
 RL

 MPC StatePlantControl action

Parameter
update

Trajectory
Generator

RL info

Control scheme

Exploring the potential of adapting
a model predictive control scheme
with reinforcement learning
Improving performance within the field of vehicle motion
control

Master’s thesis in Systems Control and Mechatronics

Filip Bertilsson, Fredrik Eriksson

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Exploring the potential of adapting a model
predictive control scheme with reinforcement

learning

Improving performance within the field of vehicle motion control

FILIP BERTILSSON
FREDRIK ERIKSSON

Department of Electrical Engineering
Division of Systems and Control

Chalmers University of Technology
Gothenburg, Sweden 2022

Exploring the potential of adapting a model predictive control scheme with rein-
forcement learning
Improving performance within the field of vehicle motion control
FILIP BERTILSSON
FREDRIK ERIKSSON

© FILIP BERTILSSON, 2022.
© FREDRIK ERIKSSON, 2022.

Supervisor: Teodor Husmark, CEVT
Supervisor: Constantin Cronrath, Department of Electrical Engineering
Examiner: Bengt Lennartsson, Department of Electrical Engineering

Master’s Thesis 2022
Department of Electrical Engineering
Division of Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Block diagram describing the structure of how Reinforcement Learning is
interacting with a model predictive control scheme.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Exploring the potential of adapting a model predictive control scheme with rein-
forcement learning
Improving performance within the field of vehicle motion control
FILIP BERTILSSON
FREDRIK ERIKSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The automotive industry, among others, sees an increased demand for autonomous
solutions. Such solutions are often based on model-based optimal control strategies.
Model Predictive Control (MPC) is one such strategy that optimizes the control
signal over a simulated horizon. This makes it possible to generate control behavior
that takes both soft and hard constraints into consideration. One limitation of this
method is that the control signal is only optimal with respect to the internal model,
and not the true dynamics.

The goal of this thesis is to investigate if this problem can be alleviated with the
use of online learning. The method that is considered combines MPC with Rein-
forcement learning (RL), where the MPC is used as a policy approximator for the
RL scheme. This method uses a parameterized version of an MPC and updates its
parameters to maximize the closed-loop performance rather than the accuracy of
the model. The interesting part about this method is that it has, prior to this work,
been shown that it can generate the optimal policy and value functions even though
the model is incorrect. In this work, the method is tested and evaluated against a
baseline MPC which uses a linearized model to control an object in a non-linear en-
vironment. We show that the RL-MPC method can adjust its parameters to follow
a reference in a noisy and non-linear environment with relatively quick convergence
of parameters and subsequently outperforms the baseline MPC performance.

Keywords: Reinforcement Learning, Optimal Control, Model Predictive Control,
Online Learning, Trajectory Tracking.

v

Acknowledgements
This thesis, written at CEVT, marks an end to our journey to become engineers.
The last five years studying at Chalmers University of Technology has been a task
that has shaped us both and given us friendships for life. It has sometimes been
very challenging and frustrating, but most of all, it has been rewarding and fun. We
also want to acknowledge that this time would not have been the same without our
“gang”, you know who you are.

This thesis has been a very fitting end to this journey. In many ways, it sums up
our time at Chalmers, but at the same time, it has provided us with a good view of
what lies ahead. We have been challenged in many ways, learned a lot, found new
friends, and seen what it takes to be both an engineer and an academic. Therefore,
we want to thank CEVT, which gave us the opportunity to write a thesis for them,
and Chalmers, which has been our University over the last five years.

Most of all, we want to thank the people who helped us this spring. Where our
supervisors, Teodor Husmark, CEVT, and Constantin Cronrath, Chalmers, have
been, without comparison, the most important ones. Without these two, this thesis
would have been completely different, and we are very grateful to both of them.
Teodor has constantly pushed us with undying enthusiasm and positivity. When
progress has been slow and demanding, he has always found something bright in the
situation for us to capitalize on. This, together with his technological knowledge,
has been extremely helpful. Constantin has, many times during this thesis, given
us invaluable guidance. He has genuinely considered our interests and helped us
navigate difficult decisions in a very impressive way, even though some parts have
been completely new for him. We have many times been both relieved and excited
after our weekly meetings with him.

We want to thank our examiner Bengt Lennartsson. While being in a busy period,
he has given his time and made it possible for us to finish this work.

Furthermore, we want to thank Sébastien Gros and Mario Zanon, who are the au-
thors of the work we based much of this thesis on. They were very generous and
provided knowledge and guidance on short notice when we were stuck.

Finally, we would like to thank everyone we had the pleasure to meet during our
time at the CEVT office. We felt welcomed and at home. “Ungdomarna” especially
wants to thank Daniel Hultgren and Marcus Andersson.

Filip Bertilsson, Gothenburg, June 2022
Fredrik Eriksson, Gothenburg, June 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

AI Artificial Intelligence
CEVT China Euro Vehicle Technology
DNN Deep Neural Network
MDP Markov Decision Process
MPC Model Predictive Control
NMPC Non-linear Model Predictive Control
RL Reinforcement Learning
SYSID System Identification
TD Temporal Difference

ix

Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

k Index for time step

Sets

S Set of states
A Set of actions

Parameters

α Learning rate
γ Discount factor
N Length of horizon

Variables

ak Action at time instance k
sk Measured state at time instance k
sk+1 State at time instance k + 1
uk Control signal at time instance k
xk State at time instance k
xk+1 State at time instance k + 1

xi

xii

Contents

List of Acronyms ix

Nomenclature xi

List of Figures xv

List of Tables 1

1 Introduction 1
1.1 Background . 1
1.2 Motivation of chosen method . 2
1.3 Aim . 3
1.4 Thesis outline . 3

2 Theory 5
2.1 Modelling and simulation . 5
2.2 Model Predictive Control . 6

2.2.1 Context . 6
2.2.2 The model . 7
2.2.3 MPC formulation . 7
2.2.4 The terminal cost . 8

2.3 Reinforcement learning . 11
2.3.1 Basic components of RL . 11
2.3.2 Q-learning . 12
2.3.3 Exploration . 12

2.4 Reinforcement Learning MPC (RL-MPC) 13
2.4.1 Basic idea of RL-MPC method 13
2.4.2 Parametric MPC formulation 14
2.4.3 Q-Learning for MPC . 15
2.4.4 Sensitivities . 16
2.4.5 RL-MPC Algorithm . 16
2.4.6 Chapter summary . 17

3 Experiment setup 19
3.1 Controllers . 19
3.2 Test cases . 20

3.2.1 Case 1 . 20

xiii

Contents

3.2.2 Case 2 and 3, Stairs and ramp 20
3.2.3 Case 4, Nürburgring . 21
3.2.4 Chapter summary . 22

4 Results and Evaluation 23
4.1 Case 1 . 23

4.1.1 Initial results . 23
4.1.2 No process noise . 24
4.1.3 Escaping the local minima by using ε-greedy 27
4.1.4 Addition of process noise to the system dynamics 30

4.2 Case 2, stairs . 32
4.3 Case 3, linearly increasing reference 36
4.4 Nürburgring . 37

4.4.1 Chapter summary . 40

5 Conclusion 41

6 Future work 43

xiv

List of Figures

1.1 Basic block scheme of the RL-MPC method. 2

2.1 Overview of the MPC scheme. 6
2.2 Block scheme of how RL is interacting with the MPC controller. . . . 14

3.1 Visualization of linearized model. 19
3.2 Velocity reference for the four different test cases. 21

4.1 Case 1, velocity reference. 23
4.2 TD and parameter evolution at time of divergence. 24
4.3 Results from test case 1. 25
4.4 Expanded view of results from test case 1. 25
4.5 TD and parameter evolution from test case 1 without process noise

or exploration. 26
4.6 Cumulative deviation for test case 1, without process noise. 27
4.7 Expanded view of the different set points in the reference from case

1, with exploration. 28
4.8 Cumulative deviation from test case 1, with exploration. 28
4.9 Evolution of TD and parameters from test case 1, with exploration. . 29
4.10 Gradients of action-value function in test case 1, with exploration. . . 30
4.11 Cumulative deviation from test case 1, with exploration. 31
4.12 Results from case 1, with process noise added. 31
4.13 TD and parameter evolution from case 1, with process noise. 32
4.14 Cumulative deviation from test case 1, with process noise. 32
4.15 Results from case 2. 33
4.16 Closeup of results from case 2. 34
4.17 TD and evolution of RL parameters from case 2. 35
4.18 Cumulative deviation from case 2. 35
4.19 Results from case 3. 36
4.20 TD and evolution of parameters from case 3. 37
4.21 Results from case 4. 38
4.22 TD and evovlution of parameters from case 4. 38

xv

List of Figures

4.23 Cumulative deviation without outlier rejection from simulation of case
4, where a strictly negative noise is added. It is clear that the RL-
MPC deviates less from the reference overall. The slope of the graphs
shows that at around 1100 seconds, the RL-MPC starts deviating
more than the baseline, but after about 100 seconds, it has corrected
itself. 39

4.24 TD and parameter evolution from case 4, with outlier rejection. . . . 39
4.25 Cumulative deviation from reference with outlier rejection from simu-

lation of case 4, where a strictly negative noise is added. With outlier
rejection, the RL-MPC now manages to keep a much more even per-
formance. The sharp change in reference now only causes a very slight
increase in deviation, which most likely can be reduced even further
with more sophisticated outlier rejection methods. 40

xvi

1
Introduction

The automotive industry is quickly developing towards more energy-efficient, au-
tonomous, and user-friendly systems, which challenges the way we think about
transportation at its core. The need for adaptable control algorithms is growing
as new demands arise. Considerable research is put into the different fields of Artifi-
cial intelligence (AI), where Reinforcement Learning (RL) is a widely used subgenre
of AI. RL is used to generate control signals in stochastic environments. At the
same time, classical control algorithms are being enhanced and used to great suc-
cess. Furthermore, developments in other fields, such as fast microcontrollers and
efficient algorithms, make it possible to include previously infeasible methods.

This thesis has been conducted at China Euro Vehicle Technology (CEVT). CEVT
is an innovation center within Zhejiang Geely Holding Group that works towards
the future of mobility. Furthermore, CEVT wants to expand its knowledge of how
optimal control can be paired with online learning. This led to this thesis work,
where a relatively new method that combines Model Predictive Control (MPC) and
RL is tested and evaluated.

1.1 Background
MPC is an advanced control strategy used to control complex systems that need to
fulfill certain limitations or constraints. However, the control signals produced rely
heavily on the accuracy of the system model, which will never be able to capture the
exact dynamics of its real-life counterpart. Moreover, even if such a perfect model
would exist, external elements such as variable weather would make the model in-
accurate. Other factors that could cause a mismatch between the model and the
real-life system could be that the physical system is changed or degraded. It is
therefore of great value to automatically adjust the model during run-time to better
fit the actual system. A common strategy for improving model fit is system identi-
fication (SYSID) [1].

Another approach to solving the problem is to use adaptive control [2]. An adaptive
controller adapts to a system with parameters that change or are initially uncertain.
This control technique can generally be divided into two types, direct or indirect.
Direct methods, as the name implies, are ones where the estimated parameters are
directly used in the adaptive controller. Indirect methods, on the other hand, use
the estimated parameters to calculate the controller parameters. In recent years

1

1. Introduction

methods of combining MPC with online system identification and online RL have
been proposed in [3] and developed in [4] and [5]. This method has been successfully
deployed in different cases, to name a few: [6] applies this method and uses it to
perform real-time trajectory tracking of autonomous surface vehicles, and [7] uses it
in building energy management.

1.2 Motivation of chosen method
As mentioned, SYSID is a common strategy to improve model fit, but it is well-
known that when used online, it might decrease the closed-loop performance [8].
The performance decrease stems from the fact that the cost function of the under-
lying controller is tuned towards a faulty model. If the model is changed online,
the intended behavior of the original tuning might be lost, resulting in decreased
performance. Because of this, an alternative approach using RL was considered.

RL aims to find the optimal policy π? which describes how to act in an environment
with respect to a pre-defined goal. RL methods can try to learn the policy directly
or indirectly by finding the optimal value and action-value functions V? and Q?. The
learning is often done by trial and error and updating a deep neural network (DNN)
to support these functions. RL methods have seen a wide array of success in many
different fields, where applications vary from defeating human Go players [9], [10]
to playing Atari games [11], and chemical synthesis planning [12]. But in safety-
critical systems, such as the field of vehicle control, the challenges are a bit different.
François-Lavet et al. [13] discuss the problems that might arise while working with
DNNs. García and Fernández [14] presents an overview of the field Safe RL, which
is a growing research area. However, the RL-MPC method, evaluated in this work,
takes another approach to safety and capitalizes on the rich body of research on the
safety and stability of MPC schemes by using the said scheme to approximate the
policy, as well as support the value functions.

 RL

 MPC StatePlantControl action

Parameter
update

Trajectory
Generator

RL info

Control scheme

Figure 1.1: Basic block scheme of the proposed method. The RL algorithm uses
information from the MPC and the plant to modify parameters in the MPC

scheme. A more detailed version are found in chapter 2.4.

2

1. Introduction

Fig. 1.1 shows a simplified block scheme of the method. Furthermore, by using
an MPC as a policy approximator, predictability is introduced. By looking at the
behavior over the simulated horizon, it is possible to understand the controller’s
intentions, which is impossible with DNNs that are otherwise typically used in RL.
Of course, the predictability relies on that the model used by the MPC at least has
some resemblance to the actual system.

Gros and Zanon [3] proved that when using an MPC as a policy approximator,
even with an incorrect underlying model, it is possible to generate Q?, V? and π? by
modifying the constraints, terminal cost and stage cost. I.e., retrieving the optimal
policy does not require adjusting the model parameters. However, if the model
is allowed to change, the model parameters will not necessarily converge to their
true values. This is because, contrary to SYDID, the RL method aims to improve
closed-loop performance rather than model accuracy. Although in practice, it is
also beneficial to modify the model with SYSID, and [5] outlines how SYSID can be
integrated into the method. However, in this work, the addition of SYSID will not
be investigated.

1.3 Aim
This thesis aims to evaluate how the RL-MPC method proposed in [3] can be utilized
to improve performance over a standard MPC scheme where model mismatches and
noise are included to cause offsets. Furthermore, it intends to dissect the essential
parts of the RL-MPC method and provide guidance on how to implement it.

1.4 Thesis outline
Following this introduction, the theoretical base needed to understand the method
and results are outlined in chapter 2. This chapter also includes the introduction of
system dynamics and the linearized model used by the controllers. After the theory,
chapter 3 presents the controllers that will be evaluated along with test cases used to
assess the performance of them. Chapter 4 show the test cases’ results, discussion,
and analysis. Chapter 5 contains our conclusion regarding the method. Finally,
chapter 6 discusses what could be investigated in future works.

3

1. Introduction

4

2
Theory

This chapter will go through the theory needed for this work, as well as connecting
this theory to certain parts of the experiments in chapter 3. In section 2.1 the
dynamics of the system is presented and how a linearized model is derived that can
be used for control. MPC is then handled in section 2.2 following by RL in chapter
2.3. Finally, all the parts needed are introduced to be able to present the RL-MPC
method in section 2.4.

2.1 Modelling and simulation
In many cases where a model-based controller controls a non-linear system, the sys-
tem dynamics are linearized around a set-point. This results in the controller only
working as intended in relative proximity around the set-point. However, it also
allows for faster solve times of the associated optimization problem due to avoiding
the non-linearities of the original model. This section describes the non-linear sys-
tem that the simulation environment is based on, and subsequently, the linearized
model is derived.

In this work, the goal of the controllers, presented in section 3.1, is to control an
unspecified object to track a velocity reference. The controlled object is influenced
by both a force from the controller and a non-linear wind resistance that is quadratic
with respect to the velocity. The system dynamics in (2.1) are given by Newtons
second law and are taken from [15]. The dynamics include the velocity x and
acceleration, object mass m, wind resistance parameter b2, and the force u, which
is used as the control signal.

mẋ(t) = u(t)− b2x
2(t) (2.1)

This model is linearized around a steady state velocity x0 as described in [15]. By
linearizating around a steady state the differential equation ẋ(t) = 0 gives the steady
state force u0 = b2x

2
0 needed for velocity x0. The Taylor expansion in (2.2) gives an

approximation of the quadratic equation were ∆x = x(t)− x0.

b2x
2(t) ≈ b2x

2
0 + 2b2x0 (x(t)− x0) = u0 + 2b2x0∆x(t) (2.2)

When this is substituted in to (2.1) and one note that ∆ẋ = ẋ(t)− ẋ0 = ẋ(t) it gives
the linearized model in (2.3) around the point (x0, u0 = b2x0) where ∆u = u − u0
and b(x0) = 2b2x0 is the linearized wind resistance parameter.

5

2. Theory

m∆ẋ(t) + b (x0) ∆x(t) = ∆u(t) (2.3)

2.2 Model Predictive Control

This section introduces the theory of MPC. As concepts are introduced, the theory
will be connected with the practical example described in section 2.1.

2.2.1 Context
MPC is an optimal control strategy that uses predictions over a horizon to determine
a sequence of control actions by minimizing an objective function. These predictions
are based on a model of the system, which means that the quality of the control
performance is directly tied to the quality of the model. Although the method
calculates a sequence of control actions, only the first action is sent to the plant.
This means that in the next time instance, the new state is observed, and the opti-
mization problem is solved again. Fig.2.1 shows an overview of the control scheme.
One of the strengths of the MPC approach is that constraints can be included in
the design process, which other control techniques struggle to handle explicitly [16].
Historically MPC has been a computationally expensive control technique that has
been mainly used in process industries [17]. However, as microprocessors have be-
come more computationally powerful, MPC is now widely used in many fields, for
example, in the automotive industry [18] and robotics [19]. Furthermore, in almost
all applications where MPC is used to replace a classical controller, a performance
increase can be observed [19].

Figure 2.1: An overview of the MPC scheme. In each sampling instance, the MPC
predicts the system’s behavior over a horizon. Of the predicted control input, only
the first signal is sent to the plant. The prediction is then repeated in the next sam-
pling time with the new measurements. cba. Author: Martin Behrendt. Avail-
able at https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg

6

https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg

2. Theory

2.2.2 The model
A central part of an MPC is the model

ẋ(t) = fc(x(t), u(t)) (2.4)

where (2.4) is the continuous-time system dynamics. The model used in this thesis
is the linearized wind resistance model introduced in section 2.1, see (2.3), which
can be represented in state-space form, as seen in (2.5) below.

ẋ(t) = Ax(t) +Bu(t)

∆ẋ(t) = −b (x0)
m

∆x(t) + 1
m

∆u(t)
(2.5)

The dynamics need to be simulated in discrete time to use the model for predictions
over a horizon. There are many ways to discretize a continuous-time model, but for
this thesis, it is done with the forward Euler method. The forward Euler method
is the least accurate in the Runge-Kutta family of methods [20], but it is also com-
putationally cheap [6]. Additionally, the forward Euler method retains the property
that the model structure remains linear in the parameters, which is a highly desired
property when RL will later perform updates to these parameters [6].
The forward Euler method works by approximating the state evolution as

xk+1 = xk + Ts · fc(xk, uk) (2.6)

where Ts is the chosen sampling time of the controller. Which means that the
approximation is that the state changes linearly over the sampling time. Replacing
fc(xk, uk) with the state-space representation from (2.5), and defining xk = ∆xk,
uk = ∆uk and b = b(y0) for notational ease, gives the discrete time dynamics for the
wind resistance model as

fwr(xk, uk) = xk+1 = xk + Ts

(
− b

m
xk + 1

m
uk

)
(2.7)

2.2.3 MPC formulation
An MPC can be formulated as

min
x,u

N−1∑
k=0

`(xk, uk) + Vf (xN) (2.8)

s.t. xk+1 = f(xk, uk) (2.9)
h(xk, uk) ≤ 0, g(uk) ≤ 0 (2.10)
x0 = s (2.11)

where x = (x0, . . . , xN) and u = (u0, . . . , uN). This is not an exhaustive formula-
tion, but it covers the basic elements that are commonly present. The first element
(2.8) consists of the stage cost `(xk, uk) and the terminal cost Vf (xN), where the

7

2. Theory

latter will be thoroughly presented in section 2.2.4. The stage cost is what defines
the cost of moving from state xk with control signal uk to the next state, xk+1, where
xk+1 is constrained to follow the model f(xk, uk) as defined in (2.9). (2.11) defines
the initial state, where s is used to denote the actual measured state. Additionally
it is possible to subject the states and control signals to constraints via (2.10), where
h(xk, uk) gathers the bounds on the states, g(uk) the input bounds. However, these
terms will be omitted in the simple application of the wind resistance model since
they are not essential for this thesis.

The stage and terminal costs are the main components that determine the con-
troller’s behavior and, subsequently, the system’s behavior. A typical formulation
of the costs is the quadratic one

`(xk, uk) = xᵀkQxk + uᵀkRuk

Vf (xN) = xᵀNPfxN
(2.12)

Where Q, R, and Pf are weight matrices used to tune the system’s behavior. The
matrices are symmetric, Q and Pf are positive semi-definite and R is positive definite
[21]. The cost function defined in (2.12) will serve to drive the state and the control
signal to the origin. To instead drive the state towards a set-point, the variable xk
can be exchanged for the deviation variable δxk = xk−xsp. Which will instead drive
the error with respect to a set-point towards zero. Another common practice is to
penalize the change in control signal instead of the magnitude of it [21], i.e., uk is
replaced with ∆uk = uk − uk−1. Performing this variable exchange gives the stage
and terminal cost as shown in (2.13).

`(δxk,∆uk) = δxᵀkQδxk + ∆uᵀkR∆uk
Vf (δxN) = δxᵀNPfδxN

(2.13)

Putting it all together yields the MPC formulation seen in (2.14).

min
x,u

N−1∑
k=0

(δxᵀkQδxk + ∆uᵀkR∆uk)

+ δxᵀNPfδxN

s.t. xk+1 = fwr(xk, uk)
x0 = s

(2.14)

2.2.4 The terminal cost
The terminal cost Vf , defined in (2.12), is a term added to improve the MPC’s
closed-loop stability. It intends to capture the cost-to-go of the problem if the hori-
zon extends to infinity. An ideal terminal cost would be just that, as it yields the
stability and optimality of infinite-horizon optimal control [22]. This subsection in-
vestigates the unconstrained linear-quadratic case to determine a suitable choice of
terminal cost.

8

2. Theory

First consider a system with dynamics as defined in (2.15) and with (2.16) defining
the control sequence for N time steps in to the future.

xk+1 = Axk +Buk (2.15)

u = (u0, . . . , uN−2, uN−1) (2.16)

Consider then following objective function

V (x0,u) =
N−1∑
k=0

`(xk, uk) + Vf (xN) (2.17)

where the initial state x0 is given from measurements and the subsequent states are
calculated with the model specified in (2.15) and the control sequence u (2.16), e.g
x1 = Ax0 +Bu0.

Writing out the sum of (2.17) yields

V (x0,u) = `(x0, u0) + . . .+ `(xN−2, uN−2) + `(xN−1, uN−1) + Vf (xN)︸ ︷︷ ︸
uN−1 only affects this part

(2.18)

As expressed in (2.18), the last control input uN−1 only affects the solution of the
two last parts, `(xN−1, uN−1) and Vf (xN). Similarly uN−2 only affects the last three
stage costs and so on. This means that if (2.17) were to be minimized with respect
to u, the optimization problem can be written as in (2.19).

min
u

N−1∑
k=0

`(xk, uk) + Vf (xN) =

min
u0,...,uN−2

[
N−2∑
k=0

`(xk, uk) + min
uN−1

[`(xN−1, uN−1) + Vf (xN))]
] (2.19)

This problem can be solved via the use of backward dynamic programming [23].
Backward dynamic programming solves the problem in reverse order, i.e., first op-
timizing over the last variable uN−1. Solving for only the last variable will yield the
optimal cost-to-go from state N − 1 to N , see (2.20).

V ∗(N−1)−→N(xN−1) = min
uN−1

[`(xN−1, uN−1) + Vf (xN))]

= xᵀN−1PN−1xN−1
(2.20)

Where PN−1 is given by the Riccati equation, shown in (2.21)

Pk−1 = Q+ A>PkA− A>PkB
(
B>PkB +R

)−1
B>PkA (2.21)

with Pk−1 = PN−1 and Pk = Pf in this case. Moving on to the next variable and
solving for uN−2 gives the same solution, but Pf is replaced with PN−1. This is then
repeated until u0 is reached.

9

2. Theory

In the end what has been obtained is that the optimal cost-to-go from any state xk
to xN , is given by (2.22)

V ∗k−→N(xk) = xᵀkPkxk (2.22)

This, however, only gives a solution that is stable up to time N , but by letting N go
to infinity, the cost V ∗k−→∞ can be obtained. This can be done either iteratively until
a stabilizing solution is reached, or by solving (2.23), the algebraic Riccati equation
[24].

P = Q+ A>PA− A>PB
(
B>PB +R

)−1
B>PA (2.23)

doing the latter yields (2.24).

V ∗0−→∞(x0) = xᵀ0Px0 (2.24)

Now consider the infinite horizon version of the linear quadratic problem with
u∞ = u0, . . . , u∞.

V (x0,u∞) =
∞∑
k=0

(xᵀkQxk + uᵀkRuk) (2.25)

The sum in (2.25) can be divided into two parts

V (x0,u∞) =
N−1∑
k=0

(xᵀkQxk + uᵀkRuk) +
∞∑
k=N

(xᵀkQxk + uᵀkRuk) (2.26)

Where the second term in (2.26) is itself an infinite horizon LQ problem with initial
state xN , which according to (2.24) has the solution

V ∗N−→∞(xN) = xᵀNPxN (2.27)

This means that the infinite horizon problem described above can be turned into
an equivalent finite horizon problem that retains the stabilizing properties of the
infinite one [21].

V (x0,u) =
N−1∑
k=0

(xᵀkQxk + uᵀkRuk) + xᵀNPxN (2.28)

This indicates that a good choice of terminal cost in the MPC scheme would be
the optimal cost-to-go for the unconstrained infinite horizon LQ. However, it should
be noted that the MPC problem is typically not unconstrained. This means that
the desired properties gained by the choice Vf = V ∗N−→∞ are only retained if the
constraints are no longer active in the final state xN . Which can be ensured by
proper choice of a terminal constraint [24], but that is beyond the scope of this
thesis, since the problem later considered will be an unconstrained one.

10

2. Theory

2.3 Reinforcement learning
Reinforcement learning is an area of machine learning that tackles decision-making
in an uncertain environment. The core idea of RL is to generate actions that maxi-
mize or minimize the cumulative future reward or cost from an unknown underlying
Markov-Decision Process (MDP). In this thesis, the objective will be to minimize
a cost, so we will mostly talk about costs and not rewards, but the terms are in-
terchangeable. RL handles this by using a user-defined cost signal from the envi-
ronment, r, and three concepts tightly connected to MDPs. These three concepts
are the Action-value function Q?(s, a), Value function V?(s) and policy π?(s) where
s ∈ S and a ∈ A are states and actions respectively and the star denotes that
they are the optimal functions in respect to the MDP. The goal for the RL agent
is, therefore, to maximize the closed-loop performance by updating Qπ, Vπ and π
so that π resembles the optimal policy as closely as possible. Some more details of
these concepts are described in the following subsections.

2.3.1 Basic components of RL
In this section, the basic components of RL will be introduced to lay the foundation
for understanding more advanced concepts connected to RL.

Markov decision process

An MDP, as described in [25], is a discrete-time stochastic control process that de-
scribes how states, s, are affected by different control actions, a, as P [sk+1, rk+1|sk, ak]
where r is a reward value. MDPs are often used as a tool when decision-making
needs to be done in a stochastic environment, i.e., the outcome of taking a specific
action in a specific state is not certain, which often is the case in real-world systems.
One important property of an MDP is that the state transition probabilities are not
conditionally dependent on previous states and actions. This makes it possible to
only care about the system’s current state and not its history. In a practical sense,
this means that the state in itself might need to include historical information if
that is needed for decision making.

Cost signal

A reward signal from the environment is needed to define what goal the RL algorithm
should aim to reach. As described by [25] this cost signal is directly connected to the
MDP and needs to be defined by the system’s designer. As an example connected
to this thesis work, where the goal is to follow a reference, the cost will include state
deviation from the desired reference. I.e., if the state is close to the reference, the
cost will be small, and the agent will therefore get indications that it is doing a good
job. Therefore, it is crucial to carefully choose a cost function as this will directly
influence the behavior. The optimal behavior of the system, with regards to the cost
function, may otherwise be something completely different than intended.

11

2. Theory

Policy

The policy π(s) is a mapping that describes what action a to take while being in
state s [25]. Furthermore, π(a|s) is the probability that action a is taken while
being in state s. The policy is connected to the value functions Vπ(s) and Qπ(s, a)
as seen in (2.29), (2.30), and (2.31). In other words, π(s) describes the action a that
minimizes the expected future cost when in state s.

Value function

Most RL methods include estimating value and action-value functions, Vπ(s) and
Qπ(s, a) [25]. These functions describe how good it is to be in a certain state
and take any or the, according to the policy, optimal action a. The action-value
function, Qπ(s, a), is a function describing the expected future reward from taking
an action a while being in state s and then following the policy π there on out. The
Value function Vπ(s) is the minimization (when talking about costs) of Qπ(s, a) with
respect to a. In other words, it describes how good it is to be in a particular state s
and follow the policy π from there on. Qπ(s, a) is defined by the Bellman equations
as in (2.29) were γ is a discount factor and L(s, a) is the stage cost of being in state
s and taking action a. The value function V follows as (2.30). The optimal value
functions which use π? as policy are denoted V? and Q?.

Qπ(s, a) = L(s, a) + γE [Vπ (s+) | s, a] (2.29)
Vπ(s) = min

a
Qπ(s, a) (2.30)

π(s) = arg min
a
Qπ(s, a) (2.31)

2.3.2 Q-learning
When the underlying MDP is unknown (true for most real systems), the value func-
tions and policy need to be learned somehow. There are multiple different methods,
and Q-learning [26] is a classic RL method for this task.

Q-learning works by updating the parameters in Qπ in the direction of the Temporal
Difference (TD) [26], as seen in (2.32), where α is a learning rate which is common
in RL [25]. The TD, τ , is defined in (2.33), where γ is the discount factor and Lk is
the observed stage cost from taking action ak from state sk. I.e. the TD is basically
the difference between the estimated action-value function for ak in state sk with
and without bootstrapping from information given in state sk+1.

Qnew
π (sk, ak)← Qπ(sk, ak) + ατk (2.32)

τk = Lk + γVπ (sk+1)−Qπ (sk, ak) (2.33)

2.3.3 Exploration
Exploration versus exploitation is an important part of RL [25]. Exploitation means
that the algorithm exploits previous knowledge and tries to minimize the cost by

12

2. Theory

choosing the, to its knowledge, best available action. This minimizes the cost and
ensures that after learning something that knowledge is capitalized on. This speeds
up learning in comparison to only using a random walk. The drawback is that the
current policy might not be the best way to do it. By always choosing the best
available option, RL might never find the optimal solution because some states will
never be visited. By introducing exploration it can be guaranteed that all states will
be found if enough time is spent running the system [26]. One of the most common
ways to introduce exploration is the ε-greedy method. At every new action chosen,
when using the ε-greedy method, there is a ε chance that an exploratory action is
deployed. ε is often relatively small and furthermore it can be decreased during run
time to make it possible for the system to converge to a deterministic policy. In
systems like the one presented in this work, the optimal policy might change during
run time due to external factors such as changes in weather and so forth. This might
pose some problems, which is why adaptive ε-greedy methods like [27] and [28] have
been developed. Although adaptive ε-greedy methods are appealing, they will not
be used in this work and are left for future endeavours.

2.4 Reinforcement Learning MPC (RL-MPC)
This thesis aims to improve an optimal controller, in this case, an MPC, with online
learning, and the method used is the one presented in [3]. The main idea of this
method can be seen in two ways depending on the reader. Someone with a control
background may see it as RL is used to tweak the MPC scheme to generate better
closed-loop performance. RL then becomes an external actor that tunes the MPC
and its behavior online, much as seen in Fig. 2.2. On the other hand, someone with
an RL background may see it as if an MPC has replaced the deep neural network
(DNN) used as a policy approximator inside the RL method. The MPC generates
control signals and the value function by solving an optimization problem. RL then
updates the parameters of the policy approximator to generate a higher reward in
the future. Both ways of looking at it work and the details of the method will be
presented in this section. The section starts with the basic idea, then with how to
parameterize the MPC formulation, continuing with how Q-learning is used, and
finally, a description of the implementation.

2.4.1 Basic idea of RL-MPC method
As a first step, Fig. 2.2 illustrates an overview of the system and its components.
The whole idea of this method is to improve the closed-loop performance of the MPC
scheme by letting RL change parameters in the MPC formulation. These parame-
ters can influence most parts of the MPC, including cost function, model dynamics,
constraints, and terminal cost. What parameters RL can change are chosen by the
system’s designer, which will be further discussed in section 2.4.2. In Fig. 2.2 this
update is illustrated as the vector of parameters, θ, that are sent from the RL block.
The RL method needs some strategy to update the parameters, and in this thesis,
Q-learning [26] is used. In order to use Q-learning in conjunction with MPC, the RL
method needs the current state s of the plant, the control action a from the MPC,

13

2. Theory

the cost function value associated with this control signal, and the gradient of the
action-value function.

Figure 2.2: Block scheme of how RL is interacting with the MPC controller.

Note that in the following sections the minimization of the objectives are with re-
spect to control actions u = (u0, ..., uN−1), and state variables x = (x1, ..., xN).
Additionally, u0 = a is the control action that is sent to the plant and x0 = s is the
measured state. This might be somewhat unclear, but it is done like this because
the standard notation in RL and control theory differs.

2.4.2 Parametric MPC formulation
As described in section 2.3, two of the main components within RL is the value
function and the action-value function, Vπ(s) and Qπ(s). The combination of MPC
and RL is done using the MPC as a function approximator for RL. Where the value
function is then defined as in (2.34), where the superscript θ in V θ

π denotes that it
is parameterized.

V θπ (s) = min
x,u

V θ0 (s) +
N−1∑
k=0

γk`θ (xk, uk) + γNV θf (xN)

s.t. xk+1 = fθ (xk, uk) ,
hθ (xk, uk) ≤ 0, g (uk) ≤ 0
x0 = s

(2.34)

This formulation has some differences from the MPC introduced in section 2.2.3.
The term V0 is called the cost rotation, which aims to ensure that the objective
function is a Lyapunov function, thus guaranteeing stability [3]. Furthermore, the
term γ ∈ (0, 1] is a discount factor which is commonly used in RL [25]. The other
differences are that the costs, the model, and the constraints are now parameterized
by θ. Where θ is a vector of variables that RL is allowed to adjust, this means that
to use the MPC formulation introduced in (2.14) as the value function approximator,
we need to choose what parameters the RL scheme may adjust. Given that the wind
resistance model is quite simple, the obvious choice for parameterization is to allow
RL to change the parameter b since this is the only parameter in the model that

14

2. Theory

changes with the velocity. Additionally, a bias term is added to the model to make
the parameterization a bit richer. There is also an option to allow RL to adjust
the stage cost, however this is not investigated in this thesis. This results in the
parametrization θ = (b, bias, V0), and the model described by (2.35).

fθ(xk,uk) = xk + Ts

(
− b

m
+ 1
m
uk + bias

)
(2.35)

Since the formulation for the wind resistance problem does not include any con-
straints other than the dynamics, the associated value function thus becomes what
is shown in (2.36).

V θπ (s) = min
x,u

V θ0 (s) +
N−1∑
k=0

γk` (xk, uk) + γNVf (xN)

s.t. xk+1 = fθ (xk, uk) ,
x0 = s

(2.36)

The action-value function is the same as the value function, but with the addition
of putting an input constraint on the first action.

Qθπ(s, a) = min
x,u

V θ0 (s) +
N−1∑
k=0

γk` (xk, uk) + γNVf (xN)

s.t. xk+1 = fθ (xk, uk) ,
x0 = s, u0 = a

(2.37)

The policy is defined as πθ(s) = u?, where u? is the first control input in the sequence
of control signals obtained when Vθ is minimized for any given s w.r.t. x and u. Note
that the described parametrizations satisfy the equalities of the Bellman equations
[23], see (2.38).

πθ(s) = arg min
a
Qθπ(s, a),

V θπ (s) = min
a
Qθπ(s, a)

(2.38)

2.4.3 Q-Learning for MPC
To use RL when using an MPC as a function approximator, semi gradient methods
[5] can be used to update the parameters. Semi gradient methods, also known as
bootstrapping methods, use the TD to update the parameters in the direction of the
gradient of the action-value function with respect to the parameter vector. This is
done to minimize the estimate while ignoring the target [25]. In (2.39) the parameter
update for time step, k, is shown. As previously stated, this update is driven by the
TD, τk, in the direction of the gradient of the action-value function ∇θk

Qθk
π (sk, ak).

The update is scaled by a learning rate α. The TD is defined in (2.40) where L(sk, ak)
is the objective function for the RL method. Qθk

π (sk, ak) is the optimization cost for
the MPC and V θk

π (sk+1) is also the optimization cost for the MPC, but solved for
state sk+1. It is important to note here that this requires that the MPC problem
is solved twice in each iteration, once for sk and once for sk+1 before the parameter

15

2. Theory

update. L(sk, ak) is defined as shown in (2.41), where `(sk, ak) is the same as the
stage cost `θ(sk, ak) in the MPC but without any tunable parameters, as RL should
not be able to tune its own cost function. w>max (0, hθ (xk, ak)) is the cost of
violating the soft constraints where w is a cost parameter set by the designer. This
term is only presented for completeness as soft constraints are not used in the test
case presented in this thesis. In other words, this update can be seen as if the TD
is pushing the parameters in a direction that improves the performance of the MPC
with respect to the RL objective.

θk+1 ← θk + ατk∇θk
Qθk
π (sk, ak) (2.39)

τk = L (sk, ak) + γV θk
π (sk+1)−Qθk

π (sk, ak) (2.40)
L (sk, ak) = ` (xk, ak) + w>max (0, hθk

(xk, ak)) (2.41)

2.4.4 Sensitivities
As noted in section 2.4.3, to update the parameters the gradient ∇θQθπ is needed.
To define it, first the Lagrangian of the problem formulated in (2.37) needs to be
introduced.

Lθ(s,y) = min
x,u

V0(s) +
N−1∑
k=0

γk` (xk, uk) + γNVf (xN) +

N−1∑
k=0

(Xk (fθ (xk, uk)− xk+1)) + Vk (x0 − s) + Uk (u0 − u))
(2.42)

where λ = (X ,V ,U) are the Lagrange multipliers connected to the constraints and
y = (x,u,X ,V ,U) are the primal-dual variables associated with (2.37). With the
observation that the equality

∇θQθπ(s, a) = ∇θLθ(s,y?) (2.43)

holds for y?, which is given by the primal dual solution of (2.37). This means that
the gradient of the Lagrange function can be constructed as a by-product of solving
the associated MPC problem (2.37) [3], ensuring that no additional computational
power is spent on obtaining this information.

2.4.5 RL-MPC Algorithm
To implement Q-learning for MPC, a couple of steps need to be taken where the
sequence of the different operations needs to be considered to generate the correct
behavior. The following list describes the necessary steps for iteration k.

1. Solve the MPC problem with parametrization θk in state sk to generate ak.
Extract the cost, Qθk

π (sk, ak), and the Lagrange multipliers λ.

2. Calculate the RL stage cost L(sk, ak).

16

2. Theory

3. Apply control signal ak to the plant and wait for sk+1.

4. Calculate V θk
π (sk+1) by solving the MPC problem with parametrization θk in

state sk+1.

5. Calculate τk and ∇θQθk
π and update parameters θk → θk+1.

It should be noted that there is some room for different ordering than done here.
Furthermore, some calculations can be done in parallel to speed up the algorithm.
As an example, one can solve steps 1 and 4 at the same time if proper care is taken
with which parameter update is used for the different steps.

2.4.6 Chapter summary
This concludes the Theory chapter. It has gone through the basics of both MPC
and RL and finally the theory behind the RL-MPC method which is a combination
of both. In the next chapter these concepts will be used in a more practical way,
described in chapter 3.

17

2. Theory

18

3
Experiment setup

This chapter will define the RL-MPC controller, the baseline MPCs that its per-
formance is compared against, and the test cases used to investigate the different
aspects of the controller.

The main idea of the tests in this thesis is to introduce noise and model mismatches
that create problems for the controllers to see if the RL-MPC controller can adjust to
these difficulties. Model mismatches are introduced by making the controllers with
linearized models operate far away from their working point. Fig. 3.1 illustrates
this by showing how a linearized model is fitted to the non-linear wind resistance at
50km/h. This figure also depicts the mismatches that the RL-MPC controller will
have to overcome.

Figure 3.1: Linearization of a quadratic model at the working point 13.88 m/s =
50km/h. Furthermore an approximate area of model validity is showed as well as
resulting model mismatch at 25m/s = 90km/h. This is also the dynamics and the
working point that the controllers are working in.

3.1 Controllers
The controllers’ goal is to regulate an object’s velocity and track a velocity reference
while being affected by non-linear wind resistance dynamics. The performance of

19

3. Experiment setup

the RL-MPC is compared to two baseline MPCs, one with a non-linear model and
the other with a linearized one. The MPC formulation for both controllers is derived
and explained in section 2.2 and repeated in (3.1) below for convenience.

min
x,u

N−1∑
k=0

(δxᵀkQδxk + ∆uᵀkR∆uk)

+ δxᵀNPfδxN

s.t. xk+1 = f(xk, uk)
x0 = s

(3.1)

Where δxk are deviation variables with respect to the given reference, ∆uk are
changes in control signal, Q and R are the respective tuning variables, and Pf is the
terminal cost, chosen as the optimal cost-to-go for the unconstrained infinite horizon
LQ, as described in section 2.2.4. Note that the formulation is the same for both
baseline MPCs, but the model f(xk, uk) differs between the two. The non-linear
MPC (NMPC) uses the same non-linear model as the underlying system, while the
linear MPC uses the linearized version.

The RL-MPC controller introduced and described throughout chapter 2 uses the
same formulation as the linearized baseline MPC. However, it has now been param-
eterized as defined in section 2.4.2, meaning that RL is now allowed to adjust the
parameters θ = (b, bias, V0).

3.2 Test cases
Four different velocity profiles are used as references for the controllers, which can
be seen in Fig. 3.2. The references make it possible to test a couple of different
properties of the method. The different cases are sometimes simulated with process
noise to make the system more realistic and demanding. Furthermore, the introduc-
tion of exploration via the ε− greedy method is added when deemed necessary due
to low excitation of the states.

3.2.1 Case 1
Fig. 3.2a illustrates the velocity reference of test case 1. The goal of this scenario
is to test if the RL-MPC can handle a sharp change in reference. Furthermore, it is
intended to investigate how it adjusts to a velocity reference far from the point of
linearization and how it behaves when returning to it.

3.2.2 Case 2 and 3, Stairs and ramp
Fig. 3.2b and 3.2c depicts the velocity references for test cases 2 and 3. These test
cases aim to assess how far from the point of linearization one can push the system
while still maintaining good performance. These two relatively similar cases have
some important differences, which makes it interesting to evaluate both of them. In
case 2, the parameters have some time to converge at set velocities, but the changes

20

3. Experiment setup

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

40

50

60

70

80

90

100

110

120

130

V
e

lo
c
it
y
 (

k
m

/h
)

(a) Case 1, velocity reference.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)

0

50

100

150

200

250

300

350

400

450

500

V
e

lo
c
it
y
 (

k
m

/h
)

(b) Case 2 velocity reference, stairs

0 1 2 3 4 5 6 7 8 9

Time (s) 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
p

e
e

d
 (

k
m

/h
)

(c) Case 3 velocity reference, ramp.

0 200 400 600 800 1000 1200 1400

Time (s)

10

20

30

40

50

60

70

80

90

100

V
e

lo
c
it
y
 (

k
m

/h
)

(d) Case 4 velocity reference,
Nürburgring.

Figure 3.2: Velocity reference for the four different test cases.

in reference are more demanding. On the contrary, in case 3, the reference never
settles, which does not give time for the parameters to converge, but the reference
never does any sudden potentially problematic jumps.

In test case 2, the velocity reference continuously increases by 30 km/h at every
2666 time-steps starting from the linearization point. This reference continues in-
definitely.

In test case 3 the velocity reference increases very slowly at 0.018 km/h at every
time step.

3.2.3 Case 4, Nürburgring
Fig. 3.2d illustrates the velocity reference of test case 4. This test case aims to
evaluate the method’s performance in a scenario more related to real driving. The
reference is a velocity profile from the race track Nürburgring. However, it should
be noted that the low velocity indicates that it is most likely not a velocity profile of
a race car driver. It was generated by simulating the Simscape™ Vehicle Templates
project [29] and saving the velocity at a set time interval.

21

3. Experiment setup

3.2.4 Chapter summary
This chapter has outlined the experiments and methods used to test and evaluate
the RL-MPC method against a baseline MPC and an NMPC. Four test cases are
presented which test different aspects of the method. All of the these tests forces the
RL-MPC method to overcome some level of model miss match. Tests 1-3 are created
to test certain attributes of the method while test 4 is a more realistic scenario. This
makes it possible to test some attributes relatively isolated and then combine the
acquired knowledge and apply it in a more complex test.

22

4
Results and Evaluation

The results of the tests described in chapter 3 will be presented throughout this chap-
ter. The different tests are divided into sections, where a more detailed description
of each case will be provided, along with the results and discussion surrounding
them.

4.1 Case 1
This test case is divided into three variants, which test slightly different properties of
the original case. The following subsections will present the reason for investigating
each variant, the results, and some discussion surrounding them.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

40

50

60

70

80

90

100

110

120

130

V
e
lo

c
it
y
 (

k
m

/h
)

Figure 4.1: Case 1, velocity reference.

4.1.1 Initial results
Initially when running this experiment without noise or exploration, the large and
fast change in reference proved to be a problem for the RL-MPC since the jump in
reference caused a large spike in the control signal, which in turn caused a spike in
the TD and the gradients of the Q-function. This behavior was seen both with and
without added noise. The effect of this was that the parameters changed to unrea-
sonable values, which had the cascading effect of producing larger control signals

23

4. Results and Evaluation

which further drove the parameters to diverge.

748 750 752 754 756

Time (s)

27.74

27.76

27.78

27.8

b

b

740 750 760

Time (s)

0

5

10

b
ia

s

bias

751.4 751.6 751.8 752 752.2 752.4

Time (s)

-10000

-5000

0

T
D

Temporal Difference

TD

750 751 752

Time (s)

-2

-1

0

V
0

V
0

Figure 4.2: Zoomed in view of TD and parameter evolution at the time of
divergence. Caused by the first change in reference in case 1.

This problem can be dealt with in several different ways. Firstly, a significant
decrease in the learning rate would limit the effect of the TD spikes. However, this
is not the desired solution since it would inhibit learning. The second solution was
to decrease the aggressiveness of the reference change, i.e., change the reference from
a discrete step to a linearly increasing ramp. This solution showed promising results
but there proved to be a trade-off between how fast the reference could increase and
the learning rate. Namely, to maintain a desirable learning rate, the reference had
to increase in such a slow manner that one of the original purposes of the case was
lost. The third solution was implementing an outlier detection algorithm to reject
the TD values produced during the change in reference. The method used to reject
outliers was simple. Anything three standard deviations away from the historical
TD were rejected. However, this method of rejecting outliers proved too strict when
applied throughout the whole simulation. Thus, since the timing of the reference
change was known, this algorithm was only active N samples before and N samples
after the change occurred. In the end, a combination of a slightly ramping reference
and outlier rejection proved to be the most successful.

4.1.2 No process noise
In this variant, there is no process noise nor measurement noise added to the state,
which is supposed to represent the ideal case for the baseline MPCs. This test
aimed to investigate if the RL-MPC could outperform the baseline MPC when it is
working away from its linearization point, without any factors such as noise affect-
ing the results. Additionally, to investigate how it behaved when returning to the
linearization point.

24

4. Results and Evaluation

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

40

50

60

70

80

90

100

110

120

130

V
e
lo

c
it
y
 (

k
m

/h
)

MPC vs. RL-MPC

MPC

RL-MPC

NMPC

Reference

Figure 4.3: Results from test case 1. In this variant, there is no process noise
added to the simulation. The RL-MPC performance is slightly improved compared

to the linear MPC, but does not reach the performance of the NMPC.

250 300 350 400 450 500

Time (s)

117

118

119

120

121

122

123

V
e
lo

c
it
y
 (

k
m

/h
)

Expanded view of second set-point

MPC

RL-MPC

NMPC

Reference

Figure 4.4: Expanded view of the second set-point from Fig. 4.3.

Fig. 4.3 depicts the results of this variant, where it is hard to discern any differences
between the controllers. Initially, the reference is right at the linearization point,
and all the controllers track the reference perfectly. Fig. 4.4 shows that the NMPC
manages to follow the new reference point, while the linearized MPC is approxi-
mately 0.5 km/h off. The RL-MPC has slightly improved performance compared
to the linear MPC, but it does not reach the performance of the NMPC. When the
reference is changed back to the linearization point, the performance of the RL-MPC
is slightly decreased compared to when at the initial set-point. Investigating Fig.
4.5, which shows the evolution of the RL parameters, explains this behavior.

25

4. Results and Evaluation

Figure 4.5: Illustration of the evolution of the RL parameters, as well as the TD,
where the red dots indicate outliers that have been rejected. The RL parameters

only see significant changes whenever the reference is changed.

The cost rotation term, V0, is not relevant to control performance and is only pre-
sented for completeness. The change in the model parameter b is so tiny that it
can be considered static; an explanation for this will follow later. The bias remains
unchanged at first, which makes sense since the reference location is at the point
where the underlying model was linearized around. After the reference is updated,
we observe that the bias changes to approximately -0.08, which allows it to com-
pensate somewhat for the model mismatch. The reason that the bias improves the
control performance should be apparent considering the underlying model, repeated
in (4.1) for convenience.

fθ(xk,uk) = xk + Ts

(
− b

m
+ 1
m
uk + bias

)
(4.1)

Without the bias, the linearized model predicts that it will be right at the set-point
when in reality, it ends up below it. The bias then shifts the predictions to be more
in line with the truth. The performance increase, however, is not significant because
the change in bias is too small, and it leaves the question of why that is.

To answer this question, it should be noted that the parameter only changes right
after the reference change. This corresponds to the short period it takes for the state
to settle right after it has reached the set-point; see Fig. 4.4. This settling period
is the only thing that induces a large enough TD and gradient of the Q-function
to drive any significant parameter update. When the state has stabilized, the TD
and the gradients are just too small to give rise to a significant enough update to
be relevant. However, scenario was also simulated for ten times longer than pre-
sented above, which allowed all the terms to converge completely. But even then,
the value of the parameters compared to what is presented was insignificant, and

26

4. Results and Evaluation

the performance remained effectively identical. This is due to the system ending
up in a steady-state. This can be compared with classical RL and having con-
verged value functions over a policy in a deterministic MDP with no exploration.
I.e., there will be no updates of the policy no matter how many episodes are run
because no new information is added, and a local minima has effectively been found.

Another thing to note is that when the reference returns to the linearization point,
the parameters do not return to their initial (ideal) values, which causes the per-
formance of the RL-MPC to be ever so slightly worse. The reason for this is again
that the TD and the gradients are too small to significantly impact the parameters.

As a more clear evaluation of the performance, the cumulative deviation from the
reference is presented in Fig. 4.6 which again shows that at the first set-point there
is no deviation from any of the controllers. When the reference is changed it is, as
expected, clear that the NMPC still tracks the reference without any issues. It is
also clear that the RL-MPC adjusts its parameters to improve the performance com-
pared to the linearized MPC. When the set-point moves back to the linearization
point, the two baseline MPCs perform identically; however, crucially, the RL-MPCs
performance is very slightly decreased, which can be seen from the almost imper-
ceptible increase in deviation between 500 and 750 seconds.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

100

200

300

400

500

600

700

800

900

C
u
m

u
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

m
/s

)

Cumulative deviation from reference

MPC

RL-MPC

NMPC

Figure 4.6: Illustration of the cumulative deviation from the reference of the
three controllers in case 1, when no process noise is added.

4.1.3 Escaping the local minima by using ε-greedy
In this variant, the purpose is the same as in chapter 4.1.2 but intends to force the
RL-MPC to make exploratory moves by extending it with an ε-greedy algorithm.
The ε-greedy algorithm will 10% of the time perturb the control signal with additive
Gaussian noise, N (0, σ2). This test uses the case 1 reference, as in chapter 4.1.2,
but the time spent at each set-point is increased to allow for parameter convergence.

27

4. Results and Evaluation

It should also be noted that the graph of the full state trajectory is omitted because
it is hard to discern anything useful from it. Instead an expanded view of each
set-point is shown in Fig. 4.7. The cumulative deviation from the reference can also
be seen as a clearer indication of the controllers’ performance in Fig. 4.8. The first

Figure 4.7: Expanded view of the different set points in the reference from case
1. In this variant the there is no process noise added to the simulation, but the
RL-MPC has been extended to sometimes make exploratory control moves.

0 500 1000 1500 2000 2500 3000

Time (s)

0

500

1000

1500

2000

2500

C
u
m

u
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

m
/s

)

Cumulative deviation from reference

MPC

RL-MPC

NMPC

Figure 4.8: Illustrates the cumulative deviation from the reference from case 1
without process noise. The RL-MPC is now extended with exploration. The

RL-MPC begins outperforming the baseline MPC when the reference moves away
from the linearization point.

observation is that the performance is worse at the first set-point, which is expected
since the exploratory control moves only serve to deviate from the optimal behavior.

28

4. Results and Evaluation

After the first change in reference, the RL-MPC starts worse but soon converges and
tracks the reference as good as the NMPC, albeit with the exploration still causing
random deviations. Changing the reference back to the original set-point shows that
the performance of the RL-MPC is initially worsened, but it eventually converges to
the set-point again. The fourth subplot in Fig. 4.7 illustrates that the convergence
rate is similar to the first reference increase but not the same due to the random
nature of the exploration.

Figure 4.9: Illustration of the evolution of the RL parameters and the TD when
using exploration, and no noise is added. The red dots in the TD plot indicate

outliers that have been rejected. The parameters still see the largest change when
the reference is changed but now continue evolving even when the set-point is fixed.

If we once again investigate the TD and the evolution of the parameters, as seen
in Fig. 4.9, there is a noticeable change in behavior. The TD now sees activity
throughout the simulation, which drives the parameters to change and eventually
converge. Although, as in section 4.1.2, it is still only the bias that contributes
to improving the controller’s performance. The model parameter b still only sees
insignificant changes.

To address the question as to why that is, first recall the underlying model used by
the RL-MPC, repeated below in (4.2) for convenience.

∆ẏ(t) = ∆Fd(t)−
b

m
∆y(t) + bias (4.2)

Then recall that what drives the parameter updates are

θk+1 ← θk + ατk∇θk
Qθk
π (sk, ak) (4.3)

and that
∇θk

Qθk
π = ∇θk

Lθk
(4.4)

29

4. Results and Evaluation

The gradient of the action-value function with respect to b and the bias, respectively,
will thus be

∇bQ
θk
π = ∇bLθk

= X 1
m

∆y(t)

∇biasQ
θk
π = ∇biasLθk

= X
(4.5)

where X are the Lagrange multipliers associated with the state dynamics constraint.
Equation (4.5) shows that the sensitivity of the two parameters is linked to the
Lagrange multipliers X . However b is always scaled by two additional factors, m
and ∆y(t). Where m is simply a static factor which represents the mass of the
object and ∆y(t) = y(t)− y0. This has two implications; firstly, any update to the
b-term will always be scaled by a factor of 1

m
. Secondly, the closer the state moves

to the linearization point, the smaller the gradient becomes since as y(t) approaches
y0, ∆y(t) goes to zero. The gradients are explicitly shown in Fig. 4.10 below, and
the phenomena can be seen clearly in Fig. 4.9 between 1500 and 2000 seconds.
This is where the state has changed back to its original linearization point, and the
evolution of b stops. This also implies the inverse, that the further away we move
from the original linearization point, the more sensitive the parameter becomes,
which can be clearly seen in case 3, section 4.3.

Figure 4.10: Illustrates the gradients of action-value function with respect to
bias and b from test case 1, simulated without process noise and with exploration.

4.1.4 Addition of process noise to the system dynamics
To make the test case somewhat realistic, noise is now added to the simulation
of the real system dynamics. For the RL-MPC, the addition of process noise can
effectively be seen as if some variant of exploration was built into the system, so
forcing exploratory moves will not be needed in this case. In fact, the results of
running the system with process noise that is uniformly distributed around zero show
that the RL-MPC performs similarly to the test in chapter 4.1.3, where exploration

30

4. Results and Evaluation

was used. Additionally, since the noise also affects the baseline MPCs, the RL-MPC
outperforms the linearized MPC at all set-points and performs almost equally well
as the NMPC. In Fig. 4.11 the cumulative deviation from this test can be seen.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

C
u
m

u
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

m
/s

)

Cumulative deviation from reference

MPC

RL-MPC

NMPC

Figure 4.11: Illustration of the cumulative deviation from the reference in the
case where the added process noise is uniformly distributed around zero.

If the process noise is modified to have a bias, i.e., no longer centered around zero, the
performance of the RL-MPC stays relatively unchanged, while the baseline MPCs
struggle to deal with it. In Fig. 4.12, 4.13 and 4.14 the results are shown.

Figure 4.12: Expanded view of the different set points of the trajectory following
the case 1 reference. The added process noise is here strictly negative which causes
the baseline MPCs to diverge from the reference. However, the RL-MPC manages

to compensate for this.

31

4. Results and Evaluation

Figure 4.13: Shows the TD and the evolution of the parameters when the
process noise is negatively biased.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
u
m

u
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

m
/s

)

Cumulative deviation from reference

MPC

RL-MPC

NMPC

Figure 4.14: Plot of the cumulative deviation from the reference speed with an
added, strictly negative, process noise.

The addition of biased process noise highlights the RL-MPCs capability to learn
and compensate for both model mismatch and the biased noise.

4.2 Case 2, stairs
This section shows the results of the controllers when following the step-wise in-
creasing reference of case 2 as outlined in section 3.2.2. This test evaluates how
far the method can be pushed in an increasingly demanding environment (exponen-
tial influence of wind resistance) and still get good performance and convergence of

32

4. Results and Evaluation

the parameters. It might seem excessive to investigate speeds over 500 km/h, but
for other applications with similar dynamics, this test might still offer some insights.

Three variants of this test were performed, one with noise uniformly distributed
around zero, one with an additive, strictly negative process noise, and one with
no process noise added. The results of the latter two variants are omitted due to
brevity, but a brief summary of these results follows at the end of the section. It
should be noted that the results from the NMPC controller has been removed as
it does not add any additional insights from those presented in chapter 4.1. This
is due to the NMPC controller having the correct underlying model and thereby it
will only show non optimal behaviour due to noise.

When applying a uniformly distributed process noise around zero, the results from
this case are presented as follows. In Fig. 4.15, it can be seen that the higher the
velocity, the further the original MPC deviates from the reference. At the same
time, the RL-MPC method manages to overcome the model mismatch and follow
the trajectory.

0 1000 2000 3000 4000 5000

Time (s)

0

100

200

300

400

500

600

V
e
lo

c
it
y
 (

k
m

/h
)

MPC vs. RL-MPC

MPC

RL-MPC

Reference

Figure 4.15: State trajectories from the MPC and RL-MPC controllers during
case 2 with an added uniformly distributed noise around zero. A close-up of the
last part of simulation is shown in Fig. 4.16. Both controllers follow the reference
sufficiently in the first part. The further away from the point of linearization the
reference gets, the bigger the differences become. The RL-MPC method follows
the reference up to over 540 km/h, where the simulation ended. The NMPC

controller is omitted for clarity as it does not add anything additional from what is
investigated in case 1, see Fig. 4.12.

It should be noted that simulating in this manner can not go on indefinitely due
to the non-linear dynamics of the wind resistance. When the velocity becomes
too large, even a 30 km/h increase requires a very large difference in the control
signal. This makes the TD and Q-function gradient that drives the parameter

33

4. Results and Evaluation

4300 4400 4500 4600 4700 4800

Time (s)

490

500

510

520

530

540

V
e
lo

c
it
y
 (

k
m

/h
)

MPC vs. RL-MPC

MPC

RL-MPC

Reference

Figure 4.16: A closeup of the last parts of 4.15 illustrating the state trajectories
of case 2. At the end of the simulation, the RL-MPC still manages to follow the

reference while the MPC has deviated from the reference substantially.

update increase to unreasonable values and subsequently causes the RL parameters
to diverge. To make the parameter update smoother and alleviate the problems with
diverging parameters, outlier rejection was used in a similar way as in chapter 4.1.
This worked to some degree and made it possible to continue multiple steps higher
compared to not using it. However, in the case presented here, the parameters did
diverge a few reference updates after what is illustrated. In Fig. 4.17 it can be seen
that the spikes in TD get increasingly large in conjunction with reference updates,
even though the largest parts of the spikes are removed (in this case, removed and
not illustrated in red). This observation further emphasizes the need for some type
of outlier rejection if sharp and sudden changes in reference are present.
As mentioned in chapter 4.1.1, during experimentation, it was noted that a more
gentle slope of the reference update also made it possible to continue to higher
velocities. This behavior is partly why case 3 was constructed. This test case shows
that the RL-MPC, with some help from outlier rejection, performs very well relative
to the baseline MPC. Furthermore, over time, it adapts to dynamics that are very
different from what is first modeled.

Other tests performed with same reference

The tests performed but not thoroughly presented due to brevity are briefly pre-
sented here. The results with strictly negative noise are similar to those presented
with a small addition of cumulative deviation for the RL-MPC case and a bigger
addition for the regular MPC. The difference is similar to what is seen in the initial
two stages of case 1, see Fig. 4.12, 4.13 and 4.14. The results from testing without
noise or exploration are similar to case 1 as well, but with the addition that the
RL-MPC controller manages a bit better than the MPC when they get far from the
linearization. Break-even in this scenario is at around 140 km/h.

34

4. Results and Evaluation

Figure 4.17: TD and evolution of RL parameters in case 2 with an added
uniformly distributed noise around zero. The TD has distinct spikes at the times

of reference updates. This behavior appears more distinctly the longer the
simulation goes. The jumps in the parameter values are directly linked to the

spikes in TD at the time of reference updates. It should be noted that an outlier
rejection has been used to remove problematic values of the TD to make the

parameter updates smoother.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

0

2

4

6

8

10

12

C
u
m

u
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

m
/s

)

104 Cumulative deviation from reference

MPC

RL-MPC

Figure 4.18: Absolute cumulative deviation of state values in respect to velocity
reference for both methods during case 2 with an added uniformly distributed
noise around zero. The cumulative deviation of the MPC controller grows in an

exponential fashion while it grows linearly for the RL-MPC controller.

35

4. Results and Evaluation

4.3 Case 3, linearly increasing reference
This case is constructed to test the ability of the RL-MPC method to follow an
increasingly growing reference without jumps that might cause instabilities. In Fig.
4.19 and 4.20 the results of this test is shown. It should be noted that the simulation
was ended and that the system did not crash. Fig. 4.19 shows that the RL-MPC
method manages to follow the reference in a very good manner. It is not shown here,
but the RL-MPC method almost manages to get as good performance as the NMPC.

As mentioned in section 2.4 and 4.1.3, the parameter update is driven by both the
TD and the sensitivity of the Q-function. Furthermore, it was shown with (4.5) that
the sensitivity of the b parameter is relatively low due to being scaled by ∆y, which
usually is pretty small, and 1

m
. In case 1, the b term did therefore not contribute

in any significant way. In this case, on the other hand, as seen in Fig. 4.20, the
velocity deviates so far from the point of linearization that ∆y becomes large enough
to make b the driving force of adaption.

0 1 2 3 4 5 6 7 8 9

Time (s) 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

V
e
lo

c
it
y
 (

m
/s

)

MPC vs. RL-MPC

MPC

RL-MPC

Reference

Figure 4.19: State trajectories from the MPC and the RL-MPC controllers
following the case 3 reference with an added uniformly distributed noise around
zero. The baseline MPC cannot follow the desired velocity at all, and the error
increases as the reference move further away from the linearization point. The

RL-MPC keeps tracking the reference without any problems.

36

4. Results and Evaluation

Figure 4.20: Illustration of the TD and evolution of RL parameters when
following case 3 reference with added uniformly distributed noise around zero. The
TD initially increases but then stabilizes and starts oscillating around zero. The
RL parameters continuously change to keep up with the ever-increasing reference.

4.4 Nürburgring
This section shows the results from subjecting the controllers to follow the continu-
ously changing reference of the Nürburgring velocity profile. The simulated system
dynamics in this test are subject to strictly negative process noise. The purpose is
to see if the RL-MPC is able to compensate for this biased noise, even when the
reference changes often and abruptly. The NMPC controller is omitted because the
linearization point of the baseline MPC was not poor enough to create any signifi-
cant control decrease due to model mismatches. This is also one of the reasons why
a biased noise is used as it causes problems for the baseline MPC that the RL-MPC
can overcome.

Two iterations of this test were simulated, one with outlier rejection and one with-
out. The results of the variant without outlier rejection are presented in Fig. 4.21,
4.22 and 4.23 respectively. The figures show that the sharp changes in the reference
around 1100s causes a large jump in the parameters, and the performance is signif-
icantly decreased after this. Although the RL-MPC immediately starts improving
the performance by relearning the parameters, and by the end of the simulation, it
has once again compensated for the biased noise. The results with outlier rejection
are found in Fig. 4.24 and 4.25, which show that the problematic change in reference
can indeed be handled effectively by outlier rejection.

37

4. Results and Evaluation

0 200 400 600 800 1000 1200 1400

Time (s)

0

5

10

15

20

25

30

V
e

lo
c
it
y
 (

m
/s

)

MPC vs. RL-MPC

MPC

RL-MPC

Reference

Figure 4.21: State trajectories from the MPC and RL-MPC controllers, following
the case 4 reference, where a strictly negative noise is added. Closer inspection
shows that the RL-MPC performs better up until around 1100 seconds when the
reference changes sharply. After this, the performance is significantly degraded.
However, the performance continues to improve as time progresses, and by the

end, it outperforms the baseline MPC again.

Figure 4.22: TD and RL parameters for case 4 where a strictly negative noise is
added. The TD is initially relatively large, which causes the sharp adjustment of
the parameters. After this, the TD stays close to zero until about 1100 seconds,
where there is a spike. This subsequently causes a jump in the parameters, and

this spike coincides with the sharp change in reference seen in Fig. 4.21. After this,
the change in reference is less aggressive, and thus the RL-MPC can again learn
and reduce the TD. This is also reflected in that the parameters start converging.

38

4. Results and Evaluation

0 200 400 600 800 1000 1200 1400

Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
u
m

u
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

m
/s

)

Cumulative deviation from reference

MPC

RL-MPC

Figure 4.23: Cumulative deviation without outlier rejection from simulation of
case 4, where a strictly negative noise is added. It is clear that the RL-MPC
deviates less from the reference overall. The slope of the graphs shows that at
around 1100 seconds, the RL-MPC starts deviating more than the baseline, but

after about 100 seconds, it has corrected itself.

Figure 4.24: The TD and RL parameter evolution, with outlier rejection from
simulation of case 4, where a strictly negative noise is added. The problematic

jump in parameters that can be observed in Fig. 4.22 is no longer present since the
TD that caused this evolution is now rejected.

39

4. Results and Evaluation

0 200 400 600 800 1000 1200 1400

Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
u
m

u
la

ti
v
e
 d

e
v
ia

ti
o
n
 (

m
/s

)

Cumulative deviation from reference

MPC

RL-MPC

Figure 4.25: Cumulative deviation from reference with outlier rejection from
simulation of case 4, where a strictly negative noise is added. With outlier

rejection, the RL-MPC now manages to keep a much more even performance. The
sharp change in reference now only causes a very slight increase in deviation,
which most likely can be reduced even further with more sophisticated outlier

rejection methods.

The results show that it is possible to handle a biased noise while following a rel-
atively quickly varying reference that removes the possibility for the parameters to
truly converge. This is an interesting result as biased noise or unmodelled dynamics
that cause offsets can be a relatively common problem in real-world applications.

4.4.1 Chapter summary
This chapter has shown some interesting potential for the RL-MPC method. In
almost every test case it manages to increase the performance over the baseline MPC
and in some scenarios even the NMPC. It is shown that some level of excitation is
needed for the method to work. This is expected as it is a fundamental property of
RL methods. Some problems are seen related to quick jumps in the reference signal.
Although problematic, this is not necessarily a major problem in real scenarios as in
many cases the reference signal is carefully generated and thereby easier to handle.
Furthermore, this problem is shown to be alleviated with outlier rejection.

40

5
Conclusion

When performing reference tracking at a steady state, it is clear that the RL-MPC
manages to adapt the parameters in order to increase performance. It can compen-
sate for both model mismatch as well as biased disturbances, and it does so reliably.
These results show some very high potential for the RL-MPC method.

In cases where the reference changes quickly, the method is more fragile, although
it was shown that the problem could be alleviated with outlier rejection. However,
this fragility also leads to the question of how stable the method would be in a real
system. Even if care is taken regarding how quickly the reference can change, other
factors such as a large disturbance could push the system into a state that causes
the parameters to diverge. The obvious solution would be that outlier rejection can
take care of this, but these types of outliers are not a trivial task to handle. Maybe
this large disturbance represents a change in the system and, thus, something that
should be learned. Additionally, performing outlier rejection when changing a ref-
erence is a relatively simple task since the timing of the change is known. On the
other hand, implementing a method that can decide which outliers are problematic
and which are needed to adapt the system is a, to our knowledge, very complex
task. Another solution could be to implement the RL-MPC in conjunction with an
online trajectory planner, which in real-time would re-plan a feasible trajectory in
every instance, thus eliminating this problem.

As a final conclusion, when proper care is taken with regards to application, parametriza-
tion, and outliers this method could potentially generate very good results in oth-
erwise problematic areas. We suggest that further work is put in to this method to
gauge its full potential.

41

5. Conclusion

42

6
Future work

In this thesis, we explored how well the RL-MPC method could be used to adapt
to model mismatches when tracking a reference which showed some promising re-
sults. However, the fact remains that the method is quite sensitive to outliers, which
indicates that a robust outlier rejection is needed if the intended use is trajectory
tracking with a changing reference.

During the thesis, a meeting with Sébastien Gros and Mario Zanon, the authors
of [3], confirmed that the method should work well for trajectory tracking objec-
tives. However, it was also revealed that it is when introduced to an economic or
performance objective that the method performs the best. An example of such an
objective could be energy efficiency or passenger comfort. Therefore we propose that
a future step could be to implement the method into a scenario with an economic
cost function to gauge the possibilities thoroughly.

We only investigated the method’s capability to adjust model parameters, but it is
also possible to allow RL to adjust the bounds and the cost function, which we did
not have time to explore, as it requires some extra steps to ensure feasibility.

It should also be noted that although the RL-MPC method requires the MPC prob-
lem to be solved twice in each iteration, it can reach the same or similar performance
to an MPC with non-linear dynamics. It would be interesting to investigate further
whether the RL-MPC is competitive concerning computational speed since the two
solves needed by the RL-MPC could, in theory, be done in parallel.

The inclusion of exploratory control moves helped the RL-MPC learn in some in-
stances. However, when working at a set-point where the behavior was already
optimal, the exploratory moves only served to push the state away from the optimal
path. One solution to avoid this could be introducing an adaptive epsilon greedy
method. Adaptive epsilon greedy methods change the magnitude of the exploratory
moves depending on how good the performance is.

In the test case presented, the baseline MPCs were quite basic and their performance
was significantly decreased when a biased noise was introduced. Furthermore, the
linearized MPC suffered a performance decrease as soon there was any model mis-
match due to deviation from the working point. These problems could be handled
with integral action which spur the question on how the RL-MPC would compare
to more advanced controllers. In future works, it would be of great interest to com-

43

6. Future work

pare the RL-MPC with more state-of-the-art controllers to see if the performance
can match or outperform those. It should be noted that the RL-MPC method has
shown very good results in other publications, like [6], but it would be interesting
to see other works with different applications. These applications should ideally be
more demanding scenarios with increased model complexity compared to what was
investigated in this thesis.

Finally, when applying the method to a more complex scenario, it would also be
interesting to combine it with online SYSID and evaluate how this can contribute
to performance, stability, and convergence rate.

44

Bibliography

[1] L. Ljung, System identification: Theory for the user. Prentice Hall PTR, 2012.
[2] A. K. J. and W. Bjorn, Adaptive Control. Dover Publications, 2008.
[3] S. Gros and M. Zanon, “Data-driven economic nmpc using reinforcement learn-

ing,” IEEE Transactions on Automatic Control, vol. 65, no. 2, pp. 636–648,
2020. doi: 10.1109/TAC.2019.2913768.

[4] M. Zanon and S. Gros, “Safe reinforcement learning using robust mpc,” IEEE
Transactions on Automatic Control, vol. 66, no. 8, pp. 3638–3652, 2021. doi:
10.1109/TAC.2020.3024161.

[5] A. B. Martinsen, A. M. Lekkas, and S. Gros, “Combining system identification
with reinforcement learning-based mpc,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 8130–8135, 2020, 21st IFAC World Congress, issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2020.12.2294. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896320329542.

[6] A. B. Martinsen, A. M. Lekkas, and S. Gros, “Reinforcement learning-based
nmpc for tracking control of asvs: Theory and experiments,” Control Engi-
neering Practice, vol. 120, p. 105 024, 2022, issn: 0967-0661. doi: https://
doi.org/10.1016/j.conengprac.2021.105024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0967066121002823.

[7] J. Arroyo, C. Manna, F. Spiessens, and L. Helsen, “Reinforced model predictive
control (rl-mpc) for building energy management,” Applied Energy, vol. 309,
p. 118 346, 2022, issn: 0306-2619. doi: https : / / doi . org / 10 . 1016 / j .
apenergy.2021.118346. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0306261921015932.

[8] S. Gros. (Apr. 12, 2022). “RLMPC: An Ideal Combination of Formal Optimal
Control and Reinforcement Learning?” Youtube, [Online]. Available: https:
//youtu.be/yWxYPOxssao?t=689.

[9] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, pp. 484–489, Jan. 2016. doi:
10.1038/nature16961.

[10] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L.
Sifre, G. Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” Nature, vol. 550, pp. 354–359, Oct. 2017. doi:
10.1038/nature24270.

45

https://doi.org/10.1109/TAC.2019.2913768
https://doi.org/10.1109/TAC.2020.3024161
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2294
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2294
https://www.sciencedirect.com/science/article/pii/S2405896320329542
https://www.sciencedirect.com/science/article/pii/S2405896320329542
https://doi.org/https://doi.org/10.1016/j.conengprac.2021.105024
https://doi.org/https://doi.org/10.1016/j.conengprac.2021.105024
https://www.sciencedirect.com/science/article/pii/S0967066121002823
https://www.sciencedirect.com/science/article/pii/S0967066121002823
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.118346
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.118346
https://www.sciencedirect.com/science/article/pii/S0306261921015932
https://www.sciencedirect.com/science/article/pii/S0306261921015932
https://youtu.be/yWxYPOxssao?t=689
https://youtu.be/yWxYPOxssao?t=689
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270

Bibliography

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” Dec.
2013.

[12] M. H. S. Segler, M. Preuss, and M. P. Waller, “Planning chemical synthe-
ses with deep neural networks and symbolic AI,” Nature, vol. 555, no. 7698,
pp. 604–610, Mar. 2018. doi: 10 . 1038 / nature25978. [Online]. Available:
https://doi.org/10.1038/nature25978.

[13] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau,
“An introduction to deep reinforcement learning,” Foundations and Trends®
in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018. doi: 10 . 1561 /
2200000071. [Online]. Available: https://doi.org/10.1561/2200000071.

[14] J. García, Fern, and o Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16, no. 42,
pp. 1437–1480, 2015. [Online]. Available: http://jmlr.org/papers/v16/
garcia15a.html.

[15] B. Lennartson, Reglerteknikens Grunder. Studentlitteratur, 2002.
[16] C. E. García, D. M. Prett, and M. Morari, “Model predictive control: Theory

and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989, issn:
0005-1098. doi: https : / / doi . org / 10 . 1016 / 0005 - 1098(89) 90002 - 2.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/0005109889900022.

[17] M. Morari and J. H. Lee, “Model predictive control: Past, present and future,”
Computers & Chemical Engineering, vol. 23, no. 4, pp. 667–682, 1999, issn:
0098-1354. doi: https://doi.org/10.1016/S0098- 1354(98)00301- 9.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0098135498003019.

[18] D. Hrovat, S. Di Cairano, H. Tseng, and I. Kolmanovsky, “The development
of model predictive control in automotive industry: A survey,” in 2012 IEEE
International Conference on Control Applications, 2012, pp. 295–302. doi:
10.1109/CCA.2012.6402735.

[19] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive
control: An engineering perspective,” The International Journal of Advanced
Manufacturing Technology, vol. 117, no. 5-6, pp. 1327–1349, Aug. 2021. doi:
10.1007/s00170-021-07682-3. [Online]. Available: https://doi.org/10.
1007/s00170-021-07682-3.

[20] S. Gros and B. Egardt,Modelling and Simulation Lecture notes for the Chalmers
course ESS101, Jan. 2020.

[21] N. Murgovski, SSY281 - Model Predictive Control - Lecture notes, Jan. 2021.
[22] S. Liu and J. Liu, “A terminal cost for economic model predictive control

with local optimality,” in 2017 American Control Conference (ACC), 2017,
pp. 1954–1959. doi: 10.23919/ACC.2017.7963238.

[23] R. E. Bellman, Dynamic Programming. Princeton University Press, Dec. 2010.
doi: 10.1515/9781400835386. [Online]. Available: https://doi.org/10.
1515/9781400835386.

46

https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
http://jmlr.org/papers/v16/garcia15a.html
http://jmlr.org/papers/v16/garcia15a.html
https://doi.org/https://doi.org/10.1016/0005-1098(89)90002-2
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://doi.org/https://doi.org/10.1016/S0098-1354(98)00301-9
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://doi.org/10.1109/CCA.2012.6402735
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.23919/ACC.2017.7963238
https://doi.org/10.1515/9781400835386
https://doi.org/10.1515/9781400835386
https://doi.org/10.1515/9781400835386

Bibliography

[24] J. B. Rawlings, D. Q. Mayne, M. Diehl, D. Q. Mayne, and M. Diehl, Model
predictive control: Theory, computation, and design, 2nd. Nob Hill Publishing,
2017.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. The
MIT Press, 2018.

[26] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3,
pp. 279–292, 1992.

[27] A. dos Santos Mignon and R. L. de Azevedo da Rocha, “An adaptive im-
plementation of epsilon-greedy in reinforcement learning,” Procedia Computer
Science, vol. 109, pp. 1146–1151, 2017. doi: 10.1016/j.procs.2017.05.431.
[Online]. Available: https://doi.org/10.1016/j.procs.2017.05.431.

[28] M. Tokic, “Adaptive ε-greedy exploration in reinforcement learning based on
value differences,” in KI 2010: Advances in Artificial Intelligence, R. Dillmann,
J. Beyerer, U. D. Hanebeck, and T. Schultz, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 203–210, isbn: 978-3-642-16111-7.

[29] I. The MathWorks, Vehicle simulation – matlab and simulink. [Online]. Avail-
able: https://se.mathworks.com/solutions/physical-modeling/simscape-
vehicle-templates.html.

47

https://doi.org/10.1016/j.procs.2017.05.431
https://doi.org/10.1016/j.procs.2017.05.431
https://se.mathworks.com/solutions/physical-modeling/simscape-vehicle-templates.html
https://se.mathworks.com/solutions/physical-modeling/simscape-vehicle-templates.html

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation of chosen method
	Aim
	Thesis outline

	Theory
	Modelling and simulation
	Model Predictive Control
	Context
	The model
	MPC formulation
	The terminal cost

	Reinforcement learning
	Basic components of RL
	Q-learning
	Exploration

	Reinforcement Learning MPC (RL-MPC)
	Basic idea of RL-MPC method
	Parametric MPC formulation
	Q-Learning for MPC
	Sensitivities
	RL-MPC Algorithm
	Chapter summary

	Experiment setup
	Controllers
	Test cases
	Case 1
	Case 2 and 3, Stairs and ramp
	Case 4, Nürburgring
	Chapter summary

	Results and Evaluation
	Case 1
	Initial results
	No process noise
	Escaping the local minima by using -greedy
	Addition of process noise to the system dynamics

	Case 2, stairs
	Case 3, linearly increasing reference
	Nürburgring
	Chapter summary

	Conclusion
	Future work

