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Adaptive Techniques for Tuning
of Process Noise in the Kalman filter
ATHULYA JOSE
SHREYA RAGHUNATH BANTHI
Embedded Electronic System Design
Department of Computer Science and Engineering

Abstract
This thesis work focuses on tuning the process noise of the Kalman filter for sur-
rounding object detection and speed estimation in automotive driver assistance ap-
plications. We have created a simple road scenario in Matlab, where an ego-vehicle
follows a target-car moving at different speeds and yaws in different road scenarios
to collect the required data for the Kalman filter. The tracking algorithms help
in predicting the future position of moving objects based on the measurements of
RADAR detections. The RADAR sensors attached to the ego-vehicle directly mea-
sure the range, azimuth angle and range rate of the target object. We considered the
compensated range rate and azimuth angle measurements from the RADAR sensors.
Since the RADAR measurements are noisy, the Kalman filter is used to obtain a
better result. It is well known that the covariance matrices of the process noise (Q)
and the measurement noise (R) have a significant impact on the performance of the
Kalman filter in estimating dynamic states. We begin by implementing the con-
ventional ad-hoc approaches to estimating the covariance matrices. However, these
approaches for estimating the covariance matrices, may not be suitable for achieving
the best filter performance. To address this problem, we propose a adaptive filtering
approach to estimate Q based on innovation and residual to improve the accuracy of
the dynamic state estimation of the extended Kalman filter (EKF). We also present
theoretical investigation methods for optimizing the algorithm when it is to be im-
plemented in an embedded platform. Following that we present the results obtained
in our work after comparing the fixed and the adaptive Kalman filter, which clearly
points that the adaptive Kalman Q is better in its response time and adaptivity.

RADAR, Kalman filter, Process Noise, Adaptive Tuning, Extended Kalman fil-
ter(EKF).
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1
Introduction

Advanced Driver Assistance Systems (ADAS) are being developed to improve road
safety by helping drivers perform complex driving functions. This requires a descrip-
tion of the environment in order to make accurate decisions. Therefore, the vehicle
is equipped with multiple sensors such as radar, LiDAR and cameras to collect in-
formation from the vehicle environment. The data collected from the sensors can be
used to estimate features such as range, speeds, accelerations and future positions
of the surrounding objects [1].

However, we only consider radar for target tracking. From now on, we will refer to
the vehicle equipped with radar sensors as the ego-vehicle. Since the radar detec-
tions are subject to noise due to errors in the radar system or external factors that
affect the radar measurements, the Kalman filter is used. The Kalman filter algo-
rithm provides estimates of unknown variables that are more accurate than values
obtained from measurements alone. It uses a set of measurements observed over time
that may contain statistical noise and other inaccuracies. To estimate the current
state, the algorithm does not need a history of observations or estimates, but rather
the estimated state from the previous time step and the current measurement. Even
if we cannot observe or measure all internal states, the Kalman filter can estimate
the internal state from the available measurements.

The increasing use of Doppler radars in automotive applications opens up new pos-
sibilities for object tracking. An ADAS helps in detecting and tracking objects in
the environment with the help of Kalman filter algorithm used for state estimation
problem. Kalman filters can optimally estimate the internal states of a system in
the presence of uncertain and indirect measurements. An estimate of the system
state is obtained by incorporating the dynamic model of a system and a series of
measurements of the state using a two-step prediction and updating process.

At a given time, the true state is measured with a noisy sensor. We now have two
estimates of the state of the system that are likely to differ: a predicted state and a
measured state. The question now is which of the two estimates is correct.

Since both are subject to uncertainty, the question should really be: How can we
combine the two based on their relative uncertainties?

A Kalman filter determines how much confidence or weighting must be applied to
both the prediction and the measurement so that the corrected state lies exactly at
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1. Introduction

the optimal point between the two. This balancing act depends on a mathemat-
ical representation of the uncertainty, which we obtain in the form of the covariance.

The Kalman filter algorithm combines a sensor measurement with an erroneous pre-
diction from a process model, both the measurement and the process model are
subject to uncertainty. The uncertainty resulting from the process model deviations
is called process noise, and the noise associated with the measurement model is
called measurement noise. For example, a process model assumes that the car is
moving at a constant speed because its acceleration is zero, but in reality it has an
acceleration, that is, its speed varies from time to time. This change in the car’s
acceleration is an uncertainty/error that we introduce into our system with the pro-
cess noise.

A basic discrete-time model often used for Kalman filtering is,

xk+1 = f(xk) + wk (1.1)

yk = h(xk) + vk (1.2)
In (1.1), f(xk) is considered the process model and defines the evolution of the state
(x) from time k to k+1. Similarly in (1.2), h(xk) represents the measurement model
and defines the relationship between the state and the corresponding measured value
(y) at the current time step k. In the above model, wk and vk are stochastic normally
distributed noise variables with known covariance matrices Q and R, respectively[2].
The noise variables are responsible for the inaccuracies associated with the models.
Therefore, the performance of the Kalman filter may deteriorate significantly under
practical conditions when the covariance matrices of the process and measurement
noise are unknown. Furthermore, the traditional non-adaptive Kalman filter algo-
rithm is not suitable for the time-varying noise covariances encountered in maneuver
tracking [3].

Furthermore, the tracking accuracy is highly dependent on the performance of the
filter. In this scenario, the basic Kalman formulation with fixed known noise co-
variance matrices is not sufficient to achieve good tracking accuracy in a complex
tracking environment. Choosing the covariance of process and measurement noise,
also known as tuning the filter to optimize the performance of the filter with respect
to a performance index, is a challenging task [4]. Determining the measurement
noise vk, is usually not the big problem, since a deep knowledge of the sensors is
often available. On the other hand, careful estimation of the covariance matrices of
the process noise is required for better performance of the Kalman filter to improve
the overall tracking performance.

1.1 Objective
One of the most important requirements of ADAS, which includes subsystems such
as collision avoidance/collision mitigation, adaptive cruise control, stop-and-go-
assistant, or blind-spot detection, etc. is to reliably estimate the positions of other

2



1. Introduction

vehicles. This can be achieved using the Kalman filter or one of its derivatives. How-
ever, in order for the Kalman filter to quickly adapt to the changes in the tracking
environment, we can use some adaptive techniques to optimize the process noise and
reduce the computation time of the algorithm. The aim of this work is to formulate
adaptive methods to tune the process noise, make a comparison between different
methods, and reduce the computation time of the algorithm. This aim includes:

• Formulation of a filter that easily adapts to the changes in the true state and
provides good accuracy by reducing the mean error between the estimates and
the true states.

• Integration of an algorithm that is optimal in terms of computational com-
plexity into an embedded platform to reduce execution time.

1.2 Problem Formulation

The company Aptiv is developing ADAS in a vehicle that uses advanced technolo-
gies to assist the driver. ADAS includes autonomous emergency braking, blind spot
warning, lane assist, etc. and is capable of reducing human error and thus traffic
accidents. It is capable of making decisions to achieve both safety and comfort func-
tions with the help of object tracking system.

Kalman filtering is an important component of the Aptiv object tracker and for
ADAS in general. However, the complexity of the environment in which object
tracking is performed for ADAS applications is high. This is because different types
of objects with different motion patterns need to be tracked, including stationary
objects such as trees, guardrails, etc., as well as non-stationary objects such as vul-
nerable road users, different types of vehicles, etc. Furthermore, the motion pattern
of the objects depends on the state of the object, e.g. the maximum acceleration of
a vehicle may depend on its current speed and gain. All these factors may affect the
process noise and make it difficult to determine it. Therefore, an advanced method
for determining the covariance matrix Q is required to optimize both tracking per-
formance and computational complexity so that the tracker can respond quickly to
changes in actual states.

1.3 Limitations

In order to limit the scope of the project, we decided to impose several constraints
on the tracking problem. The tracking device can only operate in a 2D Cartesian
coordinate system, since radars only compute the environment in one plane.
The algorithm will track a single target vehicle, so we assume that all detections are
associated with this one target vehicle. These detections may be affected by noise,
but our scope will not consider these challenges, i.e. the problem of data association.

3



1. Introduction

1.4 Thesis Outline
Chapter 2 provides an overview of the theoretical foundations relevant to this thesis
and introduces to radar measurements and the Kalman filter.

Chapter 3 explains the design approach taken to achieve the objectives stated in
Section 1.1. It is divided into: Yaw rate estimation, the Extended Kalman filter
with fixed process noise, and Extended Kalman filter with adaptive tuning process
noise.

Chapter 4 presents the results of our work, including a comparison between the
Kalman filter with fixed process noise and the adaptive process noise.
The final chapter includes discussion and future work related to this thesis.
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2
Theory

This chapter describes the theory underpinning this thesis. In the first section, the
theory behind the range and velocity measurement of the RADAR sensor mounted
on the vehicle is explained. In the following sections, the vehicle motion model and
the Kalman filter are presented.

2.1 Sensor Theory
RADAR technology interests and developments were observed and tested in the
late 1800s as a major theory of RADAR capability. In today’s society, RADAR
sensors are common for weather, service, and automotive applications. Sensors can
be used to track, monitor, and evaluate the movement of an object. RADAR itself
is an electromagnetic sensor that operates on the transmitted signal in a specific
waveform and senses the presence of an echo. From this signal, modern RADAR
sensors can derive a distance measurement and a speed measurement [5].

2.2 Range Measurements
The time taken for the echo to travel between the target and the sensor depends on
the range. The range can be measured by the relationship between time, position,
and velocity at a known electromagnetic propagation velocity c. It is defined as
the ratio of ( 2.1), where R is the one-way radial measurement (not same as the
measurement covariance matrix referred otherwise), the transmission time Ti is the
time a signal is transmitted, and the reflection time Tj is the time corresponding to
the return of the signal to the sensor.

R = c(Tj − Ti)
2 (2.1)

2.3 Angle Measurements
To measure angles to objects, RADARs have multiple antennas arranged in rows
and columns on the same plane. If an object reflecting a signal back to the antennas
is not perpendicular to the RADAR plane, the different antennas will not receive
the returning wave at exactly the same time. This results in a phase shift between
the received signals from the different antennas. This phase shift can be used to
calculate the angle at which the object is located relative to the RADAR. The phase
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2. Theory

shifts of the antennas in the vertical columns are used to calculate the elevation angle
of the object relative to the RADAR plane, and the phase shifts of the antennas in
the horizontal rows are used to calculate the angle of the object in the horizontal
plane.

2.4 Velocity Measurements
Velocity estimation from RADAR data is based on signal phase shift. The RADAR
signal’s phase shift over 2R (Range) duration is,

φ = 2π
λ

(2.2)

where λ is the wavelength. If the range R changes linearly with time, this results
in a change in the phase shift of the return echo. This change depends on the
relative velocity between the sensor and the object reflecting the signal, and causes
a change in the frequency of the echo signal. The Doppler effect is well known, and
the associated frequency changes are commonly referred to as Doppler frequency.
In order to find the relative radial velocity Vd(t), the first order derivative is consid-
ered on each side as,

dφ(t)
dt

= 4π
λ

dR(t)
dt

(2.3)

The radial relative velocity, vd is then identified as,

vd(t) = dR(t)
dt

= λ

4π
dφ(t)
dt

(2.4)

with the substitution,
dφ(t)
dt

= wd(t) = 2πfd(t), (2.5)

where, fd(t) is the Doppler frequency. Finally, we find vd(t) as,

vd(t) = λfd(t)
2 (2.6)

2.5 Velocity Induced by the Host
The vehicle is called a host when the RADAR is mounted on a vehicle. Thus, the
RADAR moves along with the vehicle. Since the generated wave is moving faster
than the vehicle, the range measurements are not affected by the movement of the
vehicle. However, the motion of the host has a strong influence on the measurement
of the radial velocity of objects, since phase shifts can occur even with a small change
in distance. Consequently, for stationary objects the radial velocity is detected by
the motion of the host vehicle. If another vehicle has the same velocity as the host
vehicle, no radial velocity is measured. The motion of the host RADAR must also be
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2. Theory

compensated to determine if the target is stationary or moving since, radial veloc-
ity should be measured with respect to the ground and not the host vehicle itself [6].

Figure 2.1: Figure shows the position of the RADAR co-ordinate system relative
to the host co-ordinate system. This image was adopted from [6].

However, the velocity vectors of targets cannot be extracted directly because only
the radial velocity aspect can be computed from a Doppler RADAR. Therefore, it
is important to reconstruct the sensor velocity vS and heading direction α for at
least two obtained reflection points. However, it is helpful to include all observed
reflection points and use regression for motion estimation to increase its accuracy.
The main argument is that the estimated radial velocities form a cosine over the
azimuth angle, hereafter referred to as the velocity profile[7].

The origin of the host coordinate system Ho is based on the rear axle of the ve-
hicle as shown in Figure 2.1. The x-axis, Hx is aligned with the vehicle’s forward
direction. The y-axis, Hy is aligned to the right. Also, there is a sensor coordinate
system So, which defines the position and orientation of the RADAR installed on
the host. The orientation to the x-axis of the RADAR sensor coordinate system So

to the x-axis of the host coordinate system H0, is given by β, r is the radial distance
from the Ho to the So.

As the host turns, the sensor moves along an arch trajectory with radius r. Hence
the origin of the So includes velocity vector from the turning rate of the host, which
is the tangential velocity and it is given by the cross product of ω, the rotational
velocity of the host, and r, the position vector of the origin of the sensor coordinate
system in the host coordinate system as

v⊥ = ω × r =

v⊥x

v⊥y

v⊥z

 = ω

−ry

rx

0

 (2.7)

7



2. Theory

To obtain the total velocity of the sensor , velocity due to the forward motion of the
host must be added to the tangential velocity as,

vs =
[
vsx

vsy

]
=
[
v⊥x

v⊥y

]
+
[
vHx

0

]
(2.8)

In order to relate the induced velocity, expressed in a Ho, to the radial velocities
computed in the So, the RADAR orientation relative to the host ∆β must be taken
into account. Therefore the direction of the host induced RADAR sensor velocity is

αs = a tan 2
(
vSy

vSx

)
−∆β (2.9)

Therefore the measured host-induced radial velocity, vr, at an arbitrary azimuth
angle, θ, can be expressed as

vr(θ) = −
∣∣∣vs

∣∣∣ cos(θ − αS) (2.10)

2.6 Kalman filter
The linear quadratic Gaussian problem involves estimating the "state" of a linear
dynamical system perturbed by white Gaussian noise [8]. The Kalman filter is
used to estimate the state of a discrete-time controlled system governed by the lin-
ear stochastic difference equation. They are used to improve the estimation of a
quantity that cannot be evaluated directly but can be calculated indirectly. In the
presence of noise, they are usually used to integrate measurements from different
sensors to find the best approximation to the states [9].

Kalman uses the dynamic model of the system (e.g., physical laws of motion), known
control inputs, and multiple sequential measurements (e.g., from sensors) to obtain
a more accurate estimate of the varying quantities of the system (state). The system
dynamics model helps to make an initial estimate of the state of the system. This
predicted state is corrected once the measurements from the real sensors become
available. To improve the estimate of the state, the filter uses the knowledge of the
noise statistics throughout the process.

The process model or dynamic model used to describe the evolution of the system
state from time k − 1 to k is given as follows,

xk = Axk−1 + wk−1 (2.11)

In (2.11), xk represents the state vector at time k, A is the state transition matrix
applied to the previous state xk−1, wk−1 is the process noise vector containing the
imperfections associated with the model. The process noise vector is assumed to be
Gaussian in origin and to have a covariance matrix given by Q.

8



2. Theory

In addition to the process model, when a set of measurements from the sensors
is available, a measurement model is used to model the sensors and represent the
system state in the measurement space. Therefore, the relationship between the
measurement and the system state at the current time step k can be described as
follows,

zk = Hxk + vk (2.12)

In (2.12), xk is the state vector, zk is the observation vector, H is the measurement
matrix that maps the true state space to the measurement space, and vk is the
measurement noise vector that accounts for the uncertainties of the measurement
model. The measurement noise vector is also assumed to be zero-mean Gaussian
with covariance matrix R.

In order for the Kalman filter to produce an estimate of the system state xk at time
k, we need to provide an initial estimate of the system state x0, available measure-
ments, and the necessary information about the system, which includes the state
transition matrix A, the measurement matrix H, the covariance matrix of the pro-
cess noise Q, and the covariance matrix of the measurement noise R as described
above.

The Kalman filter algorithm operates in two steps, called the prediction step and
the measurement update step, as described below,

1. Prediction Step: The prediction step contains a model that exploits knowl-
edge of the system dynamics and relays the previous estimates of the state and
covariance matrix. This prediction is a timely projection for the next move
to obtain the a priori estimates, x̂−k . A prior estimate of the state x̂−k and the
state error covariance P−k is obtained as follows,

x̂−k = Ax̂+
k−1 (2.13)

P−k = AP+
k−1A

T +Q (2.14)

The prior/predicted state estimate is evolved from the updated previous state
estimate x̂+

k−1. The prior state error covariance will be larger as it is calculated
by adding the process noise covariance. Therefore, after the prediction step
the filter will be more uncertain of the estimated state.

2. Measurement Update Step: In the measurement update step, the differ-
ence between the true measurement zk and estimated measurement Hx−k , also
known as measurement residual or innovation dk, is calculated first.

dk = zk −Hx−k (2.15)

Kk = P−k H
T (HP−k HT +R)−1 (2.16)

9



2. Theory

x̂+
k = x̂−k +Kkdk (2.17)

P+
k = (I −KkH)P−k (2.18)

In the above set of equations, zk ∈ R is the measured value, Kk is the Kalman gain
and I ∈ Rnxn is the identity matrix.

To obtain the a posteriori computation, x̂+
k , the measurement update step is re-

sponsible for measurement feedback, i.e., incorporating the last measurement that
defines the system apriori [10].

2.7 Extended Kalman filter
An estimator that linearizes the system dynamics around the current state is known
as the extended Kalman filter (EKF) [11]. This yields a linear model that can be
used to estimate the current state from the available measurements and previous
state. Its mean value provides the best estimate for white noise. The expected
values of both vk and wk are 0 as they are zero-mean. Therefore, the linearization
around 2.19 and 2.20 can be used to obtain a linearized model which is done using
Jacobians as given in 2.21 and 2.22,

xk = f(xk−1) + wk−1 (2.19)

zk = h(xk) + vk (2.20)

Ak = ∂f(xk−1)
∂x

|x̂k=x̂+
k−1

(2.21)

Hk = ∂h(xk)
∂x

|x̂k=x̂−
k

(2.22)

A description of the iterative procedure follows,

1 Prediction Step:
x̂−k = f(x̂+

k−1) (2.23)

P−k = Ak−1P
+
k−1A

T
k−1 +Q. (2.24)

2 Measurement Update Step:

dk = zk −Hk(x̂−k ) (2.25)

Kk = P−k H
T
k (HkP

−
k H

T
k +R)−1 (2.26)

x̂+
k = x̂−k +Kkdk (2.27)

P+
k = (I −KkHk)P−k . (2.28)

10



2. Theory

2.8 Model for the Vehicle Motion
Different models are employed to predict the movement of the vehicles. A constant
velocity model is one of the simplest models for vehicle velocity estimation. Cer-
tainly, this model does not represent all the dynamics of the processes involved. But
this assumption provides strong predictions with a finite period of time since the
velocity and yaw rate (angular velocity) are continuous functions that are constantly
changing in time due to the underlying mechanics of the vehicle. This defined as
the Constant Turn Rate Velocity (CTRV) model is shown below.

vt+1 = Vt + rt, (2.29)

ωt+1 = ωt + nt, (2.30)

Here rt and nt are the process noise indicating the uncertainty of the model.

The dynamics that are not considered in the model are modeled as process noise.
These models that do not consider the dynamics, should increase the process noise
than usual to account for the missing dynamics.

2.9 Adaptive Estimation of Process Noise Q
It is well known that the covariance matrices of the process noise Q and the mea-
surement noise R strongly affect the efficiency of the Kalman filter in estimating
dynamic states. A critical problem to be solved when using the Kalman filter is the
proper determination of the covariance matrices of Q and R. An incorrect choice of
Q and R can significantly degrade the performance of the Kalman filter and even
cause the filter to deviate.

Generally, an ad hoc method is used in which Q and R are assumed to be constant
during estimation and are manually adjusted by trial-and-error approaches. How-
ever, since noise levels may vary for different applications, it may be very difficult
to adjust Q and R correctly using such an ad hoc approach. Moreover, the stan-
dard method for calculating Q and R requires an accurate knowledge of the process
noise and computational error, usually based on extensive empirical research [2].
In practice, the values are usually fixed and applied to the entire application. The
performance of embedded systems suffers from this inflexibility.

To address this problem, an estimation approach that adaptively adjusts Q and
R at each step is used to reduce the impact of Q and R definition errors and in-
crease accuracy [12]. In [13], adaptive estimation approaches are classified into four
categories: Bayesian, correlation, covariance adjustment, and maximum likelihood
approaches. Covariance adjustment is one of the well-known adaptive estimation
approaches that adjusts the covariance matrix of the innovation or residual based
on their theoretical values.
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2.9.1 Measurement Residuals

In the Kalman filtering algorithm, the difference between the actual measured value
and the predicted value is termed as innovation or pre-fit residual. Similarly, the
difference between the actual measured value and its estimated value using the in-
formation available in time step k is known as post-fit residuals or residual. The
covariance of the process noise Q can be adaptively estimated based on the innova-
tion sequence. Theoretically, the innovation and residual sequences extracted from
the filter are correlative.
In general, the innovation and residual analysis provides a more objective view of
the actual filter performance. If the dynamic system of the Kalman filter were
perfectly modeled, both the innovation and residual series should be zero-mean
white noise processes. Unlike the state covariance matrix generated by the Kalman
filter itself, the statistics of the innovation and residual series are independent and
reliable indicators of filtering quality.

2.9.2 Sliding Window

Streaming motion statistics can be computed using the sliding window approach,
where a window (or windows) containing the most recent read data is always kept
and only this data is considered relevant for learning. A critical issue with this
approach is the choice of window size. The first and simplest strategy is to set (or
ask the user to specify) a window size W and maintain it during the execution of
the algorithm [14]. Another variation of the window method uses variable-length
windows and considers the evolution of the model error to decide whether a change
has occurred. In this case, the a priori assumption about the rate of change is usually
hidden in the way the decision is made. A window whose length is dynamically
adjusted to reflect changes in the data. If changes occur, as indicated by a statistical
test, the window is reduced in size to preserve only the data that still appear to be
valid. If the data appears to be stationary, the window is enlarged to work with
more data and reduce the variance.

2.9.3 Forgetting Factor

The statistics of streaming signals can also be calculated using the exponential
weighing method that uses a forgetting factor. The algorithm recursively applies a
set of calculated weights to the data sample. Thus the weighing /forgetting factor
decreases exponentially as the data become older [15]. This will impose more influ-
ence to the recent data than the old data on the statistical calculations. Selection
of the forgetting factor determine how much importance will be given to the recent
data and old data. If the recent data need to have more influence on the statistics
the forgetting factor should be closer to zero. This will also help to detect small
changes in data sets with fast variations.
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2.10 Code Optimization for an Embedded Plat-
form

This section discusses the problems encountered in translating and optimizing the
computer programs to be compiled on an embedded platform. As code optimization
was one of the scope of our thesis, which we could not fulfill due to time constric-
tions, we planned to provide the theoretical insights that will help achieve an optimal
code. So, this will not be discussed in our Approach/Result sections.

To begin with, embedded systems are characterized by a number of constraints that
are not present in the world of standard computers. Most of these constraints are
related to cost. The reason is that embedded systems are characterized by a set
of constraints such as system timings, code size, RAM, and power consumption
that are not common in standard PCs. Embedded platforms often use idiosyncratic
processors designed to maximize their performance for a limited class of applica-
tions. The applications are often very power sensitive. The main difference is the
limited amount of memory designed to maximize performance for a limited class of
applications, and optimizing each of these functions requires its own methods and
techniques.

2.10.1 Optimization Goal
When developing code for an emedded platform it is also important to set an opti-
mization goal that is good enough for the current application, as it can be a waste
of resources and time to simply try to go as low as possible. Also, reaching this
goal means that the optimization is complete. If your program is working, you may
already know or have a pretty good idea of which subroutines and modules are most
important to the overall efficiency of the code. Interrupt routines, high-priority
tasks, computations with adaptive deadlines, and functions that are either compu-
tationally intensive or called frequently are all likely candidates [16]. A so-called
profiler, included in some software development packages, can be used to narrow
the focus to the routines that the program spends most (or too much) time on.

2.10.2 Software Tools Required
Optimizing a system can be extremely difficult without the right measurement tools.
For example, energy optimization can be difficult if we do not have accurate means to
measure the energy consumed by the system or by the microcontroller. If we do not
separate these two different energy measurements and try to minimize the energy of
the microcontroller, then we wont see much reducing in energy consumption. While
there are several tools that can help us achieve the same, we should carefully choose
non-intrusive optimization tools that will not change the application. When we use
the help of compilers for code optimization, they can be designed to help us achieve
the desired optimization. Considering the choice of compiler, compiler settings etc.
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2.10.3 Optimization Tradeoffs
First, we need to identify the area that needs improvement, which is either the speed
or the size of the code. To improve speed, critical sections need to be identified so
that time is not wasted on executing non-critical sections.

Typically, 80 percent of a program’s execution time is spent running 20 percent of
the code [17]. So optimizing this hot spot will improve performance, even if we
have to do it at the expense of slowing down the other area of the code. In addi-
tion, unless absolutely necessary, optimization should not be done at the end of the
development cycle, as this adds to the cost of an initial design change and wastes
further time and resources in debugging.

Code optimization means writing or rewriting code so that a program consumes as
little memory or disk space as possible, minimizes its CPU time or network band-
width, or makes optimal use of extra cores. In practice, we sometimes resort to
another definition: writing less code.

Execution speed is usually only important within certain time-critical and/or fre-
quently executed sections of code. There are many things you can do manually to
improve the efficiency of those sections. But code size is hard to affect manually, and
the compiler is in a much better position to make that change for all your software
modules.

Since memory is an important aspect, if we need to optimize in terms of memory,
we need to consider how the data is handled by considering the use of RAM, the
use of data types, avoiding unnecessary type conversions, considering the benefits
of unsigned types, etc.

2.10.4 Optimization Techniques
Some important tricks to keep in mind are,

• Signed and unsigned data are also considered different data types, since it
takes processing cycles to convert from one type to the other. Therefore, it is
preferable to use unsigned types for division and reminders, array indexing, and
loop counters, while signed types are used for converting integers to floating
point numbers.

• The local variable is preferred to the global variable in a function. In general,
global variables are stored in memory, while local variables are stored in the
register. Since register access is faster than memory access, implementing local
variables results in faster operation speed. In addition, the portability of the
code also argues for the use of local variables. However, if there are more local
variables than available registers, the local variables are temporarily stored in
the stack.

• Also, a large number of parameters can be costly due to the number of pushes
and pops on each function call. Therefore, it is more efficient to pass structure
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references as parameters to reduce this overhead.
• The return value of a function is stored in a register. If this return data is

of no use, time and space are wasted storing this information. The program-
mer should define the function as void to minimize the additional processing
overhead.

• In C++, the keyword inline can be added to any function declaration. This
keyword makes a request to the compiler to replace all calls to the indicated
function with copies of the code that is inside. This eliminates the run-time
overhead associated with the actual function call and is most effective when
the inline function is called frequently but contains only a few lines of code.
Inline functions provide a perfect example of how execution speed and code size
are sometimes inversely linked. The repetitive addition of the inline code will
increase the size of your program in direct proportion to the number of times
the function is called. Obviously, the larger the function, the more significant
the size increase will be. The resulting program runs faster, but now requires
more ROM in which to be stored.

• Re-usability measures whether existing assets - such as code - can be reused.
Assets are easier to reuse if they have properties such as modularity or loose
coupling. Re-usability can be measured by the number of dependencies. Run-
ning a static analyzer can help you identify these dependencies.

These are some of the most common suggestions that may be considered for the
particular application. But, never make the mistake of assuming that the optimized
program will behave exactly like the unoptimized one. You must completely retest
your software at each new optimization level to be sure that the behavior has not
changed. It is important to document and keep all test results. Comparing and
evaluating the results before and after optimization helps maintain the integrity of
the software.
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Approach

Tracking algorithms help in predicting the future location of moving objects based
on measurements from sensor systems. The RADAR sensors attached to the vehicle
measure the distance, azimuth angle and range rate of the target object. Since the
RADAR also moves with the vehicle, the distance rate measured by the RADAR is
relative to the host vehicle. Therefore, the motion of the sensor should be compen-
sated to estimate the velocity of the target object relative to the ground. Then, the
yaw rate of the target is estimated using the compensated range rate and the az-
imuth angle measurement of the RADAR sensors. Since the RADAR measurements
are noisy, the Kalman filter is used to obtain a better estimate of the target’s posi-
tion and orientation. The main objective of this work is to estimate the covariance
of the process noise of the Kalman filter in real time to improve the performance of
the Kalman filter.

3.1 Yaw Rate Estimation
During each measurement cycle, the RADAR sensor receives a series of reflections
from the target object. The yaw velocity of the target can then be calculated from
the measurements of at least two Doppler RADARs [18]. This can be achieved by
exploiting the relationship between radial velocity and azimuth angle measurements.
The radial velocity forms a sinusoidal shape over the azimuth angle and is referred
to as the velocity profile. To estimate the yaw velocity of the target, it is assumed
that:

• At least two RADAR sensors receive reflections from the target object, as
shown in Figure 3.1.

• Each sensor j ∈ {1, 2} receives a number of reflections i ∈ {1, ...Nj} from the
target object, where Nj is the number of reflections received by sensor j.

• Position of the RADARs (xS
j , y

S
j ) in a common coordinate system is known.

For a rigid body, the velocity vector is defined by the instantaneous center of rotation
(ICR), which is the stationary point about which the body is currently rotating.
Using the ICR position (xICR, yICR) and the yaw rate ω, the 2D state of motion of
the target object can be specified as[

vx
j,i

vy
j,i

]
= ω

[
yP

j,i − yICR

xICR − xP
j,i

]
= ω

[
ys

j + rj,i sin(θj,i)− yICR

xICR − rj,i cos(θj, i)− xs
j

]
(3.1)

where rj,i and θj,i represent the range and azimuth angle measured by the RADAR
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sensor. Similarly, (xP
j,i, y

P
j,i) is the position of the reflection point in the target ob-

ject. The velocity vector of the target object can be mapped to the radial velocity
measurement of the RADAR as [18].

vD
j,i =

[
cos(θj,i) sin(θj,i)

] [vx
j,i

vy
j,i

]
(3.2)

Figure 3.1: Estimating the 2D motion of an object using two Doppler RADAR sen-
sors with known position in a common coordinate system. This image was adopted
from [18]

Inserting 3.1 in 3.2 gives

vD
j,i = ω(ys

j − yICR)︸ ︷︷ ︸
Cj

cos(θj,i) + ω(xICR − xs
j)︸ ︷︷ ︸

Sj

sin(θj,i) (3.3)
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Equation 3.3 is known as the velocity profile and it depends on the azimuth angle
θj,i and does not dependent on the position of the reflection point on the target.
This equation can be re-written as

vD
j,i = Cj cos(θj,i) + Sj sin(θj,i) (3.4)

Using regression analysis, we can calculate Cj and Sj separately for each sensor
which results in two systems of linear equations. Another linear regression based on
Cj and Sj will yield the motion parameters [18]:

min
ω−1, xICR, yICR

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



−yS
1

xS
1

−yS
2

xS
2


−



−C1 0 −1

−S1 1 0

−C2 0 −1

−S2 1 0




ω−1

xICR

yICR



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(3.5)

3.2 Dynamic Model
The state vector and dynamic model used for casting the object tracking problem
into the Kalman filter framework are described here. The state vector chosen for the
Kalman filter includes the longitudinal and lateral positions px and py, respectively,
the linear velocity v, the yaw ψ, and the yaw rate ω, as described in (3.6):

x =


px
py
v
ψ
ω

 (3.6)

The dynamic model chosen for predicting the states in the prediction step is a
coordinated curve model that assumes constant velocity and yaw rate. The model
is represented in (3.7), which describes the relationship between the elements in the
state vector.

f(x) =


x(1) + Tx(3) cos(x(4))
x(2) + Tx(3) sin(x(4))

x(3)
x(4) + Tx(5)

x(5)

 (3.7)

In (3.7), x(1) corresponds to the longitudinal position, x(2) is the lateral position,
x(3) represents the velocity, x(4) represents the yaw and x(5) is the yaw rate in the
state vector and T represents the time between RADAR frames.

3.3 Measurement Model
The RADAR sensor provides measurements in polar coordinates, which are con-
verted to Cartesian coordinates because our state vector is described in Cartesian
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coordinates. The relationship between the converted RADAR sensor measurement
and the state vector is described by the measurement model given in (3.8)

h(x) =

x(1)
x(2)
x(5)

 (3.8)

where x(1) is the longitudinal position, x(2) is the lateral position and x(5) is es-
timated yaw rate using the measurements from the RADAR sensor. The velocity
measurement is not included in the measurement vector as it is more noisy.

3.4 Extended Kalman filter with Fixed Process
Noise

The block diagram of the extended Kalman filter using fixed process noise is shown
in Figure 3.2.

Figure 3.2: Block diagram of extended Kalman filter using fixed process noise

As seen in the block diagram (3.2), at first the Kalman filter needs to be provided
with an initial guess of the state estimate x̂+

0 , state error covariance P+
0 , process

noise covariance Q and measurement noise covariance R.
The state vector is initialized with zero as,

x̂+
0 =


0
0
0
0
0

 (3.9)
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The initial state error covariance P+
0 is set to a large value of 104. We selected the

process noise and measurement noise covariance matrices by trial and error as,

Q =


0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0
0 0 0 0 0.1

 (3.10)

R =

0.0001 0 0
0 0.0001 0
0 0 0.5

 (3.11)

In the block diagram (3.2) the initialization step is followed by the prediction step
in which, state at time k − 1 is used along with the motion model to predict the
state at time k. And a prior calculation of the state error covariance is also made
in the prediction step as seen in the block diagram.
The prediction step is followed by the measurement update step, where the predicted
state is used together with a measurement model specified in 3.8 to estimate the
current measurement. The difference between the estimated measurement and the
actual measurement, as well as the Kalman gain, are used to update the predicted
state. Similarly, the prior covariance calculated in the prediction step is also updated
in the update step. The updated state and the state error covariance are passed to
the prediction step to predict the next state (see block diagram). During all time
steps, the process noise covariance used in the prediction step is the same as the Q
selected in the initialization step.

3.5 Extended Kalman filter with Adaptive Tun-
ing Process Noise

The idea which was proposed in [19] will be described in this section. The block
diagram of the proposed algorithm is shown in Figure 3.3. As can be seen in the
block diagram, the initial value of Q, denoted as Q0, needs to be specified by the
user in the first step. In the subsequent steps, Q is updated. Compared to the
block diagram of the Kalman filter with fixed process noise in Figure 3.2, the new
algorithm has an additional block for estimating the covariance of the process noise
Q. Therefore, the value of Q used in the prediction step is updated at each time
step. This adaptive estimation of Qk can be achieved using the innovation-based
method.
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Figure 3.3: Block diagram of Kalman filter with adaptive tuning process noise

3.5.1 Innovation Based Method
Process noise estimation from the Kalman filter equations explained in theory chap-
ter is described here [19].
From 2.19 process noise wk−1 can be written as:

wk−1 = xk − f(xk−1) (3.12)

ŵk−1 = x̂+
k − f(x̂+

k−1) (3.13)
using 2.23 we can rewrite the process noise as:

ŵk−1 = x̂+
k − x̂−k (3.14)

applying 2.27 in 3.14 will result in:

ŵk−1 = Kkdk (3.15)

Then the process noise covariance matrix Qk can be calculated as:

E[ŵk−1ŵ
T
k−1] = KkE[dkd

T
k ]KT

k (3.16)

Qk = KkE[dkd
T
k ]KT

k (3.17)
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3.5.2 SlidingWindowMethod and Forgetting Factor Method
The expected value operation E[dkd

T
k ] can be performed using either the sliding

window method or the forgetting factor method [20]. In the sliding window method,
a window of size N is used. As new data become available, the window is shifted to
accommodate the current sample and N − 1 previous samples. The expected value
is calculated by taking the average of the innovation samples over the window, as
shown below,

E[dkd
T
k ] = 1

N

k∑
i=k−N+1

dkd
T
k (3.18)

Inserting 3.18 in 3.17 gives,

Qk = Kk

 1
N

k∑
i=k−N+1

dkd
T
k

KT
k (3.19)

The length of the data required to compute the expectation operation is determined
by the length of the window. For rapidly changing data sets, a small window size
is recommended, while for data sets that change slowly, a large window size is
recommended [20]. Since the method uses N − 1 previous samples along with the
current samples, the sliding window method implementation must remember the
previous samples, which in turn results in more memory being required to store the
N − 1 innovations.
The forgetting factor method applies a certain weight to the older data and the
current data to calculate the expectation of the data set. The forgetting factor α
determines how much weight to give to the current value and the earlier values. In
general, less weight is given to the older data, and the weight decreases as the data
gets older. Consequently, the most recent data has a greater impact on the calcula-
tions than the older data. Using the forgetting factor method, we can calculate Qk

as:

Qk = αQk−1 + (1− α)(Kkdkd
T
kK

T
k ) (3.20)

This method is comparatively better suited for embedded applications as it does not
need to remember a large amount of previous residuals.

3.5.3 Improving the estimation of Q
In the Kalman filter algorithm, the innovation dk is the difference between the actual
measurements and the estimated measurements. It is also called the residuals or
pre-fit residuals and can be calculated as:

dk = zk − ẑk (3.21)

In 3.21, ẑk is the estimated measurement and is calculated using the predicted state,
which can be written as:

ẑk = h(x̂−k ) (3.22)
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After the update step, we can calculate the residuals using the updated or corrected
state as:

ẑk = h(x̂+
k ) (3.23)

The residuals calculated using the corrected state are called post-fit residuals. The
adaptive Q estimates can be improved by using the corrected state in the calculation
of the residuals, resulting in a smoother state estimate than using the predicted
state [21].
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Results

To evaluate the performance of the adaptive tuning extended Kalman filter algo-
rithm, the data was collected using MATLAB simulation. The Automated driving
toolbox provided by MATLAB [22] is used to create an artificial driving scenario in
which the target vehicle is driving through a roundabout in front of the host vehicle
equipped with two RADAR sensors. The collected noisy RADAR detections were
further processed using extended Kalman filter to obtain the states of the target
vehicle which includes position, velocity, yaw and yaw rate. The resulting states
of the target vehicle are presented for both fixed process noise and adaptive pro-
cess noise cases. In the fixed process noise case, we used a constant process noise,
which we selected by trial and error method, throughout the estimation process.
For the adaptive tuning case, the process noise is calculated in adaptive during each
epoch using the innovation based method instead of using a fixed process noise. The
innovation-based method was further improved by replacing predicted state by the
corrected state in the calculation.

4.1 Fixed Process Noise

In the first case we used fixed process noise and measurement noise in the Kalman
filter to estimate the states of the target vehicle. The resulting Kalman filtered states
of the target vehicle along with the true states are plotted in Figure 4.1. In the figure
the top plot shows the difference between the true position of the target and the
Kalman filtered position of the target. As shown, the Kalman filtered position of the
target seems to align with the true position. True and Kalman filtered velocity of
the target is compared in the second plot. It is seen that the Kalman filtered velocity
is lagging behind the true velocity of the target. In the third plot a comparison of
true yaw and Kalman filtered yaw of the target vehicle is presented. Kalman filtered
yaw has a small deviation from the true yaw of the target. Comparison between true
yaw rate and Kalman filtered yaw rate can be seen in the last plot. The comparison
says that the Kalman filtered yaw rate is not exactly aligned that of the true yaw
rate.
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Figure 4.1: Kalman filtered states of the target when using fixed process noise

4.2 Adaptive Tuning Process Noise

In the second case, we use the Kalman filter described in Section 3.5 in which the
Kalman filter algorithm is made to tune the process noise in adaptive. The initial
process noise is set the same as that of the fixed process noise used in the first case
and from the second time step onwards the Kalman filter estimated the process noise
in adaptive. The resulting Kalman filtered states and true states are compared in
the subsequent sections.
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4.2.1 Adaptive Tuning Process Noise Using Pre-fit Residu-
als

The adaptive process noise for the Kalman filter is calculated using the innovation
based method and the resulted Kalman filtered position, velocity, yaw and yaw rate
of the target are plotted along with true states in Figure 4.2.

Figure 4.2: Kalman filtered state of the target when using adaptive process noise

From the results, the Kalman filtered position and yaw are aligning closely to the
true states of the target. The Kalman filtered velocity is not as fast responsive in
the beginning. However, after around 1sec, Kalman filtered velocity follows the true
velocity but with few oscillations. Similarly, the Kalman filtered yaw rate of the
target is also following the true yaw rate, but the curve seems to be much more
oscillating.

27



4. Results

4.2.2 Adaptive Tuning Process Noise Using Post-fit Resid-
uals

In order to improve the estimation of process noise hence to reduce the oscillations
in the Kalman filtered states when using adaptive process noise, the predicted state
is replaced with corrected state to use the post-fit residuals in the estimation of
process noise. The results are shown below.

Figure 4.3: Kalman filtered states of target

When compared with estimation of process noise using pre-fit residuals or innova-
tion, the Kalman filtered velocity and yaw rate are improved when used the corrected
states in the estimation of process noise. The Kalman filtered velocity has a faster
responsive and the curves became smoother than the curve obtained when using
innovation.
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4.3 Fixed Process Noise vs Adaptive Tuning Pro-
cess Noise

A comparison of the Kalman filtered state of the target when using fixed process
noise and adaptive process noise along with true states is depicted in Figure 4.4.

Figure 4.4: Comparison of using Fixed process noise and Adaptive process noise
in extended Kalman filter

Compared to the Kalman filtered state using the fixed process noise, a slight im-
provement is achieved with the Kalman filtered state using the fixed process noise.
The corresponding difference is presented in Figure 4.5. The difference is plotted
for the velocity, yaw and yaw rate as the improvements are noticeable only in these
states. In the beginning of the difference plot, the error or difference is near to
zero as the vehicle states are not changing at this point. The difference plot starts
to diverge from zero as the vehicle state changes. This is because the filter with
adaptive Q adapts slightly faster than the filter with fixed Q.
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Figure 4.5: Difference between the Kalman filtered states when using fixed
process noise and adaptive process noise
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4.4 Mean Squared Error

Figure 4.6: Mean squared error

Histogram of error in the Kalman filtered states when used adaptive process noise
is shown in Figure 4.7. From the histogram we can see that, for the case of Kalman
filter with adaptive Q, most of the error bins are distributed around zero compared
to the Kalman filter with fixed Q.

Table 4.1: Comparison of mean squared error

Kalman filter with fixed Q Kalman filter with adaptive Q
Velocity 2.89 2.54
Yaw 0.0133 0.0028

Yaw rate 0.0089 0.002

Table 4.1 lists the mean squared error between the true state and Kalman filtered
state when using fixed process noise and adaptive process noise. From the table
data we can see a slight reduction in the mean squared error when using adaptive
Q compared to the fixed Q.
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4.5 Process Noise
The diagonal elements of the estimated adaptive Q that include longitudinal and
lateral position, velocity, yaw and yaw rate are plotted in the Figure 3.12. From
the figure we can see that the process noise is adapting at each time step with the
changes in the vehicle state.

Figure 4.7: Evolution of diagonal elements of process noise covariance matrix
over time
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5.1 Fixed Process Noise
The optimality of Kalman filters depends heavily on the assumptions that the model
of the linear dynamical system is accurately determined a priori and that the pro-
cess and measurement noise are zero-centered and jointly standardized Gaussian
noise with known covariance matrices. For the Kalman filter to work optimally,
we need all the information comprising the system dynamics and the measurement
models together with the process and measurement noise. Therefore, when using
the Kalman filter, it is crucial to set the covariance matrices of the process and mea-
surement noise correctly. Here, an ad hoc approach is used where these noises are
assumed to be constant during estimation and manually adjusted through a lengthy
trial-and-error approach.

5.2 Adaptive Tuning Process Noise
Adaptive tuning process noise, deals with nonlinear target tracking problems associ-
ated with time-varying covariances of process noise. In this approach, the covariance
of process noise and measurement noise are adjusted in real time. This results in
better filtering performance compared to fixed process noise. However, compared to
fixed process noise, this is a complicated approach. In addition to prediction accu-
racy, the approximation also has an impact on the covariance matrix. For sensors
that measure positions and potentially velocities, the measurement update will not
decrease the uncertainty in yaw rate. This leads to unreasonably large yaw rate
uncertainties, which affects the tracking performance.

5.3 Adaptive Tuning Process Noise Using Pre-fit
and Post-fit Residuals

As discussed, the main idea is to adaptively estimate the uncertain statistical proper-
ties of the noise around the nominal values. The Kalman filter can be implemented
with the modified covariance matrices. Thus, an adaptive filter formulation ad-
dresses the problem of imperfect a priori information and provides a significant per-
formance improvement over the fixed filter through the filter learning process based
on the pre-fit residual or innovation sequence. In this case, the perfect knowledge of
the a priori information is only of secondary importance since the new measurement
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and process covariance matrices are adapted according to the learning history of the
filter and the frequent adaptation of the statistical filter information through the
residual sequence of the filter goes hand in hand with the idea of a dynamic system
in a dynamic environment.

Even though, the estimation of process noise using the pre-fit residuals gives a slight
improvement in the filter performance there are a few oscillations in the resulting
states and in some cases the filter is found to respond slowly to the changes. These
oscillations reduced, when the post-fit residuals were used in the estimation of pro-
cess noise covariance. The small oscillations in the resulted states are acceptable in
the industry and depends on the use cases and the ratio between the Q and R. Also,
the filter become fast responsive. The corrected state used in the post-fit residuals
will have an effect in smoothing the filtered state.

5.4 Future Work
For simplicity, this work makes a number of assumptions, so it can not really be
applied to a real-world scenario yet. Thus, there is still a lot of room to improve the
assumptions made and to adjust the process noise of the Kalman filter in a complex
environment. Also, there is a need to improve the methods that can handle this
huge amount of radar acquisitions and neglect the unwanted erroneous data to tune
them in real time.

There is a scope to work with the adaptive tuning of the measurement noise (R)
along with the process noise. One of our goals was to implement an adaptive Kalman
filtering algorithm in an embedded platform. But we couldn’t achieve it due to the
lack of time. So it will be a good idea to implement the algorithm in an embedded
platform as a future work.

Another disadvantage of the adaptive Kalman filter is a more complex algorithm
that leads to an additional estimation block in the Kalman filter algorithm. This
disadvantage is acceptable in cases where the highest accuracy is required. However,
work can be done to reduce the complexity of the filter.
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Conclusion

In this thesis work, we generated synthetic radar detections by simulating an artifi-
cial driving scenario in MATLAB. The scenario included a target vehicle and a host
vehicle that was equipped with radar sensors. Then we implemented an extended
Kalman filter to estimate the position, velocity, yaw and yaw rate of the target
vehicle from the generated noisy radar detections. The Kalman filter was first im-
plemented with fixed process noise. Later we modified the Kalman filter algorithm
to use adaptive process noise.

The goal of this work was to come up with a better adaptive tuning techniques to
overcome the drawbacks of fixed process noise, and to integrate it in an embedded
platform, but could not implement it in our work.

When we compared the conventional cases with the adaptive cases, the adaptive
cases are slightly better than the conventional cases. It is obvious that the adaptive
method based on innovation or pre-fit residuals is better in terms of convergence
speed. We could improve the response time of the algorithm, which will make it
suitable to implement in a real-time system.

The post-fit residuals based method further improved the results obtained using the
pre-fit residuals. Overall, all adaptive methods show stable estimation properties,
and their stable values are slightly better than those of the conventional methods.
Even a slightly better filter contributes significantly to improving the overall perfor-
mance of the filter.
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