
PyTOpt
A Nonlinear Topology Optimisation Program in Python

Master’s thesis in Applied Mechanics

Daniel Pettersson
Erik Säterskog

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021:44

PyTOpt

A Nonlinear Topology Optimisation Program in Python

DANIEL PETTERSSON
ERIK SÄTERSKOG

Department of Mechanics and Maritime Sciences
Division of Dynamics

Chalmers University of Technology
Gothenburg, Sweden 2021

PyTOpt
A Nonlinear Topology Optimisation Program in Python
DANIEL PETTERSSON
ERIK SÄTERSKOG

© DANIEL PETTERSSON, 2021.
© ERIK SÄTERSKOG, 2021.

Supervisor: Knut Andreas Meyer, Department of Industrial and Materials Science
Supervisor: Magnus Ekh, Department of Industrial and Materials Science
Examiner: Jim Brouzoulis, Department of Mechanics and Maritime Sciences

Master’s Thesis 2021:44
Department of Mechanics and Maritime Sciences
Division of Dynamics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A topology optimisation simulation results of a cantilever beam with approximately
74000 elements.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

PyTopt
A Nonlinear Topology Optimisation Program in Python
DANIEL PETTERSSON
ERIK SÄTERSKOG
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Ever since the finite element method was introduced in the 1940’s, the behaviour of structures
could more easily be predicted. Combining this with an optimisation method made it possible
to minimise a structure’s weight while keeping the strength. Several topology optimisation
programs have been created for this specific purpose since then. In this thesis, a topology
optimisation program is implemented in Python with the method of moving asymptotes and
the optimality criteria method as optimisation algorithms. By utilising previous works from
universities, such as Lund University and the Technical University of Denmark, and combin-
ing the best parts a new topology optimisation program was created. The program has new
functionalities not previously implemented in similar topology programs. I.e. functionalities
such as the ability to utilise a variety of material models, being able to use an arbitrary design
domain in 2D, body forces and asymmetrical yielding. This program also fits well in educa-
tional purposes due to its versatility. The results shows that optimality criteria method gives a
better and faster result than the method of moving asymptotes. The results are also compared
with commercial topology optimisation in ANSYS. The both programs gives indistinguishable
results but ANSYS outperforms the thesis’s program in regards to computational time.

Keywords: Topology, Optimisation, MMA, OC, FEM, Python, Body forces, Compliance, Den-
sity, SIMP

v

Acknowledgements
We would like to thank Knut Andreas Meyer for his support though-out the whole project.
Without his inputs and assistance Pytopt would not be functioning in such general manner as
it is.

Our friend Henrik has given us countless hours of friendly support and well-needed breaks dur-
ing intensive hours of work.

We also thank Emma-Liisa Mikkola for her loving support during the whole master’s thesis
process.

We would also like to extend our gratefulness to Kårrestaurangen which has provided us with
nutritious and tasteful food since the beginning of the project.

Daniel Pettersson and Erik Säterskog, Gothenburg, June, 2021

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Background . 1
1.2 Purpose and Problem Description . 2
1.3 Limitations and Simplifications . 2

2 Structural Problem 3
2.1 Design domains . 3

2.1.1 Cantilever beam . 3
2.1.2 L-Shape . 4
2.1.3 Bridge . 4

2.2 FE analysis . 5
2.3 Material models . 6

3 Topology Optimisation 11
3.1 Objective function . 11
3.2 Penalties and Filters . 13
3.3 Sensitivity Analysis . 15

3.3.1 Lagrangian multipliers . 17
3.3.2 Differentiation of the residual . 17
3.3.3 Final expression . 17

3.4 Verification of sensitivity analysis using numerical differentiation 18
3.5 Examples of other objective functions . 18
3.6 Optimisation Algorithms . 19

3.6.1 Optimality Criteria . 19
3.6.2 Methods of Moving Asymptotes . 20

3.7 Topology Optimisation in ANSYS . 20

4 Program Structure 21
4.1 A Short Topology Optimisation Example . 21
4.2 PyTOpt . 23
4.3 Mesh . 24
4.4 Finite Element Analysis . 24
4.5 Filter . 24

ix

Contents

4.6 Optimise . 24

5 Simulations and Results 25
5.1 Optimisation Parameters and Convergence . 25

5.1.1 Optimality Criteria . 26
5.1.2 Method of Moving Asymptotes . 26

5.2 Linear Topology Optimisation . 27
5.3 Bilinear Topology Optimisation . 29
5.4 Optimisation with line load and multiple boundaries 30
5.5 Body Forces . 31
5.6 Dependency of Initial Density Distribution . 31
5.7 Ansys Comparisons . 34
5.8 Numerical Sensitivity Analysis . 35

6 Discussion and Conclusion 37
6.1 Program . 37
6.2 Settings . 38
6.3 Meshing . 38
6.4 Optimiser . 39
6.5 Material Model . 39
6.6 Goals and Future Work . 39

Bibliography 41

A I
A.1 A Detailed Topology Optimisation Example . I
A.2 Computer Specifications . IV

B Simulation settings V
B.1 Optimisation Parameters and Convergence . V

B.1.1 OC . V
B.1.2 MMA . V

B.2 Linear Topology Optimisation . VI
B.3 Bilinear Topology Optimisation . VI
B.4 Optimisation with line load and multiple boundaries VII
B.5 Body Forces . VII
B.6 Dependency of Initial Density Distribution . VII
B.7 ANSYS comparison . VIII
B.8 Numerical Sensitivity Analysis . VIII

x

List of Figures

2.1 Two cantilever beam examples . 3
2.2 An engineering model of a beam fixed on the left boundary and a horizontal

force acting on the right end. 4
2.3 An engineering model of an L-shape fixed in one end. 4
2.4 A hundred meters long bridge with two supports underneath and a line load on

top. 5
2.5 Stress-Strain response for the bilinear asymmetric material in axial compres-

sion/tension. The strain is controlled with ε22 =ε33 =0. 7

3.1 Arbitrary design domain with boundary condition and forces. 11
3.2 An illustration of how the SIMP parameter c affects the density in the SIMP

method. 13
3.3 Effect of different SIMP parameters. 14
3.4 Effect of different rmin constants . 15

4.1 Flowchart of the programflow of PyTOpt.py. 23

5.1 The second cantilever beam example from Chapter 2. 25
5.2 Impact of the OC parameter step. 26
5.3 Impact of MMA parameter move on the optimisation. 27
5.4 Results from three simulations with different values for the parameter move. . . 27
5.5 OC and MMA density distribution comparison for a Cantilever beam. 28
5.6 Convergence for OC and MMA regarding time and iterations. 28
5.7 Result from the optimisation with bilinear material model with Optimality Cri-

teria as optimisation algorithm. 29
5.8 The hydrostatic strain over the optimised structure. Note that the colourbar is

capped at half the absolute maximum hydrostatic strain. 29
5.9 An optimised structure of a bridge with line load with Optimality Criteria as

optimisation algorithm. 30
5.10 Evolution of gravity induced topology changes. Low gravity implies a structure

with low material density. 31
5.11 Results from five random starts and an uniform start. 32
5.12 The development of compliance for the random and uniform start. 32
5.13 Results with adapting rMin and random starts. 33
5.14 Convergence for two random start guesses with an adapting filter. 33
5.15 A topology optimisation comparison between ANSYS and PyTOpt. 34
5.16 The error between a numerical and an analytical nonlinear sensitivity analysis. . 35

xi

List of Figures

xii

List of Tables

3.1 Settings for simulations describing the influence of SIMP. 14
3.2 Settings for simulations describing the influence of filters. 15

A.1 Available settings for the dictionary. III

B.1 Settings during OC parameter Step investigation. V
B.2 Settings during MMA parameter Move investigation. V
B.3 Settings for the optimisation with linear elastic material model. VI
B.4 Settings for the optimisation with bilinear material model. VI
B.5 Settings during the bridge optimisation. VII
B.6 Settings during the body force investigation. VII
B.7 Settings during the dependency of initial density distribution investigation. . . . VII
B.8 Settings during the start dependency investigation. VIII
B.9 Optimisation settings during the numerical sensitivity analysis. VIII

xiii

List of Tables

xiv

List of Symbols

α Small strain in bilinear material model
ε Strain
λ Lagrangian mulitplier in sensitivity analysis
σ Stress
εdev Deviatoric strain tensor
f ext,C External force vector on the constrained nodes
f ext,F External force vector on the free nodes
f int,C Internal force vector on the constrained nodes
f int,F Internal force vector on the free nodes
fpre Prescribed force vector
δij Kronecker delta
η Damping coefficient in optimality criteria
∂G0
∂xe mod

Derivative of the objective function with filtering applied
γkl Shear strains in bilinear material model
λ Lagrangian multiplier in optimality criteria
∆hj Zero vector with a small value at location j
a Nodal displacement vector in FE solution
B Gradient of shape functions
D Tangent material stiffness matrix
Ke Element stiffness matrix
K Global stiffness matrix
N Shape functions
R Residual from nonlinear FE solution
uC Constrained nodal displacement
uF Free nodal displacement
∇ Gradient operator
Ω Total area
Iijlk The fourth order identity tensor in Einstein notation.
G̃0 Objective function with added lagrange multipliers
εy Strain yield limit
ξ Step length in optimality criteria
A0 Maximum allowed area
Bη
k Optimiality criteria collector variable

c SIMP penalty factor coefficient
Cj Constraint functions
Eijkl The fourth order stiffness tensor

xv

List of Symbols

G Shear modulus
G0 Objective function
Hf Weight factor for filtering
K Bulk modulus
pi Parameter i in optimisation problem
rmin Radius that specifies filter intensity
xj Density of element j
b Body force
I Second order identity tensor
e Small hydrostatic strain in bilinear material model
k Bilinear material model coefficient

xvi

1
Introduction

There is a lack of easily understood topology optimisation codes. The commercial programs
are not open source, and the codes that are available to the public are often simplified, lacking
important features or restricted to specific structures. To address these issues, a versatile topol-
ogy optimisation program has been written in Python. This thesis will cover the development
of this program.

1.1 Background

Designing load bearing components used to require vast knowledge of how forces interact with
material. During the 1940’s the finite element method was starting to be used [1] [5]. This
made it significantly easier to design a structure that could withstand a force without collaps-
ing, while keeping the mass of the structure low. Nowadays, a step further has been taken. By
using optimisation algorithms together with the finite element method, an optimal structure
can easily be designed with the help of topology optimisation programs.

One of the more known papers in the field is made by Bendsøe and Sigmund [6], the same
authors also wrote a book [15], where elastic topology optimisation was thoroughly explained.
However, when the deformations of a structure is sufficiently large, the assumption of linear
elastic material behaviour is no longer valid. This creates the need of nonlinear material mod-
els. By introducing nonlinear materials in the optimisation a more realistic result is obtained
when the deformations of the structure are large. Nonlinear topology optimisation has also
been described in many papers, Jung and Chang [12] did this in their paper together with
geometrical nonlinearity. In the article by Zhang and Paulino [18] topology optimisation with
multiple nonlinear materials was covered. Nonlinear materials are vital in many applications.
In a civil engineering approach, bridges and buildings are commonly built using concrete. This
is a material with higher strength in compression than in tension [16].

Undiscovered fields within topology optimisation remain. Even though concrete is very com-
mon, topology optimisation of concrete structures are scarce. Most optimisation papers re-
garding concrete is about mixture and reinforcement optimisation [3, 11]. Furthermore, there
is a lack of easily understood topology optimisation codes. Sigmund published a 99 lines long
topology optimisation program in Matlab which is easy to understand [10] but it has limited ca-
pabilities. The user is restricted to a single geometry and material. These are things addressed
in this thesis.

1

1. Introduction

1.2 Purpose and Problem Description
The purpose of this Master’s Thesis is to develop a versatile code capable of minimising com-
pliance for an arbitrary 2D-finite element structure, using nonlinear material models and do
this within a reasonable time. More specifically, the energy absorbed by the structure will be
the objective function to be minimised. Boundary conditions, loads and the structure should
be defined by the user. In addition, the user should be able to easily implement new material
models, objective functions and optimisation routines. With the hope of a future application
of the program in a course, the program should be easy to use and to understand.

To be able to say that this project fulfilled its purpose the following goals must be accomplished.
• Being able to run nonlinear material models, optimisation routines and objective functions

created by the user for an arbitrary 2D structure.

• Being able to run topology optimisation analysis with nonlinear material with a resolution
high enough to clearly draw conclusions from the results. This should be done in a
reasonable amount of time; the computational time will depend on the material model.
Because of this, it is estimated that optimising a model with 1 000 elements in one hour
or less will be satisfactory for the material models in this thesis.

• Being able to run a model with linear material of 10 000 elements in one hour or less
should be adequate due to the reduced computational cost using a linear model.

• A well written and clear code to such extent that it can be used in future optimisation
courses at Chalmers University of Technology or at other technical universities.

• Being able to perform topology optimisation considering body forces.

1.3 Limitations and Simplifications
During this Master’s thesis some limitations will be present. These limitations will affect the
results.

• A total of 1600 hours of work will be spent during 20 weeks.

• Computational power is limited to the available computers. See A.2 for specifications.

• The optimisation will assume plane strain and small deformations.

• The optimisation result will be in 2D with a constant thickness.

• Material models that contain state or are time dependent will not be considered.

2

2
Structural Problem

The structural problem, which is solved by a finite element analysis, is described in this chapter.
The first step is to define design domains that will be used to evaluate the optimisation program.
The Finite Element Method (FEM) is then explained for a general non-linear material model.
Finally, the specific material models used are described.

2.1 Design domains

Design domains are the area accessible for the optimisation and are required in order to test
the topology optimisation program. In this section will five different domains be presented,
which several are inspired by examples in literature [15, 12].

2.1.1 Cantilever beam

The first example design domains are the cantilever beams in Figure 2.1. The cantilever beam
is a classic engineering problem. Two versions of this problem often occurs in literature. In
the first version, seen in Figure 2.1a, the design domain is restricted height wise to the same
height as the fixed boundary [15]. The other version in Figure 2.1b allows the design domain
to expand outside of the height of the fixed boundary.

(a) (b)

Figure 2.1: Two cantilever beam examples

A beam in compression could be considered as a third version of a cantilever beam. This
version is very similar to the two versions above. The only difference is that the force is acting
horizontally instead of vertically.

3

2. Structural Problem

Figure 2.2: An engineering model of a beam fixed on the left boundary and a horizontal force
acting on the right end.

2.1.2 L-Shape

An L-shape design domain is chosen as a fourth example. The L-shaped structure is fixed at
the top and with a point-load applied at the rightmost upper corner, see Figure 2.3. The same
design domain is used in [15] and is interesting due to the stress concentration at the re-entrant
corner.

Figure 2.3: An engineering model of an L-shape fixed in one end.

2.1.3 Bridge

The last example is a 100 meter long bridge with two supports underneath, see Figure 2.4. This
example is chosen to evaluate the program on a large-scale structures such as a bridge. The
bridge is assumed to have cars on it and therefore a line load is applied on the upper edge of
the structure. Heightwise, the structure is limited to 25 meters and is clamped on both sides.

4

2. Structural Problem

Figure 2.4: A hundred meters long bridge with two supports underneath and a line load on
top.

2.2 FE analysis
The finite element method is an essential part in the optimisation process. By discretisation of
the area into elements it is easy to apply the design variables to each element and to calculate
the desired data, such as the displacements. In 2D, the most common element types are linear
triangles and quadrilateral elements, both of which are implemented in the program. The
strong form of the structural problem is expressed as

−∇Tσ = b (2.1)

where σ is the stress matrix and b is the body load vector. The FE problem will be solved
according to the methods described in Introduction to the Finite Element Method by Ottosen
and Petersson [4]. The sought displacements, u, is approximated with the shape-functions, N,
and the nodal displacements, a as

u ≈ Na. (2.2)
To find the nonlinear solution of the displacements, iterations according to the Newton-Raphson
iteration method are necessary. The residual, which is needed for the iteration method, is
calculated as

R = f int(u)− f ext. (2.3)

Where the force vectors are assembled as

f int =
N∑
e=1

xef
int
e =

N∑
e=1

xe

∫
V
BT
e σdV, (2.4)

f ext = fpre +
N∑
e=1

xef
ext
e = fpre +

N∑
e=1

xe

∫
V
NT
e bdV. (2.5)

5

2. Structural Problem

Where fpre are the prescribed forces and the notations int and ext stands for internal and
external respectively. B is the gradients of the shape-functions N. xe is the design variable
for element e. The number of elements are denoted as N. The prescribed forces are applied
node-wise and are not dependent on the design variable, also known as the element density.
Body forces are scaled linearly with the density of the element. For example, gravity will affect
elements with high density more than those with a low density. The stiffness matrix is defined
as

KFF = ∂RF

∂uF (2.6)

and will for every Newton iteration solve for a new guess of the free displacements as

uF
new = uF

old −KFF−1RF. (2.7)

The iterations will continue until the residual is below a predefined tolerance. The notation F
and C signifies the free respectively constrained degrees of freedom.

In the linear case, the internal forces are not needed to be calculated because the global stiffness
can be assembled directly as

K =
N∑
e=1

Kexe. (2.8)

The unknown displacements can instantly be determined by inverting the free part of the global
stiffness matrix and multiplying with the global external force vector. The FE-equations can
be written as

uF = KFF−1
f ext,F (2.9)[

KFF KFC

KCF KCC

] [
uF

uC

]
=
[
f ext,F

f ext,C

]
. (2.10)

2.3 Material models
A material’s behaviour is predicted with the help of a material model. More specifically, given
a strain ε, the material model gives the stress σ. The program will have three different material
models that can be chosen by the user. The one most commonly used in literature and in
commercial software is the linear elastic material model.

The linear elastic material model is trivial and follows Hooke’s law,

σ = 2Gεdev +KItr(ε). (2.11)

Here is tr(ε) the trace of the strain tensor and equals three times the hydrostactic strain εh.
εdev is the deviatoric part of the strain tensor. G and K are the shear modulus and bulk
modulus respectively. In the process of material model development an experimental model
was used, called Modified Hooke’s law in this report. This remains in the program but will not

6

2. Structural Problem

be investigated further in the report.

A new bilinear asymmetric material model is created in this thesis and is inspired by the
behaviour of concrete [16]. Concrete is stronger in compression than in tension which is reflected
in the material model. The material model utilises the hydrostatic strain to determine if the
material is in compression or tension. When a limit for the hydrostatic strain εy has been
reached, the material’s Young’s modulus is reduced. In Figure 2.5 is the hydrostatic yielding
limit εy = 0. After this limit has been reached, the Young’s modulus becomes 5% of its original
value.

-5 0 5

11
[-] 10

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
1
[P

a
]

10
9 Stress-Strain relation

Figure 2.5: Stress-Strain response for the bilinear asymmetric material in axial compres-
sion/tension. The strain is controlled with ε22 =ε33 =0.

The material model is created by dividing the strain ε into two parts so that

ε = ε1 + ε2 (2.12)
ε1 = ε(1− k) (2.13)

ε2 = εk. (2.14)

Where the factor k is determined as follows

k =

1− εy

tr(ε) if tr(ε) ≥ εy

0 if tr(ε) < εy
. (2.15)

This means that ε1 would only represent the strain required to reach εy if tr(ε)≥ εy. All strain
above the yielding limit will be included in ε2. Each part of ε will have a shear modulus and
a bulk modulus such that

σ = 2G1εdev1 +K1I tr(ε1) + 2G2εdev2 +K2I tr(ε2). (2.16)

To be able to derive the tangent material stiffness matrix, D, when k > 0 the stress must be
considered in Einstein notation as

σij = Eijklεkl = Eijkl1εkl1 + Eijkl2εkl2 . (2.17)

7

2. Structural Problem

Where Eijkl is the fourth order material stiffness tensor which can be expressed as

Eijkl1 = 2G1(Iijkl −
δijδkl

3) +K1δijδkl (2.18)

and

Eijkl2 = 2G2(Iijkl −
δijδkl

3) +K2δijδkl. (2.19)

Iijkl is the fourth order identity tensor and δij is the second order identity tensor. With this
relation the tangent material stiffness matrix can be derived as

(2.20)
Dijmn = dσij

dεmn
= ∂

∂εmn
(Eijkl1εkl(1− k)) + ∂

∂εmn
(Eijkl2εkl(k))

The first term in 2.20 can then be expanded as

∂

∂εmn
(Eijkl1εkl(1− k)) = Eijkl1

∂

∂εmn
(εkl(1− k))

= Eijkl1

(
∂εkl
∂εmn

(1− k) + εkl
∂(1− k)
∂εmn

)
(2.21)

The two terms inside the large parentheses in 2.21 can be expressed as

∂εkl
∂εmn

(1− k) = δkmδln(1− k) (2.22)

εkl
∂(1− k)
∂εmn

= −εkl
∂k

∂εmn
(2.23)

∂k

∂εmn
=
∂(1− 3εy

εoo
)

∂εmn
= 3εyε−2

oo δmn (2.24)

Similar derivation will occur for the second term in 2.20. By inserting 2.21-2.24 in 2.20 the
tangent material stiffness matrix is given as

Dijmn =

Eijmn1(1− k) + Eijmn2k + (Eijkl2 − Eijkl1)(3εklεyε−2
oo δmn) if tr(ε) ≥ εy

Eijmn1 if tr(ε) < εy
. (2.25)

It can be noted that a negative stiffness can occur if the material is exposed to high shear
strains compared to hydrostatic strains under the condition that tr(ε) ≥ εy. To check this, let’s
consider the stress difference at a stiffness where tr(ε) ≥ εy is fulfilled, such that

∆σij = Dijmn[εkl]∆εmn. (2.26)
Consider now εkl as a combination of a uniaxial strain tensor, εkluni

, and a shear strain, γkl. The
uniaxial strain, α, is in the 11-direction and is a small number. The shear strain is considered
in the 12-direction. This means that

8

2. Structural Problem

εkl =

α 0 0
0 0 0
0 0 0

+

 0 γ12 0
γ12 0 0
0 0 0

 = εkluni
+ γkl, (2.27)

εoo = εoouni
+ γoo = α

3 > εy (2.28)

and

Dijkl[εkl] = Eijmn1(1− k) + Eijmn2k + (Eijkl2 − Eijkl1)(27(εkluni
+ γkl)εyδmn)
α2 . (2.29)

From Equation 2.29 one can notice that it is only the last term that can inflict negative stiffness.
It can also be observed that any shear strain multiplied with this term will be zero due to
multiplication with δmn. Let ∆εmn in Equation 2.26 be a small strain, eδmn where 0 < e << 1,
such that

∆εmn = eδmn. (2.30)

Further, insert Equations 2.18 and 2.19 to the term of interest from Equation 2.29. Combining
this with the Equations 2.26 and 2.30 gives

∆σij =
(
Eijmn1(1− k) + Eijmn2k

+ (2(G2 −G1)(Iijkl −
δijδkl

3) + (K2 −K1)δijδkl)
(27(εkluni

+ γkl)εyδmn)
α2

)
eδmn

= (Eijmn1(1−k)+Eijmn2k)eδmn+
2(G2 −G1)(εijuni

− δijα

3 + γij)
α

+(K2−K1)δij

 81εye
α

.

(2.31)

The last term in Equation 2.31 will be large as α goes towards zero. Especially will the part
involving G1 and G2 be considerably large. Anisotropy could also be induced since a hydrostatic
strain can influence shear stresses. If G1 > G2 this could also inflict a negative value of ∆σij
and that is not reasonable. This issue is addressed by choosing G1 = G2.

9

2. Structural Problem

10

3
Topology Optimisation

The topology optimisation is the process of finding the optimal density distribution in a FE
model. This chapter describes the topology optimisation process. The chapter begins with
defining the objective function that should be minimised. After this, the derivative of this
objective function, called sensitivity, will be derived. Finally, the expansion to include body
forces and different objective functions will be covered.

3.1 Objective function

Figure 3.1: Arbitrary design domain with boundary condition and forces.

The mathematical expression of the optimisation problem is stated as

minimise G0 = G0(pi(x),x) =
∫

Ω
g0(pi(x), x)dA (3.1)

subject to Cj(pi(x),x) ≤ 0 with j = 0, 1, ...,m
R = 0

where pi with i = 0, 1, ..., n.

G0(pi(x),x) is the Objective Function that will be minimised. The design variables x are in
this case the element densities. Moreover, the parameters pi(x) are dependent on the design
variables. For instance could such a parameter be the nodal displacements, u(x), of the finite
elements. The total area available to the optimiser is Ω, see Figure 3.1. R is the residual from
the FE analysis. The constraints are labelled as Cj where C0 is a material constraint that
specifies the amount of material that can be used. A material constraint is one of the most
common constraints and can be written as

11

3. Topology Optimisation

C0(x) =
∫

Ω
xdA− A0 ≤ 0. (3.2)

Where A0 is the maximum allowed area.

Minimisation of energy is widely used as objective function because of its simplicity [6, 15,
8]. Because of this reason the minimisation of energy will be the main objective function in this
thesis. The energy is calculated by multiplying the external force vector with the displacement
vector as

G0 = f ext(xj)Tu(xj). (3.3)

In practice, this results in a minimisation of compliance. Therefore, this objective function will
be called compliance in this thesis.
Two ways of implementing the objective function are described in [8]. One of the methods,
minimisation of complementary work, involves load stepping and calculating the equilibrium
at every load step. This method is computationally costly, but yields the best result [8].

The other method is the minimisation of end compliance. In this case a single load step is
required and it is only when the total force has been applied that an equilibrium is calculated.
The drawback of this method is that one can not be certain that the structure has not collapsed
before the total load was applied [8]. This thesis will focus on this method due to the simplicity
and speed of calculating a single load step.

12

3. Topology Optimisation

3.2 Penalties and Filters

Solid Isotropic Material with Penalization (SIMP) is a method making it less favourable for
elements to have a density between zero and one, since a material with density between zero
and one is impossible to manufacture. As an example, when an element has a density of 0.5,
it can not be said if the element should have material or not. This is visible as grey elements
in simulation results. The method consist of raising the density to a power of c. This makes it
inefficient for the optimiser to use material that is not zero or one. In Figure 3.2, is the SIMP
method visualised for three different values of the SIMP penalty parameter c. SIMP is easily
implemented into the FEM equations 2.4 and 2.8 as

f int =
N∑
e=1

xce

∫
V
BT
e σdV (3.4)

and

K =
N∑
e=1

Kex
c
e. (3.5)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

c=1

c=2

c=3

Figure 3.2: An illustration of how the SIMP parameter c affects the density in the SIMP
method.

Simulations with the settings shown in Table 3.1 demonstrate the difference in results obtained
for three different SIMP parameters in the SIMP method, see Figure 3.3. The first of the three
parameters is c = 1 which means that SIMP is inactive. SIMP parameter equal to three is
recommended by Bendsøs as the best value for c [6]. c = 5 is chosen to visualise the effects of
a clearly higher c than recommended.

13

3. Topology Optimisation

Table 3.1: Settings for simulations describing the influence of SIMP.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.02
Volume Fraction 0.3

rMin 0.014
SIMP 1/3/5
Linear True

Optimiser OC

(a) No SIMP method
active.

(b) Intermediate value of
SIMP parameter.

(c) High value of SIMP pa-
rameter.

Figure 3.3: Effect of different SIMP parameters.

When having a large SIMP parameter, the iterations necessary to find the optimal solution
increases drastically and the optimisation is much more prone to have convergence issues. So
even though the result is similar, the computational time makes a high SIMP parameter inef-
ficient to use.

Checkerboard patterns have an artificially high stiffness compared to a uniformly distributed
density [7]. This problem is also increased by the SIMP method. Instead of using elements
between zero and one, the optimiser tends to create a checkerboard pattern, leaving every
other element full and every other empty, which is also difficult to manufacture. To reduce this
problem [10] chooses to implement a filter algorithm to create a mesh independent solution by
modifying the sensitivity of the objective function. The sensitivities ∂G0

∂xf
, are a vital part of the

optimisation routine as they describe the direction of the optimisation. The sensitivity analysis
is described in Section 3.3 and the filter modifies the sensitivities as

∂G0

∂xe mod
= 1
xe
∑N
f=1Hf

N∑
f=1

Hfxf
∂G0

∂xf
(3.6)

Hf = max(rmin − dist(e, f), 0). (3.7)

Hf is a weight factor that decreases linearly with the distance from the element’s centre to the
centres of nearby elements, up to the radius rmin. The function ’dist’ calculates the distance

14

3. Topology Optimisation

from element e to element f.

Three simulations are done showing the effects of the filter in Figure 3.4. In Table 3.2 the
settings for the simulation can be seen.

Table 3.2: Settings for simulations describing the influence of filters.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.02
Volume Fraction 0.3

rMin 0.002/0.014/0.08
SIMP 3
Linear True

Optimiser OC

(a) Low value for rmin (b) Intermediate value for rmin (c) High value for rmin

Figure 3.4: Effect of different rmin constants

Checkerboarding occurs as predicted for a low value of rmin. Although a too high rmin causes a
blurry result and conclusions about the structure is hard to make.

3.3 Sensitivity Analysis
The sensitivity analysis is vital to find an optimal solution as the sensitivity analysis describes
how the objective function depends on the design variables. The sensitivity analysis will be
based on Tyler Bruns [9] approach in this thesis. Only a single element j will be looked at in
this section. A general objective function is denoted as

(3.8)G0(uC(xj),uF(xj),f ext,C(xj),f ext,F(xj),f int,C(xj),f int,F(xj), xj)

These quantities are defined in Section 2.2. The first step is to add Lagrangian multipliers, λ.
Adding the Lagrangian multipliers and the residual gives

G̃0(xj) = G0 + λTR, (3.9)

15

3. Topology Optimisation

with the condition that
λTR = 0. (3.10)

Where R is the residual from the FE solution, see Equation 2.3. The residual can be divided
into a free part and a constrained part. By expanding the constrained part, the objective
function can be rewritten as

(3.11)G̃0(xj) = G0(uC(xj),uF(xj),f ext,C(xj),f ext,F(xj),f int,C(xj),f int,F(xj), xj)
+ λFRF(uC(xj),uF(xj), xj) + λC(f int,C(uC(xj),uF(xj), xj)− f ext,C(xj)).

The equation is then differentiated such that

(3.12)

dG̃0

dxj
= duC

dxj

(
∂G0

∂uC + λF∂RF

∂uC + λC∂f
int,C

∂uC

)
+ duF

dxj

(
∂G0

∂uF + λF∂RF

∂uF + λC∂f
int,C

∂uF

)

+ df ext,C

dxj

(
∂G0

∂f ext,C − λ
C
)

+ ∂G0

∂f ext,F
df ext,F

dxj
+ ∂G0

∂f int,C
df int,C

dxj

+ ∂G0

∂f int,F
df int,F

dxj
+ ∂G0

∂xj
+ λF∂RF

∂xj
+ λC∂f

int,C

∂xj
.

The Lagrangian multipliers can at this point be chosen arbitrarily. However, in the current
expression, duF

dxj
and df ext,C

dxj
are particularly expensive to solve and would be preferably elim-

inated to increase efficiency [9]. These expressions do not have an analytical expression and
requires an FE analysis in order to be solved. These terms can be eliminated by choosing the
Lagrangian multiplier as

λC = ∂G0

∂f ext,C (3.13)

λF∂RF

∂uF = −
(
∂G0

∂uF + λC∂f
int,C

∂uF

)
. (3.14)

The expression for the sensitivity will then be

(3.15)

dG̃0

dxj
= ∂G0

∂xj
+ ∂G0

∂uC
duC

dxj
+ ∂G0

∂f ext,F
df ext,F

dxj
+ ∂G0

∂f int,C
df int,C

dxj
+ ∂G0

∂f int,F
df int,F

dxj

+ λF
(
∂RF

∂uC
duC

dxj
+ ∂RF

∂xj

)
+ λC

(
∂f int,C

∂uC
duC

dxj
+ ∂f int,C

∂xj

)
.

The chosen objective function of compliance can now be inserted as

G0(xj) = f ext(xj)Tu(xj) (3.16)

and terms that are zero for this specific objective function are eliminated. I.e. duC

dxj
= 0,

∂f int,C

∂xj
= 0, ∂Go

∂f int,C = 0, ∂Go

∂f int,F = 0, and ∂G0
∂xj

= 0, resulting in

dG̃0

dxj
= ∂G0

∂f ext,F
df ext,F

dxj
+ λF

(
∂RF

∂xj

)
(3.17)

16

3. Topology Optimisation

3.3.1 Lagrangian multipliers
The terms in Equation 3.14 can with the objective function from Equation 3.16 be written as

∂RF

∂uF = KFF (3.18)
∂G0

∂uF = f ext,F (3.19)

λC = ∂G0

∂f ext,C = uC (3.20)

λF = −KFF−1(f ext,F + uC∂f
int,F

∂uF) (3.21)

In a linear case is λF = −uF −KFF−1uC ∂f int,F

∂uF . In both the linear and nonlinear cases uC is
equal to zero since there are no prescribed displacements in the structure.

3.3.2 Differentiation of the residual
The differential of the residual with respect to the design variables will be derived as

∂RF

∂xj
= ∂

∂xj

(
f int,F − f ext,F

)
, (3.22)

and will with Equation 2.5 and 3.4 be

∂RF

∂xj
= cxc−1

j

∫
V

BT,F
j σdV −

∫
V
NT,F
j bdV. (3.23)

Note that the constant c is the SIMP coefficient.

3.3.3 Final expression
The first factor in Equation 3.17 is differentiated as

∂G0

∂f ext,F = uF(xj). (3.24)

Finally the whole expression for the nonlinear sensitivity analysis can be expressed by using
equations 3.21, 3.23 and 3.24. Which gives the expression

dG̃0

dxj
= uF(xj)

∫
V
NT,F
j bdV −KFF−1

f ext,F
(
cxc−1

j

∫
V

BT,F
j σdV − cxc−1

j

∫
V
NT,F
j bdV

)
. (3.25)

When body forces are not present, ∂f
ext

∂xj
= 0, the final expression can be calculated as

dG̃0

dxj
= −KFF−1

f ext,F
(
cxc−1

j

∫
V

BT,F
j σdV

)
. (3.26)

This final expression is the sensitivity needed for the optimisation.

17

3. Topology Optimisation

3.4 Verification of sensitivity analysis using numerical
differentiation

A numerical differentiation to the sensitivity analysis can be useful for verifying the analytical
expressions. ∆hj is a zero vector with a small numerical perturbation at a single location j in
the vector ∆hj. A central difference scheme gives

dG0

dxj Num.
= G0(x + ∆hj)−G0(x−∆hj)

2∆hj
(3.27)

The error is calculated as

Error =

1−
dG0
dxj Num.
dG0
dxj Anal.

 (3.28)

3.5 Examples of other objective functions
The objective function could be chosen as many different functions depending on what type of
optimisation is desired. Some objective functions could be:

• Minimisation of compliance
• Minimisation of displacements
• Minimisation of stress
• Minimisation of mass

Displacements could be used instead of the compliance as an objective function to determine an
optimal structure. The objective function may, for example, be the square of the displacements.
The objective function is then defined as

G0(xj) = ||u||2 (3.29)
Recall Equation 3.15 from the sensitivity analysis. Every term where the displacement is not
included will disappear and the only parts that remain are

dG̃0

dxj
= λF

(
∂RF

∂uC
duC

dxj
+ ∂RF

∂xj

)
+ λC

(
∂f int,C

∂uC
duC

dxj

)
. (3.30)

The Lagrangian’s multipliers are chosen as

λF∂RF

∂uF = −
(
∂G0

∂uF + λC∂f
int,F

∂uF

)
(3.31)

λC = ∂G0

∂f ext,C = 0. (3.32)

With Equation 3.18 this gives
λF = −2KFF−1uF. (3.33)

The sensitivity will, due to the fact that duC

dxj
= 0, be

dG̃0

dxj
= −2KFF−1uF∂RF

∂xj
. (3.34)

18

3. Topology Optimisation

Where the last factor will take the same expression as in Equation 3.23. This objective function
is implemented within the program. However, this is an initial implementation and due to
inconclusive results are the results left out of the thesis.

3.6 Optimisation Algorithms
To find the optimal solution an optimisation algorithm is used. Optimisation functions use
the sensitivities of the objective function to iterate towards a minimum. Since the optimisa-
tion involves constraints, not all optimisation methods are suitable. The most popular meth-
ods in topology optimisation are Optimality Criteria (OC) and Method of Moving Asymptotes
(MMA)[14, 17]. Both of these algorithms will be explored.

3.6.1 Optimality Criteria
Optimality Criteria (OC) was described in 1995 by Martin Bendsøe and Ole Sigmund [6].
However, OC is inefficient if multiple constraints are active and is usually only used for single
constraint optimisation [14]. OC was also used in "A 99 lines of topology optimization code
written in Matlab" published by DTU [10] which is a great source of information on how to
apply the optimisation method. The OC can be summarised as:

xk+1 =

max((1− ζ)xk, 0) if xkBη

k ≤ max((1− ζ)xk, 0)
xkB

η
k if max((1− ζ)xk, 0) ≤ Bη

k ≤ min((1 + ζ)xk, 1)
min((1 + ζ)xk, 1) if min((1 + ζ)xk, 1) ≤ xkB

η
k

(3.35)

Where ζ is a step length, η is a damping coefficient and

Bη
k =

−∂G0
∂xk

λ

η . (3.36)

λ is here the Lagrangian multiplier that makes sure that the volume constraint is not broken.
However, Equation 3.36 implies that ∂G0

∂xk
<0 for all k. When body forces or varying loads are

implemented, ∂G0
∂xk

<0 can not be assured for all k. Since the damping coefficient is less than one
this would cause imaginary numbers [14]. To account for non-constant loads or body forces Bη

k

will be altered as

Bη
k = −sign

(
∂G0

∂xk

) |∂G0
∂xk
|

λ

η . (3.37)

This is done using a bi-sectioning algorithm in [10] as

λ = λ1 + λ2

2 (3.38)

if
∫

Ω
x >

∫
Ω
A0 then λ1 = λ else λ2 = λ (3.39)

An optimal solution is found by repeating the process above until the difference between the
both limits are below a predefined threshold.

19

3. Topology Optimisation

3.6.2 Methods of Moving Asymptotes
The method of moving asymptotes (MMA) by Krister Svanberg was first introduced 1987 [2] and
is still a well accepted optimisation method for structural designs [10]. MMA utilises asymptotes
to keep the optimisation within the constraints. In contrast to OC, MMA can directly handle
multiple global constraints but with the cost of being more complex to implement [15]. In
addition, it is also shown that OC gives a better result considering final compliance than MMA
and that the two methods can converge to different optima if the SIMP parameter is larger
than one [14]. However, this is under the condition that only one constraint is active. This is a
very short and simplified description of MMA. For a more in depth explanation how the MMA
works, the reader is recommended to read [2] by Krister Svanberg. The MMA iteration process
is according to [2] as follows

1. Choose a starting point x and let iteration variable k = 0.
2. Calculate G0(xk) and ∇G0(xk)
3. Create a subproblem P k with approximations of G0 from previous step.
4. Solve the subproblem P k and let the optimal solution be next starting point x(k+1)

5. k = k + 1 and go to step 2.

3.7 Topology Optimisation in ANSYS
Several commercial topology optimisation software exist [19][22][20]. In this thesis, ANSYS [21]
will be used to verify the result from our topology optimisation code written in Python.

In ANSYS, the available optimisation algorithms are Optimality Criteria and Sequential Convex
Programming. Sequential convex programming is an extension of MMA [21]. The built in
objective functions in ANSYS are mass, volume and compliance. The program also has the
possibility to implement a custom objective function. Constraints that can be used are local
and global Von Mises stress, mass, volume, displacement and reaction force. A custom criterion
can be implemented here as well. There are also ways to alter the penalty factor, the maximum
number of iterations and a minimum element density. The penalty factor is the same as the Solid
Isotropic Material with Penalization (SIMP) constant [21]. ANSYS is using a filter algorithm
for the optimisation but the user can not change the settings for the filer more than if the filter
will be linear or nonlinear.

20

4
Program Structure

This chapter will go though the application of the earlier explained theory in a topology optimi-
sation program. An example will be demonstrated and lastly each module has its own section
where it is explained in more detail.
The program, is from now on called PyTOpt, is divided into several modules. To download
PyTOpt go to https://github.com/ErikSaterskog/PyTOpt. Mainly three Python libraries
were used in creating this program. All three are listed below.

• Numpy - Basic Library for maths in Python.
• Scipy - Library with linear algebra functionality
• Calfem - FEM Library

Both Numpy and Scipy are frequently used libraries which contributes with algebraic and
matrix functionality. Scipy’s sparse-matrices made it possible to use denser meshes for the
problems studied. CALFEM is created at Lund University and adds the possibility to create
meshes and geometries with the help of GMSH [24].

4.1 A Short Topology Optimisation Example
An example will be explained briefly in this section. The example will contain all the necessities
needed from a potential end user. For a more in-depth explanation please view the Appendix
A.1. The example problem can be read in Listing 4.1 and consists of these six main parts:

1. Importing Modules.
• Import all the important modules for creating a geometry and calling the optimisa-

tion.
2. Creating geometry.

• Set up the domain that will be optimised with the help of CALFEM. The example
demonstrates the design domain for a cantilever beam.

3. Forces and boundary conditions.
• Mark fixed boundaries and apply loads on the geometry.

4. Material parameters
• Determine the material model for the optimisation and its required parameters.

Material models available are:
– Elastic
– Bilinear

5. Settings
• Select an objective Function for the optimisation. The two available objective func-

tions are:
– Compliance

21

https://github.com/ErikSaterskog/PyTOpt

4. Program Structure

– Displacement
• Choose an Optimisation algorithm for the topology optimisation. PyTOpt have

these two to choose from:
– OC
– MMA

• Denote additional optimisations settings. These are for instance the SIMP parameter
and mesh size.

6. Calling PyTOpt
• The optimisation program PyTOpt is called with the parameters and settings as-

signed in 1-5 as input.

Listing 4.1: Example of a program written for topology optimisation with PyTOpt.
Importing Modules
import calfem.geometry as cfg
import Pytopt.PyTOpt as PyTOpt
from Pytopt import Material_Routine_Selection as mrs
from Pytopt import Object_Func_Selection as ofs
from Pytopt import Optimisation as opt

Creating geometry
g = cfg.Geometry()

g.point([0,0])
g.point([1,0])
g.point([1,0.4],marker=9)
g.point([1,0.8])
g.point([0,0.8])
g.point([0,0.5])
g.point([0,0.3])

g.line([0, 1],marker=0)
g.line([1, 2],marker=1)
g.line([2, 3],marker=2)
g.line([3, 4],marker=3)
g.line([4, 5],marker=4)
g.line([5, 6],marker=5)
g.line([6, 0],marker=6)

g.surface([0, 1, 2, 3, 4,5,6])

Forces and boundary conditions
force = [−1e6,9,2]
bmarker = 5
eq=[0,0]

Material parameters
mp = {'E':210e9,'nu':0.3,'eps_y':0 }
materialFun = mrs.Bilinear

Settings, Objective function and Optimisation routine
ep=[1,True,2]
settings = {'volFrac':0.3,'meshSize':0.03,'rmin':0.03*0.7,'changeLimit': 0.0,'SIMP_const':3}
ObjectFun = ofs.Displacement
OptFun = opt.OC

Calling the optimisation
PyTOpt.Main(g, force, bmarker, mp, ep, materialFun, ObjectFun, OptFun,settings,eq,maxiter=150)

22

4. Program Structure

4.2 PyTOpt
The main module PyTOpt.py connects all the other modules. The module requires inputs such
as geometry, material model and optimisation settings. If settings are missing, PyTOpt will
start by auto-filling the missing settings and tries to do an optimisation based on a mixture of
user defined settings and default settings. Both the definition of PyTOpt.Main and the default
settings can be seen in Listing 4.2.

Listing 4.2: The beginning of the PyTOpt module showing the inputs and default settings.
_defaultSettings = {'volFrac':0.5,'meshSize':0.1,'rmin':0.1*0.7,'changeLimit': 0.01,'SIMP_const':3,'Debug':False}

def Main(g, force, bmarker, mp, ep, materialFun, ObjectFun, OptFun, settingsdict={}, eq=None, maxiter=30):

Geometry, material
parameters, settings

Mesh

Apply boundary
conditions

Initialisation and filter
weight matrix

calculation
FEA

Sensitivity analysis

Optimisation
algorithm

No

Yes

Solution found
 or reached max number

 of iterations?

Display solution

Filter sensitivities

Optimisation routine

Figure 4.1: Flowchart of the programflow of PyTOpt.py.

A simplified flowchart of the module can be seen in Figure 4.1. The first step is to mesh the
geometry with help of the module mesh.py. In the next step, the main module defines the
degrees of freedom of the problem and interpret the boundary conditions set by the user. An
uniform starting guess for the density distribution is assumed based on the allowed volume
fraction. Initialisation of the FEM-problem is done next, as well as calculating the weight
matrix used in the filter module. The last part of the module is the optimisation loop. The
loop contains the finite element analysis, sensitivity analysis and the filtering step. A plot of the
current optimised structure will be shown every fifth optimisation iteration. The optimisation
will run until it satisfies the conditions set by the user; either the optimisation tolerance or a
limit on the maximum number of iterations. When finished, the result will be shown in a plot

23

4. Program Structure

over the final optimised structure. In addition, a plot over the hydrostatic strain distribution
will be presented to easier interpret the results from the optimisation, especially when the
bilinear asymmetric material model is used.

4.3 Mesh
The module Mesh.py meshes the geometry. The module receives the geometry, approximate
element size and the type of element as input. With help from the CALFEM library the
geometry is constructed as a 2D mesh with two translational degrees of freedom for each node.
GMSH is used as a mesh generator [24] and is called within CALFEM routines. The mesh can
handle two different types of elements, linear triangles and linear quadrilaterals.

4.4 Finite Element Analysis
The Finite Element Analysis module FE.py solves the finite element problem. It requires the
mesh, the boundary conditions, the prescribed forces and the design parameters. Depending
on the settings, FE.py either uses a linear solver or a nonlinear solver. The linear solver
constructs the global stiffness matrix and solves the displacements according to equation 2.9.
The nonlinear solver utilises a nonlinear material model and uses Newton-Raphsons iteration
method to find the displacements.

4.5 Filter
The module Filter.py utilises a low pass filter to smooth the distribution of objective function
sensitivities. The inputs are the filter weight matrix calculated in PyTOpt.py, the sensitivities
and the design variables. Filter.py assigns the weighted average of nearby elements to the each
element. The weight is stored in the weight matrix and is declining linearly with the distance
from the element to a maximum radius of rmin. Output from the module is the updated
sensitivities.

4.6 Optimise
The optimisation module Optimisation.py will contain the optimisation algorithms OC and
MMA. Both the optimisation algorithms are callable separately with design variables, sensitiv-
ities, element areas, volume fraction, optimisation iteration number and present number of the
objective function. With this input, the optimisation returns updated design variables. The
Method of Moving Asymptotes algorithm is based on the functions written by Arjen Deetman
[23]. Deetman’s code is a translation of Krister Svanbergs MMA-GCMMA code written in
MATLAB [13]. The Optimality Criteria optimisation method follows the routine described
in the theory chapter. It is a modified version of the code written in the 99 lines topology
optimisation code [10].

24

5
Simulations and Results

This chapter presents the results provided by simulations with PyTOpt. Before running the
simulations, an investigation was performed to find the parameter values in the optimisation
functions which gives the lowest compliance. Results from this investigation is first presented.
The chapter then continues with presenting simulation results from using the two material
models. Body forces and the dependency of the initial density distribution, x0, were also
examined in this chapter.

5.1 Optimisation Parameters and Convergence
The optimisation depends largely on the settings used. Bendsøe and Sigmund recommends a
step length of 0.2 [6] which represents the maximum change of the density for a element for one
optimisation iteration. In this section a brief investigation into the optimisation algorithm’s
parameters will be done. All simulations in this section will be done on the cantilever beam
seen in Figure 5.1.

Figure 5.1: The second cantilever beam example from Chapter 2.

25

5. Simulations and Results

5.1.1 Optimality Criteria

The parameter Step is changed between four different cases and the convergence behaviour
is observed in Figures 5.2a and 5.2b. The parameter step describes how large step the OC
optimisation can take in a direction. Settings for the simulations can be found in Table B.1.

0 5 10 15 20 25 30 35 40 45 50

Iteration

103

104

G
0
[J

o
u
le

s
]

Convergence for different Step in OC

Step 0.5

Step 0.2

Step 0.1

Step 0.05

(a) Convergence of compliance with different
values of step.

25 30 35 40 45 50

Iteration

690

692

694

696

698

700

G
0
[J

o
u
le

s
]

Convergence for different Step in OC

Step 0.5

Step 0.2

Step 0.1

Step 0.05

(b) A close-up on the convergence
curves.

Figure 5.2: Impact of the OC parameter step.

It can be seen that a sufficiently good setting is step=0.1 as this solution finds the lowest
minimum and the convergence rate is on par with the ones with a higher step-value.

5.1.2 Method of Moving Asymptotes

Arjen Deetmans sets the move parameter in MMA to 0.2 in his topology optimisation code
[23]. The parameter move has roughly the same function as step has in OC. However, 0.2 is not
the optimum value according to our observations. Simulations were run with different values of
the parameter move and the convergence in the different cases can be seen in Figure 5.3. The
settings for the simulations are in Table B.2. It can be observed in Figure 5.3a that a higher
move parameter gives a quicker convergence. By studying Figure 5.3b one can notice that the
move parameter suggested by Deetmans gives the second highest end compliance. Furthermore,
a lower move parameter gives a lower end compliance when an ample amount of iterations are
performed. A low move parameter on the other hand converges slower. It can be seen that the
simulation with a move parameter equal to 0.01 has not yet converged after 50 iterations.

26

5. Simulations and Results

0 10 20 30 40 50

Iteration

10
3

10
4

G
0
[J

o
u
le

s
]

Convergence for different Move in MMA

Move 0.2

Move 0.05

Move 0.03

Move 0.01

(a) Convergence of Compliance for 4 different
values of the parameter move.

35 40 45 50

Iteration

1000

1500

2000

G
0
[J

o
u
le

s
]

Convergence for different Move in MMA

Move 0.2

Move 0.05

Move 0.03

Move 0.01

(b) A close-up on the convergence
curves.

Figure 5.3: Impact of MMA parameter move on the optimisation.

Additionally the optimised structures can be seen in Figure 5.4. Note that the optimised
structure, when having move = 0.01, is not fully converged as there are a lot of grey elements
left. This confirms the conclusions drawn from the convergence plot. Further it can be seen
that the simulation result with move = 0.2 utilises less material than the optimised structure
with move = 0.05. More material usually means a stiffer structure, which is confirmed by the
convergence plot.

(a) Simulation with the pa-
rameter move = 0.2.

(b) Simulation with the pa-
rameter move = 0.05.

(c) Simulation with the pa-
rameter move = 0.01.

Figure 5.4: Results from three simulations with different values for the parameter move.

5.2 Linear Topology Optimisation
In this section an optimisation of a cantilever beam with the elastic material model will be
executed. A total of 18 618 elements were used in the optimisation for both the optimisation
algorithms, Method of Moving Asymptotes (MMA) and Optimality Criteria (OC). The set-
tings used can be seen in Table B.3. The same example is presented in Topology Optimization:
Theory, Methods, and Applications, [15].

27

5. Simulations and Results

Results from the optimisation can be seen in Figure 5.5. Neither of the optimised structures
are completely symmetrical and which can depend on mesh irregularities. Moreover, there
are differences between the final structures for MMA and OC. MMA has a thinner outer
frame and more bars going out from the centre. OC has a thicker outer frame with fewer
but thicker bars going out from the centre. The results in Topology Optimization: Theory,
Methods, and Applications are also fairly similar to the result presented here. The results also
confirms Groenwolds and Etmans observation that MMA and OC can find different optimums
if the SIMP-constant is larger than one [14]. Compliance for the optimised structures are
approximately 697.67 J for OC and 810.32 J for MMA.

(a) Final compliance for the OC optimisa-
tion is 697.67 J and it took 13 minutes and
43 seconds to complete.

(b) Final compliance for the MMA optimi-
sation is 810.32 J and it took 15 minutes
and 49 seconds to complete.

Figure 5.5: OC and MMA density distribution comparison for a Cantilever beam.

It can be seen in Figure 5.6a and 5.6b that OC is converging faster than MMA. It converges
faster both in matter of iterations and time. This is anticipated when only one constraint is
active [14], which is the case here.

0 10 20 30 40 50

Iterations

10
3

10
4

G
0
[J

o
u
le

]

Elastic

MMA

OC

(a) The compliance convergence over iterations.

0 5 10 15

Time[Minutes]

10
3

10
4

G
0
[J

o
u
le

]

Elastic

MMA

OC

(b) The compliance convergence over time.

Figure 5.6: Convergence for OC and MMA regarding time and iterations.

28

5. Simulations and Results

5.3 Bilinear Topology Optimisation
The bilinear topology optimisation uses a material that is weaker in tension as described in
section 2.3. The optimised structure can be seen in Figure 5.7. The structure consists of 19
000 elements and has a total computational time of roughly 8 hours and 15 minutes and a final
compliance of 1084.38 J. The optimised structure has potentially a honeycomb pattern in the
grey area, see Figure 5.7. The honeycomb pattern is much more prone to appear for a lower
value of the filter constant rmin. The settings for the simulation can be seen in Table B.4.

Figure 5.7: Result from the optimisation with bilinear material model with Optimality Cri-
teria as optimisation algorithm.

The hydrostatic strain over the optimised cantilever beam, see Figure 5.8, is indicating that the
beam is more in tension than compression. As a result of the weakness in tension the optimiser
compensates with more material.

Figure 5.8: The hydrostatic strain over the optimised structure. Note that the colourbar is
capped at half the absolute maximum hydrostatic strain.

29

5. Simulations and Results

5.4 Optimisation with line load and multiple boundaries
The program can also handle line load and multiple defined boundaries. In the following
example an optimisation is presented on the bridge design domain, earlier described in section
2.1.3. The line load symbolises cars on a carriageway. The settings for the simulation can be
found in Table B.5. Furthermore, in this simulation quadratic elements were used to show the
utility for these. The optimised bridge can be seen in Figure 5.9.

Figure 5.9: An optimised structure of a bridge with line load with Optimality Criteria as
optimisation algorithm.

30

5. Simulations and Results

5.5 Body Forces
Applying the body forces causes some interesting changes to the optimised topologies. By
applying vertical gravity to the beam in compression the following topologies were obtained.

(a) No gravity. (b) Low gravity.

(c) Medium gravity. (d) High gravity.

Figure 5.10: Evolution of gravity induced topology changes. Low gravity implies a structure
with low material density.

It can be seen from Figure 5.10 that the structure starts to curve from the bottom left towards
the applied force as the gravity increases. The gravity inflicts a moment at the bottom left
corner. This moment is counteracted by the force, thanks to the curvature of the beam. The
settings for these simulations can be found in Table B.6.

5.6 Dependency of Initial Density Distribution
The optimisation starts with an uniform distribution of density in the beginning of the opti-
misation. However, when using a randomised start, different results can be obtained. This
dependency of the initial density distribution on the cantilever beam is more thoroughly inves-
tigated in this section. Different outcomes can be seen in Figure 5.11 when random starts were
assigned. Running the same example but starting with an uniform distribution gave the result

31

5. Simulations and Results

shown in Figure 5.11f. The settings for this simulation can be seen in Table B.7. The simula-
tion was done in 200 iterations, which is well enough to find a converged solution according to
Figure 5.12.

(a) Random start one.
G0: 793

(b) Random start two.
G0: 801

(c) Random start three.
G0: 783

(d) Random start four.
G0: 810

(e) Random start five.
G0: 808

(f) Uniform start.
G0: 784

Figure 5.11: Results from five random starts and an uniform start.

0 20 40 60 80 100 120 140 160 180 200

Iteration

10
3

10
4

G
0
[J

o
u
le

s
]

Convergence for random start guesses

Random Start 1

Random Start 2

Random Start 3

Random Start 4

Random Start 5

Uniform Start

(a) Convergence curves for the random and
uniform starts.

100 110 120 130 140 150 160 170 180 190 200

Iteration

785

790

795

800

805

810

815

820

825

830

835

G
0
[J

o
u
le

s
]

Convergence for random start guesses

Random Start 1

Random Start 2

Random Start 3

Random Start 4

Random Start 5

Uniform Start

(b) Close-up on the convergence
curves.

Figure 5.12: The development of compliance for the random and uniform start.

Repeating a simulation with a uniform starting guess will result in the same optimised structure

32

5. Simulations and Results

every time. However, it is certain that this is not the optimal solution since one of the ran-
domised starts outperformed the one with uniform distribution. A varying rmin can be used in
an attempt to reduce the dependency on the initial density distribution. By starting with a high
rmin value and making it decrease towards the standard setting throughout the optimisation a
result independent from starting position can be obtained as seen in Figure 5.13.

(a) Result from random start with end com-
pliance of 776.78 J.

(b) Result from random start with end com-
pliance of 776.78 J.

Figure 5.13: Results with adapting rMin and random starts.

These topologies started with a random start but converged into the same solution, see Figure
5.14. Observe that this method outperformed the uniform start, it is still not certain that a
global minimum has been found.

0 20 40 60 80 100 120 140 160 180 200

Iteration

10
3

10
4

G
0
[J

o
u

le
s
]

Convergence for rMin adaptation with random start guesses

Random A

Random B

Figure 5.14: Convergence for two random start guesses with an adapting filter.

33

5. Simulations and Results

5.7 Ansys Comparisons
In this section the L-Beam example will be compared between PyTOpt and ANSYS. Figure
5.15a shows the result from the ANSYS optimisation. The ANSYS optimisation was done by
constructing the design space in CATIA V5. After inserting the correct supports and forces
could the optimisation be done with ANSYS. The settings from the simulation on the L-beam
design domain in PyTOpt can found in Table B.8. There are only minor differences between
the results. The small differences between the two solutions can depend on the filter’s impact.
In PyTOpt the bars creates delta-like formations at the bottom which is not occurring in the
ANSYS result. The ANSYS optimisation takes around 7 minutes to complete and the PyTOpt
optimisation takes 66 minutes to complete, more than 9 times longer computational time.

(a) Results from ANSYS (b) Results from PyTOpt

Figure 5.15: A topology optimisation comparison between ANSYS and PyTOpt.

There is not a setting for adjusting the filter in ANSYS so it can not be assured that the same
filter setting was used in the two optimisations [21]. Another factor leads to differences in the
results are the meshes. It is not possible to make sure that both of the programs uses the same
mesh without extensive further development of PyTOpt.

34

5. Simulations and Results

5.8 Numerical Sensitivity Analysis
A sensitivity comparison is done on the cantilever beam to confirm the nonlinear sensitivity
analysis. The Cantilever Beam example is used with the settings shown in Table B.9. The
error depending on the perturbation in the numerical approach can be seen in Figure 5.16 and
is calculated according to Equation 3.28. The standard deviation can be seen in the error bars
and the mean value is seen as the line graph. At high perturbation values the error is increasing
linearly. At low values numerical instability occurs causing errors in the mean as well as in the
spread of the values.

Figure 5.16: The error between a numerical and an analytical nonlinear sensitivity analysis.

35

5. Simulations and Results

36

6
Discussion and Conclusion

This section will discuss the results found in the simulation chapter. We will then go through
the goals to see if they have been fulfilled or not.

6.1 Program
The final version of the program is easy to use. The end-user only needs to specify a geometry
and where the forces and boundary conditions should be applied. The rest could easily be
chosen from the already existing settings, material models and optimisation algorithms.

Another benefit of the program is its versatility. One of the advantages is the possibility to
input almost any kind of geometry. While this makes the program run slower than if only a
rectangular geometry is possible, it adds functionality which is important. The possibility of
a future user to implement their own functions was prioritised when developing the program.
Because of this, it is simple to use another material function, objective function, element routine
or optimisation routine than what is included in the original program. One of the disadvantages
with this program is that it is slower than other software available. The ANSYS optimisation
with the same amount of elements took about 10 % of the time when using a linear material
model.

It would be interesting to continue the program with the addition of another problem, such
as heat exchange instead of a structural FE-problem. It should be fairly straightforward to
implement with the current interface for the objective function. Displacement is implemented
into the program as an additional objective function. However, the suitability for this objective
function is limited as the results are difficult to draw any conclusions from. Another feature
that could be implemented is the ability to add areas in the geometry where full material is
required as in [15] and [6].

The program’s results are intended as an inspiration for further development rather than an
exact solution to a loading case. Even though the result may not be easily manufactured, seeing
how an optimal structure would look like might help in the development of a design possible
to manufacture. Since there often occurs grey elements in the solution some critical thinking
is necessary to draw conclusions from the result.

37

6. Discussion and Conclusion

The program is stable and written well enough so that it may be used in a future course in
topology optimisation. If not, it served as an excellent opportunity for us, the developers, to
learn more about the topic and further extend our knowledge within FEA and programming
in Python.

6.2 Settings
There are many settings that the user can adjust until a desired solution is found. Although
all of these settings are not needed for a simple optimisation. In agreement with the literature
found, a SIMP parameter of three seems to be giving the best results [6]. A higher SIMP
parameter gives a very similar solution however the computation time is increased drastically.
A lower SIMP parameter creates more elements with values between one and zero. There is
a middle-ground where the solutions are not too slow and gives good results. An observation
found that when the SIMP is turned off, checkerboarding is greatly reduced. This is interesting
as SIMP is not the main reason checkerboarding occurs.

The main purpose of the filter is to reduce the mesh dependency of the solution. By smooth-
ing out the solution, checkerboarding is removed which can have been created by the SIMP.
However, in this thesis the filter is only used to remove checkerboarding. Since we are at an
experimental stage, and we do not plan to manufacture any of the results, we want to keep all
the fine intricate structures that emerge from the optimisation when using a fine mesh. Because
of this, the filter’s radius is usually set to Meshsize · 0.7 in the optimisations presented in this
thesis. The mesh size is a factor of this value since more elements will fit inside the filter’s radius
with a smaller mesh size. When using this value checkerboarding is avoided and not too many
of the small intricate structures are removed. A higher radius will smooth things out more than
necessary. When using a bilinear material model this value for rmin gives a honeycomb pattern
instead of checkerboarding. So when blinear material is used rmin is chosen as Meshsize · 0.9.
The result may instead be a bit blurry but with a fair amount of iterations this is not a problem.

What value that is an acceptable rmin is highly dependent on the situation that one performs
the optimisation in. With an additive manufacturing approach, a lower rmin might be suitable
since more complicated geometries can be constructed. When such methods are not available
a higher rmin can be used to create a geometry that is more easily constructed.

The best settings for an optimisation greatly depends on what situation the result is going to
be used. Because of this, it is important to choose the settings best suited for a specific task.
However, the SIMP parameter should be set to three independent of situation according to our
findings.

6.3 Meshing
The meshing is done with the help of GMSH and CALFEM. One of the two main problems
encountered when meshing is the sub-optimal solution of having elements of different sizes and
shapes. By having a structured mesh, where every element has the same shape and size, the

38

6. Discussion and Conclusion

computational time could be reduced by a lot. With a nonlinear material model however, each
element must be evaluated separately even if the shape is the same. Because of this the com-
putational time will not be reduced under those circumstances and the benefits of a structured
mesh is decreased. Another problem with an unstructured mesh is meshing irregularities that
affect the solution. Solutions may not be symmetrical even though the problem’s geometry is.

6.4 Optimiser
MMA is often used in literature [13] and as main optimisation algorithm in software as ANSYS
[21]. This is contradictory to our and Groenwolds findings which show that OC is better in
both speed and in finding the optimal solution [14]. The fact that MMA is so widely used
could be explained by the reasons that MMA is more versatile since it simplifies incorporation
of multiple constraints.

6.5 Material Model
The material model used is very important during the optimisation. A linear elastic material
model is by far the fastest since the newton iteration procedure can be dismissed. The Newton
iterations are the main reason for the increased time needed for optimisation with a nonlinear
material model. The bilinear material model converges rather fast, only 4 to 5 Newton itera-
tions are needed for each optimisation iteration.

It is difficult to draw conclusions from the bilinear material model since it is unclear whether
the optimiser tends to add more material in tension, or if it tries to avoid tension altogether.
In the result we can notice that the bars are thicker in tension and have a higher absolute
strain compared to the areas in compression. The example used may not be able to remove the
tension and therefore makes the tension bars thicker.

It would be interesting to implement additional material models to observe what differences
these would have on the end result. One example on such model could be a rubber material.
Further could also time and state-dependent materials be of interest to implement, such as
hardening in steels.

6.6 Goals and Future Work
We defined a set of goals in the introduction. These goals included being able to run the op-
timisation with a nonlinear material model in a reasonable time. The code produced should
also be well documented and easily understood. Finally we had the goal to perform topology
optimisation considering body forces.

We managed to fulfil all of the goals. The code can run an optimisation for a linear elastic ma-
terial model with about 10 000 elements in a matter of minutes. The nonlinear optimisation is a
lot slower but the optimisations can still run with 1 000 elements in a matter of minutes as well.

39

6. Discussion and Conclusion

Although, this is done with the material models created within this thesis. The program does
not ensure that material models created by an end user to run within minutes for 1 000 elements.

Body forces are implemented and working. However, compliance may not be a suitable objec-
tive function when body forces are applied. Compliance wants to minimise the displacements
simultaneously as minimising the effect of the body forces. This makes the optimisation jump
back and fourth between solutions. In future work, an objective function on displacement, see
section 3.5, could be more suitable. Furthermore, implementing an optimisation that accounts
for structural dynamic behaviour could also be a possibility for future work.

40

Bibliography

[1] Alexander Hrennikoff. “Solution of problems of elasticity by the framework method”. In:
J. appl. Mech. (1941).

[2] Krister Svanberg. “The method of moving asymptotes—a new method for structural
optimization”. In: International journal for numerical methods in engineering 24.2 (1987),
pp. 359–373.

[3] James SM Shilstone et al. “Concrete mixture optimization”. In: Concrete International
12.6 (1990), pp. 33–39.

[4] Niels Saabye Ottosen and Hans Petersson. Introduction to the Finite Element Method.
English. Prentice-Hall, 1992. isbn: 0-13-473877-2.

[5] Richard Courant et al. “Variational methods for the solution of problems of equilibrium
and vibrations”. In: Lecture notes in pure and applied mathematics (1994), pp. 1–1.

[6] Martin P Bendsøe and Ole Sigmund. Optimization of structural topology, shape, and
material. Vol. 414. Springer, 1995.

[7] Ole Sigmund and Joakim Petersson. “Numerical instabilities in topology optimization: a
survey on procedures dealing with checkerboards, mesh-dependencies and local minima”.
In: Structural optimization 16.1 (1998), pp. 68–75.

[8] Thomas Buhl, Claus BW Pedersen, and Ole Sigmund. “Stiffness design of geometrically
nonlinear structures using topology optimization”. In: Structural and Multidisciplinary
Optimization 19.2 (2000), pp. 93–104.

[9] Tyler E. Bruns and Daniel A. Tortorelli. “Topology optimization of non-linear elastic
structures and compliant mechanisms”. In: Computer Methods in Applied Mechanics and
Engineering 190.26 (2001), pp. 3443–3459. issn: 0045-7825. doi: https://doi.org/10.
1016/S0045-7825(00)00278-4. url: https://www.sciencedirect.com/science/
article/pii/S0045782500002784.

[10] Ole Sigmund. “A 99 line topology optimization code written in Matlab”. In: Structural
and multidisciplinary optimization 21.2 (2001), pp. 120–127.

[11] Matěj Lepš and Michal Šejnoha. “New approach to optimization of reinforced concrete
beams”. In: Computers & structures 81.18-19 (2003), pp. 1957–1966.

[12] Daeyoon Jung and Hae Chang Gea. “Topology optimization of nonlinear structures”. In:
Finite Elements in Analysis and Design 40.11 (2004), pp. 1417–1427.

[13] Krister Svanberg. “MMA and GCMMA-two methods for nonlinear optimization”. In: vol
1 (2007), pp. 1–15.

[14] Albert A. Groenwold and L. F. P. Etman. “On the equivalence of optimality criterion and
sequential approximate optimization methods in the classical topology layout problem”.
In: International Journal for Numerical Methods in Engineering 73.3 (2008), pp. 297–316.
doi: https://doi.org/10.1002/nme.2071. eprint: https://onlinelibrary.wiley.

41

https://doi.org/https://doi.org/10.1016/S0045-7825(00)00278-4
https://doi.org/https://doi.org/10.1016/S0045-7825(00)00278-4
https://www.sciencedirect.com/science/article/pii/S0045782500002784
https://www.sciencedirect.com/science/article/pii/S0045782500002784
https://doi.org/https://doi.org/10.1002/nme.2071
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2071
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2071
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2071

Bibliography

com/doi/pdf/10.1002/nme.2071. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/nme.2071.

[15] Martin Philip Bendsoe and Ole Sigmund. Topology optimization: theory, methods, and
applications. Springer Science & Business Media, 2013.

[16] Tehmina Ayub, Sadaqat Ullah Khan, and Fareed Ahmed Memon. “Mechanical character-
istics of hardened concrete with different mineral admixtures: a review”. In: The Scientific
World Journal 2014 (2014).

[17] Lei Li and Kapil Khandelwal. “Two-point gradient-based MMA (TGMMA) algorithm
for topology optimization”. In: Computers and Structures 131 (2014), pp. 34–45. issn:
0045-7949. doi: https://doi.org/10.1016/j.compstruc.2013.10.010. url: https:
//www.sciencedirect.com/science/article/pii/S0045794913002812.

[18] Xiaojia Shelly Zhang, Glaucio H Paulino, and Adeildo S Ramos. “Multi-material topology
optimization with multiple volume constraints: a general approach applied to ground
structures with material nonlinearity”. In: Structural and Multidisciplinary Optimization
57.1 (2018), pp. 161–182.

[19] Altair OptiStruct™ Optimization-enabled Structural Analysis. 2021. url: https://www.
cati.com/design-analysis/altair-simulation/hyperworks/altair-optistruct/
(visited on 05/03/2021).

[20] Ansys Mechanical Topology Optimization (Self-paced Learning Available). 2021. url: https:
//www.ansys.com/training-center/course-catalog/structures/ansys-mechanical-
topology-optimization (visited on 05/03/2021).

[21] Structural Optimization analysis. 2021. url: https://ansyshelp.ansys.com/account/
secured ? returnurl = /Views / Secured / corp / v211 / en / wb _ sim / ds _ topology _
optimization.html (visited on 05/06/2021).

[22] TOSCA STRUCTURE OPTIMIZE WITH ABAQUS, ANSYS, OR MSC NASTRAN.
2021. url: https://www.3ds.com/products-services/simulia/products/tosca/
structure/ (visited on 05/03/2021).

[23] Arjen Deetman. /arjendeetman/GCMMA-MMA-Python. url: https://github.com/
arjendeetman/GCMMA-MMA-Python (visited on 04/09/2021).

[24] Christophe Geuzaine and Jean-François Remacle. A three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities. url: http://gmsh.info/
(visited on 03/12/2021).

42

https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2071
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2071
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2071
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2071
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2071
https://doi.org/https://doi.org/10.1016/j.compstruc.2013.10.010
https://www.sciencedirect.com/science/article/pii/S0045794913002812
https://www.sciencedirect.com/science/article/pii/S0045794913002812
https://www.cati.com/design-analysis/altair-simulation/hyperworks/altair-optistruct/
https://www.cati.com/design-analysis/altair-simulation/hyperworks/altair-optistruct/
https://www.ansys.com/training-center/course-catalog/structures/ansys-mechanical-topology-optimization
https://www.ansys.com/training-center/course-catalog/structures/ansys-mechanical-topology-optimization
https://www.ansys.com/training-center/course-catalog/structures/ansys-mechanical-topology-optimization
https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v211/en/wb_sim/ds_topology_optimization.html
https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v211/en/wb_sim/ds_topology_optimization.html
https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v211/en/wb_sim/ds_topology_optimization.html
https://www.3ds.com/products-services/simulia/products/tosca/structure/
https://www.3ds.com/products-services/simulia/products/tosca/structure/
https://github.com/arjendeetman/GCMMA-MMA-Python
https://github.com/arjendeetman/GCMMA-MMA-Python
http://gmsh.info/

A

A.1 A Detailed Topology Optimisation Example
A short example of how the program can be used is shown in Listing A.1 and will be thoroughly
explained in the following section.

Listing A.1: Example program
Importing Modules
import calfem.geometry as cfg
import Pytopt.PyTOpt as PyTOpt
from Pytopt import Material_Routine_Selection as mrs
from Pytopt import Object_Func_Selection as ofs
from Pytopt import Optimisation as opt

Creating geometry
g = cfg.Geometry()

g.point([0,0])
g.point([1,0])
g.point([1,0.4],marker=9)
g.point([1,0.8])
g.point([0,0.8])
g.point([0,0.5])
g.point([0,0.3])

g.line([0, 1],marker=0)
g.line([1, 2],marker=1)
g.line([2, 3],marker=2)
g.line([3, 4],marker=3)
g.line([4, 5],marker=4)
g.line([5, 6],marker=5)
g.line([6, 0],marker=6)

g.surface([0, 1, 2, 3, 4,5,6])

Forces and boundary conditions
force = [−1e6,9,2]
bmarker = 5
eq=[0,0]

Material parameters
mp = {'E':210e9,'nu':0.3,'eps_y':0 }
materialFun = mrs.Bilinear

Settings, Objective function and Optimisation routine
ep=[1,True,2]
settings = {'volFrac':0.3,'meshSize':0.03,'rmin':0.03*0.7,'changeLimit': 0.0,'SIMP_const':3}
ObjectFun = ofs.Displacement
OptFun = opt.OC

Calling the optimisation
PyTOpt.Main(g, force, bmarker, mp, ep, materialFun, ObjectFun, OptFun,settings,eq,maxiter=150)

I

A.

The first thing required is to import at least two of the five modules shown in Listing A.2.
Only the first two imports are required if the user contributes with a self made material model,
objective function and optimisation algorithm. How these are defined is described later in this
appendix chapter.

Listing A.2: Needed imports for the optimisation.
Importing Modules
import calfem.geometry as cfg
import Pytopt.PyTOpt as PyTOpt
from Pytopt import Material_Routine_Selection as mrs
from Pytopt import Object_Func_Selection as ofs
from Pytopt import Optimisation as opt

The next step is to define a design domain and apply forces and boundary conditions. In this ex-
ample, the design domain of the cantilever beam is used. The geometry definition can be seen in
Listing A.3. The geometry commands are described in detail at https://calfem-for-python.
readthedocs.io/en/latest/calfem_mesh_guide.html#defining-geometry and will not be
explained in detail here.

Listing A.3: The definition of the design domain sought to optimise.
Creating geometry
g = cfg.Geometry()

g.point([0,0])
g.point([1,0])
g.point([1,0.4],marker=9)
g.point([1,0.8])
g.point([0,0.8])
g.point([0,0.5])
g.point([0,0.3])

g.line([0, 1],marker=0)
g.line([1, 2],marker=1)
g.line([2, 3],marker=2)
g.line([3, 4],marker=3)
g.line([4, 5],marker=4)
g.line([5, 6],marker=5)
g.line([6, 0],marker=6)

g.surface([0, 1, 2, 3, 4,5,6])

Forces and boundary conditions
force = [−1e6,9,2]
bmarker = 5
eq=[0,0]

The user also have to define the boundary markers and the force marker. Both these types of
markers are needed to define the forces and boundaries. As seen in Listing A.3, the force is
applied at the third point, which is why that point has obtained a marker. In this case, that
marker is 9. The force list describes the force that is going to be applied. The first value is
the magnitude of the force. The marker that signifies at which location the force should be
applied is the second input. The last input is the direction of the force. It is either defined
with 1, which means x-direction, or 2 which means y-direction. The force and boundaries can
be applied at a point or on a line. The degrees of freedom defined in bmarker will have a
prescribed displacement of zero. This means that nodes along line six in this example will
be fixed, denoted as marker 5. PyTOpt also supports body forces. The variable eq has two

II

https://calfem-for-python.readthedocs.io/en/latest/calfem_mesh_guide.html#defining-geometry
https://calfem-for-python.readthedocs.io/en/latest/calfem_mesh_guide.html#defining-geometry

A.

parameters, the first is body forces in x-direction and the second is body forces in y-direction.
The parameters have the unit N

m3 .

The third step is to define the material parameters and the material model to use, see Listing
A.4. The dictionary mp requires Young’s modulus and Poisson’s ratio for the program to run.
In this example the material model was chosen as Bilinear which also needs the yield strain as
an additional material parameter in mp.

Listing A.4: The definition of material and material model.
Material parameters
mp = {'E':210e9,'nu':0.3,'eps_y':0 }
materialFun = mrs.Bilinear

Finally, the settings, choice of objective function and optimisation algorithm are defined in
Listing A.5 before calling PyTOpt. The list ep is the element parameters where the first
parameter is the element thickness. The second parameter is controlling whether a linear or
nonlinear FE-solver will be utilised. If True a linear solver will be used. The last parameter
in ep is the choice of element type. Triangle elements are used if the setting is set to 2 and
quadrilateral elements are used if it is set to 3.

Listing A.5: The settings for the optimisation algorithm and the calling of the optimisation.
Settings, Objective function and Optimisation routine
ep=[1,True,2]
settings = {'volFrac':0.3,'meshSize':0.03,'rmin':0.03*0.7,'changeLimit': 0.0,'SIMP_const':3}
ObjectFun = ofs.Displacement
OptFun = opt.OC

Calling the optimisation
PyTOpt.Main(g, force, bmarker, mp, ep, materialFun, ObjectFun, OptFun,settings,eq,maxiter=150)

A settings dictionary is recommended to define the appropriate settings for the example. If
the settings are totally or partially omitted, a standard setting will be used which might be
sub optimal depending on the problem at hand. Examples on settings available are shown in
Table A.1.

volfrac Maximum volume fraction
meshSize average element size
rmin the filter parameter

changeLimit Optimisation breaks when this limit is reached
SIMP_const SIMP constant

Table A.1: Available settings for the dictionary.

The next thing to define is the objective function, ObjectFun. The objective function can be
chosen from the two included in the PyTOpt library or created by a user. A new objective
function is limited to have these variables as input

• Number of elements
• Element parameters
• Element type

• Element coordinates
• Tangent stiffness matrix
• Body forces

III

A.

• Displacements
• Element degrees of freedom matrix
• External Force vector due to body forces
• External Force vector
• SIMP constant

• Design variables
• Sensitivity of the objective function
• Sensitivity of the residual
• Free degrees of freedom
• Global stiffness matrix

The output should be the objective function value and its sensitivity.
Finally, PyTOpt needs to know what optimisation algorithm that is going to be used. OptFun
can use either Optimality Criteria (OC) or Methods of Moving Asymptotes (MMA) from the
’Optimisation’ module or defined by the user. Inputs for a optimisation algorithm must be
design variables, maximum volume fraction usable of the structure, objective function value,
sensitivity of the objective function, current iteration and scaled element areas. As output one
should get the updated design variables. The final step is to call the program.

A.2 Computer Specifications
Processor: Intel(R) Core(TM) i5-6198DU CPU @ 2.30GHz 2.40 GHz RAM: 4GB Systemtype:
64-bits operative system, x64-based processor

IV

B
Simulation settings

B.1 Optimisation Parameters and Convergence

B.1.1 OC

Table B.1: Settings during OC parameter Step investigation.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.02
Volume Fraction 0.3

rMin 0.014
SIMP 3

Element type Triangles
Object Function Compliance
Material Model Elastic

Optimiser OC(Step: 0.5=>0.05)
Force 106 N

B.1.2 MMA

Table B.2: Settings during MMA parameter Move investigation.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.02
Volume Fraction 0.3

rMin 0.014
SIMP 3

Element type Triangles
Object Function Compliance
Material Model Elastic

Optimiser MMA(Move: 0.2=>0.01)
Force 106 N

V

B. Simulation settings

B.2 Linear Topology Optimisation

Table B.3: Settings for the optimisation with linear elastic material model.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.01
Volume Fraction 0.3

rMin 0.007
SIMP 3

Element type Triangles
Object Function Compliance
Material Model Elastic

Optimiser OC(Step:0.1, Damping:0.5)
MMA(Move: 0.05)

Force 106 N

B.3 Bilinear Topology Optimisation

Table B.4: Settings for the optimisation with bilinear material model.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.01
Volume Fraction 0.3

rMin 0.009
SIMP 3

Element type Triangles
Object Function Compliance
Material Model Bilinear

Optimiser OC
Force 106 N

Yielding Strain εy 0

VI

B. Simulation settings

B.4 Optimisation with line load and multiple boundaries

Table B.5: Settings during the bridge optimisation.

Simulation Settings
Design domain Bridge

Mesh Size 0.4
Volume Fraction 0.3

rMin 0.36
SIMP 3

Element type Quadrilateral
Object Function Compliance
Material Model Elastic

Optimiser OC (Step: 0.1 Damping: 0.5)
Line Load 7 · 104 N/m

B.5 Body Forces

Table B.6: Settings during the body force investigation.

Simulation Settings Figures 5.10a and 5.10b Figures 5.10c and 5.10d
Design domain Beam in Compression

Mesh Size 0.03
Volume Fraction 0.3

rMin 0.021
SIMP 3

Material Model Elastic
Optimiser OC (Step: 0.1 Damping: 0.5) OC (Step: 0.02 Damping: 0.05)
Force 4 · 105 N

B.6 Dependency of Initial Density Distribution

Table B.7: Settings during the dependency of initial density distribution investigation.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.04
Volume Fraction 0.3

rMin 0.028
SIMP 3

Material Model Elastic
Optimiser OC(Step: 0.1, Damping: 0.5)
Force 106 N

VII

B. Simulation settings

B.7 ANSYS comparison

Table B.8: Settings during the start dependency investigation.

Simulation Settings
Design domain L-Beam

Mesh Size 0.005
Volume Fraction 0.3

rMin 0.0035
SIMP 3

Material Model Elastic
Object Function Compliance

Optimiser OC(Step: 0.1, Damping: 0.5)
Force 106 N

B.8 Numerical Sensitivity Analysis

Table B.9: Optimisation settings during the numerical sensitivity analysis.

Simulation Settings
Design domain Cantilever Beam

Mesh Size 0.4
Volume Fraction 0.5

rMin 0.105
SIMP 3

Material Model Elastic (With nonlinear solver)
Optimiser OC(Step: 0.1, Damping 0.5)

VIII

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose and Problem Description
	Limitations and Simplifications

	Structural Problem
	Design domains
	Cantilever beam
	L-Shape
	Bridge

	FE analysis
	Material models

	Topology Optimisation
	Objective function
	Penalties and Filters
	Sensitivity Analysis
	Lagrangian multipliers
	Differentiation of the residual
	Final expression

	Verification of sensitivity analysis using numerical differentiation
	Examples of other objective functions
	Optimisation Algorithms
	Optimality Criteria
	Methods of Moving Asymptotes

	Topology Optimisation in ANSYS

	Program Structure
	A Short Topology Optimisation Example
	PyTOpt
	Mesh
	Finite Element Analysis
	Filter
	Optimise

	Simulations and Results
	Optimisation Parameters and Convergence
	Optimality Criteria
	Method of Moving Asymptotes

	Linear Topology Optimisation
	Bilinear Topology Optimisation
	Optimisation with line load and multiple boundaries
	Body Forces
	Dependency of Initial Density Distribution
	Ansys Comparisons
	Numerical Sensitivity Analysis

	Discussion and Conclusion
	Program
	Settings
	Meshing
	Optimiser
	Material Model
	Goals and Future Work

	Bibliography
	
	A Detailed Topology Optimisation Example
	Computer Specifications

	Simulation settings
	Optimisation Parameters and Convergence
	OC
	MMA

	Linear Topology Optimisation
	Bilinear Topology Optimisation
	Optimisation with line load and multiple boundaries
	Body Forces
	Dependency of Initial Density Distribution
	ANSYS comparison
	Numerical Sensitivity Analysis

