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Back-off Regulator for Improved Throughput, Congestion Avoidance and Fairness
EMIL KRISTIANSSON
JOHAN PERSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
In this thesis, we present an architectural component, the task request regulator, for
flow control of incoming server-task requests that are made by a large-scale number
of clients. The challenge is to keep the server at high utilization levels while avoiding
overloads. Our solution is based on ad-hoc (re)scheduling of incoming client server-
task requests. Namely, the regulator can order the client to back-off and return at
a server-convenient time.
Our solution includes a regulator that monitors the server load and tries to keep
the number of client-requests at service at a preferable level. We have designed
and demonstrated, both analytically and experimentally, three algorithms for im-
plementing the regulator. The first algorithm is elegant, has modest implementa-
tion requirements but provides no fairness guarantees. The second algorithm has a
shorter convergence period than the first one, at the expense of a modest increase in
the storage and communication costs (but provides no fairness). Our third proposal
is an extension of the first two algorithms which provides fairness with respect to the
number of rescheduling events that a task may get, at a small added computational
cost for the regulator.

Keywords: distributed systems, throughput, congestion avoidance, flow control,
scheduling, fairness
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1
Introduction

Managing large scale distributed systems presents many challenges. We consider
the problem of load management and task scheduling. Specifically, we consider the
throughput of a central application server that performs tasks requested by a large
set of remote clients. Each client opens a connection with the server and spawns one
task for the server to process. The server processes tasks at a rate that is dependent
on the number of concurrent connections, i.e., the server load. One of the challenges
is to keep the server utilization high. For example, if the number of concurrent
connections is too low, the server may not be able to fully utilize its resources. If
the number of concurrent connections is too high, the work load could lead server
overload, i.e., resource exhaustion and growing overhead from context switching et
cetera. We propose a new architectural component, the regulator, that balances the
server load and the server utilization. To that end, it instructs clients to defer their
requests according to a targeted server load. We develop two algorithms, consider
fairness and validate our proposal via experiments.

We assume that the there is a known number of concurrent connections to the
application server which results in targeted server performance. We use this level
to impose an application level restriction on the number of concurrent connections.
Then, we use the TCP backlog queue as a buffer between the regulator and the
application server. The regulator then uses the level of the backlog to decide when a
client can access the server. If a client is denied access, the regulator calculates a time
for the client to try to access the server again. The concept is that the regulator
emulates a virtual queue. It holds any clients that cannot fit on the application
server (which includes the backlog).

We present two algorithms for managing the virtual queue. The Dynamic Insert
with Bounded Append algorithm (DIBA), is an elegant and computationally cheap
algorithm to deal with our problem. It loosely controls the virtual queue, and
performs at its best when the task completion rate of the server is constant. In
addition to DIBA, the Vector algorithm allows more fine-grained control of the
queue by splitting it into several parallel queues with distinct return rates. As a
result, it offers convergence after a change of the task completion rate. We also
introduce an algorithm to manage fairness, by prioritizing clients that have been
denied access to the server multiple times. We have conducted an initial analysis
and experimental tests on all algorithms.

The goal of our solution is to provide good throughput, with some level of fair-
ness, while avoiding congestion. On the contrary to our solution, one trivial way
for trying to ensure that the application server always has tasks to process is to let
clients immediately retry when rejected, i.e., brute-force. Compared to our solution,
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1. Introduction

this would impact the throughput and responsiveness as it would greatly increase
the congestion. Additionally, if no measure is taken to limit the number of connec-
tions to the application server, a brute-force approach could lead to excessive server
load.

To validate our algorithms, we have constructed an experimental testbed where
the regulator algorithms are implemented against a real world application server1

in the Microsoft Azure2 cloud environment. Client requests are mocked using the
stress-testing tool Gatling3. The results show good performance for the studied test
scenarios. We have also developed a method for estimating the task completion rate,
by measuring task completion times.

1.1 Related work

The C10k [7] problem, and more recently C10M [9], deals with the challenge of
handling a large number of concurrent server connections in the transport layer.
Optimising network sockets while avoiding blocking techniques is an important as-
pect in solving these kinds of issues. However, even after the transport layer has
been tuned to handle the large number of connections, the system needs to be able
to handle the workload on the application layer as well.

Limiting the number of concurrent connections to a server is well-known ap-
proach to avoid overload. However, such solutions do not generally consider what
happens with any denied connections. Clients might try to reconnect immediately,
at a later time, or not at all. To control how clients reconnect, some kind of backoff
protocol is often employed. One well-known example is exponential backoff. How-
ever, exponential backoff is noted to have sub-constant throughput with the number
of connections [3]. Bender et al. [4] present a modification of exponential backoff
that provides constant throughout and polylog access attempts. Unlike us, they
assume the presence of a global broadcast channel.

Traffic policing and traffic shaping can be employed to control network through-
put. However, the concept of flow control mostly deals with managing traffic per
client, and not managing the flow of clients themselves [11].

Cederman et al. [5] studies how to choose programming language, as well as
synchronization methods to achieve the best throughput. Atalar et al. [2] propose
a method to estimate throughput for lock-free algorithms and, as a consequence, a
way to design a back-off method to maximize throughput. These methods try to
increase the throughput by focusing on the software.

Another perspective that can be taken into consideration is the power consump-
tion of the server. Li et al. [8] proposes the application server Chameleon, which
they describe as a novel adaptive green throughput server. It uses multiple power
management policies combined with learning algorithms to provide best throughput
per power consumption.

Our regulator-server interaction can be viewed as a variation on the leaky bucket
1Qmatic Orchestra
2https://azure.microsoft.com
3https://gatling.io
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1. Introduction

as a meter [10], where non-conforming packets (requests) are not allowed to proceed
to the server, with the addition of a scheduling component for any dropped requests.
Thus, the purpose of the regulator is to act as a work-conserving scheduler [6], i.e.,
a scheduler that keeps the server busy as long as there are waiting tasks.

The analytical part of this thesis leverages queueing theory [1] to show scenarios
where our algorithms work well.

1.2 Our contribution
We introduce a new architectural component, the regulator, capable of managing
the flow of incoming server connections. As a part of the regulator, we present
two different algorithms for managing a virtual queue. Our DIBA algorithm is
suitable for a server with a fairly constant task completion rate, whereas the Vector
algorithm allows for more control over the virtual queue. As a consequence, the
Vector algorithm is able to tolerate more dynamic server behavior. To provide
fairness in our system, we also propose an algorithm to use with our two virtual
queue algorithms. We have done initial analysis and experimental testing for all
algorithms. Via the experimental tests, we see that the server load is kept at the
targeted level, and we have some level of fairness.

1.3 Limitations
In our experimental setup, we only consider tasks of fixed size, i.e., the task comple-
tion rate of the application server is roughly constant. As a consequence, our task
completion rate estimation algorithm uses a non-aging average of all job times to
compute the task completion rate.

Additionally, the task completion rate algorithm needs to be initialized with a
value that is greater than or equal to the actual task completion rate of the server, to
ensure that the system functions correctly while the estimation algorithm converges
on the correct rate.

Our system works under the assumption that a task does not need to be per-
formed immediately. An example where this assumption does not hold could be a
web server, where users are actively waiting for a response from the web server. An
example where this assumption does hold could be a system where clients perform
nightly tasks on a server, where it does not matter when during the night a task is
executed. This assumption allows us to measure fairness solely by the number of
access attempts.

We only consider the case where each client has exactly one task that it wants
to run on the application server, i.e., the number of tasks to be performed by the
server is finite. Although, this can result in many requests due to rescheduling. If this
assumption is removed, and no additional assumption about the arrival distribution
is made, the analysis of the fairness algorithm also has to consider this.

3
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2
System Architecture

The system consists of an application server, regulator, firewall and a large number
of clients. The clients request access to the application server via the regulator
(Figure 2.1).

The regulator is between the firewall and the application server. It has access
to the current number of queued and active connections. The regulator advises the
remote clients about their back-off period whenever the number of queued connec-
tions at the application server exceeds the limit. Thus, the regulator places clients
either in a queue on the application server or in a virtual queue to the regulator,
when the application server queue is full.

Application Server

Regulator

Clients

Firewall

Figure 2.1: System overview

2.1 The Application Server
To achieve good troughput on the application server we want to limit the number
of concurrent connections, c, that the server will accept to the application concur-
rently. The intention is to keep the level constant at some chosen level, cchosen, by
maintaining a queue to the application.

The queue management on the application server should be computationally
cheap, therefore we use the TCP backlog as a queue. We do this by holding off the
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2. System Architecture

accept() system call, leaving excess clients in backlog the queue. One example of
how this can be implemented is described further in Section 5.2.1.

The maximum size of the TCP backlog is controlled by the application server
kernel. Additionally, there may be restrictions on the maximum time a connection
can spend in the backlog, before the application server and/or the client assumes
there has been a problem with the connection. Additionally, the firewall may place
limits on how long connections can stay idle. These parameters may need to be
altered depending on desired queue size and task completion rate.

For the queue, we declare low and high water mark levels (LWM and HWM ,
respectively). LWM represents the minimum queue size needed to guarantee high
server utilization, while HWM is an upper boundary on how many (or how long)
clients we allow to be waiting, to avoid timeouts et cetera. Thus, our algorithm
should aim to keep the queue size at an aimed mark (AM) somewhere between
LWM and HWM .

2.2 The Regulator
We want the number of concurrent connections to the application server, c, to be
steady at some chosen level, cchosen. We can achieve this by ensuring that there are
always pending requests in the queue on the application server, by trying to keep
the level of pending requests at an aimed mark, AM (explained in section 2.1).

The regulator can be viewed as two separate functionalities, one that schedules
incoming connections and one that monitors the server, however, we will refer to
the regulator as one component.

2.2.1 Scheduling Functionality and the Virtual Queue
When the server recieves excess clients, e.g., when the backlog is full, they are told
to return at a later time. This means that there can be multiple clients waiting to
return to the server at the same time, this concept or group of clients we call the
virtual queue. The virtual queue is an abstracion for waiting client and is controlled
by setting the return time, i.e., waiting time, of waiting clients. The return rate of
the queue is meant to match the task completion rate of the server and returning
clients from the virtual queue should also be given priority over incoming requests.

Algorithms for the scheduling module appear in Section 3.1.

2.2.2 Monitoring Functionality and the Need for Sharing
Information between Application Server and Regula-
tor

The regulator requires access to information about the application server in order
to decide the feed rate to the application server. Such information includes the
number of concurrent connections to the application server, backlog length and task
completion rate. Therefore, the application server needs to continuously provide the
regulator with information.

6



2. System Architecture

2.3 Access Tokens
The proposed architecture uses tokens for granting the remote clients access to
the application server. This way we can let remote clients connect directly to the
application server once given an Access Token by the regulator (Table 2.1).

Table 2.1: An Access Service message

Field Value Comments
type Access Service Identifies what type this message is
accessToken Number A token for accessing the application server

2.4 Client States
A sequence is initialized by a client by sending a request to the regulator. The
structure of the Request message is described in Table 2.2. If the connection is not
dropped by the firewall, it will open a connection with the regulator and wait for
a reply. If the reply is an Access Service message, as described in Table 2.1, it will
close the connection with the regulator and open a new connection to the application
server and access its service. Otherwise, if the reply is a Schedule message, as
described in Table 2.3, the client will increment the numbTries-field and will retry
after waiting the time given in the Schedule message returnTime-field. However,
if the connection to the regulator cannot be established, then we can assume that
the message was dropped at the firewall due to too many concurrent connections.
The occurrences of this phenomena is something that our approach aims to greatly
reduce. An illustration of the client states is presented in Figure 2.2, where an
Access Service message is denoted by “Go”, and a Schedule message is denoted by
“Wait”.

Table 2.2: A Request message

Field Value Comments
type Request Identifies what type this message is
numbTries Number The number of times a client has previously contacted the regulator

Table 2.3: A Schedule message

Field Value Comments
type Schedule Identifies what type this message is
returnTime Number The time, for when the client should return

7



2. System Architecture

Application Server

Regulator

Clients

Firewall

Request

Wait

Dropped Request

Go

Connect to Server

Queue

Figure 2.2: Client states with a queue located on the application server
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3
Algorithms

In this chapter, we present the different algorithms for the system.
Any request to the regulator is initialized by a client (Algorithm 1). Depending

on the reply, the client will either proceed in connecting to the application server,
or wait the time specified in the reply and then contact the regulator again.

Algorithm 1: Code for remote Clients
Data: numbOfTries - The number of times the client has sent a request to

the regulator
1 init begin
2 numbOfTries = 0 send (Request, numbOfTries) to Regulator
3 upon arrival 〈Wait, retryT ime〉 from Regulator do begin
4 increment numbOfTries
5 send (Request, numbOfTries) to Regulator atTime retryT ime
6 upon arrival 〈Access Service〉 from Client do begin
7 access application server /* implementation specific */

If there are empty slots on the application server, it continuously processes tasks
from the backlog (Algorithm 2). Whenever a task is completed, the application
server provides the regulator with information about its state, i.e., the number of
concurrent connections and the time each task takes to complete. The regulator
then keeps track on the virtual queue and decides if incoming client requests should
gain access to the server or be deferred to the virtual queue.

Algorithm 3 contains the basic behavior of the regulator. It is responsible for
deciding if a client should be given access to the application server, or if it should be
rescheduled in the virtual queue. This decision is based on the current backlog level
of the application server, i.e., Algorithm 3 checks if the backlog level is below some
given threshold. If not, Algorithm 3 uses the getReturnT ime interface to call one
of the virtual queue algorithms from Section 3.1 to decide when the client should
return. Algorithm 3 also handles incoming information from the application server.

In Section 3.1 we present two different approaches for controlling the virtual
queue. Then, in Section 3.2, we present a way to estimate the task completion rate
of the application server. Finally, in Section 3.3 we present an improved version of
Algorithm 3, to introduce fairness to the system.

9



3. Algorithms

Algorithm 2: Code for Application Server
Data: queue - pending tasks
Data: c - The number of tasks currently running on the server
Data: cchosen - The chosen number of tasks concurrently running on the

server
1 do forever begin
2 dequeue a task from the queue if c < cchosen

3 upon arrival 〈Access Service, task〉 from Client do begin
4 add task to queue
5 upon completion of task do begin
6 send 〈taskCompletionT ime, queue.length()〉 to Regulator

Algorithm 3: Basic regulator behavior. Decides if a client can access the
server.
Data: desiredReturnRate - desired return rate from virtual queue
Data: backlogLevel - number of clients in the application server backlog
Data: virtualQueueLength - number of clients in the virtual queue
/* virtualQueueLength - Not used in the Vector algorithm */
Data: γ - constant controlling what clients gets priority (defaults to 0)
Data: β - constant controlling for how long clients will get priority (defaults

to (HWM+AM)
2 )

1 Interface getReturnT ime(desiredReturnRate) - calls one of Algorithms 4,
5, 6 or 7

2 upon arrival 〈Request, numbOfTries〉 from Client do begin
3 if numbOfTries > 0 then
4 decrement virtualQueueLength
5 if backlogLevel < AM OR ( numbOfTries > γ AND backlogLevel <

β ) then
6 send (Access Service, token) to Client
7 else
8 increment virtualQueueLength
9 returnT ime← getReturnT ime(desiredReturnRate)

10 send (Wait, returnT ime) to Client

/* Receives updates from the application server */
11 upon arrival 〈arrBacklogLevel, arrJobT ime〉 from Application Server do

begin
12 backlogLevel← arrBacklogLevel
13 desiredReturnRate← calculateDesiredReturnRate(arrJobT ime)

10



3. Algorithms

3.1 Virtual Queue
As was described in Section 2.2.1, the virtual queue i an abstraction of the waiting,
returning, clients and it is by controlling their return rate we can ensure a steady
flow of incoming jobs to the server.

Our two algorithms for controlling the virtual queue are DIBA (Algorithm 6) and
Vector (Algorithm 7). The Vector algorithm is designed to perform better when the
task completion rate fluctuates.

Algorithms 4, 5, 6 and 7 are all different implementations of the getReturnT ime()
interface from Algorithm 3. They all receive a desired return rate as input, and re-
turn at what time the next client should return, but differ in how they calculate
that time.

3.1.1 DIBA - Dynamic Insert, Bounded Append
In this section, we present DIBA, our first implementation of a virtual queue. The
idea is to control the placement of requests in the virtual queue by keeping track of
the end time of the queue, as well as the number of clients in the virtual queue. We
also present two intermediate algorithms (Algorithms 4 and 5), to explain how we
arrived at DIBA, algorithm 6.

Our initial approach was to append requests at the end of the queue, by saving
the end time of the queue (Algorithm 4) (end time of the queue is when we expect
the last client of the queue to return to the regulator). This approach struggles
when the desired return rate increases, either due to a real increase or an initially
too low estimate of the task completion rate. The effect is that the return rate is
too low until all clients that were queued before a rate increase have been processed.

Algorithm 4: Calculates client return time by appending the client to the end
of the virtual queue
Data: endOfQueueTime
Data: currentTime

1 function getReturnT ime(desiredReturnRate)
2 begin
3 queueInterval ← 1

desiredReturnRate

4 if endOfQueueT ime− currentT ime ≤ 0 then
5 endOfQueueT ime← currentT ime+ queueInterval

6 else
7 endOfQueueT ime← endOfQueueT ime+ queueInterval

8 clientWaitDuration← endOfQueueT ime− currentT ime
9 return clientWaitDuration

Algorithm 5 attempts to fix this behavior by scheduling requests earlier than
the absolute end of the queue, making it more suitable for scenarios where the task
completion rate (TCR) increases. However, it instead performs poorly when the

11
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TCR decreases, as requests will then be queued long after the previous end time of
the queue, creating a gap in the queue.

Algorithm 5: Calculates client return time by dynamically inserting the client
in time based on the virtual queue level
Data: virtualQueueLength

1 function getReturnT ime(desiredReturnRate)
2 begin
3 queueInterval ← 1

desiredReturnRate

4 clientWaitDuration← queueInterval ∗ virtualQueueLength
5 return clientWaitDuration

Algorithm 6 is an attempt to combine the advantages of Algorithm 4 and 5,
while avoiding the drawbacks. It uses the behavior of Algorithm 5 when the TCR
increases (dynamic insert), but switches to the behavior of Algorithm 4 when the
TCR decreases (bounded append). This way, a higher desired return rate will take
effect faster, and there will not be any empty gaps in the queue due to the bounded
append. The naming of the algorithm comes from the two techniques of placing
request in the virtual queue, either by dynamic insert or bounded append.

Algorithm 6: Hybrid approach for calculating return time, DIBA
Data: endOfQueueTime
Data: currentTime
Data: virtualQueueLength

1 function getReturnT ime(desiredReturnRate)
2 begin
3 queueInterval ← 1

desiredReturnRate

4 clientWaitDuration← queueInterval ∗ virtualQueueLength
5 if

currentT ime+clientWaitDuration−endOfQueueT ime < queueInterval
then

/* This is the insert behavior from Algorithm 5 */
6 returnT ime← currentT ime+ clientWaitDuration
7 if returnT ime > endOfQueueT ime then
8 endOfQueueT ime← returnT ime

9 else
/* This is the append behavior from Algorithm 4 */

10 returnT ime← endOfQueueT ime+ queueInterval
11 endOfQueueT ime← returnT ime

12 clientWaitDuration← returnT ime− currentT ime
13 return clientWaitDuration

12



3. Algorithms

3.1.2 Vector Algorithm
In this section, we introduce an alternative to DIBA (Section 3.1.1), that uses mul-
tiple queues in parallel. Each queue has a different return rate, and together they
make up the desired return rate. The queues scale exponentially with base 2, start-
ing at one, meaning that each discrete task completion rate can be constructed from
exactly one combination of queues. In DIBA, the return rate of the virtual queue
needed time to adjust after a change of the task completion rate. With a queue
composed of multiple subqueues, we can adjust the return rate in real time. How-
ever, in a case where the task completion rate decreases during an execution, the
message cost will increase, as we cannot control clients in already existing queues.

Algorithm 7 keeps a set of active queues, calculated by Algorithm 8, that together
make up exactly the desiredReturnRate. When a request is to be rescheduled, it
checks which of the active queues that has the shortest end time with Algorithm 9,
and places the request in that queue.

Algorithm 7: Calculate return time for client
Data: queueV ector - each element holds the end time for each queue
Data: currentT ime

1 function getReturnT ime(desiredReturnRate) begin
2 activeQueueIndices← getActiveQueues(desiredReturnRate)

/* Algorithm 8 */
3 shortestQueueIndex← getShortestQueueIndex(activeQueueIndices)

/* Algorithm 9 */
4 if queueV ector[shortestQueueIndex] ≤ currentT ime then
5 returnT ime← currentT ime+ 1/2shortestQueueIndex

6 else
7 returnT ime←

queueV ector[shortestQueueIndex] + 1/2shortestQueueIndex

8 queueV ector[shortestQueueIndex]← returnT ime
9 return returnT ime− currentT ime

Algorithm 8 calculates what queues to use for any given desired return rate. For
example, if the desired return rate is 7 tasks per second, Algorithm 8 returns queues
0, 1 and 2 (rates 20 = 1, 21 = 2 and 22 = 4). Since this algorithm will be called
frequently with the same input, it might be a good idea to cache the return values
for faster lookups, i.e., memoization.

Algorithm 9 returns the queue with the earliest end time. Figure 3.1 illustrates
a virtual queue state where the second slowest queue (queue 1, rate 21 = 2) would
be returned.

13



3. Algorithms

Algorithm 8: Calculates the set of indices for the active queues for a specific
return rate
Data: queueV ector - each element holds the end time for each queue, i.e., for

the respective return rates
1 function getActiveQueues(desiredReturnRate)
2 begin
3 remainder ← ddesiredReturnRatee
4 index← queueV ector.length− 1
5 while index ≥ 0 do
6 quotient← remainder

2index

7 if quotient ≥ 1 then
8 activeQueueIndices.add(index)
9 remainder ← remainder − 2index

10 decrement index
11 return activeQueueIndices

0 : 2
0
= 1

1 : 2
1
= 2

2 : 2
2
= 4

1 1

2 1

4 3

1 secondTCR = 7

Figure 3.1: An illustration of a virtual vector queue, with 12 requests in queue.
In this case, queue 1 (return rate = 2) would be returned by Algorithm 9. The

number of requests in each queue is added for clarity, in practice only the end time
of each queue is saved.
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Algorithm 9: Finds the index of the shortest queue
Data: queueV ector - each element holds the end time for each queue, i.e., for

the respective return rates
1 function getShortestQueueIndex(queues)
2 begin
3 minLength← −1
4 foreach queueIndex in queues do
5 if minLength = −1 then
6 minLength← queueV ector[queueIndex]
7 shortestQueueIndex← queueIndex

8 else if queueV ector[queueIndex] < minLength then
9 minLength← queueV ector[queueIndex]

10 shortestQueueIndex← queueIndex

11 return shortestQueueIndex

3.2 Calculating the Desired Return Rate
To decide the desired return rate of the virtual queue, the regulator has to know
what the task completion rate of the application server is, or at least have a way to
estimate it. Algorithm 10 shows our implementation of a calculation for a desired
return rate. An estimate of the task completion rate is calculated from individual
job times. This estimated task completion rate (eTCR) is then scaled up with the
ratio between the standard deviation of the average job time and the average job
time, to account for fluctuations in task completion times, as well as being able to
tolerate crashing clients. The result of the scaling is what we denote as the desired
return rate. It is important that the desired return rate is larger than the real task
completion rate, as the server may become underutilized otherwise. Excess requests
resulting from the larger return rate are rescheduled again.

We call the rate at which requests returns from the virtual queue the return rate.
The goal is to keep the return rate equal to the desired return rate. However, as
the system cannot control request return times once they have been placed in the
virtual queue, the return rate at any given time depends on what the desired return
rate was when the requests in that part of the queue were queued. We depict the
relationship between task completion rate and return rate, see Figure 3.2.
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Application Server

Virtual Queue

λreturnRate

TCR

?

Desired return rate

eTCR

Compensate for

standard deviation

Figure 3.2: The relationship between task completion rate and virtual queue
return rate

Algorithm 10: Regulator calculates desired return rate for virtual queue
Data: CC - number of concurrent jobs at the server
Data: numberOfServerUpdates - number of server updates
Data: sumOfJobT imes
Data: sumOfSquaredJobT imes

1 function calculateDesiredReturnRate(arrJobT ime) begin
2 sumOfJobT imes← sumOfJobT imes+ arrJobT ime
3 sumOfSquaredJobT imes← sumOfSquaredJobT imes+ arrJobT ime2

4 if numberOfServerUpdates > 1 then
/* Compute standard deviation */

5 µ← sumOfJobT imes
numberOfServerUpdates

6 σ2 ← sumOfSquaredJobT imes
numberOfServerUpdates

−µ2

7 σ ← sqrt(σ2)
8 overrate← 1 + σ

µ

9 clientF inishInterval← µ
CC

10 desiredReturnRate← 1
clientF inishInterval

∗ overrate
11 return desiredReturnRate
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3.3 Fairness
We define fairness in terms of request return levels, i.e., how many times a client
has to contact the regulator before being allowed access to the application server.
Our primary goal is to maximize throughput while avoiding congestion, therefore
we consider fairness with respect to the return level rather than with the waiting
time.

None of the algorithms that has yet been introduced considers fairness. We
introduce fairness by extending Algorithm 3, by proposing more dynamic access
guards. The general idea is that we divide the area of valid values in the backlog,
that is the area between LWM and HWM , into quarters, which we control with
four thresholds (Figure 3.3). The backlog quarter levels are named, from low to
high:

• Free Go - All clients may enter the application server.

• Prio 3 - Only returning clients may enter the application server.

• Prio 2 - Only returning clients, who have a return level higher than the average
return level in the virtual queue may enter the application server.

• Prio 1 - Only returning clients that are top prioritized may enter.

Prio3

FreeGo

Prio2

Prio1

> 0

> average

top prioritized

LWM LWM

HWM HWM

AM

β

> γ

Figure 3.3: Backlog illustration for Algorithm 3 (left) and Algorithm 11 (right).

The entry conditions get more relaxed with lower backlog levels. The three lowest
thresholds aim at mitigating mild return level discrepancies, by denying access to
requests with low return levels in favor of requests with higher return levels. Now we
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have some basic fairness that considers all clients that are below average. To further
improve fairness, we now consider the clients that are above average, where we
prevent that higher return levels are postponed by introducing the Prio1 threshold.

The highest return levels are the top prioritized group. It is important that
this group does not include too many return levels and remains relatively small so
that we can provide space for them at the application server. There are multiple
trade-offs that should be considered, where one is the size of a quarter, denoted as
s.

The top prioritized group is defined as the highest return levels which together
does not surpass s. For example, if s is 50 and the return levels distribution in the
virtual queue is {[1, 100], [2, 10], [3, 10]}, where [returnlevel, numbersofrequests],
then the return levels 2 and 3 would be top prioritized. For a distribution {[1, 100],
[2, 50], [3, 10]}, only return level 3 would be top prioritized. The function call
isTopPrioritized(numberOfTries) returns true if a request is top prioritized, and
false otherwise.

The necessary extensions that needs to be applied on Algorithm 3 lines 4 to
9, are described in Algorithm 11 and here in this paragraph. Counters like the
virtualQueueLength (line 3 and 7 in Algorithm 3) and updates for maps/arrays
that are needed to support the logic are omitted in Algorithm 11. Furthermore,
information needs to be kept about how many requests of each return level there are
in the queue, to calculate the average return level. We also assume the presence of
a helper function isOverAverage(numberOfTries), which return true if the return
level of the current request is above the average return level of the virtual queue,
and false otherwise.
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Algorithm 11: Regulator with fairness, dynamic gate logic. Extension of
Algorithm 1.
Data: as in Algorithm 1
Data: freeGo← LWM + (HWM−LWM)

4
Data: prio3← LWM + (HWM−LWM)

2
Data: prio2← LWM + 3·(HWM−LWM)

4
Data: prio1← HWM

1 upon arrival 〈Request, numbOfTries〉 from Client do begin
2 accessService← false
3 if backlogLevel < freeGo then
4 accessService← true

5 else if backlogLevel < prio3 AND numberOfTries > 0 then
6 accessService← true

7 else if backlogLevel < prio2 AND isOverAverage(numberOfTries)
then

8 accessService← true

9 else if backlogLevel < prio1 AND isTopPrioritized(numberOfTries)
then

10 accessService← true

11 if accessService then
12 send (Access Service, token) to Client
13 else
14 returnT ime← getReturnT ime(desiredReturnRate)
15 send (Wait, returnT ime) to Client
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4
Analysis

In this chapter, we start by analyzing the behavior of the algorithms controlling the
return rate of the virtual queue, i.e., DIBA and Vector. After stating the limitations
of the return rate algorithms, we continue by showing that both approaches lack
fairness. Lastly, we provide an initial analysis showing that our fairness approach
improves fairness.

4.1 General

We want to remind the reader of some settings that have been previously stated
in Chapters 2 and 3. Tasks on the application server are initiated by requests
from remote clients. The application server has a limit on how many tasks can be
processed simultaneously. At any given time, the utilization refers to the number of
tasks currently being processed. We define full utilization as the state in which the
server has reached the (predefined) limit of concurrent tasks.

We can assume that that the system call to accept requests from the backlog is
significantly faster than the task completion time, so that as soon as a task finishes,
the server accepts a new task from the (non-empty) backlog.

To simplify argumentation, we also assume that the server comes with an un-
bounded and unrestricted backlog where excess requests can be stored until they
can be processed by the server, i.e., no requests are discarded. This way we do not
have to consider the regulator nor the virtual queue for Lemma 1 and Corollary 1.

In order to argue that any algorithm can keep the server at full utilization, we
first state the conditions for this to be possible. We have illustrated the different
kinds of rates that exist in the system to help differentiate between these (Figure
4.1).
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λregulator

λnew λreturnRate

Application Server

Regulator

µ (Task Completion Rate)

λnew Incoming new requests from re-
mote clients that contacts the reg-
ulator for the first time.

λreturnRate Returning requests from the vir-
tual queue.

λregulator The rate of requests that are al-
lowed to access the application
server (decided by the regulator).
λregulator should be close to µ.

µ The task completion rate, or ser-
vice rate, based on the time it
takes for the application server to
complete a task.

Figure 4.1: Illustration of the different rates.

To keep full utilization, or more specificly a certain backlog queue level, we need:

λregulator ≈ µ

This means that λnew and λreturnRate have to be at least equal λreturnRate:

λnew + λreturnRate ≥ λregulator

We start by not considering the regulator, and not making any assumption about
the return rate, λreturnRate, from the virtual queue prior this state. Here, the number
of incoming requests has to be greater than the number of completed tasks, i.e., λnew
has to be on average greater than or equal to µ. An example is if 100 tasks have
been completed, at least 100 new requests have had to come in during the same
period. That reasoning gives us Lemma 1.

Lemma 1. Given a time period from t0 to tend, where the total number of new
arrivals, λnew, is at least as large as the total number of completed tasks for all
times t in the entire period counted from t0, there are enough tasks to maintain full
utilization.

Proof. In order to be able to give full service, the average input has to be greater
than the average output for all points in time. This means that the average arrival
rate, counted from starting point t0, always has to be greater than the average task
completion rate counted from the same time.
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As long as the system is in a state with full utilization, the task completion rate
is equal to the service rate. From here on, we will only talk about task completion
rate.

From the system properties, we know that the accept call from the backlog is
much smaller than the task completion time, making it insignificant. This allow us
to draw Corollary 1.

Corollary 1. As long as the backlog is non-empty, we can guarantee full utilization.

We now start to consider the regulator and want to prove one of the key concepts,
that if the return rate from the virtual queue is equal or greater than the task
completion rate, full utilization can be maintained. Furthermore, by considering
the regulator we can also limit the backlog to hold a maximum number of requests,
by placing any excess requests being placed in the virtual queue. For the sake of
presentation simplicity, we assume that the regulator knows the real task completion
rate, and requests are scheduled in the virtual queue according to that rate. If the
return rate from the virtual queue is higher than the task completion rate, any
excess clients are simply rescheduled. This givers us Corollary 2.

Corollary 2. Given a server state with full utilization and a return rate of the
virtual queue that is higher than or equal to the task completion rate, full utilization
is guaranteed.

4.2 DIBA - Dynamic Insert, Bounded Append
Suppose that the system is in a state with full server utilization. Moreover, suppose
that all clients in the virtual queue are queued with return rate equal to the task
completion rate. Then, we say that the system is in Normal state.

4.2.1 Constant Task Completion Rate
If the system has a known constant task completion rate, the regulator will queue
tasks in the virtual queue on at least that rate. That is, the only time the return rate
is lower than the task completion rate is when the virtual queue is empty (Corollary
3), and this only happens if there are no requests to put in the queue.

Corollary 3. Given a known constant task completion rate, the only time the return
rate from the virtual queue is smaller than the task completion rate is when the virtual
queue is empty.

Theorem 1 prove that, as long as there are enough client requests, full utilization
can be maintained.

Theorem 1. Given Normal state at time t0, a non-empty backlog, and a constant
task completion rate, the regulator will keep the server at full utilization given that
there are enough incoming requests to maintain full utilization (Lemma 1).
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Proof. Assume that, at time t, the server is not fully utilized. Corollary 2 states
that for this to occur, the backlog has to be empty, which means that the arrival
rate and the return rate from the virtual queue together would have been lower than
the task completion rate. For this to happen, the virtual queue has to be empty
(Corollary 3) and the arrival rate has to be smaller than the task completion rate,
which contradicts the conditions given by Lemma 1. Contradiction!

4.2.2 Task Completion Rate Changes
Suppose that the task completion rate change with a factor ε > 0 and a backlog
queue level is AM, we can maintain full utilization (Theorem 2). To understand the
theorem we first have to declare some terms in a general system setup:

Let µ be the system task completion rate [ tasks
time unit

], V be the number of tasks
in the virtual queue, and ε · µ be the task completion rate after the change.

In the case where the task completion rate decreases, the algorithm will append
new jobs at the end of the queue. For the case where the task completion rate
increases we conclude that:

1. The total queue length in time at the time of the task completion rate change
is V · µ−1 = V

µ
.

2. The task completion rate change will have effect on the queue at time V · (ε ·
µ)−1 = V

ε·µ .

3. Until that time, (ε · µ) · V
ε·µ = V tasks will be finished. We call to this the

output.

4. The input to the backlog from the virtual queue before the change has taken
effect is (µ) · V

ε·µ = V
ε
tasks.

When there is an increase in task completion rate, the returning requests will initially
come back too slow, and to prevent the backlog from emptying, we have AM clients
in the backlog plus input from the virtual queue, i.e. returning clients. This gives
us Corollary 4.

Corollary 4. From Corollary 1 we can conclude that the system will remain fully
utilized as long as: output < AM + input.

The properties for how DIBA works adds some restrictions on how big rate
increases the regulator can cope with. Theorem 2 shows that DIBA can maintain
full utilization given that limitation.

Theorem 2. Given Normal state, a backlog with AM requests, and an increase
in task completion rate, i.e., ε > 1. As long as ε < V

V−AM , or if AM > V , the
regulator will keep the server at full utilization as long as there are enough requests
to maintain full utilization (Lemma 1).

Proof. From Theorem 1, we conclude that full utilization will be maintained from
time V

ε·µ , as long as the backlog does not empty before that time. This is due to
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the fact that after time V
ε·µ , the return rate from the virtual queue will be greater

than or equal to the task completion rate (Corollary 2). Therefore, we need to show
under which conditions the backlog does not empty before time V

ε·µ . From Corollary
4 we derive that when AM > output, i.e. AM > V , the property will be fulfilled
no matter what the input is, that is, any ε > 1 fulfills the criteria. This also applies
in the case where AM = output, as the number of available requests is at least as
large as the number of completed tasks. In the case where AM < output, we have
a greater restriction on ε:

output < AM + input

0 < AM + input− output

0 < AM + V

ε
− V

(V − AM) < V

ε

ε · (V − AM) < V

ε <
V

V − AM

This means that the more requests there are in the virtual queue, the smaller any
change to the task completion rate can be before the system becomes underutilized.

Given a previously constant task completion rate, from which the task completion
rate decreases, the algorithm will append new jobs at the end of the virtual queue at
the new desired return rate, i.e., the new task completion rate. For the time period
before this change takes place, the return rate is higher than the new rate, i.e., any
excess requests will be rescheduled at the new desired return rate.

That is, for any decrease 0 < ε < 1 full utilization will be maintained (Theorem
3). The case where ε = 0 would mean that the application server has stopped
processing tasks, and this case is not interesting for us.

Theorem 3. Given Normal state with full utilization and a decrease in task com-
pletion rate, i.e., 0 < ε < 1, full utilization will be maintained for any rate ε · µ.

Proof. Before a task completion rate decrease has effect on the return rate, the tasks
will come in too fast and the server will maintain full utilization.

Convergence time

We define convergence time as the time until we are able to do another change with
factor ε, or how long time it takes to get back to Normal state.

After the task completion rate increases with a factor ε, the system will not
return to Normal state until all previously queued clients in the virtual queue have
returned, i.e., V

µ
(item 1 in the list above).

25



4. Analysis

4.3 Vector Algorithm
In order to achieve a specific return rate from the virtual queue, the vector algo-
rithm activates multiple queues to construct the correct return rate. For any task
completion rate, µ, the number of queues necessary to construct the corresponding
return rate we denote as y.

Corollary 5. To construct any distinct return rate, there has to be at least one
request queued in each active queue (a minimum of y), i.e., mini∈Q Vi > 0, where Q
is the set of active queues and Vi the length of queue i.

It is not possible to create a specific return rate if there are less than y requests
to queue (Corollary 5). This renders a corner case which we describe in Lemma 2.

Lemma 2. Given a state with full utilization, constant task completion rate, and
that it is possible to maintain full utilization (Lemma 1), if the virtual queue never
reaches a a state where mini∈Q Vi > 0, full utilization is maintained, given a backlog
level > y − 1.

Proof sketch. Assume that the backlog can fluctuate more than y − 1. All active
queues never gets filled, therefore the return rate will be to slow. Assume that the
desired return rate is µy, but as we do not reach level y, our rate will be slower.
The return rate µy would render µy returning clients during a period t, for the same
period all requests (< y) from the lower rate would also have had returned. Note
that we make no assumption on the distribution of the returning clients, only that
they return before the time period t ends. For the initial assumption to be false, the
returning clients would have to return after the period t, or this proof contradicts
Lemma 1. Contradiction!

4.3.1 Constant Task Completion Rate
For Vector, the virtual queue has to fill up all active queues before having the
intended rate on the returning clients. As this value is relatively small, we choose
to start our proof from that state (Theorem 4).

Theorem 4. Given a starting state where mini∈Q Vi > 0, a constant task completion
rate, and the conditions given by Lemma 1, full utilization will be maintained.

Proof sketch. At least one active client in each active queue means that our return
rate is the same as the task completion rate. Under these conditions, full utilization
is maintained (Corollary 2). Assume that there is a way to become underutilized.
The only way to get fewer clients in the virtual queue would be if the average
task completion rate is higher than the average request arrival rate, but that would
violate Lemma 1. Contradiction!

4.3.2 Task Completion Rate Changes
When the desired return rate is changed from µ, to ε ·µ, the algorithm might open or
close queues. Closed (inactive) queues will add to the return rate until they empty.
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Queues that are reused will be harmonized with new queues by only adding new
requests to the shortest queue.

The task completion rate change can be either an increase or a decrease. For
both cases, we need the virtual queue to stabilize in a state where there is at least 1
client in each active queue to provide at least the desired return rate ε · µ. Any old
queues (inactive) that have not emptied yet, will add to the return rate, but this
will not prevent us from maintaining full utilization (Corollary 2).

Given that it is possible to maintain full utilization (Lemma 1) from the point
where a rate change is started, there are two cases. Either requests come in too fast,
or they come in at the same rate as they finish (on average).

In the case where the requests come in at the same rate as they finish, no queue
will be built, but full utilization will still be maintained (Lemma 2).

Corollary 6. Given full utilization, and that the virtual queue return rate equals
the application server task completion rate, full utilization is maintained.

In the case where requests come in too fast, excess requests will be placed in the
active queues for the new rate. Given the worst case where the new active queues
are all empty, it would need to accumulate at least y requests to ensure the desired
return rate (Corollary 7).

Corollary 7. Given a virtual queue level ≥ y we can guarantee full utilization
(Corollary 2).

For the case where the virtual queue level is less than y the return rate from the
virtual queue level will be too low to achieve the desired return rate. Therefore, it
can result in fluctuations of the backlog level similar to those we saw in Lemma 2.
Hence, we need to be able to tolerate fluctuations in the order of y − 1. That is, as
long as the backlog can handle the fluctuations, we can guarantee full utilization.

Theorem 5. Given a state with full utilization, a change in task completion rate,
and that it is possible to maintain full utilization (Lemma 1), full utilization is
maintained given a backlog level > y − 1.

Proof sketch. Given by Lemma 2 and Corollaries 6 and 7.

Convergence time

For the Vector algorithm there is immediate convergence, as a change of the desired
return rate would result in new queues being opened immediately. That is, the new
desired return rate will be achieved instantaneously (excluded special case numbers
of clients in the virtual queue sizes < y).

4.4 Upper bound for Return Level
As neither DIBA nor the Vector algorithm prioritizes queued requests based on their
return level, the question arises whether a request can be rescheduled ad infinitum,
only limited by the total number of requests. We begin by showing a scenario where
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this happens with an overestimation of task completion rate, and then show that
the same scenario can happen due to fluctuating task completion rate.

In Figure 4.2, we show an example where the request denoted by a square is
never allowed access to the application server, as long as there are new requests
entering the system. In the example, the return rate from the virtual queue is twice
the task completion rate of the application server, i.e., for every two requests that
come back from the virtual queue, one is accepted to the application server. The
reasons for having a return rate larger than the task completion rate have previously
been discussed in Section 3.2.

1

2

3

1. A request is accepted by the
server. Simultaneously, a new re-
quest arrives and is placed at the
end of the virtual queue.

2. The request denoted by a square
is denied access to the server, and
placed at the end of the virtual
queue.

3. A request is accepted by the
server. Simultaneously, a new re-
quest arrives and is placed at the
end of the virtual queue.

Figure 4.2: Example where repeating step 1 and 2 forever would result in the
request denoted by a squared being rescheduled forever.

Lemma 3. A request can be rescheduled every time it tries to access the application
server, given a known constant task completion rate.

Proof. Consider a server state with full utilization, a backlog at level β, and two
requests in the virtual queue. Let the return rate from the virtual queue be twice
that of the server task completion rate. Consider the following scenario:

1. A new request arrives. It is put at the end of the virtual queue.

2. A task on the server completes and the first request in the virtual queue
accesses the server.

3. The second request in the virtual queue tries to access the server and is resched-
uled.

Item 1 and 2 are interchangeable. After this scenario, the system state is identical
to the initial state. Thus, by repeating the scenario above, we show that a request
can be rescheduled forever.
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We have shown that the return level of a client is only limited by the total number
of requests. The same can happen with a fluctuating task completion rate instead
of a overestimation of the task completion rate. Appendix A contains examples of
two such scenarios.

4.5 Fairness
To prove that Algorithm 11 indeed increases fairness, we show a more efficient bound
on the number of return levels. The primary mechanism for this bound is the Prio1
threshold, or more precisely, the reserved space between this threshold and the high
water mark, which we denote as s (illustrated in Figure 4.3). This reserved space
means that a client with the highest priority can no longer be denied access to the
server because of client with lower priority.

Prio3

FreeGo

Prio2

Prio1

LWM

HWM

s

Figure 4.3: Illustration of the size of Prio1.

4.5.1 Constant Task Completion Rate
We start by assuming a known constant task completion rate µ, and a return rate
which is the µ overestimated with a factor θ0 ≥ 1. If θ0 = 1, requests arrive at the
same rate as tasks are completed, which means that no requests will be rescheduled
and the system would be fair. For any distinct θ0 > 1, a certain proportion of
incoming requests will be rescheduled. This proportion is equal to θ0 − 1, and we
need to investigate what will happen to them.

With a constant return rate, the virtual queue acts as a FIFO-queue, with any
excess requests being rescheduled at the end of the queue. With this in mind, we
define queue iterations. An iteration is the time period from the rescheduling of
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a request until that particular request returns to the regulator the next time. An
important property of an iteration is that the group of highest priority requests, T ,
at the start of an iteration is a subset of the group of requests, Told, that had the
highest priority in the previous iteration. Alternatively, if all members of Told were
given access during the previous iteration, T is a subset of the highest return level
group that was not given access in its entirety during the previous iteration.

Theorem 6. Given a constant task completion rate and a return rate which is an
overestimation of the task completion rate by a factor θ0, the highest possible return
level is bounded from above by 1+log1+x(n), where n is the total number of requests,
and 0 < x ≤ 1

θ0−1 .

Proof sketch. We know that for every request that is given access to the server,
θ0 − 1 requests are rescheduled. Because of the iterations, we know that in order
to advance a request from Told to T , 1

θ0−1 requests of Told needs to be given access
to the server. Then, the number of new requests needed to move one request from
Told to T is exponential, with base 1 + x, where x is expected to be 1

θ0−1 and is
guaranteed to be greater than 0, and the exponent being the return level of Told.
Thus, the highest possible return level is bounded by 1 + log1+x(n).

Remark. In our bound, x is a measure of the number of requests of some return
level needed to postpone one other request of that return level. While we have not
been able to prove a better (hard) bound than x > 0, this property of x stems from the
fact that below the highest return level, requests can be postponed by clients of both
higher and lower return level. However, as the difference in return level is controlled
by both the Prio2 and the Prio3 thresholds, x should be significantly larger than 0.

In addition to the above properties, at least s clients of T will be given access
during each iteration, where s is the size of the reserved space in the backlog, as
long as the the size of the virtual queue is large enough to let the backlog level sink
to the Prio1 threshold. After the backlog level reaches HWM , there is a period
until the level sinks back to Prio1, under which no requests can be given access, as
Tnew is the new top prioritized group. This behavior is dependent on the size of s,
and affects our value x, x > 0.

The conditions we stated in this section refer to the worst case, in a more realistic
scenario top prioritized requests would also enter the backlog at other levels than
Prio 1, and the server would finish some tasks while new requests are coming in,
both would decrease the number of iterations further.

4.5.2 Task Completion Rate Changes
In the presence of changes in the task completion rate, and thus in the return rate,
the scenario may differ somewhat from the constant case. In the case of an isolated
task completion rate change, the analysis for the constant case still applies, as the
virtual queue can once again be viewed as a FIFO queue after the change has taken
place.

If the task completion rate continues to fluctuate, the return rate may be too
fast. In this section, we will only consider the Vector algorithm, as it can open new
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queues from any time. The bound for DIBA will be at least as good, as this behavior
is less prominent in DIBA.

In the presence of continuous fluctuations, the return rate may be faster than
the task completion rate by a factor θ = θ0 ∗ RRtotal

RRactive
, where RRtotal is the total

return rate from the virtual queue, and RRactive is the return rate from the active
subqueues of the virtual queue (any passive queues will add to the return rate until
they run empty). The overestimation factor θ will then be somewhere between θlow
and θhigh, where θlow is the lowest overestimation factor during the entire execution,
and θhigh is the highest. Theorem 7 generalizes Theorem 6.

Theorem 7. Given a task completion rate and a return rate that is faster than the
task completion rate by a factor θ, θlow ≤ θ ≤ θhigh, the highest possible return rate
is bounded from above by 1 + log1+x(n), where n is the total number of requests, and
0 < x ≤ 1

θ−1 .

Proof sketch. This follows from Theorem 6, but the constant overestimation is re-
placed with the ratio between the return rate of the virtual queue and the task
completion rate of the server.

Figure 4.4 shows an example of how requests of the highest return level can be
postponed. Figure 4.5 shows an example of the cost tree for postponing a single
request from the highest return level.

k k

k

k + 1

Creating a fast k + 1

1 k

k

Creating a slow k + 1

k + 1

• There has to be 2 requests of
at least the same return level to
postpone a request in the slower
queue (top example). This hap-
pens when that request was ini-
tially queued at some desired re-
turn rate, and was then doubled.

• There has to be 1 requests of
at least the same return level to
postpone a request in the faster
queue (bottom example). This
happens when that request was
initially queued at some desired
return rate, and was then halved.

Figure 4.4: Illustration of a specific request with a return level of k can be
postponed.
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• Each slow request renders
two request, one slow and
one fast, that are neces-
sary to postpone it.

• Each fast request renders
three request, one slow
and two fast, that are nec-
essary to postpone it.

Figure 4.5: Illustration of the toal cost of postponing a specific request with a
return level of k.
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5
Evaluation

In this chapter, we explain our experimental evaluation process. The evaluation
consists of an implementation of the regulator algorithms against a real world dis-
tributed system. Section 5.1 describes the scenarios we test our algorithms against.
Furthermore, Section 5.2 describes the practical details of our setup. Finally, Sec-
tion 5.3 shows the outcome of our experiments, along with some reflections about
the results.

5.1 Evaluation scenarios

Some general settings will be the same for all tests (Table 5.1), for conveniency and
because it will be easier to compare results from the different tests.

Table 5.1: General test settings

LWM 100
AM 200
HWM 300
cc 100
γ 0
β 250

Constant flow

Test 1 consists of a constant flow of incoming clients, 20 requests per second for 430
seconds, totaling 8600 requests, and is supposed to work as a gentle test with low
level of requests coming simultaneously.

Initial burst

Test 2 consists of an initial burst of 600 requests, followed by 100 requests each sec-
ond for 80 seconds. The reasoning behind the test is that the initial burst quickly
loads the system and pushes it to full utilization, while the continuously arriving
requests allow us to test the properties of our queue algorithms and our task com-
pletion estimation algorithm when there are large volumes of requests coming in
continuously.
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Constant flow, that is followed by a large burst

Test 3 consists of a constant flow of request for a short period, 20 requests per second
for 100 seconds, followed by a large burst of 6600 requests. The idea is to let the
regulator stabilize under the constant flow of requests (estimated task completion
rate et cetera), then see how it reacts to a large burst of requests.

5.2 Experiment setup
We have implemented and deployed the algorithms in Chapter 3 on virtual machines
in the Microsoft Azure1 cloud environment to evaluate them experimentally. Our
setup consists of three separate machines, one for the application server, one for the
regulator and one for the clients.

5.2.1 Application Server
The application server is deployed on a virtual machine, using Microsoft Azure’s
DS3 standard2, with CentOS 6.53 as its operating system. To be able to use the
backlog in the way we intended, we had to increase SOMAXCONN, and for the
server to handle multiple connections we also had to increase the maximum number
of open file descriptors.

As application server software we use Orchestra4, which is developed by Qmatic.
The application server software is mainly written in Java and uses JBoss5 or Wild-
Fly6 as its underlying web server. We use Wildfly, as the JBoss version requires
licensing. The WebSocket communication is handled by Netty7.

Aside from the original functionality of the application server software we added
communication with the regulator and limited the number of concurrent connections
in Netty. The application server sends the number of active tasks and the task
completion time whenever a task finishes, as long as the server was fully utilized.
It also sends information periodically every 5 second about the system state, to
provide additional data points (mostly interesting in the initial or last phase of a
test). The limit on the number of concurrent connections is implemented by only
calling accept() on a chosen number of connections, cchosen, in the source files for
Netty. This prevents client requests from being passed into the application layer,
i.e., they will remain in the backlog, until there is room for them in the application.

5.2.2 Clients
The remote clients are deployed on a Microsoft Azure’s DS2 standard, again running
CentOS 6.5. To run a large number on concurrent connections, i.e., allowing us to

1https://azure.microsoft.com
2https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs
3https://www.centos.org
4http://www.qmatic.com/products/software/orchestra
5http://www.jboss.org
6http://wildfly.org
7http://netty.io
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use a single machine to simulate a large number of clients, we had to increase the
maximum number of open file descriptors.

Clients are simulated using Gatling8, a scalable and asynchronous stress-testing
tool. To be able to do checks on binary WebSocket frames, we used a patched
version of Gatling9.

We have created a custom Gatling scenario, written in Scala, implementing the
client behavior described in Appendix ??. Gatling’s DSL10 is then used to configure
the simulation setup (number of clients, arrival distribution et cetera).

5.2.3 Regulator
The regulator is deployed on a Microsoft Azure DS2 standard, running CentOS 6.5.
To run a large number on concurrent connections, i.e., allowing us to use a single
machine to simulate a large number of clients, we had to increase the maximum
number of open file descriptors.

The regulator is a RESTful service based on the RESTexpress11 framework. The
regulator is implemented in Java, with a configuration file enabling easy configura-
tion of the regulator (queue algorithm, fairness, backlog thresholds et cetera).

5.3 Test results
Here we present the experimental results for the different test setups specified in
Section 5.1. Task completion time average and standard deviation are excluded in
this section, as well as the desired return rates that are built from these those values,
but are provided in Appendix B. The task completion rate of the system for each
test is also provided in the appendix.

By comparing the desired return rate for each test with the task completion rate
it is possible to say some things about what results we can expect, for example the
average return level. Some tests had a relatively big standard deviation compared
to the average task completion rate, which resulted in a higher desired return rate
compared to the task completion rate. In some of the tests, the desired return rate
continues to increase due to these properties, which should not be necessary as the
real task completion rate stays relatively constant throughout the run.

5.3.1 Utilization
The utilization graphs shows the number of concurrent working tasks, c, as well as
the backlog level. When fully utilized, the number of concurrent tasks is expected
to be at our chosen level c (cchosen). Additionally, the backlog level has to be greater
than zero. If the regulator queues requests in the virtual queue at a return rate equal
to the task completion rate, the expected backlog level is AM , but as was discussed
in Section 3.2, an overestimate is desired and likely when we take standard deviation

8https://gatling.io
9https://github.com/jbank/gatling

10Domain Specific Language
11https://github.com/RestExpress/RestExpress
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into consideration. The expected backlog level for a higher return rate is β. For the
fairness algorithms, the backlog is expected to fluctuate between Prio 2 and Prio
3 (~200 connections in the backlog), with peaks to HWM whenever a group of the
top prioritized requests attempts to access the server.

Figures 5.1, 5.2 and 5.3 shows that our algorithms maintains full utilization for
all our test scenarios, which validates our theorems. This is because there are always
requests in the backlog (red line), and therefore the number of active tasks (blue
line) stays fixed. Note how each backlog level peak (red line) in the fairness plots
corresponds to one of the return levels that can be observed in the corresponding
message cost tables in Section 5.3.2.

(a) DIBA (b) Vector

(c) Fairness-DIBA (d) Fairness-Vector

Figure 5.1: Constant flow: Red line represent the backlog level, the blue line is
the level of active clients.
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(a) DIBA (b) Vector

(c) Fariness-DIBA (d) Fairness-Vector

Figure 5.2: Initial burst: Red line represent the backlog level, the blue line is the
level of active clients.
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(a) DIBA (b) Vector

(c) Fairness-DIBA (d) Fairness-Vector

Figure 5.3: Constant flow, that is followed a large burst: Red line represent the
backlog level, the blue line is the level of active clients.
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5.3.2 Message Cost
Tables 5.2, 5.3 and 5.4 shows the return level distributions for the different tests,
which we here refer to as the message cost. Note that the average message cost will
vary slightly between different executions of the same test. We can see that the
Vector algorithm has a consistently higher message cost than the DIBA algorithm.
We can also see that without the fairness extension, each algorithm has an exponen-
tial tail in the return level distribution. This tail is effectively cut with the fairness
extension.

The average message cost correlates directly with the ratio between the return
rate and the task completion rate. An average message cost of 1 would mean that
the return rate from the virtual queue is just enough to match the task completion
rate, which is too low (due to crashing clients and fluctuations in task completion
rate etc, as discussed in Section 3.2). All our tests maintained an average message
cost greater than 1, while not exceeding 2. At the same time, a low average message
cost means low traffic intensity, which indicates a low risk of congestion.

Table 5.2: Message cost for Constant flow

DIBA Vector Fairness-DIBA Fairness-Vector
AVG 1.59 1.60 1.57 1.64
0 386 400 300 290
1 4886 4876 4241 3998
2 2011 1959 3233 3341
3 832 842 538 602
4 294 307 281 247
5 109 131 7 122
6 51 42 0 0
7 16 26 0 0
8 10 12 0 0
9+ 5 5 0 0

Table 5.3: Message cost for Initial burst

DIBA Vector Fairness-DIBA Fairness-Vector
AVG 1.62 1.92 1.49 1.7
0 300 300 250 250
1 5045 4202 5637 3853
2 1857 2033 1591 3409
3 837 1010 689 616
4 325 522 246 272
5 137 274 187 200
6 57 135 0 0
7 27 61 0 0
8 8 32 0 0
9+ 7 31 0 0
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Table 5.4: Message cost for Constant flow, that is followed by a large burst

DIBA Vector Fairness-DIBA Fairness-Vector
AVG 1.57 1.76 1.58 1.68
0 377 398 299 294
1 5058 4723 5116 4753
2 1871 1766 1822 2050
3 775 806 813 789
4 309 461 343 385
5 125 238 207 251
6 55 118 0 78
7 17 56 0 0
8 9 15 0 0
9+ 4 19 0 0
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6
Conclusion

We have developed a system to manage the flow of incoming client connections
in a distributed system, in order to maintain an even workload on an application
server. The system is based on an external component, the regulator, which monitors
server load and notifies clients of when they should connect. For the regulator,
we have developed two different scheduling algorithms. We have also developed
an extension to improve the fairness of our two scheduling algorithms. We have
made an experimental evaluation of our preliminary analysis by implementing the
algorithms against a real world distributed system. The experimental results show
good performance under static conditions. Due to our preliminary analysis, we
believe our algorithms will work well under some dynamic scenarios as well.

Our system deals with scheduling in a system where the scheduler has no direct
control over tasks. Instead of starting jobs when the server has free resources, our
scheduler tries to estimate when there will be free resources on the server, and tells
clients that they should try to access the server at that time. This means that the
there is potentially a long period between the allocation of a time slot to a client to
the arrival of a request from that client to the server.
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A
Examples of Upper Bounds for
Fluctuating Task Completion

Rates

When there is no overestimate but the task completion fluctuate, the upper bound
of the is proportional to the number of clients in the worst case. We provide two
examples for this, one for DIBA (Figure A.1), another for Vector (Figure A.2).

1

2

3

(a) The task completion rate is 1
2 for

step 1 and 2, and 1 for step 3.

4

5

6

(b) The task completion rate is 1
2 for

step 4 and 5, and 1 for step 6. One
more step and we are back at step 1
were we started (given that the next
time unit has task completion rate 1

2)

Figure A.1: Example for unbounded return for DIBA when there is varying task
completion rate. The upper queue within each step corresponds to a queue with
return rate of 1, and if there is a lower queue within a step, the return rate of the

other queue is 1
2 .
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1

2

3

(a) The task completion rate is 1
2 for

step 1 and 2, and 1 for step 3.

5

6

4

(b) The task completion rate is 1 for
step 4 and 5, and 1

2 for step 6 (same
as step 1).

Figure A.2: Example for unbounded return for Vector when there is varying task
completion rate. The upper queue within each step corresponds to a queue with
return rate of 1, and if there is a lower queue within a step, the return rate of the

other queue is 1
2 .
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B
Additional Results and Data

Values

B.1 Task Completion Rate
The task completion rates for each test run is presented in Table B.1. Note that
differences in task completion rates for the different tests does not depend on which
algorithms that was used.

Table B.1: Task completion rate for the test for each test setup

Test 1 Test 2 Test 3
DIBA 5.8 7.1 6.0
Vector 5.9 7.3 6.4
Fairness-DIBA 5.9 6.5 6.3
Fairness-Vector 5.9 6.1 6.2

The task completion rate for the application server was more or less constant
within each test run. We show an example for that in Figure B.1, with the distri-
bution of finished jobs for the test run on test setup 1 for DIBA. We do not provide
more graphs on this, due to space limitations. In the figure, a trend line is drawn
top of the data values, where the task completion rate is 7.1 tasks per second for
the entire run.
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Figure B.1: Example that the task completion rate is constant. Number of
finished tasks, where the x-coefficient corresponds to the task completion rate

B.2 Average Task Completion Time

The average task completion time from the application server for each test.

B.2.1 Test 1

DIBA

Figure B.2: Total average task completion time
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Vector

Figure B.3: Total average task completion time

Fairness-DIBA

Figure B.4: Total average task completion time

Fairness-Vector
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Figure B.5: Total average task completion time

B.2.2 Test 2
DIBA

Figure B.6: Total average task completion time

Vector
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Figure B.7: Total average task completion time

Fairness-DIBA

Figure B.8: Total average task completion time

Fairness-Vector
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Figure B.9: Total average task completion time

B.2.3 Test 3
DIBA

Figure B.10: Total average task completion time

Vector
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Figure B.11: Total average task completion time

Fairness-DIBA

Figure B.12: Total average task completion time

Fairness-Vector
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Figure B.13: Total average task completion time

B.3 Standard Deviation for the Task Completion
Time

The standard deviation for task completion times from the application server for
each test.

B.3.1 Test 1

DIBA

Figure B.14: Standard deviation for task completion time throughout the test.
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Vector

Figure B.15: Standard deviation for task completion time throughout the test.

Fairness-DIBA

Figure B.16: Standard deviation for task completion time throughout the test.

Fairness-Vector
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Figure B.17: Standard deviation for task completion time throughout the test.

B.3.2 Test 2
DIBA

Figure B.18: Standard deviation for task completion time throughout the test.

Vector
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Figure B.19: Standard deviation for task completion time throughout the test.

Fairness-DIBA

Figure B.20: Standard deviation for task completion time throughout the test.

Fairness-Vector
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Figure B.21: Standard deviation for task completion time throughout the test.

B.3.3 Test 3
DIBA

Figure B.22: Standard deviation for task completion time throughout the test.

Vector
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Figure B.23: Standard deviation for task completion time throughout the test.

Fairness-DIBA

Figure B.24: Standard deviation for task completion time throughout the test.

Fairness-Vector
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Figure B.25: Standard deviation for task completion time throughout the test.

B.4 Desired Return Rate
The graphs shows what we refer to as the desired return rate (see algorithms in
Section 3). If the desired return rate is strictly less than the real task completion
rate, we would risk under-utilization (explained in Section 3.2).

B.4.1 Test 1
DIBA

Figure B.26: The desired return rate that was sent to the return time
computations.
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Vector

Figure B.27: The desired return rate that was sent to the return time
computations.

Fairness-DIBA
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Figure B.28: The desired return rate that was sent to the return time
computations.

Fairness-Vector

Figure B.29: The desired return rate that was sent to the return time
computations.

B.4.2 Test 2
DIBA
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Figure B.30: The desired return rate that was sent to the return time
computations.

Vector

Figure B.31: The desired return rate that was sent to the return time
computations.

Fairness-DIBA
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Figure B.32: The desired return rate that was sent to the return time
computations.

Fairness-Vector

Figure B.33: The desired return rate that was sent to the return time
computations.

B.4.3 Test 3
DIBA
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Figure B.34: The desired return rate that was sent to the return time
computations.

Vector

Figure B.35: The desired return rate that was sent to the return time
computations.

Fairness-DIBA
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Figure B.36: The desired return rate that was sent to the return time
computations.

Fairness-Vector

Figure B.37: The desired return rate that was sent to the return time
computations.
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