG feature matching in

59

4. Results

configuration C, but the generated images are still of limited diversity.

It is notable that the LPIPS score for configurations B was high, despite Figure
4.9 showing that the corresponding samples had limited diversity. This is likely
explained by the breakdown in some of the generated images that is also visible,
which causes a high LPIPS score when these are measured against the other gener-
ated faces.

Ref. Configuration Setting FID LPIPS
A ED-LS-SM Baseline encoder-decoder 25.3 2.82 · 10−6

B ED-LS-LR-SD-SM + Diversity regularization 20.1 0.193
C ED-LS-P-LR-SD-SM + Feature matching 15.8 0.164

Table 4.7: FID and LPIPS scores for configurations of the framework using the
style mapping network.

A)

B)

C)

Figure 4.9: Random samples of generated images for the configurations presented
in Table 4.7.

4.1.6 Identity reconstruction loss

This part investigates how the identity reconstruction loss Lir improves the CGAN
frameworks ability to reconstruct latent vectors ẑ = E(x) that reproduce the style
of real images x. To begin, the effect of Lir on the quality of the generated images
is evaluated. Table 4.8 shows configurations tried using the identity reconstruction
loss and the resulting FID and LPIPS score of each.

Comparing the results with those of Table 4.5, the identity reconstruction loss is
seen to have increased the FID score slightly compared to the same configurations

60

4. Results

Ref. Configuration Adv. loss dI(·) λlr λir FID LPIPS
A ED-LS-LR-IR-1 Least square FaceId 1 1 15.7 0.173
B ED-LS-LR-IR-2 Least square FaceId 2 1 15.3 0.178
C ED-LS-LR-IR-3 Least square L1 2 1 15.7 0.180
D ED-LS-LR-IR-4 Least square VGG 2 1 12.7 0.183
E ED-H-LR-IR Hinge 1 2 1 13.1 0.161

Table 4.8: FID and LPIPS scores for configurations of the framework using identity
reconstruction loss.

from previous chapters. However, while a low FID score is desirable, it was not the
core motivation for adding the latent reconstruction loss.

To show the effect of the identity reconstruction loss on the framework’s ability to
reproduce the style of previously unseen real images, Figure 4.10 shows examples
of real images reconstructed by the configurations B, C and D in Table 4.8. To
see the difference from a similar configuration without identity reconstruction loss,
configuration ED-LS-LR-2 (configuration B in Table 4.5) was also used to reconstruct
the same real faces. As can be seen, the identity reconstruction loss improves the
framework’s ability to reproduce the appearance of the face in the real image.

Target No Lir Lir, L1 Lir, VGG Lir, FaceId

Figure 4.10: Examples of reconstructed appearances for the configurations B, C
and D in Table 4.8 using identity reconstruction loss, as well as configuration B in
Table 4.5 for comparison.

4.1.7 Summary

The FID and LPIPS scores of the configurations presented throughout Chapter 4.1
are summarized in the bar chart of Figure 4.11, separated into groups for each

61

4. Results

experiment. Out of the tested configurations, ED-LS-LR-2 had the lowest FID score
while also having a relatively high LPIPS score. Because of this, it was selected for
further investigation in Chapter 4.2.

For a more comprehensive view of the realism and diversity of the faces generated by
configuration ED-LS-LR-2, the Appendix shows an additional 80 random samples
generated by this configuration for the same fixed source image used throughout
Chapter 4.1.

Figure 4.11: FID and LPIPS scores of the various configurations presented in
Chapter 4.1, grouped by each experiment.

62

4. Results

4.2 Framework analysis

The results presented in this chapter are primarily generated using configuration
ED-LS-LR-2, since this was found to have the lowest FID score out of the tested
configurations while simultaneously having a high LPIPS score.

However, this configuration did not use the identity reconstruction loss Lir, which
was shown in Chapter 4.1.6 to result in better reconstruction of the appearances of
faces in real images. Because of this, the images generated from reconstructed latent
vectors in this chapter were instead generated using the configuration ED-LS-LR-IR-2,
which is the same as the first configuration but with Lir added.

4.2.1 Attribute preservation

In this part, the frameworks ability to preserve head pose and gaze direction is
demonstrated.

4.2.1.1 Head pose

Figure 4.12 shows source image and the corresponding generated images for the
chosen configurations. A) shows images generated using randomly sampled latent
vectors by configuration ED-LS-LR-2 and B) images generated from reconstructed
latent vectors by configuration ED-LS-LR-IR-2.

As can be seen, the generated faces shown in A) seem to follow changes in head
pose well, while those in B) can be seen to not align perfectly for the most extreme
angles. It is also evident that the quality of all generated images declines for extreme
head angles.

4.2.1.2 Gaze direction

Next, the framework’s ability to preserve gaze direction was investigated. Figure
4.14 shows source image and A) images generated using randomly sampled latent
vectors by configuration ED-LS-LR-2 and B) images generated from reconstructed
latent vectors by configuration ED-LS-LR-IR-2.

In addition to this, Figure 4.15 shows the same types of images, but where both A)
and B) were generated by configuration ED-H-LR-SD-IR instead.

It is apparent that there is a difference in the ability to preserve gaze direction
depending on which adversarial loss function the framework was trained with. In
particular, the images generated by the framework trained with hinge loss can be
seen to roughly follow the gaze direction of the 3D model, while those of the frame-
work trained with least square loss does not.

63

4. Results

Source images and resulting generated images

A)

B)

Figure 4.12: Horizontal variation in head pose for A) images generated using ran-
domly sampled latent vectors by configuration ED-LS-LR-2 and B) images generated
from reconstructed latent vectors by configuration ED-LS-LR-IR-2.

Source images and resulting generated images

A)

B)

Figure 4.13: Vertical variation in head pose for A) images generated using ran-
domly sampled latent vectors by configuration ED-LS-LR-2 and B) images generated
from reconstructed latent vectors by configuration ED-LS-LR-IR-2.

64

4. Results

Source images and resulting generated images

A)

B)

Figure 4.14: Horizontal variation in gaze direction for A) images generated us-
ing randomly sampled latent vectors by configuration ED-LS-LR-2 and B) images
generated from reconstructed latent vectors by configuration ED-LS-LR-IR-2.

Source images and resulting generated images

A)

B)

Figure 4.15: Horizontal variation in gaze direction for A) images generated using
randomly sampled latent vectors and B) images generated from reconstructed latent
vectors, both by configuration ED-H-LR-SD-IR.

65

4. Results

Figure 4.16: Latent space interpolation between the reconstructed latent vectors
of the generated images on each side for configuration ED-LS-LR-2.

Figure 4.17: Latent space interpolation between the reconstructed latent vectors
of the real images on each side for configuration ED-LS-LR-IR-2.

4.2.2 Latent space exploration

In this part, the latent space for configuration ED-LS-LR-2 was investigated in more
detail in order to see if there were signs of entanglement or mode collapse.

4.2.2.1 Latent space interpolation

To demonstrate that the framework has not simply memorized the appearance of a
limited number of subjects, Figure 4.16 shows interpolation between the latent vec-
tors of the generated images on each side for configuration ED-LS-LR-2. As can be
seen, interpolating between these and generating images for the intermediate latent
vectors creates a smooth transition between two faces. This suggests that the ap-
pearances of the generated faces are points in a continuous latent space representing
different facial features.

In addition to this, Figure 4.17 shows interpolation using reconstructed latent vectors
ẑ for configuration ED-LS-LR-IR-2. Here too, it can be seen that interpolation
between the latent vectors creates a smooth transition between the two reconstructed
faces.

66

4. Results

z1 z2 Before and after addition of zfeat = z2 − z1

A)
Facial hair

B)
Width

C)
Wrinkles

Figure 4.18: Resulting latent space arithmetic for configuration ED-LS-LR-2. The
samples on the right-hand side are shown before and after addition of the feature
vectors zfeat = z2 − z1 retrieved from the latent vectors z1 and z2 shown to the left.

4.2.2.2 Latent space arithmetic

To further verify that the latent space is disentangled, this experiment investigated
if distinct features could be extracted using the latent space arithmetic technique
described in Chapter 3.5.3.2.2.

Figure 4.18 shows latent arithmetic for a number of features for configuration ED-LS-LR-2.
The left side shows the generated images corresponding to the two latent vectors z1
and z2 and the right side shows the generated faces before and after addition of the
feature vector zfeat = z2 − z1 representing the extracted feature.

As can be seen, arithmetic using latent vectors allows facial attributes to be extracted
and added to the corresponding faces. This suggests that different directions in the
latent space correspond to distinct features, not just locally, but globally across the
entire space.

67

4. Results

68

5
Discussion

5.1 Discussion of results

5.1.1 Framework configuration

Generator The evaluation of the generator architectures performed in Chapter
4.1.1 showed that the encoder-decoder architecture was superior, both in terms
of realism and diversity of the generated faces. From inspection of the generated
images, it was apparent that the shape of the faces generated by the multinorm
generator seemed to be more constrained to the shape of the 3D model. This is
likely because the source images are being introduced using SPADE layers, which
effectively turns them into pixel-wise filters that are applied to the internal feature
maps, thus restraining the shape of the generated faces. SPADE was primarily
developed for using semantic segmentation images as input, where there is a clear
relationship between each pixel-value in the two domains. Because of this, SPADE
might not be a suitable method for the type of multimodal mapping to a variety of
faces that is desirable in this application.

Adversarial loss The results of Chapter 4.1.2 demonstrated that the type of
adversarial loss used is important for both the realism and diversity of the generated
images. Out of the tested adversarial losses (see Chapter 2.2.3.1), the least square
adversarial loss was found to be superior both in terms of diversity and realism
of the generated images. However, the experiments of Chapter 4.1.4 and 4.2.1.2
suggested that it also suffered from shortcomings, such as being more sensitive to
instability issues and preserving gaze direction less well. While there are many
potential explanations for these differences, they were not investigated in more detail
and were instead taken as empirical results.

Perceptual loss None of the perceptual losses that were investigated resulted
in an improvement in neither the FID nor LPIPS values for the least square ad-
versarial loss, and inspection of the generated images confirms that no significant
improvement was visible. However, the perceptual loss did result in a significant
improvement for the hinge adversarial loss compared to the results in the previous
Chapter 4.1.2. However, the previously high FID score for the hinge loss was shown
to result from a breakdown in the generated images for source images where the 3D

69

5. Discussion

model was wearing glasses, which the perceptual losses seem to have remedied. How-
ever, this breakdown was also corrected by later configurations, so the improvement
can not be seen as directly attributable to the perceptual losses.

Diversity regularization The addition of the latent encoder E and the latent
reconstruction loss Llr (Equation 3.1) resulted in an improvement in the FID score
for the adversarial losses tried (and a small reduction in LPIPS) as well as making the
estimation of latent vectors possible. It can therefore be seen as a clear improvement
for the framework. The style diversity loss Lsd (Equation 3.2), however, showed
mixed results. In the case of hinge adversarial loss, it was shown to increase the
diversity of the generated images as expected. Out of the tested distance measures,
the combination using the feature space of the ResNet-50 facial identity network
as dI(·, ·) and dz(·, ·) constantly equal to 1 were found to give the best results in
terms of FID and LPIPS. In contrast to this, the style diversity loss resulted in
a breakdown of the output for the framework trained with least square adversarial
loss. As was commented on previously, the exact reason for this was not investigated
further and was therefore taken as an empirical result.

Style mapping The style mapping results presented in Chapter 4.1.5 showed that
the style mapping network L did not contribute to a more disentangled latent space
at all. On the contrary, the diversity of the generated images was non-existent for
the first configuration tried, where the only loss used was the least square adversarial
loss. The addition of the diversity regularization as well as perceptual loss resulted
in a minor improvement for the diversity of the generated faces, but despite this,
the diversity remained low and the latent space did not seem represent a continuous
space of facial features.

While the limited diversity of the generated faces in the later configurations seem
to suggest mode collapse occurring, this does not explain why the images had no
diversity when only the style mapping network was used. Furthermore, investigation
of the style vectors outputted by the style mapping network for the first configuration
revealed that these remained constant for all inputs, which is why all the generated
samples had the same appearance.

A possible explanation for this is that the style mapping network fails to find a
useful mapping of the latent vectors z to style vectors s, and therefore only learns to
output a constant that minimizes the mean loss for all images. It is also conceivable
that the problem can be attributed to issues with network optimization. The style
mapping network was trained with a learning rate two orders of magnitude lower
compared to the other networks, in order to allow them to adapt to the changing
mapping. However, since the Adam algorithm used for optimization of each network
is momentum-based, it is possible that it throws off the desired ratios between
the learning rates and causes instabilities during training of the framework. Other
optimization algorithms were not tried due to time limitations, but it is possible
that a different optimization algorithm that is not based on momentum, such as
SGD, could alleviate the problem.

70

5. Discussion

Identity reconstruction loss The addition of the identity reconstruction loss
3.3 was shown to improve the framework’s ability to reconstruct the appearance
of subjects in real images from estimated latent vectors. The reconstruction was
found to be most accurate when the ResNet-50 facial identity network was used for
measuring dI(·, ·). Furthermore, the reconstruction was found to be accurate even
when the subjects were previously unseen by the framework.

Inspection of the reconstructed faces, however, seems to suggest a slightly blurrier
texture compared to faces generated from randomly sampled latent vectors. While
this may seem strange at first, it can likely be explained by how the identity re-
construction was implemented during training. In particular, in the implementation
that was used, the images generated from reconstructed latent vectors were only
subject to the identity reconstruction loss, and not the adversarial loss unlike im-
ages generated from random latent vectors. It was hypothesized that it would be
sufficient to only use adversarial loss for one type of generated images and that this
would ensure the framework to learn the correct mapping for all latent vectors. How-
ever, since it is the adversarial loss that enforces the realism of the generated images,
its absence for reconstructed images likely explains why their texture appears less
realistic.

5.1.2 Framework analysis

Attribute preservation The results presented in Chapter 4.2.1.1 show that the
model has learned to preserve variations in head pose reasonably well, which shows
that the approach of using a CGAN for enforcing this is a viable solution. However,
it is evident that the quality of the generated faces declines for the most extreme
head angles. This is likely explained by the fact that image pairs with extreme
head angles constitute a minority in the training dataset and are not seen as often
by the framework during training, resulting in the generator getting less feedback
on image quality in this case. It is also evident that the images generated from
reconstructed latent vectors seem to follow variations in head pose less well compared
to those generated from randomly sampled latent vectors. This is also likely caused
by reconstructed images not being subject to the adversarial loss, as this is what
also enforces the alignment between generated and source images.

For the the gaze direction, the results of Chapter 4.2.1.2 showed that the model did
not learn to perfectly preserve this attribute. Somewhat surprisingly, however, this
seemed to depend on the adversarial loss function used. Out of the tested config-
urations, the ones using least square adversarial loss seemed to almost completely
ignore changes in gaze direction, while the ones using hinge loss followed it to some
degree. The exact reason for this remains unclear, but one possible explanation is
that the hinge loss more strictly enforces the generated/source image pairs to re-
semble the real/source image pairs. However, this would have to be investigated in
more detail before such a conclusion could be made.

71

5. Discussion

Latent interpolation and arithmetic The two experiments performed in Chap-
ter 4.2.2 showed that the latent space of the model is disentangled to a large extent.
Starting with the latent space interpolation of Chapter 4.2.2.1, the faces can be seen
to smoothly transition as the intermediate latent vectors are varied. Since smooth
transitions require the features of the faces to vary gradually and independently,
this is a likely indication of a disentangled latent space. The results of Chapter
4.2.2.2 further showed that high-level features can be extracted and added to other
generated images through latent space arithmetic. Since it was shown to work well
for a variety of randomly sampled latent vectors, this indicates that high-level fea-
tures like these correspond to distinct directions in the latent space, and that this
structure is a global property for the entire space.

5.2 Future work

Attribute preservation losses One possible way to force the model to better
preserve domain-invariant attributes, such as head pose and gaze direction, could be
to add preservation losses that are derived from estimation networks. More specif-
ically, by introducing separate networks for inferring these attributes for the gen-
erated images, the difference between their estimations F (G(z, y)) and the ground
truth labels w(y) for the source image could be used to form a loss on the form

Lap = minF (G(z, y))− w(y) .

The GazeGAN [17] study found that a loss similar to this was beneficial for preserv-
ing gaze direction during image-to-image translation. Although Smart Eye does have
gaze estimation networks available, these are implemented in TensorFlow and were
therefore not compatible with the PyTorch implementation of the CGAN framework
of this thesis. It is therefore left as a possible improvement for future work on this
topic.

Ground truth labels Another potential modification to improve the CGAN
frameworks ability to preserve domain-invariant attributes could be to provide the
ground truth labels as a part of the conditional information in addition to the source
images. In the current implementation, both the generator and discriminator are
only given the source images as the conditional information and are therefore re-
quired to infer the gaze direction and head pose from them. Providing the ground
truth labels directly would remove the need for this and allow both networks to
work with accurate labels. In fact, the effect of adding ground truth labels would be
similar to the attribute preservation loss described above, but instead of enforcing
it using an estimation network, it is the conditional discriminator that would force
the generator to learn the correct relationship.

Facial identity network trained on near-infrared data Using the feature
space of the facial identity network presented in Chapter 3.2.4.2.2 as the distance

72

5. Discussion

measure dI(·, ·) in the identity reconstruction loss was shown to result in the most
accurate reconstruction of subjects in real images. However, while the reconstructed
faces resembled the real subjects they were approximated from, the reconstruction
did not work perfectly in all cases. The facial identity network used was a ResNet-
50 network pretrained on the VGGFace2 dataset containing RGB images. Even
though the faces in the RBG images likely share features with those in near-infrared
images, the agreement is most likely not perfect. Thus, pretraining the facial identity
network on a dataset of near-infrared images would likely result in even better
reconstruction of real subjects.

Larger and more diverse dataset Another factor that would likely improve
the quality as well as the diversity of the generated is to increase the size of the
dataset that is used to train the model. A dataset containing more unique subjects
in a variety of head poses, gaze angles and perspectives would allow both generator
and discriminator to generalize better and reduce the risk for overfitting. It would
also likely improve the quality of the generated images for all head poses, including
extreme head angles, as well as making the identity reconstruction work better.

Additionally, it is likely that better data cleaning methods would improve the frame-
work’s performance. Even though data cleaning was employed to remove bad sam-
ples from the used dataset, it did not work perfectly and there were still image
pairs with poorly aligned head poses or gaze directions. Since it is the image pairs
that instruct the generator of the correct mapping, it is likely that a cleaner dataset
would result in an increase in the framework’s ability to preserve domain-invariant
attributes.

Tuning hyperparameters and layer sizes It is also possible that further tuning
of the various hyperparameters and layer sizes in the network architectures would
result in better results. While some amount of tuning was done during the thesis
work, no large scale investigation to find the best values was performed. As was
discussed briefly in Chapter 5.1.1, it is also possible that using an optimization al-
gorithm that is not based on momentum, such as SGD, could alleviate the instability
problems encountered for some configurations.

5.3 Main contributions

The CGAN framework presented in Chapter 3.2 has been demonstrated to be capa-
ble of learning to generate controllable, realistic faces in the near-infrared domain
with diverse facial attributes. Furthermore, with the addition of the identity re-
construction loss, the framework was able to extract a latent vector representing
the appearance of subjects in previously unseen real images and use it to generate
images with a similar appearance. The chosen approach of training a CGAN frame-
work to perform multimodal image-to-image translation for paired images from the
two image domains has therefore been shown to be a viable method for synthesizing
data suitable for DMS development.

73

5. Discussion

A clear benefit of this approach is the fine-grained control that the 3D model allows
over the adjustable attributes, such as head pose and gaze direction, which can be
varied independently of the stylistic attributes of the generated faces. This type of
control is also possible to achieve using other approaches, for example by making
these attributes a part of the latent space and using manipulation of the latent
vectors z to control the generated images. However, methods of this type have
been shown to suffer from entanglement issues similar to those described in Chapter
3.2.2.3. For example, if some facial attribute is over-represented for a given head
pose in the training dataset, it could lead to this attribute varying in unison with the
head pose. Remedying this requires the employment of disentanglement methods,
which increases the complexity of the framework and is not guaranteed to perfectly
disentangle the latent space [69].

The thesis has not, however, investigated how synthetic training data affects the
performance of DMS systems, as this was out of the thesis’ scope. This is therefore
left for future work to investigate.

5.4 Ethical, societal and environmental implica-
tions

The identity reconstruction was demonstrated to work reasonably well for previously
unseen subjects. Although the reconstructed faces are still distinguishable from real
faces, it is conceivable that derivative works could improve the framework further
and make it capable of producing photo-realistic images like those of StyleGAN [4].
It could therefore be argued that it falls under the category known as deep fakes,
i.e. AI technology capable of imitating the appearance of real people. As with
any technology of this type, it could therefore have potentially malicious use cases,
such as defamation or spread of misinformation. It is therefore important that new
and better methods for detecting fake media produced by deep learning algorithms
are developed, as this provides tools for preventing technology like this from being
used for harmful purposes. There is a growing amount of attention and resources
dedicated to this issue and progress is continuously being made [70].

On the other hand, methods for synthesizing realistic data like the one investigated in
this thesis could also alleviate some of the privacy concerns that arise from collecting
data from real users. In times where data privacy and protection are a big societal
issues, this can be argued to be a positive feature of this technology. For example,
there is ongoing research on using GANs for anonymization of data collected from
real users. Several studies [71, 72] have investigated synthesis of medical data using
GANs, creating datasets of “fake patients” that allow researchers to work with
realistic data without having to be concerned about violating the privacy of real
patients. It is conceivable that this is a use-case that could be relevant for other
applications as well, such as anonymizing the highly personal data used for training
DMS and similar vehicular safety systems.

74

5. Discussion

From an environmental perspective, research and developments in generative model-
ing can have both positive and negative impacts. As with any type of technological
development, it is possible that generative models and other deep learning algo-
rithms could help reduce global energy consumption by fueling new, more energy
efficient technologies. In the case of generative modeling in particular, advance-
ments in synthetic data generation could potentially reduce the need for collecting
and storing large amounts of real-world data, and instead make more efficient use
of existing datasets by learning to create synthetic data with similar properties. To
what extent this would alleviate the need for real data is, however, debatable.

However, generative models are also very computationally expensive to train, es-
pecially in the case of image synthesis. The images that were used in this thesis
were of a relatively low resolution (128 × 128), so the amount of energy consumed
during the project is estimated to have been relatively modest. There are, however,
examples of studies where the research project as a whole has resulted in a signifi-
cant energy consumption. For example, the StyleGAN 2 [73] paper estimated that
the total electricity consumed during the project amounted to approximately 131.61
megawatt hours (MWh), which is enough to satisfy the yearly energy needs of about
5 average Swedish households [74].

With demands this high, it is important that future research projects focus on min-
imizing energy consumption, for example by avoiding unnecessary training sessions
and possibly by increasing cooperation around large-scale models. Furthermore,
large and computationally expensive generative models such as StyleGAN [4, 73]
can often be re-purposed for many different tasks through so called fine-tuning,
which can be an alternative to training a new model from scratch and thus reduce
unnecessary energy consumption.

75

5. Discussion

76

6
Conclusion

The thesis has investigated image synthesis with Generative Adversarial Networks
(GANs) as an alternative way of obtaining training data for Driver Monitoring Sys-
tem (DMS) development. The chosen approach consisted of training a Conditional
Generative Adversarial Network (CGAN) framework to derive a mapping between
paired images of a synthetic 3D model and real human faces in the near-infrared
domain that preserves domain-invariant attributes, e.g. head pose and gaze direc-
tion.

The thesis proposed a framework that was shown to be capable of multimodal image-
to-image translation between the two image domains, mapping each 3D model image
to a multitude of diverse and realistic human faces. Furthermore, with the addition
of the proposed identity reconstruction loss, the framework was able to extract
latent vectors representing the appearances of previously unseen subjects in real
images and use them to generate faces with a similar appearances in novel poses and
perspectives. The generated faces were found to remain consistent and adequately
follow variations in perspective and pose of the 3D model, but were found to respond
to changes in gaze direction less well.

Altogether, the thesis concludes that image synthesis using CGANs can be a viable
method for obtaining customizable training data for DMS development. Future re-
search is needed, however, on how refined synthetic data of this type affects the
performance of other algorithms when used to enrich existing datasets or as a re-
placement of them entirely.

77

6. Conclusion

78

Bibliography

[1] Yunjey Choi et al. “StarGAN v2: Diverse Image Synthesis for Multiple Do-
mains”. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2020.

[2] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial
Networks”. CoRR abs/1611.07004 (2016). arXiv: 1611.07004. url: http:
//arxiv.org/abs/1611.07004.

[3] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.
2661 [stat.ML].

[4] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Archi-
tecture for Generative Adversarial Networks”. CoRR abs/1812.04948 (2018).
arXiv: 1812.04948. url: http://arxiv.org/abs/1812.04948.

[5] Tero Karras et al. “Progressive Growing of GANs for Improved Quality, Sta-
bility, and Variation”. CoRR abs/1710.10196 (2017). arXiv: 1710.10196. url:
http://arxiv.org/abs/1710.10196.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Train-
ing for High Fidelity Natural Image Synthesis”. CoRR abs/1809.11096 (2018).
arXiv: 1809.11096. url: http://arxiv.org/abs/1809.11096.

[7] Qi Mao et al. “Mode Seeking Generative Adversarial Networks for Diverse
Image Synthesis”. CoRR abs/1903.05628 (2019). arXiv: 1903.05628. url:
http://arxiv.org/abs/1903.05628.

[8] Taesung Park et al. “Semantic Image Synthesis with Spatially-Adaptive Nor-
malization”. CoRR abs/1903.07291 (2019). arXiv: 1903.07291. url: http:
//arxiv.org/abs/1903.07291.

[9] Xingchao Peng et al. “Exploring Invariances in Deep Convolutional Neural
Networks Using Synthetic Images”. CoRR abs/1412.7122 (2014). arXiv: 1412.
7122. url: http://arxiv.org/abs/1412.7122.

[10] Saurabh Gupta et al. “Learning Rich Features from RGB-D Images for Object
Detection and Segmentation”. CoRR abs/1407.5736 (2014). arXiv: 1407.5736.
url: http://arxiv.org/abs/1407.5736.

[11] Erroll Wood et al. “Learning an Appearance-Based Gaze Estimator from One
Million Synthesised Images”. Proceedings of the Ninth Biennial ACM Sympo-
sium on Eye Tracking Research Applications. 2016, pp. 131–138.

79

https://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1903.05628
http://arxiv.org/abs/1903.05628
https://arxiv.org/abs/1903.07291
http://arxiv.org/abs/1903.07291
http://arxiv.org/abs/1903.07291
https://arxiv.org/abs/1412.7122
https://arxiv.org/abs/1412.7122
http://arxiv.org/abs/1412.7122
https://arxiv.org/abs/1407.5736
http://arxiv.org/abs/1407.5736

Bibliography

[12] J. Shotton et al. “Efficient Human Pose Estimation from Single Depth Im-
ages”. IEEE Transactions on Pattern Analysis and Machine Intelligence 35.12
(2013), pp. 2821–2840. doi: 10.1109/TPAMI.2012.241.

[13] Jonathan Tompson et al. “Real-time continuous pose recovery of human hands
using convolutional networks”. English (US). ACM Transactions on Graphics
33.5 (Aug. 2014). issn: 0730-0301. doi: 10.1145/2629500.

[14] James Steven Supancic III et al. “Depth-based hand pose estimation: methods,
data, and challenges”. CoRR abs/1504.06378 (2015). arXiv: 1504.06378. url:
http://arxiv.org/abs/1504.06378.

[15] Ashish Shrivastava et al. “Learning from Simulated and Unsupervised Images
through Adversarial Training”. CoRR abs/1612.07828 (2016). arXiv: 1612.
07828. url: http://arxiv.org/abs/1612.07828.

[16] Sergey I. Nikolenko. “Synthetic Data for Deep Learning”. CoRR abs/1909.11512
(2019). arXiv: 1909.11512. url: http://arxiv.org/abs/1909.11512.

[17] Matan Sela et al. “GazeGAN - Unpaired Adversarial Image Generation for
Gaze Estimation” (2017). url: http://arxiv.org/abs/1711.09767.

[18] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks” (2017). url: http://arxiv.org/abs/1703.10593.

[19] Konstantinos Bousmalis et al. “Unsupervised Pixel-Level Domain Adaptation
with Generative Adversarial Networks”. CoRR abs/1612.05424 (2016). arXiv:
1612.05424. url: http://arxiv.org/abs/1612.05424.

[20] Gregory J. Stein and Nicholas Roy. “GeneSIS-RT: Generating Synthetic Im-
ages for training Secondary Real-world Tasks”. CoRR abs/1710.04280 (2017).
arXiv: 1710.04280. url: http://arxiv.org/abs/1710.04280.

[21] Ayush Tewari et al. “StyleRig: Rigging StyleGAN for 3D Control over Portrait
Images, CVPR 2020”. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE. June 2020.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. Advances in Neural Infor-
mation Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

[23] D. Foster. Generative Deep Learning: Teaching Machines to Paint, Write,
Compose, and Play. O’Reilly Media, 2019. isbn: 9781492041894. url: https:
//books.google.be/books?id=RqegDwAAQBAJ.

[24] Miles Brundage et al. “The Malicious Use of Artificial Intelligence: Forecast-
ing, Prevention, and Mitigation”. CoRR abs/1802.07228 (2018). arXiv: 1802.
07228. url: http://arxiv.org/abs/1802.07228.

[25] Andrej Karpathy et al. Generative Models. June 2016. url: https://openai.
com/blog/generative-models/.

[26] Lilian Weng. “From GAN to WGAN”. CoRR abs/1904.08994 (2019). arXiv:
1904.08994. url: http://arxiv.org/abs/1904.08994.

80

https://doi.org/10.1109/TPAMI.2012.241
https://doi.org/10.1145/2629500
https://arxiv.org/abs/1504.06378
http://arxiv.org/abs/1504.06378
https://arxiv.org/abs/1612.07828
https://arxiv.org/abs/1612.07828
http://arxiv.org/abs/1612.07828
https://arxiv.org/abs/1909.11512
http://arxiv.org/abs/1909.11512
http://arxiv.org/abs/1711.09767
http://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1612.05424
http://arxiv.org/abs/1612.05424
https://arxiv.org/abs/1710.04280
http://arxiv.org/abs/1710.04280
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://books.google.be/books?id=RqegDwAAQBAJ
https://books.google.be/books?id=RqegDwAAQBAJ
https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228
http://arxiv.org/abs/1802.07228
https://openai.com/blog/generative-models/
https://openai.com/blog/generative-models/
https://arxiv.org/abs/1904.08994
http://arxiv.org/abs/1904.08994

Bibliography

[27] Martin Arjovsky and Léon Bottou. Towards Principled Methods for Training
Generative Adversarial Networks. 2017. arXiv: 1701.04862 [stat.ML].

[28] Mario Lucic et al. Are GANs Created Equal? A Large-Scale Study. 2017. arXiv:
1711.10337 [stat.ML].

[29] Xudong Mao et al. Least Squares Generative Adversarial Networks. 2017.
arXiv: 1611.04076 [cs.CV].

[30] Dustin Tran, Rajesh Ranganath, and David M. Blei. Hierarchical Implicit
Models and Likelihood-Free Variational Inference. 2017. arXiv: 1702.08896
[stat.ML].

[31] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. 2017. arXiv: 1705.02894
[stat.ML].

[32] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
2017. arXiv: 1701.07875 [stat.ML].

[33] Hao-Wen Dong and Yi-Hsuan Yang. “Towards a Deeper Understanding of
Adversarial Losses”. CoRR abs/1901.08753 (2019). arXiv: 1901.08753. url:
http://arxiv.org/abs/1901.08753.

[34] J. Langr and V. Bok. GANs in Action: Deep learning with Generative Ad-
versarial Networks. Manning Publications, 2019. isbn: 9781617295560. url:
https://books.google.de/books?id=HojvugEACAAJ.

[35] J. Wu. “Introduction to Convolutional Neural Networks”. 2017.
[36] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. Cambridge, MA, USA: MIT Press, 2016.
[37] Kaiming He et al. “Deep Residual Learning for Image Recognition”. CoRR

abs/1512.03385 (2015). arXiv: 1512.03385. url: http://arxiv.org/abs/
1512.03385.

[38] Zachary C. Lipton and Jacob Steinhardt. Troubling Trends in Machine Learn-
ing Scholarship. 2018. arXiv: 1807.03341 [stat.ML].

[39] Shibani Santurkar et al. How Does Batch Normalization Help Optimization?
2019. arXiv: 1805.11604 [stat.ML].

[40] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. Ed. by Francis Bach
and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille,
France: PMLR, July 2015, pp. 448–456. url: http://proceedings.mlr.
press/v37/ioffe15.html.

[41] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Instance Normal-
ization: The Missing Ingredient for Fast Stylization”. CoRR abs/1607.08022
(2016). arXiv: 1607.08022. url: http://arxiv.org/abs/1607.08022.

[42] Yuxin Wu and Kaiming He. “Group Normalization”. CoRR abs/1803.08494
(2018). arXiv: 1803.08494. url: http://arxiv.org/abs/1803.08494.

[43] Xun Huang and Serge J. Belongie. “Arbitrary Style Transfer in Real-time
with Adaptive Instance Normalization”. CoRR abs/1703.06868 (2017). arXiv:
1703.06868. url: http://arxiv.org/abs/1703.06868.

81

https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1711.10337
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1702.08896
https://arxiv.org/abs/1702.08896
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1901.08753
http://arxiv.org/abs/1901.08753
https://books.google.de/books?id=HojvugEACAAJ
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1807.03341
https://arxiv.org/abs/1805.11604
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1803.08494
http://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1703.06868
http://arxiv.org/abs/1703.06868

Bibliography

[44] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. “A Learned Rep-
resentation For Artistic Style”. CoRR abs/1610.07629 (2016). arXiv: 1610.
07629. url: http://arxiv.org/abs/1610.07629.

[45] Golnaz Ghiasi et al. Exploring the structure of a real-time, arbitrary neural
artistic stylization network. 2017. arXiv: 1705.06830 [cs.CV].

[46] Vincent Dumoulin et al. “Feature-wise transformations”. Distill (2018).
[47] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representa-

tion Learning with Deep Convolutional Generative Adversarial Networks. 2016.
arXiv: 1511.06434 [cs.LG].

[48] Arthur Juliani et al. “Unity: A General Platform for Intelligent Agents”. CoRR
abs/1809.02627 (2018). arXiv: 1809.02627. url: http://arxiv.org/abs/
1809.02627.

[49] Ekin Dogus Cubuk et al. “AutoAugment: Learning Augmentation Policies
from Data”. CoRR abs/1805.09501 (2018). arXiv: 1805.09501. url: http:
//arxiv.org/abs/1805.09501.

[50] Xun Huang et al. “Multimodal Unsupervised Image-to-Image Translation”.
CoRR abs/1804.04732 (2018). arXiv: 1804.04732. url: http://arxiv.org/
abs/1804.04732.

[51] Jun-Yan Zhu et al. “Toward Multimodal Image-to-Image Translation”. CoRR
abs/1711.11586 (2017). arXiv: 1711.11586. url: http://arxiv.org/abs/
1711.11586.

[52] Dingdong Yang et al. “Diversity-Sensitive Conditional Generative Adversarial
Networks”. CoRR abs/1901.09024 (2019). arXiv: 1901.09024. url: http:
//arxiv.org/abs/1901.09024.

[53] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a
Perceptual Metric”. CoRR abs/1801.03924 (2018). arXiv: 1801.03924. url:
http://arxiv.org/abs/1801.03924.

[54] Qifeng Chen and Vladlen Koltun. “Photographic Image Synthesis with Cas-
caded Refinement Networks”. CoRR abs/1707.09405 (2017). arXiv: 1707 .
09405. url: http://arxiv.org/abs/1707.09405.

[55] Alexey Dosovitskiy and Thomas Brox. “Generating Images with Perceptual
Similarity Metrics based on Deep Networks”. CoRR abs/1602.02644 (2016).
arXiv: 1602.02644. url: http://arxiv.org/abs/1602.02644.

[56] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. “Perceptual Losses for Real-
Time Style Transfer and Super-Resolution”. CoRR abs/1603.08155 (2016).
arXiv: 1603.08155. url: http://arxiv.org/abs/1603.08155.

[57] Ting-Chun Wang et al. “High-Resolution Image Synthesis and Semantic Ma-
nipulation with Conditional GANs”. CoRR abs/1711.11585 (2017). arXiv:
1711.11585. url: http://arxiv.org/abs/1711.11585.

[58] Tim Salimans et al. “Improved Techniques for Training GANs”. CoRR abs/1606.03498
(2016). arXiv: 1606.03498. url: http://arxiv.org/abs/1606.03498.

82

https://arxiv.org/abs/1610.07629
https://arxiv.org/abs/1610.07629
http://arxiv.org/abs/1610.07629
https://arxiv.org/abs/1705.06830
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1809.02627
http://arxiv.org/abs/1809.02627
http://arxiv.org/abs/1809.02627
https://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1804.04732
http://arxiv.org/abs/1804.04732
http://arxiv.org/abs/1804.04732
https://arxiv.org/abs/1711.11586
http://arxiv.org/abs/1711.11586
http://arxiv.org/abs/1711.11586
https://arxiv.org/abs/1901.09024
http://arxiv.org/abs/1901.09024
http://arxiv.org/abs/1901.09024
https://arxiv.org/abs/1801.03924
http://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1707.09405
https://arxiv.org/abs/1707.09405
http://arxiv.org/abs/1707.09405
https://arxiv.org/abs/1602.02644
http://arxiv.org/abs/1602.02644
https://arxiv.org/abs/1603.08155
http://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1711.11585
http://arxiv.org/abs/1711.11585
https://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498

Bibliography

[59] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. International Conference on Learning
Representations. 2015.

[60] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “Image Style Trans-
fer Using Convolutional Neural Networks”. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June 2016.

[61] Ting-Chun Wang et al. “Few-shot Video-to-Video Synthesis”. Advances in
Neural Information Processing Systems (NeurIPS). 2019.

[62] Q. Cao et al. “VGGFace2: A dataset for recognising faces across pose and
age”. International Conference on Automatic Face and Gesture Recognition.
2018.

[63] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/
1412.6980.

[64] Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Nash Equilibrium”. CoRR abs/1706.08500 (2017). arXiv: 1706.
08500. url: http://arxiv.org/abs/1706.08500.

[65] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer
Vision”. CoRR abs/1512.00567 (2015). arXiv: 1512.00567. url: http://
arxiv.org/abs/1512.00567.

[66] Takeru Miyato and Masanori Koyama. “cGANs with Projection Discrimina-
tor”. CoRR abs/1802.05637 (2018). arXiv: 1802.05637. url: http://arxiv.
org/abs/1802.05637.

[67] Andrew L. Maas. “Rectifier Nonlinearities Improve Neural Network Acoustic
Models”. 2013.

[68] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AISTATS’10). Society for Ar-
tificial Intelligence and Statistics. 2010.

[69] Chaoyou Fu et al. “High Fidelity Face Manipulation with Extreme Pose and
Expression”. CoRR abs/1903.12003 (2019). arXiv: 1903.12003. url: http:
//arxiv.org/abs/1903.12003.

[70] Ruben Tolosana et al. DeepFakes and Beyond: A Survey of Face Manipulation
and Fake Detection. 2020. arXiv: 2001.00179 [cs.CV].

[71] Pedro Costa et al. “Towards Adversarial Retinal Image Synthesis”. CoRR
abs/1701.08974 (2017). arXiv: 1701.08974. url: http://arxiv.org/abs/
1701.08974.

[72] Edward Choi et al. “Generating Multi-label Discrete Electronic Health Records
using Generative Adversarial Networks”. CoRR abs/1703.06490 (2017). arXiv:
1703.06490. url: http://arxiv.org/abs/1703.06490.

83

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1802.05637
http://arxiv.org/abs/1802.05637
http://arxiv.org/abs/1802.05637
https://arxiv.org/abs/1903.12003
http://arxiv.org/abs/1903.12003
http://arxiv.org/abs/1903.12003
https://arxiv.org/abs/2001.00179
https://arxiv.org/abs/1701.08974
http://arxiv.org/abs/1701.08974
http://arxiv.org/abs/1701.08974
https://arxiv.org/abs/1703.06490
http://arxiv.org/abs/1703.06490

Bibliography

[73] Tero Karras et al. “Analyzing and Improving the Image Quality of StyleGAN”.
CoRR abs/1912.04958 (2019). arXiv: 1912.04958. url: http://arxiv.org/
abs/1912.04958.

[74] Swedish Energy Agency. Mar. 2015. url: https://www.energimyndigheten.
se/en/news/2011/new-regional-energy-statistics-for-single--or-
two-dwelling-buildings/.

84

https://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1912.04958
https://www.energimyndigheten.se/en/news/2011/new-regional-energy-statistics-for-single--or-two-dwelling-buildings/
https://www.energimyndigheten.se/en/news/2011/new-regional-energy-statistics-for-single--or-two-dwelling-buildings/
https://www.energimyndigheten.se/en/news/2011/new-regional-energy-statistics-for-single--or-two-dwelling-buildings/

A
Appendix

Figure A.1: Random samples of generated images for configuration ED-LS-LR-2
(see Chapter 4.1.4.1).

s

I

	Introduction
	Background
	Related work
	Problem statement
	Thesis scope
	Thesis outline

	Theory
	Introduction
	Deep learning
	Generative modeling
	Data distributions
	Distribution of a dataset
	Generative models
	Distance between two distributions

	Generative Adversarial Networks
	How does a GAN work?
	The Goodfellow GAN
	Training a GAN
	Adversarial loss function
	Global optimum
	GAN training algorithm
	Alternative adversarial loss functions

	Mode collapse

	Conditional GANs
	Generator
	Discriminator
	Image-to-image translation

	Architectures
	Residual networks
	Normalization
	Batch normalization
	Instance normalization
	AdaIn - Adaptive Instance Normalization
	SPADE - Spatially Adapative Normalization

	Network architectures
	Decoder
	Encoder
	Encoder-decoder
	SPADE decoder

	Method
	Dataset
	Source domain
	Target domain
	Dataset creation
	Data cleaning
	Data preprocessing
	Random augmentation

	Training and test sets

	Framework
	Multimodal image-to-image translation
	CGAN framework
	Mode collapse
	Diversity regulization
	Latent reconstruction loss Llr
	Style diversity loss Lsd

	Entangled latent space
	Disentangling the latent space
	Style mapping network L

	Reconstructing identities
	Perceptual similarity metrics
	Perceptual loss
	Perceptual networks
	VGG-19 classification network
	ResNet-50 facial identification network

	Full loss function
	Training the framework
	Network optimization
	Training algorithm

	Evaluating the framework
	Fréchet Inception Distance
	Learned Perceptual Image Patch Similarity

	Evaluation procedures
	Realism evaluation
	Diversity evaluation

	Network architectures
	Discriminator
	Generator
	Latent encoder network E
	Style mapping network

	Experiments
	Default model settings
	Framework configuration
	Framework analysis
	Attribute preservation
	Latent space exploration
	Latent space interpolation
	Latent space arithmetic

	Results
	Framework configurations
	Generator architecture
	Adversarial loss
	Perceptual loss
	Diversity regularization
	Latent reconstruction loss
	Style diversity loss

	Style mapping
	Identity reconstruction loss
	Summary

	Framework analysis
	Attribute preservation
	Head pose
	Gaze direction

	Latent space exploration
	Latent space interpolation
	Latent space arithmetic

	Discussion
	Discussion of results
	Framework configuration
	Framework analysis

	Future work
	Main contributions
	Ethical, societal and environmental implications

	Conclusion
	Bibliography
	Bibliography
	Appendix

