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Abstract
With increasing awareness of climate change, energy consumption and carbon emis-
sion have become a priority for many countries and companies. In commercial build-
ings the Heat Ventilation and Air Condition (HVAC) system is one of the largest
energy consumers. This thesis proposes a controller which uses Model Predictive
Control (MPC), which minimizes the energy usage from an HVAC system, while
ensuring thermal comfort when the room is occupied. The controller can control
the temperature in a room by using excess thermal power generated from servers
in another room. The controller is compared to another one which regulates the
temperature to a set value. To implement the MPC a physical representation of
a room is required. This is achieved by modeling a room as an RC-circuit. The
physical representation is then furthered into a state space model, where the tem-
perature, inputs from the controller, and the disturbances are realized. With the
state-space model, the MPC is implemented. The results are gathered from simula-
tions in Matlab using data from a one week period. Our findings suggest that using
the proposed method, big energy reduction can be achieved. The results show that
when simulated using the same data, the proposed method used only 7.82% of the
energy when compared to the other controller. Thereof, most of it came from excess
thermal power came from the server room.

Keywords: Heating Air Conditioning and Ventilation (HVAC), Model Predictive
Control (MPC), Physical Modeling, Optimization, Smart Building
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1
Introduction

1.1 Introduction

With increasing awareness of climate change, focus on energy consumption and car-
bon emissions have become a priority for many countries and companies. A sector
where small positive changes can have a big impact is within the building sector.
Buildings are responsible for around 40% of total energy consumption in the world
and about 30% of greenhouse gas emissions [1]. Even though buildings are such large
consumers of energy, a 2007 study predicts an upward trend in commercial building
energy usage [2]. Considering that the average lifetime of a building is 50-100 years,
adaptions that improves a buildings carbon footprint can have an accumulative ef-
fect during the building’s lifespan. In a commercial building the most power hungry
element is its Heat Ventilation and Air Condition system, which is responsible for
roughly 50% of a buildings energy usage [2]. In countries with a colder climate, e.g.
Sweden, the energy usage from a HVAC system is closer to 57% [3]. Despite the
HVAC system being the largest energy consumer it is still often controlled using con-
ventional methods like set-point, on/off, P, PI, and PID controllers. These methods
have been used for their simplicity, but because of their simplicity they are often
inconsistent, not optimal, and end up using much more energy than needed. There
are however different methods within HVAC control that show promising results but
have not gained traction. One of these methods is Model Predictive Control (MPC).
MPC is a promising technique because of its ability to include disturbance rejec-
tion, constraint handling, and energy conservation into the controller formulation.
Despite its promising performance, MPC has not been a feasible option because it is
computationally heavy compared to a more conventional control strategy. However,
that has changed in recent years as computational power and sensors have become
cheaper. As a result of cheaper hardware, more and higher resolution data is now
available which has yielded better prediction models and opened up new possibilities
such as the Internet of Things (IoT), and Smart Buildings.

Ericsson is one of the leading companies in the rapidly changing environment of com-
munication technology. They provide Information and Communication Technology
(ICT) to service providers, with about 40% of the world‘s mobile traffic carried
through their networks. Ericsson was founded 140 years ago by Lars Magnus Er-
icsson in Sweden, on the premise that access to communications is a basic human
need. The company‘s portfolio ranges across Networks, Digital Services, Managed
Services and Emerging Business; powered by 5G and IoT platforms. One of Er-
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1. Introduction

icsson‘s newest ventures is the concept of Smart Buildings. With the knowledge
the company holds, they are in a great position and to prepare the infrastructure,
insight and platform needed for companies to build end to end solutions and tools
for the future Smarter Building. In a step to further their knowledge Ericsson have
started to equip their office buildings with wireless sensors and a plethora of data has
been gathered so far with new sensors still being added. Each sensor unit consists
of environmental sensors that measure temperature, humidity and light, along with
a Passive Infrared Sensor (PIR) which detects movement in the room. Currently,
Ericsson is using the PIR sensor to determine if a room is occupied or available. If
a room has been booked but no one uses it, the room is made available for booking
again. An overview of the rooms is then accessible on both a smart device appli-
cation and displayed on a large table in the Ericsson office. Another feature in the
Smart Building is that through the application, the user can be assisted to book a
room and find it based on the user’s location. However, these features only include
information from the PIR sensor and the user’s position, which means that the other
sensors are not used in such a way that the building acts upon their values. As a
result Ericsson wanted to explore how the sensors and data could be used. Consid-
ering that the unused sensors measure environmental factors, one possible way to
use them is for climate control.

The authors of this thesis chose this topic due to the fact that it sounded interesting
and it offered a number of possible solutions. It offered a range of flexibility for
finding a solution for using the sensors and it was up to the authors to shape the
work. The thesis combines the author’s experience and interest in working with
data, sensors, and the environment. The reason why Ericsson was chosen as the
focal company for this thesis work was because it is one of the leading companies
within its field, and has a good reputation.

1.2 Aim & Contribution
The aim of this thesis work is divided into 3 parts. Firstly, how the environmental
sensors can be utilized in a way that fits the Smart Building. Secondly, how the ex-
isting data that has been collected can be used. Thirdly, make sure that the first two
parts align with Ericsson’s environmental policy [4], which aims to reduce energy us-
age and carbon emission, as well as using circular economy using waste as a resource.

The proposed solution uses a Model Predictive Control (MPC) for climate control.
The controller has different temperature constraints based on if the room is occupied
or not. The MPC also uses external thermal power generated in server rooms.
That thermal power is currently released from the building as waste. The MPC
is implemented using a physical model of two meeting rooms in Ericsson’s office
in Gothenburg. The results acquired by simulation in Matlab [5] using data from
occupancy, number of occupants, and weather. The results are compared to another
MPC which uses reference tracking to a set-point value, which is similar to the
current climate controller for the building.

2



1. Introduction

1.3 Literature Study

The industrial use of MPC dates back to 1980 when it was used in chemical appli-
cations such as oil refinery, which is a system with multiple inputs and outputs, as
well as constraints. When compared to a Linear Quadratic Controller(LQR), which
is an optimal controller that minimizes an unconstrained quadratic objective func-
tion over an infinite horizon, the MPC outperformed the LQR in process industries.
The reason lies with the fact that no processes are without constraints [6]. The
constrainted control and finite window is the main difference between a LQR and
MPC. If a MPC would have an infinite horizon and no constraints it would result
in a LQR [7]. In recent years MPC has been a popular topic in HVAC research.

In a 2013 review paper [8], Afram and Janabi-Sharif compare the performance of
MPC to a variety of HVAC control systems. They found that even a simple MPC
outperforms conventional control approaches that do not include predictive algo-
rithms. Another finding in the paper is that buildings with a large thermal mass,
e.g. office buildings, could use thermal storage by pre-heating or pre-cooling the
building during times when a zone is unoccupied. This relates closely to the work
done in this thesis, where the excess power from a server room is used to heat other
zones.

The author of a 2016 Master Thesis [9] explores different methods of MPC using
both a two zone model and a three zone model. The objective of each MPC method
is reference tracking to a set temperature. The only disturbance that is considered
in the models is a constant outside temperature. The method of modelling the zones
as RC-circuits is the same as is done in this thesis.

In a 2012 research Oldewurtel et al. [10] investigate how MPC which incorporates
weather prediction increase energy efficiency while keeping thermal comfort for oc-
cupants. Different controllers are tested, but when weather predictions are taken
into account the highest energy saving is achieved. However the authors mention
that the results are very dependent on accurate weather predictions and reliable
building data. One way of ensuring good data is by deploying a sensor network like
is done within a Smart Building.

In research conducted by Cho and Zaheer-uddin [11] it is shown that using weather
prediction with a MPC in a cold climate that energy cost can be reduced by 10-
12% compared to conventional methods. Those results were acquired when winter
months were considered. The energy savings went up to 35.4% for warmer months.
The energy savings during the winter times could be increased by using thermal
storage.

3



1. Introduction

1.4 Thesis Outline
This thesis is divided into six chapters. The first and current chapter introduces the
problem at hand and gives motivation why this work should be done. Chapter 2
outlines the theory behind the room modelling and the MPC algorithm. In Chapter
3 the theory is applied and a control algorithm for the two zone model in Ericsson
is given. Chapter 4 includes the results. Chapter 5 discuss the results, limitations
and direction towards further research. Chapter 6 provides the final conclusion.

4



2
Theory

This chapter describes the theoretical background of three different concepts. It
starts with a general overview the physical modelling of a room. Room modelling
consists of inputs, disturbances and state space models. Furthermore, a general idea
of a Heat Ventilation and Air Condition (HVAC) system is presented. The HVAC
system is what regulates the temperature and ensures air quality in a building.
The chapter then finishes with explaining how MPC works by explaining receding
horizon, objective function, and optimization. The purpose of these sections is to
give the reader an introduction to the concepts and its scientific status in relation
to this thesis in order to be able to interpret and understand the results.

2.1 Room modelling

Room modelling is about representing and describing a physical room as a mathe-
matical model. Equations and formulas can predict how various devices will behave
in response to the inputs to these devices [12]. There are many reasons why one
would want to represent a physical room as a mathematical model, e.g. to predict
temperature in a room. When predicting a temperature in a room, one way to
make such a prediction is to describe the room as an RC-circuit. Figure 2.1 shows a
simplified circuit of the system. The resistance in the circuit is the materials which
thermal energy flows through, e.g. walls and windows. The resistance for each
material is described as

Ri = wi
Aiki

(2.1)

where R is the resistance, i is the ith material, w the width of the material, A the
area, and k a thermal conductivity coefficient. The storage of thermal energy is
modeled with a capacitor. Examples of energy storage materials are air, walls, and
windows. The capacitance is described as

Ci = micpi (2.2)

where C is the capacitance, m is the mass of the material, and cp is the specific heat
capacity of the material.

Without external inputs and disturbances the first order differential equation for

5



2. Theory

the change in thermal energy is

C
dT

dt
=

N∑
i=1

∆Ti
Ri

(2.3)

where T is the temperature. Equation 2.3 is later introduced in the state space
model with inputs and disturbances, explained in further details below.

Rwall

CC

T1 Troom

Figure 2.1: The room is modelled as an RC circuit. The resistance of the model
is describing the thermal resistance of the different materials. The capacitance is
describing how the materials store thermal energy, like a capacitor stores charge.

2.1.1 Inputs
A system model usually consists of signals and variables that can influence other
variables in the system. These type of signals are commonly explained as external
signals or inputs. Inputs can be of two types. Firstly, a control signal is an external
signal that influences the system’s behavior and it’s time variations can be chosen
[13]. The control inputs to a system are the thermal power which heats the room.
The thermal power is measured in Watts [W]. If the power from the server room is
used there are two thermal power inputs, one from the server room, and one from
the HVAC system. If it can not be used the only controllable input is from the
HVAC system. These inputs are constraint by an upper and lower threshold, based
on how powerful the radiators are, how much thermal power is available from the
server room, and the velocity of air coming from the HVAC system.

Secondly, the external signal or input that cannot be influenced is called uncontrol-
lable or disturbance signal. These are the outside temperature, corridor tempera-
ture, heat generated by occupants, and electric appliances. Some of these distur-
bances, outside and corridor temperature, are detectable and measured. Others, like
heat generated from occupants and electric appliances, are not detectable. But if
the number of occupants is known then their thermal energy can be estimated since
an average person generates 100 W of thermal energy when doing office tasks [14].

2.1.2 State Space Model
A state space model is a linear representation of a physical system and consists of a
set of input, output, and state variables related by first order differential equations.
The system is made on a matrix form and variables are made into a set of vectors;

6



2. Theory

state, input, and output. The general state space model expression of a linear system
is written in the following form:

ẋ(t) = Ax(t) +Bu(t) +Bdud(t)

y(t) = Cx(t) +Du(t)

where x(t) is the state vector, ẋ is the derivative of the state vector, u(t) is the
input vector, ud(t) the disturbances, and y(t) is the output vector. The matrices
A,B,C,D relate the state and input vectors to the state derivative and output [13].
In this thesis work the A matrix relates to how energy flows through the rooms.
The B matrix describes how the input effects the temperature in the rooms. The C
matrix tells how the measurements relates to the states. D relates to how the input
effects the measured output.

7



2. Theory

2.2 HVAC system
A heating, ventilation, and air conditioning system is used to provide comfortable
temperature and decent air quality indoors [15]. It consists of an inlet fan and an
exhaust fan which provide the air circulation in the system. It also includes dampers
which open and close depending on how much air should go through the dampers,
and the velocity of the air. Also, there are heating and cooling coils that heat or
cool the air in the duct and lastly, the system includes filters that filter the air.

A typical HVAC system pumps air from the outside and into the system, where it
is filtered and mixed with air already in circulation. Next the air passes through
coils that heat and/or cool the air to the desired temperature for the air duct. The
air is then pumped by a fan into the air duct where it travels to the zones in the
building that must be supplied with air. At each zone is a reheating coil which
ensures that the air entering the zone is within the thermal comfort level. To keep
the air circulating, another fan pumps the air out of the room. The majority of air
pumped out of the rooms is mixed with the incoming air, but the same amount of
incoming air is released out into the atmosphere. Figure 2.2 shows how a simple
HVAC system looks like where zone 1 and 2 represent two rooms.

Zone 1 Zone 2 

SUPPLY FAN

RETURN FAN

HEATING / COOLING
COLIS

EXHAUST AIR

SUPPLY AIR

DAMPER

Figure 2.2: The main components of an HVAC system

The part of the HVAC system this thesis work focuses on is the thermal energy that
is added to a room and is done by using a MPC.

2.3 Model Predictive Control

Model Predictive Control (MPC) is a control method where an objective function is
optimized based on a set of constraints, within a finite prediction window [7]. The
predicted future outputs are based on the current input, outputs, and the future
control inputs. As was discussed earlier, the difference between a LQR controller
and a MPC is that LQR has an infinite control horizon but the MPC has a finite
horizon. This is where the concept of a receding horizon is considered.

8



2. Theory

The idea with the receding horizon is to choose the best control signal based on
future trajectory and constraints. It is described in three steps:

1. At time instant k calculate the process response over the prediction horizon
using a future control sequence.

2. Pick the control sequence which minimizes the objective function and operates
within the constraints.

3. Apply the first element of the chosen control sequence, discard the rest, and
move to time instant k + 1.

Because of the receding horizon, the current information about the plant is needed
for the prediction. Thus, the input can have no direct effect on the output, making
the D matrix in the state space model zero [7].

Based on the state space model, the future values of each state can be estimated to
span the duration of the prediction window

x(k + 1|k) = Ax(k) +Bu(k) +Bdud(k)
x(k + 2|k) = Ax(k + 1|k) +Bu(k + 1) +Bdud(k + 1)

= A2x(k) + ABu(k) + ABdud(k) +Bu(k + 1) +Bdud(k + 1)
...

x(k +Np|k) = ANpx(k) + ANp−1Bu(k) + ANp−1Bdud(k) + ANp−2Bu(k + 1)
+ . . .+ ANp−NcBu(k +Nc− 1) + ANp−NcBdud(k +Nc− 1).

These equations are represented in matrix form in Equation (2.4)
X = Ψx(k) + ΦU + ΦdUd (2.4)

where

X =


x(k + 1|k)
x(k + 2|k)

...
x(k +Np|k)

 U =


u(k|k)

u(k + 1|k)
...

u(k +Nc− 1|k)

 Ud =


ud(k|k)

ud(k + 1|k)
...

ud(k +Nc− 1|k)

Ψ =



A
A2

A3

...
ANp



Φ =



B 0 0 · · · 0
AB B 0 · · · 0
A2B AB B

. . . 0
... ... ... ... ...

ANp−1B ANp−2B · · · ANp−Nc−1B ANp−NcB



Φd =



Bd 0 0 · · · 0
ABd Bd 0 · · · 0
A2Bd ABd Bd

. . . 0
... ... ... ... ...

ANp−1Bd ANp−2Bd · · · ANp−Nc−1Bd ANp−NcBd
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2. Theory

2.3.1 Objective function
The objective function is the equation that is minimized given some constraints. In
Equation 2.5 the objective function is represented as J and constraints are expressed
on the following form, see Equations 2.6 and 2.7:

J(x, u) = 1
2x

TQx+ xTF + 1
2u

TRu+ uTE (2.5)

Mx ≤ b (2.6)

Nu ≤ γ (2.7)
Where Q and R are design matrices relating to the quadratic part of the objective
function. Q includes the weights put on the states, and R includes the weights for
the inputs. F and E are also weight matrices for the states and inputs, but are
relating to the linear terms of the objective function. M is a matrix that relates
to the constraints of the states and b is the constraint vector. N is a matrix that
relates to the constraints of the inputs, and γ is the input constraint vector.

Two different objective functions are considered, one quadratic and one linear. The
quadratic function is considered for the reference tracking and the linear when the
energy usage from the HVAC system is minimized. When the quadratic case is
considered, the objective function is related to the state and how close it is to a
reference value. That means that when the state is far from the reference value the
result from the objective function will be high. The reference value acts as a steady
state. Thus, the input value that minimizes that difference is ∆u(k) = u(k)− uss ,
which is the deviation from the input which gives the steady state. Let r(k) denote
the reference value at time k, S the weight matrix on the output, and C the output
matrix from the state space.

J(x, u) = 1
2(r(k +Np)− Cx(k +Np))TS(r(k +Np)− Cx(t+Np))

+ 1
2

Np−1∑
i=0

[
(r(k+ i)−Cx(k+ i))TS(r(k+ i)−Cx(t+ i)) + ∆uT (k+ i)R∆u(k+ i)

]
(2.8)

Rewriting in terms of the full horizon and ignoring the constant terms, Equa-
tion (2.8) becomes

J(x, u) = 1
2U

T (ΦT Q̄Φ + R̄)U +
[
x(k)T r(k)T

] [ΨT Q̄Φ
−T̄Φ

]
U (2.9)

where Q̄, R̄ and T̄ are

Q̄ =


Q

. . .
Q

S

 R̄ =


R

. . .
R

R

 T̄ =


QC

. . .
QC

SC


10
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and Q̄ is a positive semi-definite matrix and R̄ is a positive definite matrix.
The disturbance is not taken into account because the reference value r is the steady
state value xss, which means that the disturbance cancels out

x(k + 1)− r(k + 1) = Ax(k) +Bu(k) +Bdud(k)− (Axss +Buss +Bdud(k)).

For the linear case, when the energy from the HVAC system is minimized, the
objective function is seen in Equation (2.10)

J(x, u) = fT [x, u]T (2.10)
where f is a vector which corresponds to the variables that should be optimized.

2.3.2 Optimization
The optimization used in this thesis work is called convex optimization. It minimizes
convex functions over a convex set. A convex set (C) is one where a line can be
drawn between any two points a, b within the set and the line is also within the set.
A mathematical representation of this can be seen below:

a, b ε C, θ ε [0, 1] =⇒ θa+ (1− θ)b ε C, ∀a, bεC.
The convex set is bounded by the constraints on the system. If the set is not convex,
there might not exist a minimum for the objective function. A convex function is
a function that curves upwards, e.g. f(x) = x2. Due to the upward curve, the
minimum found in the optimization is a global minimum. A function that curves
downward, e.g. f(x) = −x2, is called a concave function. A function is convex if its
Hessian matrix is positive semi-definite.

The linear objective function previously discussed in section 2.3.1 is a special case
of a convex function where the Hessian matrix is zero. An example of both cases is
shown in Figure 2.3.

f(x)f(x)

C C

X

Y

X

Y

Figure 2.3: The figure shows both a linear function and a quadratic function within
a convex set.
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3
Methods

The initial step in the thesis work was to find use for the data and sensors, and
explore in which areas the data could be used. After reviewing the sensor data,
it became clear that the temperature in all meeting rooms in Ericsson’s offices in
Gothenburg were being controlled to a set-point value. The temperature fluctuated
around 21.5◦C regardless of the time of day, or if a room was occupied. This is
where the premise of the problem formulation was formed. By making the temper-
ature in the room dependent on occupation, rather than on a fixed set-point value,
energy consumption could be reduced. Therefore, a controller which was capable of
limiting energy usage, while keeping the temperature within a set of constraints had
to be implemented. The controller chosen was a MPC. To implement the MPC, a
state space model had to be constructed. It accounted for the thermal dynamics of
the rooms, and incorporated the disturbances to the rooms. To further the energy
savings the thermal power generated by Ericsson’s server rooms was considered as
an alternative heat source to the meeting rooms. The idea was to reduce the waste
of pumping out the warm air in the server rooms, while heating air from the outside
to warm the meeting rooms. To limit the scope of the problem, two identical rooms
were chosen to share one MPC. The two rooms are subjected to disturbances from
the outside, the adjacent room and corridor, and people.

The following sections derive the state space model and the MPC implementation
in detail.

3.1 State Space Modelling

The thesis work focuses on two rooms that lie next to one another and share one
wall. An overview is seen in Figure 3.1. The figure shows the direction of heat flow,
indicated by the black arrows, which is needed to derive the state space model. The
red arrows indicate the input to the system, and the blue arrows are the thermal
power which is subtracted from the room.

13
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ROOM 1

Corridor

ROOM 2

Outside

q1serverq1hvac q2serverq2hvac

q12

q1out q2out

q1corridor q2corridor

Figure 3.1: Two dimensional view of the room layout. The black arrows indicate
the direction of heat flow. The colored arrow indicate the thermal power being
added to or removed from the rooms.

The state space matrix is set up by deriving the mathematical equations based on
Figure 3.1. Using the following steps the system in Equation (3.1) is acquired.

C1
dT1

dt
= q1server + q1hvac︸ ︷︷ ︸

inputs

− q12 − qout − qcorridor + qpeople1︸ ︷︷ ︸
disturbances

= q1server + q1hvac + qpeople −
T1 − T2

R12
− T1 − TC

RC1

− T1 − TO1

RO1

= q1server + q1hvac + qpeople −
1
R1
T1 + 1

R12
T2 + 1

RC

TC + 1
RO1

TO

dT1

dt
= 1
C1

(q1server+q1hvac+qpeople)−
1

C1R1
T1+ 1

C1R12
T2+ 1

C1RC

TC+ 1
C1RO1

TO (3.1)

The state equation for the right room is derived the same way, but there q12 has a
positive sign. When the thermal power from the server room is not applied, qserver
is disregarded.
Setting the state equations for both rooms on a state space form yields the following
system

[
Ṫ1
Ṫ2

]
︸ ︷︷ ︸

˙x(t)

=
[
− 1
C1R1

1
C1R121

C2R12
− 1
C2R2

]
︸ ︷︷ ︸

A

[
T1
T2

]
︸ ︷︷ ︸
x(t)

+
[ 1
C1

0 1
C1

0
0 1

C2
0 1

C2

]
︸ ︷︷ ︸

B


q1hvac
q2hvac
q1server
q2server


︸ ︷︷ ︸

u(t)

+
[ 1
C1RC 1

1
C1RO1

1
C1

0
1

C2RC 2
1

C2RO2
0 1

C2

]
︸ ︷︷ ︸

Bd


TC
TO

qpeople1

qpeople2


︸ ︷︷ ︸

ud(t)
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[
T1
T2

]
︸ ︷︷ ︸
y(t)

=
[
1 0
0 1

]
︸ ︷︷ ︸

C

[
T1
T2

]
︸ ︷︷ ︸
x(t)

3.1.1 Numerical values

To calculate the numerical coefficients in the state space model the physical param-
eters of the room and its objects is considered. These parameters are related to the
size of the room, the thermal capacitance, and the thermal resistance. Tables 3.1
and 3.2 show the dimension of the rooms and parametric values of the materials.

Table 3.1: Room and window dimensions in meters

Width [Bwi] Height [Bhi] Length [Bli]
Room 1 2.7 2.7 2.3
Room 2 2.7 2.7 2.3

Window Width [Wwi] Window Height [Whi] Window Length [Wli]
Room 1 0.02 1.5 2.3
Room 2 0.02 1.5 2.3

Table 3.2: Different heat capacity, thermal conductivity, density and width of the
different materials.

Window glass Sand Plaster Cement Air
cp [J/kg·m3] 840 [16] 900 [16] 1550 [16] 1005 [17]
k [W/m·K] 0.96 [18] 0.71 [18] 0.29 [18] 0.026 [18]
ρ [kg/m3] 2500 [19] 801 [20] 1522 [20] 1.225 [20]

w [m] 0.02 0.05 0.2

The dimensions of the room, presented in Table 3.1, make it possible to calculate the
areas of the heat flow. The heat flow to the rooms depends on the area of contact
and temperature at the other side of the material. Figure 3.1 shows the layout of
the rooms and their surroundings. Table 3.3 shows the areas of the different heat
flows.
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Table 3.3: Contact areas for the different heat flows in both rooms.

Zone Area [m2]
Room 1 to Outside [A1O] Bw1Bh1 −Wl1Wh1
Room 2 to Outside [A2O] Bw2Bh2 −Wl2Wh2
Room 1 to Room 2 [A12] Bl1Bh1
Room1 to Corridor [A1C ] Bw1Bh1 +Bl1Bh1
Room2 to Corridor [A2C ] Bw2Bh2 +Bl2Bh2

Window 1 [AW1] Wl1Wh1
Window 2 [AW2] Wl2Wh2

The thermal resistance is what hinders the thermal flow from a room the another
side of it. The resistances differ based on the material, and its area. When an area
consists of two or more different materials, like a wall with window, its resistance
is calculated by the parallel connection of the materials. Table 3.4 shows how the
resistances for all the areas are calculated, as well as how R1 and R2 from the state
space model are derived.

Table 3.4: The table shows how the each of the thermal resistances is calculated.

Outside resistance [ROi]
(kconcreteAiO

wconcrete
+ kwindowAWi

wwindow

)−1

Corridor resistance [RCi]
wplaster

AiCkplaster

Room 1 to Room 2 [R12] wplaster
A12kplaster

R1 ( 1
RO1

+ 1
RC1

+ 1
R12

)−1

R2 ( 1
RO2

+ 1
RC2

+ 1
R12

)−1

The thermal capacitance is a materials ability to hold on to thermal energy, like a
capacitor in an electric circuit can hold on to charge. The capacitance is calculated
by multiplying the specific heat capacity of a material (cp) with the material’s mass.
Each material is subjected to a single thermal flow. Hence the materials act like a
parallel circuit of capacitors. Therefore the total heat capacity of a room is the sum
of the capacitance of each material. Table 3.5 shows how the mass for each material
is calculated, as well as the capacitance.

Table 3.5: The mass and capacitance for the different materials and rooms.

mairi ρairBwiBhiBli

mconcretei ρconcreteAiOwconcrete
mglassi ρglassAiOwglass

mplasteri ρplasterAiOwplaster
C1 cpairmair1 + cpconcretemconcrete1 + cpglassmglass1 + cpplastermplaster1
C2 cpairmair2 + cpconcretemconcrete2 + cpglassmglass2 + cpplastermplaster2
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3.1.2 Discretization
When the model had been numerically derived the next step was to make the model
discrete, since the MPC is a digital algorithm. The sampling time was chosen as
10 minutes. It was chosen due to the dynamics of an office building, and at which
intervals meeting rooms could be booked. When a system is made discrete the
following calculations are made

Ad = eAcTs , Bd =
∫ Ts

0
eAcτdτBc = A−1

c (Ad − I)Bc, Cd = Cc

where the subscript d stands for discrete, the subscript c stands for continuous, and
Ts is the sampling time. These calculations can be simplified by using a first order
Taylor expansion. The matrices then become

Ad ≈ I + AcTs

Bd ≈ A−1
c (I + AcTs − I)Bc = TsBc.

which makes them easy to implement in Matlab. The reason why a first order Taylor
expansion is used to make the model discrete instead of other methods, is to keep
the B matrix so that the inputs in one room does not effect the other [9], and the
dynamics of the system are very slow.

3.1.3 Server Room
The server room is modeled after a general sized server room in a large office building
located in colder climate. A general layout of the server room describing the heat
flow can be seen in Figure 3.2 and the dimensions and specifications of the room
can be seen in Table 3.6.

Corridor

SERVER ROOM

qcorridor

qIN qOUT 

qservers

Figure 3.2: Two dimensional layout of larger server room with theoretical energy
flows.
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Table 3.6: Specification of room dimensions, quantity and type of servers.

Server Room Specifications
Room Dimensions Height [Rhi] 2.3 [m]

Width [Rwi] 10.0 [m]
Length [Rle] 10.0 [m]
Wall Thickness [Rth] 0.2 [m]

Room Windows Height [Whi] 1.2 [m]
Width [Wwi] 10.0 [m]
Window Thickness [Wth] 0.02 [m]

Servers Number of servers [nservers] 600
Number of racks [nracks] 30
Mass of rack with servers [mservers] 400 [kg]
System Heat/Power 121 [W]
Operational Temperature [TSmin, TSmax] 20 - 38 [C°]
Server Type Dell PE860
Processor Type Xeron 3070

In reality the server room consist of multiple server types but for simulation purposes
a single type commonly used server was selected to represent the the heat generation.
The heat admittance is mainly dependent on on server workload and is scalable
due to its linear characteristics. The room have been modeled using the same RC-
circuit description as the meeting room with the resistance and capacitance variables
presented in Table 3.7.

Table 3.7: Server room surface area, mass, capacitance and resistance.

Awindow WwiWhi

Awalls 4RwiRhi − Awindow
mair,room ρairRwiRhiRle

mwalls ρcementAwallsRth

mwindows ρglassAwindowWth

CS cpairmair + cpconcretemconcrete + cpglassmwindows + cpsteelmracknracks

RS

(kconcreteAwalls
Rth

+ kwindowAwindow
Wth

)
−1

The server room is located within the Ericsson building with no wall facing the
outside. All walls connect to an inner corridor regulated at around 22°C, with
one of the walls consisting mainly of a large window according to Figure 3.2. The
material of the walls are concrete and the servers are mostly steel. The temperature
in the room is regulated by the energy flow qin and qout which is controlled by a
separate dedicated server room HVAC system, different from the one governing the
meeting rooms. The disturbance of the system is attributed to surrounding corridor
temperature Tcorridor and the energy being generated by the servers qservers. The
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3. Methods

server room state space model below is constructed in a simular way as for the
meeting rooms with ṪS being the change in temperature of the server room:

[
ṪS
]

=
[
− 1
CSRS

] [
TS
]

+
[

1
CS
− 1
CS

] [ qin
qout

]
+
[

1
RSCS

1
CS

] [Tcorridor
qservers

]

Using Dell’s own tool called Datacenter Capacity Planner [21] the maximum com-
bined estimated heat output from the servers was calculated to qs,max = 72, 6 KJ/s
for this particular server setup. The server processor utilization is represented using
a sine wave function see Equation 3.2 with the energy output being the product
of utilization percentage and maximum capacity. The variation is set to fluctuate
between 20 − 100% utilization of maximum capacity to represent average normal
usage, assuming a greater server load during office hours and a lower demand the
rest of the day and during weekends.

qserver(k) = qs,max
sin(0.044k + 0.1) + 0.6

2.5 (3.2)

The server room state space representation derived from the RC-circuit description
is used to simulate how much energy the server room generates in an active state
while maintaining a acceptable operational temperature specified by the servers.
The HVAC control of the server room is regulated using linear programming opti-
mization. Minimizing the input energy being used while keeping the room within
acceptable temperature limits and generating maximum energy output. Server room
control is realized using the Matlab function linprog() in a similar way as described
in Section 3.2.3. The lower bound for the input energy is set to 100W with no upper
bound for energy output:[

−Φ
Φ

]
︸ ︷︷ ︸
Ain

U ≤
[
−TSmin + ΨT (k) + ΦdUd
TSmax −ΨT (k)− ΦdUd

]
︸ ︷︷ ︸

Bin

The resulting input control signal Qout is considered to be the available energy
output from the room since it is the minimum energy export needed to maintain an
operational temperature of below 38◦C. In Figure 3.3 the available energy from the
server room, later to be used by the MPC is presented.
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10
4 Server Room

Figure 3.3: Output energy of server room being regulated at a constant tempera-
ture of 38◦C over a 7 day period.

19



3. Methods

3.1.4 Disturbance data
The disturbance on the two rooms comes from the occupants, corridor, the other
room, and the outside. The occupancy data was gathered from the PIR sensors,
and the number of occupants for each meeting were obtained with a survey device
which logged the number. The data from the PIR would sometimes turn a value
of 1, indicating that there was somebody in the room, when nobody was using the
room. Thus, the data had to be filtered and padded with the correct values. The
corridor temperature was set to a constant 22°C, since it is regulated to a set point
value, and no data for the actual temperature existed.
The weather data was obtained from a weather station installed on the building. It
takes a sample once every hour, so to match it with the data with the sampling time
of the MPC, the weather data is interpolated. It is assumed that the temperature
changes linearly between samples. The outside temperature trajectory is presented
in Figure 3.4.
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Figure 3.4: The outside temperature during the time of the simulation.

3.2 MPC

3.2.1 Objective function
There are two objective functions for the two different cases. For the reference
tracking the objective function for a single time step is

minimize (T − Tref )2 +RQhvac

subject to Tmin ≤ T ≤ Tmax

umin ≤ u ≤ umax

(3.3)

and to include the entire prediction horizon the objective function includes the
Hessian and linear matrix which were derived in Equation (2.9).
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For the linear case the objective is to minimize the energy used by the HVAC system.
Thus the function for a single time step is

minimize qhvac1 + qhvac2

subject to Tmin ≤ T ≤ Tmax

umin ≤ u ≤ umax

(3.4)

and to include the entire horizon, fT from equation (2.10) becomes

fT =
[
1 1 0 0 . . . 1 1 0 0

]
.

When the objective functions had been implemented for the entire prediction hori-
zon, the same had to be done for the constraints.

3.2.2 Constraints

The constraints that the MPC must operate within relate to the temperature in the
room, and the thermal power used to control the temperature. The constraints on
the temperature are dependent on the occupancy status on the room. If nobody
is in the room the temperature range is between 15◦C and 29◦C, and when the
room is occupied the temperature must be within 21◦C and 24◦C. The constraints
values when a room is occupied is chosen because temperature outside of that range
accounts for 96.5% of temperature complaints in commercial buildings [14]. This
is incorporated in the MPC algorithm by adding a slack variable s(k). The slack
variable is added to form a soft constraint. This is due to the fact that output
constraints can cause large changes in the control, which can yield the input variables
to violate their constraints [7]. The slack variable is activated 4 time samples before
a meeting starts. For each time step the change in the constraints is 1◦C, until the
lower bound is 21◦C, and the upper bound is 24◦C.
The constraints on the power used from the server room is constrained by the allowed
temperature of the air that comes in to the room by the HVAC system. The other
constraints on the inputs are for the radiators. The power from them can range
between 0 W and 6000 W. However, due to the continuous circulation of the HVAC
system, the minimum thermal power going in must be at least equal to the flow of
air going in to the room at duct temperature. The duct temperature is considered
constant at 10°C. Since the air does not need to be heated to 10°C, this minimum
input is deducted from the total energy consumption. The MPC can choose not to
use any power from the server room, which means that the lower limit is 0 W. The
upper limit depends on the thermal load that the servers produce, which varies.
When the objective function includes reference tracking the power from the server
room is not considered. This changes the constraints. Table 3.8 shows the con-
straints for both objective functions.
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Table 3.8: The constraints on the MPC for both objective functions

Both objective functions
Tmax 24◦C + s(k)
Tmin 21◦C + s(k)

Linear objective function
qservermax Ga · cpair(29◦C)
qservermin 0
qhvacmax 6000 W
qhvacmin 0 W
qserveri

+ qhvaci
Ga · cpair10◦C

(qserver1 + qserver2)max Available power from server
Quadratic objective functions

qhvacmax 6000 W
qhvacmin Ga · cpair · 10◦C

These constraints must be met for the entire control and prediction horizon. Using
the matrix form from Equation (2.4), the inequality constraint matrices for the linear
cost function are formed as such

−Φ
Φ
−M1
M2


︸ ︷︷ ︸

Ain

U ≤


−Tmin + ΨT (k) + ΦdUd
Tmax −ΨT (k)− ΦdUd

−Umin
Umax


︸ ︷︷ ︸

Bin

where M1 and M2 correspond to the lower and upper bounds on the inputs respec-
tively. To apply the constraints during the entire prediction horizon, the matrices
Mmin and Mmax are multiplied by a triangular matrix Λ, using a block matrix mul-
tiplication.

Mmin =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1


Mmax =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1

Λ =



I 0 0 . . . 0
I I 0 . . . 0
I I

. . .
... ... ... . . . ...
I I I . . . I


The inequality matrices for the quadratic objective function differ from the linear,
because the optimized values are the deviation ∆u from the steady state uss. Thus,
the inequality matrices are

−Φ
Φ
−N1
N1

∆U ≤


−Tmin + ΨT (k)
Tmin −ΨT (k)
−Umin + u(k)
Umax − u(k)


where N1 is the matrix which corresponds to the constrained states. It is calculated
the same way as M2, because the matrix that corresponds to Mmax, is also an
identity matrix but with two states.
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3.2.3 Matlab Implementation
For the linear objective function the Matlab function linprog() is used with the
dual-simplex algorithm. It takes in the f vector which corresponds to the inputs
that are minimized, and the inequality matrices Ain and bin. The Dual Simplex is
a linear programming algorithm which performs a simplex algorithm. A simplex
algorithm looks for the optimum value by evaluating the objective function at the
vertices of a set, which are made by the constraints. It iteratively updates the ver-
tex set until the solution does not improve in any direction, which means that the
optimum is found [22].

For the quadratic objective function the Matlab function quadprog() is used with
the interior point convex algorithm. It takes in the Hessian matrix H and F T from
Equation (2.9), along with the inequality matrices Ain and bin The interior point
convex algorithm performs five steps [23].

1. Presolve/Postsolve. The problem is simplified, redundancies removed, and the
constraints simplified.

2. Generate Initial Point
3. Predictor-Corrector. The inequalities are put on a different form, and a point

where the KKT conditions are met is found.
4. Stopping Conditions
5. Infeasibility Detection

For the quadratic case the steady state value of the input must be calculated. The
disturbance changes this value, so it must be calculated for every time step. It is
done the following way [

xss
uss

]
=
[
I − A −B
C 0

]−1 [
Bdud(k)

r

]

and to get the next control input the first values from quadprog() are added to
uss.
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4
Results

This chapter shows the results from the simulations. The results from the two
rooms are presented in a separate sections, where each section includes results from
both the quadratic and linear objective functions. Lastly, the total usage in kWh is
presented. The results are acquired by simulating one week of data. During that
course Room 1 is occupied for 280 minutes, and Room 2 is occupied for 730 minutes.
The controllers have a prediction and control horizon that checks 6 time steps ahead,
or 1 hour. The initial conditions are set to 22°C in both rooms. The reference value
in the rooms was set to 21.5°C.

4.1 Room 1
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Figure 4.1: The temperature in room 1 for the quadratic objective function

25



4. Results

0 500 1000

Time [10 m]

0

1000

2000

3000

P
o
w

e
r 

[W
]

Quadratic Objective Function Room 1

Room 1

Figure 4.2: The thermal power usage for room 1
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Figure 4.3: The temperature in room 1 for the occupancy based constraints
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Figure 4.4: The HVAC energy usage in room 1 for the occupancy based constraints
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Figure 4.5: The thermal power from the server room provided to room 1 for the
occupancy based constraints
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4.2 Room 2
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Figure 4.6: The temperature in room 2 for the quadratic objective function
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Figure 4.7: The thermal power usage for room 2
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Figure 4.8: The thermal power from the server room provided to room 2 for the
occupancy based constraints

0 500 1000

Time [10 m]

0

200

400

600

800

P
o

w
e

r 
[W

]

HVAC energy Room 2

Figure 4.9: The HVAC energy usage in room 2 for the occupancy based constraints
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Figure 4.10: The server energy usage in room 2 for the occupancy based constraints

4.3 Numerical results
After accounting for the duct temperature, the total kWh for both cases are calcu-
lated and presented in Table 4.1.

Table 4.1: Results for one week of use

kWh from HVAC kWh from server room Total
Quadratic objective function

Room 1 83.9 83.9
Room 2 81.6 81.6
Total both rooms 167.5

Linear objective function
Room 1 1.0 10.3 11.3
Room 2 0.8 1.0 1.8
Total both rooms 13.1
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5
Discussion

This chapter discusses and interprets the results, addresses the limitations, and
recommendations for future research.

5.1 Comparison between the quadratic and linear
MPC

The results show that the total energy usage of the MPC which uses the linear
objective function is only 7.8% of the energy usage by the MPC which uses the
quadratic objective function. The energy where the HVAC system is activated is
only 1.8 kWh. Analyzing the plots, it can be seen that the heating from the HVAC
system is only activated before a meeting occurs. The reason for this big difference
is due to the fact that the quadratic MPC has to use energy to stay near the ref-
erence value. The linear MPC can input the minimum required temperature when
the room is unoccupied.

Considering that the rooms are occupied 3% and 7% for Room1 and Room2 respec-
tively during a week, it is hard to justify having a controller with a fixed reference
value, when the objective is reducing energy consumption.

The results show that the controller has a good potential to lower the energy use
from a building. By implementing such a controller a win-win situation is generated
where carbon emission, and the operating cost of a building are both reduced. Even
if a building does not have a server room which generates so much excess thermal
power, the total energy usage is still far lower than for the set-point controller.

5.2 Limitations
Certain assumptions and simplifications were made in this thesis work. Instead than
focusing on the entire Ericsson office, 2 rooms were chosen to model and control.
The reason was to be able to get results during the duration of the thesis project.
The theory for the room modelling, and MPC is fundamentally the same when ap-
plied on a big scale. However, it was assumed that the two rooms had could utilize
all the thermal power generated by the servers. In reality, each server room could
provide thermal power to multiple rooms.

31



5. Discussion

Another assumption was that it was known when people would be in the rooms.
In reality, people do not always book a room beforehand, which could result in the
temperature in a room to be outside of the thermal comfort zone.

It was assumed that all occupants created the same amount of thermal power. That
is not true, and how much each person produces is dependent on height, weight, and
metabolic rate.

5.3 Future Work
When the MPC is implemented on a larger scale, e.g. an office building, having a
central MPC is not feasible because of the computational complexity. A solution
to that is to do a distributed controller that would control a few rooms or even a
single room. Then every room would have control over itself, and the computational
complexity is reduced immensely.

Using the thermal capacitance properties of the room could be utilized so that
a it can be "charged" with thermal power when there is excess of it, or when energy
prices are low.

There are more disturbances that effect the temperature in the room than are men-
tioned in this thesis work, e.g. solar radiation. These disturbances are observable,
like the thermal power from the occupants. These disturbances can be estimated
with an observer.

Storing the thermal energy in a water tank would be a good idea, energy can be
kept there and the heat fluctuations in the server room would be limited.
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6
Conclusion

The objective of this thesis was to make a MPC that uses thermal power generated by
servers in another part of the same building, while satisfying a number of constraints.
The MPC that is implemented is compared to a controller which has a reference
value at 21.5◦C. The energy usage of the two controllers is then compared. Another
difference between the two controllers is that the one which uses thermal power
from the servers also has different constraints. When nobody is scheduled to use the
room the temperature range is wider than when the room is occupied. The results
from both controllers were acquired from simulation, and the same data was used in
both cases. The data spans a week, and includes weather and occupation data. The
controller proposed in this thesis work only used 7.8% of the energy compared to the
controller using the reference value. Thereof, the majority of energy was provided
by the excess thermal energy from the server room. The thesis work shows that
commercial buildings have the potential of reducing their energy usage greatly by
using the proposed controller.
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6. Conclusion
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