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Level-p-complexity for Boolean Functions

JULIA JANSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
This thesis concerns characteristics of complexity, specifically level-p-complexity,
for various Boolean functions. Boolean functions are functions f from n bits to one
bit, and they can describe circuits built from logic gates, voting systems as well as
graph properties. An example of a Boolean function is majority, which returns the
value that has majority among the n input bits. Complexity for a Boolean function
f can be seen intuitively as how much information is needed about the input bits
until the result of f is certain. Some well-known notions of complexity for Boolean
functions are deterministic and randomized complexity but in this thesis we focus
on level-p-complexity. Level-p-complexity is defined as the minimum expected cost
over algorithms determining the output, where the input bits are independent and
identically distributed with Bernoulli(p) distribution. The level-p-complexity for a
Boolean function f , is a function of p, so some interesting properties are explored,
such as if it is differentiable, what the maximum is, and if it has more than one
maximum.

First, we calculate the level-p-complexity for the Boolean functions “all” and
“tribes”. Next, we compute the level-p-complexity of majority specifically for three
and five bits and we move on to iterated three bit majority on two levels. Then
we apply Boolean functions to graphs, and we calculate the level-p-complexity for
connectivity of graphs with three or four nodes. All of these examples have in com-
mon that their level-p-complexity is continuous and differentiable and has a unique
maximum, even though a closed form for the maxima of the level-p-complexity of
the tribes function was not found. Finally, we construct a Boolean function whose
level-p-complexity has two maxima. In this case the optimal algorithm depends on
p and the level-p-complexity is piecewise polynomial and thus continuous but not
differentiable in the intersection points.

Future work could include calculating the level-p-complexity for other Boolean
functions or constructing new Boolean functions, and explore properties of their
level-p-complexity.

Keywords: Boolean functions, level-p-complexity, randomized complexity,
deterministic complexity, evasiveness, influence, graph connectivity,
iterated majority, Mathematica, Haskell
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D(f) Deterministic complexity of f , D(f) = minA maxx cf (A, x).
Dp(f) Level-p-complexity of f , Dp(f) = minA Eπp

x [cf (A, x)],
πp Input distribution where the bits are i.i.d. Bernoulli(p)-distributed
Edistribution
variable Expectation over the variable that has a given distribution

R(f) Randomized complexity of f , R(f) = minD maxx EDA [c(A, x)]
Ipi (f) Influence of bit i for f where the bits are πp-distributed
π Permutation acting on index i, input x, function f or algorithm A

DICTi The function that returns xi, where the dictator is bit i
PARn The function that is 1 iff there is an odd number of 1’s on n bits
ALL1

n The function that is 1 iff all inputs are 1 on n bits
ANY1

n The function that is 1 iff any input is 1 on n bits
SAMEn The function that is 1 iff all n bits have the same value
TRIm,k The tribes function with m blocks of size k
MAJn The majority function on n bits
MAJkn Iterated majority on k levels with n bits each
fAC The constructed function fAC(x) = ANY 1

2 (fA(xA), fC(xC)), where
(xA, xC) = splitA,C(x), with sets A and C where fA = ¬SAMEa
and fC = SAMEc.

xi



Contents

xii



List of Definitions and Results

1.1 Definition (Deterministic complexity [GS14]) . . . . . . . . . . . . . 2
1.2 Definition (Level-p-complexity [GS14]) . . . . . . . . . . . . . . . . 3

2.1 Theorem (von Neumann’s Minimax theorem [Neu28]) . . . . . . . . 6
2.1 Definition (Randomized complexity [GS14]) . . . . . . . . . . . . . 7
2.2 Definition (Evasive [GS14]) . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Theorem (Evasive) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Definition (Monotonicity [OS07]) . . . . . . . . . . . . . . . . . . . 8
2.4 Definition (Dual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Definition (Symmetric [ODo14]) . . . . . . . . . . . . . . . . . . . . 9
2.6 Definition (Transitive [ODo14]) . . . . . . . . . . . . . . . . . . . . 9
2.7 Definition (Pivotality [GS14]) . . . . . . . . . . . . . . . . . . . . . 9
2.8 Definition (Pivotal set [GS14]) . . . . . . . . . . . . . . . . . . . . . 9
2.9 Definition (Influence [GS14]) . . . . . . . . . . . . . . . . . . . . . . 9
2.10 Definition (Total influence [GS14]) . . . . . . . . . . . . . . . . . . 9
2.3 Theorem (Lower bound [OS07]) . . . . . . . . . . . . . . . . . . . . 10
2.11 Definition (Path) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.12 Definition (Connectivity [BM+76]) . . . . . . . . . . . . . . . . . . 10
2.13 Definition (Isomorphy [Knu12]) . . . . . . . . . . . . . . . . . . . . 10

4.1 Proposition (Dp(ALL1
n)) . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Proposition (Dp(TRIm,k)) . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Proposition (Dp(MAJ3)) . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Proposition (Dp(MAJ5)) . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Proposition (Expected cost for MAJ2

3) . . . . . . . . . . . . . . . . 25
4.1 Conjecture (Dp(MAJ2

3)) . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Proposition (Bounds for Dp(MAJn3 )) . . . . . . . . . . . . . . . . . 30
4.1 Lemma (Fekete’s Lemma [Fek23]) . . . . . . . . . . . . . . . . . . . 30

5.1 Proposition (Evasiveness of graph connectivity [LY02]) . . . . . . . 31
5.2 Proposition (Dp(f) for small graphs) . . . . . . . . . . . . . . . . . 32
5.3 Proposition (Dp(f44)) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Proposition (Ipi (f45)) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Proposition (Dp(f45)) . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Proposition (Dp(f46)) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Theorem (Dp(f) with two maxima) . . . . . . . . . . . . . . . . . . 39

xiii



List of Definitions and Results

xiv



List of Figures

1.1 An example of an algorithm for 3-bit majority, represented as a de-
cision tree. The algorithm first asks bit 1. Then, if the outcome is
1, it queries 2, while if the outcome is 0, it queries 3. It then queries
the last bit if necessary. Note that this algorithm is equally good as
the algorithms A1 and A2 seen in Figure 1.2. . . . . . . . . . . . . 2

1.2 Decision trees representing algorithms A1 and A2 for 3 bit majority. 3

2.1 The payoff matrix for the zero-sum game of matching pennies. For
player 2 the payoff matrix has opposite values. . . . . . . . . . . . . 5

3.1 An example of an algorithm for 3-bit majority, represented as a de-
cision tree. The algorithm first asks bit 1. Then, if the outcome is
1, it queries 2, while if the outcome is 0, it queries 3. It then queries
the last bit if necessary. . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 The minimum of the costs ofA1 andA2 from the sample Mathematica
code example plotted. The red dots note the intersections of costs of
the algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Level-p-complexity and lower bound for the ALL1
10 function. The

code for the graph can be seen in all.nb. . . . . . . . . . . . . . . 16
4.2 An example of the algorithm that asks in order for TRI2,2. . . . . . 17
4.3 Plots of Dp for different tribes examples, the code can be found in

the Mathematica script TribesDpScript.wls. . . . . . . . . . . . . 19
4.4 Level-p-complexity and lower bound for MAJ3 using Theorem 2.3.

The code for generating this figure is found in maj2.nb. . . . . . . . 21
4.5 Level-p-complexity and lower bound for MAJ5 using Theorem 2.3.

The code for generating this figure is found in maj2.nb. . . . . . . . 22
4.6 Input with 3× 3 bits illustrating an iterated majority example. . . . 24
4.7 Expected costs of the four different algorithms. Since it is hard to

differentiate between them their differences can be seen in Figure 4.8. 25
4.8 Difference between the expected costs of A1, A2, A3, A4 and A4. . . . 26
4.9 Level-p-complexity of iterated majority. . . . . . . . . . . . . . . . . 29

5.1 The possible graphs with 3 nodes. . . . . . . . . . . . . . . . . . . . 32
5.2 The graphs with 4 nodes and 3 edges. . . . . . . . . . . . . . . . . . 33
5.3 The graphs with 4 nodes and 4 edges. . . . . . . . . . . . . . . . . . 33
5.4 The graph with 4 nodes and 5 edges, corresponding to f45. . . . . . 34

xv

https://github.com/juliajansson/ComplexityOfBooleanFunctions/blob/main/Mathematica/all.pdf
https://github.com/juliajansson/ComplexityOfBooleanFunctions/blob/main/Mathematica/TribesDpScript.wls
https://github.com/juliajansson/ComplexityOfBooleanFunctions/blob/main/Mathematica/maj2.pdf
https://github.com/juliajansson/ComplexityOfBooleanFunctions/blob/main/Mathematica/maj2.pdf


5.5 Reduced graphs for the graph in Figure 5.4. . . . . . . . . . . . . . 35
5.6 One of the possible algorithms for Figure 5.5b after x5 = 1. . . . . . 36
5.7 The expected costs for algorithms A1 and A5 for f45. . . . . . . . . 37
5.8 The complete graph on 4 nodes and its reduced graph. . . . . . . . 37
5.9 One of the possible algorithms for connectivity on the graph in Fig-

ure 5.8 after x1 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Two of the 52 generated algorithms. . . . . . . . . . . . . . . . . . . 40
6.2 Costs of all costs of all the 39 possible algorithms for fAC . . . . . . 41
6.3 Level-p-complexity of fAC , where the red points note the intersections

of the costs of the algorithms. . . . . . . . . . . . . . . . . . . . . . 41

A.1 The four subalgorithms for the reduced function fx4=0. . . . . . . . I
A.2 The four subalgorithms for the reduced function fx4=1. . . . . . . . II
A.3 The six subalgorithms for the reduced function fx1=0. . . . . . . . . III
A.4 The six subalgorithms for the reduced function fx1=1. . . . . . . . . IV

List of Tables

4.1 Two options of the order asked by the smart algorithms. . . . . . . 25
4.2 The algorithms ask according to Order 1 or Order 2 depending on

m1 and x(2,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 The coefficients for the expected costs of algorithms A1, A2, A3 and

A4 when using the symmetric base representation∑n
i=0 bi

(
n
i

)
pi(1−p)n−i. 29

7.1 Level-p-complexity for some Boolean functions. . . . . . . . . . . . 43
7.2 Level-p-complexity for connectivity of graphs with 3 nodes with 2 or

3 edges, and 4 nodes with 3, 4, 5 or 6 edges. . . . . . . . . . . . . . 44

xvi



“Begin at the beginning”, the
King said, very gravely, “and
go on till you come to the end:
then stop.”

Lewis Carroll, Alice in
Wonderland

1
Introduction

Imagine a voter system with yes/no options, for example democracy or dictatorship.
How much information of the votes do we need until we can conclude the outcome
of the election? How much power does a single voter have to change the result? For
dictatorship, we only need the information of the dictator as he or she has all the
power, but for a democratic majority we need at least half the votes. Depending on
the order in which we find out what the votes are we might need all of them before
we can conclude the result.

A voter system can be described as a Boolean function, which is a function of n
bits to a single bit, so that f : {0, 1}n → {0, 1} [Yam12]. We choose the bit values
to be {0, 1}, but it can also be represented by some other two-element set such
as {no, yes}, {False, True} or {−1, 1} [CH11]. Besides voting systems, Boolean
functions can describe graph properties and circuits built from logic gates [ODo14].

A logic gate is a simple device that implements a Boolean function like AND
or XOR. Circuits consist of several logic gates and are the fundamental building
blocks of all digital systems. Questions to consider are: how many of the original
values of the input must be known to determine the output of the circuit? Which
of the input bits matter the most for the result?

Complexity measures of Boolean functions answer the above question of how
many bits of the input an algorithm must check before it can determine the value of
the function [GS14]. The question about “power” is closely related, and corresponds
to the concept of influence. The aim of the project is to study the complexity
properties for various Boolean functions.

Some well-known notions of complexity for Boolean functions are deterministic,
randomized, nondeterministic and quantum complexity. There is research concern-
ing all of these topics and quantum complexity is a hot research topic now as
quantum computers are on the rise [BD02]. Deterministic complexity of monotone
Boolean functions and graph properties have been studied in [Ros73] which re-
sulted in the Aanderaa-Rosenberg-Conjecture. The lower and upper bounds of the
randomized complexity of the Boolean function called iterated majority has been
studied in [Lan+06], [Leo13] and [Mag+16].

The focus of this thesis, however, lies on none of these concepts but on a less
well-known one, called level-p-complexity. This is to limit the scope of the thesis,
and because level-p-complexity has some interesting connections and differences to
the other notions of complexity. The level-p-complexity depends on a probability p,
so some interesting properties are explored, such as if it is differentiable, and what
the maximum is or if it has more than one maximum.
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1. Introduction

1.1 Background
In this section we will introduce deterministic and level-p-complexity for Boolean
functions, but first the concept of algorithms for Boolean functions will be explained.

Consider a decision tree that queries the n bits of a Boolean function f in a
deterministic way depending on previous values revealed. From now on, we will
refer to decision trees as algorithms as it is the convention in the literature, even
if algorithms are not limited to decision trees. It is assumed that any algorithm
stops as soon as the output of the function f can be determined from the given
information. An example of an algorithm for the majority function on three bits
(which is 1 if there are two or more 1’s in the input and 0 otherwise) can be seen
in Figure 1.1 where we see that the algorithm stops once the output is known.

x1

x3

0 x2

0 1

x2

x3

0 1

1

0

0 1

0 1

1

0

0 1

1

Figure 1.1: An example of an algorithm for 3-bit majority, represented as a de-
cision tree. The algorithm first asks bit 1. Then, if the outcome is 1, it queries 2,
while if the outcome is 0, it queries 3. It then queries the last bit if necessary. Note
that this algorithm is equally good as the algorithms A1 and A2 seen in Figure 1.2.

For x ∈ {0, 1}n we let cf (A, x) be the number of queries that the algorithm A
asks when the input to f is x. The subscript f is often left out when the context of
the given Boolean function is known. Let cf (A) := maxx cf (A, x) be the maximum
number of queries that A makes which we view as the cost of A on f [GS14]. This
is the same as the depth of the decision tree: the maximum distance of a leaf from
the root.

Definition 1.1 (Deterministic complexity [GS14]). The deterministic complexity
of a Boolean function f , denoted by D(f), is the minimum of cf (A) over all deter-
ministic algorithms A for f , so that

D(f) = min
A

max
x

cf (A, x).

Two further examples of algorithms for majority on three bits are seen below.
The decision trees in Figure 1.2 describe how algorithms A1 and A2 behave de-
pending on a particular input. Consider the input x = (1, 0, 1) which the algorithm
does not know. Depending on the order in which the bits are queried the result is
attained in 2 or 3 questions, see Figure 1.2. Consider A1 that first asks bit x1 then
x2 and lastly x3, so that c(A1, x) = 3 seen in Figure 1.2a. Now A2 first asks bit x1

2



1. Introduction

then x3, seen in Figure 1.2b. In this case we already know that the majority is 1,
without asking x2, so c(A2, x) = 2, and no other algorithm can do better for this
input.

x1

x2

0 x3

0 1

x2

x3

0 1

1

0

0 1

0 1

1

0

0 1

1

(a) Algorithm A1.

x1

x3

0 x2

0 1

x3

x2

0 1

1

0

0 1

0 1

1

0

0 1

1

(b) Algorithm A2.

Figure 1.2: Decision trees representing algorithms A1 and A2 for 3 bit majority.

If we instead consider a given algorithm, then it might be the case that the input
can be chosen so that the algorithm is forced to ask as many questions as possible.
As we see in Figure 1.2, we ask all three bits if and only if the first two bits asked
are opposite, so the best strategy is to answer 0 and then 1 or the other way around.
As we will see later, the deterministic complexity for majority on three bits is 3.

Now, let the bits be independent and identically distributed. We use the dis-
tribution πp for the input bits which means that they are i.i.d. with Bernoulli
distribution with parameter p ∈ [0, 1] [GS14].

Definition 1.2 (Level-p-complexity [GS14]). The level-p-complexity of a Boolean
function f , denoted by Dp(f), is the minimum over all (deterministic) algorithms
A for f of the expected number of questions that are asked when the input has
distribution πp, so that

Dp(f) = min
A

Eπp
x [cf (A, x)],

where the notation Edistribution
variable stands for the expectation over the variable that has

a given distribution. Thus, Eπp
x [cf (A, x)] denotes the expectation of cf (A, x) when

x ∼ πp.

1.2 Aim
The aim of the project is to study the characteristics of level-p-complexity for various
Boolean functions. We will consider questions such as

1. Is Dp(f) continuous and differentiable?

2. What is the maximum of Dp(f) and where is it attained?

3. Is there a Boolean function so that Dp(f) has two maxima?

4. Does the optimal algorithm depend on p?

3



1. Introduction

We will also compare Dp(f) for monotone functions with the lower bound yielded
from Theorem 2.3.

1.3 Overview
In Chapter 2, randomized complexity and its connection to game theory are in-
troduced. Moreover, warm-up examples of easy Boolean functions are analyzed
and some general properties of Boolean functions are discussed. Next, Chapter 3
explains how the computations were done using Mathematica and Haskell. In Chap-
ter 4, we calculate the level-p-complexity for the Boolean functions all, tribes, ma-
jority and iterated majority in some special cases. Chapter 5 concerns the interplay
between Boolean functions and graphs, and we calculate the level-p-complexity for
connectivity of graphs with three or four nodes. Next, in Chapter 6, we construct a
Boolean function so that the level-p-complexity has two maxima. Lastly, Chapter 7
concludes with answers to questions 1-4 in Section 1.2 for the Boolean functions
and presents open questions and future work.

4



As far as I can see, there
could be no theory of games
... without that theorem ...
I thought there was noth-
ing worth publishing until
the Minimax Theorem was
proved.

John von Neumann

2
Theory

In this chapter, basic game theory and the concept of randomized complexity is
explained to give a broader understanding of the research field. Next, we show
some examples of the complexity of Boolean functions. Lastly, we go through
theory required for the thesis like graph theory and some general properties of
Boolean functions.

2.1 Game theory
A two-player zero-sum game is a mathematical representation in game theory of a
situation which involves two sides, where the result is a gain for one side and a loss
for the other. For a zero-sum game, adding the total gains and losses corresponds
to a sum of zero [KP17]. A simple example of a zero-sum game is matching pennies
seen in Figure 2.1. Both players say either 1 or 0 and if they say the same, player
1 gives player 2 a penny and if they say different, player 2 gives player 1 a penny.
In matching pennies the pure strategies only consist of one move, either 1 or 0.
Moreover, the game is played simultaneously so that the players cannot base their
move on the other player’s move.

Player 2
0 1

Player 1 0 −1 1
1 1 −1

Figure 2.1: The payoff matrix for the zero-sum game of matching pennies. For
player 2 the payoff matrix has opposite values.

Allowing mixed strategies widens the playing field and Theorem 2.1 can be
used to define the value of the game [KP17]. A mixed strategy is of the form∑m
i=1 piei for pi ∈ [0, 1] and ∑m

i=1 pi = 1 where ei, i = 1 . . . ,m are the m possible
pure strategies [KP17]. Returning to the example of matching pennies, a good
mixed strategy for player 1 would be to pick 0 and 1 uniformly at random, so that
x = [1/2, 1/2]T . Then

xTMy = [1/2, 1/2]
[

1 −1
−1 1

]
y = [0, 0]y = 0,

which means that xTMy is 0 regardless of the strategy y of player 2. Since the

5



2. Theory

game is symmetric the same holds for player 1. The value of the game for matching
pennies is 0 as described in Theorem 2.1.

In general for two-player zero-sum games with m× l payoff matrix M we know
that

∀x0, y0,max
x

xTMy0 ≥ xT0My0 ≥ min
y
xT0My.

which gives the inequality

min
y

max
x

xTMy ≥ max
x

min
y
xTMy (2.1)

Theorem 2.1 states that (2.1) is an equality, yielding the value of the game.

Theorem 2.1 (von Neumann’s Minimax theorem [Neu28]). For any two-person
zero-sum game with m× l payoff matrix M , there is a number V , called the value
of the game, satisfying:

max
x

min
y
xTMy = V = min

y
max
x

xTMy,

where x and y are mixed strategies.

Note that x and y range over all probability distributions of columns and rows,
respectively. If we restrict the domain to only pure strategies, Theorem 2.1 does
not hold. One counterexample is the following for matching pennies

min
y pure

max
x pure

xTMy = [1, 0]
[

1 −1
−1 1

] [
1
0

]
= 1 ≥ −1 =

= [1, 0]
[

1 −1
−1 1

] [
0
1

]
= max

x pure
min
y pure

xTMy

In this case inequality (2.1) holds strictly.
However, not both x and y need to be mixed. As we noted earlier in the example

of mixed pennies, when player 1 has the optimal mixed strategy, all strategies for
player 2 give the same value of the game, including the pure strategies. In fact,
considering the expression miny xTMy, we are minimizing a linear function (xTMy
is linear in y) over a convex set (the set of mixed strategies {∑m

i=1 piei|pi ∈ [0, 1]}).
From linear programming it follows that the minimum is found at a corner point
of the convex set i.e. a pure strategy ei. Thus for maxx miny xTMy, y will be pure
and x mixed. With a similar argument, x is pure and y is mixed in the expression
miny maxx xTMy. So Theorem 2.1 holds when x is mixed and y is pure in the LHS
and when x is pure and y is mixed in the RHS.

2.2 Randomized complexity
Now that we see the advantages of mixed strategies we introduce a new notion of
complexity, which is defined similarly to the deterministic complexity but with an
essential difference. This represents a zero-sum game where one player chooses an
algorithm and the other chooses input. Mixed strategies correspond to randomizing

6
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the algorithm or the input. Given an algorithm A and input x the cost c(A, x)
can be computed and is an entry in the payoff matrix at the row corresponding
to A and column corresponding to x. The two players are the one that chooses
algorithm A and the one that chooses input x, and c(A, x) is seen as a loss for the
player choosing A, since he or she wants to minimize it, and a gain for the player
choosing x, since he or she wants to maximize it [KP17].

Definition 2.1 (Randomized complexity [GS14]). The randomized complexity of
a Boolean function f , denoted by R(f), is the minimum of the maximum expected
cost maxx EDA [c(A, x)] where we use a distribution D over deterministic algorithms,
so that

R(f) = min
D

max
x

EDA [c(A, x)].

This means we should choose probabilities pi for each deterministic algorithm Ai
so that

max
x

m∑
k=1

pkc(Ak, x)

is minimized, where m is the number of deterministic algorithms. From Theo-
rem 2.1,

max
P

min
A

EPx [c(A, x)] = min
D

max
x

EDA [c(A, x)]

which means that if the adversary chooses an input distribution, we can do our best
by subsequently choosing the best deterministic algorithm, rather than a random-
ized algorithm, for this input distribution [LY02].

A lower bound for R(f) can be found by

max
p∈(0,1)

Dp(f) = max
p∈(0,1)

min
A

Eπp
x [c(A, x)] ≤ max

P
min
A

EPx [c(A, x)] = R(f)

since there might be a general distribution P that is better for x than πp, even for
maximal p, and the last equality holds due to Theorem 2.1. Thus, maxp∈(0,1) Dp(f)
gives a lower bound for R(f) which can be of help if the full randomized complexity
is hard to determine. However, to find for which p that Dp is maximized is still
non-trivial.

2.3 Some warm-up examples

The Boolean functions that are constantly 0 or 1 independent of input have D(f) =
Dp(f) = R(f) = 0 since no questions need to be asked to know the result.

The dictator function is defined as DICTi(x1, . . . , xn) = xi where the dictator is
bit i [GS14]. Then there is only one minimizing algorithm irrespective of input: the
one that queries bit i first. After asking the ith bit the function is reduced to the con-
stant function, and D(DICTi) = minA maxx c(A, x) = 1. Similarly, Dp(DICTi) = 1,
since changing the input does not affect the choice of algorithm (there is only one
best choice). Lastly R(DICTi) = 1 since randomizing the algorithm could not make
it better than the deterministic choice for this case.

7
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The parity function is the one where

PARn(x1, . . . , xn) =

0, if there is an even number of 1’s
1, if there is an odd number of 1’s.

In this case all questions have to be asked to determine the parity, regardless of
input. Thus, D(PARn) = Dp(PARn) = R(PARn) = n.

2.4 Properties of Boolean functions
The first property we introduce is evasiveness, which is useful due to Theorem 2.2.

Definition 2.2 (Evasive [GS14]). A Boolean function f on n variables is called
evasive if there is an adversary who can answer each bit query so that all bits have
to be queried.

Theorem 2.2 (Evasive). A Boolean function f is evasive if and only if D(f) = n.

The =⇒ direction is rather straightforward to prove, but the converse is more
tricky. However, we will mostly use the =⇒ direction, since it is often easier to
prove that a function is evasive than D(f) = n.

Definition 2.3 (Monotonicity [OS07]). A function f is monotone if x ≤ y (meaning
xi ≤ yi for each i) implies that f(x) ≤ f(y).

The intuition for monotonicity of Boolean functions is that for any bit that we switch
from 0 to 1 in the input, the result can either stay the same or be switched up from
0 to 1. Some simple examples of monotone Boolean functions are the dictator
function and majority. Parity does not satisfy monotonicity, since changing a bit
from 0 to 1 could change the output from 1 to 0.

Definition 2.4 (Dual). Let the line over a boolean variable denote flipping the bits
value as

xi =

1 if xi = 0,
0 if xi = 1.

Then f is dual to g if
f(x1, . . . , xn) = g(x1, . . . , xn).

If f(x1, . . . , xn) = f(x1, . . . , xn) we say that f is self-dual, or odd [ODo14].
Functions that are self-dual are for example parity for odd n, majority and dictator.

A permutation π ∈ Sn is a bijection from a set S to itself, reordering the
elements. Here Sn denotes the full symmetry group on n elements, also known as
the set of permutations of size n. For our case, let S be the set of indices {1, . . . , n}.
Permutations π ∈ Sn act on strings x ∈ {0, 1}n as: (xπ)i = xπ−1(i). They also act
on functions f : {0, 1}n → {0, 1} via fπ(x) = f(xπ) for all x ∈ {0, 1}n [ODo14].
Further, permutations can also act on algorithms, as can be seen in Equation 3.1.

8
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Definition 2.5 (Symmetric [ODo14]). A Boolean function f is symmetric if fπ = f
for all permutations π ∈ Sn.

This means that the output of f should be the same no matter how we reorder
the input, so that f(x) only depends on the number of 1’s and 0’s in x. This holds
for the parity, majority and constant function, but not for the dictator function. It is
easier to calculate complexity for symmetric functions since many of the algorithms
will be equivalent up to a permutation. The symmetry property is thus highly
desirable but rarely holds. However, there is a weaker definition of symmetry that
we can use.

Definition 2.6 (Transitive [ODo14]). A function f : {0, 1}n → {0, 1} is transitive
if for all i, j ∈ {1, . . . , n} there exists a permutation π ∈ Sn taking i to j such
f(xπ) = f(x) for all x ∈ {0, 1}n.

It is the case that all symmetric functions are transitive but not vice versa. Let

Γ(f) = {π ∈ Sn : fπ = f}

be the automorphism group of f which is the set of permutations of the variables
that leave f unchanged. For symmetric functions all permutations leave f un-
changed so Γ(f) = Sn.

Now we introduce pivotality and influence, that come from political science and
is called the Banzhaf power index, named after John F. Banzhaf III [Ban64] (orig-
inally invented by Lionel Penrose in 1946 [Pen46]). It is defined by the probability
of changing an outcome of a vote by a single voter changing their vote.

Definition 2.7 (Pivotality [GS14]). Given a Boolean function f , an input x, and
an index i ∈ {1, . . . , n}, we say that i is pivotal for f for x if f(x1, . . . , xi, . . . , xn) 6=
f(x1, . . . , x̄i, . . . , xn).

Note that being pivotal does not depend on the value of xi, but it is measurable
with respect to the other variables.

Definition 2.8 (Pivotal set [GS14]). The pivotal set, P , for f and an input x, is the
set of {1, . . . , n} given by P(x) = Pf (x) := {i ∈ {1, . . . , n} : i is pivotal for f for x}.

In words, the pivotal set is for each x, the set of bits with the property that if you
flip the bit, then the function output changes.

Definition 2.9 (Influence [GS14]). The influence vector at level p, Ipi (f), i ∈
{1, . . . , n}, is defined by

Ipi (f) :=Pp(i is pivotal for f)
=Pp(f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . , x̄i, . . . , xn))
=Pp(i ∈ P(x)),

where Pp is the probability measure of the distribution πp.

Definition 2.10 (Total influence [GS14]). The total influence at level p, Ip(f), is
defined by Ip(f) := ∑

i I
p
i (f) = Eπp

x [|P(x)|].

9
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The only bit in the dictator function that is pivotal for any x is bit i, which has
influence 1, so the total influence 1. For the parity function for all x all bits change
the result if their value is switched, so they are pivotal for all x with influence 1, so
the total influence is n. Influence yields a lower bound for the level-p-complexity.

Theorem 2.3 (Lower bound [OS07]). For monotone Boolean functions f we have

Dp(f) ≥ 4p(1− p)(Ip(f))2.

We now verify that the lower bound holds for some simple examples. It holds for
the dictator function since Dp(f) = 1 ≥ 4p(1 − p)12 = 4p(1 − p)(∑i I

p
i (f))2 and

p ∈ [0, 1]. Equality holds if and only if p = 1/2. For the parity function the theorem
cannot be applied since it is non-monotone.

2.5 Graph theory
A graph G consists of a set of nodes N and a set of edges E . In this thesis we will
consider graphs with N = {1, . . . , n} and E ⊆ {{i, j} for i ∈ N , j ∈ N , i 6= j}.
Take an edge e = {u, v}; we then say that e is incident to u and v, which are
themselves incident to e. The nodes u and v are said to be adjacent or neighbours;
likewise two edges are adjacent if they have a node in common. The degree of a
node v, denoted deg(v), is the number of edges incident to v [BM+76].

Definition 2.11 (Path). A path P of a graph G is a sequence of distinct nodes in
G, in which every node is adjacent to the next.

Definition 2.12 (Connectivity [BM+76]). A graph G is connected if, for every pair
of nodes u and v in G, there exists a path from u to v; otherwise it is disconnected.

Definition 2.13 (Isomorphy [Knu12]). The graphs G and H are isomorphic if there
is a bijection f from the nodes of G to H such that any two nodes u and v of G
are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Graph properties can be represented as Boolean functions, which we will see in
Section 5 where we consider the graph property of connectivity.

10



Nowadays we can do com-
puter experiments using
Mathematica, and even solve
a system of 42 equations.
This offers another route to
knowledge, rather than mere
ideas.

John Nash

3
Method

This chapter explains the method for computing the level-p-complexity using helpful
software such as Haskell and Mathematica1. First we explain the method for
generating algorithms for a Boolean function and computing their expected cost
by hand or using Haskell. Note that most calculations are still done by hand but
Haskell is used when calculations by hand were too complicated, and for checking
that the results are correct. Given expected costs of all algorithms for a Boolean
function, either calculated by hand or with Haskell, we show how we can find
Dp(f) using Mathematica.

3.1 Calculation of expected cost
One way to calculate expected costs of algorithms is by introducing the indicator
function IAi (x) as 1 if, given an input x, bit i is asked in algorithm A, and 0
otherwise. The interpretation of bit i is different depending on context, either it is
a natural order of bits in the input or the order that the algorithm asks the bits.
Then c(A, x) = ∑n

i=1 IAi (x) is the number of questions asked. Then

Eπp
x [c(A, x)] = Eπp

x

[
n∑
i=1

IAi (x)
]

=
n∑
i=1

Eπp
x [IAi (x)] =

n∑
i=1

Pp(bit i is asked for alg. A)

Another way is to calculate the expected cost recursively. Recall the definition
of an algorithm as a decision tree, where each node is either a bit query with
two subalgorithms or a leaf containing the result. The bit query is represented as
Pick i t0 t1 which means that we pick a bit i to query, and if xi = 0 we go to subtree
t0 and otherwise we go to subtree t1. When the algorithm stops we end up at a
leaf in the decision tree, either Res 0 or Res 1. Using this syntax, the algorithm in
Figure 3.1 can be described as

Pick 1 (Pick 3 (Res 0) (Pick 2 (Res 0) (Res 1)))
(Pick 2 (Pick 3 (Res 0) (Res 1)) (Res 1))

Given an algorithm, expected cost is calculated by a recursive method. The
expected cost of the base case is 0, since we already know the result and don’t have
to ask any more questions. Furthermore, for Pick i t0 t1 we first have to ask one
question and then with probability P(xi = 0) = (1 − p) we ask as many questions

1The code is found in the git repository
https://github.com/juliajansson/ComplexityOfBooleanFunctions
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Figure 3.1: An example of an algorithm for 3-bit majority, represented as a de-
cision tree. The algorithm first asks bit 1. Then, if the outcome is 1, it queries 2,
while if the outcome is 0, it queries 3. It then queries the last bit if necessary.

that are needed for t0. Added to this, with probability P(xi = 1) = p we ask as
many questions that are needed for t1. We get the following formula:

Ex[Res b] = 0
Ex[Pick i t0 t1] = 1 + (1− p) · Ex[t0] + p · Ex[t1]

More information can be found in the file LevelpComplexity.hs. This recursive
method of calculating expected cost is sometimes used in manual calculations as
well, for example in Chapter 5. The expectation of the algorithm in Figure 1.1 is

Ex[Pick 1 t0 t1] = 1 + (1− p) · (1 + p) + p(1 + (1− p)) = 2 + 2p− 2p2.

We will see in Section 4.3 that this formula is in fact the result for Dp(MAJ3).
Note that the expected cost of any algorithm for a Boolean function of n bits will

always be a polynomial. Thus the minimum over algorithms will yield a function
that is piecewise polynomial, and thus continuous. This means that the level-p-
complexity will always be continuous which answers the first part of question 3 in
Section 1.2.

3.2 Polynomial representation

The result of the expectation calculation is a polynomial ∑n
i=0 aip

i, which can also
be represented with a symmetric base as ∑n

i=0 bi
(
n
i

)
pi(1− p)n−i. The base is called

symmetric since for i ∈ {0, . . . , n} it holds that bi = bn−i if and only if f(p) = f(1−p)
for p ∈ [0, 1]. This symmetric representation also allows us to see the number of
questions bi on average for all the different cases where we have i 1’s and n − i
0’s. Since all pi(1 − p)n−i are ≥ 0 for p ∈ [0, 1] we can thus compare different
expected costs in their symmetric representation to see how many more questions
they would ask in any particular case. This is an advantage compared to the
regular polynomial representation, where the coefficients might also be negative,
and thus hard to interpret in the case of questions asked. Conversion between these
representations can be seen in Symbase.hs and an illustration is seen in symbase.nb.
The polynomial implementation relies heavily on material from [JIB22].
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3.3 Generating algorithms
When we query a bit i for a Boolean function f we get two reduced subfunctions,
fxi=0 when xi = 0 and fxi=1 when xi = 1. Algorithms are generated given the
Boolean function f recursively by either asking each bit i, and generating the al-
gorithms for the subfunctions fxi=0 and fxi=1, or stopping if we know the result
already which is the case if f is constant. The recursive step is shown in the formula
below:

GenAlgn(f) = {Pick i t0 t1 | i ∈ {1, . . . , n}, t0 ∈ GenAlgn−1(fxi=0),
t1 ∈ GenAlgn−1(fxi=1)}

This method does not take any symmetry into account, however, so for the majority
function on three bits we have 12 different algorithms that are generated. But due
to symmetry, only one of them is relevant, the other ones are permutations. We
define a permutation acting on an algorithm as

(Res b)π = Res b (3.1a)

(Pick i l r)π = Pick π(i) (l)π (r)π (3.1b)

To get remove some of the equivalent permutations we filter with the following
method. For i ∈ {1, . . . , n} we filter out the indices j ∈ {1, . . . , n} where fxj=0 =
fxi=0 and fxj=1 = fxi=1. This is because if the subfunctions are equal for i and j it
does not matter which index of i and j we choose, and it is enough to only consider
index i. The code is found in the file GenAlg.hs.

3.4 Computing the level-p-complexity
When we have all the expected costs of the algorithms we can write them in
Mathematica and plot them to see what they look like. There we often see which
of them are the lowest for a particular p ∈ [0, 1] and get a sense of how Dp(f)
looks. We can also check where some costs intersect by using the NSolve function.
We can also evaluate the derivative of the costs in this intersection point by using
symbolic derivative and then evaluating it in the given point. More formally, we
get the answer by using the Min function of all the expected costs and then expand
the expression for p ∈ (0, 1). This corresponds to Dp(f) since we minimized over
all algorithms. We can find the local maximum of Dp(f) by using the FindMaximum
function if we add a suitable starting point, which can be guessed by plotting the
function.

Consider an example of a Boolean function f on five bits that has two algorithms
A1 and A2 that ask all the bits in order or reversed2. In Listing 3.1 we see some
Mathematica code for the expected cost A1 and A2. First we use NSolve to find
where the polynomials intersect, namely at p = p? = 0.356158 and p = 1 − p?.
Then we expand the minimum of these functions using PiecewiseExpand and Min

2This is a simplified example of the algorithms for fAC in Chapter 6.
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Figure 3.2: The minimum of the costs of A1 and A2 from the sample Mathematica
code example plotted. The red dots note the intersections of costs of the algorithms.

to get the formula for Dp(f) given a function f that only has the two algorithms
A1 and A2. In Figure 3.2 we see the minimum of these functions plotted, with
their intersection points as red dots. Further we find the maxima of Dp(f) by using
FindMaximum with guesses 0.4 and 0.6 from the graph respectively.

1 In: A1[p_] = 5 - 8 p + 8 p^2;
2 In: A2[p_] = 2 + 6 p - 10 p^2 + 8 p^3 - 4 p^4;
3 In: NSolve [A1[p] == A2[p] && p < 1 && p > 0]
4 Out: {{p -> 0.356158} , {p -> 0.643842}}
5 In: D[p_] = PiecewiseExpand [Min[A1[p],A2[p]], 0 < p < 1]]
6 Out: \[ Piecewise ] 5 - 8 p + 8 p^2, 0.356 <=p <=0.644
7 2 + 6 p - 10 p^2 + 8 p^3 - 4 p^4, True
8 In: FindMaximum [D[p], {{p, 0.4}}]
9 Out: {3.16553 , {p -> 0.356158}}

10 In: FindMaximum [D[p], {{p, 0.6}}]
11 Out: {3.16553 , {p -> 0.643842}}

Listing 3.1: Sample Mathematica code.
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There are 10 types of people
in the world, those who know
binary and those who don’t.

Anonymous
4

Complexity of Boolean functions

In this chapter we will calculate the level-p-complexity for different Boolean func-
tions like all, tribes, majority and iterated majority.

4.1 All
The Boolean function all is defined as

ALL1
n(x1, . . . , xn) =

1, if all bits are 1’s
0, otherwise.

This function is the negation of

ANY0
n(x1, . . . , xn) =

1, if any bit is 0
0, otherwise.

which means ALL1
n(x) = ANY0

n(x). Since only the output is switched, they have
the same complexity. The ALL1

n function is evasive because there is an adversary
who can give answers to bit queries which always forces all the bits to be queried.
The method is to answer 1 for all the bit queries, since the answer cannot be known
until the last question is asked. This gives that D(ALL1

n) = n.

Proposition 4.1 (Dp(ALL1
n)). For the ALL1

n function, the level-p-complexity is

Dp(ALL1
n) =

n−1∑
k=0

pk.

Proof. Consider the algorithm that asks the bits in order from left to right, but
stops if the bit last asked is 0. In this case we know that the output is 0, and
otherwise we continue until we reach either output 0, or, if all bits are 1, output 1.
Since the ALL1

n function is symmetric no algorithm will have a lower cost. The first
bit has to be asked, so it has probability 1. We ask the next bit only if all previous
bits are 1, so the probability of asking bit j is pj−1. Consequently, we get

Dp(ALL1
n) = 1 + p+ . . .+ pn−1 =

n−1∑
k=0

pk
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Figure 4.1: Level-p-complexity and lower bound for the ALL1
10 function. The code

for the graph can be seen in all.nb.

The ALL1
n function is monotone, since changing a value from 0 to 1 either

increases the value or stays the same. It is also symmetric but not self-dual. The
only case when bit i changing value leads to a change of result for the ALL1

n function
is when all other bits are 1. Thus, the influence is Ipi (f) = pn−1, and the lower bound
in Theorem 2.3 is 4p(1 − p)(npn−1)2. For the example of n = 10 we see the lower
bound in Figure 4.1.

For the ALL0
n function where we consider all 0’s instead of all 1’s we get the

same deterministic complexity but Dp(ALL0
n) = ∑n−1

k=0(1− p)k. This function is the
same as the negation of

ANY1
n(x1, . . . , xn) =

1, if any bit is 1
0, otherwise.

Later we will consider the function SAMEn = ALL0
n ∨ ALL1

n which is 1 if all bits
are the same.

4.2 Tribes
Partition n = m · k into m disjoint blocks of length k. Define TRIm,k to be 1 if
there exists at least one block of the form 1, 1, . . . , 1, and 0 otherwise. We know
that if k = 1 the block size is one, so it corresponds to the ANY1

m function and
D(TRIm,1) = m and Dp(TRIm,1) = ∑m−1

i=0 (1− p)i. If m = 1 there is only one block,
so we get the ALL1

k function so that D(TRI1,k) = k and Dp(TRI1,k) = ∑k−1
i=0 p

i.
The tribes function is transitive but not symmetric. We can make permutations

in a block or move all bits in a block simultaneously, but we cannot move single
bits between different blocks and get the same result.

Our algorithm asks the bits from left to right and for each bit we continue asking
the next if the value is 1, and skip right to the next block if the value is 0. This
is because if we get 0 we can immediately conclude that the block cannot contain
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all 1’s, so it is better to start asking the next block. If we get 1 we cannot rule out
that the current block contains all 1’s, so we should continue asking the bits in the
block. If we find a block with all 1’s we conclude that the result of the function is 1,
and stop asking questions. Otherwise, if all blocks contain some 0s, we conclude
that the result of the function is 0, and stop asking questions.

Now, this algorithm only has to ask until a block with all 1’s is found, see
example in Figure 4.2. However, if the input is such that that all blocks contain
k − 1 1’s and then a 0 in last position of the block, then the algorithm has to ask
through all of a block for all blocks, see the longest path in the decision tree in
Figure 4.2. To show that the function is evasive we have to show that all queries
must be asked by giving suitable answers to each bit query. The method is to answer
1 unless the last unasked bit in a block is asked, in which case we answer 0. This
accounts to m · k queries so that the function is evasive and thus D(TRIm,k) = n.

x1,1

x2,1

0 x2,2

0 1

x1,2

x2,1

0 x2,2

0 1

1

0

0 1

0 1

1

0

0 1

0 1

1

Figure 4.2: An example of the algorithm that asks in order for TRI2,2.

Next, we calculate level-p-complexity.

Proposition 4.2 (Dp(TRIm,k)). For the tribes function, the level-p-complexity is

Dp(TRIm,k) =
m∑
i=1

(1− pk)i−1
k∑
j=1

pj−1 = (1− (1− pk)m)(1− pk)
pk(1− p) .

Proof. The previous algorithm is not worse than any other considering that the
order of asking the bits in the blocks does not matter, since the function is transitive.
The order in which we ask the blocks does not make a difference either, and it clearly
does not make sense to change blocks if you got all 1’s so far. Thus calculating the
cost for this algorithm will yield Dp. The expected number of queries asked is the
same as the sum over j of the probability that the jth bit is asked. The probability
that bit j is asked depends on which block we are in and where we are in the block.
Let the pair (i, j) represent bit j in block i and p(i,j) the probability that this bit
is asked. Then p(1,j) = pj−1 (the probability of all previous bits being 1), but p(i,j)
depends on if we have previously had all 1’s in another block. Since the probability
of having all 1’s in a block is pk the probability of not having all 1’s in a block

17
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before block i is (1− pk)i−1. So p(i,j) = (1− pk)i−1pj−1. Altogether we get

Dp(TRIm,k) =
m∑
i=1

k∑
j=1

(1− pk)i−1pj−1 =
m∑
i=1

(1− pk)i−1
k∑
j=1

pj−1

= 1− (1− pk)m
1− (1− pk) ·

1− pk
1− p = (1− (1− pk)m)(1− pk)

pk(1− p)

We know that the extreme cases for the level p complexity are D0(TRIm,k) = m,
since it is enough to check all m blocks once, when we get a zero, and D1(TRIm,k) =
k since we are done after checking all the 1’s in a block. We see that this formula
holds in the extreme cases since

Dp(TRIm,k) = (1 + (1− pk) + . . .+ (1− pk)m−1)(1 + p+ . . .+ pk−1),

so that D0(TRIm,k) = m and D1(TRIm,k) = k.

4.2.1 Maximizing the complexity of tribes
We start by studying a simple example with m = k = 2. Then

Dp(TRI2,2) = (1 + (1− p2))(1 + p) = 2 + 2p− p2 − p3.

We find the maximum by setting the derivative to zero

D′p(TRI2,2) = 2− 2p− 3p2 = 0 =⇒ p = −1±
√

7
3 ,

and checking the second derivative at the relevant point (p =
√

7−1
3 ≈ 0.55 ∈ [0, 1])

D′′p(TRI2,2) = −2− 6p = −2− 6
√

7− 1
3 = −2− 2(

√
7− 1) = −2

√
7 < 0.

So in the interval [0, 1] the maximum is Dp(TRI2,2) ≈ 2.63 when p ≈ 0.55.
The level-p-complexity for the special case k = 1 and general m is

Dp(TRIm,1) = 1 + (1− p) + . . .+ (1− p)m−1.

We see that this function is monotonically decreasing in the interval [0, 1] from m
to 1 which means that the maximum is attained at p = 0 and the value is m. For
m = 1 and general k, it is the case that

Dp(TRI1,k) = 1 + p+ . . .+ pk−1.

We see that this function is monotonically increasing in the interval [0, 1] from 1 to
k which means that the maximum is attained at p = 1 and the value is k. In fact
this case is reduced to the ALL function previously studied.
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(a) Plot for Dp(TRI4,9) with maximum ≈ 13.35 at p ≈ 0.45.
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(b) Plot for Dp(TRI30,20) with maximum ≈ 133.94 at p ≈ 0.89.

Figure 4.3: Plots of Dp for different tribes examples, the code can be found in the
Mathematica script TribesDpScript.wls.

For more general m and k we want to show that there is a unique maximum in
the interval [0, 1], so we compute the general derivative. We get

D′p(TRIm,k) = k((m+ 1)(1− pk)m − 1)pk(1− p)− (1− (1− pk)m)(1− pk)(k(1− p)− p)
pk+1(1− p)2

The formula for the derivative is quite complicated and we cannot find a solution
analytically. Examples where we calculate the result numerically indicates that
there is a unique maximum for the level-p-complexity, seen in Figure 4.3. An
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alternate form of the derivative is

D′p(TRIm,k) =
(

m∑
i=1

(1− pk)i−1
)′ k∑

j=1
pj−1 +

m∑
i=1

(1− pk)i−1

 k∑
j=1

pj−1

′

=
m∑
i=2

(i− 1)(1− pk)i−2(−kpk−1)
k∑
j=1

pj−1 +
m∑
i=1

(1− pk)i−1
k∑
j=2

(j − 1)pj−2

= (−kpk−1)
m∑
i=2

(i− 1)(1− pk)i−2
k∑
j=1

pj−1 +
m∑
i=1

(1− pk)i−1
k∑
j=2

(j − 1)pj−2.

with D′0(TRIm,k) = m > 0 and D′1(TRIm,k) = −k2 +k(k−1)/2 = −k(k+ 1)/2 < 0.
Since the derivative changes sign from positive to negative, this means that there
is at least one interior maximum in the [0, 1] interval, but we have not yet shown
that it is unique or at what point it occurs.

4.3 Majority

The majority function is defined for odd numbers n = 2k − 1 where k ∈ {1, 2, . . .}
so that

MAJn(x) =

1, x1 + · · ·+ xn ≥ k

0, otherwise.

Amore general version is the threshold function, that determines whether a weighted
sum of its inputs exceeds a certain threshold. It is defined as 1 if w1x1 + w2x2 +
... + wnxn ≥ t and 0 otherwise where t is a real number called the threshold and
w1, w2, . . . , wn are real-numbered weights. [Hu65]

THRw
n (x1, x2, ..., xn) =

1, w1x1 + w2x2 + ...+ wnxn ≥ t

0, otherwise

Setting w1 = · · · = wn = 1 and t = k = (n+ 1)/2 we get the majority function, and
the dictator function is a special case when t = 1 and all weights are 0 except for
wi when xi is the dictator bit.

The majority function can be shown to be evasive, which means thatD(MAJn) = n.
The method is to answer 0 and 1 in an alternating pattern until all bits have
been queried, regardless of order. Furthermore, the majority function is sym-
metric, monotone and odd. In addition, the influence for a bit i is Ipi (f) =(
n−1
k−1

)
pk−1(1 − p)k−1. This is because bit i is only pivotal when we have k − 1 bits

with value 0 and k−1 with value 1 among the other bits, so that if i changes value,
the output is changed. Furthermore, there are

(
n−1
k−1

)
ways to place k − 1 bits on

n − 1 positions. This gives us a formula for the lower bound for majority. When
calculating the level-p-complexity for the majority function, we use an algorithm
querying the bits in order from left to right, and stopping if the output is known.
There is no better algorithm, since the function is symmetric and all orders of asking
the bits are equal.
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4.3.1 Majority on three bits

Proposition 4.3 (Dp(MAJ3)). The level-p-complexity of 3-bit majority isDp(MAJ3) =
2 + 2p− 2p2 with maximum 5/2 = 2.5 attained at p = 1/2.

Proof. The three bits are independent and each has Bernoulli(p) distribution so
that

xi =

0, with probability 1− p
1, with probability p

, i ∈ {1, 2, 3}.

The level-p-complexity is given by p1 + p2 + p3 where pi is probability that the ith
bit queried by the algorithm is asked. Since the first two questions must be asked
we have p1 +p2 = 2. Now p3 is the probability that the third bit is asked which only
happens if the first two bits are 01 or 10 so that p3 = p(1−p) + (1−p)p = 2p−2p2.
Then we get

Dp(MAJ3) = 2 + 2p− 2p2.

The function Dp(MAJ3) is symmetric around p = 1/2 as can be seen in Figure 4.4.
We can find the maximum by setting the derivative to zero:

D′p(MAJ3) = 2− 4p = 0 =⇒ p = 1/2

and also D′′p(MAJ3) = −4 < 0. So the maximum is attained at p = 1/2 with
Dp(MAJ3) = 5/2 = 2.5.

The level-p-complexity and the lower bound in Theorem 2.3 can be seen in
Figure 4.4.
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Figure 4.4: Level-p-complexity and lower bound for MAJ3 using Theorem 2.3.
The code for generating this figure is found in maj2.nb.
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4.3.2 Majority on five bits
Proposition 4.4 (Dp(MAJ5)). The level-p-complexity of 5-bit majority is

Dp(MAJ5) = 3 + 3p+ 3p2 − 12p3 + 6p4

with maximum 4.125 attained at p = 1/2.
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Figure 4.5: Level-p-complexity and lower bound for MAJ5 using Theorem 2.3.
The code for generating this figure is found in maj2.nb.

Proof. The level-p-complexity is given by p1 + . . .+ p5 where pi is probability that
the ith bit queried by the algorithm is asked. Since the first three questions must
be asked we have p1 + p2 + p3 = 3. Now p4 is the probability that the fourth bit is
asked which is the complementary probability to stopping to ask after 3 questions.
This only happens if we get 3 consecutive 0’s or 1’s, so p4 = 1−p3− (1−p)3. Lastly
asking the fifth question only happens if we get exactly two 1’s and two 0’s in some
order in the first 4 positions. Thus, p5 =

(
4
2

)
p2(1− p)2, and consequently,

Dp(MAJ5) = 3 + 1− p3 − (1− p)3 +
(

4
2

)
p2(1− p)2

= 3 + 1− p3 − 1 + 3p− 3p2 + p3 + 6p2 − 12p3 + 6p4

= 3 + 3p+ 3p2 − 12p3 + 6p4

or alternatively

Dp(MAJ5) = 3(1− p)4 + 15p(1− p)3 + 30p2(1− p)2 + 15p3(1− p) + 3p4.

This representation shows that Dp(MAJ5) is symmetric around p = 1/2, as is seen
in Figure 4.5.
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We can find the maximum by setting the derivative to zero and solving for roots
in Mathematica:

D′p(MAJ5) = 3 + 6p− 36p2 + 24p3 = 0 =⇒ proot ∈
{

1
2 −
√

2
2 ,

1
2 ,

1
2 +
√

2
2

}

and also

D′′p(MAJ5) = 6− 72p+ 72p2 = 6− 72/2 + 72/4 = −12 < 0

for the root p = 1/2 which is in the interval [0, 1]. So the maximum is attained at
p = 1/2 with value Dp(MAJ5) = 33/8 = 4.125.

The level-p-complexity and the lower bound in Theorem 2.3 can be seen in
Figure 4.5.

4.4 Iterated majority
Majority can be extended to iterated majority, where we combine the majority
functions recursively in n levels as

MAJn+1
k (x1, . . . ,xk) = MAJk(MAJnk(x1), . . . ,MAJnk(xk))

where MAJk is the majority function on k bits and MAJnk is the iterated majority
function on n levels taking kn inputs. Here each xi is a block of kn input bits. In the
base case we have k0 = 1 bit in which case we just return the value: MAJ0

k(x) = x.
Each level corresponds to an iteration of the majority function. Iterated majority
is transitive but not symmetric, similarly to tribes, which makes the analysis of Dp

more difficult than for regular majority. In general, it seems difficult to compute
the level-p-complexity of iterated majority, but we can compute it for a special case
and develop upper and lower bounds in the general case. We will thus calculate the
level-p-complexity for MAJ2

3. Lastly we will study bounds on the complexity for n
levels.

4.4.1 Complexity of two-level three-bit majority
Let (i, j) represent bit j in block i, x(i,j) the value of this bit, and mi the majority
of block i. We have a Boolean function using 9 bits to determine the value, by
first considering the majority in each of the subtrees and then the majority of the
resulting three bits as shown in

x(1,1), x(1,2), x(1,3)︸ ︷︷ ︸
m1=MAJ3

, x(2,1), x(2,2), x(2,3)︸ ︷︷ ︸
m2=MAJ3

, x(3,1), x(3,2), x(3,3)︸ ︷︷ ︸
m3=MAJ3︸ ︷︷ ︸

MAJ3(m1,m2,m3)

We illustrate an example by the decision tree in Figure 4.6a. On the lowest level we
have MAJ3(0, 1, 0) = 0, then MAJ3(1, 0, 1) = 1, and lastly MAJ3(0, 1, 0) = 0. Then
on the middle level we have again MAJ3(0, 1, 0) = 0 which is our final output.
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(a) Example of iterated majority.
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(b) The unknown bit is pivotal.

Figure 4.6: Input with 3× 3 bits illustrating an iterated majority example.

In the case seen in Figure 4.6a, an algorithm seeking to determine the value
of the function by querying the bits left to right is forced to ask all the questions.
Figure 4.6b shows that even when asked 8 questions we cannot be sure of the output:
it could still be 1, therefore the algorithm has to ask the 9th question. In general,
we can answer the queries in such a way that all questions must be asked. The
method of answering queries is

• Always answer 1 and then 0 for the first two bits asked in a block. This forces
the algorithm to query the third bit in the block.

• When we are asked for the third bit of a block for the first time, set it to 1.

• Next time we ask for a third bit in a block, set it to 0. Then the majority of
this block is 0, and since the majority of the other block is 1, the end result
is not yet known.

This forces all questions to be asked, and the function is thus evasive.
We move on to compute the level-p-complexity, seen in Theorem 4.1. To do this

we consider the expected number of queries when the input has distribution πp for
some different types of algorithms, seen in Theorem 4.5. The first algorithm A1
is the one that we always used so far, the one that asks the bits left to right, and
skips to the next block if we already know the majority of the current block. Since
the order in each block and between the blocks do not matter, many algorithms are
equivalent to this one as long as they go through one block at a time.

However, this algorithm will be shown to be suboptimal relative to the last class
of “smarter” algorithms. First, we ask 2 or 3 bits in the first block, yielding a
value m1 = MAJ3(x(1,1), x(1,2), x(1,3)) for the majority in the first block. Then we
ask (2, 1); if x(2,1) = m1, we continue asking the second block, otherwise we save
the second block for later and continue with the third block. Due to this choice
depending on x(2,1) there are two options for this algorithm, seen in Table 4.1. Since
the function is transitive, we do not have to consider other orders than these 2 before
or after asking (2, 1). Note that this is the order we ask the questions if we have to
ask all the questions, but otherwise the algorithms stop when the result is known,
for example we just ask (2, 3) if x(2,1) 6= x(2,2).

Depending on m1 and x(2,1) when m1 6= x(2,1) we see the 4 different ways an
algorithm asks questions in Order 1 or Order 2 in Table 4.2. Algorithms that ask
in Order 2 when m1 = x(2,1) will be worse than asking in Order 1 since it is more
likely that m1 = m2 than m1 = m3 given m1 = x(2,1), which means it is better to
ask block 2 before block 3.
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Question-order 1 2 3 4 5 6 7 8 9
Order 1 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
Order 2 (1,1) (1,2) (1,3) (2,1) (3,1) (3,2) (3,3) (2,2) (2,3)

Table 4.1: Two options of the order asked by the smart algorithms.

m1 x(2,1) A1 A2 A3 A4
0 0 Order 1 Order 1 Order 1 Order 1
0 1 Order 1 Order 2 Order 1 Order 2
1 0 Order 1 Order 1 Order 2 Order 2
1 1 Order 1 Order 1 Order 1 Order 1

Table 4.2: The algorithms ask according to Order 1 or Order 2 depending on m1
and x(2,1).

Now onto the expected number of queries for the different cases. They are
described in Proposition 4.5 and illustrated in Figure 4.7.
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Figure 4.7: Expected costs of the four different algorithms. Since it is hard to
differentiate between them their differences can be seen in Figure 4.8.

Proposition 4.5 (Expected cost for MAJ2
3). The expected costs for the four algo-

rithms are

Eπp
x [c(A1, x)] = 4 + 4p+ 8p2 + 4p3 − 56p4 + 20p5 + 68p6 − 64p7 + 16p8,

Eπp
x [c(A2, x)] = 4 + 4p+ 7p2 + 6p3 − 54p4 + 12p5 + 75p6 − 66p7 + 16p8,

Eπp
x [c(A3, x)] = 4 + 4p+ 8p2 + 4p3 − 59p4 + 28p5 + 61p6 − 62p7 + 16p8,

Eπp
x [c(A4, x)] = 4 + 4p+ 7p2 + 6p3 − 57p4 + 20p5 + 68p6 − 64p7 + 16p8.
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The maxima of the expected costs are

max
p

Eπp
x [c(A1, x)] = 6.25 at p = 0.5,

max
p

Eπp
x [c(A2, x)] ≈ 6.2189 at p ≈ 0.5029,

max
p

Eπp
x [c(A3, x)] ≈ 6.2189 at p ≈ 0.4971,

max
p

Eπp
x [c(A4, x)] = 6.1875 at p = 0.5.
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Figure 4.8: Difference between the expected costs of A1, A2, A3, A4 and A4.

Proof. Let p(i,j) the probability that bit (i, j) is asked. The easiest case is for
the algorithm that asks the bits in order. We ask (1, 1), (1, 2), (2, 1), (2, 2) with
probability 1 and (1, 3), (2, 3) with pdiff, which is the probability that the first two
bits in this block are alternating. We know from results of the MAJ3 function that
pdiff = 2p(1 − p). The third block is only asked if m1 6= m2, with probability palt.
This probability is harder to compute, so first we compute P1 = P(MAJ3(x) = 1)
when x ∼ πp. It is the probability of getting two 1’s and a 0, or three 1’s, so
P1 = 3p2(1− p) + p3. Then we get

palt = 2P(MAJ3(x) = 1) · P(MAJ3(x) = 0) = 2P1 · (1− P1).

We get

Eπp
x [c(A1, x)] = (2+palt)(2+pdiff) = 4+4p+8p2+4p3−56p4+20p5+68p6−64p7+16p8

where the expansion of the expression is done by Mathematica. The function
Eπp
x [c(A1, x)] has minimum value of 4 at p = 0 and p = 1 and maximum value

of 25/4 = 6.25 at p = 1/2.
We now calculate the expected cost for algorithm A2. The expected cost of

the algorithm before switching blocks is always the same since we first ask bits
(1, 1), (1, 2) and (1, 3) if x(1,1) 6= x(1,2), and then ask (2, 1). The expected cost of
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this first part is (2 + pdiff) + 1, and then we have four subalgorithms with different
expected costs.

First, consider the case whenm1 = x2,1 = 0, which has probability (1−P1)(1−p).
We ask the questions in Order 1 seen in Table 4.1. First, we ask (2, 2), and we only
ask (2, 3) if x2,2 = 1 since the bits are alternating in this case. If m2 = 0 we
are done asking questions, else we continue in the third block. The probability of
m2 = 1 given x2,1 = 0 is p2 since we need x2,2 = x2,3 = 1. The expected cost for the
subalgorithm A00 when m1 = x2,1 = 0 is thus

Eπp
x [c(A00, x)] = (1 + p) + p2(2 + pdiff).

Next, consider the case when m1 = 0 but x2,1 = 1, which has probability
(1−P1)p. From the specification in Table 4.2, we now ask the questions in Order 2
seen in Table 4.1. First, we ask (3, 1), (3, 2) and (3, 3) if needed. If m3 = 1 we have
to go back and ask the bits in block 2, which happens with probability P1. Then
we ask (2, 2) and (2, 3) only if x2,2 = 0 since the bits are alternating in this case.
The expected cost for the subalgorithm A01 when m1 = 0 and x2,1 = 1 is thus

Eπp
x [c(A01, x)] = (2 + pdiff) + P1(1 + (1− p)).

Now we consider the case when m1 = 1 and x2,1 = 0, which has probability
P1(1− p). From the specification in Table 4.2, we now ask the questions in Order 1
seen in Table 4.1. First, we ask (2, 2), and we only ask (2, 3) if x2,2 = 1 as in A00.
If m2 = 1 we are done asking questions, else we continue in the third block. The
probability ofm2 = 0 given x2,1 = 0 is 1−p2. The expected cost for the subalgorithm
A10 when m1 = 1 and x2,1 = 0 is thus

Eπp
x [c(A10, x)] = (1 + p) + (1− p2)(2 + pdiff).

Lastly we have the case when m1 = x2,1 = 1, which has probability P1p. We
ask the questions in Order 1 seen in Table 4.1. First, we ask (2, 2), and we only
ask (2, 3) if x2,2 = 0. If m2 = 1 we are done asking questions, else we continue in
the third block. The probability of m2 = 0 given x2,1 = 1 is (1− p)2. The expected
cost for the subalgorithm A11 when m1 = x2,1 = 1 is thus

Eπp
x [c(A11, x)] = (1 + (1− p)) + (1− p)2(2 + pdiff).

Combining these four cases to the expected cost of A2 yields

Eπp
x [c(A2, x)] = (2 + pdiff) + 1 + (1− P1)(1− p) · Eπp

x [c(A00, x)]
+ (1− P1)p · Eπp

x [c(A01, x)]
+ P1(1− p) · Eπp

x [c(A10, x)]
+ P1p · Eπp

x [c(A11, x)]

This can be expanded using Mathematica1:

Eπp
x [c(A2, x)] = 4 + 4p+ 7p2 + 6p3 − 54p4 + 12p5 + 75p6 − 66p7 + 16p8.

1See file iterated_maj.nb.
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The calculation of expected cost for A3 is similar, but we change A01 and A10 to
A′01 and A′10. For A′01 we see in the specification in Table 4.2 that we now ask the
questions in Order 1 seen in Table 4.1. First, we ask (2, 2), and we only ask (2, 3)
if x2,2 = 0. If m2 = 0 we are done asking questions, else we continue in the third
block. The probability of m2 = 1 given x2,1 = 1 is (1− (1− p)2). The expected cost
for the subalgorithm A′01 is thus

Eπp
x [c(A′01, x)] = (1 + (1− p)) + (1− (1− p)2)(2 + pdiff).

For A′10 we see in the specification in Table 4.2 that we now ask the questions in
Order 2 seen in Table 4.1. First, we ask (3, 1), (3, 2) and (3, 3) if needed. If m3 = 0
we have to go back and ask the bits in block 2, which happens with probability
1− P1. Then we ask (2, 2) and (2, 3) only if x2,2 = 1 since the bits are alternating
in this case. The expected cost for the subalgorithm A′10 is thus

Eπp
x [c(A′10, x)] = (2 + pdiff) + (1− P1)(1 + p).

We get

Eπp
x [c(A3, x)] = (2 + pdiff) + 1 + (1− P1)(1− p) · Eπp

x [c(A00, x)]
+ (1− P1)p · Eπp

x [c(A′01, x)]
+ P1(1− p) · Eπp

x [c(A′10, x)]
+ P1p · Eπp

x [c(A11, x)]

This can be expanded using Mathematica:

Eπp
x [c(A3, x)] = 4 + 4p+ 8p2 + 4p3 − 59p4 + 28p5 + 61p6 − 62p7 + 16p8.

Lastly we have the expected cost of A4 which is similar to that of A2 and A3
and uses subalgorithms, A00, A

′
01, A10 and A11. Thus the cost is

Eπp
x [c(A4, x)] = (2 + pdiff) + 1 + (1− P1)(1− p) · Eπp

x [c(A00, x)]
+ (1− P1)p · Eπp

x [c(A′01, x)]
+ P1(1− p) · Eπp

x [c(A10, x)]
+ P1p · Eπp

x [c(A11, x)]

This can be expanded using Mathematica:

Eπp
x [c(A4, x)] = 4 + 4p+ 7p2 + 6p3 − 57p4 + 20p5 + 68p6 − 64p7 + 16p8.

Conjecture 4.1 (Dp(MAJ2
3)). For p ∈ [0, 1] algorithm A4 has the lowest expected

cost among the algorithms. Thus, the level-p-complexity for iterated 3-bit majority
on two levels is

Dp(MAJ2
3) = 4 + 4p+ 7p2 + 6p3 − 57p4 + 20p5 + 68p6 − 64p7 + 16p8.

The maximum of Dp(MAJ2
3) is 99/16 = 6.1875 at p = 1/2.
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Figure 4.9: Level-p-complexity of iterated majority.

The method of generating algorithms as proposed in Chapter 3 proved unfeasible
for 9 bits. We can not prove this as there might be other algorithms than A1, . . . , A4
that are better. But as we have not found any other better algorithms we provide
strong evidence for Conjecture 4.1. The proposed formula is seen in Figure 4.9.

Proof sketch of Conjecture 4.1. We use the representation ∑n
i=0 bi

(
n
i

)
pi(1 − p)n−i,

which allows us to see the number of questions in total for all the different cases
where we have i 1’s and n−i 0’s. In Table 4.3 we see the coefficients for the expected
costs of the four algorithms.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9
Eπp
x [c(A1, x)] 4/1 40/9 184/36 508/84 864/126 864/126 508/84 184/36 40/9 4/1

Eπp
x [c(A2, x)] 4/1 40/9 183/36 503/84 857/126 861/126 508/84 184/36 40/9 4/1

Eπp
x [c(A3, x)] 4/1 40/9 184/36 508/84 861/126 857/126 503/84 183/36 40/9 4/1

Eπp
x [c(A4, x)] 4/1 40/9 183/36 503/84 854/126 854/126 503/84 183/36 40/9 4/1

Table 4.3: The coefficients for the expected costs of algorithms A1, A2, A3 and A4
when using the symmetric base representation ∑n

i=0 bi
(
n
i

)
pi(1− p)n−i.

We observe that the costs of A1 and A4 are symmetric around p = 1/2 since
bi = bn−i for i ∈ {1, . . . , n}. Now, the expected costs of A2 and A3 are not symmetric
around p = 1/2, but they are similar to each other, just flipping the coefficients.
From this representation we immediately see that A4 is lower than A1, A2 and A3
for p ∈ [0, 1] since all pi(1 − p)j terms are ≥ 0 in this interval and the coefficients
in A4 are less than for the others. We can also see in Figure 4.8 that the expected
cost of A4 is the lowest of the four algorithms. So among these algorithms, A4 is
the best, and if there are no other better algorithms we have Dp(f) = Eπp

x [c(A4, x)]
since Dp is defined to be the minimum over algorithms.

It is interesting to note that if we subtract the costs of the algorithms A1 and
A4 we can interpret the coefficients as
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• there is the same amount of questions asked on average for A1 and A4 for the
cases when we have nine 0’s or nine 1’s.

• there is the same amount of questions asked on average for A1 and A4 for the
cases when we have one 1 and eight 0’s or one 0 and eight 1’s.

• there are 1/36 more questions asked on average for A1 than A4 for the cases
when we have two 1’s and seven 0’s or two 0’s and seven 1’s.

• there are 5/84 more questions asked on average for A1 than A4 for the cases
when we have three 1’s and six 0’s or three 0’s and six 1’s.

• there are 10/126 more questions asked on average for A1 than A4 for the cases
when we have four 1’s and five 0’s or four 0’s and five 1’s.

4.4.2 General complexity bounds
Randomized complexity of iterated three bit majority has been studied in [Lan+06],
[Leo13] and [Mag+16], as they improve the lower bound for R(MAJn3 ) in terms of
the level n.
Proposition 4.6 (Bounds forDp(MAJn3 )). A lower bound for the level-p-complexity
for n levels of iterated majority on three bits is 2n, and an upper bound is 2.5n so
2n ≤ Dp(MAJn3 ) ≤ 2.5n.
Proof. The lower bound is 2n since the least amount of questions asked for MAJn3
is 2n. This can be seen if we consider all bits to be 0, in which case all blocks can
be determined in 2 questions asked, and we only have to ask 2n−1 blocks to know
the result.We prove the upper bound by induction. The base case is 1 level which
is regular majority, and we know that Dp(MAJ3) = 2.5 so that Dp(MAJ1

3) ≤ 2.5.
Assuming Dp(MAJk3) ≤ 2.5k we find that an algorithm for querying bits for iterated
majority with k+1 can be combined as the algorithm for 1 level and for k levels, since
we consider each of the subtrees separately. Then we get Dp(MAJk+1

3 ) ≤ 2.5k+1.

This means that using the algorithm for level 1 we can construct an algorithm
for level n inductively. However, there might be better algorithms, so the upper
bound for Dp might not be tight. From the base case we already know that the
lower bound is not tight. Furthermore, we know Dp(MAJ2

3) ≤ 6.1875 < 6.25 = 2.52

since maxp∈[0,1] Dp(MAJ2
3) = 6.1875, so the upper bound is not tight either. This

means that better bounds could be achieved.
We use the multiplicative form of Fekete’s Lemma. [Fek23]

Lemma 4.1 (Fekete’s Lemma [Fek23]). Let the sequence {cn |n = 1, 2, . . .} of
positive numbers be submultiplicative in the sense that cn+m ≤ cncm for n,m =
1, 2, . . . (so that the sequence log(cn) is subadditive). Then

lim
n→∞

c1/n
n = inf

n
c1/n
n

Since Dp(MAJn3 ) is submultiplicative we get that there exists a number
l = lim

n→∞
Dp(MAJn3 )1/n = inf

n
Dp(MAJn3 )1/n

and we know 2 ≤ l ≤ 2.5.
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You can’t connect the dots
looking forward; you can only
connect them looking back-
wards.

Steve Jobs

5
Boolean functions on graphs

This chapter concerns graph properties, which can be encoded as Boolean functions.
Consider a graph G with nodes N = {1, . . . , n} and edges E ⊆ {{i, j} for i, j ∈ N}.
We do not allow self-loops and all the edges are undirected. Let vi,j = 1 if the edge
between i and j exists and 0 otherwise. Given the all the input bits vi,j, the Boolean
function f is 1 if G fulfills the given graph property and 0 otherwise.

5.1 Previous work
There has been a lot of research on the deterministic and randomized complex-
ity for graph properties and more generally for non-constant transitive monotone
Boolean functions. For example, [RV75] proves that for any non-constant transitive
monotone Boolean function f of n bits, D(f) = n if n is a prime power. This
theorem was derived in order to then prove (in the same paper) the Aanderaa-
Rosenberg Conjecture which states that the deterministic complexity for any non-
constant monotone graph property on n nodes is Ω(n2) [Ros73]. There is also a
variant of the Aanderaa-Rosenberg Conjecture for randomized complexity, called
the Aanderaa-Karp-Rosenberg Conjecture which has not yet been proved. However
the lower bound of n4/3 was proved in [Haj92].

5.2 Connectivity
We now consider the graph property of connectivity, and first show that it is evasive
for any connected graph, and then compute the level-p-complexity for some specific
graphs. More details about the calculations for the graphs can be found in the
Mathematica notebook graph.nb. Originating from any connected graph G =
(N,E) we get a subgraph with the same set of nodes N but a subset of the edges,
namely the ones that satisfy vi,j = 1. This subgraph is the input to the Boolean
function f that determines if the subgraph is connected or not.

5.2.1 Evasiveness
Proposition 5.1 (Evasiveness of graph connectivity [LY02]). For a connected
graph G with n edges we have D(f) = n, where f represents connectivity of G.

Proof. We prove the proposition by showing that f is evasive. We let an adversary
answer 0 unless that answer would imply the graph was disconnected, in which he or
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she answers 1. We have to show that it is not possible for f to be determined before
we have queried all the edges. Assume the contrary, so that the answer is known
without having queried {i, j}. For this to hold, this graph has to be connected
already, not including the edge {i, j}, which means that there must be a path that
connects nodes i and j that does not contain edge {i, j}. Of the edges on this
path from i to j, suppose the last edge queried is {u, v}. But since {i, j} is not yet
queried, answering 0 for {u, v} does not imply that the graph is disconnected so
setting {u, v} to 1 would go against the strategy described above. The adversary
should instead answer 0 for {u, v} and then 1 for {i, j} as the last question. Thus,
by using this strategy, the answer cannot be known until all the edges are queried.

5.2.2 Small graphs on three or four nodes
Now we move over to calculating the level-p-complexity for different examples of
graphs. First we consider a simple example of a graph with three nodes. Either we
have two edges or three edges, seen in Figure 5.1. Let f32 be the Boolean function
determining if the graph with 3 nodes and 2 edges (seen in Figure 5.1a) is connected.
Next, f33 determines if the graph with 3 nodes and 3 edges (seen in Figure 5.1b) is
connected or not.

A B C

(a) A path between the 3 nodes with
deg(A) = deg(C) = 1 and deg(B) = 2,
corresponding to Boolean function f32.

A B

C

(b) A fully connected graph with 3 nodes
where all nodes have degree 2, corre-
sponding to Boolean function f33.

Figure 5.1: The possible graphs with 3 nodes.

The next cases are graphs with four nodes and three edges. There are two pos-
sibilities, seen in Figure 5.2a and Figure 5.2b, with two different Boolean functions:
f43class1 and f43class2.

Proposition 5.2 (Dp(f) for small graphs). The level-p-complexities of the Boolean
functions for the graphs seen in Figure 5.1 and Figure 5.2 are

Dp(f32) = 1 + p, Dp(f33) = 2 + 2p− 2p2,

Dp(f43class1) = 1 + p+ p2, Dp(f43class2) = 1 + p+ p2.

Proof. For f32, both edges have to exist for the graph to be connected which cor-
responds to the ALL1

2 function so Dp(f32) = 1 + p with maximum 2 at p = 1. For
f33 we need the majority of the edges to be there, so it is the same as MAJ3 so
Dp(f33) = 2 + 2p(1 − p) with maximum Dp(f33) = 2.5 at p = 1/2. Now, consider
f43class1 and f43class2. Since all edges are needed for the graphs to be connected we
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A B C D

(a) A path between the 4 nodes with deg(A) =
deg(D) = 1 and deg(B) = deg(C) = 2, corre-
sponding to Boolean function f43class1.

A B D

C

(b) A graph with 4 nodes and 3
edges with deg(B) = 3 and deg(A) =
deg(C) = deg(D) = 1, correspond-
ing to Boolean function f43class2.

Figure 5.2: The graphs with 4 nodes and 3 edges.

have the ALL1
3 function for both cases so Dp(f43class1) = Dp(f43class2) = 1 + p + p2

with maximum 3 at p = 1.

Next, we consider the possible graphs with four nodes and four edges. There are
two important differences regarding degree of the nodes, which splits up the graph
into two isomorphism classes. In the first version, shown in Figure 5.3a all nodes
have degree 2, and the graph is symmetric. In the other case, seen in Figure 5.3b
two nodes have degree 2, one degree 3 and one degree 1. The corresponding Boolean
functions are f44class1 and f44class2 respectively.

A B

C D

(a) The graph where all nodes have degree 2,
corresponding to Boolean function f44class1.

A B

C D

(b) The graph with deg(D) = 3
and deg(C) = 1, corresponding to
Boolean function f44class2.

Figure 5.3: The graphs with 4 nodes and 4 edges.

Proposition 5.3 (Dp(f44)). The level-p-complexities of the Boolean functions for
the graphs seen in Figure 5.3 are

Dp(f44class1) = 2 + 2p+ 2p2 − 3p3,

Dp(f44class2) = 1 + 2p+ 2p2 − 2p3,

with maxima ≈ 3.36 at p ≈ 0.74 for Dp(f44class1) and 3 at p = 1 for Dp(f44class2).

Proof. For class 1 there is no fundamental difference between the edges, and we
know that the graph is connected if there are three 1’s or more, and that it is
disconnected if we have two 0’s or more. Thus, D0(f44class1) = 2 and D1(f44class1) =
3. We must ask the first two queries, then we ask the third only if the previous
ones were not both zero. Then we only ask the fourth if we have two 1’s and one 0,
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since this is the only case where we cannot yet conclude if the graph is connected
or not. We get

Dp(f44class1) = 2 + (1− (1− p)2) + 3p2(1− p) = 2 + 2p+ 2p2 − 3p3.

From Mathematica, we find the maximum ≈ 3.36 at p ≈ 0.74 numerically.
For class 2 it does matter in which order we ask the edges; it is better to start

with the one connected to the node with degree 1 (edge (C,D) in Figure 5.3b),
because if there is no edge to this node we immediately conclude that the subgraph
is disconnected. Given that the edge exists, the order of asking the other edges
does not matter (at least 2 of the edges (A,B), (A,D) or (B,D) in Figure 5.3b are
needed for the graph to be connected). This gives

Dp(f44class2) = 1 + p(2 + 2p(1− p)) = 1 + 2p+ 2p2 − 2p3,

with maximum 3 at p = 1.

5.2.3 Graphs with four nodes and five edges
Now we consider the graph with 4 nodes and 5 edges, seen in Figure 5.4, with
Boolean function f45. For 5 edges all the six possibilities of graphs are isomorphic.
They consist of one edge where both nodes have degree 3 (in Figure 5.4 this edge
is x5), and the other four edges that all have one side with degree 2 and the other
with degree 3. Before computing Dp(f45) we start with computing the influences

A B
x1

C D
x3

x4
x5 x2

Figure 5.4: The graph with 4 nodes and 5 edges, corresponding to f45.

for each of the edges.

Proposition 5.4 (Ipi (f45)). The influences for the edges in the graph seen in Fig-
ure 5.4 are

Ipi (f45) = 5p2(1− p)2 + p3(1− p), i ∈ {1, 2, 3, 4}
Ip5 (f45) = 4p2(1− p)2.

Proof. The influence for edge x1 will be the same as for x2, x3 and x4, so it is
enough to calculate one of them. The edge x1 is pivotal when it is not yet known if
the graph is connected given the other edges (x2, x3, x4, x5). There are six cases in
which the connectivity depends on x1: when (x2, x3, x4, x5) is (1, 1, 0, 0), (1, 0, 1, 0),
(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1) or (0, 1, 1, 1). Thus, we get for i ∈ {1, 2, 3, 4}:

Ipi (f45) = 5p2(1− p)2 + p3(1− p).
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The influence for edge x5 is calculated similarly. There are four cases when it is
not yet known if the graph is connected given the other edges: when (x1, x2, x3, x4)
is (1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), or (0, 1, 1, 0). Thus, we get

Ip5 (f45) = 4p2(1− p)2

We observe that Ip5 (f45) is smaller than Ip1 (f45) for p ∈ [0, 1]. This is an indi-
cation that the algorithm should start with x1 rather than x5, which is stated in
Proposition 5.5. The influences also give us the lower bound

4p(1− p)(Ip(f))2 = 2304p5 − 10752p6 + 20032p7 − 18624p8 + 8640p9 − 1600p10

seen in Figure 5.7.

AB

C D
x3

x4

x5
x2

(a) Reduced graph for x1 = 1.

AD B

x1

C

x3 x4

x2

(b) Reduced graph for x5 = 1.

Figure 5.5: Reduced graphs for the graph in Figure 5.4.

Proposition 5.5 (Dp(f45)). The algorithm A1 starting with querying x1 has lower
expected cost for p ∈ [0, 1] than the algorithm A5 that starts with querying x5.
Thus, the level-p-complexity of connectivity on the graph with 4 nodes and 5 edges
is the expected cost of A1 and has formula

Dp(f45) = 2 + 3p+ 4p2 − 10p3 + 4p4

which has maximum at ≈ 3.61 at p ≈ 0.64

Proof. We first compute the cost of an algorithm A1 starting with asking x1 (which
is the same as starting with x2, x3 or x4). If x1 = 0, the Boolean function is reduced
to f44class2, since setting x1 = 0 in Figure 5.4 gives the graph seen in Figure 5.3b.
If x1 = 1, the Boolean function is reduced to the connectivity of the graph seen
in Figure 5.5a. This graph is similar to the graph in Figure 5.1b and the Boolean
function is MAJ3(x3, x4,ANY1

2(x2, x5)). The algorithm would then ask x3, x4 in
order as in regular majority, stop if done, otherwise ask x2 and if needed x5. The
expected cost of A1 is then

Eπp
x [c(A1, x)] = 1 + (1− p)(1 + 2p+ 2p2 − 2p3) + p(2 + 2p(1− p)(1 + (1− p)))

= 2 + 3p+ 4p2 − 10p3 + 4p4,
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and can be seen in Figure 5.7.
Now, we compute the cost of algorithm A5 that starts with asking x5. If x5 =

0 then the Boolean function is reduced to f44class2 since since setting x5 = 0 in
Figure 5.4 gives the graph seen in Figure 5.3a. If x5 = 1 the reduced function is
more complicated, see the corresponding graph in Figure 5.5b. This is similar to
the case in 5.1a but with four edges instead of two. The Boolean function is thus
ALL1

2(ANY1
2(x1, x2),ANY1

2(x3, x4)). Due to symmetry it does not matter if we ask
x1, x2 or x3, x4, and also the order between x1 and x2 and x3 and x4 does not matter.
WLOG we ask the bits in order, this algorithm can be seen in Figure 5.6, and the

x1

x2

0 T1

T1

0

0 1

1

x3

x4

0 1

1

0

0 1

1T1

Figure 5.6: One of the possible algorithms for Figure 5.5b after x5 = 1.

expected cost of it is

1 + p(1 + (1− p)) + (1− p)(1 + p(1 + (1− p))) = 2 + 3p− 4p2 + p3

This expression comes from splitting up in two cases, first we ask one question,
and then we calculate the expected cost of the reduced function when we get a 0
with probability 1− p or 1 with probability p. These subexpressions are calculated
similarly and the expected cost for T1 is 1 + (1− p) since we first ask one question
and then ask the next with probability 1−p. Combining these results the expected
cost of A5 is

Eπp
x [c(A5, x)] = 1 + (1− p)(2 + 2p+ 2p2 − 3p3) + p(2 + 3p− 4p2 + p3)

= 3 + 2p+ 3p2 − 9p3 + 4p4.

As seen in Figure 5.7 the expected cost of A1 is lower than that of A5 in the
interval and the intersection point between them is at p = 1. We can also see this
algebraically by using the pi(1− p)j representation

Eπp
x [c(A5, x)]− Eπp

x [c(A1, x)] = (1− p)4 + 3(1− p)3p+ 2(1− p)2p2

which is always ≥ 0 for p ∈ (0, 1), since all pi(1 − p)j terms are positive in the
interval. This means that the level-p-complexity is the expected cost of A1 in the
whole interval so that

Dp(f45) = Eπp
x [c(A1, x)] = 2 + 3p+ 4p2 − 10p3 + 4p4.

With Mathematica, we find the maximum ≈ 3.61 at p ≈ 0.64 numerically.
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0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Figure 5.7: The expected costs for algorithms A1 and A5 for f45.

5.2.4 Graphs with four nodes and six edges
Now we consider the case with 4 nodes and 6 edges seen in Figure 5.8a, which is
the complete graph and corresponds to Boolean function f46.

A B
x1

C D
x3

x4

x5

x2x6

(a) Graph with 4 nodes and 6
edges, corresponding to f46.

AB

C D
x3

x4

x5

x2
x6

(b) Reduced graph for the graph
in Figure 5.8a when x1 = 0.

Figure 5.8: The complete graph on 4 nodes and its reduced graph.

Proposition 5.6 (Dp(f46)). Connectivity on the graph with 4 nodes and 6 edges
has level-p-complexity

Dp(f46) = 3 + 4p+ 6p2 − 27p3 + 23p4 − 6p5

which has maximum ≈ 4.39 at p ≈ 0.46 and minimum 3 at p = 0 = 1.

Proof. Now all nodes have degree 3 and due to this symmetry we may WLOG start
asking x1. If x1 = 0 the Boolean function is reduced to f45 since the subgraph is iso-
morphic to the graph seen in Figure 5.4. If instead x1 = 1 resulting subgraph is seen
in Figure 5.8b, which gives Boolean function MAJ3(x3,ANY1

2(x2, x5),ANY1
2(x4, x6)).

Due to this it is best to first ask x3, but then it does not matter if we ask x2, x5 or
x4, x6 first due to the majority characteristics, and also the order between x2 and
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x3

x2

x5

0 T2

T2

x2

x5

T2 1

1

0

0

0 1

1

1

0

0 1

1

x4

x6

0 1

1

0

0 1

1T2

Figure 5.9: One of the possible algorithms for connectivity on the graph in Fig-
ure 5.8 after x1 = 1.

x5 and x4 and x6 does not matter. So WLOG we can use the algorithm seen in
Figure 5.9 which has expected cost

Eπp
x [c(Areduced, x)] = 1 + (1− p)(1 + (1− p)(1 + p(2− p)) + p(2− p))

+ p(1 + (1− p)(1 + (1− p)(2− p)))
= 3 + 5p− 13p2 + 9p3 − 2p4.

This expression comes from splitting up in two cases, first we ask one question,
and then we calculate the expected cost when we get a 0 with probability 1−p or 1
with probability p. These subexpressions are calculated similarly and the expected
cost for T2 is 1 + (1 − p) = 2 − p since we first ask one question and then ask the
next with probability 1− p. This gives level-p-complexity

Dp(f46) = 1 + (1− p)Dp(f45) + pEπp
x [c(Areduced, x)]

= 3 + 4p+ 6p2 − 27p3 + 23p4 − 6p5

which has maximum ≈ 4.39 at p ≈ 0.46 and minimum 3 at p = 0 = 1.
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Nothing takes place in the
world whose meaning is not
that of some maximum or
minimum.

Leonhard Euler

6
Level-p-complexity with two

maxima

In this section we are going to construct a Boolean function so that Dp has inter-
esting properties. All the examples we have seen so far have one unique maximum.
Is there a Boolean function so that Dp(f) has two maxima? Moreover, are these
maxima at the endpoints or somewhere inbetween?

Theorem 6.1 (Dp(f) with two maxima). There is a Boolean function f so that
Dp(f) has two maxima that are not at the endpoints.

Proof. We do this proof in four steps, first we construct a suitable function, then
we describe the possible algorithms for querying the bits, then we describe the
calculations of the expected cost, and finally we show the level-p-complexity has
two maxima.

Construction of the function Let a and c be natural numbers, and A and C
be two disjoint sets partitioning {1, . . . , n} so that the sizes of A and C are a and
c respectively. We let fA = ¬SAMEa and fC = SAMEc. This means that fA is
1 only if not all bits in A are the same, and fC is 1 if all bits in C are the same.
In general if we have a function that depends on two disjoint sets of the bits we
use the splitA,C : {0, 1}n → {0, 1}a × {0, 1}c function to split the bits into two sets:
splitA,C(x) = (xA, xC). We then define f(x) = ANY 1

2 (fA(xA), fC(xC)).
In our example we fix a = 3 and c = 2 and function fAC can be illustrated as

x1, x2, x3,︸ ︷︷ ︸
¬SAME3

x4, x5︸ ︷︷ ︸
SAME2︸ ︷︷ ︸

¬SAME3∨SAME2

In fact a = 3 and c = 2 are the smallest parameters for which the level-p-complexity
of the function has two maxima. For the case of a = 2 and c = 2 we have functions
fA = ¬SAME2 and fC = SAME2. But

Pp(fC = 1) = p2 + (1− p)2 ≥ 2p(1− p) = Pp(fA = 1)

when p ∈ [0, 1], so it will always be better to ask C before A. In this case we will
not get two maxima in Dp(fAC). For larger parameters a and c we could get other
interesting behaviour but we limit the analysis to the smallest parameters for which
Dp(fAC) has two maxima, since this is the point of Theorem 6.1 which we want to
prove.
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Describing the possible algorithms First we consider algorithms for deter-
mining fA and fC and then we combine them in different ways to determine fAC .
Both fA and fC are symmetric, so the order of the input bits do not matter for the
output. No matter how we reorder the bits we still have the same result for the
property if the bits are same or not. Thus the cost of the algorithm does not depend
on which order we ask the bits in sets A and B separately, but it could matter if we
are switching between the two sets. We determine fA by asking the first two bits,
and then if they are different, we conclude fA = 1, otherwise we check the third bit
as well. Determining fC is similar; we ask the two bits and if they are the same we
conclude fC = 1.

When we combine fA and fC , it is enough if we know either is 1, as the result
of fAC is 1 as well in this case. Two possible algorithms for fAC is just asking the
bits in set A as described above and stopping if fA = 1, otherwise continuing to ask
the bits in set C. Or vice versa, asking the bits in set C and stopping if fC = 1,
otherwise continuing to ask the bits in set A. We call these algorithms TAC and
TCA respectively, and they can be seen in Figure 6.1.

There are also algorithms for fAC that switch between the blocks instead of
asking all bits needed to determine fA in A or all bits in C separately. First, asking
one of the bits in A, WLOG x1, we are left with two reduced Boolean functions
on the four remaining bits, fx1=0

AC and fx1=1
AC . We have six subalgorithms for fx1=0

AC ,
which can be seen in the Appendix in Figure A.3. We also have six subalgorithms
for fx1=1

AC , which can be seen in Figure A.4. Since there are two subtrees that could
each take 6 subalgorithms, we get 6 ·6 options in total by combining all the possible
subtrees, if we first ask x1. Figure 6.1a shows one of the 36 possible combinations
of the subtrees.

x1

T x1=0
1 T x1=1

1

0 1

(a) Example of an algorithm where we
ask x1 first, which corresponds to TAC .
Subtrees T x1=0

1 and T x1=1
1 can be seen

in Figure A.3 and Figure A.4.

x4

T x4=0
4 T x4=1

4

0 1

(b) Example of an algorithm where we
ask x4 first, which corresponds to TCA.
Subtrees T x4=0

1 and T x4=1
1 can be seen

in Figure A.1 and Figure A.2.

Figure 6.1: Two of the 52 generated algorithms.

If we first ask a bit in C, WLOG x4, we have a similar argument, with 4
subalgorithms for fx4=0

AC , seen in Figure A.1, and 4 subalgorithms for fx4=1
AC , seen in

Figure A.2. Figure 6.1b shows one of the 16 possible combinations of the subtrees.
In total we have 6·6+4·4 = 52 algorithms. In Haskell1 all the 52 possible algorithms
and their expected costs were generated as described in Chapter 3. Some of them
had equivalent cost, so in total there are 39 unique costs, which can be seen in
Figure 6.2.

1The code for this can be found in the file GenAlg.hs.
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Figure 6.2: Costs of all costs of all the 39 possible algorithms for fAC

Level-p-complexity results In Figure 6.2 we see that there are a lot of lines
that overlap and have intersections, however we are only interested in the bottom
area, as we are minimizing over algorithms. The lowest lines are P0 (the purple
convex line) and P38 (the red concave line) and they intersect at two points around
≈ 0.35 and ≈ 0.65.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Figure 6.3: Level-p-complexity of fAC , where the red points note the intersections
of the costs of the algorithms.

By minimizing over all 39 expected costs in Mathematica2 for p ∈ [0, 1] we get

Dp(f) =


P38(p) = 2 + 6p− 10p2 + 8p3 − 4p4, p ∈ [0, 0.356]
P0(p) = 5− 8p+ 8p2, p ∈ [0.356, 0.644]
P38(p) = 2 + 6p− 10p2 + 8p3 − 4p4, p ∈ [0.644, 1]

2See the Mathematica notebook bimodal.nb.
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6. Level-p-complexity with two maxima

and can be seen in Figure 6.3. The level-p-complexity is continuous but not dif-
ferentiable in the intersection points p ≈ 0.356 and p ≈ 0.644 where the derivative
changes between ≈ 1.198 and ≈ −2.301. We see clearly that it has two maxima in
the intersection points, at p ≈ 0.356 and p ≈ 0.644 with value ≈ 3.17.

In fact P38(p) = Eπp
x [cf (TCA, x)] and P0(p) = Eπp

x [cf (TAC , x)], so the level-p-
complexity can be interpreted in terms of TAC and TCA. For p around 1/2 it is best
to first ask A and then, if needed, C, since the probability that the bits in A are
not the same (which is 1− p3 − (1− p)3) is higher than that of the bits in C being
the same (which is p2 + (1 − p)2). On the other hand, for p close to 0 there is a
overwhelming probability of both bits in C being 0 and thus the same, while there
is less chance of the bits in A being different. This means that we should start with
asking C first and then, if needed, A. The same goes for p close to 1 with the bits
likely being 1.

Note that both algorithms that have the lowest cost are “naive”: they ask all of
A and C separately and don’t switch between the blocks. So in the end there was
no advantage of switching between the blocks for these parameters, but for different
parameters it might differ.
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Out of complexity, find sim-
plicity!

Albert Einstein 7
Conclusion

This thesis concerns characteristics of complexity, specifically level-p-complexity,
for various Boolean functions. The formulas for the level-p-complexities are seen in
Table 7.1. In Chapter 4 we calculated the level-p-complexity for Boolean functions
all, tribes, majority and iterated majority. For the ALL1

n function (see Section 4.1),
Dp(f) is continuous, differentiable and increasing in p on the whole interval.

f Dp(f) pmax Dpmax(f)
Const 0 — —
Dictator 1 — —
Parity n — —
ALL1

n
1−pn

1−p 1 n

Tribes, TRIm,k (1−(1−pk)m)(1−pk)
pk(1−p) — —

MAJ3 2 + 2p− 2p2 1/2 5/2
MAJ5 3 + 3p+ 3p2 − 12p3 + 6p4 1/2 4.125

Table 7.1: Level-p-complexity for some Boolean functions.

The level-p-complexity of the tribes function (see Section 4.2) can be seen in
Table 7.1, and its values at the endpoints are D0(TRIm,k) = m and D1(TRIm,k) =
k. The function is continuous and differentiable and the maximum can be found
numerically depending on m and k. The analytical formula for the maximum was
not found, and therefore it is also hard to reason about if the maxima is unique
even if it is unique for all m and k parameters tried numerically.

Furthermore, the formulas for the majority functions on 3 and 5 bits (see Sec-
tion 4.3) can be seen in Table 7.1. They are symmetric around p = 1/2, which can
be seen by writing them in the symmetric polynomial representation. The proposed
formula for iterated majority was too complicated to fit in the table, but it can be
seen in Conjecture 4.1 in Section 4.4. It is also symmetric around p = 1/2 and has
maxima at p = 1/2 of 6.1875.

Further, Chapter 5 explores level-p-complexity for the graph property of con-
nectivity, and we can see the results for graphs with 3 or 4 nodes in Table 7.2. The
graphs with 3 nodes have very simple formulas, and the same goes for the graph
with 4 nodes and 3 edges. For 4 nodes and 4,5 or 6 edges we get polynomials of
higher order, but still the same algorithm is optimal for all p so the functions are
continuous and differentiable.

In Chapter 6 a function fAC is constructed such that the level-p-complexity has
two maxima. There are a lot of different relevant algorithms for fAC and they

43



7. Conclusion

f Dp(f) pmax Dpmax(f)
f32 1 + p 1 2
f33 2 + 2p− 2p2 1/2 5/2
f43class1 1 + p+ p2 1 3
f43class2 1 + p+ p2 1 3
f44class1 2 + 2p+ 2p2 − 3p3 ≈ 0.74 ≈ 3.36
f44class2 1 + 2p+ 2p2 − 2p3 1 3
f45 2 + 3p+ 4p2 − 10p3 + 4p4 ≈ 0.64 ≈ 3.61
f46 3 + 4p+ 6p2 − 27p3 + 23p4 − 6p5 ≈ 0.46 ≈ 4.39

Table 7.2: Level-p-complexity for connectivity of graphs with 3 nodes with 2 or 3
edges, and 4 nodes with 3, 4, 5 or 6 edges.

intersect many times, yielding the level-p-complexity

Dp(fAC) =


Eπp
x [cf (TCA, x)] = 2 + 6p− 10p2 + 8p3 − 4p4, p ∈ [0, 0.356]

Eπp
x [cf (TAC , x)] = 5− 8p+ 8p2, p ∈ [0.356, 0.644]

Eπp
x [cf (TCA, x)] = 2 + 6p− 10p2 + 8p3 − 4p4, p ∈ [0.644, 1]

This is the first function for which the optimal algorithm depends on p, as the ex-
pected cost of the different algorithms intersect, so the level-p-complexity is piece-
wise differentiable, with different polynomial form in the different intervals. The
two maxima are at p ≈ 0.356 and p ≈ 0.644 with value ≈ 3.17.

To summarize, we have calculated the level-p-complexity for Boolean functions
such as const, dictator, all, tribes, majority, graph connectivity on graphs with 3 or
4 nodes. But this is only part of all the possible Boolean functions, so it could be
interesting to calculate the level-p-complexity for other Boolean functions1. Some
examples are extensions of Boolean functions whose complexity we have calculated
and will likely have similar results, like the threshold function which is described in
Section 4.3, but others are entirely different, for example percolation [GS14].

Another extension would be to properly prove Conjecture 4.1 and not just pro-
vide strong evidence. It would also be interesting to go further in the iterated
majority function MAJnk and explore different cases with different n and k.

In my opinion, the most interesting direction would be to continue constructing
new Boolean functions using easy building blocks like in Chapter 6, and explore
properties of their level-p-complexity. For example it would be interesting if we
could find a monotone function for which the level-p-complexity has two maxima,
since fAC is not monotone.

1See a list of Boolean functions at the wiki page: https://booleanzoo.weizmann.ac.il/
index.php/Main_Page#Boolean_functions
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A
Appendix

This Appendix mainly consists of the 10 different possible algorithms for the re-
duced functions fx1=0

AC , fx1=1
AC , fx4=0

AC and fx4=1
AC , seen in Figures A.3, A.4, A.1 and A.2

respectively.
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Figure A.1: The four subalgorithms for the reduced function fx4=0.

I



A. Appendix

x1

x2

x3

x5

0 1

1

1

x2

1 x3

1 x5

0 1

0

0

0

0 1

1

1

1

0 1

0 1

0 1

T x4=1
1

x1

x2

x3

x5

0 1

1

1

x2

1 x5

x3

1 0

1

0

0

0

0 1

1

1

1

0 1

0

0 1

1

T x4=1
2

x1

x2

x3

x5

0 1

1

1

x5

x2

1 x3

1 0

1

0

0

0

0 1

1

1

1

0

0 1

0 1

1T x4=1
3

x5

x1

x2

x3

0 1

1

x2

1 x3

1 0

1
0

0

0

0 1

1

1

0 1

0 1

1

T x4=1
4

Figure A.2: The four subalgorithms for the reduced function fx4=1.
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Figure A.3: The six subalgorithms for the reduced function fx1=0.
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Figure A.4: The six subalgorithms for the reduced function fx1=1.
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