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Abstract
Manufacturing companies need to have an efficient production and one important
effort is to optimize the production schedules. The task of finding good and useful
schedules for the products and the production machines is complicated. A further
complication is that some production jobs may require a maintenance task of the
machine to be performed before the job can be processed.

The company GKN Aerospace Sweden AB has developed a mathematical model
that defines feasible sequences of jobs and maintenance tasks to be scheduled in the
machines. The model optimizes the schedules in terms of minimizing the finishing
times and the tardiness of the jobs. Since the number of feasible sequences is huge
for reasonable numbers of jobs to be scheduled, the size of the model grows too large
for practical problem settings.

This project presents a column generation approach to generating a useful subset
of all existing feasible sequences to be included in GKN’s present model. Our results
show that the schedules computed by the mathematical model become better when
more feasible sequences are included, but the computation times then grow longer.

Keywords: Scheduling, Flexible job-shop, Column generation, Integer linear opti-
mization, CPLEX, Time-indexed model.
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1
Introduction

1.1 Background
The company GKN has a heat treating department located in Trollhättan, Sweden.
This department handles orders of products from all over the world that require
heat treating. These products are engine components for aeroplanes and rockets
which GKN develops and produces. The quality of these products are therefore
extremely high, and hence, the products take a lot of time to produce. An example
of such a product can be seen in Figure 1.1. The machines that the department
uses for the production are furnaces. The high quality requirements of the prod-
ucts result in expensive furnaces, which are very large. Few furnaces are therefore
used for the production. These furnaces are not identical, since different products
require different operations. However, some products can be heat treated in one of
several furnaces, but the processing time of the job might depend on the specific
furnace. Different cleaning processes, such as the bake-out and the vacuum test,
are sometimes required in the furnaces before some specific products can be heat
treated. These cleaning jobs are referred as maintenance jobs. Karin Thörnblad
has developed an integer optimization model from the model in [1] that schedules
the requested jobs for the heat treating department so that the productivity of the
furnaces are high, while priority orders are scheduled earlier than other jobs. A job’s
priority is a function of its deadline. The model in [1] also schedules the mainte-
nance jobs so that the schedule can be used in practise without modifications. The
model has increased productivity by 9% (see [2]). While scheduling maintenance
jobs in addition to the heat treatment jobs and the titanium jobs is necessary to
obtain a schedule that can be used in practise for GKN, it has been found that
computing a schedule with many heat treatment jobs and the titanium jobs that
require maintenance jobs is very time consuming.

1.2 Problem Definition

1.2.1 GKN’s Problem is NP-hard
The scheduling problem at GKN is a generalization of the Flexible Job-shop Schedul-
ing Problem (FJSP), which is NP-hard (see [3, Chapter 34]). The FJSP is a schedul-
ing problem with a set of jobs and a set of machines. Each job is defined as an
ordered set of operations, and the task is to schedule all the given operations to the
machines in the given order. Each operation requires a certain amount of time to
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1. Introduction

Figure 1.1: The compressor rear frame is a product that requires heat treatment.

be processed in one specific machine. The FJSP is a generalization of the Job-shop
Scheduling Problem (JSP). In the JSP, each operation can only be heat treated in
one of the machines (see [4]), while in the FJSP an operation can be heat treated
in a subset of the machines (consisting of one or more machines). Hence, the JSP is
a special case of the FJSP. It should be noted that most jobs in the heat treatment
department at GKN consists of only one operation.

1.2.2 The Special Jobs

Two types of jobs that GKN has are a bit special: the titanium jobs and the solder
jobs. These jobs can be heat treated in a furnace only under special conditions. A
solder job can only be heat treated in a furnace if that furnace has recently had a
bake-out job or if the last job that was heat treated in that furnace was another
solder job that requires a higher maximal temperature than the solder job at hand.
The titanium jobs can only be heat treated in a furnace if the furnace has recently
had a bake-out job and (had a vacuum test job or if the last job that was heat
treated in that furnace also was a titanium job). These two types of jobs are harder
to schedule than the others, since they require that the furnaces have been prepared
for them, which is not the case for the other jobs. The bake-out job and the vacuum
test job are refereed to as maintenance jobs. The maintenance jobs takes several
hours to perform in a furnace and no other job can be heat treated in the furnace
during that time.

1.2.3 The Special Sequences

A special sequence is defined as an ordered set of maintenance jobs and special jobs
if the jobs in the ordered set can be scheduled in a furnace as they are ordered in
the set. While any order of the titanium jobs in a schedule is valid, this is not the
case for solder jobs. Hence, in this respect the titanium jobs are easier to schedule
than the solder jobs.

2



1. Introduction

1.2.4 The Families of Special Sequences
A group of special sequences such that each special job is included in exactly one
of the sequences, is called a family of special sequences. All requirements regarding
maintenance jobs are satisfied when each special sequence in a family of special
sequences is scheduled. Computing and storing the elements (i.e., ordered sets)
in the family requires a time and a space that is exponential as a function of the
number of special jobs included in a problem instance. Even for instances with
just ten special jobs, finding and verifying an optimal solution has been too time
consuming for GKN, since such an instance can have more than 150 000 families of
special sequences.

1.2.5 GKN’s Model
GKN uses a complex integer linear program, that is referred to as the scheduling-
model, which is composed by several types of constraints, and which model their
scheduling problem. The problem is challenging to solve for practical instances as
a consequence of the large numbers of variables and constraints. Especially the
constraint regarding the special jobs, which require pre-computed special sequences
and families of special sequences. The scheduling model requires pre-computed spe-
cial sequences and families of special sequences, since it can not compute that by it
self, and hence, GKN needs to pre-compute special sequences and families of special
sequences for the model.

The methodology GKN uses to find a dense schedule when there are many special
jobs is to compute some of all the families of special sequences, and then let the
scheduling model consider only these families. This speeds up the process of finding
a usable schedule. It can be shown that some special sequences will not be part of
an optimal schedule, since other special sequences are dominating them, and it is
therefore no point for the scheduling model to consider them and the families that
include these special sequences (see [5, Chapter 2] for domination). However, it
can not be guaranteed that a family that is not computed by GKN is not part of an
optimal schedule, since special sequences that exist are not generated even when it
is unknown if they are dominated by others or not.

1.3 Research Questions
While it is impossible to know exactly which family of special sequences that will
be part of an optimal schedule, it is likely that the special sequences of a family
that is part of an optimal, or close to an optimal, schedule have some property that
can be measured. We will in this project try to generate special sequences which we
believe are part of an optimal or close to optimal schedule using a column generation
method (see [6]). The purpose of the project is to answer the following questions:

1. Is it faster to find a dense schedule by using column generation to generate
special sequences compared to the current method used by GKN?

2. How "good" are the schedules that are found using the proposed method com-
pared too those found by the current method?

3



1. Introduction

1.4 Limitations
We will generate special sequences for a simpler version of the scheduling problem as
compared to the problem faced by GKN. This simpler version will not allow batches
of jobs to be scheduled, where a batch consist of a number of jobs that are heat
treated in a furnace at the same time. There will be no scheduled breaks such that
no jobs can be heat treated during that time in the simpler version of the problem.
Furthermore, each schedule are independent of the schedule that was computed for
the problem instance of the previous day in the simpler version of the problem. In
reality, the department makes a new schedule every day and uses the schedule that
was computed the previous day to allow the scheduling model to be able to find
more optimized schedules. The department do this by using the fact that some
maintenance jobs in some special sequences are not needed if the last job that was
processed in a furnace the previous day was a maintenance job or a solder job.

1.5 Thesis Outline
The thesis is organized as follows. Chapter 2 presents an introduction to schedul-
ing problems and models. Chapter 3 gives a basic introduction to the linear and
integer optimization theory that is needed to understand the models that are used
in the project. A modified version of the scheduling model that GKN uses for their
scheduling problem is presented in Chapter 4, and the column generation model
that generates special sequences is given in Chapter 5. Chapter 6 discusses imple-
mentation details that are relevant for the result, which is presented in Chapter 7.
A discussion and conclusions of the results are found in Chapter 8. Future research
ideas are presented in Chapter 9.
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2
A Literature Review of Scheduling

Problems and Models

A literature review of relevant scheduling problems for different strategies, and mod-
els to solve them — and how well these strategies and models perform in practise
— are presented in this chapter.

2.1 Scheduling Problems

The scheduling problems that are reviewed are the Job-shop Scheduling Problem
(JSP), the Flexible Job-shop Scheduling Problem (FJSP), the Parallel Machine
Scheduling Problem (PMSP), and the Batch Machine Scheduling Problem (BMSP).
The latter three of these are generalizations or special cases of the JSP. The task of
solving these problems is NP-hard (see [7, Chapter 2]).

2.1.1 The Job-shop Scheduling Problem
The JSP is a scheduling problem, in which a finite number of operations shall be
scheduled to a finite set of machines. Once an operation starts, a certain time that
is dependent on the machine is required until the operation is complete. A machine
that starts an operation is occupied until that operation is completed. Each of the
operations can only be scheduled to one specific machine, and an operation can
only be scheduled in a machine that is not occupied. Furthermore, each operation
belongs to a certain job, and for each job, a partial order for the operations that
the job consists of is given. An operation can only be scheduled in a machine when
all the operations that have a lower order than the operation that is considered
has been completed. The JSP has a great practical value for the industry, and has
therefore been studied a lot (see [8] for a review).

2.1.2 The Flexible Job-shop Scheduling Problem
The FJSP is an extension of the JSP such that each operation can be scheduled to
a subset of all machines in the FJSP (see [4]). While the JSP has a great practical
value, the FJSP has an even greater practical value, since it is natural that (at a
given point in time) an industry has several machines that can handle the same
operation in the case that a machine needs maintenance work, gets broken, etc (see

5



2. A Literature Review of Scheduling Problems and Models

[9]). FJSP is NP-hard to solve, since the JSP is a special case of the FJSP and JSP
is NP-hard.

While the FJSP is NP-hard in general, it is known how to find and verify a
solution that minimizes the makespan (see Section 2.1.5.1) of an FJSP instance in
polynomial time, if the instance has not more than two jobs (see [10, Chapter 7]).
However, no polynomial algorithm that solves the FJSP for instances with more
than two jobs is known and solving such small instances possesses low practical
value.

2.1.3 The Parallel Machine Scheduling Problem
The PMSP is a special case of the FJSP. Each operation in the PMSP can be
scheduled to any machine, and each job has one operation, and therefore, none of
the machines needs to consider at what time the operations on other machines are
completed (see [11, 12]). This is generally not the case in the FJSP. Consider an
operation that belongs to a job with several operations in the FJSP. In the case that
the operation is the first in the given partial order, then none of the other operations
can be scheduled before this operation has been completed.

2.1.4 The Batch Machine Scheduling Problem
Batches, and not operations, are scheduled in the BMSP. A batch is a set of oper-
ations that can be scheduled in a machine simultaneously (see [13]). The BMSP is
of practical value, since machines that can process batches of operations will result
in a non-higher total time during which the machines are occupied as compared
to machines that can not handle batches. All jobs in the version of BMSP to be
discussed in this chapter have only one operation.

2.1.5 Objective Functions
Objective functions are used in optimization problems to measure the quality of
solutions. The goal of an optimization problem is to find a feasible solution such
that the value of the objective function is minimized (or maximized). A feasible
solution may be optimal for some objective function but considered bad for another
objective function. A certain objective function can be chosen for several reasons: A
solver can compute a solution for a problem faster, or the objective function is more
relevant for practical applications of the problem than other objective functions.
The goal is often too find an as "cheap" schedule as possible, or to find a schedule
that completes all jobs as early as possible. This implies that the objective function
for scheduling problems should be minimized. Two often used objective functions
for scheduling problems are the makespan and the weighted sum of completion times
and tardiness.

2.1.5.1 Minimizing Makespan

The makespan is defined as the time when the latest job is completed. While
this objective function minimizes the time that the machines are needed, it has
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2. A Literature Review of Scheduling Problems and Models

several disadvantages. The order in which the operations starts may be such, that
several machines could complete the operations they have been assigned to faster if
operations were re-ordered, without affecting the minimum value of the makespan. It
could also be the case that assigning some operation to another machine would cause
some machines to complete their operations faster, without affecting the makespan.
Moreover, a certain job may have a priority to be completed faster than others,
which is ignored by this objective function.

2.1.5.2 Minimizing Weighted Averages of Completion Times and Tardi-
ness

An objective function that minimizes the weighted averages of completion times and
tardiness is often used for scheduling problems. When such an objective function
is used, each job is given one or several weights. E.g., one weight applied to the
completion time of the job and one weight applied to its tardiness (in case it is
completed later than a given deadline). The advantage of this objective function is
that jobs can be given priorities. However, this introduces a problem — it is non-
trivial to decide what weights the jobs should be given, since it is hard to determine
how a certain job is prioritized compared to others.

2.2 Scheduling Models and Methods
Different methods and models that tackle scheduling problems are presented in this
section. These methods will either use constraint programming or integer linear
programs to model the scheduling problems that has been discussed above. Two of
the methods that will be described below use column generation, which is also the
method that will be used in this project.

According to Rossi, Beek andWalsh ([14, Chapter 1]) "The basic idea in constraint
programming is that the user states the constraints and a general purpose constraint
solver is used to solve them." A problem can be modeled as a constraint program in
many different ways, and depending of how it is modeled, the time for a solver to
find a (optimal) solution may vary.

An integer linear program is a model in which a linear objective function should
be minimized (or maximized) so that a set of linear constraints are satisfied. Column
generation is a technique that can be used with a linear program to enhance the
process of finding an optimal solution by ignoring a large set of the variables that
are not part of an optimal solution.

2.2.1 Constraint Programming Applied to Scheduling Prob-
lems

The FJSP can be divided into two sub-problems, namely the routing problem and
the order assignment problem. The routing problem is to select a suitable machine
for each operation. When the routing problem has been solved, the order assignment
problem can be solved, which is to assign an order of the operations on each machine.

7



2. A Literature Review of Scheduling Problems and Models

The order assignment problem takes the solution of the routing problem as input.
The solution of the order assignment problem is also a solution to the FJSP.

The division of the problem results in that only a sub-optimal solution of the
original problem can be found when the sub-problems are solved. This is also the
case when both of the two sub-problems are solved optimally by first solving the
routing problem optimally and then solving the order assignment problem by us-
ing the optimal solution of the routing problem as input to the order assignment
problem.

Constraint programming will be applied to solve the two sub-problems in this
section. While constraint programming can be used to compute and verify opti-
mal solutions for many problems, the approach that will be explain in section is a
heuristic method.

The routing problem has a trivial solution in the JSP, since each operation can
only be performed by one machine. When a valid routing assignment has been found
for an FJSP, the remaining problem is in fact to solve a JSP, i.e, to find an order of
the operations on each machine (see [15]).

Depending of how the FJSP is tackled, the problem may implicitly be divided into
these two sub-problems. Brandimarte (see [16]) presents a constraint programming
model that solves the FJSP by solving the two sub-problems independently with a
hierarchical tabu search (HTS) method. In a HTS, a feasible neighbour solution is
being searched for from a feasible solution that is already known. A HTS algorithm
terminates when some given stop condition has been satisfied, e.g. a time-limit.
A neighbour solution is obtained from another solution by performing a certain
process that transforms the current feasible solution to another feasible solution.
Brandimarte has defined four methods to obtain neighbour solutions. One of these
methods is to swap the order of two operations that belongs to the same machine.

The difference between the HTS method and the local search (LS) method is that
a neighbour solution that has a higher cost (assuming the problem is a minimization
problem) is not ignored by the HLS method, which they are by LS method. The
advantages with not ignoring neighbour solutions that are worse than the current
solution is that one can escape from a local minimum. A local minimum is a solution
for which all neighbours have higher costs, but the solution itself does not have be
globally optimal. A problem with the HTS method is that a specific solution can
be found several times. A tabu list is usually used to keep track of solutions that
have been found, otherwise, the algorithm can get stuck in a cycle of already known
solutions (see [17] for more about HTS).

2.2.2 Model Scheduling Problems as Integer Linear Pro-
grams

There are many approaches to model a scheduling problem as an integer linear
program. How fast a scheduling problem can be solved when modeled as an integer
linear program depends on how the constraints, the objective function, and the
decision variables are defined.

One approach to define the decision variables of an integer linear problem for a
scheduling problem is to define a binary variable for each possible order an operation

8
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can be processed by a certain machine. The number of decision variables that are
needed for each machine is exponential as a function of the number of operations that
can be performed by that machine, since all permutations of the operations might
be a valid order. For example, if there are five (5) operations that can be performed
in a certain machine, then at most 5! = 120 binary decision variables are required to
model the possible operation orders. The decision variables that represent the order
of the operations for a machine in a solution are equal to one, and otherwise equal
to zero. Models that employ binary variables of these types belong to the Manne
family (see [18, 19]). Another approach is to define the variables such that each
binary variable equals one if a certain job starts in a certain machine at a certain
time-step. A time-step is a discrete number that approximates the real time.

The number of time-steps that are needed to represent the problem exactly de-
pends on the processing time of the operations. If the processing time of an operation
takes a certain number of minutes, which can not be written in integer format in
any unit bigger than minutes (as hours or quarters, etc.), then each time-step must
represent at most one minute). If the total processing time is several hours, say ten,
for example, then 10 ·60 = 600 time-steps are needed for the model. Furthermore, if
a certain machine can process five (5) operations, then 5 · 600 decision variables are
needed to represent all operations’ possible starting times for the machine. A model
that uses variables that represent job starting times is referred to as a time-indexed
model (see [20, 21]).

Thörnblad [1] discovered that even if the time-indexed model results in more
variables than the models in which variables represent orders, the time-indexed
model can be solved more efficiently in practice. More information about modeling
principles for scheduling problem using integer linear programs can be found in [1].

2.2.3 Column Generation for the Parallel Machine Schedul-
ing Problem

Van Den Akker et al. [6] developed a column generation algorithm for the PMSP that
generates machine schedules. A machine schedule is a list of operations that must
be scheduled on the machine. The model is initiated by a few machine schedules to
form a feasible solution. New machine schedules are then generated and added to the
model until an optimal solution to the model has been found. The model is a linear
program, and not an integer linear program, since the method column generation
can not be applied on integer linear programs. The columns in their linear program
correspond to machine schedules; they can be generated in polynomial time as a
function of the input size of the problem instance by solving a shortest path problem
in a graph. Van Den Akker’s column generation algorithm and implementation
was successful, since it could be used to solve instances that other algorithms and
software could not solve. Algorithms then had difficulties to solve instances with
20 jobs and five machines, or 30 jobs and four machines, while Van Den Akker’s
column generation algorithm could solve such instances in 15 seconds (see [22, 6]).
It was noted that the smaller the ratio of jobs and machines were, the larger problem
instances could be solved. Van Den Akker et al. could solve instances with 50 jobs
and three machines, and instances with 100 jobs if the number of machines were
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ten or more. Van Den Akker’s algorithm will be explained in more detail in Section
3.2.3.

2.2.4 Column Generation for the Batch Machine Scheduling
Problem

Tang and Wang (see [23]) has developed a column-row-generation algorithm for
the BMSP. This method is a bit more complex than the usual column generation
method, since rows are generated as well. The rows in their model correspond to
batches and the columns correspond to machine schedules of batches. The reason
for generating rows (batches) too is that the number of batches are exponential as
a function of the number of jobs, and it likely would take too long time to compute
all batches. Therefore, their method is a column-row-generation algorithm, since
they generate both rows of batches, and columns of schedules that are containing
batches.

Before their results is discussed, the gap between two solutions is defined as the
ratio of their respective objective values. The results of the benchmarks of their
algorithm shows that it is very successful, since the average and maximum gaps
between the optimal solution for their restricted master program and their integer
restricted master program of 300 randomly generated instances were shown to be at
most 1% and 2%, respectively (see Section 3.1.2 for the notation (restricted) master
program). The restricted master program provides a lower bound for the integer
restricted master program, and since the gaps between these two were very low for
the instances solved in [23], one can draw the conclusion that their integer solution
is near-optimal. Furthermore, as in [22], Tang and Wang found that the running
time decreases as the number of machines increases.
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An introduction to the theory that is needed to understand the models that are used
in this project is given in this chapter. Section 3.1 introduces the concept of linear
programming, the simplex method, which is an algorithm that finds and verifies
optimal solutions for linear programs, and the idea of column generation that can
be applied with Dantzig-Wolfe decomposition. Column generation is used with the
simplex method to reduce the total search space needed to find an optimal solution.

Section 3.2 presents integer linear programming and methods to solve it, including
the algorithm branch-and-bound (BaB), which finds and verifies optimal solutions
for integer linear programs, and the branch-and-price (BaP) algorithm, which is a
combination of column generation and the algorithm BaB, and Section 3.2.3 presents
an example of how column generation can be applied without employing the Dantzig-
Wolfe decomposition for an integer linear program.

3.1 Linear Programming
Linear programming is a field in optimization theory that is used for various applica-
tions, since many optimization problems can be formulated as linear programs (see
[24, Chapter 7] for examples). A linear program (LP) consists of a linear objective
function and a set of linear constraints. It can be formulated in a matrix format as
to

minimizex
z := c>x, (3.1a)

subject to
Ax = b, (3.1b)
x ≥ 0, (3.1c)

where x ∈ Rn are the decision variables, c ∈ Rn are the given objective weights for
the decision variables, b ∈ Rm is a constant vector and A ∈ Rm×n is a constant
matrix such that rank(A) = m. The objective function is c>x, and each row in
(3.1b) and (3.1c) defines constraints.

A feasible solution to the linear program (3.1) assigns a value to each decision
variable such that all constraints are satisfied, and an optimal solution is a feasible
solution that minimizes the objective function over the set of all feasible solutions.
The points in the polyhedron P = {x |Ax = b,x ≥ 0} define the set of all feasible
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Figure 3.1: The bottom left area illustrates the polyhedron defined by the five linear
constraints x1 + 4x2 ≤ 16, 2x1 − 5x2 ≤ 6, 6x1 + 4x2 ≤ 30, x1 ≥ 0 and x2 ≥ 0. The
points in the polyhedron is the set of all feasible solutions that the linear program
(3.1) has. There are five extreme points in this polyhedron and for any objective
function, at least one of these points is a minimizer.

solutions to the linear program (3.1). An example of such a polyhedron is illustrated
in Figure 3.1. At least one of the extreme points in the polyhedron P is an optimal
solution for the linear program (3.1) (see [25, Chapter 1]).

Every linear program, referred to as the primal problem, has a corresponding
dual problem. The linear programming dual problem of the primal problem (3.1) is
to

maximizey
b>y, (3.2a)

subject to
A>y ≤ c, (3.2b)

where y ∈ Rm are the dual variables. The dual problem can be used to find an
upper bound on the optimal value of the primal problem and is utilized in the
column generation method which will be presented later in this chapter.

3.1.1 The Simplex Method
This section presents a short summary of the simplex method (see [25, Chapter 1]).
An optimal solution to the linear program (3.1) can be found and verified by iterating
over all extreme points in the polyhedron P , by checking which point that results
in the lowest value for the objective function. However, an exponential number of
such points exist with respect to the number of decision variables; therefore it is
not possible in practice to consider all of them for large instances. The simplex
method tries to avoid checking all of them by only considering points that have a
lower objective value than the value of the best known extreme point.

A point x̂ in the polyhedron P is an extreme point if at least n − m variables
in the point are equal to zero. These variables are the non-basic variables and the
remaining variables are the basic variables. The LP (3.1) can then be rewritten as
to

12
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minimizexB ,xN
c>BxB + c>NxN , (3.3a)

subject to
ABxB + ANxN = b, (3.3b)

xB,xN ≥ 0, (3.3c)

where xB is a vector of the basic variables in the point x̂, xN is a vector of the
non-basic variables in the point x̂, AB, cB and AN , cN are the associated matrices
and vectors for the variables xB and xN , respectively. Multiplying both left and
right hand sides of Equation (3.3b) with A−1

B results in

A−1
B (ABxB + ANxN ) =

xB1 ÃN1,1xN1 . . . ÃN1,n−m
xNn−m

. . .
... . . .

xBm ÃNm,1xN1 . . . ÃNm,n−m
xNn−m


︸ ︷︷ ︸

n

= A−1
B

 b1
...
bm

 , (3.4)

where xBi is element i’th in the vector xB, xAj is element j in the vector xA and
ÃNi,j is the element on row i and column j in the matrix ÃN = A−1

B AN such that
1 ≤ i ≤ m and 1 ≤ j ≤ n − m. In this format, the variables can be viewed as
columns.

The point x̂ might be a non-optimal solution if there exists a non-basic variable
xNk such that c>Nk < 0, since the value of the objective function would decrease by
c>NkxNk < 0 when xNk > 0, where 1 ≤ k ≤ m. When this variable is assigned a
positive value, the decision variables need to be assigned as follow:


xB1
...

xBm

 = A−1
B


b1 − ANk,1xNk...
bm − ANk,mxNk

 . (3.5)

Otherwise, (3.3b) will not hold. The larger value the variable xNk is assigned, the
lower is the value of c>NkxNk < 0. Therefore, xNk should be assigned the largest
value such that no xBj , 1 ≤ j ≤ m is assigned a negative value. When xNk and xBj
have been assigned their new values, an improved solution has been found. At least
one xBj will then be equal to zero. In the improved solution, the variable xBj is a
non-basic variable and the variable xNk is a basic variable. The improved solution
is optimal if there does not exists a non-basic variable xNk such that c>Nk < 0.

Spielman and Teng [26] have shown that the simplex method has an exponential
running time in the worst case as a function of the number of decision variables, but
its running time is polynomial in most cases.

3.1.2 Dantzig-Wolfe Decomposition and Column Genera-
tion for Linear Programs

A disadvantage with instances of linear programs with gigantic numbers of (non-
basic) variables is that iterating over all of these variables, which is necessary to find

13
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the variable (or column) with the highest reduced cost, takes very long time. This
makes the simplex method slow, even when only a polynomial number of iterations
with respect to the input size is needed to find and verify an optimal solution.
The column generation method tackles this problem by considering a subset of the
variables and generates variables with a negative reduced cost to the linear program
in an iterative process. The optimal solution is found when no variable, or column,
with a negative reduced cost can be generated. Most variables that exist are never
included in the program in practise when column generation is used. Depending
of how the linear program is formulated, it may have to be transformed to an
equivalent program before column generation can be applied. The Dantzig-Wolfe
decomposition is often used for this task.

The Dantzig-Wolfe decomposition transforms a linear program into an equivalent
linear program that is referred to as the master problem (MP). A restricted master
problem (RMP) and one or several sub problems (SP) are then defined. The RMP
has the same set of constraints and objective function as the MP, but only a subset
of all its variables. The SP is used to generate columns to the RMP until no column
with a negative reduced cost can be generated. The SP requires the values of an
optimal solution of the linear programming dual problem of the RMP to calculate
new columns. When no column with a negative reduced cost can be found, the value
of the objective function for an optimal solution of the current RMP equals that of
the MP. The Dantzig-Wolfe decomposition technique can be applied to the linear
program (3.1) by first dividing the constraints into two sets. The linear program
(3.1) is equivalent to the program to

minimizex
c>x, (3.6a)

subject to
A1x = b1, (3.6b)
A2x = b2, (3.6c)

x ≥ 0, (3.6d)

where A1 ∈ Rm1×n , A2 ∈ Rm2×n A =
[
A1
A2

]
, and b =

[
b1
b2

]
, where b1 ∈ Rm1 and

b2 ∈ Rm2 , such that m1 +m2 = m. Let us assume that the constraints (3.6b) are the
non-complicated constraints in (3.6). The polyhedron S = {x |A1x ≤ b1,x ≥ 0}
includes all the values the constraints (3.6b) allow the decision variables to be equal
to. Any point x̂ ∈ S can be written as

x̂ =
|Ω|∑
i=1

λix̂i , (3.7a)

where
|Ω|∑
i=1

λi = 1, (3.7b)

λi ≥ 0, i = 1, . . . , |Ω|, (3.7c)

14
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and each x̂i ∈ Ω, where Ω is the set of the extreme points of the polyhedron S. The
linear program (3.6) can therefore be written as to

minimizeλ
|Ω|∑
i=1

c>(λix̂i), (3.8a)

subject to

A2

|Ω|∑
i=1

(λix̂i) = b2, (3.8b)

|Ω|∑
i=1

λi = 1, (3.8c)

λi ≥ 0, i = 1, . . . , |Ω|, (3.8d)

This problem is equivalent to the linear program (3.6) but has m2 + 1 instead of
m1 +m2 rows. The number of variables on the other hand is likely more than in the
original formulation, since the number of columns is equal to the number of extreme
points in the polyhedron S.

It might be possible to decompose the problem further if the decision variables
in the linear program (3.6) can be divided into p disjoint parts such that none of
the constraints in (3.6) depending on variables in several of these disjoint sets. An
illustration of this can be seen in Figure 3.2. The notations can then be written
such that c> = [−→c1, . . . ,−→cp], x> = [−→x1, . . . ,

−→xp], b> = [−→d ,−→b1, . . . ,
−→
bp] and

A =



D1 D2 . . . Dp

F1

F2

. . .
Fp

 .

The linear program program (3.1) can then be written as to

minimizex
p∑

k=1

−→ck
>−→xk, (3.9a)

subject to
p∑

k=1
Dk
−→xk = −→d , (3.9b)

Fk
−→xk = −→bk, k = 1, . . . , p, (3.9c)
xki ≥ 0, i = 1, . . . , |Ωk|, k = 1, . . . , p, (3.9d)

where the set Ωk is defined as the extreme points in the polyhedron Sk = {x |Fk ≤−→
bk,x ≥ 0} and xki is the i’th element in Ωk for 1 ≤ k ≤ p and 1 ≤ i ≤ |Ωk|. The
linear program (3.1) can then be decomposed into the linear program that
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D1 D2
...

Dp

F 1

F 2

.
  .
    .

F p

Figure 3.2: An illustration of how a linear program’s variables can be divided into
p disjoint sets.

minimizeλ
p∑

k=1

|Ωk|∑
i=1

c>ki (λkixki) , (3.10a)

subject to

p∑
k=1

Dk

|Ωk|∑
i=1

λkixki

 =−→d , (3.10b)

|Ωk|∑
i=1

λki =1, k = 1 . . . p, (3.10c)

λki ≥0, i = 1 . . . |Ωk|, k = 1 . . . p, (3.10d)

where cki is the i’th element in −→ck for 1 ≤ k ≤ p and 1 ≤ i ≤ |Ωk|. This problem
is referred to as MP (see the beginning of this section). The number of rows has
been reduced from m, to the rank of the matrix D = [D1, . . . ,Dp], but the number
of variables are many more than in (3.1). Most of these variables, or columns, will
not be part of an optimal solution and is in that aspect not needed. Is it often
computationally intractable to generate all of these variables. The RMP is therefore
useful since it does not need all the variables. The RMP is to

minimizeλ

p∑
k=1

|Ω̂k|∑
i=1

c>ki (λkixki) , (3.11a)
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subject to
p∑

k=1
Dk

|Ω̂k|∑
i=1

λkixki

 =−→d , (3.11b)

|Ω̂k|∑
i=1

λki =1, k = 1 . . . p, (3.11c)

λki ≥0, i = 1 . . . |Ω̂k|, k = 1 . . . p, (3.11d)

where Ω̂k ⊂ Ωk, 1 ≤ k ≤ p.
To find columns to add to the set Ω̂k, the subproblem that corresponds to the k’th

constraints (3.11b) must be solved. Let π̄ and γ̄k, k = 1, . . . , p be the optimal values
of the linear programming dual variables corresponding the constraints (3.11b) and
(3.11c), respectively. The sub-problems are to generate new columns that will be
added to the sets Ω̂k. A column with a negative reduced cost can be found (if it
exists) by solving, for each k ∈ {1, . . . , p}, the problem

ĉk := minimumxk(c>k − π̄>k D)xk − γ̄k, (3.12a)
subject to

Fkxk = bk, (3.12b)
xk ≥ 0. (3.12c)

The resulting column is denoted (x̄>1 , . . . , x̄>k )>. The column is included in the RMP
if ck < 0, since it then improves the current solution. The complete process of
column generation is illustrated in the seven upper levels in Figure 3.3.

3.2 Integer Linear Programs
Integer linear programs (ILP; see [27]), are linear programs with integer decision
variables, i.e, the decision variables can only be assigned integer values. Integer
linear programming is an important field in optimization, since many real-world
problems can be represented by ILPs. Unfortunately, the Simplex method can not
be used to find solutions to ILPs. In fact, no algorithm that solves an ILP optimally
with a polynomial running as a function of the number of decision variables is known,
since ILPs are NP-hard.

An optimal solution to a linear program is an (or several) extreme-point(s) in the
polyhedron P (see Section 3.1), but this (these) point(s) might be non-integer. A
very naive idea to find a good integer solution is to first find the optimal solution
in P for the integer relaxed ILP (i.e., the ILP without the integer requirements
on the variables), and then round this point to an integer point. This idea has
several problems; Let x be the optimal point for an integer relaxed ILP and x̂ be
the integer point that has been obtained by rounding the point x. The ratio c>x̂

c>x
can

be arbitrarily large. Even worse, the point x̂ might not even be in the polyhedron
P which means that the point is not a feasible solution, i.e, x̂ 6∈ P . The technique
Branch and Bound can be used to find and verify optimal solutions for ILPs.
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Original Problem

Master Program

Restricted Master Program

Solve the Restricted Master Program

Integer Master Program

Solve Sub Problem

Was a column with
 a recuded cost found

Is the optimal solution of the
 restriced master program an 
integer solution

No

An integer Solution has been found

Yes

Branch

No

Add the column to the 
restriced master problem

Yes

Dantzig-Wolfe reduction

Continues relaxtion

Initialise the restricted master program 
with a subset of all columns so it has a solution

Divide the search space 
into disjoint sets 

Figure 3.3: A Branch and Price algorithm that terminates when an integer solution
has been found.
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3.2.1 Branch and Bound
The algorithm Branch and Bound finds and verifies one, or several optimal solutions
to ILPs. The algorithm uses branching, and the Simplex method (or some other
algorithm that can find an optimal solution for LPs) to find an optimal integer
solution.

The Branch and Bound algorithm searches for an optimal solution for the LP
relaxation of the ILP. The LP relaxation of an ILP is the LP that is obtained by
replacing the integer constraints in the LP by continuous constraints. For example,
the (binary) integer constraint x ∈ {0, 1} would be replaced by the continuous
constraints 0 ≤ x ≤ 1.

The Branch and Bound algorithm terminates if the optimal solution for the LP
relaxation is an integer point (for the complete search space), since an optimal integer
solution has then been found. Otherwise, the search space of the LP relaxation is cut
into two disjoint branches such that no integer point is in the cut. The same process
is repeated in each of the resulting branches, i.e, a solution is being searched for by
the simplex method. The optimal integer solution must be in either of these two
sets. This process is done recursively until the branches can be pruned, which can
be done if the best LP solution in the branch is worse than the best known integer
solution or if the best ILP solution that is found is worse than the best known
ILP solution. This method is in practise better than the brute force, but visits all
extreme points in the worst case (see [28]). A deeper introduction to Branch and
Bound is found in [29].

3.2.2 Applying Column Generation to Integer Linear Pro-
grams Using Branch-and-Price

Column generation can be applied to ILPs by formulating an integer master problem
(IMP) from the original problem. The MP is then defined by dropping the integer
constraints from the IMP. The RMP and the SP can then be formulated from the
MP. The integer constraints are added to the RMP once no column with a negative
reduced cost can be found by the SP. The RMP with integer constraints is the integer
restricted master problem (IRMP). The optimal solution to the IRMP is an integer
solution, since the variables of the IRMP has integer restrictions. Unfortunately, the
ratio of the values of the objective functions of the optimal solutions for the IRMP
and the IMP might be larger than one. This ratio is referred to as the integrality
gap.

The algorithm BaP, which is a combination of BaB and column generation, is
presented in the next subsection, which can be used to find an optimal integer
solution when column generation is applied to ILPs. An example of how column
generation can be applied, without the use of the Dantzig-Wolfe decomposition, is
presented as well.

3.2.2.1 Branch-and-Price

The algorithm BaP is a combination of BaB and column generation. As stated
above, an integer gap may exists between the IMP and the IRMP. While the integer
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gap might be very small, the optimal solution to the problem might be preferred if
it can be found in a reasonable time. The integer gap can often be small when the
values of the decision variables are large enough, which they often are when column
generation is needed to be applied.

The algorithm Branch-and-Price applies column generation as described in Sec-
tion 3.1.2, and divides the search space into branches as Branch and Bound does.
The steps in Branch and Price can be seen in the two lower levels of Figure 3.3.
The first step is to reformulate the original problem to an integer master problem
(IMP), with a corresponding MP, RMP, and SP. The RMP and the SP are solved
iteratively until no column with a negative reduced cost is found by the SP. The
Integer Restricted Master Problem (IRMP) and the Integer Master Problem (IMP)
are then solved. If the integrality gap is equal to one, the algorithm terminates.
If not, the search space is divided into two or several branches. A new IMP, MP,
RMP, and SP are then defined for each branch and the process is repeated until the
integer solution has been found. Branch and Price can be studied in more detail in
[30].

3.2.3 Applying Column GenerationWithout Using Dantzig-
Wolfe Decomposition

Column generation can be applied directly to models without transforming them
with the Dantzig-Wolfe decomposition if they are formulated in such fashion that
each decision variable can be viewed as a column.

The Parallel Machine Scheduling Problem (PMSP) is one of the problems that
can be formulated like that, and Van Den Akker [6] has, as written in Section 2.2.3,
developed a column generation algorithm for the PMSP. In the PMSP, a set of jobs
J , a set of identical machines K, and a process time pj for each job j ∈ J are given.
Each job can be processed by any machine, but no machine can process several
jobs simultaneously. The goal is to schedule each job in a machine such that the
makespan is minimized.

The model uses the concept of machine schedules. A machine schedule s is a
vector of length |J | in which each element sj states if job j ∈ J is included in the
machine schedule or not, i.e., s = [s1, . . . , sJ ] where sj is equal to one if job j ∈ J
is included in the machine schedule, and otherwise zero. The set S is defined as the
set of all possible machine schedules.

In the ILP, a decision variable xs is defined for each machine schedule s ∈ S and
the variable T measured the makespan value. The PMSP can now be modeled as
the binary LP to

minimizex,T

T, (3.13a)
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subject to ∑
s∈S

xs ≤ |K|, (3.13b)∑
s∈S

sjxs = 1, j ∈ J , (3.13c)∑
j∈J

sjxspj ≤ T, s ∈ S, (3.13d)

xs ∈ {0, 1}, s ∈ S, (3.13e)

where the objective function (3.13a) minimizes the makespan, the constraints (3.13b)
make sure each machine uses at most one machine schedule, the constraints (3.13c)
control that each job is processed in exactly one machine schedule that is used, and
the constraints (3.13d) control the value of the makespan variable.

This program is defined as the Integer Master Problem (IMP). The Master Prob-
lem (MP) is the integer relaxed IMP, the integer Restricted Master Problem IRMP
is defined as the IMP but for a subset Ŝ ⊂ S instead of the set S, and the Restricted
Master Problem (RMP) is the integer relaxed IRMP. A sub-problem that can gen-
erate any machine schedule s ∈ S can then be defined as a pricing problem using
the optimal values of the dual variables of the RMP (see [6, Chapter 2]).
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4
An Integer Linear Optimization
Model of GKN’s Scheduling

Problem

This chapter presents the constraints of the special jobs in Section 4.1, and the ILP
(hereafter referred to as the scheduling model) that models the scheduling problem
that will be described in detail in Section 4.2. A model that can be used to decrease
the time span that the scheduling model uses is presented in Section 4.3.

4.1 The Constraints Defining the Special Jobs

The constraints for the special jobs (described in Section 1.2.2) are presented in this
section.

A solder job jsold can be heat treated in a furnace at a certain time step if at least
one of the following two conditions hold:

1. The previous job scheduled in the furnace was a bake-out job, jbo.
2. The previous job scheduled in the furnace was a solder job with a higher

maximum temperature than the solder job, jsold.
A titanium job, jtit

1 can only be scheduled in a furnace at a certain time step if
at least one of the following two conditions hold:

3. The previous job scheduled in the furnace was a vacuum test job, jvac
1 , and

the job scheduled before jvac
1 was a bake-out job, jbo.

4. The previous scheduled job in the furnace was a vacuum test job jvac
1 , the

job scheduled before jvac
1 was a titanium job jtit

2 , and if the special sequence of
maintenance jobs and titanium job is never longer than five, hence, the longest
allowed special sequence of titanium jobs is defined by: jbo, jvac

2 , jtit
2 , jvac

1 , jtit
1 .

4.2 The Scheduling Model

The scheduling model is a modification of the ILP Thörnblad [1] formulated for
solving GKN’s scheduling problem. The task is to schedule a set of given jobs
J = {1, . . . , n} in a given set of furnaces K = {1, . . .m} in a given time-range, which
is divided into a set of time steps T = {1, . . . , T} so that some given constraint are
satisfied. Each job j ∈ J can be scheduled in a subset of the furnaces, Mj ⊆ K.
Once a job j ∈ J has been scheduled in furnace k ∈ Mj, furnace k is occupied
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until the job is complete, which takes pjk time steps. No job can be scheduled in a
furnace that is occupied.

A job j ∈ J can neither be scheduled before time step rj ∈ T nor after time step
(T − δj) ∈ T , and job j ∈ J has a due date (time) dj ∈ T , at which it is supposed
to be completed. Furthermore, furnace k ∈ K can not be used before time step
ak ∈ T .

For each job j ∈ J , two weights are given; vj and wj. The weight vj is assigned
to the completion time of the job and the weight wj is assigned to the tardines of
the job and which is applied if the job is completed later than time step dj ∈ T .
The notation (u + pjk − dj)+ := max{u + pjk − dj, 0} denotes the number of time
steps after its deadline that the job is completed.

A subset of the given jobs are either solder jobs or titanium jobs. These jobs are
referred to as special jobs. A special job j ∈ J can only be scheduled in a furnace
if the requirements given in the list in Section 4.1 are satisfied. To deal with this
problem, the set I is defined as the set of all special sequences. A special sequence
i ∈ I contains the special jobs J corr

i ∈ J and the corresponding maintenance jobs
that are required for the special sequence (see Section 4.1). When a special sequence
is scheduled, the special jobs and the maintenance jobs are scheduled in the order
they are given in the sequence. Once a special sequence is scheduled in a furnace
k ∈Mspec

i , all special jobs and maintenance jobs must be scheduled and completed
in furnace k before anything else is scheduled in that furnace, whereMspec

i ⊆ K is
the set of all furnaces in which special sequence i ∈ I can be scheduled.

The set P corresponds to the families of all special sequences that together include
each special job once. The special sequences that are included in the family that
corresponds to p ∈ P are denoted Ip. For each Ip∈P , |

⋃
i∈Ip J corr

i | is equal to the
number of special jobs that exist in the instance, and |J corr

i1 ∩ J corr
i2 | = 0 for each

i1, i2 ∈ Ip∈P . The parameter sspec
ik ∈ T denotes the first time step special sequence

i can start in furnace k ∈ Mspec
i and the parameter δspec

ik ∈ T denotes the last time
step special sequence i can start in furnace k.

For each job j ∈ J , furnace k ∈ Mj, and time step u ∈ T , a binary variable
xjku is defined to be equal to one if and only if job j starts in furnace k at time step
u, and zero otherwise. Analogously, the variable xspec

iku is equal to one if and only if
sequence i ∈ I starts in furnace k ∈ Mspec

i at time step u ∈ T , and zero otherwise.
A binary variable yp is defined for each p ∈ P , which is equal to one if and only if
the family of special sequences p is scheduled, and zero otherwise. A summary of
all parameters, sets, and variables used in the model is shown in Table 4.1. The
objective of the scheduling model is to

24



4. An Integer Linear Optimization Model of GKN’s Scheduling Problem

Sets and families Description
J the set of all jobs
J maint ⊆ J the set of all maintenance jobs
I the set of all special sequences
P the set of all families of special sequences that includes all job

exactly once
Ip ⊆ I the special sequences that are included in the family p ∈ P
J corr
i ⊆ J the set of all jobs in special sequence i ∈ I
K the set of all furnaces
Mj ⊆ K the set of all furnaces in which job j ∈ J can be processed
Mspec

i ⊆ K the set of all furnaces in which special sequence i ∈ I can be
processed

T the ordered set of all discrete time steps, such that T =
{1, 2, . . . , T}

Variables
xjku = 1 if job j ∈ J starts at time step u ∈ T in furnace k ∈ K,

= 0 otherwise
xspec
iku = 1 if special sequence i ∈ I starts at time step u ∈ T in

furnace k ∈ K, = 0 otherwise
yp = 1 if the family p ∈ P of special sequences is scheduled, = 0

otherwise
Parameters
vj the completion weigh of job j ∈ J
wj the penalty weigh for job j ∈ J
dj the time step when job j ∈ J should be completed
δj the last time step when job j ∈ J can be scheduled
pjk the processing time for job j ∈ J in furnace k ∈ K
ak the first time step when furnace k ∈ K is available
sspec
ik the first time step when special sequence i ∈ I can start in

furnace k ∈Mspec
i

rj the first possible time step to start job j ∈ J
δspec
ik the last time step when special sequence i ∈ I can start in

furnace k ∈Mspec
i

Table 4.1: A summary of the sets, variables, parameters, and constants that are used
in the models in Chapters 4 and 5.
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minimizex,xspec,y∑
j∈J\Jmaint

∑
k∈Mj

∑
u∈T

[
vj(u+ pjk) + wj(u+ pjk − dj)+

]
xjku, (4.1a)

subject to ∑
k∈Mj

∑
u∈T

xjku = 1, j ∈ J \ J maint, (4.1b)
∑

k∈K/Mj

∑
u∈T

xjku = 0, j ∈ J , (4.1c)

∑
j∈J

u∑
µ=(u−pjk+1)+

xjkµ ≤ 1, k ∈ K, u ∈ T , (4.1d)

∑
p∈P

yp = 1, (4.1e)
∑

k∈Mspec
i

∑
u∈T

xspec
iku ≥ yp, i ∈ Ip, p ∈ P , (4.1f)

xjkαβ ≥ xspec
iku , j ∈ J corr

i , u ∈ T , (4.1g)
k ∈Mspec

i , i ∈ I,

xjku = 0, u ∈ {0, . . . ,max{rj, ak} − 1}, (4.1h)
k ∈Mj, j ∈ J ,

xspec
iku = 0, u ∈ {0, . . . , sspec

ik − 1}, (4.1i)
k ∈Mspec

i , i ∈ I

xjku = 0, u ∈ {T − δj + 1, . . . , T − 1}, (4.1j)
k ∈Mj, j ∈ J ,

xspec
iku = 0, u ∈ {T − δspec

ik + 1, . . . , T − 1}, (4.1k)
k ∈Mspec

i , i ∈ I,

xjku ∈ {0, 1}, k ∈ K, u ∈ T , j ∈ J , (4.1l)
yp ∈ {0, 1}, p ∈ P , (4.1m)

xspec
iku ∈ {0, 1}, u ∈ T , k ∈Mi, i ∈ I. (4.1n)

The objective function (4.1a) is to minimize the weighted average finishing times
of the jobs and the tardiness weight.

The constraints (4.1b) make sure that each job that is not a maintenance job
starts exactly once in a furnace in which the job can be heat treated, the constraints
(4.1c) control that no job starts in a furnace in which the job can not be heat treated,
and the constraints (4.1d) control that no job interrupts any other job that is being
processed.
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The constraints (4.1e) regulate that only one family of special sequences is chosen,
and the constraints (4.1f) control that each special sequence in the family of special
sequences that is chosen starts at some time-step, and the constraints (4.1g) make
sure the jobs in each special sequence in the chosen family starts. The parameter
αβ is not explained for confidentiality reasons.

The constraints (4.1h) make sure that no job starts before it has arrived or in a
furnace that is not ready, the constraints (4.1i) control that no special sequence is
scheduled before it is allowed to be scheduled. Constraints (4.1j) and (4.1k) make
sure that all jobs and special sequences that start are also completed before the last
time-step, and constraints (4.1l)–(4.1n) are the binary constraints.

4.2.1 Disadvantages with the Scheduling Model
GKN has set a time limit, before which a schedule must be computed by the sched-
uling model. Usually, an optimal schedule can not be found and verified with the
scheduling model, before this time limit has passed. This is mainly due to the large
number of time steps that are needed to represent the real time accurately enough,
and the number of families of special sequences that exists. Currently, the best
schedule that is found within the time limit is used for production. The scheduling
model does not consider all time steps to represent the real time accurate, and not
all families of special sequences, since this would slow down the solver that solves
the scheduling model too much. However, most families are considered, although
not all of them.

The optimal schedule that the scheduling model finds when only a subset of the
variables are used, is therefore a heuristic solution to the problem, and the lower
bounds on the objective value of the optimal solution to the problem is unknown. A
model that is used to decrease the number of time steps that is needed to represent
an accurate real time is discussed in the next section. The remaining part of this
section discusses the complications with the special sequences.

Consider the ordered set S := 〈rbo, j1, j2, j3〉 of jobs, where rbo denotes the manda-
tory bake-out job before scheduling any solder job ji ∈ J (see condition 1 in Section
4.1). We define tmax

i to be the maximal temperature for solder job ji. Then, for the
set S to be a valid special sequence of solder jobs, the inequalities tmax

3 ≤ tmax
2 ≤ tmax

1
must hold (see condition 2 in Section 4.1). If the set S ⊂ I, then all ordered subsets
of S are in the family I, i.e., {〈rbo, j1〉, 〈rbo, j2〉, 〈rbo, j3〉, 〈rbo, j1, j2〉, 〈rbo, j1, j3〉},
〈rbo, j2, j3〉} ⊂ I. If it holds that tmax

3 = tmax
2 = tmax

1 , then even more special se-
quences are valid. The number of valid special sequences of solder jobs in an instance
with m solder jobs is equal to or less than 2m.

A special sequence of titanium jobs can never be longer than five (see condition
4 in Section 4.1), but there is no temperature restriction on the order of these jobs,
so the number of valid special sequences of titanium jobs in an instance is n!

(n−1)!
+ n!

(n−2)! = n2, where n is the number of titanium jobs in the instance, since there
are at most two titanium jobs in a special sequence of titanium jobs, the other jobs
in such special sequence are maintenance jobs. As a consequence of the fact that
only a subset of the set I of all special sequences are used by the scheduling model,
subfamilies of the family P are used by the scheduling model.
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4.3 Shortening the Time Span of the Model

The number of time steps that are used by the scheduling model is calculated such
that all jobs in the instance can be processed. The time needed to processes all jobs
in an instance can often take 24 hours or more. The processing time of a job is
measured in minutes. To represent all minutes in one day with discrete time steps,
24 · 60 = 1440 time steps are needed. This results in very many variables in the
scheduling model, since several decision variables exist for each time step.

Thörnblad [1] has created a model (referred to as TIM — Time Iterative Model
in this thesis) that calculates how long the time span needs to be at most such that
a feasible solution exists when a time step represent fifteen minutes. The time span
for an instance is defined as the number of time steps in the instance, i.e., T . No
solution can exists if the time span is smaller than the makespan. The job that
requires most time to process takes 14 hours, and the shortest takes around one
hour and 40 minutes. A Unified Modeling Language diagram of TIM is shown in
Figure 4.1. The department considers schedules that are found when a time step
represents fifteen minutes to be usable, but solving the scheduling model when the
time span is 24 hours results in 7 · 24 · 4 = 762 time steps, which is still too many
for a solution to be found in a reasonable time.

The idea that TIM is based on is that the jobs in the scheduling model can often
be scheduled when the time span is less than first calculated. The TIM starts by
solving the scheduling model when each time step represents 12 hours. This can be
done fast since the number of time steps then are quite few compared to how many
they are when each time step represents 15 minutes. The schedule that is obtained
from a solution to that scheduling model is very "airy" — most jobs take more than
12 hours to process, but less than 20 hours, but since one time step represent 12
hours, 14 hours, for example, is represented by 2 time steps. Let us refer to the
schedule computed using 12 time steps as the original schedule.

The original schedule is then modified as if each time step represents 4 hours,
which results in the so-called modified schedule. If a job started at time step 2 in
the original schedule, it starts not later than at time step 6 in the modified schedule,
since 6 time steps represent 24 hours in this schedule. However, a job is scheduled
earlier if that is possible, with respect to the real processing times and a 4-hour
discretization. That might be possible if there is another job that starts before this
job in the same furnace. For example, if that job takes 4 hours to process and starts
at time step 0, then it is completed at time step 1, which represents hour 4. Then
the job considered can be scheduled at time step 1, which is much better (with
respect to the objective function) than to schedule it at time step 6. Thörnblad has
named this technique to squeeze the schedule (see [1]).

The real time corresponding to the time step that is equal to the makespan in
the modified schedule is lower than the real time that the corresponding time step
in the original schedule represents.

Let us give an example of this. Say that the latest job that was completed in the
original schedule was completed at time step 2, which represents hour 2 ·12 = 24. In
the modified schedule, assume that the time step when the latest job was completed
was 4, which represents hour 4 · 4 = 16. We then know that the time span required
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is not greater than 16 hours, which is less than 24 hours.
A new scheduling model is then created and solved, with the time step represent-

ing 4 hours, with the new calculated time span (24 in our example). Then 24/4 = 6
time steps are needed. If a time step represents 4 hours and the time span is 1 week,
then 7 · 24/4 = 42 time steps is needed. The process described above is repeated
five times, and for each iteration, a time step represents fewer hours, down to 0.25
hours, i.e., 15 minutes, in the last iteration.

Start;q = 1

Create
ILP, where
each time
step is
aq ∈ A
hours

Solve ILP,
increment

the iteration
counter q

q = 6?

Calculate a
new time span,
and increment
the iteration
counter q

Stop

no

yes

Figure 4.1: The time-iteration model (TIM). The scheduling problem is solved six
times. In each iteration, a time step represents fewer hours than in the previous
one, and the time span is reduced. The first time the ILP is solved, a time step
represent 12 hours. The ordered set A = {12, 4, 2, 1, 0.5, 0.25} contains the number
of hours a time step can represent.
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5
A Column Generation Model for
Generating Special Sequences

A column generation method that generates special sequences (SpSs) that the sched-
uling model uses is introduced in this chapter. An optimal schedule can not be
guaranteed to be found using this approach, since only a subset of all variables are
used by the scheduling model, as a consequence of the fact that only a subset of the
SpSs families are considered by the scheduling model. It is practically impossible
to know which family that is part of an optimal schedule without defining all the
families in the scheduling model. The goal of this approach is to find one or several
families of SpSs that cover each special job exactly once, and that are part of an
optimal, or near optimal schedule. This approach will hopefully find as good as or
better schedules than the current approach, and be faster, since the fewer families of
SpSs that are considered by the scheduling model, the faster a good-quality schedule
can be computed. GKN currently generates almost all families that exist for the
scheduling model, which can be more than 150 000, even when the number of special
jobs is just ten, which makes the scheduling model require a lot of computing time
to find a good schedule.

The purpose of the Integer Master Problem (IMP) to be defined in Section 5.1
is to choose a family of SpSs, so that the SpSs in that family together include each
special job exactly once and such that the family is likely to be part of an (near)
optimal schedule. Since we want to avoid generating the complete set of SpSs, we
define the (Integer) Restriced Master Problem ((I)RMP) in Section 5.2, that contains
a subset of the family of SpSs, the dual linear program of the RMP in Section 5.3,
which will be used by the subproblem (SP), to be defined in Section 5.4 that will
generate SpSs as columns to the RMP until the objective value of optimal solutions
to the RMP and the MP are equal. Then, the IRMP will be solved and the family
that is selected will be used by the scheduling model. See Section 3.2.3 for how the
MP and RMP are obtained from the IMP and the IRMP, respectively.

5.1 The Integer Master Problem

The purpose of the IMP (see Chapter 2 for IMP) is to select a family of the SpSs,
which corresponds to columns, such that each special job is included in exactly one
of the SpSs in the family, and so that the SpSs in the family are likely to be part of
an optimal or near–optimal schedule.

Some notations that will be used in this chapter and that was not used in Chapter
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Sets and families Description
J spec the set of all special jobs
Ĩ ⊆ I the set of the SPSs that is considered by the (I)(R)MP
Variables
γi = 1 if SpS i ∈ I is selected by the (I)(R)MP, 0 otherwise
πj the corresponding dual variable for j ∈ J spec

for constraint (5.4b)
Parameters
gi the best possible furnace for SpS i ∈ I
ci the cost of including the SpS i in solution for the (I)(R)MP
A is a matrix, which element Aij = 1 if j ∈ J spec

i for SpS i ∈ I,
0 otherwise

Constants
a constant used as a penalty for each SpS that is selected by

the (I)(R)MP

Table 5.1: A summary of the sets, variables, parameters, and the constant used in
Chapter 5 but that is not included in Table 4.1.

4 will now be presented. The new notations can be overviewed in Table 5.1. There
is one decision variable, γi, for each SpS i ∈ I in the IMP. The variable γi is equal to
one if SpS i is included in the family chosen by the IMP, and zero otherwise, where
i ∈ I. The set J spec is the set of all special jobs and the element Aij in the binary
matrix A is equal to one if the SpS i contains the special job j ∈ J spec, and zero
otherwise. For each decision variable γi, a cost element ci is defined as

ci := a+
∑

j∈J corr
i

pj,gi , i ∈ I, (5.1)

where the constant a > 0 is a penalty cost for each SpS that is chosen by the IMP
and gi is the index of the furnace that minimize the total processing time of all the
jobs in the SpS, among of all furnacesMspec

i , i.e., gi is defined by

gi := argmink∈Mspec
i

 ∑
j∈J corr

i

pjk

 , i ∈ I. (5.2)

The IMP is then stated as to

minimizey ∑
i∈I

γici, (5.3a)

subject to ∑
i∈I

γiAij = 1, j ∈ J spec, (5.3b)

γi ∈ {0, 1}, i ∈ I. (5.3c)
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The cost element ci is dependent of the parameter pjk, which is the processing
time for job j ∈ J corr

i and k ∈Mspec
i (see Table 4.1), where i ∈ I. The value of the

parameter pjk depends on how many minutes a time-step represents, which might
result in that the IMP finds different solutions for different time-discretizations. It
is more likely that the optimal schedule is using the SpSs choosen by the IMP if
the parameters pjk are precise. Therefore, each time-step represents 0.25 hours, i.e.,
15 minutes during the column generation process (which is performed before the
scheduling model is used). The cost element ci is also dependent on the parameter
a, which is used to adjust how many SpS that is prefered to select by the IMP, where
i ∈ I. The larger the value of the parameter a, the fewer SpSs will be selected, i.e.,
fewer but longer SpSs will be selected.

5.2 The (Integer) Restricted Master Problem

We now define the IRMP, which contains only a subset Ĩ ⊆ I of all SpSs. The set
Ĩ is initialized with all SpSs with one special job from start. The task of the IRMP
is to

minimizey ∑
i∈Ĩ

γici, (5.4a)

subject to ∑
i∈Ĩ

γiAij = 1, j ∈ J spec, (5.4b)

γi ∈ {0, 1}, i ∈ Ĩ. (5.4c)

The RMP is defined as the IRMP with the exception that the variables of the RMP
are restricted to non-negative values instead of binary values.

5.3 The Linear Programming Dual Problem of
the Restricted Master Problem

The linear programming dual problem of the RMP is defined in this section. The
optimal solution of this program is needed by the SP. The linear programming dual
of the RMP is to

maximizeπ ∑
j∈J spec

πj, (5.5a)

subject to ∑
j∈J

πjAij ≤ ci, i ∈ Ĩ, (5.5b)

where each variable πj corresponds to the constraint (5.4b) for special job j ∈ J spec

in the RMP.
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5.4 The Subproblem

The purpose of the SP is to generate SpSs that will be included to the set Ĩ, which is
used by the (I)RMP. The structure of the SpSs of solder jobs and titanium jobs are
different, but the task of finding SpSs for either kind of special jobs can be reduced
to a shortest path problem in a graph defined by the special jobs, the values of the
dual variables for an optimal solution for the linear programming dual problem of
the RMP and the process times of the special jobs. A path will then correspond to
a column, and the total cost of the path will correspond to the reduced cost of the
column (see Section 3.1.2 for reduced cost) .

The shortest path problem for a weighted graph G = 〈V,E〉 can be solved in
O(|V | · |E|) time with Bellman–Ford’s algorithm ((see [3, Chapter 4]), where V is
the set of vertices and E is the set of edges. Dijkstra’s algorithm (see [3, Chapter 4])
has a lower time-complexity than Bellman-Ford’s algorithm, but can only be used
for graphs with none-negative edge lengths. Dijkstra’s algorithm can therefore not
be used to solve the SP, since the lengths of the edges of the graphs that will be
constructed for the sub-problem are functions of an optimal solution of the RMP
(5.5), which can contain negative variable values. The fact that it is possible to find
new columns for the RMP in polynomial time is important, since the SPs will be
solved many times, and hence, the SPs need to be solved in an efficient manner.

The columns generated by the SP that will be included in the set Ĩ are the ones
that have a negative reduced cost. The reduced cost of a generated SpS i for the
furnace gi ∈Mspec

i is equal to ci− πj = a+∑
j∈J corr

i
pj,gi − πj, where the value of πj

is such that it is part of an optimal solution for (5.5).
We will first present a shortest path model that can be used to find SpSs of solder

jobs and then illustrate how the problem of finding SpSs of titanium jobs can be
modeled as a shortest path problem as well. Since an SpS can not contain both
titanium and solder jobs, the SPs can be partitioned in this manner, without losing
the possibility of generating any SpSs that exist.

5.4.1 The Subproblem of Generating SpSs of Solder Jobs
The task of finding SpSs of solder jobs can be reduced to a path finding problem,
for several Directed Acyclic Graphs (DAGs). Each DAG contains one node for each
solder job, one start node rbo, and one destination node d. Since the objective
function of the RMP uses the parameters pjk, the objective value of a variable in
the RMP that corresponds to an SpS is dependent on in which furnace the SpS is
processed. Therefore, one DAG per furnace k ∈ K is constructed to find the SpS
of solder jobs that corresponds to the column of the RMP with the lowest possible
reduced cost. For a specific furnace, only special jobs that are suitable for that
furnace are inserted in the graph that is created.

Each of these DAGs contains one edge from the start node rbo to each node
in the graph that corresponds to a solder job. Furthermore, from each node that
corresponds to a solder job j℘, there is an edge to the destination node d and an edge
to each node that corresponds to a solder node j` for all ` ≥ ℘. The weight on the
outgoing edges for the start node is set to a, and the weight that is outgoing from
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each job node j` is set to pj`k− πj` . Since ` > ℘, the solder job j` must have a lower
maximal temperature than the solder job j℘. If two solder jobs j℘ and j` require
the same maximal temperature, then a decision of which job node in the graph that
should have an outgoing edge to the other needs to be made. This decision is made
in algorithm 1 (see Table 4.1 for the notations), in which m ∈ K:

Algorithm 1 The algorithm returns true if the special job j` shall be before the
special job j℘ in a SpS with the assumption that the SpS will be scheduled in furnace
k. The job with the highest penalty weight should be first in the SpS. If the penalty
weights are the same for the two jobs, then the job with the shortest process time
should be first. If the process times for both the jobs are the same, then the job
with the earliest deadline should be first. If these three parameters are the same for
both jobs, then the decision can be made arbitrarily, since the jobs are equivalent in
every fashion. (virtually all jobs have the same completion weight, so that weight
does not need to be considered.)

1: procedure MyProcedure(j`, j℘, k)
2: if wj` 6= wj℘ then return wj` > wj℘

3: if pj`k 6= pj℘k then return pj`k < pj℘k

4: if dj` 6= dj℘ then return dj` < dj℘
return true

An SpS of solder jobs can then be computed by finding a path P = 〈rbo, . . . , d〉
in such a DAG, illustrated in Figure 5.1. An advantage with DAGs compared to
graphs in general is that an optimal path can be found faster in a DAG than in
graphs with cycles. Furthermore, an optimal path in a graph with negative weights
might not exists if the graph has cycles (see [3, Chapter 4] for properties about
graphs with negatives weights on their edges).

5.4.2 The Subproblem of Generating SpSs of Titanium Jobs
The SpSs of titanium jobs have no restrictions on the order of the titanium jobs due
to the jobs’ temperature, but they have a length restriction – they can only contain
one or two special jobs. Therefore, the maximum number of SPSs of titanium jobs
is |K|

((
n
1

)
+
(
n
2

))
, where n is the number of titanium jobs. Hence,

(
n
2

)
DAGs used

to generate SpSs of titanium jobs per furnace needs to be created. In reality it is,
however, unlikely that all SpSs of titanium jobs will be suitable for all furnaces in the
instance. DAGs that can be used to generate SpSs of titanium jobs can be created
in a similar fashion as for the solder jobs, but each such DAG can only contain two
nodes that correspond to titanium jobs. The same order priorities of the nodes as
for the solder nodes can be applied for these graphs (see Algorithm 1).

5.4.3 Generating Several Families of SpSs
A solution to the IRMP corresponds to one family of SpSs. This family will be
used by the scheduling model to compute a schedule. Even if the scheduling model
is solved faster when only one family of SpSs is used by the scheduling model as
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rbo j1 j2 j3 d
a

a

a

p1,k − π1

p1,k − π1

p1,k − π1

p2,k − π2

p2,k − π2

p3,k − π3

Figure 5.1: A DAG used to generate columns of SpSs of solder jobs. The node rba

is the start node, the nodes j1, j2 and j3 correspond to solder jobs, and the node d
is the destination node. A path S = 〈rba, . . . , d〉 contains the special jobs that are
in the SpS the path represent. This graph is constructed for the furnace k ∈ K and
the set J corr

i contains exactly the special jobs that are in this SpS. Then the sum
a + ∑

j∈J corr
i

(pjk−πj), which is equal to the cost of all edges that were traversed for
this path, is the reduced cost of the column that the SpS corresponds to.

compared with many families, a few families might result in a better schedule, and
it may not take a lot more CPU time to solve the scheduling model when a few
families of SpSs are used by the scheduling model, compared to only one family.

Several families might exist in the set Ĩ when no column with reduced cost can
be found. If several families exist, then they can be selected by different approaches.
In this project, we have tested two approaches. One approach is to compute several
families by random, i.e., selecting the first n families found, where n is the maximal
number of families considered. The second approach is made by computing all
families that exist in the set Ĩ, and then sorting them with respect to the objective
coefficients ci of the IRMP (5.4). The n cheapest families are then chosen.
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Implementation

This chapter gives the reader information about implementation details, including
the modifications of the instance files that were used for the benchmark and that
was provided by GKN, and how the time-measurement was made. The software
IBM ILOG CPLEX Optimization Studio [31] was used to solve all the (integer)
linear programs in the project. C++ was used for the implementation. The pro-
gramming language A Mathematical Programming Language (AMPL) (see [32]) is
often used to model linear programs since the language is constructed for this task,
but since implementing the TIM (see Figure 4.1) and modifying the given instances
so that they can be used by the model (3.13) was easier in C++ than in AMPL,
the implementation was performed in C++.

6.1 Modification of the Instances

The original scheduling problem that GKN has allows batches of jobs to be scheduled
in a furnace, i.e., several jobs can be scheduled simultaneously in one furnace if
certain requirements are satisfied. Some SpSs that GKN has generated contain
batches of jobs, but these SpSs can not be scheduled in the model (4.1), since it
does not allow batches to be scheduled. The solution implemented in this project
removes batched jobs from the SpSs and treat them as normal jobs.

When a SpS containing batched jobs is included in the given input instance, all
but one of the batched jobs are removed from all SpSs that contain these jobs. This
procedure is carried out for all SpSs containing batched jobs. As a consequence, these
jobs are no longer treated as special jobs, and can be scheduled without maintenance
jobs (see Section 4.2). This modification of the given problem instances means that
we are not solving real-world problem instances.

The reason why these jobs are removed from all SpSs and not just in the ones in
which they are batched, is that some jobs would be treated as special jobs depending
of which family that is selected.

When a job that is removed from an SpS S1 is included in another SpS S2, and
therefore removed from the SpS S2 too, it might be the case that the SpS S2 needs
to be modified by removing a maintenance job from it. For example, if the job that
was removed from an SpS is the only job in that SpS, then the resulting SpS consists
of only one or two maintenance jobs. Such an SpS can not contribute to an optimal
schedule and can therefore be removed. When a job is removed from a titanium
SpS, and that job is not batched in the SpS, then a vaccum-test maintenance job
can be removed from that SpS.
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6.2 Comparisons of the Approaches to be Bench-
marked

The procedure of removing jobs that are batched in SpSs must be applied, nonethe-
less if the column generation method that generates SpSs is used or not. The reason
for this is to make a fair comparison between the benchmarks. We wish to compare
the results from the case when the SpSs are generated by column generation with
that obtained for the case when the SpSs given by GKN are used. The same set of
jobs in both tests must be special jobs, and since the procedure described in Section
6.1 might turn special jobs into non-special jobs, this procedure has to be applied
to all benchmarks.

6.3 Computation Time Measurements
Several time measurements can be made for each instance that is benchmarked. We
wish to compare the results from the case when the SpSs are generated by column
generation with that obtained for the case when the SpSs given by GKN are used.

For a scheduling problem to be solved, the model and the data file needs to be
read, the column generation method to generate SpSs might be used, the model is
created and solved, and a result file is created containing the solution. Furthermore,
when TIM (see Figure 4.1) is used, the obtained solution is modified for the next
step and saved, a new model is created in which a time-step represents fewer minutes
than in the previous step, and the time-span is shortened. This model is then solved,
and the cycle is iterated six times. For each iteration, the time used to calculate the
discrete time-steps is measured.

The time used to read the file is not included in any time measurements, but the
time used to build the model in C++ is included in the total solution time. Once
an optimal solution for an instance with a certain time-step representation has been
found, the time measurement is halted and the result is written to a file (this time
is not included in any time measurement). If TIM is used, the time to calculate new
time-spans, and to initialize the new model with the previous solution is included in
the time measurements for that TIM-iteration. Furthermore, the time used to solve
the model in the previous TIM-iteration is included in the following TIM-iteration.
When the column-generation method is used to generate SpSs, the time used for
that is included in the total solution time.
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Tests and Results

To answer the questions that were posed in the introduction of this thesis, a number
of benchmarks have been performed. The questions to answer is how the column
generation approach to generate SpSs and families and then let the scheduling model
use these, performs, as compared to the performance when the schedules that are
obtained with the families of SpSs generated by GKN are used. The notation of
performance is in this context in terms of the cost of the schedules and of the
execution time. The results from these benchmarks are presented in this chapter.

The instances that have been used for the benchmarks are modifications of real-
world instances that GKN has used to create schedules for their production. Each
of these instances has at least five special jobs after the batching modification has
been performed (see Section 6.1). A mapping between the instance ids in this thesis
and their names at GKN’s department is seen in Table A.1. Three procedures have
been used to test the proposed approach. The difference between these procedures is
how the families of SpSs are selected. The different procedures of selecting families
include computing the family of SpSs that is considered the cheapest by the IRMP,
computing three random families of SpSs of all the SpSs that has been generated
by the SP until no new column with a negative reduced cost can be found, and
computing the three families of SpSs that are considering being the best by the
IRMP. In the case when more families than one should be computed but there
exists less than three families, then all existing families are computed, i.e., one or
two families. The three procedures are refereed to as ’BestFamily’, ’RandomFamilies’
and ’BestFamilies’, respectively. Each of these three procedures have been tested
for two values of the constant a (see Table 5.1): 0 and 500. The approach GKN
currently uses, refereed to as ’GKN’, has been benchmarked as well. The results of
the benchmark test are now ready to be presented.

The results in terms of running time, and the normalized cost with respect to the
cost of the schedules that were computed by the approach ’GKN’ for a = 0 can be
seen in Figure 7.1a and Figure 7.1b, respectively, and in Table A.2. The formula for
normalized cost is defined as

z = Ac
’GKN’c

, (7.1)

where Ac is the cost of a schedule computed when approach or procedure A was
used and ’GKN’c is the cost of a schedule computed when the approach GKN’ was
used. As shown in Figure 7.1b, for each instance, the normalized cost is identical
over the three procedures of the proposed approach. That is due to when a = 0, all
families of SpSs have the same cost (see (5.4)), and therefore, no SpS are generated
by the SP. Therefore, the same family of SpS is computed by all three procedures.
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7. Tests and Results

The time used for each procedure is therefore approximately the same (see Figure
7.1a). While most solutions found by the different procedures are worse than the
approach ’GKN’, the running time is many times shorter.
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the approach ’GKN’. The horizontal line illustrates the normalized cost
of the approach ’GKN’.

Figure 7.1: The computation time and the normalized cost visualized for each ap-
proach and instance from Table A.2. The instances were sorted after the results
were computed.

The corresponding results of the benchmark when a = 500 can be seen in Figure
7.2a and Figure 7.2b, respectively, and in Table A.3. All procedures of the proposed
approach that was allowed to generate up to three families computed three families
in this benchmark test. It is clear that the number of families affects the computation
time a lot — when one family is used as input to the scheduling model it is a around
two minutes for most instances, but up to 15 minutes when several families are used.
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7. Tests and Results

The procedure ’RandomFamilies’ has for some instances the same normalized cost
as the procedure ’BestFamily’, but is for most instances worse, and never better.
The procedure ’BestFamily’ is better than the approach ’GKN’ for five out of eleven
instances and worse for the rest. The procedure ’BestFamilies’ is equally good for
one instance, better for five and worse for five instance as compared to the approach
’GKN’. While the computation time is much shorter for the proposed procedures,
the normalized cost is close or below one for several instances, especially for the
procedures ’BestFamilies’, which is non-worse for all instances but one compared to
’GKN’.
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Figure 7.2: The computation time and the normalized cost visualized for each ap-
proach and instance from Table A.3. The time for the approach ’GKN’. is taken
from Table A.2.
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The computed schedules for the approaches ’GKN’, ’BestFamily’. ’RandomFam-
ilies’, and ’BestFamilies’ for instance 7 when a = 500 are illustrated in the Figures
7.3a, 7.3b, 7.3c and 7.3d, respectively. In the schedules, each of the seven rows
corresponds to a furnace. The gray area in the rectangle for each row is the time
when no jobs were being processed for the furnace that correspond to that row and
the non-gray color is the time when jobs are being processed. Each job that is being
processed is visualized as a rectangle. For a certain job, the most left side in the
rectangle is the time when the job starts and the most right side is the time when
it is completed. The text in the middle of the rectangle is information about the
job. For the non-special jobs, the information is a number, which is the index of
the job. The maintenance jobs are written as "back-out" and "vaccum", respectively.
A titanium job is written as "titanium-id" and a solder job is written as "maximal
temperature-solder-id". For example, furnace 1 in the schedule seen in Figure 7.3d
starts with a back-out job, followed by three solder jobs with the maximum temper-
ature 1176, the first processed solder job has index 2, the second has index 6 and
the third has index 15. The non-special jobs 5, 7, 11 and 13 are then processed.
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(b) The schedule computed by the procedure ’OneFamily’

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

0

1050-solder-1

1176-solder-2

3

4

51176-solder-6 7

8 910

1112 13

1176-solder-1415

16

17 18

19

20

21

2223

titanium-24

25 26

back-out vaccum

back-outback-out

back-out

(c) The schedule computed by the procedure ’RandomFamilies’
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(d) The schedule computed by the procedure ’BestFamilies’

Figure 7.3: The schedules that were computed for instance 7 for each approach and
procedure when a = 500 (see Table 5.1). If two jobs’ colors are the same, then
the jobs could form a batch of jobs that could be schedules simultaneously in the
original scheduling model develop by GKN. For the scheduling model in this thesis
that does not use the concept of batching, the colors do not have any meaning.
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8
Discussion and Conclusion

A proposal to generate families of special sequences has been given and tested in this
project. Our results indicate that cheaper schedules than GKN computes with their
current method can be computed by the proposed approach much faster. However,
it can not be guaranteed that the schedules that are computed by the proposed
approach are cheaper. Our results also indicate that the objective function used by
the model we developed to find families was not well suited, since the procedure
’OneFamily’ gave worst result than ’BestFamilies’ in seven out of eleven cases.

There is a strong reason to criticize the statement that some families of special
sequences that are generated by the proposed approach are better than the one that
GKN has computed. That is due to that the given special sequences from GKN
were modified so that they did not contain batches of jobs. It is likely that some
special sequences that was generated by the proposed algorithm were not computed
by GKN because they had special sequences with batches that dominated such a
special sequence.

The original idea of the project was to transform the scheduling model to an-
other model to which column generation would be applied, but due to the complex
constraints of the scheduling model, especially the constraints regarding scheduled
pauses, this was deemed to be a very complicated task, and the focus switched to
generating families of special sequences. These families of special sequence were
generated for a simplification of GKN’s model in which batching is not allowed.
This made it easier to generate families of special sequences, since batching was not
considered. Unfortunately, by removing the possibility of batches, some special jobs
and special sequences needed to be removed from each instance. The need to gen-
erate special sequences was therefore smaller by our model than by GKN’s model.
The column generation never took more than one (1) CPU second for any instance
– the most time-consuming part for all instances was to solve the scheduling model.

In conclusion, this project shows that generating a few families of special se-
quences with column generation results in a much better running time for the
scheduling model than generating all of them. Furthermore, the schedules that are
calculated by the scheduling model when these families are used by the scheduling
model can give a better result than the method GKN uses today.
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9
Future Research

Future research ideas and suggestions that has emerged during this project are
presented in this chapter.

9.1 Parallelize the Scheduling Model
The first suggestion is to parallelize the scheduling model. All families of SpSs is
needed to be used by the scheduling model for it to calculate the optimal schedule,
but only one family is used per schedule. Therefore, one can solve the problem
in parallel in the following fashion. First, compute all families of SpSs and then
divide the families into groups of the same size as far as possible. Then create an
instance for the scheduling model for each group and let each instance only contain
the families of SpSs that are in the group it was created for. These instances can
now be solved in parallel, and the instance with the cheapest solution is the optimal
solution for the scheduling model, since each family of SpSs has been considered.

9.2 Compute Several Schedules
Another suggestion is to solve the scheduling model twice, one time with only a
few families of SpSs, and a second time with all SpSs. The motivation for this is to
quickly find a schedule that is acceptable so that some jobs can start to be processed
quickly. Most jobs require more than four hours in the furnaces, and during the
time these jobs are being processed, an optimal schedule can be computed for the
remaining jobs in the instance, i.e., the second time a schedule is computed, the jobs
that started first in the schedule that was first computed are not considered, since
these jobs have already been processed.

9.3 Develop a New Model
A third suggestion is to create a new model which does not use the concept of SpSs.
Such a model needs to keep track of the temperatures of the jobs, the number of
titanium jobs that have been scheduled before a new clean-up is performed, and
will contain many more variables (with time indices) than the scheduling model.
Creating such a model will remove the difficulties related to SpSs, but introduces
a new difficulty. Such a model can only be used for a workshop that do not have
other special jobs than the solder and titanium jobs.
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9. Future Research

9.4 Perform a Study of Domination Criteria
The last suggestion is to perform a study of domination criteria for the SpSs. Dom-
ination criteria in this context mean that an SpS will always result in a better
schedule compared to another SpS. There exist trivial domination criteria for the
SpSs, for example, assume there is a set of solder jobs that are identical in every
way, except their completion weight. An SpS of these jobs such that the solder jobs
starts decreasingly with respect to their completion weight dominates all other SpSs
of the same length and jobs. The number of SpSs and therefore families of SpSs
that is needed to be generated is drastically decreased when a domination criterion
is known. Therefore, a study with the goal of finding more domination criteria would
be interesting.
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A
Appendix A

Instance id File name
1 20150925_113338
2 20150925_111745
3 20151008_141908
4 20151026_110356
5 20151001_110346
6 20150925_125446
7 20150921_100250
8 20150923_154604
9 20150923_193105
10 20150923_155904
11 20150924_141916

Table A.1: A mapping of each instance id to its corresponding file name.
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Appendix B

A table of all abbreviations that are used in this thesis and the meaning of them are
presented in this Appendix.

Abbrevation Meaning
BaB Branch-and-Bound
BaP Branch-and-Price
FJSP Flexible Job-Shop Problem
JSP Job-Shop Problem
PMSP Parallel Machine Scheduling Problem
BMSP Batch Machine Scheduling Problem
HTS Hierarchical Tabu Search
MP Master Problem
RMP Restricted Master Problem
SP Sub-Problem
LP Linear Program
ILP Integer Linear Program
IMP Integer Master Problem
IRMP Integer Restricted Master Problem
TIM Time-Iteration Model
SpS Special Sequence
DAG Directed Acyclic Graph

Table B.1: The meaning of the abbreviations used in this thesis.
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