
Infrastructure Workload

Manual or
automatic
execution
using an

API Gateway

Object Storage

Queue

Upload/create file

Queue message

HTTP GET Request HTTP Trigger

Storage Trigger

Queue Trigger

API Gateway

External serviceFaaS function

(Invoker function) (Receiver function)

Performance Comparison of Function-as-
a-Service Triggers

A Cross-Platform Performance Study of Function Triggers in
Function-as-a-Service

Master’s thesis in Computer science and engineering

Marcus Bertilsson & Oskar Grönqvist

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Performance Comparison of Function-as-a-Service
Triggers

A Cross-Platform Performance Study of Function Triggers in
Function-as-a-Service

MARCUS BERTILSSON & OSKAR GRÖNQVIST

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Performance Comparison of Function-as-a-Service Triggers

A Cross-Platform Performance Study of Function Triggers in Function-as-a-Service

MARCUS BERTILSSON & OSKAR GRÖNQVIST

© MARCUS BERTILSSON & OSKAR GRÖNQVIST, 2021.

Supervisor: Joel Scheuner, Department of Computer Science and Engineering
Examiner: Jennifer Horkoff, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A high-level model of the benchmark architecture/structure.

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Performance Comparison of Function-as-a-Service Triggers

A Cross-Platform Performance Study of Function Triggers in Function-as-a-Service

MARCUS BERTILSSON & OSKAR GRÖNQVIST
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Cloud computing paved the way for how servers are handled and maintained, and
recent developments in cloud computing have established a new paradigm shift to-
wards serverless computing. Through a subset called Function-as-a-Service (FaaS),
most operational concerns are abstracted away and allows developers to focus en-
tirely on the code (i.e. functions) to be executed. FaaS functions are triggered by
events (called triggers) and there are many types of triggers offered by each provider.
This thesis studied the latency of three trigger types through a trace-based approach.
The three triggers were HTTP triggers, storage triggers, and queue triggers. To fur-
ther contrast previous work, the comparisons were also made across two providers,
Amazon Web Services (AWS) and Microsoft Azure. Focus was also put on dis-
cussions justifying the comparison between two largely different providers and on
the reproducibility of the study. The HTTP trigger performed the best for both
providers, the Queue trigger second-best for AWS and third-best for Azure, and the
Storage trigger third-best for AWS and second-best for Azure. In terms of providers,
both performed relatively similarly in terms of mean delay but Microsoft Azure had
significantly more extreme outliers compared to Amazon Web Services. In conclu-
sion, the study performed in this thesis found that the choice of service and provider
can greatly affect a system’s performance and can, in extension, affect the usage of
cloud services.

Keywords: Computer science, engineering, master thesis, serverless, cloud, FaaS,
trigger, performance.

v

Acknowledgements
We want to thank our supervisor Joel for his hard work in keeping us on course
throughout the thesis and for his experience in, and dedication to, the subject. His
help has been invaluable to us. Finally, we want to thank the people in the Pulumi
Slack channel who could give us help with technical details when no one else could.

Marcus Bertilsson, Oskar Grönqvist. Gothenburg, June 2021.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Purpose . 1
1.2 Research Questions . 2
1.3 Limitations and delimitations . 3

2 Background 5
2.1 Cloud Computing . 5
2.2 Serverless Computing . 6
2.3 FaaS Triggers . 7
2.4 Infrastructure-as-Code (IaC) . 8
2.5 Distributed Tracing . 10

3 Related Work 13
3.1 FaaS Performance Evaluation . 13
3.2 Reproducible Experimentation . 14
3.3 User Studies on Response Times . 15

4 Research Method 17

5 Trigger Benchmark 19
5.1 Deployment . 20
5.2 Infrastructure . 21
5.3 Trigger Types . 21

5.3.1 HTTP Trigger . 21
5.3.2 Storage Trigger . 22
5.3.3 Queue Trigger . 22

5.4 Workload . 23
5.5 Distributed Tracing . 24

5.5.1 Amazon Web Services X-Ray 25
5.5.2 Microsoft Azure Application Insights 26

6 Trigger Experiment 29
6.1 Execution . 29

ix

Contents

6.2 Trace Processing . 30
6.3 Experiment Results . 30

6.3.1 Amazon Web Services . 31
6.3.2 Microsoft Azure . 33

7 Discussion 35
7.1 RQ1: Measuring latency across providers 35
7.2 RQ2: How the trigger type affects latency 36
7.3 RQ3: How the provider affects latency 37
7.4 Threats to Validity . 38

7.4.1 Construct Validity . 38
7.4.2 Internal Validity . 38
7.4.3 External Validity . 39

7.5 Reproducibility . 40

8 Conclusion 43
8.1 Future Work . 44

Bibliography 45

A Appendix 1 I
A.1 Individual Results . I

x

List of Figures

2.1 A visual representation of the relationship between the cloud com-
puting services IaaS, PaaS, and SaaS. Based on Bhardwaj et al. [1,
Fig. 2] . 6

2.2 How Pulumi fits into the larger architecture and how it acts as an
intermediary between the developer and the cloud services. 9

2.3 The general structure of Pulumi projects. Based on a figure provided
by Pulumi [2]. 10

2.4 A distributed tracing example in AWS using AWS Lambda and AWS
API Gateway. 11

4.1 A flowchart of the high-level steps in the empirical study. 17

5.1 High-level benchmark architecture/structure. 20
5.2 The deployment process of each benchmark. 21
5.3 The minimal workload that all trigger types execute. 23
5.4 A representation of a trace for a synchronous trigger, i.e. the HTTP

trigger. 25
5.5 A representation of a trace for an asynchronous trigger, i.e. the Stor-

age and Queue triggers. 25

6.1 Frequency of delays in the AWS trigger benchmarks. 32
6.2 Cumulative distribution functions for the AWS trigger benchmarks. . 32
6.3 Frequency of delays in the Azure trigger benchmarks. 34
6.4 Cumulative distribution functions for the Azure trigger benchmarks. . 34

A.1 Combined AWS HTTP benchmark results. I
A.2 AWS HTTP benchmark results for different days. II
A.3 AWS HTTP benchmark results for different times. II
A.4 Combined AWS Storage benchmark results. III
A.5 AWS Storage benchmark results for different days. III
A.6 AWS Storage benchmark results for different times. IV
A.7 Combined AWS Queue benchmark results. IV
A.8 AWS Queue benchmark results for different days. V
A.9 AWS Queue benchmark results for different times. V
A.10 Combined Azure HTTP benchmark results. VI
A.11 Azure HTTP benchmark results for different days. VI
A.12 Azure HTTP benchmark results for different times. VII

xi

List of Figures

A.13 Combined Azure Storage benchmark results. VII
A.14 Azure Storage benchmark results for different days. VIII
A.15 Azure Storage benchmark results for different times. VIII
A.16 Combined Azure Queue benchmark results. IX
A.17 Azure Queue benchmark results for different days. IX
A.18 Azure Queue benchmark results for different times. X

xii

List of Tables

2.1 Trigger comparison mapping for HTTP, object storage and queue
triggers from the four largest providers by market share (as of 2020)
[3]. 8

3.1 User perception of latency in real applications [4]. 15

6.1 Summary of statistics for all benchmarks. 30

7.1 Confidence intervals of the true population mean for each of the six
benchmarks expressed as a percentage of its mean. 41

xiii

List of Tables

xiv

1
Introduction

Cloud computing has enabled the entire software industry to shift away from locally
maintained servers to massive data centers provided by some of the largest companies
known today. Infrastructure-as-a-Service (IaaS), the most basic cloud computing
paradigm, paved the way for this shift by offering customers Virtual Machines (VMs)
through a pay-as-you-go model. A more recent cloud computing paradigm, known as
Serverless computing has emerged and started to be offered by major cloud providers
through a subset called Function-as-a-Service (FaaS). Unlike IaaS, FaaS enables
developers to focus solely on the actual code (i.e. functions) to be executed, where all
operational concerns are handled by the provider. The execution of these functions
can be triggered by different types of events (such as HTTP requests and changes
in a database), and these events are referred to as triggers. When a trigger event
happens, the cloud provider executes the requested functions and automatically
scales the underlying virtual machines to accommodate the workload [5]. FaaS
is used in a variety of different applications, for example, to transform images,
handle notifications, or implement REST endpoints. Despite being able to serve a
wide range of applications, FaaS is not a one-size-fits-all solution. Latency-sensitive
applications are examples of problematic use cases for FaaS. This is also partly due
to limitations such as cold start overheads, which occur when the requested function
is inactive and there are no available containers to run it in [6].

Scheuner and Leitner [7] concluded, in their literature review on performance eval-
uations on serverless services, that existing research in this area is mostly limited to
Amazon Web Services (AWS) with a heavy focus on simplified, often CPU-intensive
benchmarks called micro-benchmarks. The authors suggested a need to focus more
on realistic workloads with respect to other characteristics such as network or func-
tion trigger performance. Moreover, further research could also preferably study
these aspects across platforms, to enable easier comparison in a relatively new and
unexplored field.

1.1 Purpose

The purpose of this thesis is to research, design, and implement a benchmarking
framework to allow for performing cross-platform benchmarks of trigger performance
with respect to latency. By performing cross-platform benchmarks focusing on trig-

1

1. Introduction

ger performance rather than single platform evaluations using micro-benchmarks
for the CPU, this thesis aims to address some of the gaps left by previous research.
However, since the performance of the tested services can vary greatly depending
on actions taken by the providers, a strong focus is put on reproducibility through
the eight principles developed by Papadopoulos et al. [8], which will be explained
further in Section 3.2. This is done to ensure that future researchers can replicate
the experiments conducted in this thesis and thus promote future work in this field.

The ultimate goal of this thesis is to provide a better understanding of FaaS services
and their performance and in turn encourage comparison and selection of services
and providers, which could influence future design and architecture decisions. More
specifically, our study will provide a measurement tool, a data set, and performance
evaluations.

1.2 Research Questions
While serving similar purposes, there is a heterogeneous nature to cloud services
due to their separate development by different providers. This makes it difficult to
develop a benchmark to work as a one-size-fits-all solution, as some services might
perform differently in different areas of use. While designing a benchmark it is
important to take the heterogeneous nature of the services into account in order to
make it fair and thus minimize bias. FaaS platforms also abstract away much of
the operational logic from the user which limits research about how internal and
external factors impact performance [9]. In addition to the above, a large portion
of the total delay will be from delays outside of the service provider’s jurisdiction,
i.e. network delays due to the distance between end-users and the service provider’s
server halls. The extent to which these delays can be ignored depends on the quality
of the service provider’s internal logging tools.

To achieve the purpose behind this thesis we define three research questions we want
to answer.

RQ1: How can function trigger latency be measured across different
serverless platforms?

This question touches upon the problem of the heterogeneous nature of the services
as a result of their separate development. It is unlikely that a one-size-fits-all solution
will be found and this raises the question of how to make each approach comparable
to the other.

RQ2: How does the choice of trigger type affect trigger latency?

This question is motivated by the gaps left in previous research, where there has
been a heavy focus on CPU and memory benchmarks and not enough focus on other
aspects. All major cloud providers support a list of different trigger types, each with
its own characteristics that may impact performance.

RQ3: How does the choice of provider affect trigger latency?

2

1. Introduction

This question is similar to RQ2 but is motivated by another gap in previous re-
search, namely the lack of research into performance differences between providers.
The same type of service provided by different providers is often only similar in their
purpose and technical details can, therefore, make their performance vary consider-
ably.

1.3 Limitations and delimitations
Although it would be preferable to use realistic workloads, this study is using work-
loads smaller than in micro-benchmarks and instead focuses on other aspects. By
taking the practical steps discussed by Scheuner and Leitner [7] into account, as
well as using Infrastructure-as-Code (IaC) to define and report our experiments,
we address the challenges related to reproducibility and ensure that our study is
reproducible under similar conditions.

Despite there being several cloud providers, this thesis focuses on cross-platform
comparisons between Amazon Web Services and Microsoft Azure. This is partly
due to the limited time frame, but also because Amazon and Azure are the two
single largest providers in terms of market share. As of the second quarter of 2020,
Amazon and Microsoft had 33 and 18 percent of the market share respectively,
together making up a majority of 51 percent of the total market share [3]. In terms
of trigger types, this thesis studies three of them, namely HTTP, object storage, and
queue triggers. The selection of triggers is motivated by their popularity and usage
in real cloud applications [10, Fig. 3].

3

1. Introduction

4

2
Background

This chapter presents the necessary background needed to understand the thesis
and introduces the reader to the most important topics. These topics include cloud
computing, the transition to serverless computing, important paradigms such as
Function-as-a-Service (FaaS), Infrastructure-as-Code (IaC), and distributed tracing.

2.1 Cloud Computing
Cloud computing became increasingly popular during the 2010s and Castro et al.
argue it has now reached a stage where it is widely considered to be a paradigm
shift in software engineering [5]. More specifically, it is a paradigm shift away from
personal computing and locally maintained servers to distributed workloads “on the
cloud”, i.e., in centralized data centers. In some ways, the shift could be considered
a return to centralized, rather than decentralized, computing which was the norm
before personal computing replaced it in the 1990s [11].

Castro et al. [5] further describe the weaknesses of traditional cloud computing, and
Infrastructure-as-a-Service (IaaS) in particular, that subsequently gave rise to the
paradigm of serverless computing. This transition evolved from necessity as micro-
service software architecture became increasingly popular in business. The authors
also state that the principles of serverless computing make it “closer to [the] original
expectations for cloud computing to be treated like as [sic] a utility” [5], meaning
that serverless computing in many ways represent what cloud computing was meant
to be. The weaknesses of cloud computing and the principles of serverless computing
mentioned will be described in further detail later in this section.

When cloud computing was first introduced, it had many advantages over the exist-
ing client-server model. It required little upfront cost for businesses compared to the
financial investment of setting up their own servers and it offered a pay-as-you-go
financial model meaning that the client only pays for the resources consumed or exe-
cution time used [1]. But perhaps most importantly, it offered relatively simple ways
to scale the hardware dedicated to certain tasks depending on the current workload.
From the fundamental idea of cloud computing grew three different models with
three different levels of abstraction, each service suitable for a different purpose.
From the lowest to the highest level of abstraction, these three services are com-
monly known as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),

5

2. Background

and Software-as-a-Service (SaaS). Figure 2.1 shows a visual representation of IaaS,
PaaS, and SaaS based on a figure by Bhardwaj et al. The infrastructure forms the
foundation of both PaaS and SaaS, and the platform forms part of the foundation
of SaaS. The position of each service in the diagram shows its level of abstraction.

Figure 2.1: A visual representation of the relationship between the cloud comput-
ing services IaaS, PaaS, and SaaS. Based on Bhardwaj et al. [1, Fig. 2]

Infrastructure-as-a-Service is perhaps the most common service of the three and
also offers the lowest level of abstraction. The idea of IaaS is that a host offers a
hardware configuration and its appropriate software, e.g. servers, storage, network,
and operating systems. By choosing this service, both the platform and the software
have to be developed by the client, and only the physical hardware is provided by
the host [1].

Platform-as-a-Service builds upon the configuration that IaaS offers plus a few cer-
tain additional software services to build a platform on which other software and
applications can be run. The additional software added by PaaS could include soft-
ware that further integrates the hardware offered by IaaS to build certain default
functions that can be used on the platform [1].

Software-as-a-Service builds upon what PaaS offers but adds the software that the
client would otherwise develop themselves. This makes the system less configurable
and customizable, but instead requires little to no programming and is as close to
Commercial-off-the-Shelf as cloud computing gets. The software offered by SaaS
can be highly customizable, however, even if the system is not, but SaaS packages
are often made for relatively specific purposes [1].

2.2 Serverless Computing
In many ways, serverless computing is the logical next step for cloud computing as
an increasing number of businesses have started using microservices in application
architectures [5]. Serverless computing offers improvements to the pay-as-you-go
model, such as decreasing the time to start and stop a service, and further increases

6

2. Background

the scalability of resources available to a service, commonly known as elasticity. Cas-
tro et al. [5] argue that these changes evolved naturally as microservice architectures
have further requirements to be run efficiently. Serverless computing also further
abstracts its use, often allowing users to utilize its services without any knowledge
of programming, extending its potential client reach.

The most important service in serverless computing is Function-as-a-Service (FaaS).
The usage of FaaS is based around a function that is responsible for some microser-
vice, which in turn has been triggered by some event. There are often a large number
of possible events that trigger a function, for example, HTTP requests, file uploads
to storage, or events from time intervals based on a schedule. The most important
benefit of using FaaS over other alternatives is that no server management is needed.
All applications can utilize a high degree of elasticity, meaning that the resources
consumed can be scaled from zero to any degree, and the client is only charged for
the resources or execution time used.

2.3 FaaS Triggers
The invocation of a function in a FaaS application is always triggered by a certain
event and these events are simply referred to as triggers [5]. Most cloud providers
include multiple trigger types to fit customers’ needs and some of these trigger types
are highlighted in Table 2.1. The process of triggering a function is conceptually very
simple. It begins with a trigger event being registered. In response to this event, the
cloud provider will automatically allocate the right amount of computing resources to
accommodate the workload and then execute the function. In serverless applications,
triggers control the flow of the system and are responsible for connecting components
to each other. Therefore, triggers pose a vital role where the choice of trigger type
can affect large parts of the application.

There are many types of triggers but this thesis studies three of them, HTTP trig-
gers, object storage triggers, and queue triggers. A trigger’s type is based on the
type of event that will trigger it. An HTTP request will trigger an HTTP trigger, a
file upload or update will trigger an object storage trigger, and queuing a message
will trigger a queue trigger. Aside from triggers reacting to different types of events,
they also differ in how they transfer data and communicate. For AWS there are three
distinct categories of triggers based on how they communicate; synchronous triggers,
asynchronous triggers, and poll-based triggers. Looking at Table 2.1, API Gateway
is an HTTP trigger but also a synchronous trigger, S3 is an object storage trigger
but also an asynchronous trigger and SQS is a queue trigger but also a poll-based
trigger [12]. The triggers of the other providers follow a similar categorization.

7

2. Background

HTTP Object Storage Queue

Amazon Web
Services API Gateway S3 SQS

Microsoft Azure HTTP Trigger Blob Storage Queue Storage

Google Cloud
Platform HTTP Trigger Cloud Storage Pub/Sub

Alibaba Cloud HTTP Trigger &
API Gateway

Object Storage
Service RabbitMQ

Table 2.1: Trigger comparison mapping for HTTP, object storage and queue trig-
gers from the four largest providers by market share (as of 2020) [3].

2.4 Infrastructure-as-Code (IaC)

Infrastructure-as-Code (IaC) is the principle of managing cloud resources through
code and configuration files instead of manually through various tools and provider
consoles. This enables developers to version their code, test early versions of the
infrastructure and increase development speed. Furthermore, an IaC is beneficial to
the experiments performed in this thesis where similar workflows have to be deployed
to multiple cloud providers.

An example of IaC in practice is Pulumi. Pulumi is an open-source tool that pro-
vides IaC using standard languages such as Python, JavaScript, Go, and .NET Core.
The purpose of Pulumi is to create, deploy, and manage cloud infrastructures such
as containers, serverless functions, networks, databases, or VMs for multiple cloud
providers as illustrated in Figure 2.2. While Pulumi does not provide any addi-
tional cloud services other than those included by each provider, there are multiple
benefits to using Pulumi. These benefits include developers being able to use the
language, tools, and libraries they prefer while reducing boilerplate code and avoid-
ing provider-specific YAML and DSL configurations. Another benefit of Pulumi is
using the same workflow for all providers. Together with their concept of Policy
as Code, organizations and teams can enforce security policies and standards with-
out sacrificing the developers’ full autonomy over the resources [13]. In the case of
this thesis, Pulumi is used to simplify the development and deployment of cloud
resources to Amazon Web Services and Microsoft Azure.

Figure 2.3 illustrates the structure and key components of a Pulumi project. A
project is a folder containing all the source code together with some Pulumi config-
uration files. A program is the source code written in Python, JavaScript, Go, or
.NET Core. A program is made up of the IaC code as well as the function code.
The IaC code deploys and manages cloud infrastructure and the function code is the
actual code that is deployed and run in the cloud. The cloud resources are simply

8

2. Background

Pulumi SDK

DEVELOPER

AWS SDK Azure SDK

AWS
Services

Azure
Services

Deployment

Figure 2.2: How Pulumi fits into the larger architecture and how it acts as an
intermediary between the developer and the cloud services.

called resources in Pulumi terms and every resource have input and output values
to handle dependencies between resources. For example, one resource could be a
REST endpoint with an output of its URL. Another resource, such as an object
storage trigger, could use the URL as an input and perform an HTTP request to
that URL when triggered. Every Pulumi program runs as a separate and isolated
instance called a stack. A stack could be used as a deployment environment (dev,
qa, prod, etc) where every stack can have different configurations such as geograph-
ical region, secrets, and IDs depending on the cloud provider used. A stack can also
have output and input variables to share resources with other stacks and projects.

9

2. Background

Pulumi project

Program

Resource

Resource

Resource

Inputs / Outputs

Inputs / Outputs

Figure 2.3: The general structure of Pulumi projects. Based on a figure provided
by Pulumi [2].

2.5 Distributed Tracing
Historically, tracing application performance was done in monolithic architectures
where the system was made out of tightly coupled sub-parts. This made tracing
fairly easy as these types of applications tend to run on a specific device in a specific
location. Tracing a request and its path through the system could be as simple as
analyzing the stack trace in case of an error. With the introduction of cloud com-
puting and serverless, applications have moved toward a microservice architecture
where the system is divided into small, independent services that can be developed
and deployed in isolation [14]. Despite the benefits of this approach it made trac-
ing more difficult, as tracing the path of a request had to be made across services
residing in different locations, running on different hardware and software.

Distributed tracing is the principle of tracing application performance in micro-
service or cloud architectures. As a request makes its way through the distributed
system, it generates traces that can be correlated to other traces through a shared ID,
or a parent-child relationship. A trace consists of one or multiple segments which
in turn contains information such as service name, operation name, timestamps,
and other metadata. As the traces are collected and correlated they can finally be
analyzed together. This enables end-to-end visibility of the system in terms of its
dependencies, performance, and errors, and thus facilitates debugging. Figure 2.4
shows the timeline of a sample system designed in AWS with distributed tracing
enabled through AWS X-Ray. A FaaS function (AWS Lambda) is triggered by an
HTTP request from the client to a REST API (AWS API gateway).

10

2. Background

Figure 2.4: A distributed tracing example in AWS using AWS Lambda and AWS
API Gateway.

11

2. Background

12

3
Related Work

This chapter presents previous research in Function-as-a-Service performance eval-
uations related to our goals and research questions. Key differences compared to
our method are highlighted and a framework for reproducibility is introduced. The
chapter concludes with a discussion about how users perceive delays in software
applications.

3.1 FaaS Performance Evaluation
As the adoption rate of FaaS continues to grow, it is important to establish a good
understanding of its performance to better understand its use cases and limitations.
Previous work by Pelle et al. [15] focuses on latency-sensitive applications where the
authors use a drone control application to evaluate the performance of FaaS. The
purpose of the study was to gain a better understanding of the performance of FaaS
for latency-sensitive applications to enable such applications to better benefit from
recent cloud technologies. The authors define a benchmark methodology to study
execution time, invocation time, data store access, and data store throughput with
varying hardware configurations across multiple services from AWS. The authors
found that the selection of which services to use is an important step in designing
cloud infrastructure. In the case of AWS, there are several similar services but
with drastically different performance characteristics. They further noted that the
platform itself introduces a latency affecting execution and invocation time. More
specifically, the overall delay in one of their experiments comprised of 47% execution
of drone control code, 22% network delay, and 31% platform delay. These findings
are not unexpected due to the ephemeral nature of FaaS. In one of their tests, Pelle
et al. measure invocation time and how it depends on the payload size. They define
invocation time as the time between the service call from the invoker function and
the start of the receiver function. This measure of invocation time is similar to
how we define trigger delay in Section 5.5. In this thesis, however, we intend to
contrast the study by Pelle et al. by focusing on how the type of trigger affects
trigger performance rather than payload size. We also extend their scope to include
multiple providers, while focusing on a smaller set of services. In comparison to the
study by Pelle et al., our study is entirely based on traces from AWS X-Ray and
Azure Application Insights. Pelle et al. do utilize distributed tracing but also rely on
logging timestamps in every function as well as CloudWatch logs. A benefit to our

13

3. Related Work

tracing-based approach is the possibility to handle concurrent function invocations
with out-of-order execution. We provide a detailed overview of our tracing-based
approach in Chapter 5.

3.2 Reproducible Experimentation
The software industry in general, and cloud computing in particular, move at a fast
pace with its increasing adoption. Studies on cloud services can quickly become
obsolete and remain relevant only for short periods due to major changes in ser-
vices and platforms. To enable future research to compare against previous work,
reproducibility must be taken into account when designing, running, and reporting
experiments of cloud services.

A framework that can be used to evaluate the reproducibility of experiments within
cloud computing was developed by Papadopoulos et al. [8] and consists of eight
different principles. When the framework is used to evaluate an experiment, it should
give a conceptualization of its overall reproducibility. The eight reproducibility
principles, as described by Papadopoulos et al., are:

P1. Repeated experiments: The experiment should be repeated an appropriate
number of times with the same configuration and the results should be quan-
tified.

P2. Workload and configuration coverage: The experiment should cover a space of
different possible configurations, possibly through randomization.

P3. Experimental setup description: The setup of hardware and software should
be described at an appropriate level of detail.

P4. Open access artifact: A (at least) representative subset of the developed soft-
ware should be made publicly available.

P5. Probabilistic results description of the measured performance: Report a char-
acterization of the empirical distribution of the measured performance.

P6. Statistical evaluation: Provide a statistical evaluation of the significance of the
obtained results.

P7. Measurement units: For all reported quantities, report the corresponding unit
of measurement.

P8. Cost: The modeled cost of running the experiments should be included.

In the literature review on Function-as-a-Service performance evaluations by Sche-
uner and Leitner [7], the authors found a severe lack of reproducibility when applying
the framework by Papadopoulos et al., to both academic and grey literature. The
authors found that only one of the eight reproducibility principles (P7. Measure-
ment units) was fully incorporated by a majority of the papers analyzed. In total,
four out of the eight reproducibility principles were fully or partially incorporated

14

3. Related Work

by a majority of the papers in both academic and grey literature.

The methodological principles developed by Papadopoulos et al. are, according to
the authors themselves, the first attempt at establishing a minimal set of require-
ments on the method on which cloud computing experiments are performed. An
already established system was chosen over the option of developing a new set of
principles, as the latter would likely worsen the conformity within cloud service
research.

3.3 User Studies on Response Times
As the purpose of this thesis is to benchmark customer-facing cloud services from
AWS and Azure, how users and customers perceive delays is very relevant to the
evaluations of trigger latency. There have been several user studies in the past
studying response times and latency perception. Google has defined a performance
model they call RAIL from its four parts; Response, Animation, Idle and Load
[4], based on industry-recognized research by Nielsen [16]. Latency affects the user
experience in several ways and every user perceives latency differently depending
on what device is used as well as network conditions. A user on an old mobile
phone with 3G network access is generally more latency tolerant compared to a
user on a high-end desktop computer with a fast fiber internet connection. Google’s
RAIL model defines 5 latency ranges based on how users perceive latency, as seen in
Table 3.1. The RAIL model can serve as a starting point for performance evaluations
in cloud applications.

Range User perception
0 to 16 ms Optimal for animations (60 fps or 16 ms per frame)
0 to 100 ms Users perceive this range as immediate

100 to 1000 ms Users perceive this range as natural and acceptable
in web applications or when changing view

1000 ms or more Users lose focus on the current task

10000 ms or more Users feel frustrated and are likely to not continue
using the application

Table 3.1: User perception of latency in real applications [4].

In another study, Jupiter Research [17] studied users’ reactions to latency in online
shopping applications. They found that 33 % of customers who were dissatisfied
with the experience stated that the cause for the dissatisfaction was the site being
too slow. They also found that more than a third of these customers abandoned
the site mainly for these reasons. For an online shopping brand, this can have
profound effects on sales and brand reputation. To minimize these effects the authors
recommended keeping site rendering time within 4 seconds.

When it comes to cloud computing, thousands of customers today rely on services
provided by major cloud providers like AWS and Azure. In turn, those customers of-

15

3. Related Work

ten have their own customers that rely on the services provided. If the end customers
are experiencing high latency in the applications and services they use, it has the
potential to cause even greater economic loss and customer dissatisfaction through
a domino-like effect. Kohavi et al. [18] refer to how experiments by Amazon showed
that for every additional 100 ms in latency, sales decreased by 1%. The authors also
refer to another experiment by Google which showed that when the display of search
results was delayed by 500 ms, revenues reduced by 20%. These studies highlight
the effects latency can have on cloud services and suggest that latency should be
minimized whenever possible. Based on previous research, we suggest cloud services
should strive toward keeping latency under 1000 ms but ideally under 100 ms.

16

4
Research Method

This thesis involved designing, developing, and performing an experimental study
to compare the function trigger delay of three corresponding cloud services from
two different service providers. More specifically, an engineering research approach,
based on empirical standards [19], was taken to propose a benchmark design that was
later evaluated using controlled experiments. Figure 4.1 lists the steps taken in this
study. First, the design of the trigger benchmarks was developed and implemented
using Pulumi. This resulted in a set of benchmarks for the two providers, with
one benchmark for each trigger type. The set of benchmarks together answer the
first research question in Chapter 5. The next step was the execution of the set
of benchmarks, which resulted in trace data being collected. Details about the
experiment execution is discussed in Chapter 6. The data from the collected traces
were then processed and analyzed, leading to the results presented in Section 6.3,
answering research questions 2 and 3. A discussion about the results is finally made
in Chapter 7.

Benchmark design

Set of trigger
benchmarks

Benchmark execution

Collected tracing data

Trace Processing
and Data Analysis

Results

Figure 4.1: A flowchart of the high-level steps in the empirical study.

17

4. Research Method

18

5
Trigger Benchmark

When designing the structure of the benchmark, two important requirements needed
to be satisfied. Firstly, everything should be automated upon running a script,
and secondly, the structure should allow for an arbitrary number of experiments to
be invoked, i.e. the program should not exit after executing just one event. By
automating the benchmark tests, a higher level of reproducibility is ensured as
manual steps are eliminated.

Our goal was to design two benchmarks, one for each provider, that are as similar
as possible to each other to be able to make fair comparisons. Due to the het-
erogeneous nature of the providers’ services, a perfect comparison is not feasible.
Although there are some differences in the two benchmarks, the structure of both
benchmarks is conceptually the same, consisting of three fundamental components.
Those being, (1) a component to handle shared resources such as configurations, (2)
an infrastructure component to serve as an entry point for each benchmark, and (3)
a trigger component to handle the actual trigger and workload. All three compo-
nents are separate Pulumi projects to allow for individual deployment and sharing
of resources through Pulumi stack references. These components are discussed in
further detail in the sections below. To promote reproducibility, all code is written
in the same language, in this case, Node.js JavaScript.

Figure 5.1 shows a high-level model of the architecture of the benchmark. Invoking a
benchmark starts with issuing an HTTP request to an API Gateway, either manually
or automatically. The API Gateway is connected to a FaaS function that triggers
upon receiving the HTTP request. This function acts as the invoker function of the
benchmark and is part of the infrastructure component discussed in Section 5.2. The
API Gateway of the invoker function was omitted from the figure due to the focus not
being on what happens before the invoker function executes. Depending on which
benchmark to run, the invoker function will either issue an HTTP GET request to
another API Gateway, upload a file to an object storage or send a queue message
to a queue. These events will in turn trigger a second FaaS function acting as the
receiver function, which runs the workload. The receiver function and associated
external services are discussed in Sections 5.3.1, 5.3.2 and 5.3.3.

19

5. Trigger Benchmark

Infrastructure Workload

Manual or
automatic
execution
using an

API Gateway

Object Storage

Queue

Upload/create file

Queue message

HTTP GET Request HTTP Trigger

Storage Trigger

Queue Trigger

API Gateway

External serviceFaaS function

(Invoker function) (Receiver function)

Figure 5.1: High-level benchmark architecture/structure.

5.1 Deployment
Before deploying any resources from the infrastructure or trigger components to any
of the two providers, resources shared between the different components are created
and deployed. These resources need and should only be created once as they serve as
a common configuration between the different triggers within a provider’s domain.
Resources created within this component also provide authorization to certain users,
applications, and services to execute specific tasks in the infrastructure and trigger
components. Such tasks requiring explicit permissions include, for example, the
creation of new files in one of the object storage services.

The shared resources for AWS include IAM roles and policies to manage resource
access permissions. The IAM role was given full access to all services to simplify
development. In the case of Microsoft Azure, the shared resources include a Resource
Group to manage resources and an Application Insights configuration to be used for
distributed tracing.

Figure 5.2 shows the order in which each of the three components previously listed
(shared resources, infrastructure, and trigger) must be deployed. The trigger compo-
nent is deployed before the infrastructure component is, despite the execution being
in the opposite order. This is because the output of the infrastructure deployment
requires references to the trigger resources to be added as parameters at the end of
the infrastructure component’s endpoint URL. What trigger resource references are
needed depends on the type of trigger that is being deployed.

20

5. Trigger Benchmark

Shared
Resources

Trigger

Infrastructure

<Component> <Component> <Component>

References
to Shared
resources

References
to Shared
resources

Infrastructure
Endpoint URL Params:

References to
Trigger specific

resources

Chronological Order of Deployment

References to
Trigger specific

resources

Figure 5.2: The deployment process of each benchmark.

5.2 Infrastructure
The infrastructure component acts as the entry point of each benchmark. It allows
triggering of the benchmark flow for a specific provider and trigger type based on
user-defined, trigger-specific URL parameters. The infrastructure component is di-
vided into two parts, one for each provider as in the case of the shared component.
It deploys a REST API through an HTTP trigger with a handler function that gets
triggered by incoming HTTP requests. This enables us to either manually or auto-
matically trigger a benchmark with no further configuration. The handler function
is responsible for triggering the workload functions by either issuing an HTTP re-
quest in the case of the HTTP trigger, uploading a file to an object storage in the
case of the Storage trigger, or uploading a message to a queue in the case of the
Queue trigger.

5.3 Trigger Types
In this section, the different trigger types used in this thesis will be discussed. We
present how they are implemented and discuss how they relate to the benchmark as
a whole. The mapping of corresponding services from each provider is based on a
list provided by Microsoft [20], except for the Queue trigger where two alternatives
are possible. In this case, the mapping is based on the similarity between services.

5.3.1 HTTP Trigger
The HTTP trigger is the trigger that requires the least amount of setup and con-
figuration out of the triggers being benchmarked in this thesis, and the AWS and
Microsoft Azure implementations are structurally very similar. For AWS, an AWS
API Gateway was used, with an attached Lambda function as callback. For Azure,
an Azure Functions HTTP trigger was used, along with an attached Azure Func-
tion as callback. In both cases, the infrastructure component performs an HTTP
request to the specified HTTP trigger endpoint which triggers the exposed Azure
or Lambda function. As no extra payload is needed, the infrastructure component
issues simple HTTP GET requests together with some special headers for tracing,
as will be described further in Sections 5.5.1 and 5.5.2. The URL to each HTTP

21

5. Trigger Benchmark

trigger is created when deploying its Pulumi project. The URLs are then imported
to the infrastructure component using Pulumi stack references.

5.3.2 Storage Trigger
To implement a storage trigger in AWS, Amazon Simple Storage Service (S3) was
used. S3 is AWS’s implementation of an object storage and can be used to store and
retrieve large amounts of data. As all data is part of an S3 bucket, the deployment
process of the Storage trigger begins with deploying a S3 bucket with an attached
Lambda function that triggers on the onObjectCreated callback. For the storage
and trigger functionality itself, no other resources are needed. To trigger the AWS
version of the Storage trigger, the infrastructure component simply uploads a new
file to the specified S3 bucket. This will trigger the onObjectCreated callback which
in turn will trigger the attached Lambda function to execute its workload.

Azure Blob Storage is Azure’s implementation of an object storage service. Similar
to S3 buckets, data in Azure Blob Storage is uploaded to Azure Storage Containers to
manage and group data, similar to a folder in a traditional file system. The Storage
Container is connected to a Storage Account to handle data access permissions. In
the Azure version of the Storage trigger the traditional Azure Blob Storage trigger
was not used and instead used an Event Grid trigger. The reason for this is that the
Event Grid trigger offers better performance in terms of blob updates per second
as well as avoiding the up to 10-minute processing delay present in Blob Storage
triggers. The time difference between Blob Storage trigger and Event Grid trigger is
so great because Event Grid is event-driven, meaning that an event triggers an action
to be taken, while Blob Storage trigger polls the storage every few milliseconds to
every few minutes depending on recent activity. This means that the Event Grid
trigger is more similar to how an AWS S3 bucket trigger functions, in that both
utilize events, making a comparison between these two services fairer. The Event
Grid trigger is set to trigger a callback in the form of an Azure function on the
onGridBlobCreated event. To trigger the Azure version of the Storage trigger, the
infrastructure component uploads a new file to the specified Storage Container.
This will trigger the onGridBlobCreated callback and the attached Azure function
to execute its workload.

5.3.3 Queue Trigger
To implement a queue trigger in AWS, Amazon Simple Queue Service (SQS) was
used. The deployment process begins with deploying an SQS queue with an onEvent
callback in the form of a Lambda function. Similar to the HTTP and Storage
triggers, the Queue trigger is triggered from the infrastructure component by sending
a new message to the specified queue. The message then triggers the onEvent
callback and the attached Lambda function.

In the Azure implementation, Azure Queue Storage was used to deploy a Storage
Queue connected to a Storage Account that manages message access permissions.
In addition to Azure Queue Storage, Azure also provides Azure Service Bus Queue

22

5. Trigger Benchmark

as an alternative. The reason why Azure Queue Storage was favored and ended up
being used over the alternative is that the former is more similar to AWS SQS (with
default configuration) than the latter is. Both AWS SQS (with default configuration)
and Azure Queue Storage use best-effort ordering with at-least-once delivery. To the
deployed Storage Queue, an Azure Function was attached as a callback to onEvent.
As in the AWS SQS Queue trigger, the infrastructure triggers the Azure Queue
trigger by sending a new message to the specified queue. This will trigger the
onEvent callback and the attached Azure Function.

5.4 Workload

When performing micro-benchmarks, which has been a common research topic in
the past, the workload plays an important role as it is the performance of this
component of the system that is measured. In this thesis, however, the performance
of the workload is ignored and its only purpose is to serve as an endpoint for the
measured trigger. In other words, the measurement stops as soon as the workload
starts executing. The workloads are run as simple serverless functions and use
AWS Lambda or Azure Functions for their respective cases. More specifically, the
workloads are run in the receiver component.

The purpose of this thesis was not to measure the execution performance of cloud
service providers and, therefore, a minimal workload in terms of code length was
desired to have as little effect on start-up times as possible. In his experiments,
Shilkov [21] found a correlation between greater package size, i.e. a larger appli-
cation with more dependencies, and longer cold-start times for AWS. A minimal
workload would, therefore, theoretically interfere less with the overall delay as well
as potentially minimizing the cost of resource allocation and execution time for
providers with pay-as-you-go financial models, such as AWS and Microsoft Azure.
The source code of the workload used in this thesis by all trigger types can be found
in Figure 5.3.

1 const factorial = (n) => {
2 let res = 1;
3

4 for (let i = 2; i <= n; i += 1) {
5 res *= i;
6 }
7 return res;
8 };

Figure 5.3: The minimal workload that all trigger types execute.

23

5. Trigger Benchmark

5.5 Distributed Tracing

To achieve the goal of measuring trigger latency, we want to obtain end-to-end vis-
ibility of the system by using distributed tracing to instrument every component.
More specifically, we want to be able to track a request as it makes its way from the
invoker function, to the external services, and to the receiver function as depicted
in Figure 5.1. Both AWS and Microsoft Azure offer relatively advanced and config-
urable tracing services that work for both monolithic and distributed systems. As
mentioned earlier, tracing a distributed system across several micro-services is inher-
ently more difficult than tracing a non-distributed system as the services themselves
most often are not related to each other (except in geographical location). Using
the benchmark designed and discussed in this chapter, all traces will have the same
high-level structure and contain the same components.

The benchmarks have two types of invocations, synchronous and asynchronous in-
vocations. In synchronous invocations, as illustrated in Figure 5.4, the benchmarks
start by executing the invoker function and a timestamp T1 is recorded. The in-
voker function then calls a synchronous dependency by issuing an HTTP request.
Once the dependency responds to the call made by the invoker function, the request
is made at timestamp T3. The request then triggers the execution of the receiver
function at timestamp T4. In addition to logging timestamps, provider-specific trace
identifiers are also passed from the invoker function to the request and finally to the
receiver function to correlate the traces. In asynchronous invocations, as illustrated
in Figure 5.5, the benchmarks also start by executing the invoker function at times-
tamp T1. The invoker function then calls an asynchronous dependency using an
HTTP request. The request is eventually made at timestamp T3 and finally, the
request triggers the execution of the receiver function at timestamp T4. Like with
synchronous invocations, provider-specific trace identifiers are passed on from the
invoker function to the request, to the receiver function to enable trace correlation.
The time between T3 and T4 is, for both synchronous and asynchronous invoca-
tions, the time the system waits for the next function execution to happen, thus
making this delay the trigger latency measured in this thesis.

This is, however, not the only way to measure the trigger latency. In AWS X-Ray
the resulting trace is highly detailed and contains several different timestamps other
than those used in this thesis. Unfortunately, Azure Application Insights is not as
detailed and the method described above is the only one that results in timestamps
that could be extracted for both AWS and Microsoft Azure.

The benchmark methodology of this thesis relied on distributed tracing services
provided by AWS and Azure. During the process of this thesis, several limitations in
those services regarding distributed tracing were discovered. In the sections below
we discuss how distributed tracing was used for AWS and Azure as well as how
limitations in the AWS X-Ray and Azure Application Insights implementations were
handled.

24

5. Trigger Benchmark

Function execution

Function execution

Request

Invoker function

Receiver function

Synchronous Dependency

Time

Measured delay

Calls

T1 T3 T4 T5 T2

Figure 5.4: A representation of a trace for a synchronous trigger, i.e. the HTTP
trigger.

Function execution

Function execution

Request

Invoker function

Receiver function

Asynchronous Dependency

Time

Calls

T3T1 T2 T4 T5

Measured delay

Figure 5.5: A representation of a trace for an asynchronous trigger, i.e. the Storage
and Queue triggers.

5.5.1 Amazon Web Services X-Ray
Distributed tracing for AWS relies on AWS X-Ray and is enabled per resource to
obtain end-to-end visibility of the system. Exactly how to enable X-Ray tracing of
a certain resource depends on its type. For Lambda functions, a TracingConfig set
to active is enough to enable tracing of that Lambda function. For API Gateways,
X-Ray is enabled through stageArgs by setting the X-Ray tracing flag to true. This
results in X-Ray logging incoming requests to the specific component. By repeating
the processes for other components, the system as a whole can be instrumented.
After invoking a number of benchmarks, the X-Ray traces are downloaded using the
AWS SDK and processed by a Python script.

Although X-Ray provides a good overview of a system, there are some limitations
to the services provided by AWS. It was found that in the case of the Queue trig-
ger benchmark, where a Lambda function (invoker) uploads a message to a queue
(trigger) that triggers another Lambda function (receiver), trace correlation was
not achieved. Invoking the Queue trigger benchmarks lead to disconnected traces
where X-Ray did not correlate the invoker function with the receiver function. This
was later found to be due to X-Ray not supporting instrumentation of AWS SQS
out-of-the-box. As the two traces had no shared trace-ID and no clear relationship

25

5. Trigger Benchmark

between each other, automating the collection of trace data would be impossible due
to out-of-order executions. At the point of this thesis, there was no official solution
to this problem. As trace correlation is a crucial part of the experiment, a manual
workaround had to be implemented. AWS SQS messages support MessageSystem-
Attributes with a AWSTraceHeader as meta-data. Our solution to the disconnected
traces was then to send the correct X-Ray trace-ID as an AWSTraceHeader and read
it in the receiver function. After reading it, an annotation is added to the current
X-Ray trace segment with the value of the AWSTraceHeader. This enables manual
correlation of the disconnected traces through a Python script.

5.5.2 Microsoft Azure Application Insights
In the Azure implementation of the benchmarks, the Azure Application Insights
service is used to trace the system. An Application Insights configuration is created
as a shared component and is subsequently used by all other components to group
traces and create a single, correlated trace. Using the Azure Application Insights
REST API [22], traces related to a specific Azure Application can be fetched, which
can then be filtered and analyzed using a Python script.

While the AWS X-Ray traces are relatively detailed showing timestamps for both
services and their sub-components, Azure Application Insights records much fewer
timestamps but includes function requests, function execution, and dependency
calls. The limited extent of the Azure traces narrows the configuration space, mak-
ing Azure Application Insights the deciding factor in what timestamps to measure
trigger latency between. Looking at Figure 5.4 and 5.5, T1 to T5 are the only
timestamps available in Application Insights while X-Ray records additional times-
tamps. Because of this, the trigger latency had to be defined as the time between
two of those five timestamps.

Similar to the case of AWS X-Ray, it was found that Azure Application Insights
have some limitations in tracing some Azure services. In the Queue and Storage
trigger benchmarks, Azure Application Insights was unable to forward tracing head-
ers between components which lead to disconnected traces. In the Queue trigger
benchmark, there is an Azure Function (invoker) that uploads a message to a queue
(trigger) and triggers a second Azure Function (receiver). Similarly, in the Storage
trigger benchmark, there is an Azure Function (invoker) that uploads a blob to a
container (trigger) which triggers a second Azure Function (receiver). Running the
benchmarks of those triggers leads to disconnected traces with no reliable way of
connecting them. At the point of this thesis, there was no official solution to these
problems. But considering that everything was fully implemented and the only issue
being the correlation itself, a simple workaround could be developed. Since the Stor-
age trigger relies on a Blob being uploaded to a Storage Container, meta-data can
be passed together with the uploaded blob. In the event that triggers the receiver
function, the included meta-data can be read directly by the receiver function. By
sending a message with the correct operation-ID as meta-data, a custom trace can
be logged in the receiver function where the trace message consists of the correct
and current (but incorrect) operation-ID. This enables manual correlation between

26

5. Trigger Benchmark

the invoker and receiver functions through a Python script. As the same problem
was present in the Queue trigger benchmark, a similar solution was implemented.
However, since queue messages in Azure Storage Queue do not support sending
meta-data, the correct operation-IDs were instead included in the actual message
text. As the operation-IDs are short, this should not affect the package size, and
thus, should not affect the overall performance. By reading the correct operation-
ID in the receiver function and manually logging it as a custom trace together with
the current (but incorrect) operation-ID, the invoker and receiver functions can be
manually correlated in a Python script.

27

5. Trigger Benchmark

28

6
Trigger Experiment

This chapter presents the details of the controlled experiment used to evaluate the
benchmark design proposed in Chapter 5. The chapter begins with discussing the
methodology, namely, the execution and trace processing, and concludes with a
section on the main findings with respect to our research questions.

6.1 Execution

How a cloud service is managed and run is a highly complex system, meaning many
variables determine its performance. The performance can, therefore, vary signifi-
cantly depending on the server location chosen, the day of the week, and the time
of day the tests are performed. In this thesis, the goal was to compensate for two
of these independent variables, specifically the day of the week and the time of day,
by running a set of invocations throughout the day over multiple days. The server
locations chosen were not changed throughout the benchmark execution, however,
choosing instead to use servers in similar geographical locations for both AWS and
Azure. More specifically, this location was chosen to be central Europe, where both
providers happen to have a server hall in Frankfurt, Germany (the identifiers used
are eu-central-1 for AWS and GermanyWestCentral for Microsoft Azure.) Each set
consisted of 1000 sequential invocations run three times per day (9:00, 15:00, and
21:00 CEST) between the 14th and 17th of May 2021, resulting in a total of 12000
invocations for each of the six benchmarks.

The sheer number of tests that had to be run at roughly the same time required
automating the invocations using the serverless-benchmarker tool envisioned by E.
van Eyk et al. [9]. Using hooks, serverless-benchmarker could be used to efficiently
deploy, invoke, and destroy the resources specified in the benchmarks. For the AWS
benchmarks, serverless-benchmarker was also used to extract the traces recorded by
X-Ray through the AWS SDK. In the case of the Azure benchmarks, its REST API
had to be used manually as serverless-benchmarker provided no support for extract-
ing Azure Application Insights traces [22]. Under the hood, serverless-benchmarker
provides automated load generation through the open-source loading testing tool k6
[23]. This lets us sequentially invoke the large number of benchmarks required by
our experiment.

29

6. Trigger Experiment

6.2 Trace Processing
When traces from AWS and Azure are fetched, the next step is to process the traces.
The processing of trace data is handled by Python scripts where the trace data is
represented as JSON objects. The processing of trace data starts with grouping
traces by Trace-ID for AWS or Operation-ID for Azure. A group, in this case,
represents all trace data for one invocation of a certain benchmark. After grouping
the traces, the trigger latency is calculated based on the available timestamps as
discussed in Section 5.5. All delays are recorded in milliseconds and exported as
CSV files which in turn can be analyzed and visualized by a separate Python script.

6.3 Experiment Results
This section presents the results from the six benchmarks performed in this thesis.
Figures 6.1 and 6.3 show the results as frequency distribution plots for all results
from the AWS and Azure benchmarks respectively. Figures 6.2 and 6.4 show the
same results as cumulative distribution functions (CDF), also for AWS and Azure
respectively. The CDF of a random variable X, in this case the delay, evaluated
at x, is the probability that X will take a value less than or equal to x. As an
example, looking at Figure 6.2, the probability that the AWS Storage trigger has
a delay less than or equal to 1500 ms is about 0.6 or 60%. Table 6.1 shows a
summary of general statistics for each of the six benchmarks, including sample size,
mean, median, standard deviation, relative standard deviation, and the 75th and
99th percentiles of each distribution. Relative standard deviation is the standard
deviation expressed as a percentage of the mean.

AWS
HTTP

AWS
Storage

AWS
Queue

Azure
HTTP

Azure
Storage

Azure
Queue

Sample size 11972
(-28)

11715
(-285)

11826
(-174)

11852
(-148)

11932
(-68)

11168
(-832)

Mean 40.8 ms 1309.4 ms 121.0 ms 58.2 ms 303.1 ms 749.6 ms

Median 33 ms 1298 ms 93 ms 30 ms 298 ms 125 ms

Standard deviation 48.7 ms 346.8 ms 158.7 ms 270.2 ms 150.9 ms 2002.8 ms

Relative standard
deviation 119.4% 26.5% 131.2% 464.4% 49.8% 267.2%

75th percentile
(P75)

45 ms 1556 ms 112 ms 38 ms 412 ms 163 ms

99th percentile
(P99)

162 ms 2114 ms 656 ms 153 ms 645 ms 9838 ms

Table 6.1: Summary of statistics for all benchmarks.

When extracting the traces only complete traces, i.e. invocations that executed both
the infrastructure (invoker function) and the trigger workload (receiver function),

30

6. Trigger Experiment

were recorded and used in the analysis. This means that for all six benchmarks
the sample sizes are smaller than the expected 12000 (1000 invocations × 3 times
each day × 4 days). Other than some traces being incomplete, other traces were
not recorded (due to sampling) by AWS X-Ray and Azure Application Insights to
reduce traffic and cost. These traces were not displayed at all in X-Ray and only
partially displayed in Azure Application Insights. Due to the above reasons, 2.1%
of the total expected sample size was lost.

Despite the samples being taken at different times, all twelve samples have been
combined into one for each of the six benchmarks. This is because the results,
overall, showed little variance when performed over different times and days and
no correlation between time and day and performance was found. The little vari-
ance that did occur was likely caused by random differences in performance. The
justification for this will be discussed further in Section 7.4.2.

6.3.1 Amazon Web Services
For all three AWS benchmark results, the median is somewhat lower than its mean,
meaning the distribution is positively skewed resulting in a long tail on its right
side. This is, however, common when measuring delays. The HTTP benchmark
had the lowest mean of 40.8 ms, significantly lower than the mean of the Storage
benchmark (1309.4 ms) and less than half the mean of the Queue benchmark (121
ms). Despite having the lowest mean, the HTTP benchmark had the second-highest
relative standard deviation of 119.4%. The results from the Storage trigger show
a very high mean of 1309.4 ms and standard deviation of 346.8 ms. The median
(1298 ms) of this distribution is, however, almost equal to the mean and it takes the
shape of an almost perfect normal distribution. The low relative standard deviation
(26.5%) of the same distribution shows that the spread is relatively small if the
relatively high mean is taken into consideration. The Queue trigger had the highest
relative standard deviation of 131.2% but a mean (121 ms) fairly close the the HTTP
trigger. The distributions of both the HTTP trigger and Queue trigger have clear
peaks, indicating less spread compared to the Storage trigger.

31

6. Trigger Experiment

0 500 1000 1500 2000 2500
Delay (ms)

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l i
nv

oc
at

io
ns

Frequency of delays in AWS
HTTP
Storage
Queue

Figure 6.1: Frequency of delays in the AWS trigger benchmarks.

0 1000 2000 3000 4000 5000
Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Cumulative Distribution Function for all AWS triggers

AWS HTTP
AWS Storage
AWS Queue

Figure 6.2: Cumulative distribution functions for the AWS trigger benchmarks.

32

6. Trigger Experiment

6.3.2 Microsoft Azure
In general, the results from the HTTP benchmark have little spread but its mean
(58.2 ms) is almost double its median (30 ms), and both the standard deviation
(270.2 ms) and relative standard deviation (464.4%) are relatively high. This was
caused by some extreme outliers reaching over 3000 ms in delay. As can be seen
in Figure 6.3, the distribution of the HTTP trigger in Azure has a long tail and is
tightly clustered around its mean. The presence of extreme outliers is even more
noticeable looking at the results from the Queue benchmark. In this case, the mean
(749.6 ms) is almost six times the median (125 ms), and the standard deviation
(2002.8 ms) is once again high. In the case of the Queue trigger, some extreme
outliers reach as much as 12000 ms in delay. The percentile-values in Table 6.1
and the cumulative distribution function of the Queue trigger in Figure 6.4 clearly
display this phenomenon. The results from the Storage benchmark has relatively
little spread, with a standard deviation of 150.9 ms, but consists of four clear peaks.
The mean of the Storage trigger benchmark (303.1 ms) is lower than the Queue
trigger benchmark (749.6 ms) but still significantly higher than the mean of the
HTTP trigger benchmark (58.2 ms). Interestingly, like in the case of AWS, the
Azure Storage trigger benchmark showed a much smaller relative standard deviation
(49.8%) compared to the other triggers.

33

6. Trigger Experiment

0 500 1000 1500 2000 2500
Delay (ms)

0

500

1000

1500

2000

2500

To
ta

l i
nv

oc
at

io
ns

Frequency of delays in Azure
HTTP
Storage
Queue

Figure 6.3: Frequency of delays in the Azure trigger benchmarks.

0 1000 2000 3000 4000 5000
Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Cumulative Distribution Function for all Azure triggers

Azure HTTP
Azure Storage
Azure Queue

Figure 6.4: Cumulative distribution functions for the Azure trigger benchmarks.

34

7
Discussion

Based on our research questions, this chapter reflects upon and discusses the results
from Chapter 6. Threats to the validity of the results and conclusions are also
presented. Finally, the reproducibility of this thesis is discussed in terms of the
eight reproducibility principles introduced in Chapter 3.

7.1 RQ1: Measuring latency across providers
As previously discussed, it is difficult to find a one-size-fits-all benchmark solution
for services that have been developed separately despite being very similar in pur-
pose. To make the benchmarks as fair and comparable to each other as possible,
the differences between the benchmarks for different providers have been kept to a
minimum, avoiding any provider-specific configurations or components that might
alter the results. The Infrastructure-as-Code (IaC) service Pulumi has helped in
this regard by allowing the same workflow to be used for both providers. Despite
these precautions and the benefits of Pulumi, some differences that will affect the
benchmarks are bound to arise, however.

The success of designing a fair benchmark is highly dependent on the underlying ar-
chitecture of the triggers and related services. Starting with the HTTP trigger, the
benchmark structures of the HTTP trigger for both AWS and Azure are quite sim-
ilar. In both cases, the FaaS function is exposed through a simple HTTP endpoint
making a comparison between the providers fairer. Although the internal archi-
tectures of the HTTP endpoints likely vary between providers, we argue that the
benchmarks for the HTTP trigger are as similar as it gets when taking the factors
we have control over into account.

Continuing with the Storage trigger, both the AWS and Azure implementations of
it are event-based, as discussed in Section 5.3.2. The AWS Storage trigger bench-
mark uses an onObjectCreated callback handler on the specified bucket to trigger
the lambda function. The Azure implementation of the Storage trigger benchmark
uses an onGridBlobCreated callback handler of an event grid to trigger the Azure
function. On a surface level, the benchmark structures for both implementations of
the Storage trigger seem fairly similar. However, the internal architecture behind
each trigger is largely unknown. In terms of benchmark design, we argue that our
Storage trigger implementations are as similar as they get considering the factors

35

7. Discussion

we have control over. We also expect the providers’ internal architectures of the
Storage triggers to differ more between providers than the HTTP triggers likely do.

The Queue trigger is perhaps the most interesting trigger out of the three from a
technical perspective. Both the AWS and Azure implementations are poll based
making the polling-algorithm the most important difference between the two. The
benchmarks for the Queue trigger both use the default settings out of the ones
that can affect polling. As discussed in Section 5.3.3, both implementations use
best-effort ordering with at-least-once delivery. Azure Storage Queue uses a random
exponential back-off algorithm for polling to avoid polling idle queues. The maxi-
mum wait time is configurable through the maxPollingInterval property and in our
case, it is set to the default value of 1 second. AWS SQS uses short polling where
a subset of SQS servers, based on weighted random distribution, is queried. This
might cause a poll request to not return all messages but, according to the AWS
documentation, if the number of messages is less than 1000, a subsequent request
will return the remaining messages. In terms of benchmark design, we argue that
the benchmarks for the Queue triggers are designed to be as fair as possible.

7.2 RQ2: How the trigger type affects latency
As seen in Figure 6.3 and mentioned in Section 6.3.2, the distribution of the HTTP
trigger in Azure has a long tail where the measured delays are tightly clustered
around the mean. The Azure Storage and Queue triggers display other patterns with
the Storage trigger distribution showing a wave-like pattern where the frequency is
higher for some delays. The peaks also seem to occur almost exactly every 100
ms which is an interesting result considering that the EventGrid resource used for
triggering the Storage workload is event-based. This could suggest that the number
of events is throttled which could give the resulting pattern. In addition to displaying
different patterns, the high relative standard deviations of the HTTP and Queue
triggers indicate the presence of extreme outliers as can be seen in Figure 6.4.

Based on the measured results from all benchmarks, HTTP triggers perform sig-
nificantly better than Storage and Queue triggers. A majority of all benchmark
invocations of an HTTP trigger fall within the 0 to 100 ms category of Google’s
RAIL model [4], where users perceive delays as immediate. According to research
by Kohavi et al. [18] delays of this magnitude would also increase revenue by min-
imizing customer dissatisfaction due to higher delays. The HTTP triggers are also
the most consistent in terms of delay, as visualized in Figures 6.2 and 6.4.

Storage triggers were shown to have higher means, 1309.4 ms and 303.1 ms for
AWS and Azure respectively. 303.1 ms falls within the 100 to 1000 ms category in
Google’s RAIL model where users perceive delays as natural in web applications.
However, 1309.4 ms is perceived differently by users. In the category of 1000 ms or
more in delay, users start to lose focus on the current task. Delays of this magnitude
would also severely impact revenue by several percent. Similar to the HTTP trigger,
the Azure Storage trigger was shown to be fairly consistent in the measured delay
while the AWS version was surprisingly inconsistent. Figure 6.2 and 6.4 show the

36

7. Discussion

cumulative distribution functions of the Storage triggers, where the Azure Storage
trigger is fairly close to being as consistent as the HTTP trigger while the AWS
Storage trigger is much less consistent compared to the HTTP and Queue triggers.

The Queue triggers also performed worse compared to the HTTP triggers with
mean delays of 121.0 ms and 749.6 ms for AWS and Azure respectively. Both of
these means fall within the acceptable range of Google’s RAIL model but, compared
to the HTTP trigger delays, they would decrease sales significantly. As visualized
in Figure 6.2, the Queue trigger was shown to be the second most consistent in the
measured delay for AWS and the least consistent trigger for Azure.

The results from this study are not only beneficial to the research topic, but also
to industries that utilize cloud services. Most importantly it shows that the trigger
chosen to be used in a system can greatly affect its performance and, according to
these results, an HTTP trigger should be preferred over others when the choice is
possible. This research can also help the providers recognize strengths and weak-
nesses in their services so appropriate actions can be taken to improve their quality.

7.3 RQ3: How the provider affects latency
Looking at Table 6.1, AWS generally performs better in terms of mean and relative
standard deviation compared to Azure. An exception is the Storage trigger which
performed better in the Azure version with a much smaller mean and standard
deviation. The results also show that AWS performance is generally more consistent
across invocations compared to Azure. Both the Azure HTTP and Azure Queue
triggers had a significant number of extreme outliers, with high relative standard
deviations. This is especially noticeable in the difference between the 75th and
99th percentiles of performance in the Azure Queue benchmark as can be seen in
Table 6.1. 75% of invocations had a delay of 163 ms or less but 99% had not
finished until after 9838 ms. Extreme outliers in delay can negatively affect user
satisfaction if the application normally performs better. A large delay is likely to
more noticeable if the user is accustomed to faster load times. This also negatively
affects latency-sensitive applications.

The results from this study are especially beneficial to developers and software
architects having to decide between what providers to use for a system. Aside
from performance being important in many applications, cost is another important
factor in deciding what provider to use. Although this thesis does not provide any
detailed cost analysis, it is possible that the cost differences between providers are
significant, especially in large applications. Depending on what features and services
that are necessary for the system being developed, what performance requirements
are present, and budget, the preferred choice of provider can vary. For HTTP and
queue triggers Amazon Web Services is the recommended choice as it is faster than
Microsoft Azure on average. For storage triggers, Azure is the recommended option
as the average trigger delay is shorter. But for all three triggers Azure is more
likely to have performance outliers and can be considered less predictable. Cloud
developers and architects should, therefore, consider the trade-off between speed

37

7. Discussion

and predictable performance.

7.4 Threats to Validity
In this section, threats to the validity of the results are discussed. The discussion is
guided by the popular categories of construct validity, internal validity, and external
validity [24]. Construct validity is the degree to which the experiments performed
answer the research questions proposed. Internal validity is the degree to which a
causal relationship can be found between the dependent and independent variables.
External validity is the degree to which the results of this study are generalizable
to other independent variables or the subject as a whole.

7.4.1 Construct Validity
An important point in the construct validity of this thesis is to what degree Ama-
zon Web Services and Microsoft Azure are comparable. To make a comparison on
performance, some aspects of the two services must be similar. But as previously
discussed, due to their separate development, two services from different providers
that have been compared in this thesis are not necessarily similar in structure,
making a simple one-to-one comparison difficult. However, one thing the two ser-
vices compared in this thesis have in common is the purpose they serve to users.
Whether a user decides to use a service from Amazon Web Services or Microsoft
Azure, they expect it to serve the purpose they have for it. This makes comparisons
across providers comparable in terms of purpose, while not necessarily in terms of
structure.

The potential for issues in the construct validity of the benchmark has been miti-
gated with Pulumi and the modular approach used. The modular approach means
that both the infrastructure (invoker function) and the workload (receiver function)
use the same code across trigger types for the same provider. Since that makes the
triggering component the only component that varies between tests, the likelihood
of other components affecting the results is lower.

7.4.2 Internal Validity
In terms of internal validity, we want to answer whether or not the results correlate
to the type of trigger and provider rather than some other factor. As the results
were gathered over multiple days and at different times each day and still showed
very little variance, it suggests that time and day likely has little effect on trigger
performance in terms of delay. However, comparing the results between trigger
types and providers showed clear differences in performance. Multiple other factors
could potentially affect the results, including the geographical location of the cloud
resources, dynamic resource limits, and multi-tenancy in the underlying VMs. These
factors are either difficult to measure or were left as future work to investigate how
they affect trigger performance.

38

7. Discussion

When presenting the results in Chapter 6 all twelve samples from each benchmark
were combined into one sample, thus accounting for differences in time and day but
not being differentiated between. The justification for this was that the different
samples visually showed little variation. Two common tests used to measure the
variance between samples are Kruskal-Wallis and Kolmogorov-Smirnov tests. The
Kruskal-Wallis test can be used to prove whether two data sets have been sampled
from the same population and the Kolmogorov-Smirnov test is used to calculate the
goodness of fit between two or more samples. However, due to high test scores nei-
ther test could prove that two samples from the same benchmark taken at different
times and/or days were sampled from the same population, with the exception of
the Azure Storage trigger over different times. This is likely due to minute differ-
ences in performance that are not relevant to this thesis in combination with large
sample sizes, which tend to increase the test scores. The justification for combining
the twelve samples is, therefore, not based on statistical evidence but rather based
on the visual similarity between samples. Had the difference between samples been
greater than what was measured this might have been problematic, but, since the
aim of the study was not to compare differences over time and day, just to measure
over it to take possible differences into account.

Due to the closed nature of both providers’ internal tracing tools (Amazon X-Ray
and Azure Application Insights), the results of this thesis relies entirely on times-
tamps recorded internally by the services used. This is not necessarily a problem
with monolithic systems but in distributed systems using microservices, the clocks
are not necessarily synchronized. Another potential effect on the timing of the inter-
nal clocks is that which comes from the observer effect [25]. Using tools to observe
the internals of a system, which is necessary when tracing an invocation, increases
the instrumentation overhead and could further delay events in the traces.

The difference in the amount of trace detail offered by AWS X-Ray and Azure
Application Insights also poses a threat to validity as it severely limits the number of
possible experiment configurations. This in combination with the lack of information
regarding the details of existing traces makes it difficult for users to know what the
system is doing “under the hood”, and in extension, makes it difficult to analyze the
traces on a lower level.

7.4.3 External Validity
As now established, the performance of triggers in two serverless computing providers
varies between different types of services and between providers. From these results,
we can assume that the same will be true when testing other services and providers.
It is, however, difficult to relate the results from this thesis to other similar exper-
iments using other services or providers. It is also difficult to draw any conclusion
about other trigger types offered by Amazon Web Services and Microsoft Azure, as
these are likely unrelated to the triggers tested in this thesis. The performance of
other services and providers can easily be measured by extending the benchmark
methodology presented in Chapter 5 to include more services and providers. This is
made possible by the high level of automation and usage of IaC to ensure consistent

39

7. Discussion

workflow between providers.

Some justifiable generalizations can be made with these results, however, that are
related to the policies of each provider. The first such generalization is the rate at
which traces are completed upon an invocation. This is related to the Quality of
Service (QoS) and its ability to handle surges of invocations. In this case, none of
the two providers performed particularly well, especially not if a delivery guarantee
is required. Another generalization is the likelihood of having extreme outliers in the
performance results. AWS generally had few outliers and Azure was far more likely
to have extreme outliers. This can be seen in the standard deviations in Table 6.1
and in the cumulative distribution functions in Figure 6.2 and 6.4.

7.5 Reproducibility

As discussed in Chapter 3, effort has been put into ensuring that a similar study
can be made in the future under the same conditions. Therefore, in this section, the
reproducibility of this study will be discussed in terms of the eight reproducibility
principles developed by Papadopoulos et al. [8]. First, a principle will be presented
the same way as in Chapter 3, followed by a discussion related to the methodological
approach.

P1. Repeated experiments: The experiment should be repeated an appropriate
number of times with the same configuration and the results should be quan-
tified.

When describing P1 in their article, Papadopoulos et al. state the importance of
quantifying the significance of experiment repetitions but never go into detail of
how it would be quantified. Quantifying the level of saturation in a sample is no
trivial task, especially when the samples are not normally distributed as in our case.
Moreover, this requirement is not mentioned again and the analysis of P1 is changed
to instead focus on the presence of repeated experiments and long experiment runs.
Basing the evaluation of P1 on this, instead of quantifying, the sample sizes can be
considered sufficient because each benchmark was repeated twelve times (3 times
per day × 4 days) and each repetition consisted of 1000 invocations, resulting in a
total of 72000 invocations (1000 invocations × 12 repetitions × 6 benchmarks) with
a loss of roughly 2.1%.

To further strengthen the statement above, one can still try to quantify the sample
saturation by performing tests to find the confidence interval of the actual population
mean compared to the sample mean. Performing both a Z-test and bootstrapping,
the results show narrow confidence intervals around the sample means and both
tests show similar results, as can be seen in Table 7.1. The bootstrapping method
was based on the second method described by Efron and Tibshirani [26], where the
number of generated samples was set to the number of samples in the original data
sets. The tests indicate a high confidence that the sample means are close to the
population means.

40

7. Discussion

AWS
HTTP

AWS
Storage

AWS
Queue

Azure
HTTP

Azure
Storage

Azure
Queue

Z-test 99%
confidence interval
(as % of mean)

±2.81% ±0.63% ±3.11% ±11.0% ±1.18% ±6.52%

Bootstrapping
1st & 99th
percentile intervals
(as % of mean)

-2.69%
to 3.03%

-0.64%
to 0.64%

-3.00%
to 3.29%

-10.65%
to 11.47%

-1.16%
to 1.19%

-6.47%
to 6.64%

Table 7.1: Confidence intervals of the true population mean for each of the six
benchmarks expressed as a percentage of its mean.

The results from the Z-tests and bootstrapping are not meant to prove a sufficient
level of saturation, but instead to give some indication of it. While some results from
this test were quite high, likely due to extreme outliers, we can be confident that the
sampled results accurately represent the actual population. Also, the large number
of samples further increase the credibility of this. The number of invocations is,
therefore, considered appropriate.

P2. Workload and configuration coverage: The experiment should cover a space of
different possible configurations, possibly through randomization.

The configuration space of this thesis are in some ways limited due to service and
provider-specific features. For example, when studying the performance of storage
triggers there is only one service to try for every provider. Additionally, the choice
of a specific service often implies the use of other related services, such as a storage
event detection service that is specific to that storage. Still, some configurations
related to the invocation are possible and could motivate further research, such as
invocation patterns, polling rates, payload sizes, and to further extend measurements
over more times and days. Overall, however, the aim of this thesis has not been to
try every combination of services possible offered by a provider, but to make the
configurations as similar as possible between providers and to make them truthful
to real use-cases.

Some independent variables that were tested include the time of day and day of the
week. These were included because the greatest load may be put on the provider
during working days, and at specific times during those days.

P3. Experimental setup description: The setup of hardware and software should
be described at an appropriate level of detail.

The experimental setup and how external variables and factors are handled have
been discussed in detail in Chapter 5 and Section 6.1.

P4. Open access artifact: A (at least) representative subset of the developed soft-
ware should be made publicly available.

The source code of our benchmarks and the data set can be found at

41

7. Discussion

www.github.com/oskgro/faas-trigger-study [27].

P5. Probabilistic results description of the measured performance: Report a char-
acterization of the empirical distribution of the measured performance.

All results have been presented in Section 6.3 both as distribution plots and cumu-
lative distribution functions. More plots can be found in Appendix A.

P6. Statistical evaluation: Provide a statistical evaluation of the significance of the
obtained results.

Statistical evaluations and the statistical significance is discussed in Sections 6.3 and
7.4. However, an extensive statistical analysis of the results is not very valuable as
simple metrics such as mean, median and standard deviation, etc, are more relevant
to real life scenarios and applications. The analysis done in this thesis should,
therefore, be sufficient for those interested in the usage of FaaS.

P7. Measurement units: For all reported quantities, report the corresponding unit
of measurement.

The corresponding units of measurement are presented in all figures and tables.

P8. Cost: The modeled cost of running the experiments should be included.

As the resource usage of the tests run in this thesis is relatively low, the free tier
offered by both Amazon Web Services and Microsoft Azure should be sufficient to
perform the benchmarks. In Microsoft Azure, the user is given an amount of credit
to spend and the total cost is therefore displayed. In AWS, however, the total cost
must be approximated. The AWS bill reached an approximate total of $0.29 and
the Azure bill reached a total of $0.72.

42

https://www.github.com/oskgro/faas-trigger-study

8
Conclusion

The performance in which a service can trigger a function is greatly affected by
its type and the cloud provider. For a software architect deciding between two
or more similar services from different providers, the choice he or she makes can
affect the overall performance of the system considerably. The results are also of
interest to cloud providers where performance is an important aspect to differentiate
from competitors. Users are sensitive to large delays and large delays could cost
cloud providers several percent in lost revenue. Serverless applications are likely to
see continued growth in usage across providers and as triggers serve an important
purpose in them, we argue that due to the above reasons, trigger performance is a
crucial area for improvement for continued adoption.

To answer the research questions defined in Section 1.2, a benchmark design was
proposed and evaluated using controlled experiments. A total of 72000 invocations
were performed to determine how the choice of service and provider affects the
trigger delay. The answers to our research questions can be summarized as:

RQ1: How can function trigger latency be measured across different
serverless platforms?

To design a fair benchmark the structure must be as simple as possible and any
excess features will increase the likelihood of provider-specific effects on the results.
There will always be differences that are caused by provider-specific proprietary
features but as long as each benchmark is built for the same purpose and uses
similar services (and possibly IaC tools like Pulumi) the comparisons can be made
fair.

RQ2: How does the choice of trigger type affect trigger latency?

Out of the three different trigger types tested, the HTTP trigger performed the best
for both providers. The Queue trigger performed second-best for AWS and third-
best for Azure. The Storage trigger was the third-best trigger type for AWS and
the second-best trigger type for Azure.

RQ3: How does the choice of provider affect trigger latency?

The two providers studied in this thesis, Amazon Web Services and Microsoft Azure,
both performed similarly in terms of mean trigger delays. However, Microsoft Azure

43

8. Conclusion

was far more likely to have extreme outliers reaching delays of up to 10 times the
mean, affecting the measured mean and standard deviation as well as lowering its
consistency. In terms of trigger performance, AWS is the better option for HTTP
and queue triggers, while Azure is the better choice for storage triggers. However,
it is important that cloud developers and architects consider the trade-off between
speed and predictable performance.

8.1 Future Work
Based on the limitations presented in Section 1.3, future work in researching server-
less and FaaS could preferably study more trigger types and more providers in
addition to those studied by this thesis. Future work could, for example, study
Google Cloud Platform or trigger types such as SDK/CLI triggers. This would give
a broader view of trigger performance and further facilitate architectural and de-
sign decisions by developers, system architects, and providers. As a base for future
research, we also suggest repeating the experiments of this thesis as future updates
and evolving infrastructure are likely to affect trigger performance.

As previously discussed, incomplete traces were excluded from the results of the
experiments in this thesis. A total of 2.1% of all traces were lost due to being
incomplete or due to sampling. Future work could study the correctness of traces,
why, how, and how many traces end up incomplete or sampled, as well as how
configurable settings can affect these results. The order in which invocations are
received and handled by the triggered function was also ignored in this thesis but
is highly relevant for some applications. A study on the degree to which different
services and providers can accommodate a strict order of execution would, therefore,
also be beneficial.

Similar to how Azure Event Grid was used as Storage trigger in favor of the more
traditional Azure Blob Storage, it would be interesting to study the AWS equivalents
AWS SNS and AWS Event Bridge to see if they add any extra latency when used
as triggers. Instead of uploading an object to AWS S3 from an invoker Lambda
function to trigger a receiver Lambda function, future experiments could upload an
object to S3 from the invoker function, which would send an event to SNS or Event
Bridge that finally triggers the receiver Lambda function.

In this thesis, independent variables such as the day of the week and the time of
day were considered. Aside from studying temporal effects, future work could study
other interesting variables that could affect trigger performance. One such vari-
able could be invocation patterns; how invoking the benchmarks in certain patterns
(constant invocation, in bursts, spiky, etc.) affects trigger performance. In our ex-
periments we relied on the default settings for all triggers, another variable could,
therefore, be trigger configuration to study how relevant configurable parameters
regarding polling, batching, or other aspects affect trigger latency. As previously
discussed, the server location was ignored in this thesis. It is possible that trigger
latency is affected by the server location, especially when the invoker and receiver
functions are located in different geographical regions.

44

Bibliography

[1] S. Bhardwaj, L. Jain, and S. Jain, “CLOUD COMPUTING: A STUDY OF
INFRASTRUCTURE AS A SERVICE (IaaS),” International Journal of Engi-
neering and Information Technology, vol. 2, no. 1, pp. 60–63, 2010.

[2] Pulumi, “Architecture & concepts.” https://www.pulumi.com/docs/intro/concepts/.
Accessed Mar 2021.

[3] Statista, “Global market share of cloud infrastructure services from 2017
to 2020, by vendor.” https://www.statista.com/statistics/477277/cloud-
infrastructure-services-market-share/. Accessed Jan 2021.

[4] Google, “Measure performance with the RAIL model,” 2020.
https://web.dev/rail/. Accessed May 2021.

[5] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of serverless
computing,” Association for Computing Machinery, vol. 62, p. 44–54, Nov.
2019.

[6] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method empir-
ical study of function-as-a-service software development in industrial practice,”
Journal of Systems and Software, vol. 149, pp. 340 – 359, 2019.

[7] J. Scheuner and P. Leitner, “Function-as-a-service performance evaluation: A
multivocal literature review,” Journal of Systems and Software, vol. 170, 2020.

[8] A. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-
Eldin, C. Abad, J. Amaral, P. Tůma, and A. Iosup, “Methodological principles
for reproducible performance evaluation in cloud computing,” IEEE Transac-
tions on Software Engineering, vol. PP, Jul 2019.

[9] E. van Eyk, J. Scheuner, S. Eismann, C. L. Abad, and A. Iosup, “Beyond Mi-
crobenchmarks: The SPEC-RG Vision for a Comprehensive Serverless Bench-
mark,” in Companion of the ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE ’20, (New York, NY, USA), p. 26–31, Association
for Computing Machinery, 2020.

[10] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Lau-
reano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in the

45

Bibliography

wild: Characterizing and optimizing the serverless workload at a large cloud
provider,” in 2020 {USENIX} Annual Technical Conference, {USENIX}{ATC}
20, pp. 205–218, 2020.

[11] EXOR, “Analysis of the paradigm shifts in software and business development,”
Nov 2019. https://www.exorint.com/en/blog/paradigm-shifts-in-software.

[12] G. Mao, “Understanding the different ways to invoke lambda func-
tions,” 2019. https://aws.amazon.com/blogs/architecture/understanding-the-
different-ways-to-invoke-lambda-functions/. Accessed May 2021.

[13] Pulumi, “Why pulumi?.” https://www.pulumi.com/why-pulumi/. Accessed
Mar 2021.

[14] Microsoft Azure, “What is distributed tracing?,” 2018.
https://docs.microsoft.com/sv-se/azure/azure-monitor/app/distributed-
tracing. Accessed Apr 2021.

[15] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency sensitive cloud
native applications: A performance study on aws,” in 2019 IEEE 12th Inter-
national Conference on Cloud Computing (CLOUD), pp. 272–280, 2019.

[16] J. Nielsen, “Response times: The 3 important limits,” 1993.
https://www.nngroup.com/articles/response-times-3-important-limits/. Ac-
cessed May 2021.

[17] Jupiter Research, “Retail web site performance: Con-
sumer reaction to a poor online shopping experience,” 2006.
https://www.akamai.com/us/en/multimedia/documents/report/akamai-
site-abandonment-final-report.pdf. Accessed Apr 2021.

[18] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, “Controlled ex-
periments on the web: survey and practical guide,” Data Mining and Knowledge
Discovery, vol. 18, p. 140–181, 2009.

[19] EXOR, “Empirical standards,” Nov 2019.
https://www.exorint.com/en/blog/paradigm-shifts-in-software.

[20] Microsoft, “Aws to Azure services comparison,” Nov 2020.

[21] M. Shilkov, “Cold Starts in AWS Lambda,” 2021.
https://mikhail.io/serverless/coldstarts/aws/. Read Apr 2021.

[22] Microsoft Azure, “Azure Application Insights REST API.”
https://dev.applicationinsights.io/. Visited May 2021.

[23] k6. https://k6.io/.

[24] H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in software en-
gineering research,” in Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research, FoSER ’10, (New York, NY, USA), p. 411–414,

46

Bibliography

Association for Computing Machinery, 2010.

[25] A. Najafi, A. Tai, and M. Wei, “Systems research is running out of time,”
in Workshop on Hot Topics in Operating Systems, HotOS ’20, Association for
Computing Machinery, 2020.

[26] B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confi-
dence Intervals, and Other Measures of Statistical Accuracy,” Statistical Sci-
ence, vol. 1, no. 1, pp. 54 – 75, 1986.

[27] M. Bertilsson and O. Grönqvist, “faas-trigger-study,” GitHub repository, 2021.
https://www.github.com/oskgro/faas-trigger-study.

47

Bibliography

48

A
Appendix 1

A.1 Individual Results

Figure A.1: Combined AWS HTTP benchmark results.

I

A. Appendix 1

Figure A.2: AWS HTTP benchmark results for different days.

Figure A.3: AWS HTTP benchmark results for different times.

II

A. Appendix 1

Figure A.4: Combined AWS Storage benchmark results.

Figure A.5: AWS Storage benchmark results for different days.

III

A. Appendix 1

Figure A.6: AWS Storage benchmark results for different times.

Figure A.7: Combined AWS Queue benchmark results.

IV

A. Appendix 1

Figure A.8: AWS Queue benchmark results for different days.

Figure A.9: AWS Queue benchmark results for different times.

V

A. Appendix 1

Figure A.10: Combined Azure HTTP benchmark results.

Figure A.11: Azure HTTP benchmark results for different days.

VI

A. Appendix 1

Figure A.12: Azure HTTP benchmark results for different times.

Figure A.13: Combined Azure Storage benchmark results.

VII

A. Appendix 1

Figure A.14: Azure Storage benchmark results for different days.

Figure A.15: Azure Storage benchmark results for different times.

VIII

A. Appendix 1

Figure A.16: Combined Azure Queue benchmark results.

Figure A.17: Azure Queue benchmark results for different days.

IX

A. Appendix 1

Figure A.18: Azure Queue benchmark results for different times.

X

	List of Figures
	List of Tables
	Introduction
	Purpose
	Research Questions
	Limitations and delimitations

	Background
	Cloud Computing
	Serverless Computing
	FaaS Triggers
	Infrastructure-as-Code (IaC)
	Distributed Tracing

	Related Work
	FaaS Performance Evaluation
	Reproducible Experimentation
	User Studies on Response Times

	Research Method
	Trigger Benchmark
	Deployment
	Infrastructure
	Trigger Types
	HTTP Trigger
	Storage Trigger
	Queue Trigger

	Workload
	Distributed Tracing
	Amazon Web Services X-Ray
	Microsoft Azure Application Insights

	Trigger Experiment
	Execution
	Trace Processing
	Experiment Results
	Amazon Web Services
	Microsoft Azure

	Discussion
	RQ1: Measuring latency across providers
	RQ2: How the trigger type affects latency
	RQ3: How the provider affects latency
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Reproducibility

	Conclusion
	Future Work

	Bibliography
	Appendix 1
	Individual Results

