
An Interactive 3D Modeling Tool for
Creating and Managing Soft Body Animations
Master’s Thesis in Interaction Design and Technologies

Razmus Strandell

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

An Interactive 3D Modeling Tool for
Creating and Managing Soft Body Animations

Razmus Strandell

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

An Interactive 3D Modeling Tool for Creating and Managing Soft Body Animations
Razmus Strandell

© Razmus Strandell, 2020.

Supervisor: Marco Fratarcangeli, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The tool developed in this project, shown with a typical scene containing an
animated character wearing a dress.

Typeset in LATEX
Gothenburg, Sweden 2020

iv

An Interactive 3D Modeling Tool for Creating and Managing Soft Body Animations
Razmus Strandell
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Computer animations are commonly deployed in various fields today, such as the
movie industry, video game industry and in architecture. This has led to an increase
in the demand for 3D modeling tools that can be used to create these animations.
The goal of this project is thus to explore what considerations exist when developing
interactive 3D modeling software.

This was explored by conducting researching in the area, including existing 3D mod-
eling tools and other related work, and by designing and implementing an interactive
3D modeling tool as per the research through design practice. This tool was built
around generating generic soft body animations. The tool was first designed using
an iterative design process, including methods ranging from ideation techniques to
evaluation methods. The software part was then developed using a mix of popular
agile software development methods. The code was developed with focus on ensur-
ing optimal performance, promoting software modularity and minimizing external
dependencies.

The end result is a high fidelity software prototype that can be used to create anima-
tions of varying complexity. The development of the tool, alongside the conducted
research, resulted in a set of guidelines to consider when developing similar tools.
These guidelines can be summarized as the following: what external libraries to
use, what work process to use, what features should be available, how to design for
different user groups and how to make the code modular. Despite the guidelines
resulting from the work of this specific tool, they are considered to be applicable
to the development of 3D modeling software that handles any kind of soft body
animations.

Keywords: 3D modeling, computer animation, soft body animation, user experience

v

Acknowledgements
I would like to thank my supervisor Marco Fratarcangeli for his constant help and
guidance throughout this project. I would further like to thank the other associates
at Deform Dynamics for helping out with various technical issues that arose during
the project. Finally, I would like to thank the people that participated in the user
tests and supported me in other ways.

Razmus Strandell, Gothenburg, June 2020

vii

Contents

List of Figures xiii

1 Introduction 1
1.1 Background . 1
1.2 Research problem . 2
1.3 Research question . 2
1.4 Related Work . 2
1.5 Delimitations . 3

2 Theory 5
2.1 Research Through Design . 5
2.2 Graphical User Interface Design . 5

2.2.1 Excise . 5
2.2.2 Application Posture . 6

3 Methodology 9
3.1 Interaction Design Methods . 9

3.1.1 Design Thinking . 9
3.1.2 Iterative Design . 9
3.1.3 Competitor Analysis . 10
3.1.4 Sketching . 11
3.1.5 Paper Prototyping . 11
3.1.6 Wireframing . 11
3.1.7 Mockuping . 11
3.1.8 Cognitive Walkthrough . 12
3.1.9 Think-Aloud Protocol . 12
3.1.10 Heuristic evaluation . 12

3.2 Wireframing Tools . 13
3.3 Software Development Methods . 13

3.3.1 Agile Software Development 13
3.3.2 Scrum . 14
3.3.3 Feature-Driven Development 15
3.3.4 Kanban . 15
3.3.5 Modular Programming . 15
3.3.6 Interface-Based Programming 16
3.3.7 Module Pattern . 16

ix

Contents

3.4 Software Development Tools . 16
3.4.1 DynamoSDK . 16
3.4.2 Dear IMGUI . 17
3.4.3 Qt . 17
3.4.4 OpenGL . 17
3.4.5 OpenGL Context Creating Tools 17
3.4.6 OpenGL Loading Library . 18
3.4.7 The OpenGL Utility Library 18
3.4.8 Open Asset Import Library 18
3.4.9 Magnum Engine . 18
3.4.10 Serialization Library . 19
3.4.11 Transformation Gizmo Library 19
3.4.12 Additional Libraries . 19

4 Planning 21
4.1 Process . 21

4.1.1 Research phase . 21
4.1.2 Design phase . 22
4.1.3 Implementation phase . 22

5 Execution and Process 23
5.1 Research Phase . 23

5.1.1 Researching 3D modeling software 23
5.1.2 Researching relevant literature 23
5.1.3 Researching software development tools 23

5.2 Design Phase . 24
5.3 Software Development . 26

5.3.1 Sprint 1 - Implement the Rendering 26
5.3.2 Sprint 2 - Importing Objects 27
5.3.3 Sprint 3 - The Picking Feature 29
5.3.4 Sprint 4 - The Painting Feature 30
5.3.5 Sprint 5 - Implementing Camera Behavior 31
5.3.6 Sprint 6 - Adding Convenience Features 32
5.3.7 Sprint 7 - Refactoring the Application 33
5.3.8 Sprint 8 - Various Fixes . 34
5.3.9 Sprint 9 - Adding Transformation Gizmos 35
5.3.10 Sprint 10 - The Final Sprint 36

6 Results 39
6.1 The 3D Modeling Tool . 39

6.1.1 Start View . 39
6.1.2 Object Details View . 40
6.1.3 Painting Tools . 41
6.1.4 Running the Simulation . 42
6.1.5 Adding Collider Objects . 43
6.1.6 Anchoring Object to Collider 44
6.1.7 File . 45

x

Contents

6.1.8 Import Animation . 46
6.1.9 Edit . 47

6.2 What to Consider when Designing and Implementing an Interactive
3D Modeling Tool for Creating and Managing Generic Soft Bodies? . 48
6.2.1 What External Libraries to Use 48
6.2.2 What Work Process to Use . 49
6.2.3 What Features should be Available 50
6.2.4 How to Design for Different User Groups 50
6.2.5 How to Make the Code Modular 51

7 Discussion 53
7.1 The Tool . 53
7.2 The Considerations . 54
7.3 Execution and Process . 55

7.3.1 Research Phase . 55
7.3.2 Design Phase . 55
7.3.3 Software Development . 56

7.4 Ethical Aspects . 58
7.5 Future Work . 58

7.5.1 Validating the Results . 59
7.5.2 Adding Features . 59
7.5.3 Improving the Aesthetics . 59
7.5.4 Technical Limitations . 59

8 Conclusion 61

Bibliography 63

A Images of Different Scenes I

xi

Contents

xii

List of Figures

3.1 The iterative design process with design thinking 10
3.2 An example Kanban board . 16
3.3 Transformation gizmos . 19

4.1 Time plan . 21

5.1 Comparison of File Dialogs . 29
5.2 Painting Feature Comparison . 31
5.3 Painting Feature Comparison . 36

6.1 Application start view . 40
6.2 Object details . 41
6.3 Collision mask settings . 42
6.4 Picking a patch of cloth . 43
6.5 Adding colliders . 44
6.6 Showing anchored object . 45
6.7 File drop down . 46
6.8 File open dialog . 46
6.9 Animation serialized data . 47
6.10 Edit menu drop down . 48

A.1 Walking Character Dress . I
A.2 Zoomed dress . II
A.3 Dress Anchored to Sphere . II
A.4 Hanging Cloth . III
A.5 Volumetric Mesh . III
A.6 Patches Colliding with Box . IV
A.7 Patches Colliding with Box V2 . IV
A.8 Implicit Colliders . V
A.9 Falling Ribbon . V
A.10 Falling Ribbon V2 . VI

xiii

List of Figures

xiv

1
Introduction

Computer generated imagery (CGI) is the art of applying computer graphics to
create graphics for some medium. Today, CGI can be found everywhere; in video
games, movies or even commercials. In movies, CGI has been able to achieve close
to photo-realistic results for a while now. However, new techniques are still being
developed with the aim to produce similar effects at interactive rates, for example
to be used in video games and other interactive applications [1]. CGI can be di-
vided into one of the following categories: 3D modeling, computer animation and
rendering.

1.1 Background
In 1960, the first film using computer animation was released in the form of a 49
second 2D vector animation [2]. A decade later, in the early 70’s, various techniques
for doing 3D animations were developed at the University of Utah. By the mid-70’s,
the first movie using computer animation was released marking the beginning of
computer animations in public media [3]. In the early 80’s, physics-based anima-
tions started to emerge in mainstream media in movies such as Star Trek 2: The
Wrath of Khan [4].

Physics-based animations is a sub-field within the computer animations field that
focuses on achieving visually plausible physics effects at interactive rates [5]. This
includes effects such as gravity and collisions. In general, there are three different
kinds of objects to consider in physics-based animations: rigid bodies, soft bodies
and fluids [6].

A rigid body is a solid object that is not deformable, which means that the shape
of the object can not change. This means that all points on the object are constant
in relation to each other despite potential external forces [6]. A soft body is a solid
object that is deformable, which means that the shape of the object can change. In
other words, all points on the object are acting individually and thus the relative
distance between two points can change [6]. A fluid is a non-solid object, for exam-
ple a liquid, gas or plasma. In comparison to a soft body, a fluid is not expected to
retain its shape [6].

While the simulation of rigid-bodies is easy, soft-bodies are much harder because of
the vastly increased number of possible states for the object. Still, physics-based

1

1. Introduction

animations involving soft-bodies are used heavily in video games and movies for
special effects. This results in it being an active research area dedicated to different
computation methods for approximating them. The rapid evolution of hardware has
further promoted this area; computations that were hard to do only a few decades
ago, such as animating a moving character, are now considered trivial [7]. This has
expanded the use of physics-based animations to many other kinds of applications,
such as surgical simulation systems and computer aided design software.

1.2 Research problem
With the increasing need of having plausible animations in different kinds of appli-
cations, there is also an increasing need for tools that facilitates their creation. An
animation designer should be allowed to create and manage them without requiring
much technical knowledge. Currently there are many different applications fitting
that description, each with its own set of features and shortcomings.

Deform Dynamics have developed a software development kit (SDK) for creat-
ing plausible soft-body animations based on the Vivace solver developed by Marco
Fratarcangeli, Valentina Tibaldo and Fabio Pellacini [8]. This solver produces stable
animations at an extremely fast rate, making it suitable for interactive applications.
The goal of this project is thus to research how interactive 3D modeling tools should
be developed in order to meet those needs.

1.3 Research question
What to consider when designing and implementing an interactive 3D modeling tool
for creating and managing generic soft bodies?

The overall goal of this project is to allow for easy creation and managing of plausible
soft-body animations. The goal of the thesis work is to design and implement a
tool for doing this. Since creating a full-fledged 3D modeling tool is a complex task,
usually requiring years and years of work, the expected result is a working prototype
that can reproduce the demos that Deform Dynamics previously have created.

1.4 Related Work
There are various software applications existing today that are used for creating
and managing animations. Some of these are very generic, allowing users to create
a vast amount of different kinds of animations, while some are more specialized in
certain kinds of animations such as cloth animations.

Autodesk Maya, or simply Maya, is an application for creating 3D graphics and an-
imations [9]. Maya is very generic, allowing the user to create virtually any kind
of animation that can be incorporated in a vast amount of different applications.

2

1. Introduction

It provides the user with a large number of tools and features to generate these
animations. One of the main advantages of Maya compared to other tools listed
here is character animation.

CLO3D is an animation creation tool specifically targeted for visualizing true-to-life
3D garments [10]. The main feature of CLO3D separating it from other tools listed
here is the ability to visualize a piece of clothing from cloth patches by "stitching"
them together.

Houdini is a 3d animation software that specializes in procedural generation [11].
Houdini requires no external downloads for visual effects etc. It is considered harder
to learn for new users than other tools listed here, requiring more technical knowl-
edge amongst other things [11].

3DS MAX is a generic 3d animation software [12]. 3DS MAX requires animations
to "bake" before visualising, compared to live feedback received from some of the
other tools. There are plenty of plugins available for 3DS MAX, providing various
features and assets. It is only available for Windows operating systems.

DeformPlugin is a plugin for Unity which gives projects access to the various fea-
tures provided by the Dynamo SDK. The plugin specializes on plausible soft-body
animations, with much functionality for simulating cloth. It offers a few different
features, including stitching patches of cloth together and different kinds of collisions
[13].

1.5 Delimitations
The Dynamo SDK which this tool is built upon is targeted at creating animations
involving different kinds of soft bodies. One of its main features, however, is the
ability to produce plausible physics-based animations with cloth. This means that
the resulting tool will be based mostly around creating and managing that kind
of soft-body animations. Generating the internal functionality such as the actual
animation, collisions and so on is functionality provided by the Dynamo SDK and
will thus not need to be considered when creating this tool. Interactive 3D modeling
tools can be incredibly complex, giving the user a large amount of possible actions
to perform. This tool, however, will focus on some key features while leaving others
out such as stitching patches together.

3

1. Introduction

4

2
Theory

This section describes the research method which is the basis for the project, as well
as theories relevant to the design process.

2.1 Research Through Design
Research through design is the practice of developing a design as a means to solve a
research problem. Compared to traditional scientific fields, the aim is not to produce
falsifiable theories; rather it is about producing general guidelines that can be used
solve similar design problems. [14]. The guidelines are derived from the knowledge
gained from the process of developing the design.

2.2 Graphical User Interface Design
Graphical user interface design refers to the design of a graphical user interface,
commonly referred to as a GUI, that will be used to allow user interaction with a
software application. There are a few goals, or metrics, that should be considered
when designing a graphical interface: the product is effective to use, efficient to use,
error free, easy to use and enjoyable [15]. In order to fulfill these criteria, a designer
must strive to promote user flow and reduce excise.

2.2.1 Excise
Excise is work that the user of a product has to do that doesn’t directly relate to
their goal. The different kinds of excise can be categorized as either navigational
excise, skeuomorphic excise, modal excise and stylistic excise [16].

Navigational excise refers to navigation that doesn’t directly relate to the user reach-
ing their intended destination. Examples of this is having to open up a menu to click
on an intended option or to switch between different tabs and/or windows to per-
form some desired actions [16]. Skeuomorphic excise is excise resulting from design
choices based on mimicking the behavior of a physical object even when they don’t
serve a purpose. Examples of skeuomorphic excise are "coffee stains" on a virtual
paper in a notebook application and a calculator application adapting the look of a
physical calculator [16]. Modal excise is unnecessary pop-ups that disturb the users
flow. These types of pop-ups can be error messages, notifications, confirmation di-
alogs etc [16]. Stylistic excise is excise caused by the user having to do much visual

5

2. Theory

decoding to find what they are looking for. Examples of this is when the screen is
cluttered with many elements that aren’t well separated visually [16].

2.2.2 Application Posture
An application posture defines the nature and characteristics of an application [16].
The posture of a product is related to how it presents itself to the user. How much
of the users attention will the application require? How does the product’s behavior
respond to the attention given by the user? To properly define the posture of an
application, it is thus necessary to know the context and the environment in which
it will be used [16].

Sovereign Posture

A sovereign posture is a posture suited for applications that are designed for being
used for long periods at the time [16]. Examples of sovereign posture applications
include word processors, spreadsheets and content-creating tools. The following are
common characteristics for a sovereign posture application: Sovereign applications
generally target intermediate users. The aim is to make sure that new users turn
into intermediate users fast. Expert users should be given settings and mnemonics
to perform advanced features. Sovereign applications also use a minimalistic visual
style with discrete colors. The reason for this is that users tend to stare at the
application for long periods of time, making bright colors annoying in the long
run. The long-term use further allows elements such as toolbars and controls to be
smaller than normal, as users tend to get an innate sense of where objects are located.
Another characteristic is that they allow rich input from the user. This means that
any aspect of the application that is interacted with frequently should be able to be
controlled in various ways. For example, direct manipulation of objects should be
allowed. Fine-tuning parameters and having mnemonics and keyboard accelerators
is encouraged. Toolbars consisting of many different tools also works. In most
cases, having a sovereign posture means that it is a document-centric full screen
application. The application should by default be launched in full-screen mode, and
the GUI should be optimized with that in mind. The main content which the user
interacts with should be placed in the center of the screen. Any documents in the
application should be full-screen as well. The final characteristic for a sovereign
application is that it provides rich modeless feedback to the user. Modeless feedback
refers to visual feedback that is incorporated into the GUI instead of having pop-ups
or other disturbing elements.

Transient Posture

A transient posture is a posture suited for applications that are designed for being
used briefly [16]. Examples of transient posture applications include calculator apps,
video recording apps and weather apps. The following are common characteristics
for a transient posture application: A transient application should use a simple and
clear interface. This is because they tend to be used for short periods of time, making
users become less familiar with it compared to a sovereign application. Controls

6

2. Theory

and other interface elements should thus be big and pliant while also using bright,
saturated colors. Transient applications are also limited to a single view and provide
access to all functions immediately. It should be intuitive and quick to use. Finally,
user choices are remembered by the application. This includes position on the screen
and window size.

7

2. Theory

8

3
Methodology

This chapter lists different commonly used tools and methods relevant to the project.
They have been categorized as either interaction design tools, interaction design
methods, software development tools or software development methods.

3.1 Interaction Design Methods
This section describes the different design processes and methods relevant to the
design phase of the project. Listed methods range from ideation techniques to
evaluation methods.

3.1.1 Design Thinking
Design thinking is a methodology for generating solutions to design problems. Ac-
cording to the design thinking model proposed by the Hasso Plattner Institute of
Design at Stanford, it consists of the following five stages: empathizing, defining,
ideating, prototyping and testing [17].

During the empathizing stage, designers gather knowledge of the problems they are
trying to solve through empathy. The focus is about getting insight of user needs by
setting aside their own assumptions about the domain. The defining stage is where
user needs and other data gathered in the previous stage is used to define the problem
statement. This stage is where things like necessary features and functions are
formulated. The ideating stage is where the actual concept ideas are generated using
the information gathered in both previous stages. The goal of the ideating stage
is to generate a concept that can be used to solve the defined problem statement.
During the prototyping stage, prototypes of the concept are built. The main purpose
of these prototypes is to test and evaluate a concept or a design early in the design
process. The final stage is the testing phase. Here, the prototypes are tested and
evaluated [17].

3.1.2 Iterative Design
Iterative design is a design process where designers work iteratively in a possibly end-
less process [18]. When applied by the design thinking methodology, going through
all five stages would count as a single iteration. That means that once the testing
phase is finished, designers start over from the defining stage. The goal at that

9

3. Methodology

point is to use the feedback received from the testing stage to define new problems.
Moving on to the ideating stage, solutions to the newly emerged problems are devel-
oped. The solutions are then adapted to a new prototype, which is then tested and
evaluated. Since designs can usually be improved endlessly, a third iteration might
begin now starting once again from the defining stage. However, limited resources
and deadlines regarding product release usually tends to stop the design process at
some point and treat the design as finished. An iteration does not necessarily go
from the testing stage to the defining stage all the time. For example, both testing
and prototyping could result in new ideas which returns the design process to the
ideating stage. In some cases, testing could also lead to the designers getting new
valuable insight of their target group. This could result in the next iteration starting
from the empathizing stage.

Figure 3.1: The iterative design process with design thinking

3.1.3 Competitor Analysis
Competitor analysis is a method which is based on analysing certain behavior of
a competitor [19]. A competitor doesn’t necessarily refers to someone within the
same field; it could simply be that some functionality is shared. There are several
reasons for doing a competitive analysis. A main one is that there is often much to
be learned from successful products, as usually lots of resources have been used to
develop their design. Another is to get some insight in what is currently working
well, and what is not. This can provide an opportunity to give the product an
edge over competitors. It is important to remember that a design solution should
never be copied without any motivation. The purpose is to find inspiration and
understand why something is designed in a particular way so that it can be used
to favor your own product. Competitor products might also work as a reference
when developing your own features. A full competitive analysis analyzes a number
of different competitors to get an as broad perspective as possible.

10

3. Methodology

3.1.4 Sketching
Sketching is a common first step of the ideating stage of a design process [20]. The
goal here is to make many different sketches with just pen and paper, each sketch
being a possible design solution solving the previously defined problem statement
[20]. Sketching is a very cost efficient method for visualizing any kind of design,
allowing designers to find design flaws early on as well as possibly contribute to
generating new, innovative design solutions. In terms of GUIs, sketching is often
done to generate multiple ideas for how the GUI can be designed.

3.1.5 Paper Prototyping
Paper prototyping is a quick, cheap way to test and evaluate the functionality of an
application early in the design process [21]. The basic principle of paper prototyping
is that you do not spend much time developing the paper prototypes. When evalu-
ating a paper prototype, the user will perform their actions by interacting with the
paper prototype interface. A facilitator will then respond appropriately to the users
actions by adding overlays, switching to a new page etc. in order to simulate the
experience of the real product. The focus of a paper prototype lies on the navigation
and interactions rather than look-and-feel.

3.1.6 Wireframing
Wireframing is a way of visualizing a design without having the aesthetic aspect
figured out [22]. A wireframe displays what elements will be located at different parts
of a graphical user interface and how much space they will take. It also demonstrates
how navigation and interactions will be done, as well as showing what functionalities
will be available. The upside of wireframing is that it is easy to alter based on user
feedback, hence it allows for user feedback early on in the design process before too
much resources has been put into making a design. The absence of color and visual
elements also makes sure that focus remains on layout and functionality, all of which
are key to a good user experience. A wireframe can be thought of as a blueprint
for a graphical user interface design. Wireframes can be either digital or done on
paper.

3.1.7 Mockuping
Mockuping is when you make mockups of a design. A mockup is a visual repre-
sentation of a design that looks similar to how a finished product would look [23].
That means that it has colors, actual icons, corporate logos and other important
details that contributes to the overall user experience. A mockup does not have to
be interactive, which means that it does not necessarily have actual functionality
such as buttons triggering actions etc. There exist plenty of software for creating
mockups that can be made interactive, allowing mockups to be turned into working
digital prototypes very easily.

11

3. Methodology

3.1.8 Cognitive Walkthrough
Cognitive walkthrough is a method for examining the usability of a product [24]. A
cognitive walkthrough is task oriented; the user testing the product will be given a
list of tasks to perform, with an observer present to observe the users action. The
user is generally an expert user, meaning a user with previous experience from using
that product or similar products . For each step of the process, a set of questions
will be answered by the observer:

• Will the user try and achieve the right outcome?
• Will the user notice that the correct action is available to them?
• Will the user associate the correct action with the outcome they expect to

achieve?
• If the correct action is performed; will the user see that progress is being made

towards their intended outcome?
After a cognitive walkthrough (or several) has been performed, all of the observers
notes are summarized. The feedback received is then used to improve the design
in the relevant places. A cognitive walkthrough does not require a fully functional
product; a prototype of any kind is good enough. This allows the method to be used
early in the design process, allowing designers to catch issues while big changes are
easy to apply.

3.1.9 Think-Aloud Protocol
The think-aloud protocol is another method for testing the usability of a product.
Similar to a cognitive walkthrough, it is a task oriented method where the user is
given a set of predetermined tasks to accomplish [25]. While performing these tasks,
the user is asked to explain what they are doing, thinking and feeling. An observer
will observe and take notes, as well as making sure that the user remembers to
explain what they are doing. The reason for conducting a think-aloud is to give the
observer some insight in what the application makes the user think; for example
what parts of an application is good, confusing etc. The users participating in
a think-aloud session are generally beginner users, as it may give more valuable
insights when a user is not familiar with the product beforehand.

3.1.10 Heuristic evaluation
A heuristic evaluation is a method for finding usability issues in a GUI [26]. The
users participating in a heuristic evaluation are generally expert users. Heuristic
evaluations are performed in two evaluation phases. In the first evaluation phase,
the evaluators explore the system freely in order to find some concrete elements
that they wish to evaluate. In the second evaluation phase, the identified elements
are evaluated based on a few predetermined heuristics. While the heuristics are
generally tailored for your specific product, a good guideline is to base them off the
following 10 heuristics proposed by Jacob Nielsen [27]:

• System status is visible to the user
• The system follows real-world conventions
• Give the user control and freedom

12

3. Methodology

• The system is consistent and follows platform conventions
• The system prevents errors
• Useful and necessary functions is visible or easily retrievable by the user
• The system is flexible and efficient to use
• The system uses as an aesthetic and minimalistic design
• The system helps users recognize, diagnose and recover from errors
• The system provides documentation where needed

While a heuristic evaluation is performed, a facilitator records eventual problems
and flaws. After the evaluation is completed, a list of problems are summarized.
These will then be used as a basis for design improvements.

3.2 Wireframing Tools
This section lists some useful tools that were considered for this project. The tools
are used for making digital wireframes and mockups of a design.

Figma is a GUI design application specialized at creating wireframes and mockups
with little effort [28]. It allows for elements to be interactable and to trigger ac-
tions by navigating them to a new screen visualizing the updated state of a system.
Another handy feature is that it allows for storing libraries of components that can
serve as a design guideline. It comes as both a desktop application for Windows and
Mac, and a web application available on all modern operating systems.

Adobe XD is a design tool for creating wireframes and mockups [29]. Designs created
in Adobe XD can be made into interactive click-through prototypes. Adobe XD
comes as a desktop application available for Windows and Mac.

3.3 Software Development Methods
This section describes some popular methods that were considered for the software
development stages of the project. The methods listed include both software devel-
opment processes and software design techniques.

3.3.1 Agile Software Development
Agile software development is a term referring to a set of frameworks and methods
used for software development [30]. They are all based on the following 12 principles
derived from the Manifesto For Agile Software Development [31]:

• The highest priority is satisfying the customer with early and continuous de-
livery of valuable software

• Welcome changing requirements, even late in the process
• Deliver working software frequently
• Business people and developers must work together
• Build projects around motivated individuals
• Face-to-face communication is the best way to convey information

13

3. Methodology

• The primary measure of progress is working software
• Sustainable development is promoted
• Good design and technical excellence is given continuous attention
• Simplicity is essential
• Teams are self-organizing
• The team reflect on their effectiveness regularly

Some advantages of agile software development include flexibility in regard to changes
as well as early and frequent delivery of working software.

3.3.2 Scrum
Scrum is a lightweight agile software development method that like all agile methods
uses an iterative and incremental process [32]. The basic principle is that the entire
process is divided into a number of sprints [33]. While the length of a sprint can
vary, all sprints must be the same length. The length of a sprint is usually between
1-4 weeks. Each sprint goes through four stages: sprint planning, daily scrum, sprint
review and sprint retrospective.

Sprint Planning

The sprint planning stage is the first stage of a sprint and is where the planning
of the upcoming sprint is done [34]. Here, the team discuss and decide what items
from the product backlog can completed in the next sprint. The result of a sprint
planning is a sprint backlog, which includes the work needed to complete the items
from the product backlog. Finally, a sprint goal is set which is the goal that is to
be achieved through the implementation of the items from the product backlog.

Daily Scrum

The daily Scrum is a short meeting of maximum five minutes where each member
of the software development team reflects about their previous days work [35]. Each
member also plans what they should finish during the current day in regards to
reaching the sprint goal. Any potential hinders for doing some work should also be
brought up and dealt with.

Sprint Review

At the end of each sprint there is usually a sprint review [36]. At the sprint review,
the completed and non-completed work is reviewed. The completed work is also
demonstrated to the stakeholders if possible.

Sprint Retrospective

The sprint retrospective is what happens between the sprint review of one sprint,
and the sprint planning of another [37]. Here the team discuss what went well in
the sprint, what could be improved for the next sprint and how to achieve better
results for the next sprint.

14

3. Methodology

3.3.3 Feature-Driven Development
Feature-Driven Development is another agile software development method that also
uses an iterative and incremental work process. It’s a feature-focused method where
the goal is to provide a feature every 2-10 day [38].

The first stage is where you develop an overall model. Here, the project scope and
context is defined. The second stage is building a list of features using the overall
model from the previous stage. Any features that can’t be completed within two
weeks should be broken down into smaller features. The third stage is the plan-
by-feature-stage where the complexity for the different features is established and
ownership of each feature is assigned to members of the development team. Using the
complexity of each feature, the order of development is decided. The fourth stage
is the design-by-feature-stage. Here, it is decided which feature will be designed
and built. Feature priorities will also be defined here. The fifth and final stage
is the build-by-feature-stage where the feature is actually implemented. The part
of the GUI supporting the feature is also built here. Once the feature has been
implemented, it is tested before being approved and pushed to the main build [38].

3.3.4 Kanban
Kanban is an agile software development method that revolves around three basic
principles: visualizing your work, limiting the amount of work in progress and en-
hancing flow [39]. The visualization of work is done with a Kanban board. Kanban
boards vary between the contexts they are used, but the general purpose is to have
different categories such as planned items, items in progress, developed items and
so on. The different items, or features, are then moved from one category to the
next as they are done with that stage.

Limiting the amount of work in progress is done by setting a point limit of work
that is allowed to be in progress at the same time. Each task is then assigned a
certain amount of points based on the approximated workload it brings. The total
amount of points from tasks in progress can never exceed the set point limit. These
limits may need to be fine-tuned throughout the process. Enhancing flow is done
by moving the highest item from the list to the in-development stage after another
item is finished. While Kanban is an incremental method, it is not iterative like
other agile methods are. It doesn’t use any time-boxes or sprints either; instead,
Kanban focuses on delivering new features and software as they are completed.

3.3.5 Modular Programming
Modular programming is a code design technique used in software development.
The main principle behind this technique is to separate functionality of an applica-
tion into different, independent modules [40]. This allows for individual modules to
be swapped out without affecting the rest of the software. This decreases the cou-
pling of the application, which promotes software maintainability, reusability and
extensibility.

15

3. Methodology

Figure 3.2: An example Kanban board

3.3.6 Interface-Based Programming
Interface-based programming is an architectural pattern used to promote modular
programming in object-oriented programming languages where a native module sys-
tem does not exist [41]. The main principle behind this pattern is to create an
interface for each module. The interface functions as guidelines for what functional-
ity must exist in a module. Extending an application by implementing the necessary
functions specified by an interface ensures that an application will not break.

3.3.7 Module Pattern
The module pattern is a structural and creational pattern used to achieve modular
programming in programming languages that doesn’t support it by default [42]. The
implementation of this pattern varies with the programming language; in Python it
is built in and each .py file is already a module, in C++ it is achieved with having
each module as a separate header file, and in Java it can be done using Singleton
and static methods.

3.4 Software Development Tools
This section describes the Dynamo SDK that the tool will be built around as well
as some useful tools for software development. Examples of tools include graphical
user interface frameworks, programming languages and 3D rendering libraries.

3.4.1 DynamoSDK
Dynamo SDK is a software development kit that specializes in generating real-time
animations with soft-bodies. It provides functionality for creating cloth patches,
adding different objects, handling collisions, transforming objects, sewing patches

16

3. Methodology

together and serializing a scene. The underlying soft-body animations are computed
using the Vivace solver [8]. The SDK merely loads and handles the animations
loaded in the scene; it is thus not in charge of any rendering. The SDK is written
for C++.

3.4.2 Dear IMGUI
Dear IMGUI is an open source GUI library for C++ [43]. It is specifically designed
for allowing programmers to create user interfaces for content-creating tools as well
as visualization- and debug tools. According to their official site, it is particu-
larly suited for game engines, real-time 3D applications and full screen applications
amongst others. While the official version only supports C++, many unofficial
bindings to various programming languages exist such as Python, Java and PHP.

3.4.3 Qt
Qt is another open source software used to create GUIs and cross-platform appli-
cations [44]. Qt is written in C++ but offers official bindings to Python. Multiple
unofficial bindings exist for different languages such as PHP and Java. Aside from
allowing the creation of GUIs, it also offers support for database access, thread
management and network support.

3.4.4 OpenGL
OpenGL is an open source, language-independent, cross-platform API for 2d- and
3d rendering of vector graphics [45]. The API allows interaction with the computer’s
graphics processing unit (GPU) in order to perform hardware-accelerated rendering.
It is commonly used in all sorts of applications involving computer graphics, such as
computer games and 3d-modelling software. In order to incorporate OpenGL in an
application, a context creating tool as well as an OpenGL loader library is required.

3.4.5 OpenGL Context Creating Tools
Creating a context for OpenGL is a complicated process that varies between operat-
ing systems. As a result of this, automatic context creating has become a common
feature in various development libraries [45].

GLFW is a lightweight library that allows creating top-level windows (e.g. no GUI)
with OpenGL contexts. It also provides means to register user input from hardware
such as mouse, keyboard and joysticks [46].

SDL is another library that can be used to provide contexts for OpenGL, Direct3D
and Vulkan. In addition to providing contexts, it further facilitates the managing
of threads, shared object loading and networking [47].

17

3. Methodology

3.4.6 OpenGL Loading Library
After creating a context for OpenGL, one must load all the OpenGL functions to
initialize OpenGL [48]. This includes both core functions and possible extended
functions. While it is possible to do this manually, it is a complicated process that
requires using operating system dependent functions. Hence, it is recommended to
use an OpenGL loader library to perform this step automatically.

gl3W is an OpenGL loader library which loads pointer to the core OpenGL func-
tions at runtime, allowing the functionality of the OpenGL API to be accessed by
an application [48]. gl3W only support the latest OpenGL (which is 4.6 by the time
of writing) and requires Python to be generated.

glad is another OpenGL loader that loads OpenGL functions [48]. When generating
glad through their website, there are a few options including OpenGL version and
specified extensions which allows a user to tailor it to their needs.

GLEW is an OpenGL loader that loads all OpenGL core functions and all extension
functions [48].

3.4.7 The OpenGL Utility Library
The OpenGL Utility Library, or GLU, is a library that offers more high-level draw-
ing functions compared to the more primitive ones supported by native OpenGL.
Example functionality includes rendering geometry spheres and cylinders, as well
as functionality to transform between space- and window-coordinate systems. The
library has not been updated since 1998, and it contains functions relying on dep-
recated code. However, it is still distributed alongside the base OpenGL package.

3.4.8 Open Asset Import Library
Open asset import library, or Assimp, is an open-source library for importing objects
in various common 3D-file formats into an application [49]. Recent versions also
include a feature for exporting 3D files. Additionally, it offers some tools for mesh
post processing. Assimp is particularly suited for use in game engines and real-time
rendering applications of any kind. Assimp officially provides an API for C and
C++, but bindings exist for multiple languages including Java, Python and C#.

3.4.9 Magnum Engine
Magnum engine is a lightweight C++ graphics library that utilizes OpenGL [50].
It provides an abstraction of the OpenGL API, built-in shaders and a number of
available plugins including one for Assimp.

18

3. Methodology

3.4.10 Serialization Library
Cereal is a serialization library written in C++, supporting serialization of various
formats such as JSON and XML. It further supports serialization of binary data in
addition to human-readable data. The library is header-only, and is thus easy to
add to a project since no other dependencies are required.

JSON for Modern C++ is a library for C++ that allows conversion of data to and
from JSON. What is prominent for this JSON library is the intuitive syntax, ease
of integration in an application as well as memory efficiency.

3.4.11 Transformation Gizmo Library

Figure 3.3: An example of how the three types of transformation gizmos can look.
From left to right: translation gizmo, rotation gizmo and scaling gizmo.

A transformation gizmo is a widget that allows the transformation of objects through
mouse interaction. Commonly deployed in 3D modeling software and game engine
editors, the gizmo usually appears at the center of a selected object. There are
three kinds of transformation gizmos: translation gizmos, rotation gizmos and scal-
ing gizmos. The following are some popular external libraries for incorporating these
gizmos in an application:

Tiny Gizmo is a lightweight library for including transformation gizmos in an ap-
plication. The library is written in C++ and requires no other dependencies.

ImGuizmo is another lightweight library for including transformation gizmos in an
application. Written in C++, the library is built on top of the Dear ImGUI library
and thus requires an application to use that library in order to function.

Im3D is also a lightweight library for including transformation gizmos. It further
provides functionality for rendering primitives as well as supporting VR applications.
It requires no other dependencies in order to work.

3.4.12 Additional Libraries
The VCG Library is a C++ library for manipulating meshes. The most important
functionality offered by this library for this project is the ability to easily construct
rays and perform ray-triangle intersection tests in order to build a ray-casting func-

19

3. Methodology

tion.

20

4
Planning

Figure 4.1: The time plan for this project

4.1 Process
The project will be developed using an agile process. Thus, each of the following
steps will be executed several times in an iterative fashion.

4.1.1 Research phase
The first step will be the research phase. There are several things that will have to
be looked into in this step: The first step will be researching the domain and context
of this thesis, including researching related work and literature. The second step will
be studying the DynamoSDK, which involves exploring the different functionality
offered by the SDK, and how it works. The next step will consist of researching
different open-source GUI frameworks and deciding upon a programming language.
Both of these things will be done in parallel, as both of them relies on each other;
a good GUI framework can motivate a certain programming language, and a good
programming language can motivate a certain GUI framework. Finally, the back-
end OpenGL will be researched. This includes not only exploring the API itself,
but also exploring the different necessary extensions such as an OpenGL loader and
an OpenGL context creator which will be used to include the OpenGL functions in
the application.

21

4. Planning

4.1.2 Design phase
The second step will be the design phase. Here, the design is created from the user
needs as well as the functionality offered by the DynamoSDK and other software
used. The design phases will include the last four stages of design thinking, namely
defining, ideation, prototyping and testing. The empathy stage is outside the scope
of this project; necessary data about the domain and user needs is provided by the
company.

During the ideation stage, a number of different initial GUI designs will be developed
using sketching. These will then be compared and possibly merged into a final
sketch. A competitor analysis of competing software listed under "Related Works"
will be conducted as well to aid this phase. During the prototyping stage, a prototype
will be made based on the current design. The kind of prototype will depend on the
stage of the process; early it will be a low-fidelity paper prototypes and wireframes.
In the middle it will be medium-fidelity wireframes and mockups. Late in the
process it will be high fidelity mockups and working software prototypes. During
the testing phase, the currently existing prototype will be tested and evaluated. For
this purpose, the methods cognitive walkthrough and think-aloud protocol will be
used. The testers will range from professional animation designers to hobby users.
Feedback received from the testing stage will be used to improve the current design,
before starting back from the defining stage.

4.1.3 Implementation phase
The third step will be the implementation phase. This is where the tool is actually
implemented. The implementation will be done incrementally on a by-feature-basis,
using a combination of the methods Scrum and Feature Driven Development custom
tailored for a development team consisting of a single person. The code architecture
will be based on modular programming. The interface-based programming pattern
and module pattern will be used to achieve modularity and thus also maintainability,
reusability and extensibility of the code.

22

5
Execution and Process

This chapter presents how the execution of this project was conducted. Each of
the following section describes one of the stages of the project namely the research
phase, the design phase and the software development phase.

5.1 Research Phase
This section will explain how the research phase of the project was conducted.
The research phase is split into research of existing 3D modeling software, relevant
literature and software development tools.

5.1.1 Researching 3D modeling software
The first step of this project was to research currently existing 3D modeling tools.
The tools explored were Autodesk Maya, CLO3D, Houdini, 3DS MAX and the
DeformPlugin. At this stage, no rigorous analysis of the tools were performed.
Instead, this initial exploration of the tools focused on their general appearance.
The tools chosen were based on their reputation within the industry.

5.1.2 Researching relevant literature
This research refers to any literature used during this project. This includes liter-
ature about the areas of computer graphics, 3D modeling, interaction design and
software development.

5.1.3 Researching software development tools
The first step when researching software development tools was getting familiar with
the companies software development kit; the Dynamo SDK. This process consisted
of reading documentation for the SDK, checking out various company-made demos
that they provided and trying it out myself. This provided valuable insights such
as key features, capabilities, limitations as well as how it could be used to create
animations. It basically served as the basis for the vision for the entire project.
Deform Dynamics further provided a list of what they considered the most typical
use scenarios.

Next, different software development tools, such as programming language and ex-
ternal dependencies, were researched. External dependencies researched included

23

5. Execution and Process

GUI frameworks and libraries for importing objects.

As for programming languages, the two main ones that was considered was C++
and Python. Advantages of C++ was the fact that it is much faster than Python,
as it is a compiled language. However, C++ being a compiled language also means
that every change in he code would result in the code to be recompiled. Python,
being an interpreted language, can completely avoid the compilation time. Python
is also a simpler language, allowing faster writing of code [51]. Most of the other
software development tools that were researched were in a similar situation with
official support for C++ while Python support varied between official, unofficial,
experimental and so on. However, the Dynamo SDK was only native supported by
C++; in order for it to work with Python, bindings would have to be made. In the
end, C++ was chosen as the programming language. This was due to it being de-
cided that faster writing of code and no compilation time provided by Python would
not outweigh the official support of researched frameworks, and more importantly
the increased speed and performance provided by C++. Since the 3D animations
provided by the SDK, which are to be built by the application, are based around
being fast and efficient, performance while running the program was determined to
be the most important thing in the eyes of the potential users.

The two main GUI frameworks researched were DearIMGUI and Qt. The main
difference between the two was the fact that DearIMGUI is more lightweight and
easy to manage, while Qt offers more functionality. In terms of compatibility, both
libraries were supported by C++ officially, with unofficial bindings allowing both
of them to work with Python. Since DearIMGUI seemed to provide all the func-
tionality expected to be in the application, it was thus chosen for its lightweight
characteristics.

The OpenGL context creating tool selected was GLFW. This was due to the fact
that it is lightweight while still providing everything needed.

As for an OpenGL loading library, gl3W was selected for the application. This was
simply because it only loads core functions, thus being faster than the alternatives.
As no extension functions were needed, it was deemed the superior choice.

When deciding upon a library for importing objects into the application, the open
asset import library, or Assimp, was the only option considered. This was mainly
because of the sheer amount of recommendations when researching options, as well
as it existed many tutorials for getting started with it in OpenGL.

5.2 Design Phase
When all the decisions had been taken, the next phase was to start working on the
design. A number of different sketches representing initial GUI designs were devel-
oped. The focus on these sketches were element placements and the navigational
structure of the GUI. Features included in the sketches were based on the most typ-

24

5. Execution and Process

ical use scenarios as well as what functionality was provided by the Dynamo SDK.
These sketches were then compared, reworked and combined several times until a
single sketch consisting of the best features of each independent sketch existed. This
initial sketching was done before any competitor analysis was conducted, in order
to minimize their effect on the design. The sketch was then evaluated through a
cognitive walkthrough in order to catch some early design flaws and other potential
issues. The findings of the cognitive walkthrough were used to improve the design
and fix any discovered issues.

Next, a rigorous competitor analysis was performed on the existing 3D modeling
tools mentioned in previous sections. This was focused on analysing specific parts
of their GUIs such as how various configurable parameters were presented, how the
menus were designed and how various GUI elements were placed on the screen. This
gave insights about what different tools and panels are commonly used and how they
are presented to the user. These findings were used in order to enhance the current
design of the 3D modeling tool developed in this project.

The improved design was made into a paper prototype. This paper prototype was
used to evaluate the design with two actual, beginner-level users using the think-
aloud protocol. Actual beginner-level users refer to persons within the target group
that have little to no previous experience working with similar software. The tasks
given to the users were tasks such as adding an object to the scene, performing
transformations, importing objects, running the simulation and saving the project.
Some interested things were noticed from these tests, for example that the different
users sometimes had two completely different approaches to the same task. The way
transformations were performed could also vary for the same person; a user could
attempt to translate an object by dragging it with the mouse, while the same user
could later attempt to rotate the same object by altering the rotation-values through
the GUI. Furthermore, the lack of explanatory labels on certain GUI elements was
noticed to be confusing to beginners.

The feedback received from the think-aloud sessions were used to make new sketches
of an improved design. After comparing and combining the new sketches, a final
sketch was made which was then made into a new paper prototype. This paper
prototype was used to evaluate the design once again. It was done similarly to the
first tests; think-aloud protocol with two different users. These users were however
intermediate-level users this time, meaning they had some experience working with
3D modeling software. The list of tasks was the same as the one used in the previous
usability test in order to get feedback on the same things. During this second itera-
tion of user testing, the tasks were completed much faster with the test users being
less confused in general which indicated a good improvement from the last design.
Once again, this feedback resulted in new improvements to the current design.

The newly improved design was then turned into a digital wire-frame using the web-
based tool Figma. Figma was chosen for this purpose for multiple reasons: first of
all, it is web-based. This means that no software is required, and the wire-frame

25

5. Execution and Process

will be stored online. Storing it online means that it is protected against losing
the computer, and that it can be worked on from anywhere. The second reason
was that Figma is a tool that I have been using previously, meaning there would
be no need to learn a new tool just for this purpose. The resulting wire-frame was
then demonstrated at the Deform Dynamics company office to the CEO and one of
the other associates there. It was then discussed and evaluated, with rich resulting
feedback in terms of current issues, possible fixes and things to add. This feed-
back included things such as having keyboard shortcuts and visual hints explaining
these, increased modal feedback when performing various actions, camera behavior,
the choice of words for different GUI elements and the size of different elements such
as buttons and icons.

The last planned stage of the design phase, which was evaluating the implemented
prototype with real users, was supposed to be done after the software development
phase at the end of the project. However, because of the COVID-19 pandemic, this
was scrapped in favor of evaluation by the developer and the company supervisor.

5.3 Software Development
With the design being pretty far gone, it was decided that it was time to setup the
initial project for the application. This involved setting up a project, downloading
all dependencies that had been chosen and setting them up to work with the ap-
plication. In order to get the GUI provided by the DearIMGUI library to render,
a GUI module was developed with the help of their provided example code. After
successfully making it start up a window with OpenGL and Dear IMGUI, it was
time for the actual software development to start. Focus was on functionality as it
would not be affected by any potential changes to the GUI.

Before the actual coding could begin, a list of tasks required to complete the ap-
plication was constructed, i.e. a product backlog. These tasks were based around
features that had been decided to be part of the finished tool, such as adding objects
to the scene and actually rendering existing objects. Whether some tasks depended
on other tasks was also determined. At the start of each week, a task from the
product backlog would be chosen. The task chosen would be based on necessity (for
example rendering objects is vital for most other features, hence should be done as
soon as possible), complexity (larger tasks are best to do early in a sprint, smaller
task later in the sprint) and personal preference. The necessity of an item would
also often be affected of the wishes of the company supervisor, and would thus be
discussed on the weekly meetings.

5.3.1 Sprint 1 - Implement the Rendering
The goal of the first sprint was to implement rendering of soft-bodies loaded to the
scene by the Dynamo SDK. It was decided that it would be made from scratch
rather than using a rendering library such as the Magnum Engine. The main moti-
vation behind this choice was the fact that the company wanted to minimize external

26

5. Execution and Process

dependencies. Another reason was that the process of setting up the Magnum En-
gine to work with the application did not appear to be trivial. A third reason was
that reusing shaders and other rendering-related code that the company had been
developing for their demos would be easier without it. To sum it up, it was not
considered a big enough time-saver for the project that the downsides of using an
external dependency was outweighed. With the modular programming approach in
mind, the rendering was implemented as a render module.

Since the SDK provided all the vertex data for the soft-bodies in the loaded scene,
this initial work on the render module mainly consisted of generating OpenGL
buffers and passing them pointers to the vertex data. Fragment- and vertex-shaders
providing a basic lightning model and uniform object colors were also developed in
order to be able to render the scene. Furthermore, a shader module was developed
for efficient loading of shader code into the application. Using this module, loading a
shader from a file would be as simple as passing along the filepath when constructing
a new shader object. Doing this further makes it easy to use many different shaders
in the same application.

As the rendering of soft-body objects was working before the sprint was over, the
functionality to render different collider objects were worked on as well. Since collid-
ers stored by the Dynamo SDK were not associated with any vertex- or index-data,
these had to be manually rendered. To facilitate this part of the renderer, the GLU
library was added. This library provided a function for rendering a sphere at a given
position, gluSphere, which was used for the sphere colliders and also both ends of
the capsule colliders. The reason that the GLU library was included despite using
deprecated functions was mainly because it was included in the OpenGL package,
hence the functions could be used by simply including the GLU.h header file. While
it was initially intended to be a temporary solution, it was never a high priority to
replace it with a custom function for rendering spheres. In comparison to the sphere
colliders, the plane- and box-colliders were rendered by manually constructing ver-
tex data from their positions which were provided by the SDK. By the end of the
first sprint, sphere- and box colliders rendered successfully.

As the last task of the sprint, a simple GUI pane with buttons allowing patches
and colliders to be created with a single click was also added. The main reason for
adding the pane was to test the interplay between Dear IMGUI and the Dynamo
SDK. In this version, all objects created with the buttons used predetermined values
with no possibility of modifying them from a users perspective.

5.3.2 Sprint 2 - Importing Objects
The goal of the second sprint was to finish the rendering of he rest of the colliders
and manage to import objects from .obj files. Rendering plane colliders was done
quickly, but rendering capsules experienced some issues. The capsule colliders were
rendered, but their orientation and position were not matching their actual orienta-
tion and position for reasons unknown at the time. After some bug-searching that

27

5. Execution and Process

did not result in any solution, the functionality was postponed. Instead, work on
the importer module for importing soft-bodies to the scene was prioritized instead.

The importing feature was divided into two tasks: fetching the vertex data from the
file containing the object with Assimp for manual rendering, and loading the vertex
data to the scene using the Dynamo SDK. The first task, while a rather complicated
task, went rather smooth thanks to the various guides and documentation existing
for working with Assimp. The second task, while initially looking like an easy one,
proved to be harder than expected as the results would be poorly rendered objects
with some files causing crash issues. This led to a heavy debugging session.

Figuring out what was causing the bugs was quite the challenge. The vertex data
provided by the developed importer seemed correct as the objects would render man-
ually, and loading them into the scene was done following documentation for the
SDK. Thus, everything appeared to be handled properly. Luckily, Deform Dynamics
provided a demo where they imported a .obj file, which included the source-code.
Here it was discovered that they were using another external library called tiny-
objloader instead of Assimp. After researching and testing how the two libraries
differed, a few interesting points were discovered. The most important discovery
was that when using the tinyobjloader library, the vertex count for an imported
object would be much smaller than the vertex count for the same object loaded
by Assimp. Assuming the different handling of vertex data was the cause, another
importer module using the tinyobjloader library was developed. When switching
the old importer module for the new one, loading imported objected to the scene
successfully worked. Switching between two different importers further displayed
the modularity of the source code, and how well it worked in practice thus far.

The last task for this sprint was to add a working file-dialog to pop-up when clicking
import on the GUI. As this was not something that was natively supported by the
DearIMGUI library, alternative ways of implementation had to be researched. The
first attempt was to use an unofficial open-source extension. That solution did
not provide satisfying results, however, as the resulting file dialog would look poor
from an aesthetic point of view. Eventually a proper file-dialog was made using the
Windows 10 SDK, providing the default Windows file dialog.

28

5. Execution and Process

Figure 5.1: This figures compares the two versions of the file dialog. The left side
of the picture contains the old one, and the right side contains the new one.

5.3.3 Sprint 3 - The Picking Feature
The main goal of the third sprint was to implement the picking feature. This feature
is what would allow a user to drag or stretch a piece of cloth using the mouse cursor.
As the SDK provided functions for modifying the mass of a specified particle, the
main functionality to be implemented in order for picking the work was a method
for finding a specific particle using the mouse cursor. This was done using a classic
ray-casting approach, where several ray-triangle intersection tests were performed
in order to determine if a particle had been hit. These tests were done between a
ray projected from the mouse cursor into the scene, and all triangles in the scene.
To facilitate this process, the VCG Library was added to the project. This library
allowed for easy construction of rays as well as a function for efficient ray-triangle
intersection testing.

Another feature implemented during this sprint was the ability to drag objects with
the mouse. In the current state, it was limited to the x- and y-axes of the object.
In order to drag an object, it first had to be selected from the hierarchy view of
the GUI as selecting objects in the scene through ray-casting had not yet been im-
plemented. This feature also uncovered a bug with the renderer when translating
colliders, which was fixed immediately.

In this sprint, the logical model for the objects handled by the application was
constructed. This was done by defining the class SceneObjects, with sub-classes
representing different types of objects in the scene such as colliders and deformable
objects. These were then assigned different attributes such as id, name, position,
scale and type. The main reason for creating this model was in order to present
objects in the scene to the user in the hierarchy panel. Making the hierarchy panel
was also done here. An "Object Details"-view was also added for testing purposes,
allowing modifying of basic parameters such as position and scale for a selected ob-
ject through the GUI.

The final work of this sprint was to implement basic camera movement. The move-

29

5. Execution and Process

ments implemented were simple x- and z-axis translations as well as the ability to
rotate the camera around its own position with the mouse. In order to get this
piece of code loosely coupled from the rest of the application, a camera module
was developed putting the entire functionality of the camera into a single header
file. The camera was implemented at this stage largely for debugging reasons, and
thus the way the movement was performed was based on how it would facilitate
debugging rather than how it would be preferred for the final application by actual
users. The implementation of the mouse-translation further gave rise to a design
question regarding how to handle different mouse-based features. "Should the cam-
era be moved only when a camera tool has been selected?", "should the camera only
move when an object is not selected?" and "should clicking on an empty part of the
screen deselect an object and automatically activate the camera tool?" were some
of the questions resulting from this work. Answering these question was not done
immediately; instead they were put on the list of tasks to do. The ability to modify
the camera values through the GUI was also added at the end of the sprint.

5.3.4 Sprint 4 - The Painting Feature
The main feature of the fourth sprint was to implement the painting feature. This
feature would allow a user to paint particles with the cursor using different tools.
The different things that was intended to be painted by a user was friction, collision
masks and fixed vertices. This feature was divided into the following sub-tasks:
alter the value of the particle hit by a ray-cast, rendering "paint" on the affected
particles in order to give the user visual feedback, and allowing the brush-size to
be modified to hit a larger surface with each click. Since the ray-casting function
already existed since the implementation of the picking feature, the first sub-task
was trivial to implement.

The first attempt at rendering painted particles was to first store their index in
a list, and then use functions provided by the Dynamo SDK to get their render
position. Then, a sphere would be rendered at that location using the gluSphere-
function provided by the GLUT library. While this technically achieved a decent
outcome, there were some concerns. One concern was that the visuals were rather
ugly. Another concern, which was the most important one, was that a single object
with all particles painted would cause some severe performance issues. This resulted
in other approaches to be developed. The next, and final, attempt used a similar
albeit a much more effective solution. In this version, selected particle indices were
stored in a list like the first version. This time, however, vertex data pointers were
manually constructed from the positions of the particles from the list. The pointers
were then sent to the renderer which drew them as GL POINTS. With this version,
there were no significant performance issues.

The final sub-task was to alter the brush size. This was done using a function pro-
vided by the SDK to find particles within a certain radius from a given particle.

Options to switch between the various painting tools, and to modify different param-

30

5. Execution and Process

eters for each tool, were also added to the GUI. These options included setting the
friction amount, the active collision mask and brush radius. Furthermore, buttons
for applying a selected paint to all particles and clearing all particles from selected
objects were added to the GUI. The different painting tools are selected by clicking
different icon buttons from the toolbar. In order to have images for the icon buttons,
the ability to import regular image files and bind it to a texture was added to the
importer.

Figure 5.2: The left of this figure shows a deformable patch where one half has
been painted with one collision mask, and the other half with a second collision
mask. The right side of the figure shows the same patch without any paint applied.

5.3.5 Sprint 5 - Implementing Camera Behavior
The first task to be performed for the fifth sprint was the ability to select objects in
the scene through ray-casting. This was also done using the SDK-provided function
to find nearby particles, as one of the output parameters was a pointer containing
all object IDs. Thus, using a small radius would guarantee that the output object
ID would belong to the selected object. This feature seemed to work correctly at
first, but it was later discovered that it would not return IDs of collider objects.
Hence, it only allowed selecting soft-body objects in the scene.

The second, bigger feature for this sprint was to implement the camera in a way so
that it behaves as a user would prefer, instead of in a way so that a developer can
perform fast debugging. In order to get an idea of how the end result should be, a
competitor analysis was performed. Houdini, Maya3D and 3DS MAX all had their
camera behavior examined thoroughly. As it turned out, all of them had the same
type of camera movements, albeit with slightly different ways of accessing them. The
decision thus became to implement the same camera movement in the application.
The desired translation of the camera position was similar to how it was already im-
plemented; the main difference was the controls for performing the translation. The
controls were thus updated to be aligned with them, as there was nothing suggesting
a deviation from an industry standard was motivated. The biggest change done to
the camera behavior was the camera rotation. The initial behavior, which was the
camera rotating around its own position, was replaced with camera behavior where
the camera rotates around the center-point of its field of view.

31

5. Execution and Process

The final task of the fifth sprint was to start working on incorporating mesh colliders
into the application. This was split into two sub-tasks: adding mesh colliders to the
scene and rendering loaded mesh colliders. Adding mesh colliders was trivial after
storing vertex data for imported objects. Rendering was implemented, albeit with a
huge bug; no positional data affected the rendering, and thus rendered mesh colliders
were static. After some discussion with the company it was determined that this
issue was a part of the version of the Dynamo SDK that was being used. A fix on
their end was thus on the way.

5.3.6 Sprint 6 - Adding Convenience Features
The focus during the sixth sprint was to design and implement some important user
actions, such as undo/redo features, copy/paste features and transforming a selec-
tion of several objects at once. The design of these features refer both to how these
actions should behave, as well as how they should be made accessible to the users.

The first task thus was to design the behavior. In order to make them behave as
a user would expect, a competitor analysis on how the features were implemented
in existing 3D modeling software was performed. Once again, the analysis showed
that there seems to be an indubitable standard for how these features behave in
such tools, resulting in that same behaviour being mimicked in the application.

The second task was to actually implement the copy/paste function. Since all ob-
jects in the scene was stored in a list, with each object containing all information
required to recreate it, copying an object was as simple as creating a new object with
same type and parameters and placing it in a list representing a typical clipboard.
The paste function worked by adding the object from the clipboard to the list of
objects, as well as adding an object of the appropriate type to the dynamo scene.

The final task was to implement the undo/redo feature. This was split into two sub
tasks: deciding how it should be implemented and actually implementing it. When
deciding how to implement it, there were two options that were considered. The first
one, which was the initial thought, was to store each action performed in a stack.
The reasoning behind a stack was that they behave on a first-in-last-out basis, which
fits the typical behavior of undo/redo features in software. Since actions within the
applications are often tied to one or more objects, a list of affected objects would
have to be stored with the action. If an action would be adding object x, then if the
undo action was performed this would simply be delete object x. The deletion of
object x would then be put in a separate stack which the redo feature would fetch
from. This approach seemed perfect at first, but came with one big flaw: the reverse
action of adding an object, which is deleting an object, is a function missing from
the Dynamo SDK.

The alternative solution, which was inspired by an implementation of the undo/redo
function in Adobe Photoshop, was to store the state of the entire application with
each action performed [52]. This would allow for undoing irreversible actions, but

32

5. Execution and Process

it would be much more computationally expensive. It would also make the scene
having to initialize every time the user performs an undo/redo, which could lead to
disrupting user flow. As a meeting with the company supervisor was coming up, it
was decided to discuss the matter with him before moving forward with this feature.

During the meeting, a huge turning point appeared. After having investigated an
issue the application had been having with the Dynamo SDK, the company had
found the source of the problem. As it turns out, the issue was the fact that the
SDK was not intended to perform actions such as adding objects, performing trans-
formations on objects and so on, after a scene had already been initialized. However,
in order to add and render objects, the scene had to be initialized. The solution to
this problem was to redo a huge part of the app so that it did not add objects to
the SDK and initialized the scene every time the user performed an action. Instead,
it would have to be remade into a more typical 3D modeling tool with an editor
containing static objects, and the simulation running after the press of a play/run
button. This would allow the objects to be added to the scene handled by the SDK
only when pressing the play button, thus every object can be added and transformed
before initializing the scene. This also meant that the rendering of objects and most
other user actions would have to be handled entirely without functions provided by
the SDK up until that point.

While this meant that the work required to be done would increase a lot, it did solve
the dilemma regarding the undo/redo feature that was mentioned earlier. Since
adding an object no longer would use SDK-functions, the lack of a delete function
was no longer an issue. Thus, the method of storing actions in two stacks (one for
undo, one for redo) was now the optimal choice.

5.3.7 Sprint 7 - Refactoring the Application
With only a month remaining of the implementation, the remaining four sprints
were discussed with the company supervisor. During this discussion, the goals for
each of the remaining sprints were formally stated. The main task for the first of
these four sprints was to change the application to manually render static placehold-
ers for all objects while in the editor, and then switch to using the Dynamo SDK in
order to simulate the animation after pressing play/run. Another part of the same
task was refactoring of other functionality in the app to make it work with this new
approach. As it was approximated that this would not take up the entire sprint,
the rest of the week would be dedicated to begin working on serializing the data in
order to save and open project files.

Everything regarding the collider objects was unaffected by the changes to the appli-
cation, as they did not rely on SDK functions, and thus did not require any further
work.

For most of the different types of deformable objects available, rendering static place-
holders was nothing more than manually binding buffers with appropriate vertex-

33

5. Execution and Process

and index-data, before performing a draw-call for each object in the list of scene
objects. For many of these objects, the data was already available through the im-
porter. However, this was not the case for deformable patches and volumetric meshes
as the Dynamo SDK had previously computed the data for them. Fortunately, the
company supervisor provided the source code used by the SDK to generate the data,
resulting in the refactoring of the rendering of objects to be done efficiently.

The next task was to refactor other functionalities in the application. These func-
tionalities were the painting particles feature and the ray-cast selection of objects.
In order to get this to work, the approach was to recreate the same kind of be-
haviour that previously had been provided by the SDK. For the ray-casting, this
meant looping through all deformable objects in the scene, and performing a ray-
triangle-intersection test for each triangle of that object. This also meant that all
deformable objects must store their vertices and indices, which was previously not
the case. The new changes also meant that each object would have to store their
own painted particles, so that they could be passed to the dynamo scene upon run-
ning the simulation. After that was added to the scene objects, the refactoring was
deemed to be completed.

For the last day of the week, work on serialization of data began. This was done using
an external JSON library called "JSON for modern C++". The main reason behind
storing the project files as JSON was that the company had asked the serialized files
to be human-readable, making JSON a perfect candidate. The JSON file format
is also very common and easy to use, making it the obvious choice. Using the
library, saving and opening project files was completely working by the end of the
week. However, during the weekly meeting with the company supervisor, the choice
of library to perform the serialization was not considered optimal. Instead, they
encouraged the use of the Cereal library. The main motivation was that it was
a library they already used, thus minimizing external dependencies used by their
products combined.

5.3.8 Sprint 8 - Various Fixes
Given how the seventh sprint ended, the first task of the eight sprint was to refactor
the serialization functions to use the Cereal library. While Cereal was found to be
less intuitive than the "JSON for modern C++" library, the refactoring was done in
one work day. With the new approach for serialization, each type of object had to
implement a serialization function determining how the data of that type of object
should be serialized.

The next task of the sprint was to implement the undo/redo feature. It was done as
planned two weeks prior, which was to use an undo stack and a redo stack containing
the performed actions along with a list of affected objects.

During the first half of the sprint, a memory leak causing the application to crash
after being active for around ten minutes was discovered. After some investigation,

34

5. Execution and Process

this issue was discovered to be caused by new buffers being generated during each
frame, without ever being deallocated. This was simply fixed by making sure all
buffers were only generated once, and then bound properly each frame.

The final task of the sprint was to allow importing animations from .fbx files. Since
the tinyobjectloader library used for importing static deformable objects only sup-
ports the .obj file format, Assimp was once again put to use in order to import
animations. In addition to importing the vertex- and index-data from a file, a func-
tion for computing vertex- and index-data at any given time had to be constructed.
That also meant having to compute bone data for animated characters. Being a
quite complex task, this was done with some help from the company supervisor. By
the end of the week, this feature was fully implemented.

5.3.9 Sprint 9 - Adding Transformation Gizmos
The first task of the 9th sprint was to add transformation gizmos to objects in the
scene. In order to do that, research on possible gizmo libraries had to be done.
The three libraries considered were tiny gizmo, ImGuizmo and Im3D. After some
testing, tiny gizmo was eliminated because it would require the way that objects are
rendered in the application to be changed. While both the remaining two seemed
simple enough to incorporate into the application, ImGuizmo seemed to be the most
simple. Furthermore, the general downside of ImGuizmo seemed to be the fact that
it requires the application to use the Dear ImGUI library for the graphical interface.
This was of course not an issue as the application already did use that library for the
graphical user interface. Im3D also had cheaper looking graphics, which together
with the other reasons resulted in ImGuizmo being the chosen library.

Having chosen a library for transformation gizmos, adding the gizmos to selected
objects was an easy task. However, thus far rotation of objects had not been a
part of the application and was something that had to be added. This was done by
adding a unit quaternion to every scene object that represented the orientation.

In order to account for rotations in the application, some functionalities such as
ray-casting had to be updated to accommodate the new changes, which became the
second task of the sprint. This task also included allowing the orientation of an ob-
ject to be edited through the GUI. Since the representation of an objects orientation
in the GUI was an euler-angle-representation rather than a quaternion representa-
tion, a conversion between the two had to be implemented. The fact that a single
orientation can be represented as a number of different rotation sequences also made
the function a little bit glitchy, albeit working.

The third task was to add functionality which allows a user to drag a timeline on an
imported animation in order to show the frame at any given time. Having already
implemented a function for retrieving vertices and indices for an animation at any
given time, the technical implementation was a trivial task. However, as the feature
was not part of the original concept for the application, it had to be decided where

35

5. Execution and Process

to incorporate this feature in the GUI. In the end, it was placed as a slider under
the "Object Details"-tab for the selected animation.

The final task consisted of adding tags to the hierarchy view in order to more easily
separate different types of objects to each other. These tags were simple texts
specifying the object type, surrounded by square brackets. For example, the tag for
a collider object would be "[Collider]".

Figure 5.3: The left of this figure shows a deformable patch where one half has
been painted with one collision mask, and the other half with a second collision
mask. The right side of the figure shows the same patch without any paint applied.

5.3.10 Sprint 10 - The Final Sprint
The main focus for the final sprint of the project was to make sure that the applica-
tion could be used to reproduce all of the demos that the company had previously
developed. The second focus was to clean up to GUI and fix the aesthetics, such as
adding proper icons for the tools on the tool bar.

In order to make sure all the demos could be reproduced, the most logical approach
was considered to be simply trying to reproduce them. While doing so, some miss-
ing features such as anchoring a deformable object to a collider, were discovered.
Another missing feature was loading .def files containing serialized data of clothes
that are to be added to imported animated characters. Other missing features were
mainly altering of different parameters, such as object stiffness and some size pa-
rameters for different objects.

Adding different parameters to be altered was a mechanical task, as this functional-
ity was already designed for, but the other features required some design decisions
to be made. In the end, the anchoring feature was implemented so that a user gets
access to the anchoring tool if an appropriate collider object is selected. When using
the anchoring tool, the user is prompted to select an object to anchor to it. If an
object is anchored or not is further visualized through the GUI.

The function for loading .def files were provided by the company, which meant that
the only thing that had to be implemented was the ability to browse the computer
for a file to be added to an already imported animation. Deciding how a user should
access it through the GUI also had to be decided. This was eventually decided to
be done by adding a button to the object details panel for a selected animation if
no file had already been loaded.

36

5. Execution and Process

The final task of the week consisted of fixing the aesthetics of the GUI, for example
aligning everything properly, as well as successfully reproducing and saving most of
the demos previously developed by the company. With the demos being success-
fully reproduced and saved, the prototype for the 3d modeling tool was considered
finished.

37

5. Execution and Process

38

6
Results

This section will describe the results generated from this project. First, the devel-
oped 3D modeling tool will be presented in detail. Then, the answers to the research
question of the thesis will be presented.

6.1 The 3D Modeling Tool
The tool built during this project is a hi-fidelity prototype. Most of the key fea-
tures, such as adding and manipulating different objects, are fully implemented and
working. The GUI is constructed in a way to visualize element placements and the
resulting user workflow, however certain aesthetic aspects such as colors has not
been part of the main focus.

The tool allows a user to create an animation utilizing the Vivace solver using a
number of different tools. External objects and animations can be imported into
the application from some common file formats. The ability to add patches of cloth
and various geometry collider objects is also available to the user with one or two
clicks respectively. Objects created this way are added to the scene using param-
eters, predetermined by the application, that can be changed at any time through
the graphical user interface with direct manipulation. Objects can be transformed
and configured in a large variety of different ways in order to accomplish a desired
animation.

The following sections describe the implemented features of the prototype as well
as how they are used by a typical user in order to create an animation.

6.1.1 Start View
The start view, as shown in figure 6.1, is how the application looks like when a user
opens up the app. At the top of the application is a menu bar containing some
common tabs. On the left side of the application, a toolbar is found. The toolbar
offers the user a variety of different tools, such as altering the friction of an object
on a particle-basis, fixing vertices i.e. making them ignore external forces and trans-
forming objects. In addition to the tools, two buttons are located at the top of the
toolbar: one for adding a deformable patch to the scene, the other to add a collider
object to the scene.

39

6. Results

On the upper right side of the application, there is a panel with a "Simulation
Settings"-tab which is selected by default. The panel contains a "Play Simulation"-
button for running a finished simulation, as well as different global parameters that
can be configured by the user. These settings include enabling wind and gravity
with different values on a per-axis-basis, manipulating different camera parameters
and enabling or disabling the rendering of object wireframes. The configuring of
parameters is done with direct manipulation.

Below the "Simulation Settings"-panel, there is a "Hierarchy"-panel. This panel
shows a hierarchy overview of all objects in the scene, which is naturally empty when
starting up the application. The center of the screen shows a rendered, rectangular
plane. This plane is used to provide the user with a visual reference of the current
camera position and orientation.

Figure 6.1: The start view of the application, showing a scene containing an
imported animated characters wearing a dress.

6.1.2 Object Details View
Figure 6.2 displays how the application looks after a user has added a deformable
patch to the scene by clicking the "Add Patch"-button, and then selecting it either by
clicking the object on the screen or clicking on its name in the hierarchy. The "Ob-
ject Details"-tab view shows some configurable parameters for the currently selected
object. Example parameters are object size, position, scale and rotation. Similar
to the global parameters under the "Simulation Settings"-tab view, configuration is
done through direct manipulation. Altering one of the parameters previously men-
tioned would result in an immediate change to the affected object.

At the center of the selected object, a transformation gizmo can be seen. The
transformation gizmo is more specifically a translation gizmo, which is because the

40

6. Results

translation tool is the currently active one as can be seen on the left side in figure
6.2. By switching to one of the other transformation tools, e.g. scaling or rotation,
the appropriate gizmo will be the one rendered at the objects position. By dragging
the controls of the gizmo, the chosen transformation is performed along the selected
axis. The name of the object is also highlighted in the hierarchy view on the right
side in order to visualize that the object is currently selected.

Figure 6.2: The object details view of the selected deformable patch.

6.1.3 Painting Tools
The painting tools are a collection of tool where the user can apply a per-particle
configuration to an object by painting with the mouse cursor. Each vertex con-
structing the object represents a single particle.

When a user selects any of the painting tools, a panel containing settings for that
specific tool will appear below the regular toolbar. As can be seen in figure A.10,
the settings for the collision mask painting tool include changing brush radius and
setting the active mask. The mouse cursor will also change from the default cursor
to a white circle representing the brush. The size of the brush mouse cursor changes
with the brush radius parameter.

Each different mask is represented by a color, which is shown on the object as the
user paints the particles/vertices. The painted particles for each of the painting tools
are only visible while that specific tool is currently active. The "Apply To All"- and
"Clear All"-buttons will apply or clear the currently selected paint respectively to
all particles of the currently selected object.

41

6. Results

Figure 6.3: The settings for the collision mask painting tools are shown in the
bottom left side. Here, a small part of the patch has been painted with the pink
collision mask.

6.1.4 Running the Simulation
Once a scene has been set up, the simulation can be run by pressing the "Play
Simulation"-button located at the top in the "Simulation Settings" view. Once the
application is in play mode, no tools can be used to apply any changes to an object
in the scene. If the user wishes to perform any changes to an object, they must first
pause the simulation by clicking the "Pause Simulation"-button located at the same
place where the play-button used to be in order to get back to the editor-mode.
Global settings, such as altering gravity and wind values, can be altered while the
simulation is running.

While in play-mode, the camera can be rotated by holding down the left mouse
button and dragging the cursor. Translation of the camera along the x- and y-axis
of the current field of view can be performed by holding the mouse wheel button and
dragging the cursor. Clicking the right mouse button while hovering a deformable
object will allow a user to drag the selected particle of the object, as is shown in
figure 6.4.

42

6. Results

Figure 6.4: This figures shows a deformable patch in a running simulation while
a user is using picking to drag it by one of its vertices towards the left. The mouse
position of the user is visualized by a white dot.

6.1.5 Adding Collider Objects
If a user presses the "Add Collider"-button in the top right of the toolbar, a small
popup window will appear at the location as shown in figure 6.5. The window will
prompt the user to choose the type of collider object to add, providing a separate
labeled button for each type. The different types of colliders that can be chosen
between are axis aligned bounding box, object oriented bounding box, sphere, cap-
sule and plane. Additionally, if a deformable object is selected, the option to add
a mesh collider also exists. Upon clicking either of the buttons, the popup window
disappears and the selected collider object is added to the center of the scene.

43

6. Results

Figure 6.5: This figure shows the popup window for selecting collider type.

6.1.6 Anchoring Object to Collider
Certain collider objects can have a deformable object anchored to them, meaning
the vertices of the deformable object that lie inside a collider will be attached to the
that collider. Those colliders will have a text listing any object anchored to them
under the object details. If no object is anchored to the collider, the anchored object
will be listed as "NONE".

To anchor a deformable object to a collider, a user should first place the objects in
such a way that the collider and the deformable object are overlapping each other.
Then the user should select the collider. If the collider supports anchoring, an "An-
chor Object"-tool will be visible on the toolbar. Clicking on the tool will prompt
the user to select an object to anchor. Upon selecting a deformable object from the
scene, either by clicking it directly or clicking its name from the hierarchy, the tool
will be deactivated and the selected object will now be listed under the details view
for the collider as shown in figure ffd.

44

6. Results

Figure 6.6: The object details view of the selected collider showing the anchored
object. The "Anchor Object"-tool is also visible in the toolbar.

6.1.7 File
The "File" menu bar item is the first item located on the menu bar, at the top left
of the application. The "File" drop down menu contains options for starting a new
project, opening a previously saved project, saving the current project, importing
different types of geometry, exporting a simulation and exiting the application as is
shown in the left side of figure 6.7. The keyboard shortcut for each menu item is
listed in gray next to its regular text.

Two of the menu items will open a sub-menu when clicked. This behavior can be
recognized by an arrowhead at the far right of the menu item, pointing in that same
direction. For the "Open Recent" item, this sub-menu will list previously opened
project files. For the "Import" item, the sub-menu will list the different types of
things the user can import to the application. As can be seen in the right side of
figure 6.7, these things are deformable objects, animations, volumetric meshes and
scenes.

45

6. Results

Figure 6.7: The left side of the figure shows the file drop down menu. The right
side of the figure shows the sub-menu that opens when pressing the "Import"-menu
item.

6.1.8 Import Animation

Figure 6.8: The figure shows a windows file open dialog that appears when trying
to import an animation.

Importing an animation is done by clicking the "Animation"-menu item from the
sub-menu opened when clicking on the "Import"-item from the File menu. Upon
clicking the "Animation"-item, a standard windows file dialog will popup prompting
the user to select a file. Only files with the appropriate file endings are able to be
chosen, in this case .fbx files which is a common file format for animations. This is
shown in figure 6.8 Once an animation file has been opened, either by selecting the
item and pressing "Open" or by double clicking the item, it will be automatically
added to the scene if the file contains valid data. This step is identical to the steps
for importing other objects, the difference being the file endings.

When an animation is successfully imported into the application, it will appear as a
static object in the center of the scene. The object details view for imported anima-

46

6. Results

tions will contain a slider representing the time of the animation in its current state,
as can be seen in figure 6.9. Dragging the slider will allow the user to visualize the
entire animation, frame by frame.

Another configurable setting specific to animations is the ability to load serialized
data, as can also be seen to the left in figure 6.9. This feature allows a user to
load a file containing serialized data of clothes that an animated character should
use. Similar to the import functions, pressing the "Load Serialized Data"-button
will open a windows file dialog prompting the user to load a file of appropriate file
ending. A successfully loaded configuration will be listed in place of the button as
can be seen to the right in figure 6.9. A trash can icon next to the name of the
loaded data file allows the user to remove the loaded data.

In order to play the imported animation, the user must start the entire simulation
by pressing the "Play Simulation"-button.

Figure 6.9: The left side of the figure shows the animation details without any se-
rialized data loaded. The right side of the figure shows the same view after serialized
data has been loaded.

6.1.9 Edit
The "Edit"-menu bar item opens a drop down menu containing some convenience
functions for the user, shown in figure 6.10. These functions are undo which undoes
the latest action, redo which redos the last undone action, cut which copies and
removes the selected objects, copy that copies selected objects, paste that pastes
copied objects and delete that removes selected objects from the scene. The key-
board shortcut for each function is listed next to their name.

47

6. Results

Figure 6.10: The figure shows the drop down menu appearing when selecting the
"Edit"-menu item from the top menu bar.

6.2 What to Consider when Designing and Imple-
menting an Interactive 3D Modeling Tool for
Creating and Managing Generic Soft Bodies?

The research question was answered using knowledge gathered from the process of
this project, including everything from early research to finishing developing the
application. When developing the 3D modeling software, the following are the main
points that had to be considered:

• What external libraries to use
• What work process to use
• What features should be available
• How to design for different user groups
• How to make the code modular

6.2.1 What External Libraries to Use
The first thing that has to be considered is what external libraries to use in the
development of the application. For this project, most of the external libraries were
considered for a specific functionality at the start of the task for implementing that
functionality. Whenever a functionality could be provided by an external library,
it first had to be decided if an external library should be used. This was done by
approximating the tradeoff between the pros and the cons of including a library
rather than coding the functionality from scratch.

Advantages of External Libraries

An advantage of using an external library instead of making some functionality from
scratch is the time saved. This is usually one of the main motivations behind includ-
ing external libraries. Another advantage is that it promotes software modularity, as
libraries are written as separate modules. However, external libraries can be either
self-contained or depend on additional dependencies which is something that also
has to be considered. The final advantage is that the code has usually been tested,
meaning that developers can rely on the functionality provided by the library to be
fully working. This can also save time that would otherwise be spent on testing and
potential bug fixing of self-implemented functionality [53].

48

6. Results

Disadvantages of External Libraries

A disadvantage of using external libraries is that your project will get an additional
dependency. This might result in lots of work having to be put into refactoring
the application if the external library has to be switched for another one for some
reason. Using many external libraries in an application might also cause issues such
as dependency conflicts, which might be complicated to fix. Another disadvantage
is that popular, open-source libraries might be targeted by hackers thus resulting in
a security issue with your application [53].

Guidelines for Choosing a Library

If it is decided that an external library is needed for a certain functionality, these
set of guidelines resulting from this project work can be used to help decide which
library should be used:

• Use popular libraries, as they are more prone to being of high quality.
• Use open-source libraries. Being open-source makes it easier to validate code

in terms of performance and security, and gives the developers more control.
• Use libraries that can perform several of the functions that your application

needs. Two birds with one stone.
• Use libraries with as little additional dependencies as possible, as it makes it

more reliable in terms of maintainability.
These guidelines are not based around anything specific to the development of the
3D modeling tool, but are more generally applicable to any software development
project. For this specific project, the following functionalities were implemented
with the use of external libraries and are considered to be particularly useful when
developing 3D modeling software:

• Rendering the GUI
• Importing objects from files
• Adding transformation gizmos
• Serialization of data
• Various libraries for various math calculations, including ray-casting.

All of these external libraries were chosen during the execution of the project by
following the guidelines mentioned above.

6.2.2 What Work Process to Use
Agile software development is today becoming the most popular way to work with
software development [54]. However, there are many different methods available to
do so and different aspects of the project might affect which is the optimal choice.
These aspects include the size of the development team, how long the project will
run for and how often there will be meetings with the stakeholders. The important
thing is not to choose a specific method and sticking to it strictly, but rather to
allow the work to be flexible and easily adapted to changes as is the main principle
of any agile work process.

49

6. Results

6.2.3 What Features should be Available
Deciding which features should be in the application is one of the considerations that
contributes the most to how the application will turn out. In this project, there were
a few factors that heavily contributed to this: functionality offered by the Dynamo
SDK, features available in popular 3D-modelling tools, findings from user testing,
discoveries during the software implementation phase and the time frame for the
project combined with the size of the software development team. The functionality
offered by the Dynamo SDK was further based on research into the needs of the user
group performed by Deform Dynamics prior to the start of this project. Further-
more, the user tests conducted were also based on what was considered to be the
most typical use scenarios for the developed application. This was data provided by
Deform Dynamics at the start of the project.

The following is a list of features to be considered when developing a 3D modeling
tool:

• Prioritize features that highlights the unique functionality of your application.
For example if your app outshines the competition in regards of a specific kind
of animation type, prioritize features that aid the creation of those animations.

• Allow a user to add different types of object with ease.
• Allow a user to import objects and animations from commonly used file formats
• Allow a user to perform transformations of objects.
• Allow the user to undo/redo actions.
• Allow the user to copy/paste objects.
• Allow the user to rotate and move the camera around the scene freely with

the mouse.
• Allow a user to save and load scenes to/from project files.
• Avoid putting performance-sensitive functionality in the areas of the applica-

tion where the user spends the most time. An example of this includes not
having the simulation always running by default; instead play the simulation
with the press of a button, allowing the application to run smoother for the
majority of the time.

6.2.4 How to Design for Different User Groups
Throughout the project, various research and usability testing regarding design
guidelines was conducted. Previous theory included was targeted towards software
applications in general, while the practical exploration of this project was used to
determine what aspects could be specifically applicable to designing 3D modeling
software. This practical exploration refers to both analysing existing 3D modeling
software and the development of a 3D modeling tool.

The resulting points to consider when designing a 3D modeling tool is presented in
the list below:

• Use a sovereign posture for the application.
• Allow direct manipulation of objects and configurable settings
• Allow the user to get an overview of the scene, listing all present objects.

50

6. Results

• Give the user immediate, modal feedback upon performing an action.
• Allow expert users to perform actions with keyboard shortcuts.
• Minimize excise in order to promote user flow.
• Allow a user to perform the same action in different ways, for example trans-

forming an object with gizmos or by setting parameters through the GUI
• Allow users to change position of panels and other elements in the application.
• Place the most used tools so that they are easily accessible from everywhere

within the application.
• Allow a user to drag files from the desktop into the application as an alternative

way to import objects.

6.2.5 How to Make the Code Modular
Using a modular programming approach is an important point for making the soft-
ware easily maintainable, alongside choosing external libraries carefully and using
an appropriate agile software development method [55]. With a modular program-
ming approach, each general functionality of the application is handled by a separate
module. From the development of the 3D modeling tool in this project, different
functionalities needed in the application were discovered as the project went on.
This resulted in the following set of recommended modules:

• A GUI module for handling the graphical user interface.
• A render module for rendering objects in the scene.
• A shader module for loading vertex- and fragment-shaders.
• An importer module for importing objects from some file formats.
• A camera module for handling camera parameters.
• A manager module for handling underlying computations such as serialization

and computing vertex- and index-data for objects.
• A general module that connects the other modules and starts the application.

51

6. Results

52

7
Discussion

In this chapter, various parts of the project will be discussed. First, the tool built
will be discussed in detail. After that, the various stages of the work process will be
discussed. This includes the research phase, design phase, and software development
phase. Finally, ethical implications arising from this project as well as suggestions
for future work in the research area is discussed.

7.1 The Tool
The list of features included in the tool have been based on analysing competing 3D
modeling tools, findings from the early user tests as well as the available functional-
ity from the Dynamo SDK which was the basis for the animations produced by the
application. The Vivace-solver producing the physics in the simulations is capable
of generating plausible soft-body animations at faster rates than competing physics
engines, which motivates the area of focus of this tool [8]. Hence, the design has
been based around producing this type of animations, compared to competing 3D
modeling tools where there is usually a broader set of features.

The tool in its current state manages to create soft body animations with just a few
clicks. If a user does not want to rely on external files to be imported, the anima-
tions that can be created are mostly simple animations consisting of a few objects
with the intention to showcase visually plausible cloth simulations. These types
of simulations include flags waving in the wind, cloth being dragged or stretched,
patches of cloth colliding with objects of different shapes and simulations with volu-
metric meshes. If files containing animated characters and full-fledged garments are
available, advanced animations simulating the real-life behavior of cloth as a char-
acter performs some action can be generated with a few clicks only as well. This is
primarily done by utilizing the import features of the application.

The main reason behind allowing a user to add a patch of cloth to the scene with
a single click is because this is the most basic kind of simulation when it comes to
physics-based animations with cloth. The demos that the company had produced
previously in order to showcase their physics engine, were often different simulations
with patches of cloth being affected by various external forces ranging from object
collisions and forces such as wind and gravity. Being able to reproduce such simu-
lations with ease was thus one of the main goals of the design.

53

7. Discussion

The sewing feature, which would allow a user to stitch patches of cloth together in
order to form clothes, is possibly the most important feature that is not part of the
resulting prototype. Not having the feature available makes it so that any animation
involving garments must have those garments stored as a .obj file prior to using the
application. This in turn might force a user to first use another 3D modeling tool
in order to create that piece of garment. However, not including that feature was a
deliberate delimitation motivated by the time frame for the project.

While some features that were desired in the finished tool were not implemented,
such as the sewing feature, a goal of the design was that it should still support
adding them in the future. For example, the sewing feature can easily be made
available by adding an appropriate icon to the toolbar. By selecting the tool, a
panel containing configurable parameters for that specific tool would appear at the
same location that the panels for the various painting tools appear in the current
prototype. Hence, the design supports not only the current implemented prototype
of the application but also the potential finished version of the application.

Generating advanced geometry from scratch, such as a 3D character, was never a
part of the intended functionality for the application. While one could argue that
it would be nice to be able to do everything needed for an advanced character an-
imation in the same place, this tool is more concerned with being able to produce
soft-body animations well. This allows this tool to provide a much cleaner GUI than
competing 3D modeling tools, resulting in it being less complicated to use.

Initially, the animations were intended to be active at all times thus allowing a user
to manipulate an animation with real-time feedback. This was however changed
after some crash issues with using the approach was discovered. The crash issues
aside, this part of the software development gave rise to some interesting discoveries.
What was found was that adding and manipulating objects while a simulation was
not running resulted in a much smoother experience for the user, thus providing
them with a better experience overall. This further supports the usefulness of the
method of prototyping as an ideation technique [56].

7.2 The Considerations
The considerations, or guidelines, resulting from this project are based on previous
research in the area as well as knowledge gained from developing a 3D modeling tool.
They have varying levels of concreteness depending on what aspect is considered.
For example, the guidelines regarding external libraries do not give concrete external
libraries to consider and neither do the guidelines regarding work processes. That is
because it was not considered possible to answer those questions with that level of
preciseness while still keeping the guidelines applicable to other projects than this
one. In comparison, the considerations regarding what features should be available,
how to design for different user groups and how to make the code modular all were
able to provide more concrete examples of things to consider. The main reason
behind that is that they are considerations regarding things that depend on too

54

7. Discussion

many factors. This way, the resulting guidelines are considered to be applicable to
the development of any kind of 3D modeling tool.

7.3 Execution and Process
This section will discuss the entire process of this project, going through all the
phases and discussing them in detail.

7.3.1 Research Phase
During the research phase, much research was put into exploring other competing
3D modeling tools as well as information required for the software development part.
This research included optimal programming language, available external dependen-
cies and the Dynamo SDK. This step gave a lot insights that played a pivotal part
in the success of the project. Most importantly, it provided an insight as to how 3D
modeling tools are designed, and how they are typically used. It also gave insights
to how functions within such programs are expected to behave.

Throughout the project, a need for new external libraries that had not previously
been researched occasionally arose. This was either because a new functionality was
found to be needed, or that a previously chosen library would fail to live up to what
was expected from it. However, the fact that the project was using an agile work
process combined with the modularity of the code made it easy enough to either
swap one library for another or simply incorporating a new one into the application.
This was also possibly due to the choice of writing the software in C++ instead of
Python, as there are much more libraries written in C++ and that there would be
no limitations arising from a specific library lacking Python bindings. The choice of
using C++ was altogether considered a good choice as the compilation time, which
was the main argument against using it, was considered negligible in hindsight.

7.3.2 Design Phase
The design phase begun right after the research phase. The decision to not do a
competitor analysis of existing 3D modeling tools and explore them thoroughly be-
fore sketching on the design was considered a good choice. While doing a competitor
analysis earlier might have sped up the early stages of the design phase, reducing
bias allowed the design process to yield a more unique design.

Performing cognitive walkthroughs in the early stages of the design phase before
testing with real users was a time-efficient method for improving the design. This
made the design good enough to perform real user testing on it without wasting
too much time. Testing the resulting paper prototypes on real users allowed the
design to be more influenced by actual user needs, more specifically beginner- and
intermediate-level users where the latter was the main goal. The data given by
these user tests was made even more important as real users were excluded from the
evaluation stage because of the current pandemic, making this the only time real

55

7. Discussion

user input was received from a non-expert user.

Having the design roughly finished before starting the software development was
good as it allowed external dependencies to be chosen based on what features should
be available in the finished prototype. At the same time, there were a number of
reasons for why the design was not fully finished before starting the implementation.

The main reason is that the process of prototyping has been shown to be a good
source for ideation, leading to new design decisions being taken during the pro-
cess [56]. For example, the "Simulation Settings"- and "Object Details"-tabs have
switched places in the implemented prototype from where they originally were in
the mockup of the design. While it was initially implemented this way by accident,
in the end it was considered to give the application a better flow.

The second reason is that it sometimes can be useful to have different tasks to work
on. For example, having both design details to work on as well as implementation
would further allow the two tasks to be switched between if something would pre-
vent immediate continuation of either one.

The final reason is that the company requested a demonstration of the first set of
features by a certain date, which would mean that it was favorable to start working
on them at a fixed time (rather than when the design phase has reached a certain
point) if that request was to be met. This further aligned with the personal prefer-
ence of getting started with the software development early on.

The biggest downside of the design phase was the lack of user evaluation on the fin-
ished prototype, which was due to the COVID-19 pandemic. Instead, the usefulness
of the prototype was determined by the developer together with the company super-
visor. While evaluation conducted by real users would provide more reliable data,
the evaluation performed together with the data from user testing on the digital
mockup was deemed good enough considering the circumstances.

7.3.3 Software Development
In this section the software development stage will be discussed. The discussion is
split into two parts: a discussion of the software development methods used and a
discussion of the actual implementation.

Method

The software development process was conducted using a mix between some pop-
ular methods for agile software development. However, one major thing differed
how the methods were used in this project compared to typical usage: this project
was conducted by a single person. The reason this matters is because one of the
major differences between some of the popular methods is how communication be-
tween the development team is handled. Furthermore, steps where the development
team discusses various matters such as daily Scrum meetings in Scrum also become

56

7. Discussion

a bit different when the team is a single person. Assigning tasks to different per-
sons became easy, as all tasks would be performed by the same person. Dividing
tasks so that there would be no merge conflicts was also a non-issue as the project
guaranteed that no two persons would accidentally overlap each others work. This
also resulted in tasks being able to be started late in the week, since there would be
no negative consequences of a task being only half-way finished by the end of a week.

The project used sprints that were one week long. This was mainly to be able to
present the weeks work to the company during the weekly meetings on Fridays,
making each meeting function as the stakeholder demonstration that is typically in-
cluded in the sprint review. While this worked well in general, demonstrating work
was not something that was required each meeting by the stakeholder and hence the
sprints could have been for example twice as long with no consequences in that sense.

Not having to do any communication within the team further resulted in the vi-
sualization of tasks being more flexible. Instead of a formal medium such as a
Kanban board, a simple text file was used listing all different tasks that were not
yet completed. This worked well as it was custom tailored

Implementation

The main focuses of the implementation was to ensure the best user experience in
terms of performance, promote software modularity in order to make the tool easier
to manage and develop and finally to minimize the use of external dependencies.

Performance was ensured by the choice of programming language and by paying
attention to internal data structures and algorithms used to achieve certain func-
tionality. It was further achieved by implementing the feature to run the simulation
with the click of a button, putting the computations performed in order to visualize
the animations at a separate location from where the user performs the work in the
application.

The modularity of the code was pursued by having a separate module, or header
file, for each of the general parts of the application. Early on in the development,
this was followed strictly with ease. A switch of the importer module a few weeks
into the project demonstrated the modularity of the software in practice. However,
some part of the modular design got lost along the way. More specifically, in the
finished prototype, the module responsible for the GUI is now also responsible for
functionality more fitting for some sort of manager-module as listed in the module
guidelines in the result section. This functionality includes generating vertex- and
index-data for deformable patches, serialization of scenes and convenience features
such as copy/paste and undo/redo.

One could argue that the reason behind this undesired result is that more responsi-
bility was pushed into an already existing module as the need for new functionalities
emerged. By the time that it was clear that a new module should be introduced
to offload the GUI module, the amount of work required to fix the problem made

57

7. Discussion

it into a low priority task. The low priority of the task caused it to never be fixed,
as there were always more urging matters that could be dealt with. However, one
could argue that the reason was due to the need for a manager-module not being
discovered during the planning phase, making it more of a a planning error.

Minimizing external dependencies was one of the decisions that was initially con-
sidered because the company explicitly requested it. While it was actively pursued,
using an external library for any functionality always became a decision between
trade off between the pros and cons of using it as mentioned under the "What exter-
nal libraries to use"-section in the results chapter. For example, an external library
for rendering was not included as it was not considered to be a big time saver.
However, libraries for the GUI, translation gizmos, importing objects, serialization
and so on were included as recreating those functionalities from scratch would be a
time consuming task affecting the overall quality of the project negatively. It would
be similar to reinventing the wheel. Overall, all external libraries included were
dependencies that were assessed to be essential to ensure the success of the project
within its time frame.

Sometimes when deciding what features to implement, focus was put on the impor-
tance of the feature in a finished product rather than the importance of the feature
in regards to the research question of this project. A good example of such features
are the undo/redo features and the copy/paste features. While they are necessary
functionality in any 3D modeling software, they are not required to be implemented
in the prototype in the sense that they are not necessary to produce any animations.
Their implementation does not directly contribute to the research question; merely
acknowledging that they should be there is enough. Not only was time put into
making these features, but after the application had to change into being a tool
where you play a simulation with the click of a button they were also refactored in
order to work with the new approach. In hindsight, the time spent on all of that
would have been better put to use on other things such as spending more time on
the GUI aesthetics.

7.4 Ethical Aspects
Making it easier for anyone to make these kinds of animations might remove the
need for people of a specific skill set. While this can be a good thing as incorpo-
rating animations will be more accessible, it might also cause certain people to lose
some market value. Furthermore, increasing the accessibility of available 3D mod-
eling tools might make that market more competitive, possibly resulting in certain
products to lose their value.

7.5 Future Work
There are many things that can still be done within the area. This section lists and
discusses the most important ones.

58

7. Discussion

7.5.1 Validating the Results
The most important one would most likely be to evaluate the resulting 3D modeling
tool with real users. This was something that was initially planned to be a part of
the project, but scrapped due to the COVID-19 pandemic. Hence, it is considered to
be the highest priority for future work of the project. Another alternative approach
would be to validate the resulting findings by conducting a similar project. That
project could then potentially build on the findings of this project and explore the
area further.

7.5.2 Adding Features
Adding more features to the tool is something that was intended as long as there was
enough time remaining of the project. Since the project had a finite time-scope, and
that a 3D modeling tool can contain a large amount of different functionality, there
are plenty of features that were not included and thus could be implemented in the
future. These features include the sewing feature mentioned in previous sections,
which would allow a user to sew patches of cloth together to form garments. Other
features could be features available in other currently existing 3D modeling tools,
such as skinning and rigging [57] [58].

7.5.3 Improving the Aesthetics
Improving the aesthetics is another thing that could be further worked on, in par-
ticular the colors of the application. As this was not a part of the main focus of the
project, no conclusion can be drawn about that aspect of designing for 3D modeling
software. Other visual elements could also be put some more work into, such as
buttons and sliders, as they are mostly just using the default appearance that the
external GUI library provided.

7.5.4 Technical Limitations
One design aspect of the application is the fact that the simulation is played with
the press of a button, similar to how it is done in many existing 3D modeling tools.
This approach was used in the application because of technical limitations in regards
to the underlying physics engine. If that limitation would not exist, and assuming it
would not cause performance issues, always running the simulation in a 3D modeling
tool could be explored further in the future.

59

7. Discussion

60

8
Conclusion

3D modeling is a broad area, with concepts ranging from generating animated char-
acter models to replicating various physics-based effects in animations. It is widely
deployed in various industries today, such as the game industry, movie industry and
architecture, increasing the demand for 3D modeling software.

The purpose of this thesis was to try to answer the following research question:

What to Consider when Designing and Implementing an Interactive 3D Modelling
Tool for Creating and Managing Generic Soft Bodies?

In order to so, an interactive 3D modeling tool for creating and managing generic
soft-bodies was developed as per the research through design methodology. One of
the main features of the tool is the ability to create simulations including realistic
looking cloth-physics. The resulting animations can be either simple ones, such as
patches of cloth colliding with various geometry shapes, or they can be more com-
plex ones with animated, clothed characters performing some physical actions. The
latter kind would require importing the animated character and its garments from
a local file. The resulting animation is mimicking the effects of real physics with a
plausible result at extremely fast rates.

Before development began, research in the area was thoroughly conducted in order
to get a good insight into everything regarding 3D modeling tools. This research
included exploring not only currently existing tools, but also relevant literature and
previous research done in the area. This research, alongside knowledge gathered
from developing the 3D modeling tool, was then used as the basis for answering the
research question.

As with most other topics within the field of interaction design, there can never be
a single definitive answer to such a question. Instead, the result from this project is
a set of guidelines to be considered when developing a similar tool. These guidelines
to be considered can be summed up as the following: what external libraries to
use, what work process to use, what features should be available, how to design for
different user groups and how to make the code modular. While these guidelines
resulted from the development of this tool, they can in no way be said to be the
only definitive guidelines that may arise when developing a 3D-modelling tool. In-
stead, they are believed to be a good reference for someone developing their own
3D modeling software. Despite much of the features of the application revolving

61

8. Conclusion

around cloth animations, the resulting guidelines are considered to be applicable to
3D modeling tools of all kinds.

62

Bibliography

[1] T. De Moor. Photorealistic Graphics: The Future Looks Just Like
Real Life, August 2018. Retrieved from: https://lab.onebonsai.com/
photorealistic-graphics-the-future-looks-just-like-real-life-504f46f87879.

[2] History of computer animation (CGI). Rendering of a planned highway (1961).
Retrieved from: https://computeranimationhistory-cgi.jimdofree.com/
rendering-of-a-planned-highway-1961/m.

[3] The Computer Graphics Book Of Knowledge. History of Computer Graph-
ics (CG). Retrieved from: https://www.cs.cmu.edu/~ph/nyit/masson/
history.htm.

[4] M. Pharr, W. Jakob, and G. Humphreys. Physically Based Rendering: From
Theory to Implementation. Elsevier Science, 2016.

[5] A. Babadi. What Is Physically-Based Animation?, Novem-
ber 2018. Retrieved from: https://towardsdatascience.com/
what-is-physically-based-animation-cd92a7f8d6a4.

[6] A. Bargteil and T. Shinar. An introduction to physics-based animation. pages
1–1, 08 2018.

[7] K. Erleben, J. Sporring, and K. Henriksen. Physics-based Animation. Charles
River Media graphics. Charles River Media, 2005.

[8] M. Fratarcangeli, V. Tibaldo, and F. Pellacini. Vivace: A practical gauss-seidel
method for stable soft body dynamics. ACM Trans. Graph., 35(6):214:1–214:9,
November 2016.

[9] Wikipedia. Autodesk Maya, 2020. Retrieved from: https://en.wikipedia.
org/wiki/Autodesk_Maya.

[10] Software Suggest. AboutCLO 3D Fashion, 2020. Retrieved from: https:
//www.softwaresuggest.com/clo-3d-fashion.

[11] J. Petty. What is Houdini What Does It Do?, 2020. Retrieved from: https:
//conceptartempire.com/what-is-houdini-software/.

[12] Wikipedia. Autodesk 3ds Max, 2020. Retrieved from: https://en.wikipedia.
org/wiki/Autodesk_3ds_Max.

[13] Deform Dynamics. Unity plugin, 2020. Retrieved from: https://docs.
deformdynamics.com/#unity-plugin.

[14] W. Gaver. What should we expect from research through design? Conference
on Human Factors in Computing Systems - Proceedings, 05 2012.

[15] Tutorials Point. Interactive System Design, February 2020. Retrieved
from: https://www.tutorialspoint.com/human_computer_interface/
interactive_system_design.htm.

63

https://lab.onebonsai.com/photorealistic-graphics-the-future-looks-just-like-real-life-504f46f87879
https://lab.onebonsai.com/photorealistic-graphics-the-future-looks-just-like-real-life-504f46f87879
https://computeranimationhistory-cgi.jimdofree.com/rendering-of-a-planned-highway-1961/m
https://computeranimationhistory-cgi.jimdofree.com/rendering-of-a-planned-highway-1961/m
https://www.cs.cmu.edu/~ph/nyit/masson/history.htm
https://www.cs.cmu.edu/~ph/nyit/masson/history.htm
https://towardsdatascience.com/what-is-physically-based-animation-cd92a7f8d6a4
https://towardsdatascience.com/what-is-physically-based-animation-cd92a7f8d6a4
https://en.wikipedia.org/wiki/Autodesk_Maya
https://en.wikipedia.org/wiki/Autodesk_Maya
https://www.softwaresuggest.com/clo-3d-fashion
https://www.softwaresuggest.com/clo-3d-fashion
https://conceptartempire.com/what-is-houdini-software/
https://conceptartempire.com/what-is-houdini-software/
https://en.wikipedia.org/wiki/Autodesk_3ds_Max
https://en.wikipedia.org/wiki/Autodesk_3ds_Max
https://docs.deformdynamics.com/#unity-plugin
https://docs.deformdynamics.com/#unity-plugin
https://www.tutorialspoint.com/human_computer_interface/interactive_system_design.htm
https://www.tutorialspoint.com/human_computer_interface/interactive_system_design.htm

Bibliography

[16] A. Cooper, R. Reimann, D. Cronin, and C. Noessel. About Face. John Wiley
& Sons, Inc, 2014.

[17] R. Friis Dam and Y. Siang Teo. 5 Stages in the Design Thinking Process,
February 2020. Retrieved from: https://www.interaction-design.org/
literature/article/5-stages-in-the-design-thinking-process.

[18] Interaction-Design.org. 5 Stages in the Design Think-
ing Process, December 2019. Retrieved from: https:
//www.interaction-design.org/literature/article/
design-iteration-brings-powerful-results-so-do-it-again-designer.

[19] M. Isherwood. Stop copying, and start doing competitor UX analy-
sis properly, April 2018. Retrieved from: https://uxplanet.org/
stop-copying-and-start-doing-competitor-ux-analysis-properly-bff8dbfc644f.

[20] J. Rojas. Etch A Sketch: How to Use Sketching in
User Experience Design, December 2019. Retrieved from:
https://www.interaction-design.org/literature/article/
etch-a-sketch-how-to-use-sketching-in-user-experience-design.

[21] N. Babich. The Magic of Paper Prototyping, September 2018. Retrieved from:
https://uxplanet.org/the-magic-of-paper-prototyping-51693eac6bc3.

[22] P. Yadav. Wireframes in UX Design — What, Why, When and
How?, May 2019. Retrieved from: https://blog.prototypr.io/
wireframes-in-ux-design-what-why-when-and-how-ff07bb513c89.

[23] A. Micallef. Wireframing, Prototyping, Mockuping – What’s the Dif-
ference?, February 2018. Retrieved from: https://speckyboy.com/
wireframing-prototyping-mockuping-whats-the-difference/.

[24] Interaction-Design.org. How to Conduct a Cognitive Walkthrough,
2018. Retrieved from: https://www.interaction-design.org/literature/
article/how-to-conduct-a-cognitive-walkthrough.

[25] B. Martin and B. Hanington. Universal Methods of Design. Rockport Publish-
ers, 2012.

[26] E. Wong. Heuristic Evaluation: How to Conduct a
Heuristic Evaluation, January 2020. Retrieved from:
https://www.interaction-design.org/literature/article/
heuristic-evaluation-how-to-conduct-a-heuristic-evaluation.

[27] J. Nielsen. 10 Usability Heuristics for User Interface Design,
April 1994. Retrieved from: https://www.nngroup.com/articles/
ten-usability-heuristics/.

[28] B. Kopf. The Power of Figma as a Design Tool, 2018. Retrieved from: https:
//www.toptal.com/designers/ui/figma-design-tool.

[29] Wikipedia. Adobe XD, 2020. Retrieved from: https://en.wikipedia.org/
wiki/Adobe_XD.

[30] Agile Alliance. What is Agile?, 2020. Retrieved from: https://www.
agilealliance.org/agile101/.

[31] Agile Manifesto. Principles behind the Agile Manifesto, 2001. Retrieved from:
https://agilemanifesto.org/principles.html.

[32] Scrum.org. WHAT IS SCRUM?, 2020. Retrieved from: https://www.scrum.
org/resources/what-is-scrum.

64

https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://uxplanet.org/stop-copying-and-start-doing-competitor-ux-analysis-properly-bff8dbfc644f
https://uxplanet.org/stop-copying-and-start-doing-competitor-ux-analysis-properly-bff8dbfc644f
https://www.interaction-design.org/literature/article/etch-a-sketch-how-to-use-sketching-in-user-experience-design
https://www.interaction-design.org/literature/article/etch-a-sketch-how-to-use-sketching-in-user-experience-design
https://uxplanet.org/the-magic-of-paper-prototyping-51693eac6bc3
https://blog.prototypr.io/wireframes-in-ux-design-what-why-when-and-how-ff07bb513c89
https://blog.prototypr.io/wireframes-in-ux-design-what-why-when-and-how-ff07bb513c89
https://speckyboy.com/wireframing-prototyping-mockuping-whats-the-difference/
https://speckyboy.com/wireframing-prototyping-mockuping-whats-the-difference/
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://www.interaction-design.org/literature/article/heuristic-evaluation-how-to-conduct-a-heuristic-evaluation
https://www.interaction-design.org/literature/article/heuristic-evaluation-how-to-conduct-a-heuristic-evaluation
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.toptal.com/designers/ui/figma-design-tool
https://www.toptal.com/designers/ui/figma-design-tool
https://en.wikipedia.org/wiki/Adobe_XD
https://en.wikipedia.org/wiki/Adobe_XD
https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
https://agilemanifesto.org/principles.html
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum

Bibliography

[33] Scrum.org. What is a Sprint in Scrum?, 2020. Retrieved from: https://www.
scrum.org/resources/what-is-a-sprint-in-scrum.

[34] Scrum.org. What is Sprint Planning?, 2020. Retrieved from: https://www.
scrum.org/resources/what-is-sprint-planning.

[35] Scrum.org. What is a Daily Scrum?, 2020. Retrieved from: https://www.
scrum.org/resources/what-is-a-daily-scrum.

[36] Scrum.org. What is a Sprint Review?, 2020. Retrieved from: https://www.
scrum.org/resources/what-is-a-sprint-review.

[37] Scrum.org. What is a Sprint Retrospective?, 2020. Retrieved from: https:
//www.scrum.org/resources/what-is-a-sprint-retrospective.

[38] Agile Modeling. Feature Driven Development (FDD) and Agile Modeling, 2018.
Retrieved from: http://www.agilemodeling.com/essays/fdd.htm.

[39] CollabNet VersionOne. What Is Kanban? An Introduction to Kanban Method-
ology, 2020. Retrieved from: https://resources.collab.net/agile-101/
what-is-kanban.

[40] Wikipedia. Modular programming, 2020. Retrieved from: https://en.
wikipedia.org/wiki/Modular_programming.

[41] Wikipedia. Interface-based programming, 2020. Retrieved from: https://en.
wikipedia.org/wiki/Interface-based_programming.

[42] Wikipedia. Module pattern, 2020. Retrieved from: https://en.wikipedia.
org/wiki/Module_pattern.

[43] O. Cornut. dear imgui, 2020. Retrieved from: https://github.com/ocornut/
imgui.

[44] Wikipedia. Qt (software), 2020. Retrieved from: https://en.wikipedia.org/
wiki/Qt_(software).

[45] Wikipedia. OpenGL, 2020. Retrieved from: https://en.wikipedia.org/
wiki/OpenGL.

[46] GLFW.org. GLFW, 2020. Retrieved from: https://www.glfw.org/.
[47] libsdl.org. About SDL, 2020. Retrieved from: https://www.libsdl.org/.
[48] Khronos.org. OpenGL Loading Library, 2020. Retrieved from: https://www.

khronos.org/opengl/wiki/OpenGL_Loading_Library.
[49] Assimp. Open Asset Import Library (assimp), 2020. Retrieved from: https:

//github.com/assimp/assimp.
[50] magnum engine. magnum engine, 2019. Retrieved from: https://magnum.

graphics/.
[51] Laura. Python vs. C++: Let’s Compare, January 2020. Retrieved from: https:

//www.bitdegree.org/tutorials/python-vs-c-plus-plus/.
[52] S. Parent. Inheritance Is The Base Class of Evil, 2013. Re-

trieved from: https://channel9.msdn.com/Events/GoingNative/2013/
Inheritance-Is-The-Base-Class-of-Evil.

[53] A. Papadopoulos. SHOULD DEVELOPERS USE THIRD-PARTY LI-
BRARIES?, 2018. Retrieved from: https://www.scalablepath.com/blog/
third-party-libraries/.

[54] J. Jeremiah. Survey: Is agile the new norm?, 2020. Retrieved from: https:
//techbeacon.com/app-dev-testing/survey-agile-new-norm.

65

https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.scrum.org/resources/what-is-sprint-planning
https://www.scrum.org/resources/what-is-sprint-planning
https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.scrum.org/resources/what-is-a-sprint-review
https://www.scrum.org/resources/what-is-a-sprint-review
https://www.scrum.org/resources/what-is-a-sprint-retrospective
https://www.scrum.org/resources/what-is-a-sprint-retrospective
http://www.agilemodeling.com/essays/fdd.htm
https://resources.collab.net/agile-101/what-is-kanban
https://resources.collab.net/agile-101/what-is-kanban
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Interface-based_programming
https://en.wikipedia.org/wiki/Interface-based_programming
https://en.wikipedia.org/wiki/Module_pattern
https://en.wikipedia.org/wiki/Module_pattern
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://en.wikipedia.org/wiki/Qt_(software)
https://en.wikipedia.org/wiki/Qt_(software)
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenGL
https://www.glfw.org/
https://www.libsdl.org/
https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library
https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library
https://github.com/assimp/assimp
https://github.com/assimp/assimp
https://magnum.graphics/
https://magnum.graphics/
https://www.bitdegree.org/tutorials/python-vs-c-plus-plus/
https://www.bitdegree.org/tutorials/python-vs-c-plus-plus/
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
https://www.scalablepath.com/blog/third-party-libraries/
https://www.scalablepath.com/blog/third-party-libraries/
https://techbeacon.com/app-dev-testing/survey-agile-new-norm
https://techbeacon.com/app-dev-testing/survey-agile-new-norm

Bibliography

[55] V. Mirzoyan. The Importance of Modular Programming, May 2020. Retrieved
from: https://aist.global/en/importance-of-modular-programming.

[56] R. Friis Dam and Y. Siang Teo. Introduction to the Essential Ideation
Techniques which are the Heart of Design Thinking, July 2019. Retrieved
from: https://www.interaction-design.org/literature/article/
introduction-to-the-essential-ideation-techniques-which-are-the-heart-of-design-thinking.

[57] 3D Ace. Skinning, 2020. Retrieved from: https://3d-ace.com/expertise/
technical-expertise/skinning.

[58] 3D Ace. Rigging, 2020. Retrieved from: https://3d-ace.com/expertise/
technical-expertise/rigging.

66

https://aist.global/en/importance-of-modular-programming
https://www.interaction-design.org/literature/article/introduction-to-the-essential-ideation-techniques-which-are-the-heart-of-design-thinking
https://www.interaction-design.org/literature/article/introduction-to-the-essential-ideation-techniques-which-are-the-heart-of-design-thinking
https://3d-ace.com/expertise/technical-expertise/skinning
https://3d-ace.com/expertise/technical-expertise/skinning
https://3d-ace.com/expertise/technical-expertise/rigging
https://3d-ace.com/expertise/technical-expertise/rigging

A
Images of Different Scenes

This chapter shows some images of different scenes created with the 3D modeling
tool developed during this project.

Figure A.1: A scene containing an animated walking character wearing a dress.

I

A. Images of Different Scenes

Figure A.2: This figure shows a zoomed in dress on an animated character, dis-
playing the wrinkles in more detail as the garment follows the body.

Figure A.3: This figure shows a dress being anchored to a rotating sphere collider.

II

A. Images of Different Scenes

Figure A.4: This figure shows a piece of cloth hanging from its corners while
affected by gravity.

Figure A.5: This figure shows a volumetric mesh representing an armadillo that
has been imported into the application.

III

A. Images of Different Scenes

Figure A.6: This figure shows a scene where several patches of cloth are laying on
top of a box.

Figure A.7: This figure shows the same scene as the previous figure, except the
top patch of cloth has now been dragged to the side of the box.

IV

A. Images of Different Scenes

Figure A.8: This figure shows a large patch of cloth on top of a sphere-, box- and
capsule-collider that rotate in different ways.

Figure A.9: This figure shows a ribbon falling to the ground.

V

A. Images of Different Scenes

Figure A.10: This figure shows the same scene as the previous figure after the
entire ribbon has fallen to the ground.

VI

	List of Figures
	Introduction
	Background
	Research problem
	Research question
	Related Work
	Delimitations

	Theory
	Research Through Design
	Graphical User Interface Design
	Excise
	Application Posture

	Methodology
	Interaction Design Methods
	Design Thinking
	Iterative Design
	Competitor Analysis
	Sketching
	Paper Prototyping
	Wireframing
	Mockuping
	Cognitive Walkthrough
	Think-Aloud Protocol
	Heuristic evaluation

	Wireframing Tools
	Software Development Methods
	Agile Software Development
	Scrum
	Feature-Driven Development
	Kanban
	Modular Programming
	Interface-Based Programming
	Module Pattern

	Software Development Tools
	DynamoSDK
	Dear IMGUI
	Qt
	OpenGL
	OpenGL Context Creating Tools
	OpenGL Loading Library
	The OpenGL Utility Library
	Open Asset Import Library
	Magnum Engine
	Serialization Library
	Transformation Gizmo Library
	Additional Libraries

	Planning
	Process
	Research phase
	Design phase
	Implementation phase

	Execution and Process
	Research Phase
	Researching 3D modeling software
	Researching relevant literature
	Researching software development tools

	Design Phase
	Software Development
	Sprint 1 - Implement the Rendering
	Sprint 2 - Importing Objects
	Sprint 3 - The Picking Feature
	Sprint 4 - The Painting Feature
	Sprint 5 - Implementing Camera Behavior
	Sprint 6 - Adding Convenience Features
	Sprint 7 - Refactoring the Application
	Sprint 8 - Various Fixes
	Sprint 9 - Adding Transformation Gizmos
	Sprint 10 - The Final Sprint

	Results
	The 3D Modeling Tool
	Start View
	Object Details View
	Painting Tools
	Running the Simulation
	Adding Collider Objects
	Anchoring Object to Collider
	File
	Import Animation
	Edit

	What to Consider when Designing and Implementing an Interactive 3D Modeling Tool for Creating and Managing Generic Soft Bodies?
	What External Libraries to Use
	What Work Process to Use
	What Features should be Available
	How to Design for Different User Groups
	How to Make the Code Modular

	Discussion
	The Tool
	The Considerations
	Execution and Process
	Research Phase
	Design Phase
	Software Development

	Ethical Aspects
	Future Work
	Validating the Results
	Adding Features
	Improving the Aesthetics
	Technical Limitations

	Conclusion
	Bibliography
	Images of Different Scenes

