
Predictive Longitudinal Control of Heavy-
Duty Vehicles Using a Novel Genetic
Algorithm and Road Topography Data
Master’s thesis in Complex Adaptive Systems

Fredrik Hoxell

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis 2016:08

Predictive Longitudinal Control of Heavy-Duty
Vehicles Using a Novel Genetic Algorithm and

Road Topography Data

FREDRIK HOXELL

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology
Gothenburg, Sweden 2016

Predictive Longitudinal Control of Heavy-Duty Vehicles Using a Novel Genetic
Algorithm and Road Topography Data
FREDRIK HOXELL

© FREDRIK HOXELL, 2016.

Supervisor: Pär Degerman, Scania, REIV
Examiner: Bengt Jacobson, Applied Mechanics, Chalmers university of technology

Master’s Thesis 2016:08
ISSN 1652-8557
Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Scania R 450 4X2 Highline. Photo by Dan Boman, 2014.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2016

iv

Predictive Longitudinal Control of Heavy-Duty Vehicles Using a Novel Genetic
Algorithm and Road Topography Data

FREDRIK HOXELL

Department of Applied Mechanics
Chalmers University of Technology

Abstract
Fuel costs account for approximately one third of the total cost of haulage con-
tractors. This makes it very lucrative from both the contractors’ and hence Scanias’
perspective to reduce the vehicles’ fuel consumption. With limited power-to-mass ra-
tio of heavy-duty vehicles, anticipatory control is crucial for fuel- and time-efficient
manoeuvring. Solutions addressing this problem are already in production, but
with ever-increasing system complexity the usefulness of conventional mathematical
methods is suffering. As an alternative approach, this thesis is aimed at investigating
the applicability of a real-time genetic algorithm (GA) to the domain of longitudi-
nal control of heavy-duty vehicles for fuel-saving adaption to road topography data.
Known to be computationally heavy, an as lightweight as possible algorithm is de-
veloped and aimed at optimising the engine torque by model predictive control. The
final algorithm uses a vehicle prediction model of fuel-consumption data including
a gear prediction model. Validated through simulation this novel approach displays
a clear improvement over a similar MPC-controller utilising a QP-solver and a cost
function similar to that of the GA.

Keywords: Adaptive, Look-ahead, Cruise Control, Genetic Algorithm, Quadratic
Programming, Heavy-Duty Vehicles, Model Predictive Control

v

To Karin, for all your love and support

Acknowledgements
First I would like to express my deepest gratitude to Pär Degerman, my supervisor
at Scania. You have offered great help and support throughout the project, but also
have you believed in my work and given me great freedom to choose my own path
and make this thesis truly mine.
I would also like to thank Professor Bengt Jacobson of Chalmers university of tech-
nology for helping make this project reality. It has been a pleasure to have you as
my examiner and I am truly grateful for all your help and effort throughout this
thesis.
A special thanks also goes out to the people of REIV. You have made my time as a
thesis student memorable and with your ever-encouraging words and interest in my
project, you have made me feel welcome and appreciated. Furthermore, I would like
to thank Ulrica Hysing of REI for truly exceptional support and Christoffer Norén
of REVD for inspiration and guidance as well as practical assistance.
Finally, this section cannot be completed without mentioning my family and friends,
who have both managed to put up with me for all these years and been such a great
part in bringing me where I am today.

Fredrik Hoxell, Södertälje, june 2016

ix

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Specification of the purpose . 2

1.2.1 Delimitations . 3
1.3 Method . 3
1.4 Report outline . 4

2 Background and previous work 5
2.1 Evolutionary optimality and the human addition 5
2.2 Optimality in the vehicle industry . 6
2.3 Dynamic programming and the curse of dimensionality 6
2.4 Genetic algorithms . 8

3 Heavy-duty vehicle prediction model 11
3.1 Fuel consumption . 12

3.1.1 Total fuel consumption . 13
3.2 Longitudinal dynamics . 15
3.3 Vehicle motion . 17
3.4 Simplified prediction model . 18

4 Model predictive control 21
4.1 Minimising engine energy output by model predictive control 23

4.1.1 Constant-speed correction . 25

5 Genetic algorithms 27
5.1 The biological process in short . 27
5.2 Algorithm design . 28

5.2.1 Constituents . 28
5.2.2 Operators . 29

5.2.2.1 Initiation of population 30
5.2.2.2 Encoding and decoding 31

5.2.2.2.1 Binary encoding 31
5.2.2.2.2 Value encoding 31

5.2.2.3 Evaluation . 32
5.2.2.4 Selection . 33

5.2.2.4.1 Roulette wheel selection 34
5.2.2.4.2 Tournament selection 35

xi

Contents

5.2.2.4.3 Boltzmann selection 36
5.2.2.4.4 Stochastic universal sampling 36

5.2.2.5 Fitness transformation 38
5.2.2.6 Optimal crossover and mutation rates 39
5.2.2.7 Crossover . 40

5.2.2.7.1 k-point crossover 41
5.2.2.7.2 Uniform crossover 41
5.2.2.7.3 Flat crossover 42

5.2.2.8 Mutation . 42
5.2.2.9 Replacement . 43
5.2.2.10 Competing generations 43
5.2.2.11 Elitism . 44

5.2.3 The final algorithm . 44

6 Hybrid algorithm 47
6.1 Genetic algorithm with warm start 47

6.1.1 Pre-solving and non-deterioration 47
6.1.2 Reusing previous solution information 48

7 Algorithm evaluation 51
7.1 Simulation model . 51

8 Results 53
8.1 Evaluation of QP-solver . 53

8.1.1 QP-solver performance for constant driving 53
8.1.2 QP-solver performance for varying road slope 54

8.2 Performance of hybrid algorithm . 57
8.2.1 Hybrid algorithm torque trajectory 57
8.2.2 Analysis of the behaviour of the hybrid algorithm for constant

and varying road slope . 58
8.3 Numerical comparison for short-distance performance 60
8.4 Large scale evaluation . 61
8.5 Average performance of genetic algorithm 63
8.6 Computational footprint . 63

9 Discussion 65
9.1 Decoupling of cost function, prediction model and solver 65
9.2 Computational footprint . 66
9.3 Applicability to vehicle control . 66

10 Conclusion 69

11 Future work 71
11.1 Improving execution speed . 71
11.2 Improving and extending the algorithm 72

Bibliography 73

xii

Contents

A Propulsion modelling I

B Genetic algorithm III
B.1 Run-time estimation of simplified GA III
B.2 Proof of optimal mutation rate . IV

C Parameters and constants VII

xiii

Nomenclature

Acronym Meaning
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance System(s)
DP Dynamic Programming
EA Evolutionary Algorithm
ECU Electronic Control Unit
GA Genetic Algorithm
GMS Gear Management System
HDV Heavy-Duty Vehicle
LACC Look-Ahead Cruise Control
LP Linear Programming
MPC Model Predictive Control
OEM Original Equipment Manufacturer
QP Quadratic Programming
SUS Stochastic Universal Sampling

xv

1
Introduction

Scania has a central role in the development of safer and more sustainable commer-
cial transports. Today Scania offers driver assistance solutions such as Advanced
Emergency Braking and Look-Ahead Cruise Control (LACC), while research is con-
ducted in areas such as platooning and autonomous driving in traffic jams.
The conducted research indicates that new technological solutions have the potential
to lower fuel consumption by 15% (e.g. platooning) and, for autonomous driving
in traffic jams, this figure could be as high as 18% [1, 2]. In addition to improved
fuel economy and thus reduced environmental impact, vehicles capable of switching
into a mode of autonomous driving could increase the efficiency of the driver and
reduces the risk of human errors.
There will be some time before fully automated vehicles reach the market, and cur-
rently there is a continuous transition happening in which the vehicles are step- or
functionality-wise augmented as subsystems are being automated and in many cases
more interconnected. One such system is cruise control, which for many years has
been a widely implemented driver assistance system that aims to keep a constant
cruise speed. This system, however, is challenged by the more recent adaptive cruise
control (ACC). In cars, this generally means adaption to the speed of the vehicle
ahead while keeping a safe distance [3]. For heavy-duty vehicles on the other hand,
the limited motor power and potentially heavy load pronouncedly limits the speed
and acceleration of the vehicle, making it highly desirable to add the ability to plan
ahead in time and use road gradient information to utilise gravity and predict de-
manding ascents, streamlining the conversion between potential and kinetic energy.
This becomes even more profound in the case of platooning of heterogeneous vehicles
[4].
To this end, previous work has been conducted in the field of LACC (e.g. [5,
6]). In both papers the proposed method is dynamic programming for solving the
optimisation problem with respect to time and fuel consumption. In [5] it is shown
that the developed algorithm is able to run on an embedded system rated at 200MHz
and with 32Mb of RAM. However, none of these methods are implemented in Scania
vehicles. Instead, Scania Active Prediction (see [7]) is the system that is currently
offered to customers; a look-ahead cruise control that is based on other methods.
This system has proved to improve the fuel efficiency of heavy-duty vehicles (HDVs),
thus potentially implying that there may be even more to gain by increasing its level
of adaptivity and using control signals with different characteristics.

1

1. Introduction

1.1 Purpose

Due to the effects of limited power-to-mass ratio of HDVs on the dynamics of such
vehicles, the fuel efficiency can be improved by optimising the engine control with
respect to fuel consumption by using information about upcoming road topography,
typically 1-10 kilometers into the future.
The arising optimal control problem has been solved with a range of techniques,
but in vehicular applications most traditional methods fail due to their need of
processing power and memory, which in general cannot be met by electronic control
units (ECUs) currently in production. Furthermore, these methods’ reliance on
mathematically stringency often require simple models and/or approximations to
be made.
Whereas mathematical optimisation techniques, and especially dynamic program-
ming, have been applied, there has been an upsurge in the application of evolutionary
algorithms [8]. Research has been conducted within the field of evolutionary algo-
rithms (EAs) for path planning ([9, 10]), but little or no research has been aimed
at investigating the applicability of the algorithms to longitudinal control when re-
stricted by efficiency and time constraints.
The main purpose of the thesis is to enter this previously unexplored field by inves-
tigating if genetic algorithms (GAs) can successfully be applied to a control problem
of this nature. The problem may on a higher level be described as adapting the driv-
ing style to the road topography so that fuel consumption will be minimised without
compromising the time efficiency. Although the investigated solution is applied to
a problem that is already addressed in production software, the ultimate purpose it
not simply to replace the existing solutions, but to investigate what potential lies in
the application of genetic algorithms for longitudinal HDV control.

1.2 Specification of the purpose

The main objective of this thesis is to propose a genetic algorithm based controller
for on-line fuel consumption optimisation via engine control in the HDV industry.
An attempt is made to bring inspiration from genetic algorithms and soft computing
into the field of on-line optimal control.
The relevant parameters describing the vehicle states are known to the algorithm,
as are the vehicle model required to predict the vehicle’s longitudinal dynamics and
fuel consumption. The objective of the algorithm (also referred to as the solver) is
to optimise the engine torque output with respect to time and fuel-consumption,
subject to a set of constraints and reference values used to ensure driver comfort
and speed limits among others.

2

1. Introduction

1.2.1 Delimitations

For future automated trucks to be able to offer at least the same fuel efficiency as
that of experienced drivers, the cruise control system must be able to adapt to the
driver profiles of the vehicles within some distance from the ego-vehicle; both in
the case of platooning but also in normal driving mode. However, this adaption
to surrounding traffic does not fall within the scope of the project. The algorithm
will thus not take potential fuel-savings associated with trailing other vehicles into
account. Therefore, it is assumed that the vehicle travels on a highway or rural
road with non-dense traffic, implying that interference from surrounding vehicles is
at a minimum. Furthermore, the algorithm should neither take into account the
curvature of the road nor lane changes or overtakings.
To fully optimise the speed profile of the vehicle with respect to efficiency and
time, there is an imminent need to gain control over the gearbox, engine and brakes,
amongst others. This is hampered by the current architecture of the communication-
and control systems of Scania vehicles. Therefore, also the restriction that the
planner to be developed is limited to controlling the engine is included.

1.3 Method

In the initial phase of the thesis, an in-depth literature study was conducted. Pre-
vious work within the field of look-ahead control and the closely related field of
trajectory planning was studied to identify the strengths and weaknesses of various
approaches. This study was supplemented by discussions with professionals within
the area and the general direction of the project and solution could be decided.
As for the main part of the project, a simulation- and evaluation environment was
developed along with the control algorithm. The modules were created as indepen-
dent of each other as possible to facilitate the porting of the algorithm to different
environments1. The purpose of the simulation module was to serve as a rapid-
prototyping environment during the algorithm development.
The development of the algorithm and the framework was divided into cycles. Each
cycle delivered working software but, more significantly, the various modules were
evolved as more Scania-internal data information were made available in the later
cycles.
As the algorithm approached its final form it was tuned and tested in a more ex-
tensive simulation environment including both theoretical formulae and in part also
vehicle data collected from measurements. In its final form, the algorithm was also
evaluated using this framework.

1e.g. Simulink models or StateFlow charts

3

1. Introduction

1.4 Report outline

1. (Introduction)
2. Background and previous work - In this section some of the ideas from

previous studies, upon which parts of this project are based, are presented.
This thesis being a novel approach, a range of studies and applications are
presented in an attempt to convey the core ideas of stochastic optimisation
methods and what they can add to the field of (classical) optimisation.

3. Heavy-duty vehicle prediction model - Having the controller to be de-
veloped rely on state predictions of heavy-duty vehicles, this chapter is aimed
at developing the required prediction models. The longitudinal dynamics of
heavy-duty vehicles are addressed and presented along with motivated approx-
imations.

4. Model predictive control - The core principles of the controller are pre-
sented with reference to the extensively employed method of model predictive
control. A simplified version of the problem solved by the final algorithm is
formulated in terms of two common classical optimisation methods; linear and
quadratic programming.

5. Genetic algorithms - The main algorithm of this thesis is presented from the
bottom up. A range of operators are presented along with reference to findings
in previous studies, leading up to the final form of the genetic algorithm used
in the controller.

6. Hybrid algorithm - As this thesis makes use of multiple solvers, the final
solver is termed hybrid algorithm. In this section the structure of this hybridi-
sation is presented.

7. Algorithm evaluation - Here the method of algorithm evaluation is ad-
dressed. It explains how the results were generated and includes an abstracted
illustration of the simulation model developed in this thesis.

8. Results - Results generated through simulations are presented. This section
contains results aiming to evaluate the fuel-saving potential of the algorithms,
but also are results regarding computational time and algorithm predictability
presented.

9. Discussion

10. Conclusions
11. Future work

4

2
Background and previous work

Optimisation is a field that has an almost infinite number of applications, spanning
a tremendously wide range of scientific fields. The first section addresses this area
from a point of view that serves as one of the main sources of inspiration for the
contents of this project and moves on to the human addition to optimisation, which is
concretised by applications in the automotive industry. Finally, important scientific
results and issues are presented, which have served as motivation and/or inspiration
for the choices that have been made in this thesis.

2.1 Evolutionary optimality and the human addi-
tion

The problem of optimisation is an ancient issue. Indeed, these types of problems
have even been an integral part in the evolution. The concept of survival of the
fittest may in many senses be translated to survival of the most optimal. Not only
has evolution acted as a force of optimisation, but there are also obvious signs that
animals can perform some kinds of optimisation (e.g. learn a policy) to maximise the
return1 of moving from one state to another 2. Unlike many methods of optimisation
that are widely used today, a very central part of the optimisation found in nature
is adaption.
A clear human addition to the field of solving optimisation problems is the highly
systematic approach. The most widely adopted tool is of course mathematics. There
is a vast set of strictly mathematical optimisation techniques employed to find some
optimum of a mathematical function, possibly under a set of constraints. Their
widespread use alone indicates that the mathematical treatment of optimisation
problems has certainly been fruitful. A prerequisite of the purely mathematical
models is that the problem must be defined in terms of mathematics as well. In the
case of systems, a mathematical model is often desirable since it enables the use of
a wide range of methods of mathematical analysis. This is thoroughly exemplified
by the almost countless number of studies performed within mathematical optimi-

1”Maximisation of return” could mean, for example, minimising the effort of moving from one
point to another, or maximising the amount of food found while foraging.

2The terms ”policy”, ”return” and ”states” are taken from the field of reinforcement learning.
Within this field, a policy is equivalent to a decision-making rule [11].

5

2. Background and previous work

sation, the huge amount of literature on the subject, and not to mention today’s
implementation of Active Prediction. Evidently, the human addition to the field of
optimisation is quite distinguished from that of nature, but both methods have their
strengths and share the characteristic of performing a directed search.

2.2 Optimality in the vehicle industry

Optimality can mean different things and can vary widely depending on constraints.
A common meaning of optimality is maximum efficiency (e.g. energy efficiency,
cost efficiency, or time efficiency). Typically prominent actors are vehicle OEMs,
but they are by no means the only ones. In the case of vehicles, there are various
approaches to the problem of improving efficiency. Restricted to fuel efficiency, there
are coarsely put two groups of measures; (1) improve the efficiency of the vehicle
(e.g. minimise energy losses in the engine, reduce drag, reduce friction) and (2)
improve the operation of the vehicle. The latter has a rather wide span, but a
relevant part for this thesis is that of Advanced Driver Assistance Systems (ADAS).
Although these kinds of systems have not fully penetrated the market and often are
considered as premium-options, much research effort is being put into developing
new systems. Examples are adaptive cruise control, lane-keeping assist, Advanced
Emergency Braking and automatic parking. These systems aim to improve traffic
safety, improve efficiency, relieve the driver, and/or improve the driving experience.
A possible and certainly sought outcome for the future is that these systems will be
able to fully replace the driver.
Some of the systems are intended to take over some of the driver’s tasks or improve
the awareness of the driver. However, a second set of systems is aimed at purely
enhancing the driving in ways that even the most experienced drivers could not.
Examples of such systems are map-enhanced or map-enabled ADAS, where map
data is utilised when available or is a strict necessity for the function of the system,
respectively. The system could then adapt to a particularly demanding part of the
road topography even before the driver is aware of that specific road segment 3 [12].

2.3 Dynamic programming and the curse of di-
mensionality

Professor Richard Bellman is the father of dynamic programming. In the time period
1948 - 1952 he formed the foundation of a theory that is still used extensively today in
various optimisation problems [13]. In short, the idea is to trade time complexity of
algorithms for increased memory complexity. This is done by subdividing a problem
into smaller parts, called stages, solving them one at a time. After a one-stage
solution has been found, the next stage is included in the optimisation problem,

3Of course, a driver familiar with the road can also prepare for this demanding segment, but
that is a special case, especially for transportation over long distances.

6

2. Background and previous work

and so the problem is solved as a sequence of one-stage optimisation problems.
Three main characteristics of a dynamic programming problem are that it should
lend itself to division into stages, have states, and require recursive optimisation.
The stages are required in order to subdivide the problem, while the states should
contain the necessary information about the implications of the current decision for
the future actions. Lastly, a prerequisite for applying dynamic programming is that
the optimal policy satisfies the principle of optimality, which may be stated as:

Any optimal policy satisfies the condition that regardless of the current
state and decision, the remaining decisions must yield an optimal policy
with respect to the state that is reached as a consequence of the current
decision.

In general, the application of dynamic programming to a problem requires much
thought and ingenuity in order to define the problem on the appropriate form. A
very intuitive example, on the other hand, is that of the shortest path problem, or
the closely related problem of finding the fastest path during rush hour [14, 15]. In
those cases the stage may be represented by the number of blocks you are from your
goal, while the state is represented by what intersection the traveller is at.
At a more concrete level, dynamic programming has for example been employed in
optimisation of hybrid powertrains in [16]. As a characteristic of dynamic program-
ming, the authors focus on the optimisation of the driving cycle of vehicles equipped
with more than one power source, in this case a hybrid electrical vehicle. Other ap-
plications of dynamical programming are the problem of dividing a paragraph into
lines of approximately equal length as discussed in [17], inferring batting conditions
in cricket [18], and, what has been the subject of many theses and research projects,
longitudinal control of heavy-duty vehicles (see for example [4, 5, 19, 20]).
Focusing on the latter example of applications, dynamic programming proved to
be conceptually fruitful, albeit not fit for real-time on-board operation in all cases.
In the one case where it was, lots of effort was put into researching suitable ap-
proximations and shortcuts in the algorithm, requiring extensive knowledge of the
optimisation problem. Similarly, in order to keep the memory requirements within
reasonable limits, the authors have made conscious decisions in designing the al-
gorithms. The latter is a consequence of what often is referred to as the curse of
dimensionality, meaning that an inherent property of dynamic programming is that
the memory requirements grow out of hands very quickly when there are more than
only a few state variables and the problem is of moderate size4.

4An exact upper limit on the number of state variables and problem size for dynamic program-
ming to be useful is very difficult to define since it is highly dependent on the resources allocated
for the computations, but also because many workarounds have been developed, which are not
necessarily universally applicable.

7

2. Background and previous work

2.4 Genetic algorithms

A general trend in mathematical optimisation is that as the problem to be solved
increases in complexity, they soon become unmanageable. Introduced by John Henry
Holland in the 1960’s, genetic algorithms are examples of soft-computing techniques
that have been used in a wide range of applications to take over where conventional
methods fall short [21]. As for dynamic programming, the field of applications
is very wide. Also, when applied to real-world problems it is not unusual that the
fitness function is non-differentiable and/or discontinuous and is cluttered with local
minima and noise. In such cases it has been shown that conventional methods such
as sequential quadratic programming and simulated annealing are outperformed by
GAs [22]. To this end, it was also shown in a research project at Shenyang Institute
of Automation that by utilising a GA for path planning, a snake-like robot could
not only determine the shortest path, but also would it limit the influence of motor
errors [23].
There are various methods to handle errors such as those of the motors in the snake-
like robot. However, errors introduces extra complexity and in coupled systems
with many components it may be very difficult or even impossible to manage these
errors. Figure 2.1 shows two graphs. The solid line represents the actual system
complexity that must be handled to fully master systems, whereas the dashed line
represents our ability to handle system complexity. Evidently, there is a gap between
these two lines and more importantly the system complexity increases faster than
we develop methods to handle this complexity, leaving us increasingly incapable of
mastering systems. In [24] this gap is referred to as the catastrophe gap. The main
implications of this increasing gap are that the available methods are limited in
terms of handling complexity and that our understanding of the holistic perspective
of systems is fragmented. This, in turn, fuels the argument that employing self-
adapting systems is a promising approach. In particular, genetic algorithms can
handle complex optimisations problem without requiring the developers to have
deep insight in the system to be optimised [25].
Of relevance for this thesis are mainly the applications of this algorithm family
to trajectory planning and research of how to increase convergence speed and thus
decrease run-time and resource requirements. As for the first point, the authors of [9]
successfully applied a genetic algorithm to the path-planning problem facing a UAV
travelling in the presence of other aircraft with uncertain trajectories. In the study
it was found that the UAV managed to plan and execute a smooth trajectory while
maintaining a good fuel economy and avoiding aggressive manoeuvres when yielding
for other aircraft. No matter the vehicle, this avoidance of aggressive manoeuvring is
often desired and the implications of the genetic algorithm carry over also to domains
other than aerial vehicles. Quite similar to the studied UAV path planning it has
also been shown that a GA employing variable-length chromosomes and tailored
operators effectively and efficiently manages to plan a nice trajectory on a two-
dimensional plane containing both static and dynamic obstacles [26].
Since GAs in general are computationally demanding (see Appendix B for run-time

8

2. Background and previous work

Time

C
o
m

p
le

x
it
y

System complexity

Manageable system complexity

Catastrophe gap

Figure 2.1: A graphical illustration of actual system complexity and the human
ability to handle complex systems through history. What should be specifically
noted is the ever-growing gap separating the lines. Finally, it should be remarked
that the axes are left blank as the graph is only a conceptual illustration.

estimation), their initial field of application was static optimisation problems. Ac-
cording to the authors of [25], it was in the late 80’s or early 90’s that GAs were first
considered interesting for application to optimal control problems. Thus, this means
that the applications have matured over a period of just under 30 years. Also, as
there has been a constant increase in accessibility of computational power over time,
new areas of applications have emerged naturally. As a result, genetic algorithms
are no longer restricted to static problems and are extensively covered in literature.
For example, in [22] the authors consider GAs as viable and intelligent solvers for
computationally expensive problems and, serving as one of many examples, the au-
thors of [27] dive into the field of multi-objective optimisation from the perspective
of GAs. Although this thesis does not include multi-objective optimisation in the
strict meaning, it is certainly of relevance for vehicle control.
A consequence of more efficient computers is decreasing computer size as well as price
drops. This opens up for implementing genetic algorithms in systems where price,
size and/or weight are limiting factors (e.g. vehicles, airborne systems or systems
in mass production). In an investigatory study the authors of [28] implemented a
Nondominated Sorting Genetic Algorithm (NSGA-II) in a 180MHz microcontroller.
Specifically, the authors conclude that the application of the developed algorithm
to real-time vehicle control is successful and refers to the solution architecture as a
viable option for ADAS implementations.
Summed up, genetic algorithms have been thoroughly studied and applied to dy-
namic optimisation problems of various kinds, most of which have no direct connec-
tion to longitudinal vehicle control. However, despite the problem formulations not
being the same, the conceptual ideas of the previous studies form a firm foundation

9

2. Background and previous work

to build upon when developing a real-time controller including computation-intense
functions.

10

3
Heavy-duty vehicle prediction

model

As the state of a heavy-duty vehicle at a specified position may depend on the
state and control signals of the truck several kilometres back, the algorithm that is
developed in this thesis relies on making predictions about future states and control
signals. The details are left for chapters 4 and 6, but suffice to say that in order to
predict the state of the vehicle, a model must be developed. Furthermore, as the
fuel consumption is a direct measure of the success and usefulness of the algorithm,
both the longitudinal dynamics and fuel consumption properties of the vehicle must
be considered. This chapter is dedicated to developing these models. Specifically,
in Section 3.1 a fuel consumption model with low online computational complexity
is presented, while Section 3.3 proposes a realistic, yet simplified, propulsion model
whose main characteristics are captured in a required simplification developed in
Section 3.4. The chapter also presents real data for Scania engines, but all data has
been considerably corrupted and scaled to unity to enforce company secrecy. The
most fundamental data for this chapter is a 3D map of the fuelling as a function of
engine speed and torque and is presented in figure 3.1.

1

Engine speed

0.5

00

0.5

Torque

0.4

0.6

0.8

1

0

0.2

1

F
u

e
lli

n
g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.1: A typical map of the fuel flow as a function of torque and engine speed.
Note that the data has been corrupted.

11

3. Heavy-duty vehicle prediction model

3.1 Fuel consumption

To describe the truck, a state vector x = [v, s,G] is used, where the speed of the
truck is denoted v, s is the distance from the reference point, and G is the engaged
gear. The basic control signals of a basic propulsion system exposed to the driver or
control system are throttle, brake and gear. However, in this thesis, gear selection
is assumed inaccessible for the control system to be developed. The control signals
that are available to the system are presented in table 3.1.

Table 3.1: Control signals available to the control system.

Variable Signal Unit
uf Fuelling g/min
ub Brake Nm

The engine output torque τe depends both on the fuelling and the engine speed. As
found in [5], the dependence is almost linear:

τe(ωe, uf) = e1ωe + e2uf + e3, (3.1)

where ωe is the engine speed and uf is the fuelling.
Although this may capture the coarse characteristics, it is seen from figure 3.2 that
there are clear deviations. The graphs are generated by finding the coefficients
ei, i = 1, 2..., in

τe(ωe, uf) = e1ω1 + e2uf + e3ufωe + e4u
2
f + e5ω

2
e + e6ω

3
e + e7 (3.2)

that minimises the squared difference at the sampling points.
Even when including some of the 3rd-order terms, the fitted function deviates no-
tably at several points and increasingly so towards the endpoints of the interval of
engine-speed values. With the restriction in computational power, more advanced
functions are not considered and as for equation (3.2), it is deemed inadequate. It is
instead replaced by a lookup table, which has an associated time complexity of O(1)
and can easily represent non-linear behaviour in the fuel flow map. The trade-off
is instead that analytical approaches are obstructed. Based on this note, equation
(3.2) is replaced by the mapping

τ̂e(ωe, uf) = mapτ (ωe, uf) (3.3)

Similarly, when measuring fuel consumption the resulting data is structured as a
discrete map. Figure 3.3 shows a typical fuel flow map as a function of engine
speed. The map is generated by measurements of the fuel consumption at specific
steady states with constant engine speed and torque. The map in figure 3.3 is
upsampled by cubic interpolation between these steady-state measurements. The
plot clearly visualises the maximum fuel flow for the different engine speeds.

12

3. Heavy-duty vehicle prediction model

Fuel flow

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o

rq
u

e

0

0.2

0.4

0.6

0.8

1

Measured data

Fitted function

Figure 3.2: Shifted and normalised data from fitting the coefficients of equation
(3.2) to the measured data. Each line colour corresponds to constant engine speed
(increasing from up/left to down/right).

More important for the design of the algorithm in this thesis is the projection of
the fuel-flow map onto the fuelling-torque plane. This projection is presented in
figure 3.4. Two lines have been superimposed on the graph. Line A represents the
maximum engine torque and line B represents the torque when the fuelling is zero
and the engine thus is completely dragged. Evidently, the range of available torque
output from the engine is a varying function in engine speed. As will be described
in greater detail in the following chapters, the output from the algorithm is the
recommended torque request, and the dynamic range must be handled somehow.
This problem of varying torque range is addressed by letting the algorithm request
any torque, but simply pulling any outliers back inside the valid interval at evaluation
time.

3.1.1 Total fuel consumption

As the vehicle accelerates or decelerates, the engine speed changes. However, as the
sampling interval is traversed in approximately one second, this change in engine
speed is rather small over a single segment. Given this, the predicted fuel consump-
tion is computed based on the mean value of the engine speed at the start and end
of the segment to reduce the number of computations needed, provided that no gear
shift occurs.
Per definition one has

v̄ = ∆s
t

⇔ t = ∆s
v̄
, t > 0,

13

3. Heavy-duty vehicle prediction model

Engine speed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
u

e
lli

n
g

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3: The fuelling as a function of engine speed, for a family of curves with
constant torque. This scatter plot is a projection of figure 3.1 onto the fuelling-speed
plane. Note that the data have been intentionally corrupted.

where ∆s is the distance travelled in time t.
With constant acceleration, a, it follows that

v̄ = vf + v0

2 ,

which is the mean value of the initial and final speed of the truck.
Thus, the time needed to travel over a segment of length ∆s is

t̃ = ∆s
(vf + v0)/2 .

Assuming nearly constant acceleration, t̃ is a good approximation of the time taken
to travel a distance ∆s.
Assuming that the fuel flow over each discrete segment may be modelled as constant
and denoting the fuel flow at segment k by ṁk, the total fuel consumed when
travelling over N intervals, each of length ∆s, becomes

mf =
N∑
k=1

ṁk t̃k, [g]. (3.4)

It is convenient to have a way of relating the fuel consumption in mass to the
contained energy, since it then can be compared to the kinetic energy of the vehicle
and the useful energy output or absorbed by its engine and brakes. This is done by

14

3. Heavy-duty vehicle prediction model

Engine speed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o

rq
u

e

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A

B

Figure 3.4: Interpolated scatter plot of the torque as a function of engine speed.
Each point represents a constant fuel flow. The line labelled ’A’ marks the maximum
torque and the line labelled ’B’ marks the torque when the engine is completely
dragged (i.e. when the fuel flow is zero). The lines are very jagged due to the heavy
corruption of the data to ensure company secrecy.

converting the energy content of consumed fuel to Joules. The value for the energy
content used in this thesis is cf = 4.8 · 107 J/kg. The energy equivalent to the mass
fuel consumption is

Ef = cf
N∑
k=1

ṁk t̃k, [J]. (3.5)

3.2 Longitudinal dynamics

To capture the complete characteristics of a vehicle, it must be considered in all
three dimensions. However, under the assumption that the road is well-behaved
(smooth curves etc.), which in general is the case for highway-driving, the problem
can be reduced to only encompass the longitudinal dimension.
The longitudinal component, a, of the instantaneous acceleration of a HDV is

a = 1
m

(Fw − Fr − Fd − Fg), (3.6)

with m being the mass of the vehicle, Fw the longitudinal force from the ground
acting on the wheels (i.e. propulsion and braking), Fd the air drag, Fg the longi-
tudinal gravitational component, and Fr the rolling resistance. In fact, the rolling

15

3. Heavy-duty vehicle prediction model

resistance should be modelled as a torque if tire slippage is to be taken into con-
sideration. Since it is assumed that the tires do not slip, the rolling resistance is in
spite the previous remark modelled as a force in order to maintain consistency with
the referenced theory.
A frequently used model for air drag is

Fd = ρ

2CdAvv
2, (3.7)

where ρ is the density of air, Cd and Av are the drag coefficient and frontal area of
the vehicle, respectively, and v is the relative speed between the vehicle and the air
[29].
The rolling resistance is given by

Fr = CrFN , (3.8)

where Cr is the coefficient of rolling resistance and FN is the normal force acting on
the wheel under consideration [30]. For a truck travelling on a road of slope α(s),
where s is the distance from some reference point, the normal force is given by

FN = mg cosα(s). (3.9)

The rolling resistance is highly dependent on various factors such as tire pressure,
tire make, temperature and of course the road surface itself. Additionally, the rolling
resistance is speed dependent; a dependence proposed in [31] to be on the form

Cr = Cr,1 + Cr,2v
2. (3.10)

Cr,1 and Cr,2 are constants related to the tire. In practice, Cr,2 is typically many
orders of magnitude smaller than Cr,1 and can be both positive and negative, and
can thus generally be dropped completely from the above equation. However, for
completeness, it is kept throughout the calculations below.
When travelling on a road of slope α, the gravitational contribution to the longitu-
dinal force is

Fg = mg sinα(s). (3.11)

Inserting equations (3.7) - (3.11) in (3.6) then yields

ma = Fw −
ρ

2CdAvv
2 −mg sinα(s)− (Cr,1 + Cr,2v

2)mg cosα(s), (3.12)

assuming that the truck is travelling forward at speed v > 0. A summary of the
forces acting on the truck is given in table 3.2. The three rightmost terms are

16

3. Heavy-duty vehicle prediction model

straightforward since they depend only on the speed, v, and position, s,1 of the
vehicle. The force that the vehicle exerts on the road to propel itself, however,
depends on both the state and characteristics of the drivetrain. A simplified version
of this dependence is presented in Section 3.3.

Table 3.2: Summary of forces

Force Designation Equation
Gravitational Fg mg sinα

Normal FN mg cosα
Rolling resitance Fr (Cr,1 + Cr,2v

2)FN
Air drag Fd

1
2ρCdAvv

2

Propelling force Fw See Section 3.4

3.3 Vehicle motion

According to Newton’s second law, the rotational acceleration of the engine is given
by

Jeω̇e = τe − τout, (3.13)

where τe is the instantaneous torque generated by the engine, Je is the moment of
inertia of the engine and τout is the torque supplied to the clutch or torque converter.
The gear ratio separating the engine and the wheels consists of the gearbox trans-
mission ratio, ig, and the final drive ratio, if . The total transmission ratio depends
on the gear, G, and is given by

i(G) = igif . (3.14)

The relation between the engine speed and the rotational speed of the driving wheels,
ωw, is

ωw = ωe
i(G) . (3.15)

The torque transferred to the clutch, Tout, decreases gradually due to energy losses
as it is transferred through the driveline components. This decrease is modelled by
an efficiency, η. The effective torque appearing at the driving wheels is thus

τe,w = η · i(G) · τout. (3.16)

The governing equation for the propulsion is thus
1henceforth the dependence on distance is assumed self-evident and thus omitted for brevity.

17

3. Heavy-duty vehicle prediction model

Jdω̇w = τe,w − FwRw − τb = ηi(G)τout − FwRw, (3.17)

where τb is the brake torque, Rw is the wheel radius and Jd is the inertia of the drive
train and wheels together.
Under the condition of no slip, the acceleration of the truck is related to the angular
acceleration of the wheel according to

a = Rwω̇w. (3.18)

As explicitly done in appendix A, combining equations (3.13) - (3.18) and solving
for a yields

a = Rw

Jd +mR2
w + Jeηi2(G) [i(G)ητe − τb −Rw(Fd + Fr + Fg)] (3.19)

3.4 Simplified prediction model

The above model is indeed a simplification of the complex workings of an engine and
driveline, but still it contains parts that are very specific to what engine and driveline
components the vehicle is endowed with. In a simplified model, a proportion ηs of
the torque from the engine is transferred to the wheels, where ηs represents the
internal losses in the driveline components and moments of inertia of the powertrain
constituents. In reality, a constant efficiency ηs cannot replace the characteristics
of equation (3.19), but recalling that only highways and rural roads are considered,
the vehicle will operate in a narrow(er) operating space which increases the validity
of this assumption. The effect of the assumption is that the net force acting on the
wheels becomes

Fw = ηsτei(G)
Rw

− τb
Rw

. (3.20)

Equation (3.12) then becomes

ma = ηsτei(G)
Rw

− τb
Rw

− ρ

2CdAvv
2 −mg sinα− (Cr,1 + Cr,2v

2)mg cosα. (3.21)

The calculations below are simplified by the substitution T = mv2/2, where T then
is the kinetic energy of the truck. Furthermore, since the road is discretised into
segments of length ∆s, typically in the vicinity of 20 m, and τe, τb, α and i(G) are
assumed constant over each interval, it is possible to collect (piecewise) constant
terms in (3.21) according to

ma = c2 − c1T, (3.22)

18

3. Heavy-duty vehicle prediction model

where

c1 = ρCdAv
m

+ 2Cr,2g cosα, c2 = ητei(G)
Rw

− τb
Rw

− Cr,1mg cosα−mg sinα.

A result of basic dynamics is the relation

v · dv = a · ds.

Under the substitution T = mv2/2, this turns into

dT = ma · ds.

Together with equation (3.22) this yields

dT = (c2 − c1T)ds.

Solving this separable differential equation results in

|T − c2
c1
|

|T0 − c2
c1
|

= e−c1∆s.

In the special case of T0 = c2/c1, the resulting force is zero, which means that T will
not change (i.e. T = T0). If T0 < c2/c1, there is initially a resultant force propelling
the vehicle. T can only approach the equilibrium T = c2/c1 from below, but never
exceed it. In the opposite case, T0 > c2/c1, T can only approach the equilibrium
from above. This observation indicates that the sign of the expressions within the
bars will always have the same sign, and it follows that

T = (T0 −
c2(τe, τb, s)
c1(s))e−c1(s)∆s + c2(τe, τb, s)

c1(s) , (3.23)

where the variables’ dependencies have been re-included for clarity.
Recall that the above result was derived under the assumption that the truck was
travelling forward. When a truck travels on a highway or rural road under normal
conditions and with the cruise control active, this is a valid assumption. However,
the exclusion of the sign-dependence of the rolling resistance on the vehicle speed
causes the rolling resistance to appear as a force always acting in the backward
direction. If the HDV comes to a halt between two sampling points, equation (3.23)
will become negative, which is physically impossible. Thus, it must appear natural
to the algorithm to not assume that the vehicle will in fact reach the end of every
segment, in which case the solution should be discarded as it is deficient.

19

4
Model predictive control

Model Predictive Control (MPC) is, as the name suggests, an advanced control
method where predictions of future states are made based on a model of the system.
MPC is not an algorithm itself, but an umbrella term for control strategies that seek
to optimise a process by finding the control signal sequence that minimises a cost
function. Since it was first proposed as a control strategy already in the late 1970’s,
MPC has evolved and is today applied in a variety of control situations. MPC is
synonymously termed Receding Horizon Control, which stems from the fact that, at
each sampling point, a prediction about a finite future is made. Thus, the horizon of
the prediction is pushed forward a step ∆s at every sampling point, where ∆s is the
sampling interval. The total look-ahead is therefore S = N∆s, where N is referred
to as the prediction horizon. In the prediction of signals and states at sampling
point q ∈ N0, an MPC controller can (but is not obliged to) take into consideration
all states and signals preceding that point [32]. A typical MPC problem, which is
also the form used in this thesis, could take the form

arg min
u(x)

N+q−1∑
k=q

f(x, u, r), q ∈ N0

s.t.
u(k) ∈ U ∀k,
x(k) ∈ X ∀k,
x(k + 1) = fs(x, u)

(4.1)

with

f(x, u, r) = Cost function
fs(x, u) = System model. Gives the next state, given previous states and signals

r(k) = Reference signal(s) over the kth interval
u(k) = Control signal(s) over the kth interval
x(k) = System state at the kth sampling point
U = Set of possible signals (dim (U) = {number of signals})
X = Set of possible states (dim (X) = {number of state variables})

21

4. Model predictive control

In terms of the controller developed in this thesis it follows that x = [v, s,G] and
u = [τe, τb]. As regards the computation of the next state, x(k + 1), the QP-
solver uses the rather crude forward Euler method due to its associated simplicity,
low computational cost and the limiting mathematical requirements put on the
formulation in order to turn it into a QP-problem, but also due to the fact that this
method is indeed still widely used today. The use of the forward Euler method is
further justified by the fact that the vehicle model used by the QP-solver is simplified
compared to the prediction model used by the GA. Increasing the accuracy of the
QP-solver, and thus generally the computational complexity, will not necessarily
result in appreciable gain. Compared to the QP-controller, the GA puts much less
emphasis on the mathematical formulation, enabling it to employ more advanced
methods to predict the value of x(k + 1). As a result, the forward Euler method is
in this specific case replaced by the analytical expression in equation (3.23).
Different solvers have different performance with respect to various parameters, but
typically must the cost function not be too complex for the problem to be tractable
in terms of complexity, memory consumption and computational effort [33].
Algorithmically, the concept of MPC can be summarised as in algorithm 4.1.

Algorithm 4.1 Simple MPC algorithm
1: p← FormulateProblem() . On the form required by solver
2: q ← q0
3: while True do
4: x(q)← MeasureState()
5: utemp ← Solve(p, x, u) . Returns signals for next N steps
6: u(q) = utemp(0) . 0-indexing
7: Send u(q) to the system
8: q ← q + ∆q
9: end while

As can be seen from algorithm 4.1, when the solution to the minimisation problem
is found, only the very first element of the proposed sequence of control signals is
actually sent to the system. A potential advantage of this approach is that if the state
of the system can be quickly and accurately determined and the algorithm completes
sufficiently fast, the errors of a simplified system model will not directly affect what
control signals will be proposed in the future as the algorithm continuously updates
the state estimation and predictions at each sampling. On the other hand, if the
accuracy and speed of predicting states is better than measuring them at each
sampling point, or if the algorithm is very slow compared to the system dynamics,
then the algorithm could be adjusted to accept a greater part of the proposed signals.
However, lots of research has been put into developing algorithms to improve the
solution speed for MPC controllers in systems with fast dynamics (see for example
[34, 35, 36]), which has resulted in a very wide range of optimisation methods for
MPC, both addressing problems with fast dynamics, limited computational power
and/or complicated system models.

22

4. Model predictive control

4.1 Minimising engine energy output by model
predictive control

The engine efficiency is a function of the working point. As a result, minimising
energy output of the engine is not equivalent to minimising fuel consumption. How-
ever, for normal driving, there is a correlation between fuel consumption and engine
energy output, and using either one as the cost function will lead to a solution that
is at or close to the minimum in fuel consumption.
As a discretised problem, the control actions are assumed constant over an interval
∆s. It then follows that the energy output from the engine over the kth interval is

Ee,k = τe,kig,kif
Rw

∆s. (4.2)

Similarly, the brake energy is

Eb,k = τb,k
Rw

∆s. (4.3)

The core of the problem is the minimisation of the cost function

J =
N∑
k=1

Ee,k − cT
N∑
k=1

Tk (4.4)

s.t.
1
2mv

2
min ≤ Tk ≤

1
2mv

2
max,

0 ≤ Ee,k ≤ Ee,max,

0 ≤ Eb,k ≤ Eb,max,

Tk+1 = Tk + Ee,k − Eb,k − Eenv,k,

where Eenv denotes the environmental forces (i.e. gravity, roll resistance, and air
drag). The inclusion of kinetic energy term is explained by the fact that the optimal
strategy when only considering engine output energy is simply to give no gas at
all, which obviously conflicts with the desire of the driver to maintain speed and
arrive at the destination. Furthermore, energy can indeed be absorbed by the engine
by letting it be dragged. However, while less or no fuel at all is consumed while
dragging the engine, letting the engine energy output be negative leads to solutions
where the engine brake is used in inappropriate situations, which explains the second
constraint. This may be better understood by noting that applying the engine brake
will in fact not recover energy, but simply avoid consuming fuel. Therefore, the terms
in the first sum of equation (4.4) should not be allowed to decrease the value of the
cost function by being negative.
The above problem formulation may be readily stated on the standard form of a
linear programming problem,

23

4. Model predictive control

arg min
y

pᵀy

s.t.
Ay = b
Cy ≤ d,

where y is the vector of variables, p, b and, d are known vectors and A and C are
known matrices.
As pointed out in [37], when employing the cost function in (4.4) the vehicle speed
usually tends towards the edges of the allowed speed range in static driving (i.e.
constant slope). This is an undesired behaviour, since under static conditions the
cruise control system should track the reference speed provided by the driver. An-
other essential factor to take into account is the driver comfort, which would be
compromised by excessive changes in engine torque. In addition to driver comfort,
smooth driving reduces mechanical wear as well as fuel consumption [37].
A natural way to include these factors are to penalise deviations from the reference
speed as well as changes in torque, thus introducing the following costs in the cost
function:

cT
N∑
k=1

(
Tk −

1
2mv

2
d

)2
+ cs

N∑
k=1

(Ee,k − Ee,k−1)2 ,

yielding the final cost function

J =
N∑
k=1

Ee,k + cT
N∑
k=1

(
Tk −

1
2mv

2
d,k

)2
+ cs

N∑
k=1

(Ee,k − Ee,k−1)2 , (4.5)

where vd,k is the desired speed at segment k, and cT and cs are non-negative param-
eters defining the importance of tracking the reference speed and smooth driving,
respectively.
With the new additions, the problem turns into a quadratic programming (QP)
problem, whose general form is

arg min
y

(1
2)yᵀHy + pᵀy (4.6)

s.t.
Ay = b
Cy ≤ d,

24

4. Model predictive control

where H is a known matrix.
Rewritten on this form, the stated MPC problem becomes a convex QP problem
[37]. Both LPs and QPs have been thoroughly studied and hence there are many
robust high-speed solvers concerned with the task of solving these kinds of problems.
As reported in [38] the solution to the current problem represented on the form (4.6)
may be found in less than 1/5 of a millisecond 1.

4.1.1 Constant-speed correction

In steady state, the third term in equation (4.5) is identically zero, making term 1
and 2 the only competing terms. Lower speed requires less (propulsion) energy from
the engine since the air drag and rolling resistance decreases, although the latter
only decreases very marginally. At the same time, as the speed is lowered below
the set speed, the second term grows as a consequence of the square. In simulations
conducted both in this thesis and in [38] it is observed that close to the set speed,
vd, the magintude of the derivative of the second term is greater than that of the
first term, causing the steady-state speed to be slightly below the set speed. The
reason for this is formally clarified by a steady-state analysis. In steady state, for
which α = 0 is assumed, the engine only has to balance the rolling resistance and
air drag. Thus,

Ee = Fr∆s+ Fd∆s = (Cr,1 + 2Cr,2T
m

)mg cos (0)∆s+ ρCdAv
T

m
∆s. (4.7)

Furthermore, the cost function in (4.5) reduces to

Jsteady = NEe + cTN(T − Td)2

= N∆s((Cr,1 + 2Cr,2T
m

)mg + ρCdAv
T

m
) + cTN(T 2 − 2TTd + T 2

d),
(4.8)

where T and Td are the kinetic energies corresponding to the desired speed and the
corrected desired speed, respectively.
Differentiating equation (4.8) with respect to kinetic energy yields

∂Jsteady
∂T

= 2NCr,2g∆s+ NρCdAv
m

∆s+ 2NcTT − 2NcTTd. (4.9)

To ensure that the steady-state speed is not different from the desired speed, we
require that the minimum of the reduced cost function in equation (4.8) coincides
with the steady state. Thus, it is required that

∂Jsteady
∂T

= 0,

1The result is based on a discretisation of ∆s = 25 m and N = 20. The solver (custom-generated
by CVXGEN) was run on a computer equipped with Intel Core i5 (2.67 GHz).

25

4. Model predictive control

which yields

Td = ∆sCr,2g
cT

+ ∆sρCdAv2cTm
+ T.

Finally, solving for vd gives the final expression

vd =
√

2∆sCr,2g
cTm

+ ∆sρCdAv
cTm2 + 2T

m
. (4.10)

To ensure this is a minimum, the derivative in equation (4.9) is differentiated once
more with respect to T :

∂2Jsteady
∂T 2 = 2NcT > 0,

thus confirming that if the desired speed is defined according to equation (4.10),
then the minimum of the cost function in (4.5) during steady-state driving on flat
ground will be such that the actual speed and uncorrected value of the desired speed
coincide.

26

5
Genetic algorithms

Genetic Algorithms constitute a subgroup of evolutionary algorithms. EA is a col-
lection term for a family of stochastic optimisation algorithms. They are termed
evolutionary due to their property of resembling the evolution found in nature. The
various kinds of EAs are based on different evolutionary concepts, and in the case
of genetic algorithms it is, of course, genes that serve as main inspiration. However,
it should be emphasised that the actual biological process that serves as inspiration
for genetic algorithms is many times more complex than the resulting optimisation
method [39].

5.1 The biological process in short

Evolution is the continuous development of living organisms over time. The process
is very slow and the final result of evolution is an accumulation of the changes
up the branches of ancestors. The evolutionary progress thus relies on changes
to persist through generations. To that end, the information must somehow be
stored. Additionally, it must also be passed on to the offspring. More specifically, in
Darwinian theory of evolution one is talking about a heritage in behavioural and/or
physical traits [40]. In nature, this is realised by the genome - the complete DNA-set
of an organism. The units of the DNA that codes for a specific protein or set of
proteins are called genes. Focusing on the human species, there are between 20,000
and 25,000 genes amassed in 23 chromosome pairs.
The information that is stored in the DNA is not directly accessible by the part
of the human cell that builds the proteins from the instructions contained in the
genes. That is, the useful information is encoded and must be decoded before it can
be used. In the cell, the decoding is performed by an enzyme, RNA polymerase,
in a process that outputs the messenger ribonucleic acid (mRNA). The information
that is transcribed in the mRNA-molecule is then used in the ribosomes so as to
synthesise the proteins that in turn form the individual [41].
This is only a very brief description of the biology behind the synthesis of proteins
from DNA information, but it suffices for the purpose of developing the basics of
GAs. In addition to the theory concerned with the workings of biological processes,
other scientific theories are often used as inspiration, such as the Mendelian theory
of inheritance, but also non-biological ideas such as simulated annealing or, more

27

5. Genetic algorithms

generally, statistical physics.

5.2 Algorithm design

There are many ways to take inspiration from genetics when building an algorithm.
In this section, the fundamental building blocks of a GA are presented, upon which
the design choices of this thesis are based. In addition to this approach of bringing
forth a part of the theory underpinning GAs, the choices made in designing the
controller algorithm are presented.

5.2.1 Constituents

The main part of a genetic algorithm is the genes. Like in the biological case, the
genes hold the smallest parts of (useful) information. Some authors like to define a
gene as the smallest constituent of a chromosome. In that case, the internal structure
of the gene is very simple; each gene may only hold a single unit (e.g. a number,
an operator, or an object). In the binary case, a gene is then the equivalent of a bit
as defined in the computer context. All by themselves they would not convey much
information, but grouped into chromosomes or parts of a chromosome they hold
useful information that can be decoded and interpreted in the system or process
to be optimised. Typically, in a multivariate function optimisation problem, each
variable could correspond to some contiguous fixed-length sequence of genes in the
chromosome. Thus, a problem of n variables where each variable is represented by
mg genes would then form a chromosome consisting of n ·mg genes. Although this
definition of a gene as the smallest block of a chromosome is convenient in some cases,
it fails to capture the information about what is the smallest structure needed to
represent useful information. For example, in the multivariate optimisation problem,
it is apparently possible to represent each variable as a given number of elements
in the chromosome, why it appears natural to define a gene such that there is a
one-to-one correspondence between the variables and the genes. The trade-off is
evidently that when using the latter definition the internal structure of the gene
must be provided to fully specify it. In this thesis, the latter definition is used
unless explicitly otherwise stated.
Unlike in human beings, a single chromosome in the GA contains all the information
about the individual and the terms ’chromosome’ and ’individual’ are therefore used
interchangeably for simplicity. An illustration of a shorter binary chromosome is
presented in figure 5.1.
The GA considered here employs multiple individuals which are then collectively
referred to as a population. As will be clarified as the operators are presented, em-
ploying multiple chromosomes is a prerequisite for the algorithm, but also does this
open up for diversity in the population. In this context, diversity implies exploration
of the search space. Exploration means that the algorithm more efficiently sweeps
the search space, which in turn improves the odds of finding the global optimum.

28

5. Genetic algorithms

The overall structure of these constituents is illustrated in figure 5.2.

Figure 5.1: Illustration of a binary chromosome. The chromosome consists of four
genes à four elements, with each element holding either a ’1’ or a ’0’.

Chromosome

Gene

Population

Figure 5.2: The internal structure of each individual in the population. At the
lowest level there is a gene containing a number of elements that each can store an
object. What kind of object is stored depends on the encoding.

5.2.2 Operators

There are many different operators that can be included in a GA. In fact, one
of the difficulties in optimisation using GAs is the wide range of parameters and
operators to choose from. Due to this fact, in order to successfully apply this family
of algorithms it takes some thought to reduce the computational effort needed to
arrive at the solution as well as improve the odds of arriving at the global optimum
within the allocated time. A downside to this type of algorithms is thus that they
generally do not carry over between different optimisation problems without being
modified. However, the generality is simply traded for a higher level of adaptivity
in the case when the algorithm is applied to the problem(s) it is designed for.

29

5. Genetic algorithms

5.2.2.1 Initiation of population

In the most basic case, a population of sizemp consisting of chromosomes of length n
is initiated by generating mp strings with n random elements each. The distribution
used to generate the population can be chosen in various ways, based on heuristic
or mathematical ideas about the location of the optimum in the search space. Also,
there is room for hybridisation (i.e. mixing optimisation methods). Given the
current best solution as found by a different method, it could for example be given a
spot in the initial population while the rest of the population is randomly generated.
In the context of hybrid methods, the converse is also true; the best solution, as found
by a GA, could be fed to a mathematical solver that might have trouble converging
to the global optimum unless the initial point is sufficiently close.
As genetic algorithms mainly are inspired by both the Darwinian theory of evolu-
tion and the Mendelian concept of propagation and mixing of genetic material, the
findings in [42] that the initial population and thus the initial genetic content of the
population strongly influences the performance of the algorithm are indeed intuitive.
As pointed out in [43], completely random initialisation does not guarantee a spread
of the individuals in the solution space. In the extreme case the individuals may all
be initialised in a small region, depriving the population of initial diversity. A state
of low diversity is not inescapable as the algorithm family contains many stochastic
operators, but typically the loss of initial diversity decreases the chances of finding
the global optimum within the allocated time interval.
The problem of initial diversity is actively assessed in the algorithm developed here.
As presented in [44], this may for example be done by computing the generalised
Hamming distance between the individuals. However, this is both inconvenient
and increases the computational complexity, why the initialisation in this thesis is
done in a process simplified so as to decrease the cpu requirements. At the core, the
initialisation operator relies on the assumption that the initial solver gives a solution
that is not too far from the global optimum with respect to the genetic algorithm.
The validity of this assumption is of course highly dependent on how different the
solvers and utilised vehicle models are. As will be seen, this assumption is indeed
justified by the results.
With this assumption the required initial diversity may be reduced since the main
traits of the optimal solution with respect to the second solver are comparable
to those generated by the pre-solver. The implication is that components of a
chromosome that are very different compared to the corresponding components of
the pre-solver solution are likely to be of poor quality. Therefore, instead of randomly
initialising the population, the population is initialised by generating a complete
population consisting solely of copies of the warm start solutions. At least one
of each warm start solution is kept unaltered, while the rest undergoes the same
mutation process as that used in the main loop of the algorithm. However, to impose
appreciable diversity, the mutation rate is significantly higher in the initialisation
phase than in the main loop.

30

5. Genetic algorithms

5.2.2.2 Encoding and decoding

Encoding is the process of representing the search space of the optimisation problem
in the coding space. Bringing this back to the biological domain, the search space
may be thought of as the phenotype and the coding space as the genotype1.
Between these two spaces, the encoding and decoding procedures act as mappings.
Depending on the encoding scheme, this mapping between search space and coding
space is not necessarily bijective. An example of a mapping that may not be bijective
is tree encoding, as commonly used in genetic programming. Non-redundancy is
generally desirable in GAs and this non-bijectivity breaks this rule-of-thumb, but
the use of these kinds of mappings have been found fruitful in certain applications
and are therefore still used despite this downside [46].

5.2.2.2.1 Binary encoding

One of the most widely employed encoding is the binary encoding. Binary encoding
was presented in figure 5.1. If a binary encoded gene consists of n elements, it
is capable of representing 2n different values. In the case of binary encoding, the
search space must be bounded somehow. In the continuous case it means that there
is an upper and lower bound for each variable, while a discrete problem requires a
bounded set [46]. Given a range, [a, b] and using binary encoding, this range can only
be divided into 2n − 1 intervals. The average resolution offered by binary encoding
is then (b− a)/(2n − 1).
The decoding function can be chosen arbitrarily. For example, inspired by the binary
system, a binary gene gi (i = 0, ..., n−1) representing the range [a, b] may be decoded
according to

x = a+
∑n−1
i=0 2igi
2n − 1 · (b− a). (5.1)

Evidently, the resolution can easily be controlled by choosing the length of the genes.
Some advantages of this approach are clear already at this point (e.g. exact repre-
sentation of integers, easy to control resolution etc.), but it also opens up for the
use of Gray Codes, amongst others [39]. However, there are also obvious downsides
to binary encoding, one of which is its inherent property of encoding error, which
may be reduced on the expense of increased chromosome length and thus increased
search space dimensions and computational complexity.

5.2.2.2.2 Value encoding

Just like the operators, there is a vast amount of encoding schemes that can be used.
In fact, the encoding schemes may be infinitely customised to suit the problem. This

1Phenotype is the visible traits of the individuals as caused by the genetic information, also
referred to as the genotype [45].

31

5. Genetic algorithms

does rather well illustrate the often needed and witnessed ingenuity in contexts of
alternative and adaptive algorithms. Although very many encoding schemes fall
within the field of binary encoding, these schemes are not universally applicable
and, even if they are, they may not be the best suited. Suitable encoding is crucial
for the success of genetic algorithms [47].
A competitor to binary encoding that manages to overcome some of the associ-
ated shortcomings is value encoding. Instead of encoding the information in binary
format and employing mappings between the search space and coding space, this
method involves representing something connected to the optimisation problem in
real values. The most obvious reason to use value encoding is in cases where it is
not possible to represent the problem in binary format or where the encoding error
associated with binary encoding becomes too large. However, in addition to these
fundamental reasons, Michalewicz found that the utilisation of value encoding is
making its way into the domain of genetic algorithm as the main findings in [48] are
that real-value encoding has the potential to outperform binary encoding.
Furthermore, it should be noted that value encoding does not mean that the genes
must hold a number, but it could be any object. What might be considered a
drawback of this method is that it often is necessary to tailor the operators to the
specific nature of the problem [46]. This affects the generality and the typical ease-
of-use, but there is a direct gain in computational speed as encoding and decoding
processes often are less demanding and in the extreme case, the search space is
directly represented in the coding space and no transformations are needed.
The algorithm is intended to control the engine torque output and with the aim
of making the computational footprint small in the developed application, value
encoding is used. As presented in figure 3.4, there are natural upper and lower
bounds on the engine torque output. The bounds are functions of engine speed
and are therefore difficult to directly include in the algorithm as the engine speed
is highly dependent on the previous control signals sent to the powertrain. This
problem is assessed by having the genes represent any torque-values but pulling
outliers back inside the valid interval at evaluation time.

5.2.2.3 Evaluation

The purpose of the evaluation is to assign a fitness value to each individual based on
their phenotype. Since GAs are deeply inspired by natural selection, the fitness value
of a solution is a very central part for the progression of the algorithm. The fitness
function thus has fundamental influence on the success of the algorithm. To achieve
a good result, the fitness function should assign high fitness values to individuals
with desirable traits while undesirable characteristics should be penalised. In view
of conventional mathematical optimisation methods, this process is the equivalence
of formulating the problem in mathematical terms. However, there is a fundamental
difference. As many mathematical models rely on that the mathematical formulation
of the problem fulfills certain criteria, GAs do only put very loose restrictions on
the problem formulation. GAs do not even require the problem to be expressed

32

5. Genetic algorithms

mathematically. The main point is that the evaluation could be performed in any
manner as long as it enables a fitness value or rank to be attributed to each individual
[39, 46].
For the purposes of longitudinal control of an HDV, numerical models are readily
available and a mathematical formulation of the problem is indeed convenient. The
formulation may be formed in an infinite number of ways and on forms that can
be tailored to a specific problem. For the case at hand an approach of modest
model complexity is chosen. Behind this lies the reasoning that generality decreases
with increasing model complexity, that there is a correlation between simplicity and
robustness, and that the model should not be too expensive in terms of compu-
tational complexity. In addition to these remarks, a consequence of only making
small changes to the truck model used by standard solvers (e.g. quadratic program-
ming) is that it is easier to identify any improvements that can be attributed to the
developed solver.
With (at best) a correlation between engine energy output and fuel consumption,
the cost function given by equation (4.5) cannot be used to find the optimal sequence
of control signals with respect to fuel flow. Noting that the energy contained in the
consumed fuel and the energy output are comparable and only differ by a factor
typically in the range 2-3 due to engine efficiency, equation (4.5) may be modified
according to

J = δf
N∑
k=1

Efuel,k + cT
N∑
k=1

(
Tk −

1
2mv

2
d,k

)2
+ cs

N∑
k=1

(Ee,k − Ee,k−1)2 , (5.2)

where Ee,k has been replaced by the fuel energy content, Efuel,k along with a cor-
rection factor δf to account for the engine efficiency.
Thus, while the genetic algorithm has the potential to employ very complex cost
functions, the extension of the cost function is in this case rather subtle. Impor-
tantly, however, it adds the ability to evaluate a proposed solution based on fuel
consumption instead of engine output energy.

5.2.2.4 Selection

The purpose of the selection process is to select a number of individuals from the
population and let them transfer their genes to the next generation. If sexual re-
production is used, individuals are typically selected pairwise and are then allowed
to mate. The general approach is presented in figure 5.3.
In the strict literal sense of survival of the fittest, the individual with the highest fit-
ness value would get to procreate. However, it is possible and, in general, preferred
to implement schemes that do not blindly select the best individuals but also con-
sider the individuals with lower fitness values. Thus, the fitness values may merely
be used as indicators or recommendations of specific individuals. To give an idea
of the magnitude of the influence of the fitness value, the term selection pressure is
introduced. High selection pressure implies strong reliance on fitness value, while

33

5. Genetic algorithms

Population

Selected

individuals

New population

Operators

Figure 5.3: From the population, a given number of individuals are selected in the
selection process. These individuals are passed on to the other operators and finally
placed in the new population.

low pressure indicates a more arbitrary selection with regards to fitness. The or-
thogonality of high and low selection pressure leads to different characteristics; high
pressure leads to faster convergence at the expense of the odds of finding the global
optimum. Low pressure, on the other hand, may lead to slower convergence, but it is
also associated with a better chance of finding the global optimum. Put differently:
high pressure promotes exploitation while low pressure promotes exploration [46].

5.2.2.4.1 Roulette wheel selection

A simple scheme for selection is the so called roulette wheel selection. The name is
derived from the casino game, but a more accurate name would maybe be wheel-of-
fortune selection after the American TV show. In the standard case, the probability
of an individual being selected is proportional to the individual’s fitness. If individual
i (i = 1, 2, ...,mp) has fitness fi, then the probability of individual j being selected
is

pj = fj∑mp

i=1 fi
, j = 1, 2, ...,mp. (5.3)

Since probabilities must be non-negative, the method, as stated here, requires non-
negative fitness values.
To implement this version, the cumulative probability, θj, is used:

34

5. Genetic algorithms

θj =
∑j
i=1 fi∑mp

i=1 fi
, j = 1, 2, ...,mp (5.4)

The selection is performed by drawing a random number, r ∈ [0, 1], and the selected
individual is the first one fulfilling

θj > r.

An example of this process is illustrated in figure 5.4.

9%

12%

7%

14%

13%

17%

9%

6%

2%

11%

Figure 5.4: Roulette wheel selection for a population consisting of 10 individuals.
If the fitness values are normalised, the illustrated case corresponds to r = 0.25.
Counted clockwise, the fourth individual is selected.

5.2.2.4.2 Tournament selection

Along with roulette wheel selection, tournament selection is the most widely em-
ployed selection operator [39]. While roulette wheel selection is inspired by the game
rather than nature, tournament selection is directly inspired by a selection process
in nature. In a natural tournament, there is always a risk of various factors leading
to the superior individual loosing and consequently allowing the inferior creature to
transfer its genes to the next generation. This cause of diversity and, algorithmically
speaking, exploration of the search space, is captured by the tournament selection
operator. In this scheme two or more individuals are randomly selected from the
population. Out of these individuals, the best one is selected with probability p.
The process is recursively applied until an individual has been selected or only a
single individual remains and thus is automatically selected.

35

5. Genetic algorithms

5.2.2.4.3 Boltzmann selection

One the one hand, roulette wheel selection and tournament selection are based on
intuition and nature’s counterpart, respectively. On the other hand, they don’t take
into account the evolution of population over time and appropriately adjust the
selection (i.e. their selection pressure is constant). A well-known heuristic approach
to finding an optimum in a search space is to start out on a coarse scale and then
successively zoom in on the interesting regions. This is a phenomenon witnessed in
statistical physics rather than biology, and the work and ideas of Ludwig Boltzmann
within the field of statistical physics have been a major source of inspiration [49].
The algorithm is inspired by the annealing process of solids, which involves heating a
metal to specific temperature for a specified amount of time and then slowly cooling
it in a controlled way [50]. Ideally, at the maximum temperature, the metal atoms
are randomly located in the liquid phase. If, additionally, the cooling is sufficiently
slow, the result of the annealing process is a solid in which the particles have arranged
themselves in the low energy ground states [51]. The direct connection to this theory
is the simulated annealing algorithm, but it also carries over to the selection process
of GAs [46]. In that case, equation (5.3), the probability of selecting individual
j (j = 1, 2, ...,mp) with fitness fj in roulette selection, is replaced by

pj = efj/T
′∑mp

i=1 e
fi/T ′ , (5.5)

where T ′ is the equivalence of temperature in a annealing process [39].
Equation (5.5) is merely an example of a Boltzmann inspired selection scheme. In
[39] a second selection process derived from statistical physics is presented, but it
is based on tournament selection instead. Yet another approach to the same kind
of selection is found in [46]. The latter also proposes a logarithmically decreasing2

temperature:

T ′ = T ′0(1− α)k, k = 1 + 100ngen
G

,

where T ′0 is the initial temperature, ngen is the current generation number, G is the
maximum number of generations and α is control parameter in the interval [0, 1].
Although these rule of thumbs exist, experimenting is generally required for good
results [39].

5.2.2.4.4 Stochastic universal sampling

In view of the performance of the genetic algorithm, [53] introduces three measures:

2A logarithmically decreasing function is a function whose value decreases to zero more slowly
than any nonzero polynomial [52]

36

5. Genetic algorithms

• Bias - The absolute difference between the expected value3 and the actual
value. Optimal (zero) bias is thus achieved when the selection algorithm per-
fectly respects the expected value.

• spread - The range of number of times that an individual may be selected in
the selection process.

• efficiency - The complexity of the algorithm (e.g. time complexity).
In the situation of optimal bias and minimum spread, the actual value (number of
offspring) for individual i is thus restricted to the set

{beic, deie},

where ei is the expected value.
From this it follow that a selection algorithm should have minimal spread and zero
bias, and be efficient. An algorithm with these properties is stochastic universal
sampling (SUS) [54]. The efficiency is in the order of mp, the population size.
Conceptually, the algorithm is very similar to roulette wheel selection. However,
instead of repeating the selection process mp times, all mp individuals are selected
at once and not independently. The selection process starts by normalising the
fitness values to sum to 1. Next, a pointer is placed at random in the interval
[0, 1/mp]. Subsequent pointers are then placed a distance 1/mp apart, as illustrated
in figure 5.5. Intuitively this may be thought of as placing a comb with equidistant
teeth in figure 5.5, where the position of the first tooth is chosen at random in the
interval [0, 1/mp].

Figure 5.5: Illustration of stochastic universal sampling. The size of each segment
corresponds via some predefined rule to the fitness of the corresponding individual.
The total length of the segments is 1, and all pointers are therefore separated by an
interval equal to 1/mp, where mp in this case is 10. The first (leftmost) pointer was
randomly selected in the interval [0, 1/mp] and in this case it was placed at 0.0572.

In figure 5.5 two individuals are sampled twice. Programmatically, when these
individuals are extracted form the population as in figure 5.3 the simplest method
is to extract them in order and thus place any multiple samplings next to each
other. Depending on the implementation of the crossover process presented next,
this adjacency may lead to crossover between the very same individual. The result is

3The expected value of an individual is defined as the average number of offspring that it should
receive.

37

5. Genetic algorithms

that since crossover between identical chromosomes in many schemes simply clones
the parents, there is no net result. To avoid this situation, a shuffling algorithm is
applied to the selected population.

5.2.2.5 Fitness transformation

In the algorithm, the direct fitness value is computed according to equation (5.2).
As a result of having each gene code for the torque for a given road segment, if a
single gene is altered while keeping the rest fixed, all future states of the vehicle
are affected by this change. The result is that one ”bad” gene can cause the whole
chromosome to appear as a solution far from the optimum. This has the potential
to decrease the fitness value considerably, leading to a loss of valuable information.
In view of this issue, it is necessary to either lower the selection pressure directly or
transform the fitness in order not to lose good solutions disguised by a set of poor
genes.
Since SUS is used as sampling technique, and this method offers optimal bias and
minimal spread, it is straightforward to control the expected value, ei, and more
importantly, the expected value of the elite.
Instead of normalising the fitness values as described in section 5.2.2.4.4, the fitness
values can be left unchanged and the pointer interval will then be of length

ip =
∑mp

i=1 fi
Ns

,

where Ns denotes the number of individuals to be selected.
The expected value of individual j is then

ej = fj
ip

= fj∑mp

i=1 fi/Ns

.

A common way of transforming the fitness is to employ fitness ranking, which in its
basic form means that one, in a population of mp individuals, assigns a fitness value
of mp to the best individual, mp − 1 to the next best and so on. However, when
employing SUS and selecting as many individuals as there are in the population, it
follows that

ebest = mp∑mp

i=1 fi/mp

=
m2
p∑mp

i=1 i
=

m2
p

(mp + 1)mp/2
= 2mp

mp + 1 .

Thus,

lim
mp→∞

ebest = 2,

38

5. Genetic algorithms

indicating that the best individual will copied two times into the new generation in
the limit as mp tends to infinity.
To control the expected values, the algorithm instead employs two successive fitness
transformations. First it applies fitness ranking to effectively decrease the selection
pressure. To assess the problematic tendency of copying the best individual twice
into the next generation, the second transformation takes the form

f̂j = f
1/7
j,rank.

For mp = 50 and mp = 100 with Ns = 50, this yields the graphs illustrated in
figure 5.6. As can be seen from the figure, this transformation guarantees that a bit
more than half of the best individuals are guaranteed to be selected (i.e. ej ≥ 1)
if mp = Ns = 50. Also, it should be noted that this approach does not completely
prohibit the algorithm from carrying over two copies of the same individual to the
next generation as the expected value lies between 1 and 2, but it does decrease the
probability and in the obvious way it is possible to decrease this probability even
further by choosing a different function for the second fitness transformation.

Rank

0 10 20 30 40 50 60 70 80 90 100

E
x
p

e
c
te

d
 v

a
lu

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

m
p
 = 50, N

s
 = 50

m
p
 = 100, N

s
 = 50

Figure 5.6: Expected value after transformation of fitness ranking values. The
solid line represents the case where equally many individuals as there are in the
population are to be selected, while the dashed line illustrates the case where only
half of the individuals in the population are to be selected. In both cases the absolute
number of individuals to be selected is the same.

5.2.2.6 Optimal crossover and mutation rates

The mutation and crossover rates are parameters whose values significantly affects
the performance of a genetic algorithm [55]. Many articles are concerned with
finding the optimal value for these parameters, but in general the findings rarely
carry over between applications, making an algorithm relying on constant values

39

5. Genetic algorithms

of these parameters fragile. A general conception is that there is no such thing as
optimal rate, and in an attempt to assess this fragility and circumvent the need to
explicitly set the rates the authors of [55] propose adaptive probabilities for both
crossover and mutation. The proposed models are

pc =

c1
(fmax−f ′)
fmax−〈f〉 , f ′ ≥ 〈f〉

c2, f ′ < 〈f〉,
(5.6)

for crossover and

pm =

c3
(fmax−f)
fmax−〈f〉 , f ≥ 〈f〉

c4, f < 〈f〉,
(5.7)

for mutation. c1, c2, c3 and c4 denotes constants to be set, fmax and 〈f〉 denotes
the maximum and average fitness values of the present generation, respectively, f ′
is the maximum fitness of the pair to cross and f is the fitness of the individual to
mutate.
A GA is a directed search algorithm and typically the parameters pm and pc reflect
the trade-off between the desire to have the algorithm being explorative or exploitive,
ideally in that temporal order (i.e. first explore and then prioritise exploitation). To
achieve this, a standard approach is to decrease the mutation and crossover rates
with time (i.e. generation number). The stochasticity of the algorithm, however,
makes the temporal development of the population unpredictable, which justifies
the inclusion of population dependent mutation and crossover rates as in (5.6) and
(5.7).
For both rates, there are default values for sub-average individuals. Now, focusing
on the crossover rate, pc, it can be seen that for pairs where the best individual has
above-average fitness, the crossover rate decreases with increasing pair-wise maxi-
mum fitness and if the pair contains the best individual in the population, the rate
is zero. Similarly for the mutation rate, there is a default rate for sub-average indi-
viduals, while for above-average chromosomes the rate is different and modelled by
a decreasing function that goes to zero for the fittest one.
The zero-probability of the best individual being crossed prevents it from being
destroyed, which is acceptable but not a requirement. However, both crossover and
mutation rate must not be allowed to be zero for a single individual as this could lead
to exponential growth and consequently an imminent risk of premature convergence.
Based on this reasoning, the authors of [55] introduce a small default mutation rate
of 0.005, acting as a minimum mutation rate for all individuals.

5.2.2.7 Crossover

Depending on the genetic algorithm, different crossover schemes must be used. The
schemes that will be considered here are schemes where 2 parents give rise to 2
children and the chromosome length is preserved. Also, as the characteristics of the

40

5. Genetic algorithms

crossover operation depends both on the encoding, fitness transformation, selection
of individuals to cross, and the crossover operator itself amongst other, the adap-
tive mutation rate introduced above is dismissed for a constant crossover rate of 1.
However, as the concept of competing generations is employed in the final selection
of the next generation and stochastic uniform sampling is used as the mechanism for
crossover selection, the effective crossover rate is less than 1. Furthermore, with the
inclusion of competing generations, all genetic material from the previous generation
is guaranteed to be present without any modifications when selecting individuals for
the next generation. An important point to underline is that although the mutation
rate is not adaptive, its characteristics are sought as a net effect in the design of the
algorithm.
In the development process many crossover operators were evaluated. The most
general forms of the evaluated operators are presented below, and in the final algo-
rithm flat crossover is used as it proved to be best suited with regards to how the
problem has been formulated in this thesis.

5.2.2.7.1 k-point crossover

The most fundamental crossover scheme meeting the requirements above is the k-
point crossover. Recalling that each chromosome consists of n genes, a chromosome
can be split at n − 1 locations. The algorithm starts by drawing k unique random
integers representing the crossover points. The two parent chromosomes are then
split at these locations. Then every other segment is swapped, mixing the genes of
the two parents. In many applications k is set to 1 or 2 and as found in [56], when
compared to both uniform, flat and 2-point crossover, the 1-point crossover out-
performed the others in the job shop scheduling problem. The job shop scheduling
problem is clearly different from the problem of longitudinal vehicle control, but the
results in [56] indicate that by increasing the number of crossover points, valuable
schemas4 may be destroyed and consequently make the algorithm perform worse.

5.2.2.7.2 Uniform crossover

k-point crossover is applicable for many different encoding schemes but, for value
encoding, uniform or flat crossover are normally employed [57]. Much like k-point
crossover, uniform crossover performs crossover on two individuals by traversing
the chromosomes and swapping corresponding constituents between the individuals.
However, uniform crossover differs in that each pair of corresponding genes of the two
individuals are swapped with a certain probability. The result is that segments of
varying length are swapped between the chromosomes, but unlike k-point crossover
there is no predefined number of segments that are swapped. Instead the number of
swapped segments is in the range [0, n], where the cross ratio (i.e. the probability of
swapping two genes) can be used to bias the number of swapped segments in either
direction.

4A schema is a subsequence of a chromosome.

41

5. Genetic algorithms

5.2.2.7.3 Flat crossover

Both k-point crossover and uniform crossover are underpinned by the theory of how
genes are passed on from parents to offspring in humans amongst others. Formally
speaking, the above crossover operators are concerned with the genotype of the par-
ents and the generated offspring. Recalling the parallel drawn between the genotype
and coding space, and phenotype and solution space, it can be said that the flat
crossover operator targets the phenotype in cases where no encoding is used. Flat
crossover can also be applied to encoded chromosomes, but in that case one should
instead talk about genotype superposition as it does not operate directly on the
phenotype.
In its simplest form, flat crossover generates the content, commonly referred to as
allele, of gene number j in 2 children (c1 and c2) from 2 parents (p1 and p2) according
to

gc1j = rjg
p1
j + (1− rj)gp2j ,

gc2j = rjg
p2
j + (1− rj)gp1j ,

where rj is a random number in the range [0, 1].

5.2.2.8 Mutation

As for this thesis, the dynamic mutation probability is considered of relevance, but
even more so is the reasoning underpinning it. Specifically, the effective mutation ef-
fects should decrease as the evolution progresses. Evidently, since both the crossover
and mutation operation potentially changes the fitness of the individuals, the fitness
values must be updated more frequently at the expense of the time complexity of the
algorithm. In view of this, the adaptive rate in equation (5.7) is rejected in favour of
a combination of non-uniform mutation described next, and competing generations
described in section 5.2.2.10. On top of this, a constant mutation rate is used. The
rate is chosen in accordance with the optimal value derived in appendix B.
In spite of the remark earlier made how the stochasticity of the algorithm makes
predictions of the state of the population at a given temporal point, a mutation
operator based on temporal information is used. The operator, which is a modified
version of the non-uniform mutation operator, is given by

g′i =

gi + f(t, lrange), R = 1,
gi − f(t, lrange), R = 0,

(5.8)

where lrange is the absolute value of the maximum range that a gene can creep away
from its current value in the mutation process and R is a random value drawn from
the set {0, 1}. The function f() is defined as

f(t, lrange) = lrange(1− r(1−ngen
G

)b). (5.9)

42

5. Genetic algorithms

In the above equation r is drawn from the standard uniform distribution, ngen de-
notes the current generation number, G is the maximum number of generations, and
b is a parameter that has been set to 2 in this thesis.
In the search of optimal parameter values, the studies are often carried through with
the genetic algorithm as the only solver. Consequently, this requires the algorithm
to be well-tuned throughout the evolution process. With a vast search space and
an interest in keeping its computational footprint low the algorithm is not suited to
act as the only solver. Instead it is assumed that the GA will have access to a very
qualified first guess of the optimum. The major consequence is that the algorithm
should be exploitative rather than explorative. However, it should be noted that it
is fundamentally required that some tendencies of exploration are kept.
By reducing the need for random exploration to ”map out” the characteristics of
the search space, the trade-off between exploration and exploitation encoded in the
mutation rate may be biased to favour the exploitation. By letting lrange be some
small value, typically some low multiple of 10, the mutations are effectively creep
mutations drawn from an ever-narrowing distribution. An intuitive description of
the underlying idea is that the initial and assumed qualified guess of the optimal
control sequence is represented by a rubber band in the solution space. The purpose
of the mutation is to pull each part of the rubber band towards the points in search
space that will make the solution more optimal. Initially the algorithm can make
large adjustments, but as the algorithm progresses the purpose of the mutations
moves towards being to fine-tune the chromosomes.

5.2.2.9 Replacement

A general method of replacement is to replace the whole generation at once by delet-
ing the old population and letting the offspring take its place. Another method is
steady-state replacement, which involves replacing only a fraction of the population
in each evaluation cycle [39]. One advantage of steady-state replacement is that, as
often is the case in nature, the offspring is allowed to compete with the older gener-
ations. While the operators of a genetic algorithm rarely guarantee improvement of
the operands, a desirable effect of this kind of selection is that poor individuals are
given the chance of securing their place in the next generation while good individuals
from the previous generation may also get to live on. In this thesis, a replacement
operator somewhere in between these two is used. More specifically, the algorithm
uses full replacement but with inter-generation competition, as explained next.

5.2.2.10 Competing generations

Genetic algorithms are stochastic inherently cannot guarantee that the overall fit-
ness of a generation is equal or better than the previous generations. As for the
maximum fitness there is the elitism operator, but it does not care about the gen-
eration as a whole. In nature there is often an overlap between generations, making
it reasonable to introduce the concept of inter-generation competition. In terms

43

5. Genetic algorithms

of genetic algorithms this means that in the final selection process of forming the
next generation, both the proposed new individuals and the previous generation are
allowed to compete. The net population to select individuals from is consequently
doubled in size, effectively turning the solid graph in figure 5.6 into the dashed line.
From this graph it should be noted that there is no longer a guarantee that even
the best individual will be selected, making it necessary to include elitism.

5.2.2.11 Elitism

Thus far the stochasticity of the algorithm has been heavily emphasised as a fun-
damental property. It is indeed one of the most fundamental properties of the
algorithm, but it also has the potential to disrupt the population in various ways.
One such way is that it may destroy the best individual. A safeguard is to always
keep the fittest individual in the population simply by ensuring that a copy of it
is always transferred to the next generation. It should be noted that whenever the
elitism operator is employed, there is a risk of the fittest individual taking over the
entire population in case the collective effect of the operators is to promote the fittest
individual very strongly. If promoted too strongly, chances are that the fittest indi-
vidual is copied into the next generation multiple times, causing exponential growth.

5.2.3 The final algorithm

Through continuous reasoning and testing, the most suited operators of those pre-
sented above have been combined into the final algorithm. The main flow of the
algorithm is presented in figure 5.7.
Also, so as to intuitively illustrate the operation of a genetic algorithm, a simplified
case encompassing a 2-variable function optimisation is presented in figure 5.8.

44

5. Genetic algorithms

Initialise population

Evaluation

Selection

Crossover

New Generation

Previous population

Start

End

Mutation

Termination

 criterion?

No

Yes

Evaluation

Elitism

Figure 5.7: A flowchart illustrating the structure of the developed genetic algo-
rithm.

45

5. Genetic algorithms

Generation 0 Generation 1 Generation 2

Generation 5 Generation 10 Generation 50

Figure 5.8: An example of the evolution of chromosomes in a simple function
optimisation in two variables. The population encompasses 10 individual and each
gene consists of 10 binary elements. The fitness function is defined as the function
value and at generation 50 the maximum fitness had been achieved. The evolution
towards higher fitness values is evident, but also should it be noted that although a
near-optimal solution is found already in generation 5, diversity can still be observed
in generation 50.

46

6
Hybrid algorithm

Since the gear cannot be controlled, it cannot be included in the optimisation prob-
lem on the form accepted by the above MPC algorithm. In general, the constraints
corresponding to the gear selection are hard to incorporate in mathematical opti-
misation algorithms. Therefore, if there is a way to mix the determinism of LP/QP
with the soft-computing advantages associated with GAs, an algorithm that is su-
perior1 to both algorithms alone can emerge.

6.1 Genetic algorithm with warm start

An important property of a real-time control algorithm is that it should always
provide a feasible solution within some specified time, should it not manage to find
the optimal one. While stochasticity is a fundamental property for the success
of GAs, it also makes the algorithm unpredictable in the sense that it does not
guarantee convergence within a given time window. The following sections are
aimed at presenting a way of evading this problem and how information contained
in previous solutions may be reused in order to improve the results without affecting
the computational load.

6.1.1 Pre-solving and non-deterioration

A straight-forward solution to the problem of failure to converge within a specified
time window is to apply a fast and deterministic solver to a simplified version of
the problem. In view of the formulation of an MPC problem, equation (4.1), the
cost function f() can be chosen arbitrarily. Similarly, the system model fs() may
also be chosen arbitrarily, but of course the choice directly affects the quality of the
predictions made by the solver. A common way of simplifying a vehicle model is
through linearisation techniques. Although model simplifications may be crucial and
have been successfully applied to various applications, it must be emphasised that
the exclusion of non-linearities in general will generate suboptimal control strategies
that, depending on the context, may or may not be acceptable [58]. In the context
of this thesis, the aim of this fast and deterministic solver is not to find the optimal

1Of course, superiority is highly context/application dependent!

47

6. Hybrid algorithm

control strategy, but to output a solution resembling the optimal strategy, serving
as an initial guess for a second, more advanced solver.
In general, the stochasticity of the genetic algorithm introduces a risk of loosing
useful information as the evolution progresses and the carriers of that information
die out or the information is corrupted by the mutation and crossover operators.
Thus, unless deliberately handled, the maximum fitness in a population can display
a sudden drop. Previously explained, the elitism operator is a way to get around
this problem, ensuring that an unmodified version of the fittest individual is always
passed on to the next generation. Therefore, if elitism is employed, the maximum
fitness of the population is a non-decreasing function in generation number. That
is, even in the worst case scenario where the GA fails to find a solution with a
better fitness value, the control signal that will be sent to the system is optimal
with respect to the simplified formulation of the pre-solver, given that there exists
a feasible solution.

6.1.2 Reusing previous solution information

In addition to warm starting with a different solver, the algorithm can be extended
so that the most useful information emerging from previous evolutionary efforts
remains in the population. Importantly, this implies that only during the very
first iteration in a controller session a full evolution from the pre-solver solution to
the optimal one is guaranteed to be required. As for subsequent iterations, if no
assumption is made about how much the optimal solution changes between time
steps, the only thing that can be said is that at worst2 the algorithm will start over
from the pre-solver solution and be forced to carry out a full evolution again.
However, as the algorithm is intended to run continuously with a look-ahead horizon
of 50-100 steps, only a very small fraction of the road will change between adjacent
steps3. Also, the state of the vehicle will not change much from one time step to
the next during normal operation. Together these two observations implies that
in most cases the optimisation problems for two adjacent time steps will be very
similar, typically leading up to similar solutions for the problem at hand. This
reasoning points in the direction that if previously found solutions are reused, the
initial guesses of the GA could have potential to be very close to the actual optimal
solution. Consequently, the overall quality of solutions would improve over time,
but also would the algorithm converge more quickly on average, which brings the
algorithm closer to real-time operation under hardware restrictions. If the number
of iterations is kept constant, there is hence potential to successively increase the
quality of the solutions. Based on the above points, an illustration of the resulting

2worst refers to the maximum difference between the fitness value of the GA- and pre-solver
optimal solutions. It does not consider the distance between points in search space, given any
metric.

3In the algorithm developed in this thesis, a variable sample length is employed. However,
the way the sample length is chosen, it will not change significantly between adjacent time steps
during normal cruising. Thus, the difference in road topography data between adjacent steps will
in reality be only a few percent.

48

6. Hybrid algorithm

controller structure is presented in figure 6.1.

warm start

previous solution

Vehicle Model

Genetic

Algorithm

Vehicle Model

QP-solver

u

y

settings

Figure 6.1: The structure of the developed controller. Although the genetic al-
gorithm utilises a refined vehicle model as compared to the QP-solver, the models
share the same parameters wherever applicable.

49

7
Algorithm evaluation

As extensive effort has been put into investigating and benchmarking various cruise
controllers aimed at decreasing the fuel consumption of HDVs, there are lots of
data available for comparison. However, in order to make a fair comparison the
testing conditions should be as similar as possible between tests. In reality this is
not achievable on actual roads, rendering it illogical to compare results collected
at different occasions. Although real-world tests cannot be replaced, the above
note favours testing through simulations. Based on this argument, the developed
algorithm has been assessed through simulation.

7.1 Simulation model

For the purpose of this thesis, a simulation model was developed in Simulink. A
simplified scheme of this model is illustrated in figure 7.1. To improve the simulation
results, some parts of the model are based on real data collected from tests involving
the vehicle being simulated. In the figure the main components are included to
illustrate the primary characteristics of the simulation. However, in the actual model
the subsystems are highly interconnected and depend on a set of state parameters.
Furthermore, as to not clutter the scheme with interconnections, only the ones
required to emphasise the functionality of the model are included.
As can be seen from figure 7.1, the model consists of a main block that contains the
powertrain, brakes and the physical model of the vehicle. This block is essentially
an abstraction of the simulated vehicle. The internal combustion engine accepts a
torque request from the controller developed in this thesis and computes the actual
torque that appears at the clutch or torque converter, depending on transmission
type.
The transmission includes a slightly different gear selection logic than that available
to the genetic algorithm since it is of interest to test the performance of the algorithm
under conditions where the actual gear selection software cannot be used in the
prediction model for various reasons (e.g. it may be too heavy, too complex or
not even available). Although a direct advantage of GAs is that more complex
models can be employed, it is reasonable to argue that infinite model precision
cannot be achieved for most systems, if not all, making it a necessity to be able to
handle the arising discrepancies. By deliberately introducing differences between the

51

7. Algorithm evaluation

prediction and simulation models, this reasoning offers justification for the simplified
gear selection logic.
The powertrain of an HDV is very complex and sophisticated controllers have been
developed to control the various parts. In some of the previous studies involving
look-ahead control of HDVs where the engine torque (indirectly) was one of the
optimisation variables, the actual control of the engine was routed via either the
standard cruise controller or even an interface to the driver (see for example [5, 37]).
A major reason for this is that the look-ahead controller did not have to take engine
oscillations and other undesired effects into account. The obvious drawback is the
decreased ability to control the engine torque output with precision. The developed
controller contains logic to enforce smooth driving, but it does not take into account
the finer characteristics of the engine and powertrain. Despite this fact and the
remark preceding it, the simulation model is based on direct control of the engine
torque from the controller.

Controller

Brake Controller

TransmissionICE

Brake Model

Longitudinal

Dynamics

Model

Environment

vdes

vmax

Torque request Actual torque

Brake torque

Figure 7.1: Simplified scheme of the simulation model developed for testing the
algorithm. Solid lines indicate either a requested or actual torque, whereas dashed
lines indicate interconnections of particular importance. vmax and vdes represent
dynamic reference speeds and are externally provided to the controllers (e.g. from
a driver).

52

8
Results

To generate the results presented below, the simulation model from section 7.1 was
used. As the final algorithm relied on two different solvers, the output from the
initial QP-solver alone was first considered. After that, the complete algorithm was
assessed and compared to the QP-solver. The assessment was done with respect to
short and representative road segments, long simulations with real road data, time,
and algorithm predictability. The parameters and constants used in the simulations
are presented in appendix C.

8.1 Evaluation of QP-solver

As described, the full version of the algorithm takes advantage of two different solvers
by selectively applying them to the problem at different stages, taking advantage
of their different strengths. Despite the fact that the initial QP-solver have been
referred to as ”pre-solver”, it does in general output a solution that is optimal
with respect to its prediction model. As no fair comparison can be made between
simulation results and real-world tests, the most important part of the evaluation of
the algorithm is to investigate the gain of applying the second solver (i.e. the GA).
To do so, this section is dedicated to investigating the control signal as proposed by
the QP-solver alone.

8.1.1 QP-solver performance for constant driving

Constant slope is equivalent to flat road with an additional constant force acting on
the vehicle, and it is thus only necessary to consider a flat road in the case of constant
driving. At each sample point, the QP-solver presents the predicted optimal control
strategy and the predicted speed of the vehicle for the prediction horizon. For the
case when both the initial and desired speed is 72 km/h, the predicted torque and
speed profiles are those presented in figure 8.1
The solver displays the desired main traits of smoothness and unbiased reference
speed tracking under static driving, but also should it be noted that there is the
undesired torque and speed drop towards the end of the prediction interval. This
drop is not a property of the QP-solver, but a direct consequence of the formulation
of the cost function in equation (4.5). For the sake of comparison with literature,

53

8. Results

Distance (m)
0 200 400 600 800 1000 1200 1400 1600

T
o
rq

u
e
 (

N
m

)

0

100

200

300

400

500

600

700

800

Distance (m)
0 200 400 600 800 1000 1200 1400 1600

S
p
e
e
d
 (

k
m

/h
)

66

67

68

69

70

71

72

73

Figure 8.1: The torque and speed profile of the HDV for the case with v0 =
72 km/h. What should be noted is that the algorithm manages to keep the vehicle
at a nearly constant speed very similar to the desired velocity. Furthermore, there
is a noteworthy drop in torque, and thus speed, towards the end of the prediction
horizon.

this undesired trait has not been rectified in the following results.
Figure 8.1 does not illustrate the trajectories actually taken by the vehicle, but
merely the predicted engine torque output that minimises the cost function given
by equation (4.5). The actual speed and torque trajectories are presented in figure
8.2 which displays a slightly different behaviour than the prediction as well as no
drop in speed and torque towards the end of the travelled interval.
In conclusion, the simulated characteristics of the QP-solver are close to the pre-
diction. Also, the figure displays clear tendencies of compensating for prediction-
and simulation model differences as the algorithm initially increases the torque to
compensate for the speed drop and then keeps torque and speed essentially constant.

8.1.2 QP-solver performance for varying road slope

In this section two more road profiles are considered to investigate the performance
of the QP-solver alone. These road profiles are a crest (figure 8.3) and a dip (figure
8.4), where the latter has been generated by reflecting the crest in the horizontal
axis. These two types of roads are chosen as they illustrate the main characteristics
of the solutions output by the algorithm.
Figure 8.3 displays the characteristic behaviour of anticipatory driving; the vehicle
increases its speed ahead of a demanding ascent that it will not be able to climb
without loosing momentum. To save time it accelerates to the set speed as it arrives

54

8. Results

Distance (m)
0 200 400 600 800 1000 1200 1400 1600

S
p
e
e
d
 (

k
m

/h
)

66

67

68

69

70

71

72

73

Distance (m)
0 200 400 600 800 1000 1200 1400 1600

T
o
rq

u
e
 (

N
m

)

0

100

200

300

400

500

600

700

800

Figure 8.2: Actual speed- and torque trajectories. Still, the solver displays a
smooth behaviour and good reference speed tracking. Initially there is a small
unforeseen drop in the speed and after compensating for the lost speed a steady
state torque is found.

at the top of the hill. Approximately halfway into the flat plateau, the speed is
reduced as the algorithm predicts a large increase in speed when arriving at the
descent. As the engine brake is not native to the QP-solver, it first enters what is
known as eco-roll mode1 and a bit into the descent the engine brake is engaged by
transforming the requested foot brake torque to engine brake torque in the after-
treatment of the solution output by the solver.
In figure 8.4 essentially the opposite situation as in figure 8.3 is presented. Initially
the vehicle requests a mix of no torque and negative torque and remains in these
modes a bit into the flat segment while it approaches the reference speed. Identifying
the upcoming ascent the torque is then increased, triggering a downshift a few
hundred meters ahead of the foot of the hill.
Essentially the algorithm behaves much the same way as should be expected based
on engineering heuristics. However, it makes use of high-resolution control signals
to very precisely control and predict the trajectory of the vehicle.

1Disengaging the engine, rolling on neutral gear.

55

8. Results

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

S
p

e
e

d
 (

k
m

/h
)

60

70

80

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

T
o

rq
u

e
 (

N
m

)

0

1000

2000

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

A
lt
it
u

d
e

 (
m

)

0

10

20

Figure 8.3: Simulated torque- and speed trajectories for a crest. The sudden drops
in torque are due to gear shifts, which in this simulation are two. vdes = 72 km/h.

Distance (m)
0 200 400 600 800 1000 1200 1400 1600

S
p
e
e
d
 (

k
m

/h
)

65

70

75

80

Distance (m)
0 200 400 600 800 1000 1200 1400 1600

T
o
rq

u
e
 (

N
m

)

-1000

0

1000

2000

3000

Distance (m)
0 200 400 600 800 1000 1200 1400 1600

A
lt
it
u
d
e
 (

m
)

-20

-15

-10

-5

0

Figure 8.4: Simulated torque- and speed trajectories for a dip. The sudden drop
in torque is due to gear shifts. vdes = 72 km/h.

56

8. Results

8.2 Performance of hybrid algorithm

The performance of the algorithm must be judged both with respect to its ability to
lower the fuel consumption, but also its local behaviour as it faces non-constant road
slopes. The algorithm is assessed both by evaluating the local performance in the
situations presented above, but also by using real road data in longer simulations.

8.2.1 Hybrid algorithm torque trajectory

The torque sequence predicted by the QP-solver alone was presented in the top
panel of figure 8.1. Feeding this solution to the developed GA where the population
size and number of generations have been set to 20 and 300, respectively, results in
the solid line in figure 8.5. For convenience, the QP-solver’s output is also included
as a dashed line. The prediction is for perfectly flat ground and a preview horizon
of 1600 m with sample points uniformly distributed. What should be noticed is
that after applying the GA the resulting solution displays slow oscillations with
an amplitude of less than 10 Nm. The oscillations are smooth and due to their
small amplitude they would not be felt by the driver. Oscillations are generally
undesirable, but as will be seen in the following sections, dynamic torque saves fuel
even on flat ground as compared to when only the QP-controller is used. Thus,
these modest oscillations are caused by the controller having information about how
the working point of the engine affects the fuel consumption and actively taking this
information into account when planning the trajectory.

Sample point

0 10 20 30 40 50 60 70 80

T
o
rq

u
e
 (

N
m

)

-400

-200

0

200

400

600

800

1000

Figure 8.5: The optimal torque as predicted by the hybrid algorithm shown in
solid. The warm start solution supplied by the QP-solver is shown as a dashed line.

57

8. Results

8.2.2 Analysis of the behaviour of the hybrid algorithm for
constant and varying road slope

For the sake of comparison, the three previously studied situations are presented (i.e.
flat road, a crest, and a dip). All parameters are the same and the only addition to
the algorithm is the inclusion of the GA on top of the QP-solver.
In figure 8.6 the case with flat ground is presented. The top panel describing the
vehicle speed shows no noticeable deviations away from the desired speed. Fur-
thermore, the inclusion of the GA has lead to the disappearance of the initial and
very slight drop in speed witnessed for the QP-controller. Unlike the speed, the
simulated torque output from the engine is non-constant. This dynamic behaviour
is in view of figure 8.2 accredited to the genetic algorithm, indicating that in the
case of static driving on flat ground, the algorithm does not enter a steady state in
the strict meaning of the word. However, the torque variations are very small and
happening very slowly, making them unnoticeable to the driver.

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

S
p

e
e

d
 (

k
m

/h
)

66

68

70

72

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

T
o

rq
u

e
 (

N
m

)

0

200

400

600

800

Figure 8.6: Simulated torque and vehicle speed when using the hybrid algorithm.
From the bottom panel it is clear that the torque is dynamic and does not enter
a steady state, unlike the simulation with the QP-solver on flat ground shown in
figure 8.2. However, the weight of the truck and the small relative amplitude causes
the speed to appear constant.

When faced with a non-constant slope as in figure 8.7 it can be seen how the vehicle
first accelerates to enter the ascent with a kinetic energy reserve. The travelled hill
is too steep and long for the engine to be able to maintain the set speed and the
vehicle arrives at the crest with a somewhat lower speed. On the plateau the vehicle
initially speeds up to attain set speed, but a bit before the downhill it smoothly
reduces the torque, triggering the gearshift to happen a bit earlier than for the QP-
controller, and applies the engine brake to save fuel. In contrast to the QP-solver,

58

8. Results

the engine brake is native to the GA and the engine brake fully replaces the eco-roll
mode proposed by the QP-solver for the same trip. The engine is then being fully
dragged the rest of the way and after the maximum allowed speed (according to the
algorithm) is reached, it is kept constant by applying the foot brake, which is not
visualised. The net result is that no fuel is consumed during the second half of the
interval.

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

S
p

e
e

d
 (

k
m

/h
)

60

70

80

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

T
o

rq
u

e
 (

N
m

)

0

1000

2000

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

A
lt
it
u

d
e

 (
m

)

0

10

20

Figure 8.7: Simulated result of applying the hybrid algorithm are shown in solid.
Figure 8.3 is superimposed as dashed lines. As the simulation starts only 100 m
before the demanding ascent, the best strategy is to give full throttle, but as the hill
has been climbed the two algorithms chooses different strategies. vdes = 72 km/h.

In a comparison between figure 8.8 and the corresponding figure 8.4 illustrating the
case when only the QP-solver is employed, it should be noted that although the
speed trajectories are very similar, the engine torque requested by the two versions
of the algorithm differ. A noteworthy difference is that the GA manages to postpone
the gear shift without any means of controlling the gear shifting logic, indicating that
the inclusion of gear prediction affects the final behaviour of the vehicle and endows
the algorithm with extended control capabilities, although only indirect ones. In the
simulation this postponement is achieved by a more modest torque increase than
the corresponding increase requested by the QP-algorithm, the trade-off being a
marginal decrease in average speed.

59

8. Results

Distance (m)

0 200 400 600 800 1000 1200 1400 1600
S

p
e

e
d

 (
k
m

/h
)

60

70

80

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

T
o

rq
u

e
 (

N
m

)

0

1000

2000

Distance (m)

0 200 400 600 800 1000 1200 1400 1600

A
lt
it
u

d
e

 (
m

)

-20

-10

0

Figure 8.8: Simulated behaviour for the case when the hybrid algorithm is faced
with a significant dip in the road profile. The solid line represents the hybrid algo-
rithm while the corresponding output from the QP-solver has been superimposed
as dashed lines. vdes = 72 km/h.

8.3 Numerical comparison for short-distance per-
formance

To be successful in handling real driving situations, it is of great importance that
the algorithm can handle the representative segments presented above well. There
are many factors that determine the performance of the algorithm, some of which
are driver comfort, fuel consumption, and travel time. The driver comfort has
been addressed directly in the algorithm, but this section is exclusively concerned
with the fuel consumption and travel time. To this end table 8.1 presents the
fuel consumption and travel time for both algorithms faced with the above road
topographies. For the stochastic GA, the simulations have been run 10 times each
and then averages have been computed.

Table 8.1: Simulation results for the QP-solver (QP) and the hy-
brid algorithm (GA) for the three road profiles. Data is given as
<fuel_consumption[l/100km]>/<average_speed[km/h]>.

Road profile QP GA Difference (%)
Flat 31.7808/71.91 31.7647/71.89 -0.05/-0.023

Crest 47.3880/71.66 45.2624/70.99 -5.69/-1.21
Dip 39.0651/74.01 37.4764/73.45 -4.29/-0.43

For all three topographies the GA displays a reduced fuel consumption, ranging

60

8. Results

from 0.05% to 5.69%, when compared to the QP-solver. In terms of travel time,
the GA is a little bit slower on all segments. The biggest difference is for the crest,
where the hybrid controller favours fuel savings over travel time particularly much.
The numerical values indicates that the addition of the GA saves fuel, but it should
be clearly emphasised that these values are merely indicators as they are generated
from artificial road segments and short travel distances. Furthermore, the results do
not hold any information about whether the GA can reduce the fuel consumption
more than toady’s Active Prediction.

8.4 Large scale evaluation

In addition to evaluating the behaviour of the algorithms when faced with a specific
local road topography, its overall performance over long distances was assessed.
This evaluation was done by using recorded road data for the highway connecting
Södertälje and Norrköping, measuring approximately 100km.
In figure 8.9 the complete simulations are shown in terms of speed, engine torque and
altitude. As for the engine torque, the solutions are very similar. Both algorithms
offer smooth torque changes to ensure driver comfort, but the different cost functions
and prediction models used for the two optimisation algorithms have caused the GA-
solution to deviate from the QP-solution used as starting point. In turn this has
shifted some of the gear shifts, identified by the sudden drops in engine torque. The
numerical values from the simulations are presented in table 8.2. From the table
it is evident that the GA-controller saves fuel as compared to when only the QP-
controller is used. As regards the speed, the table indicates that the mean speed is
lower for the GA-controller than the QP-solver. But while this is true, it must be
noted that the desired speed is set to 72 km/h and that the average speed of the
GA-controller therefore is closer to the desired speed.

Table 8.2: Simulation results for the QP-solver (QP) and the hybrid algorithm
(GA) for the Södertälje-Norrköping segment. The total distance simulated is 100km
and the average is formed by simulating the trip 5 times.

Algorithm Fuel consumption (l/100km) Average speed (km/h)
QP 34.4974 72.39
GA 34.4404 72.11

Difference (%) -1.63 -0.392

61

8. Results

Distance (m)
×10

4
0 1 2 3 4 5 6 7 8 9 10

S
p
e
e
d
 (

k
m

/h
)

65

70

75

80

Distance (m)
×10

4
0 1 2 3 4 5 6 7 8 9 10

T
o
rq

u
e
 (

N
m

)

-1000

0

1000

2000

3000

Distance (m)
×10

4
0 1 2 3 4 5 6 7 8 9 10

A
lt
it
u
d
e
 (

m
)

-40

-20

0

20

40

Distance (m)
×10

4
0 1 2 3 4 5 6 7 8 9 10

S
p
e
e
d
 (

k
m

/h
)

65

70

75

80

Distance (m)
×10

4
0 1 2 3 4 5 6 7 8 9 10

T
o
rq

u
e
 (

N
m

)

-1000

0

1000

2000

3000

Distance (m)
×10

4
0 1 2 3 4 5 6 7 8 9 10

A
lt
it
u
d
e
 (

m
)

-40

-20

0

20

40

Figure 8.9: Panel 1 and 2 (from the top): Simulation result for the Södertälje-
Norrköping segment when using GA. There are clear deviations away from the set
speed in the vicinity of demanding ascents/descents, but under more static condi-
tions the vehicle closely tracks the reference speed. Panel 3 and 4 : Simulation result
for the Södertälje-Norrköping segment when using the QP-solver alone. Compar-
ing panel 1 and 3, it can be seen that the strategies are similar but still notably
different. While the GA effectively utilises the engine brake and engine efficiency
information as well as a gear-prediction model, the QP shares the main traits with
the GA but lacks the high-resolution finesse exhibited by the GA. Panel 5 : Altitude
of the travelled road.

62

8. Results

8.5 Average performance of genetic algorithm

As a measure of the performance of the algorithm, it is also evaluated based on the
spread of the results in fuel-speed-space. To increase the number of data points, the
simulation was run 60 times, but only on the first 25 kilometers of the Södertälje-
Norrköping segment. The results are presented in figure 8.10. The averaged average
speed of the hybrid algorithm is 0.35% lower than that of the QP-controller, while
the average fuel consumption is lowered by 1.73%. Evidently, the cluster generated
from simulation with the genetic algorithm is different from the simulation with only
the QP-solver active, both in terms of trip time and fuel consumption. This makes
it more difficult to determine the exact effect of the inclusion of the GA on fuel
consumption or average speed alone. However, while the desired speed for either
one of the algorithms could have been adjusted in order to enforce similar average
speeds, this option was discarded in favour of having the two algorithms use the
same set of values for the parameters shared between them.
Furthermore, while the average speed is lower for the hybrid solver, it should again
be noted that the utilisation of the hybrid solver leads to average speeds closer to
the desired speed, but with all values slightly exceeding it, thus guaranteeing that no
time is lost with respect to travelling at the set speed. From the scatter plot it should
also be noted that the data from the GA-controller exhibits traits of predictability
as the corresponding data points form a dense group with low variance.

Fuel consumption (l/100km)

35.1 35.2 35.3 35.4 35.5 35.6 35.7 35.8

A
v
e

ra
g

e
 s

p
e

e
d

 (
k
m

/h
)

72.25

72.3

72.35

72.4

72.45

72.5

72.55

72.6

QP

Hybrid algorithm

Figure 8.10: Scatter plot of the fuel consumption and average speed for the two
algorithms running on the first 25 kilometers of the Södertälje-Norrköping segment.

8.6 Computational footprint

The major computational footprint is that of the genetic algorithm but also the QP-
solver, which is not supported by MATLAB Coder and thus executed as an ordinary
MATLAB function call, adds to the computational time. The computational time
was measured with MATLAB’s built-in tic-toc function on a computer with an
Intel Core i7 (3.60GHz) processor. The graph in figure 8.11 represents the execution

63

8. Results

Distance (m) ×104

0 0.5 1 1.5 2 2.5

T
im

e
 (

s
)

0.38

0.39

0.4

0.41

0.42

Distance (m) ×104

0 0.5 1 1.5 2 2.5

A
lt
it
u
d
e
 (

m
)

-20

-10

0

10

20

Distance (m) ×104

0 0.5 1 1.5 2 2.5

T
im

e
 (

s
)

0.01

0.02

0.03

0.04

0.05

Distance (m) ×104

0 0.5 1 1.5 2 2.5

A
lt
it
u
d
e
 (

m
)

-20

-10

0

10

20

Figure 8.11: Top panel: Execution time of the GA for the first 25 kilometers on
the Södertälje-Norrtälje segment. Middle panel: Execution time of the QP-solver for
the first 25 kilometers on the Södertälje-Norrtälje segment. The red lines indicate
the mean computation time. Bottom panel: Altitude of travelled road. Included to
emphasise the computational times’ dependence on topography.

time for the hybrid as well as QP-algorithm when simulated on the first 25km of the
Södertälje-Norrköping segment. From the figures it can be seen that the execution
times for both solvers have small local variances which indicates predictable com-
putational time. Furthermore, it is evident that the average run-time of the GA is
approximately 20 times as long as that of the QP-solver.
The small local variance of the computational times helps emphasise the computa-
tional times’ dependence on local road topography. From the inclusion of the road
topography in the bottom panel it becomes clear that the computational time of the
GA increases with up to approximately 5%, or 0.02s, in the vicinity of the steepest
descent. For the QP-solver, the relative increase is in the range 25%, but due to
the shorter execution times the absolute difference is less than that of the GA.

64

9
Discussion

In this thesis there was the direct goal of developing an algorithm capable of de-
creasing the fuel consumption while ensuring driver comfort and without changing
the trip time considerably. From the simulation results it is clear that the addition
of the GA improves the fuel efficiency as compared to applying the QP-solver alone
with maintained driver comfort. In figure 8.7 and 8.8, on the other hand, an ad-
ditional and very important trait is manifested. The developed controller cannot
control the gear directly, but nevertheless it is seen from the figures that it managed
to influence the gear shifts (i.e. both postpone and move shifts forward as compared
to the gear shifts observed for when only the QP-controller was employed). The
algorithm achieved this with the only instructions being to reduce fuel consump-
tion, drive smoothly and stay in the vicinity of the set speed; that is, without no
instructions of trying to control the gear. Although being able to indirectly control
the gear does not generalise to most vehicle control problems, the mere observation
of this behaviour implies that the algorithm is able to draw conclusions that have
not been included in the algorithm design. Importantly this characteristic endows
the algorithm with an ability that loosely may be referred to as a kind of reasoning.

9.1 Decoupling of cost function, prediction model
and solver

A result of what was described as reasoning in the previous section was an algorithm
that required less strict definitions of the optimisation problem. For the algorithm
to work, it only required access to a fitness function and it would stochastically
work its way towards the optimum in a directed search. A direct gain of this was
that the focus of the design process was moved away from how the goal should
be reached to what the goal should be. This is important since the cost function,
prediction model and solution method in general are highly coupled in conventional
mathematical optimisation and the responsibility of managing this coupling and
matching the problem formulation to the solver falls on the developers. Although
the cost functions of the QP-solver and GA were intentionally made very similar,
the above mentioned decoupling was clearly observed and taken advantage of.

65

9. Discussion

9.2 Computational footprint

From the very beginning of the project GAs were known to be computationally
demanding and subject to an inherent risk of premature convergence or failing to
convergence. These characteristics were all observed in the development process
and carefully taken into consideration and consciously addressed. However, as the
algorithm shows signs of stochasticity in the final sequence of control signals, it
must be concluded that either there are more than one global optima or that the
algorithm fails to find the global optimum. Observations about the values of the
fitness function during operation implies the latter, but it should be noted that this
does not necessarily contradict the prior. It should also be taken into consideration
that very few generations and individuals were used in relation to the size of the
search space. Also, the vehicle prediction model is indeed a simplification and even
if the global optimum with respect to this model were to be found, it would not
make sense to claim that it is the true optimum.
Most effort was put into the task of adapting the algorithm to vehicle control.
However, throughout the design of the algorithm there was a permeating thought
of keeping the computational footprint low. Quite contradictory, but as a conse-
quence of their fast prototyping and extensive simulation capabilities, MATLAB
and Simulink were used as main tools, and the MATLAB coder was extensively
used to improve the execution performance. Despite significant improvement in
terms of computational speed, very much overhead is added by the coder, which
makes it difficult to use the computational resources to the fullest. The main com-
puter was equipped with a powerful Intel Core i7 processor rated at 3.60GHz, but
the algorithm could also run effortlessly on a laptop with a 2.4GHz Intel Core i5.
In the algorithm’s current form, however, it is deemed too demanding for on-board
operation. Despite this and in conjunction with the fact that the process of really
optimising the algorithm was not given a part in the project, no statement about
the suitability for on-board operation can be made.

9.3 Applicability to vehicle control

Disregarding the computational complexity, the algorithm shows potential to be
used in look-ahead control. While maintaining all the main traits of the previously
evaluated QP-solver (see [37, 38]), it manages to reduce the fuel consumption in the
simulations even further. As found in [37], the fuel consumption for a 28000kg truck
was lowered by 8.1% compared to a standard cruise controller; a number that thus
possibly could be increased a bit more with the addition of the developed algorithm.
As predictive cruise controllers are not the only longitudinal control systems that
require (or will require) on-board optimisation procedures, it is of relevance to assess
this algorithm’s applicability even for other systems. In general it is a difficult task
to include constraints in a genetic algorithm, which makes the quite constraint-
free predictive cruise controller well suited for prototyping. The indicators are that

66

9. Discussion

it would be difficult for the current algorithm to handle a search space of higher
dimension and greater complexity than that in this thesis, provided that nothing else
is changed. This, of course, should be considered in conjunction with the assumption
of very limited computational resources.
Admittedly, a great deal of the focus has been on the on-line optimisation capabilities
of the algorithm. Simulations cannot replace actual in-vehicle tests and although the
obtained results showed that the addition of the GA improved the performance of
the look-ahead controller, it should not uncritically be taken as evidence of success
for vehicle control. However, it does imply that the application of the GA was indeed
successful, given the developed simulation model.

67

10
Conclusion

From the simulation results it is evident that the developed genetic algorithm leads
to improved fuel efficiency without notably altering the trip time when compared to
a conventional mathematical optimisation algorithm. A principal conclusion is that,
given the simulation model, the hybrid genetic algorithm is an improvement over the
QP-solver alone. As regards real-world implementation it can only be said that the
algorithm displays potential of being successfully applied to real-time vehicle control.
This conclusion can neither be rejected nor confirmed as regards the computational
resources available on board Scania vehicles. What can be confirmed, however, is
that the implementation as it is done in this thesis is too heavy for on-board real-
time operation, but it must be emphasised that the current implementation offers
much potential for optimisation.
Furthermore, with multiple objectives (i.e. smooth driving, fuel efficiency, and ref-
erence speed tracking) the algorithm was assessed from multiple perspectives. From
the fuel efficiency point of view, the proposed algorithm is an improvement over
the conventional QP-solver, even on flat ground where the QP-controller outputs
a steady torque and closely follows the reference speed. With only a very slight
decrease in fuel consumption on perfectly flat ground, it is concluded that the real
gain of adding the GA-layer to the look-ahead controller is observed in dynamic
slope situations. Although the end result is that the controller tends to increase the
speed ahead of ascents and conversely decrease the speed before upcoming descents,
very much like a skilled driver would, the inclusion of the algorithm in the loop
introduces the crucial difference of being able to optimise the realisation of these
strategies with high-resolution control signals. This behaviour was indeed displayed
by the QP-solver alone. However, from the results of this thesis, it is concluded
that there is potential for further improvements in terms of fuel consumption, as
compared to the QP-solver, by introducing empirically collected engine data and a
simplified gear-prediction model along with the genetic algorithm.

69

11
Future work

In this section a number of suggestions of future work are presented. The suggestions
are both considered with potential improvements of the algorithm developed in this
thesis and continuations of the conceptual idea of using a genetic algorithm for
vehicle control.

11.1 Improving execution speed

• Addressing the current application and revisiting the execution times presented
in figure 8.11, there is a set of measures available to decrease the computational
burden, both in terms of computational time as a result of using a different lan-
guage, and by rewriting the actual methods without changing their behaviour.
A promising continuation would be to eliminate the overhead introduced by
the MATLAB Coder and port the code to pure C/C++. This also means that
the code can be written so as to utilise the embedded system in the optimal
way.

• Using the built-in code profiler in MATLAB it was confirmed that the eval-
uation function accounts for far more of the execution time than all other
functions. As the individuals are evaluated independently of each other the
evaluation function offers great potential for improvement through parallelisa-
tion.

• A complementary approach to improving the execution speed is to reduce the
actual complexity of the algorithm. As presented in the introductory chapters
of this thesis, this has been addressed from many perspectives, one of which is
to approximate the evaluation function. As the need to do so increases with
increasing function complexity, the approximation method must in general
be able to capture non-linearities and other complex traits of the evaluation
function. The full story falls outside the scope of this thesis, but suffice to say
that artificial neural networks constitute a group of methods that meet these
needs and are widely applied today.

71

11. Future work

11.2 Improving and extending the algorithm

• As outlined in the beginning, investigating the applicability of the genetic
algorithm to vehicle control was the main focus in this thesis. The idea of
look-ahead control is nothing new, and under the assumption that there is no
interference from surrounding traffic, the optimisation problem is simplified as
the number of constraints significantly decreases and thus also the complexity
of the problem. The results do imply that the addition of the GA improved
fuel consumption, but to harvest more of the outlined potential more algo-
rithmically demanding situations should be considered in further studies. It
can not be said for sure, but there are indicators in this thesis that in order
to apply the algorithm to a problem of greater complexity than LACC with
sparse traffic the problem formulation should be revised so as to not increase
the search space dimension above the current 80 dimensions.

• Real value encoding was chosen over binary encoding partly because it signif-
icantly reduces the chromosome length. However, with 80 values per chromo-
some, the search space is still of significant dimensionality with respect to the
number of individuals and number of generations used in this thesis. Viewing
the developed controller as a path planner in torque space, it is reasonable to
borrow ideas from the field of pure path planning. For driver comfort it was
claimed that the torque should display smooth transitions. This in turn opens
up for the use of primitives1 that code for the torque output over a longer
distance than that of a single segment in the current algorithm. An example
of how this could be done is to generate a set of primitives offline. In the
algorithm, instead of coding for a single torque value, each gene codes for the
type of primitive as well as its ”amplitude”. The final torque trajectory is then
formed by placing the primitives one after the other.

• As the dynamics of HDVs are slow, the long look-ahead is crucial to even have
the potential to optimise the trajectory, no matter the quality of the algorithm.
Typically the error of the predicted state of the vehicle increases the further
it is into the future due to error accumulation. This contradicts the use of
high-resolution data at the far end of the prediction horizon. Also, the most
important constraints in a vehicle-control problem of this type are likely to
be local (e.g. avoiding other vehicles or driving as close as possible to the
vehicle ahead). As a consequence, using high-resolution data and variables for
the whole prediction horizon leads to increased computational demand for no
gain. Originating from this observation, a promising approach is to develop
methods that only optimise the control sequence as far into the future as is
meaningful and approximate the cost associated with the far end of the look-
ahead horizon.

1Primitives are the smallest parts that a solution (i.e. torque trajectory) consists of.

72

Bibliography

[1] Scania CV AB. A forward step for platooning. Apr. 2015. url: http://www.
scania.com/group/en/a-forward-step-for-platooning/.

[2] Scania CV AB. Automatic driving in traffic jam situations. Pressroom: Intel-
ligent Vehicles. Oct. 2013. url: http://scania.com/Images/Automatic_
driving_in_traffic_jam_situations_tcm40-396486.pdf.

[3] Charles Desjardins and Brahim Chiab-draa. “Cooperative Adaptive Cruise
Control: A Reinforcement Learning Approach”. In: IEEE TRANSACTIONS
ON INTELLIGENT TRANSPORTATION SYSTEMS 12.4 (2011), pp. 1248–
1260.

[4] Assad Alam. “Fuel-Efficient Heavy-Duty Vehicle Platooning”. PhD thesis.
Royal Institute of Technology, 2011.

[5] Erik Hellström. “Look-ahead Control for Heavy vehicles”. PhD thesis. Linköping
University, 2010.

[6] Assad Alam, Jonas Mårtensson, and Karl H. Johansson. “Look-Ahead Cruise
Control for Heavy Duty Vehicle Platooning”. In: Proceedings of the 16th In-
ternational IEEE Annual Conference on Intelligent Transportation Systems.
2011.

[7] Scania CV AB. Scania Active Prediction. url: http://www.scania.com/
Images/P11Z01EN%20Active%20prediction_tcm40-285940.pdf.

[8] Nirwan Ansari and Edwin Hou. Computational Intelligence for Optimization.
Springer US, 1997. doi: 10.1007/978-1-4615-6331-0.

[9] An Evolution Based Path Planning Algorithm for Autonomous Motion of UAV
Through Uncertain environments. Digital Avionics Systems Conference, 2002.
Proceedings. 2002.

[10] Fangguo He, Huan Qi, and Qiong Fan. “An Evolutionary Algorithm for the
Multi-objective Shortest Path Problem”. In: International Science Index, Math-
ematical and Computational Sciences 1.1 (2007).

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 2012.

[12] Sinisa Durekovic and Nic Smith. “Architectures of Map-Supported ADAS”.
In: IEEE Intelligent Vehicles Symposium. 2011.

[13] E. Stanley Lee. “The history and development of dynamic programming”. In:
control systems magazine 4.4 (1984).

[14] Marko Čepin. Assessment of Power System Reliability. London: Springer, 2011.
doi: 0.1007/978-0-85729-688-7_17.

73

http://www.scania.com/group/en/a-forward-step-for-platooning/
http://www.scania.com/group/en/a-forward-step-for-platooning/
http://scania.com/Images/Automatic_driving_in_traffic_jam_situations_tcm40-396486.pdf
http://scania.com/Images/Automatic_driving_in_traffic_jam_situations_tcm40-396486.pdf
http://www.scania.com/Images/P11Z01EN%20Active%20prediction_tcm40-285940.pdf
http://www.scania.com/Images/P11Z01EN%20Active%20prediction_tcm40-285940.pdf
http://dx.doi.org/10.1007/978-1-4615-6331-0
http://dx.doi.org/0.1007/978-0-85729-688-7_17

Bibliography

[15] S. P. Bradley, A. C. Hax, and T. L. Magnanti. Applied Mathematical Program-
ming. Addison-Wesley, 1977. isbn: 0-201-00464-x.

[16] Rui Wang and Srdjan M. Lukic. Dynamic Programming Technique in Hybrid
Electric Vehicle Optimization.

[17] Donald E. Knuth and Michael F. Plass. “Breaking Paragraphs into Lines”. In:
Software – Practice and Experience 11.11 (1981).

[18] Scott Brooker and Seamus Hogan. A method for Inferring Batting Conditions
in ODI Cricket from Historical Data. 2011.

[19] Erik Hellström. “Explicit use of road topography for model predictive cruise
control in heavy trucks”. PhD thesis. Linköpings universitet, 2005.

[20] George Jithin Babu. “Look-Ahead Platooning Through Guided Dynamic Pro-
gramming”. PhD thesis. Royal Institute of Technology, 2012.

[21] Melanie Mitchell. “Genetic Algorithms: An Overview”. In: Complexity 1.1
(1995).

[22] L. Shi and K. Rasheed. “Computational Intelligence in Expensive Optimiza-
tion Problems”. In: ed. by Yoel Tenne and Chi-Keong Goh. Vol. 2. Berlin:
Springer-Verlag, 2010. Chap. A survey of Fitness Approximation Methods in
Evolutionary Algorithms. isbn: 978-3-642-10701-6.

[23] Jinguo Liu et al. “Path Planning of a Snake-like Robot Based on Serpenoid
Curve and Genetic Algorithms”. In: World Congress on Intelligent Control
and Automation. IEEE, June 2004.

[24] Harold ”Bud” Lawson. A Journey Through the Systems Landscape. College
Publications, 2010. isbn: 978-1848900103.

[25] Zbigniew Michalewicz, Cezary Z. Janikow, and Jacek B. Krawczyk. “A Modi-
fied Genetic Algorithm for Optimal Control Problems”. In: Computers Math.
Applic. 23.12 (1992).

[26] Ahmed Elshamli, Hussein A. Abdullah, and Shawki Areibi. “Genetic Algo-
rithm for Dynamic Path Planning”. In: IEEE (May 2004).

[27] Carlos A. Coello Coello, Gary B. Lamont, and David A. van Veldhuizen. Evo-
lutionary Algorithms for Solving Multi-Objective Problems. 2nd ed. New York:
Springer, 2007.

[28] Martin Dendaluce et al. “Microcontroller Implementation of a Multi Objec-
tive Genetic Algorithm for Real-Time Intelligent Control”. In: Advances in
Intelligent Systems and Computing. 2014.

[29] Yunus A. Çengel and John M. Cimbala. Fluid Mechanics Fundamentals and
Applications. 3rd ed. McGraw-Hill Higher Education, 2013. isbn: 9780073380322.

[30] Tony Sandberg. “Heavy Truck Modeling for Fuel Consumptions Simulations
and Measurements”. PhD thesis. Linköping University, 2001.

[31] J. Y. Wong. Theory of ground vehicles. 2nd ed. John Wiley & Sons, 1993.
isbn: 0-471-52496-4.

[32] Eduardo F. Camacho and Carlos Bordons. Model Predictive Control. Springer-
Verlag London, 2007. doi: 10.1007/978-0-85729-398-5.

[33] Luigi del Re et al. Automotive Model Predictive Control. Springer-Verlag Berlin
Heidelberg, 2010. doi: 10.1007/978-1-84996-071-7.

74

http://dx.doi.org/10.1007/978-0-85729-398-5
http://dx.doi.org/10.1007/978-1-84996-071-7

Bibliography

[34] Hans Joachim Ferreau. “An Online Active Set Strategy for Fast Solution of
Parametric Quadratic Programs with Applications to Predictive Engine Con-
trol”. PhD thesis. Ruprecht-Karls-Universität, 2006.

[35] Tor A. Johansen. “Approximate explicit receding horizon control of constrained
nonlinear systems”. In: Automata 40.2 (Feb. 2004).

[36] Seyed Mostafa Safdarnejada and John D. Hedengren. “Initialization strategies
for optimization of dynamic systems”. In: Computers and chemical engineering
78 (July 2015), pp. 39–50.

[37] Michael Henzler, Michael Buchholz, and Klaus Dietmayer. “Online Velocity
Trajectory Planning for Manual Energy Efficient Driving of Heavy Duty Ve-
hicles Using Model Predictive Control”. In: International Conference on In-
telligent Transportation Systems. IEEE, Oct. 2014.

[38] Michael Henzler, Michael Buchholz, and Klaus Dietmayer. “Optimal Param-
eter Selection of a Model Predictive Control Algorithm for Energy Efficient
Driving of heavy Duty Vehicles”. In: Intelligent Vehicles Symposium. IEEE,
June 2015.

[39] Mattias Wahde. Biologically Inspired Optimization Methods - An Introduction.
WIT Press, 2008.

[40] James A. R. Marshall, John M. McNamara, and Alasdair I. Houston. “The
state of Darwinian Theory”. In: Behavioral Ecology and Sociobiology 65.3
(2010), pp. 417–420. doi: http://dx.doi.org/10.1007/s00265- 010-
1121-y.

[41] National Human Genome Research Institute. A Brief Guide to Genomics.
Online. url: https://www.genome.gov/18016863 (visited on 12/04/2015).

[42] A. M. S. Zalzala and P. J. Fleming. Genetic Algorithms in Engineering Sys-
tems. The Institution of Engineering and Technology, 1991. isbn: 9780852969021.

[43] Wei Gao. “Advances in Information Technology and Industry Applications”.
In: ed. by Dehuai Zeng. Berlin: Springer-Verlag, 2012. Chap. Study on New
Improved Hybrid Genetic Algorithm. isbn: 978-3-642-26001-8.

[44] Wei Gao. “An Improved Fast-convergent Genetic Algorithm”. In: International
Conference on Robotics, Intelligent Systems and Signal Processing. IEEE, Oct.
2003.

[45] U.S. National Library of Medicine. Phenotype. Online. url: http://ghr.nlm.
nih.gov/glossary=phenotype (visited on 12/07/2015).

[46] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms. Springer-
Verlag, Berlin, 2008.

[47] Shaifali Aggarwal, Richa Garg, and Puneet Goswami. “A Review Paper on
Different Encoding Schemes used in Genetic Algorithms”. In: International
Journal on Advanced Research in Computer Science and Software Engineering
4.1 (Jan. 2014).

[48] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Berlin: Springer, 1996. isbn: 978-3-662-03315-9.

[49] Jos Uffinc. Boltzmann’s Work in Statistical Physics. 2014. url: http : / /
plato.stanford.edu/entries/statphys-Boltzmann/#1.3.

[50] Jonathan Law and Richard Rennie. A Dictionary of Physics. 7th ed. Oxford
University Press, 2015.

75

http://dx.doi.org/http://dx.doi.org/10.1007/s00265-010-1121-y
http://dx.doi.org/http://dx.doi.org/10.1007/s00265-010-1121-y
https://www.genome.gov/18016863
http://ghr.nlm.nih.gov/glossary=phenotype
http://ghr.nlm.nih.gov/glossary=phenotype
http://plato.stanford.edu/entries/statphys-Boltzmann/#1.3
http://plato.stanford.edu/entries/statphys-Boltzmann/#1.3

Bibliography

[51] P. J. M. van Laarhoven and E. H. L Aarts. Simulated Annealing: Theory and
Applications. Springer-Science+ Business Media, B. V., 1987.

[52] Eric W.Weisstein. Logarithmically Decreasing Function. url: http://mathworld.
wolfram.com/LogarithmicallyDecreasingFunction.html (visited on 12/11/2015).

[53] James E. Baker. “Reducing Bias and Inefficiency in the Selection Algorithm”.
In: Proc. of the 2nd Intl Conf on GA. Lawrence Erlbaum Associates, Inc.
Mahwah, NJ, USA, 1987, pp. 14–21. isbn: 0-8058-0158-8.

[54] K. F. Man, K. S. Tang, and S. Kwong.Genetic algorithms: concepts and design.
Springer-Verlag London Berlin Heidelberg, 2001. doi: 10.1007/978-1-4471-
0577-0.

[55] M. Srinivas and L. M. Patnaik. “Adaptive Probabilities of Crossover and Mu-
tation in Genetic Algorithms”. In: IIIE Transationcs on Systems, Man and
Cybernetics 24.4 (Apr. 1994).

[56] Jorge Magalhães-Mendes. “A Comparative Study of Crossover Operators for
Geneteic Algorithms to Solve the Job Shop Scheduling Problem”. In: WSEAS
TRANSACTIONS on COMPUTERS 12.4 (Apr. 2013).

[57] R.R Sharapov. “Vision Systems: Segmentation and Pattern Recognition”. In:
ed. by Goro Obinata and Ashish Dutta. InTech, 2007. Chap. Genetic Algo-
rithms: Basic Ideas, Variants and Analysis, pp. 407–422. isbn: 978-3-902613-
05-9.

[58] Maria Ivarsson et al. Vehicle Control Using Preview Information.
[59] C. W. Barnes. “Euler’s constant and e”. In: American Mathematical Monthly

96.7 (1984).
[60] C. Pomerance. Math 105 notes. url: https : / / math . dartmouth . edu /

~m105f13/m105f13notes1.pdf (visited on 01/02/2016).

76

http://mathworld.wolfram.com/LogarithmicallyDecreasingFunction.html
http://mathworld.wolfram.com/LogarithmicallyDecreasingFunction.html
http://dx.doi.org/10.1007/978-1-4471-0577-0
http://dx.doi.org/10.1007/978-1-4471-0577-0
https://math.dartmouth.edu/~m105f13/m105f13notes1.pdf
https://math.dartmouth.edu/~m105f13/m105f13notes1.pdf

A
Propulsion modelling

The equations governing the acceleration of the vehicle were in section 3.3 shown to
be

Jeω̇e = τe − τout, (A.1)

i(G) = igia, (A.2)

ωw = ωe
i(G) , (A.3)

Jdω̇w = ηi(G)τout − FwRw − τb, (A.4)

ma = Fw − Fd − Fr − Fg, (A.5)

and

a = Rwω̇w. (A.6)

Solving for ω̇w in (A.4) and inserting the result in (A.6) gives

a = Rw

Jd
(ηi(G)τout − FwRw − τb) (A.7)

From (A.1) it follows that

τout = τe − Jeω̇e = τe − Jeω̇wi(g) = τe −
a

Rw

Jei(G), (A.8)

where the second and third equalities follow from (A.3) and (A.6), respectively.
Inserting (A.5) and (A.8) in (A.7) yields

a = Rw

Jd
[ηi(G)(τe −

a

Rw

Jei(G))− τb −Rw(ma+ Fd + Fr + Fg)].

I

A. Propulsion modelling

Rearranging this equation results in the final expression:

a = Rw

Jd +mR2
w + Jeηi2(G) [i(G)ητe − τb −Rw(Fd + Fr + Fg)] . (A.9)

II

B
Genetic algorithm

It is an ample task to analyse complex GAs, and they may evidently be extensively
tailored to suit the optimisation problem at hand, eliminating any hopes to derive
general proofs. To this end, this appendix introduces a set of assumptions that
trades the applicability to the algorithms used in this project for a manageable
analysis. Thus, the following proofs are intended to serve as approximate indicators
for algorithm settings and performance.

B.1 Run-time estimation of simplified GA

Consider a population consisting of a single binary chromosome. The reproduction
is strictly limited to mutation and elitism is employed (i.e. the evolution of the
fitness value is non-decreasing). Let n denote the number of genes, out of which
m are 0s. Furthermore, assume that the fitness function is the one-max function 1.
Theoretically, each gene is independently mutated with some specified probability,
pm. For the mutated chromosome to have an associated fitness value that exceeds
that of the parent, more 0s than 1s must be mutated. The probability of improve-
ment, Pi, is approximately the probability of at least one 0 mutating while no 1
does, which mathematically can be expressed as

Pi(pm,m) = (1− pm)n−m(1− (1− pm)m). (B.1)

The estimated time for an improvement is thus

E(Km(pm)) = 1
Pi(pm,m) . (B.2)

As will be shown in B.2, the optimal mutation rate is 1/n. However, a bit more
generality may be introduced by defining the mutation rate to be a/n, with a� n.
Assuming that there is no bias in the initialisation of the chromosome, the expected
number of 1s in the initial chromosome is n/2. Furthermore, according to (B.1), an

1The one-max function is the number of 1s in the chromosome. The aim of the (binary) GA is
then to maximise the sum of the genes in the chromosome.

III

B. Genetic algorithm

improvement is defined as any net increase in number of 1s. If each improvement is
assumed to increase the number of 1s by 1, the expected run time becomes

E(Ktot) =
n/2∑
m=1

E(Km(pm)). (B.3)

Now, equation (B.1) may be approximated by

Pi(pm,m) ≈ (1− pm)n−mmpm = (1− a

n
)n−mma

n
, (B.4)

where the last term has been approximated by its first-order MacLaurin expansion
along with the fact that a� n.
Using the definition

e−a ≡ lim
n→∞

(1− a

n
)n,

equation (B.4) may be further approximated by

Pi(pm,m) ≈ e−am
a

n
, (B.5)

for large values of n [59].
Inserted in (B.3) this yields

E(Ktot) ≈ ea
n

a

n/2∑
m=1

1
m
. (B.6)

Finally, using the fact that

n/2∑
m=1

1
m
≈ ln n2 ,

the final result is that the total estimated runtime of the algorithm is

E(Ktot) ≈ ea
n

a
ln n2 , (B.7)

[60].

B.2 Proof of optimal mutation rate

From (B.1), with the substitution s = 1− pm, it follows that

IV

B. Genetic algorithm

Pi(s,m) = sn−m(1− sm). (B.8)

Differentiating this expression with respect to s results in

∂

∂s
Pi(s,m) = (n−m)sn−m−1(1− sm) + sn−m(−m)sm−1

= sn−m−1((n−m)(1− sm)−msm)
= sn−m−1(n−m− nsm).

(B.9)

Equating this with zero yields

s∗ = (1− m

n
)1/m. (B.10)

It therefore follows that

p∗m = 1− (1− m

n
)1/m. (B.11)

Under the assumption that m� n, the MacLaurin expansion gives

p∗m ≈
1
n
. (B.12)

V

C
Parameters and constants

Table C.1: Parameters and constants used in the simulations

Description Variable Value
Vehicle:
Vehicle mass m 40, 000 kg
Drag coefficient Cd 0.6
Rolling resistance:

Cr,1 0.006
Cr,2 2.98 · 10−6 1

(m/s)2

Wheel radius Rw 0.522 m
Front area Av 10 m2

Drivetrain efficiency ηs 0.95
Final drive if 3.08

Physical:
Air density ρ 1.204 kg/m3

Gravitational acc. g 9.82 m/s2

Fuel density − 0.832 kg/m3

Control settings:
Reference speed vd 20 m/s
Initial speed v0 20 m/s
Prediction horizon N 80
Fuel correction factor δf 1/3
Smooth driving coeff. cs 3.3 · 10−6

Speed tracking coeff. cT 6.3 · 10−8

Algorithm settings:
Number of genes n 80
Population size mp 20
Generations G 300
Number of elites − 1
Mutation probability pm 1/80
Crossover probability pc 1
Mutation range lrange 30 Nm

VII

	Introduction
	Purpose
	Specification of the purpose
	Delimitations

	Method
	Report outline

	Background and previous work
	Evolutionary optimality and the human addition
	Optimality in the vehicle industry
	Dynamic programming and the curse of dimensionality
	Genetic algorithms

	Heavy-duty vehicle prediction model
	Fuel consumption
	Total fuel consumption

	Longitudinal dynamics
	Vehicle motion
	Simplified prediction model

	Model predictive control
	Minimising engine energy output by model predictive control
	Constant-speed correction

	Genetic algorithms
	The biological process in short
	Algorithm design
	Constituents
	Operators
	Initiation of population
	Encoding and decoding
	Binary encoding
	Value encoding

	Evaluation
	Selection
	Roulette wheel selection
	Tournament selection
	Boltzmann selection
	Stochastic universal sampling

	Fitness transformation
	Optimal crossover and mutation rates
	Crossover
	k-point crossover
	Uniform crossover
	Flat crossover

	Mutation
	Replacement
	Competing generations
	Elitism

	The final algorithm

	Hybrid algorithm
	Genetic algorithm with warm start
	Pre-solving and non-deterioration
	Reusing previous solution information

	Algorithm evaluation
	Simulation model

	Results
	Evaluation of QP-solver
	QP-solver performance for constant driving
	QP-solver performance for varying road slope

	Performance of hybrid algorithm
	Hybrid algorithm torque trajectory
	Analysis of the behaviour of the hybrid algorithm for constant and varying road slope

	Numerical comparison for short-distance performance
	Large scale evaluation
	Average performance of genetic algorithm
	Computational footprint

	Discussion
	Decoupling of cost function, prediction model and solver
	Computational footprint
	Applicability to vehicle control

	Conclusion
	Future work
	Improving execution speed
	Improving and extending the algorithm

	Bibliography
	Propulsion modelling
	Genetic algorithm
	Run-time estimation of simplified GA
	Proof of optimal mutation rate

	Parameters and constants

