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Abstract

The purpose of the project is to deliver a proof of concept application that is
expected to solve an issue related to finding suitable researchers for research
groups. The system that organizations use, as of writing this report, is to
post a request for application. This means that an organization published a
request for research to be performed within a specific field and the budget
attributed to the research project. Researchers then find the request and sends
an application. We developed EIRA with the intention of changing this process
and allow the organizations to find researchers that could be a good fit for these
projects.

This report covers our development of the cognitive assistant EIRA (Entity In-
dexed Ranking Application). EIRA can find researchers related to the medical
field. The researchers are extracted from different data sources and currently
EIRA uses the Scopus database and Microsoft Academic. The application con-
sists of four custom micro services built in Node.js using Promises. EIRA pro-
vides a user interface written in AngularJS to handle all interaction with the
services.



Sammandrag

Projektets m̊al är att producera ett program som agerar konceptbevis till att
lösa ett problem med att hitta forskare som kan delta i forskningsgrupper.
I dagsläget s̊a använder organisationer sig av en form av jobbannons för att
komma i kontakt med forskare. Jobbannonsen inneh̊aller information om vad
forskningen ska behandla och besvara, vilket ämnesomr̊ade forskningen är inom
och projektets budget. Forskare behöver sedan själva ansöka efter en plats p̊a
projektet. Vi utvecklade EIRA med avsikt att ändra denna processen genom
att l̊ata organisationer hitta forskare som skulle passa bra i projekten.

Rapporten beskriver utvecklingen av den kognitiva assistenten EIRA. EIRAs
uppgift är att hitta forskare baserat p̊a en sökning som sker antingen genom
en befintlig jobbannons eller sökord. Forskare hämtas sedan fr̊an en mängd
datakällor. Datakällorna som EIRA använder är databasen Scopus och Mi-
crosoft Academic. EIRA är uppbyggd av ett flertal micromoduler som är utveck-
lade i Node.js med Promises. Applikationen erbjuder ett användargränssnitt
som är utvecklat i AngularJS för att hantera användarens interaktionen med de
tidigare nämnda micromodulerna.



Vocabulary

API
Application Program Interface, the interface a program provides to other
programs. Used to enable cross-program communication.

Bluemix
A cloud based development platform for developers to create, host and maintain
applications with the possibility to utilize a selection of IBM, Cloud Foundry
and third party services.

EIRA
Entity Indexed Ranking Application, the name of the application devel-
oped during the project.

Entity Extraction
The process of finding entities in a text for instance authors within an arti-
cle.

JSON
JavaScript Object Notation, a commonly used data structure for network
communication.

NCI
National Cancer Institute is the USA’s government’s main institution for
cancer research and training.

NIH
National Institute of Health, a research center.

OHSL
Open Health Systems Laboratory, an organization aiming to unite biomed-
ical informatics.

RFA
Request For Applications, a publication for research projects funded by
grants that researchers can apply for.

REST
An architecture approach to a hypermedia system where a set of components,
connectors and data elements have specific roles. The focus in a system based
on REST lies within the interactions of the data elements rather than the im-
plementation.

RESTful
Conforming to the constraints of REST (Representational State Transfer). This
is often used to say that the architecture allows communication over HTTP via
verbs (POST, GET, PUT, DELETE, etc.).



SJR
SCImago Journal Rank, ranking of scientific journals based on a measure-
ment of their scientific influence.

SIR
SCImago Institutions Ranking, ranking of research institutions.

Service
Code modules, both Bluemix’s and our internally developed modules are con-
sidered to be services. E.g. Concept Insights and the Ranker.

Watson
1) IBMs super computer that uses cognitive computing to retrieve results.
2) A selection of cognitive computing services (see services) offered on Bluemix
(see Bluemix)
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1 Introduction

Traditionally organizations that offer grants to researchers post a Request for
Application (RFA). An RFA specifies what type of programs are eligible for
funding and are commonly posted by government agencies or non-profit orga-
nizations [1]. This system works in a way where researchers and other orga-
nizations are allowed to present bids on how the funding could be used. Fur-
thermore, an RFA posted on the National Institute of Health typically presents
the researchers or organizations with a purpose and a background to the prob-
lem, explaining specifics on why research needs to be conducted and why it is
important. This research is further specified in the form of listing Provocative
Questions (PQs) that works as a formulation of questions for the RFA [2].

This is inherently an ineffective process for handling funding. Researchers or
organizations that might be interested in an RFA may simply not be aware
of the RFA and thus not submit an application. Furthermore, this is a time
consuming process both for the applicant and the personnel reviewing the ap-
plications.

The National Cancer Institute (NCI) in collaboration with the Open Health
Institute Lab (OHSL), have expressed interest in a cognitive assistant to more
effectively and efficiently match researchers and RFAs. Their long-term objec-
tive is the development of such an assistant to find a selection of researchers that
are best suited for any given RFA from the National Institute of Health (NIH).
As a first step towards creating such an assistant, NCI and OHSL has, in collab-
oration with IBM (International Business Machines), requested an application
that will be the first version, a proof of concept, of such an assistant.

1.1 Purpose of the project

The purpose of this project is to create a proof of concept of an application
capable of identifying and ranking researchers by their relevance to a given
research topic within the medical field. The goal is to show the viability of such
an application.

1.2 Scope of the project

The application, EIRA, is limited to finding and ranking researchers based on
the information available in scientific databases and search tools, which means
that a large number of factors which would be relevant to a research project are
ignored. Researchers are only ranked by information related to their articles
and their affiliation whereas attributes such as location and availability are
ignored because of the complexity of finding and evaluating such information.
Due to the vast number of scientific articles published we limit the search to

1



researchers that have published an article in the last six years. This has the side
effect of reducing the possibility of suggesting a deceased researcher. We will
primarily focus on developing a system for finding researchers and extracting
properties that could be relevant. As we have no understanding of what makes
a researcher suitable, the focus of the ranking is to enable a user to set it as
they deem fit.

1.3 Early changes to the project

Initially the project’s plan was to cooperate with IBM and get access to their su-
per computer Watson to utilize its cognitive computing technology. Ultimately
we did not get access to the super computer. We tried to apply the Bluemix
cognitive computing services to EIRA, but most of these services require stored
data. However, we are limited to using live data because of the Scopus database
which does not permit storing their data. The final version of EIRA has some
cognitive computing functionality in the Analyzer module, which is explained
in section 5.1.
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2 Problem Description

The objective of the application is to locate skilled and relevant researchers.
The intent is to accomplish this by accessing databases for academic articles to
locate relevant articles and then identifying the researchers behind these articles.
After finding the researchers, more queries should be performed to find out more
about their previous work in order to be able to rank them by their experience
and suitability. As such, the project can be split into three core sub-problems:
Request for Application Analysis, Gathering and Combining Data and
Ranking the Result.

2.1 Request for application analysis

A module could be developed to analyze an actual RFA and extract keywords
from the body of text and then use these as search terms. The main focus of the
project is the identification of researchers, and since it is easier to let the user
provide keywords than extract them from a body of text, the analysis of an RFA
will not be included in the main focus. If such a module were created and worked
flawlessly however, one more step of human interaction could be removed: the
need for a human to determine just the right search terms. Cognitive computing
would have to be used for locating the search terms in natural language.

2.2 Gathering and combining data

The application should retrieve data from one or multiple sources by feeding
them one or more search terms. It should then identify entities within the data
and combine them into a set. The data could be found using indexed research
databases, data mining and web crawling.

2.3 Ranking the result

Once a number of entities have been found, ranking them would be helpful to
find the best possible candidates for the research to be conducted. Depending on
what data is available for any given entity, multiple approaches may be needed
depending on the availability of information from the different sources. The
weight of different parameters must be decided and a default value needs to be
assigned where none is available.
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3 Background

This chapter covers earlier work related to the project and aims to explain rank-
ing criteria which may be unfamiliar to the reader. The purpose of the chapter
is thus to further the understanding when reading the consecutive sections of
this report.

3.1 Defining cognitive computing

According to the Oxford dictionary, the definition of cognition is ”the mental
action or process of acquiring knowledge and understanding through thought,
experience, and the senses” [3]. Cognitive computing has however been defined
differently by researchers over time in different contexts and there is no com-
monly accepted definition for it [4]. In 2014 a group of experts started a project
to define the concept and to explain how cognitive computing is different from
traditional computing [5]. According to their definition, traditional computing
works with well defined data models from which they can compute exact an-
swers. Cognitive computing addresses different kinds of problems that are char-
acterized by ambiguity and uncertainty. For these problems there may not exist
a correct answer, so instead it tries to provide the best answer. Cognitive com-
puting is probabilistic instead of deterministic. It makes context computable, it
identifies and extracts context, such as time, location, tasks, history or profiles
and it can go through a massive amount of information to find patterns to re-
spond to whatever is needed at the moment [5]. Their definition also says that
in order to reach this new level of computing the cognitive system must have
five properties:

• Adaptive - It must use data in real time in order to handle that infor-
mation changes and goals and requirements evolve.

• Interactive - It must enable the users to define their needs well.

• Iterative - It must ask questions and find more information if a problem
is ambiguous or incomplete.

• Stateful - It must store information about earlier interactions in the pro-
cess.

• Contextual - It must be able to extract, identify and understand context.

Tools and techniques that are related and can be part of a cognitive computing
system are [6]:

• Big data and analytics

• Machine learning

• Internet of things
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• Natural language processing

• Causal induction

• Probabilistic reasoning

• Data visualization

According to IBM, unstructured data such as journal articles, images, sensor
data and messages makes up about 80 percent of the world’s available data.
Traditional computing cannot interpret this but cognitive computing can make
sense of it [7].

3.1.1 Watson, reigning Jeopardy! champion and supercomputer

Watson is a supercomputer created by IBM in 2011 to showcase cognitive com-
puting technologies. IBM initiated this project to compete in the TV game
show Jeopardy! against the top ranking Jeopardy! players of all time. Cognitive
computing was needed in this project for several reasons. The computer needed
to understand questions that often were complex and hard to understand even
for humans due to intentional ambiguity and word play. In order to understand
these questions, natural language processing was used. Once Watson under-
stood the question it searched through millions of stored documents to collect
information and find patterns and evidence in order to be able to answer the
question. It did not find a certain answer but instead worked with probabilities
of answers. If the answer with the highest probability had high enough prob-
ability Watson would then press the button to answer the question. It had to
do all this in a matter of seconds to be able to answer the question fast enough
to be competitive. Watson excelled at this task and beat the two best human
Jeopardy! players of all time [7].

3.2 Scientific ranking criteria

Scientific criteria can be used in order to determine how qualified a researcher
is for a specific research project. This section describes the different scientific
ranking criteria used for the project.

3.2.1 Citations

Citations are possibly the most apparent way of ranking researchers; they show
how much their peers reference their work. There are different measurements
related to the citations of an article or researcher such as the total citation
count, the average over all articles, the average over time and H-index just to
name a few. For this project, the total number of citations both for researchers
and articles were used, as well as the H-index.
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The Hirsch index or in short H-index was introduced for the purpose of com-
paring how much impact and relevance a particular researcher had in the past.
It is a measurement of both the productivity and the apparent impact of the
researcher. The H-index of a researcher can be calculated by taking h of the
researchers N papers and each of those h papers have at least h citations and
the rest N - h papers have no more than h citations each. This can be seen in
figure 1.

Figure 1: Graph showing a researchers papers in decreasing order to their
number of citations. The area under the curve is the total number of citations.
The H-index for the researchers is the intersection on the the curve that will
have the same x and y value.

3.2.2 SCImago Journal Rank (SJR)

The SCImago Journal Rank (SJR) is a tool used to calculate the impact of a
journal based on the citations the papers published in the journal have received.
The tool uses the data from the abstract database Scopus which according to
journalist Declan Butler covers more than 15,000 journals [8]. SJR uses an
algorithm similar to Google’s PageRank algorithm to rank pages; instead of
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listing all citations equally the tool gives higher weight to the citations received
from journals with a higher SJR rank. It also takes the relative subject fields
into consideration [8]. If, for instance, a paper written in the medical field gets
a cited by a paper written in any other field it is valued lower than citations
from papers written in the medical field.

The SJR can be accessed through the SCImago Journal & Country Rank plat-
form. The platform lets the user search for journal rankings based on several
parameters, such as subject area, categories, regions etc. A search returns a list
of journals with the following information for each journal [9]:

• SJR

• H-index

• Total number of articles published

• Citation count

3.2.3 SCImago Institution Ranking (SIR)

SIR is a resource to rank universities and research focused institutions over the
entire world [10]. They have three ranking sections: research, innovation and
web visibility. Only the innovation and web visibility sections are open to the
public.

The innovation section of SIR ranks the institutions by score calculated from
publication cited in patents based on PATSTAT, the EPO Worldwide Patent
Statistical Database [10].

The web visibility section has two indicators which it ranks the institutions on:
website size and domain’s inbound links. According to SCImago the website
size indication is based on the ”number of pages associated with the institu-
tion’s URL according to Google”, and the domain’s inbound links are based on
the ”number of incoming links to an institution’s domain according to arefs”
[10].
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4 Method

Making sound decisions is imperative to any project. This chapter begins by
explaining the design decisions made during development before moving on to
explain why the selected data sources and ranking criteria were used. Finally,
section 4.4 covers some tools and instruments whose use was ultimately rejected
for various reasons. Skipping section 4.4 will have no effect on the understanding
of the rest of the report and should be seen as optional reading for the interested
reader.

4.1 Application implementation and design choices

The application was developed using a micro service [11] approach where each of
the modules had a specific task and worked independently from the others. This
was done to facilitate parallel development and to limit the impact a change in
one part of the application would have on the other parts. Four modules were
created:

• Viewer - A graphical user interface

• Analyzer - Extracts concepts from RFAs

• Finder - Searches and compiles data

• Ranker - Ranks the researchers

Node.js was used as the runtime environment for all of them, which meant that
they had to be written in JavaScript (js). The Node.js environment was chosen
since it is well suited for server deployment and asynchronous HTTP requests.
Furthermore, the Node Package Manager (NPM) greatly facilitates development
thanks to its large code library. It also seemed to have excellent integration with
the Bluemix services.

4.1.1 IBM Bluemix platform

All the modules of the application were hosted on the cloud platform IBM
Bluemix to easier access the Concept Insights[12] Bluemix service. Bluemix is
a cloud development platform based on Cloud Foundry that enables its users to
create, deploy and manage cloud applications. It provides a growing number of
frameworks and services, some of which are provided by IBM or Cloud Foundry
and others by third parties [13]. As of May 2016 there are over 100 services
provided within various fields like storage, network and security and Internet of
Things [14].
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4.1.2 Concept Insights keyword extraction

Concept Insights is a Bluemix based service which, amongst other things, can
be used to find keywords in a text. In order to facilitate searching for the user,
this service was used to analyze RFAs in order to directly extract keywords from
them instead of prompting the user for keywords.

4.1.3 NPM Node packages used

NPM features a lot of different packages for different purposes. To speed up
development, multiple packages were used throughout development. Table 1
lists each package as well as the version used and a description of each pack-
age.

Table 1: NPM packages used

NPM package Versions Description
express 4.12.x High performance routing and base

server
cfenv 1.0.x Parses Cloud Foundry-provided

environment variables
cors 2.7.1 Connect/Express middleware for

cross-origin resource sharing
body-parser 1.12.4 Node.js body parsing middleware
bluebird 2.9.34 Used to create and manage Promises
compression 1.5.2 Node.js compression middleware
config 1.14.0 Used to manage different configuration

settings without changing the code
morgan 1.5.3 Node.js middleware for HTTP request

logging
request-promise 0.4.2 Promise-using HTTP request client
socket.io 1.3.4 Node.js realtime framework server
watson-developer-cloud 0.9.3 Provides a library to access the IBM

Watson Services and AlchemyAPI easier

4.1.4 AngularJS frontend framework

To create the interface of the application the front end framework AngularJS
[15] was used in order to make development easier. AngularJS makes interface
development faster by adding more attributes to the HTML syntax and makes
it easy to implement the logic of the controller side by side with the view [15].
It provides a fast starting point for a web application and allows the user to be
expressive in the structure of the application.
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4.1.5 Cloudant database

Cloudant is a Database as a Service (DBaaS) hosted by IBM and provides
a service for storing multiple data structures such as JSON documents. The
database communicates via a RESTful API over HTTP/S. To insert, update,
retrieve and remove objects from Cloudant you send POST, PUT, GET and
DELETE HTTP requests to the API, respectively [16].

The use of Cloudant eliminates the need of a local database. Instead the appli-
cation can simply use POST, PUT and GET requests to access and store any
data. Another nice feature of using Cloudant is that JSON objects easily are
converted into Node.js objects and vice versa.

4.1.6 Using Bluebird to replace callback with Promises

A known problem with the default usage of Node.js is the way it uses callback
functions for handling asynchronous calls.

1
2 // CALLBACK EXAMPLE

3
4 function nodeFunction(x, cb) {

5 doSomething(x, function(err , res) {

6 if (err) {

7 /* HANDLE ERROR */

8 }

9
10 doSomethingElse(res , function(err , res) {

11 if (err) {

12 /* HANDLE NESTED ERROR */

13 }

14
15 return cb(res);

16 });

17 });

18 }

19
20 function doSomething(someInt , cb) {

21 /* DO SOMETHING */

22 return cb(null , someInt);

23 }

24
25 function doSomethingElse(someInt , cb) {

26 /* DO SOMETHING ELSE */

27 return cb(null , someInt);

28 }

Listing 1: JavaScript example of callbacks

Notice the way the nested functions grow horizontally in listing 1 as more and
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more callbacks are nested. Furthermore, notice how the error handling for each
nested function grows in a similar way.

One way of changing this behavior is to use Promises instead of callbacks to
handle asynchronous calls [17]. Promises are an alternative to callbacks that
increases the readability of the code and is less prone to crashing. If an error is
thrown using callbacks, without catching it, the whole process crashes. When
using Promises however, only that chain of Promises will die. This results in a
more forgiving way of writing a program and a more robust system.

The module Bluebird [18] was the promise library of choice for the applica-
tion. Despite there being other, possibly more well-known third-party promise
libraries available for JavaScript, Bluebird was chosen because it is a light weight
library focused on performance [19] and ease of use. One example of how the
Bluebird library facilitates the coding experience is that it supports long stack
traces. These kinds of error traces make debugging more manageable.

The code in listing 1 can be rewritten using Promises as shown in listing 2.

1
2 // PROMISE EXAMPLE

3
4 function nodeFunction(x) {

5 return doSomething(x)

6 .catch() /* HANDLE ERROR */

7 .then(doSomethingElse)

8 .catch(); /* HANDLE NESTED ERROR */

9 }

10
11 function doSomething(someInt) {

12 return new Promise(function(resolve , reject) {

13 /* DO SOMETHING */

14 return resolve(someInt);

15 });

16 }

17
18 function doSomethingElse(someInt) {

19 return new Promise(function(resolve , reject) {

20 /* DO SOMETHING ELSE */

21 return resolve(someInt);

22 });

23 }

Listing 2: JavaScript example of Promises

Notice how the code now grows in a vertical matter, resulting in code that is
easier to follow and debug. Every promise produces a ”.then()” and a ”.catch()”
function for assigning the next step upon success or errors resulting from the
promise. This makes it easier to see the error handling and what sequential
steps are performed in any function sequence.
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4.2 Data sources

This section talks about the two data sources that were used in the application:
Scopus and Microsoft Academic. Both provide well documented, RESTful APIs
where the response can be requested to be in the JSON format. They also
both provide unique identification for the authors, which makes it possible to
differentiate two authors with the same name.

4.2.1 Scopus, an abstract and indexing database

Scopus is a database that provides abstracts and metadata for publications
across all research fields. It focuses on documents where the author is the
researcher in charge of presenting the findings from serial publications. A serial
publication is a publication that has been assigned an International Standard
Serial Number (ISSN) [20]. Elsevier, the supplier of the Scopus APIs, claims
that ”Scopus has twice as many titles and over 50 percent more publishers listed
than any other abstract and indexing database, with interdisciplinary content
that covers the research spectrum” [20].

The Scopus API provides a comprehensive search service for retrieval of ab-
stracts, authors and affiliations. With an API key, a so-called subscribers re-
sponse could be retrieved through Chalmers University of Technology’s net-
work. With a subscriber’s response more data such as h-index, author iden-
tification number and abstracts can be accessed and larger responses can be
requested.

The Scopus database was used because it provides a large data set of abstracts
for peer reviewed scientific research papers. It also provides a lot of metadata
for each article.

4.2.2 Microsoft Academic search engine

Microsoft Academic is a search engine for academic papers based on the Bing
search engine. Just like Bing, it uses a web crawler to find data that users
then can perform searches on [21]. According to the front page of the service
it provides results from over 80 million publications [22]. It lets the user decide
what data is desired (names, affiliations, journals etc.) [23] and also how many
results should be returned.

Microsoft Academics was used since it provides metadata for a different data
set of scientific articles than Scopus and could easily be merged with the results
from Scopus.
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4.3 Ranking criteria

Four different ranking criteria were used to compare the authors:

• Citation count of the authors’ articles

• SJR value for the journal the author’s articles were published in

• SIR value for the institution from which the article was published

• H-index of the author

The citation count, SJR and SIR are all article specific whereas the h-index is
specific to the author.

4.3.1 Citation count

The reason for using the citation count of articles is the availability of such
information, making it one of the easiest ways to rank articles. All databases at
some time used during development featured citation counts for their articles.
Although there may be some hidden gems without a single citation, the citation
count should generally be able to provide an, albeit crude, measurement of how
good an article is.

4.3.2 SCImago Journal Rank

Another way of ranking articles is by the journal in which they were published.
There are multiple journal rankings, but for this project SJR was used since it
formatted values in a way that was easy to use with the ranker module. It also
seems to be a great measurement of the impact of the journal, see section 3.2.
The 2014 SJR ranking was extracted for 6450 journals through the SCImago
Journal & Country Rank platform with medicine chosen as the subject area.
Using this list, finding the SJR score of a journal was a simple lookup. It
required however that the database featuring the article had information about
where the article had been published.

4.3.3 SCImago Institution Ranking

Another ranking criterion the application used, was the institution at which
the article was written. The idea behind this was that the more influential
the institution, the more influential the article should be. The procedure for
ranking based on institutions was similar to that of ranking based on journals,
but instead of SJR SIR was used. The most promising ranking, the SIR research
ranking section, is unfortunately not open to the public, so their web visibility
section was used instead. The final list used for ranking the researchers by
affiliation contained 741 institutions in the health sector. The SIR value could be
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used from all data sources where the article contained the name of the author’s
affiliation.

4.3.4 H-index

The h-index was used as a ranking criterion to account for the author’s older
papers and not only the recently published articles returned by the search. The
h-index for the authors can be retrieved from the Scopus API. This does however
require that the author exists in the Scopus database and the Scopus-specific
author identification number. This unfortunately made h-index difficult to use
with other data sources than Scopus.

4.4 Software graveyard

In this section the tools and instruments that were researched, implemented and
later discarded during the project are explained

4.4.1 Retrieve and Rank

Retrieve and Rank is a Bluemix based service that uses machine learning algo-
rithms to rank content provided by the user. It works with static, stored data
such as a collection of documents. Once the documents are stored the user can
start to train the machine learning ranking model with a set of questions. After
training the algorithm, it can then suggest relevant documents as answers to
given questions [24]. Early in the project there was a plan to base the applica-
tion on this service. It seemed to fit well with the objective of retrieving and
ranking authors. This did not work as the service only works on static data.
Due to physical and legal limits, no data could be stored by the application so
Retrieve and Rank would not work.

4.4.2 Trade-off Analytics, a tool for showing data

The Bluemix based service Trade-off Analytics helps with decision making when
confronted with multiple alternatives. It uses so-called pareto-optimization to
filter out alternatives which are completely inferior to other options and then
displays the tradeoff between the remaining alternatives [25] [26]. Trade-off
Analytics was cut in favor of developing a ranking system.

4.4.3 PubMed, the medical database

The PubMed database grants access to Medline, which is the ”U.S National
Library of Medicine (NLM) premier bibliographic database that contains more
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than 22 million references to journal articles in life sciences with a concentration
on biomedicine” according to Medline [27]. PubMed is one among many Entrez
databases provided by the NLM National Center for Biotechnology (NCBI).
However, it provides no means for guaranteeing the uniqueness of authors and
therefore could not be used.

4.4.4 Web of Science

Web of Science in a citation index which, according to service provider Thom-
son Reuters, holds ”over 90 million records covering 5,300 social science publi-
cations in 55 disciplines” and is the world’s largest citation index [28]. Similar
to PubMed, Web of Science was not used as it also is unable to differentiate
authors with the same name.

4.4.5 Node-Cache memory storage

Node-Cache is a simple in-memory Node.js caching module [29]. It provides
an easy to use cache that enables you to store values for a set period of time
after which the values are removed from the cache and you would have to store
them again. This module could have been used for storing big objects fetched
from Cloudant for a short period of time. Each request to Cloudant takes a full
second, so it makes sense to store the object in memory for a short period of time
and prioritise reading from the memory over Cloudant. Node-Cache had a small
delay compared to indexing normal Node.js objects however. This minuscule
delay added up to become enormous over the execution time of the program
which is why normal objects were used as caches instead. To bypass the need
for a ”time to live” variable for each object, the remote data was fetched once
before the start of the indexing process.

4.4.6 Digital Object Identifier

DOI, or Digital Object Identifier, is an unique identifier for documents that
have been registered through the Digital Object Identifier System [30]. It could
potentially have been used as an indication of how much effort had been put
into an article, but since there appears to be no evidence of this it was never
used for ranking.

15



5 Development

Four modules, each with a specific task, were developed so that they could easily
be exchanged for other modules providing the same functionality.

Figure 2: Overview of the EIRA modules

Every module was developed to have no dependency on any other module. This
modular approach provided flexibility during development since we could easily
disconnect any module or build another and then connect it to any existing mod-
ule. This chapter covers the development process of each module in the order
they are accessed by the application: Viewer, Analyzer, Finder, Ranker.

5.1 Development of the Viewer

The viewer is the front end of the application. The first feature developed for
the Viewer was to enable it to take a search string as input from the user using
a simple HTML form. The search string was then sent as an HTTP request
to the Finder to start the search process. The ranked researchers, returned by
the Finder, could then be looped through using the controller of the AngularJS
model. Each researcher was set up to be displayed in a separate ”card” with its
relevant information. Each card was made to be clickable, which then brings up
a modal window displaying more details. To ease the verifying of the researcher
a button was added to perform a Google search on the researchers name and
affiliation.

The second feature to be implemented was to enable sending a text file to the
Analyzer. This was done by adding a switch which when clicked changed the
HTML form displayed to the user, now taking a text file as input. This text file
is then sent as HTTP request to the Analyzer. The result returned from the
Analyzer is then used to choose a search query to pass the Finder.

5.2 Development of the Analyzer

The Analyzer was added to the project to provide an alternative way of searching
within EIRA. The Analyzer uses an RFA sent through a HTTP Post request
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from the viewer. The module then extracts the text of the RFA from the request.
After the text has been extracted it is parsed to remove special characters. This
is done so that the Concept Insights service can iterate properly. After the post
processing has been performed, the content is then forwarded to the Concept
Insights service for analysis. The Concept Insights service annotates the text
using the Watson AI and ranks the annotations based on relevance. The list of
annotations received from the service is then iterated over to remove duplicates.
If duplicates are found, it keeps the one with the highest score and removes the
others. Once the duplicates have been removed it iterates over the list again to
filter out entries containing unwanted words. This is done to prevent institutions
and other irrelevant entries to placed on top of the list. When this process is
complete, the top result is returned to the viewer.

5.3 Development of the Finder

Access to multiple data sources was set up in order to maximize the chances
of finding a relevant set of researchers. Unfortunately, each one used a differ-
ent format for its API and also provided very different sets and amounts of
information.

5.3.1 Data extraction from the Scopus database

The first step of the search in Scopus was to perform searches for abstracts and
their metadata using key words. The next task was to go through the useful part
of the data and use it to retrieve more necessary data. In the end, the searches
produced a list of articles containing information such as titles, the authors’
identification numbers, the affiliations and the citation counts. In listing 3 the
structure of the returned data from a Scopus search is shown.
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1 // Example of a search result returned by Scopus

2
3 {

4 "search -result": {

5 "opensearch:totalResults": "1760",

6 ...

7 }

8 "entry": [

9 {

10 "affiliation": [

11 "0": {

12 "affiliation -city": "Caracas",

13 "affiliation -country": "Venezuela",

14 "affilname": "Universidad Central de

Venezuela",

15 "afid": "60001197",

16 ...

17 },

18 ...

19 ],

20 "author": [

21 "0": {

22 "authid": "57189071238",

23 "authname": "Rojas D.",

24 ...

25 },

26 ...

27 ],

28 "citedby -count": "0",

29 "dc:creator": "Ruiz L.",

30 "dc:title": "Non -cytotoxic copper overload boosts

mitochondrial energy metabolism to modulate

cell proliferation and differentiation in the

human erythroleukemic cell line K562",

31 "prism:doi": "10.1016/j.mito .2016.04.005",

32 "prism:publicationName": "Mitochondrion",

33 ...

34 }

35 ]

36 }

Listing 3: Example of a search result returned by Scopus

Since authors and not abstracts were to be ranked the next step was to map each
abstract to its author’s unique identification number. Then the full information
about each author was retrieved through the Scopus author retrieval API. The
information retrieved about the author included their full name, h-index and
affiliation. In listing 4 the structure of the returned data from a Scopus author
retrieval is shown.
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1 // Example of a author retrieval result returned by Scopus

2
3 {

4 "author -retrieval -response": [

5 {

6 "h-index":"2",

7 "coauthor -count": "7",

8 "coredata": {

9 "dc:identifier": "AUTHOR_ID :56218921200",

10 "document -count": "4",

11 "cited -by-count": "18"

12 },

13 "affiliation -current": {

14 "@id": "103044687",

15 "affiliation -name": "Department of Biology",

16 "affiliation -city": "Sherbrooke",

17 "affiliation -country": "Canada",

18 ...

19 },

20 "author -profile": {

21 "preferred -name": {

22 "initials": "W.J.",

23 ...

24 },

25 "publication -range": {

26 "@end": "2016",

27 "@start": "2011"

28 },

29 "journal -history": {

30 "@type": "author",

31 "issn": "20457758",

32 ...

33 },

34 "affiliation -history": {

35 ...

36 }

37 },

38 ...

39 },

40 ...

41 ]

42 }

Listing 4: Example of a result returned by Scopus author retrieval

Lastly the data was organized and structured so that the authors could be
ranked by the ranker module.

A problem that quickly emerged was that the API limited the search to a
maximum of 100 abstracts per response regardless of how many results the
search yielded. Because of this, the application had to make several requests
to retrieve all abstracts. This would not be a problem if the requests could be
handled in parallel. The Scopus API does not support this though, instead of
handling requests as soon as they are received, it throttles the requests and adds
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them to a queue. This caused a massive slowdown in the application, making
each query take somewhere in the realm of 40 seconds.

The author retrieval caused a performance issue similar to to the search request.
A maximum of 25 authors could be retrieved per request making the application
send out many requests in parallel. The requests are then throttled by Scopus
and put in a queue making the query slow.

5.3.2 Data extraction using Microsoft Academic

Getting Microsoft Academic to work with the application was easy but it was
not as useful as Scopus. Microsoft Academic also features a RESTful API and
returns JSON objects, making it easy to integrate with other results. Instead of
having to perform multiple queries, only one was necessary and it could be scaled
to suit the time it took to query the other data sources. Microsoft Academic did
however not provide as much information as Scopus, such as abstracts. It also
doesn’t always find all information about articles such as the journal in which
the article was published. In listing 5 the structure of the returned data from
Microsoft Academic is shown.

1 // Example return results from Microsoft Academic

2
3 "entities": [

4 {

5 "Ti": "hallmarks of cancer the next generation",

6 "CC": 7250,

7 "AA": [

8 {

9 "AuN": "douglas hanahan",

10 "AuId": 2120435251 ,

11 "AfN": "isrec"

12 },

13 {

14 "AuN": "robert a weinberg",

15 "AuId": 2146654601 ,

16 "AfN": "whitehead institute"

17 }

18 ],

19 "J": {

20 "JN": "cell"

21 }

22 },

23 ]

Listing 5: Example of the result returned by Microsoft Academic
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5.3.3 Combining the data

Retrieving articles and authors from each of the individual sources was simple
enough due to the well documented API each of them provided. The next step
however was to combine the results and locate what authors and articles that
in fact were the same entity extracted from different sources. An entity at this
stage looked as shown in listing 6

1
2 // AN AUTHOR ENTITY

3
4 {

5 ’name’: ’John Snow’,

6 ’co-author -count’: 123,

7 ’cited -by-count’: 1453,

8 ’document -count’: 50,

9 ’h-index ’: 20,

10 ’affiliation ’: {},

11 ’articles ’: [{’title ’:’History of the Wall’},{’title’: ’The

basics of leadership ’}]

12 }

Listing 6: Structure of the combined data

The entities were combined by first looking at the name of each entity in the
data. To avoid small differences any special characters were trimmed; blank
spaces etc. If any of the names matched the focus shifted to a second criterion:
the articles. In the same manner as how the entity names were compared the
titles of each article were matched to the articles of the matching entity. The
difference here was that any substrings of the titles were considered a match.
If at least one of the articles matched, the entities were merged into one. By
doing this for all of the authors, a single list of authors with combined data from
several different sources was produced.

5.4 Development of the Ranker

After extracting and combining the data from each of the sources the ranking
procedure was brought into play. The Ranker module takes a formatted JSON
object as the body of a POST request sent over HTTP. The JSON object
contains the entities to rank, what fields to take into account when ranking and
how to use each of the denoted fields. There are two types of fields: weight fields
and ranking fields. When indexing the object with a weight field, the field value
would be used to index a database table with the same name as the field. The
ranking fields however does not index a database table, instead it simply uses
the value of the field. Each field does however have two ways to use the value;
either it uses the value without changing it (expecting it to be a numeric value),
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or it can read a property on the input object which states that the existence
of the field is worth a certain weight. Listing 7 shows an example body of the
request.

1
2 // AN EXAMPLE BODY FOR THE RANKER

3
4 {

5 ’Entities ’: [

6 {

7 ’name’: ’John Snow’,

8 ’citedBy ’: 204,

9 ’journal ’: ’The Wall’

10 }

11 ],

12 ’rankingFields ’: [{

13 ’path’: [’citedBy ’]

14 }],

15 ’weightFields ’: [{

16 ’path’: [’journal ’],

17 ’weight ’: 1

18 }]

19
20 }

Listing 7: Example of input to be sent as the body of the request to the Ranker
module.

Using the above example, the ranker take the field citedBy and add 204 to the
score of the author. The ranker would then look at the journal field and see
that it’s inputted as a weight field. This means that the ranker would index
a table in the database called journal using the value of the field; The Wall.
Further, the weight field has another field called weight. This states that the
existence of the given field on an entity adds the value of the field weight to
the total score of the author; in this case the value of one.

The ranker begins by performing a check for each weight/ranking field on each
entity object asynchronously, and denotes the entity with a new field called
score. This field states how high the entity scored with respect to the denoted
fields. As a final step the ranker sorts the entities in descending order by the
newly assigned score. The entities are then put into the response to the HTTP
request.

22



6 Result

In this section we will go through the results from the development process. We
will cover the usage of the application we developed, EIRA, and then move on
to more technical aspects such as execution times and the architecture of the
application.

6.1 Application usage and output

EIRA takes one or more search terms as parameters. These terms are relayed
to the finder that returns relevant entities. After this the entities are ranked
relative to one another. The 20 highest ranking entities are presented in de-
scending order based on their evaluated ranking score. Performing a search on
’Multiple Myeloma’ returns the results displayed in Figure 3.

Figure 3: EIRA Search For Multiple Myeloma

The top and bottom (that is, the 20th) candidate for a search on ’Multiple
Myeloma’ can be seen in Figure 4 and Figure 5, respectively.

Figure 4: Top EIRA Result for Multiple Myeloma
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Figure 5: Bottom EIRA Result for Multiple Myeloma

The top result is Ola L A Landgren who is the Chief of Myeloma Service at
Memorial Sloan Kettering Cancer Center in New York. The bottom result is
Noopur S. Raje who currently works at Massachusetts General Hospital, Com-
prehensive Cancer Center and is board certified in Hematology and Medical
Oncology.

The top and bottom candidates for a search on ’Pectus Excavatum’, extracted
by EIRA, can be seen in Figure 6 and Figure 7 respectively.

Figure 6: Top EIRA Result for Pectus Excavatum

Figure 7: Bottom EIRA Result for Pectus Excavatum

The top result, David M. Notrica, is ”an associate professor at the University
of Arizona College of Medicine - Phoenix, and Assistant Professor of Surgery at
Mayo Clinic Medical School” according to Pediatrics Surgeons of Phoenix [31].
The bottom result, Marco Ghionzoli, is a pediatric doctor in Italy [32].

The top and bottom results when uploading an RFA[33] to EIRA are presented
in Figure 8 and Figure 9 respectively.
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Figure 8: Top EIRA Result when using an RFA

Figure 9: Bottom EIRA Result when using an RFA

The top result Chi-Huey Wong is a ”Professor of Chemistry at National Taiwan
University and the Scripps Research Institute, La Jolla, USA”[34]. Sergei L
Kosakovsky Pond is an associate professor at the Department of Medicine at
University of California in San Diego.

The the top three annotations that the Concept Insights service extracts from
the RFA can be seen in Listing 8.

1 {

2 "concepts": [

3 {

4 "score": 0.9324179 ,

5 "label": "HIV"

6 },

7 {

8 "score": 0.93161255 ,

9 "label": "Prevention of HIV/AIDS"

10 },

11 {

12 "score": 0.92701346 ,

13 "label": "Incidence (epidemiology)"

14 }

15 ]

16 }

Listing 8: Annotations retrieved from RFA

25



6.2 Execution times for data retrieval

It takes EIRA anywhere between 40 and 100 seconds to produce a result. This
is largely due to the limitations of the external APIs that EIRA is communi-
cating with. For example, while retrieving results from a normal search query
on the Scopus API we can only fetch 100 results at a time. EIRA performs
these requests asynchronously but Scopus throttles and queues all the requests,
making the behavior synchronous and the response time longer. This renders
any asynchronous behavior related to Scopus API requests useless. Fetching
the first search batch from Scopus takes up to 20 seconds alone, for reasons
unknown to us as this is on Scopus’ part. Table 2 shows the execution times for
different search phrases and requests.

Table 2: Approximate execution times of different modules for various search
queries

Terms Scopus Scopus Entity Total
Search Author Ranker

Abdominal Aortic Aneurysm 39s 36s 4s 82s

Acute Respiratory Distress Syndrome
ARDS

33s 35s 4s 76s

Homogentisic Acid Oxidase Deficiency
Alkaptonuria

22s 7s 2s 32s

Computerized Axial Tomography 39s 37s 4s 84s

Creutzfeldt-Jakob Disease 46s 44s 5s 98s

As shown in the table, the time that EIRA waits for the Scopus response is as
much as 80-95% of the total execution time. This is a big bottleneck of our
application, caused by the Scopus API as it limits the amount of certain API
calls we can make per minute and per seven days. This causes two limitations
on the amount of search results we can use:

1. We have to limit the number of results we fetch from Scopus by a huge
amount; some searches produce as much as 100,000 results and we can
only use about 1000 of them due to the weekly limits of author retrievals.

2. Scopus handles every request synchronously. Therefore, we have to limit
the number of requests we send based on how long time we are willing to
wait for the response.
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6.3 Application architecture overview

The communication with the services is done via HTTP requests and each of the
modules present a RESTful API. The user is prompted to input either an RFA
or keywords directly to the application. When the user inputs keywords and
initiates a search from the Viewer, a request is sent to the Finder carrying the
search terms. If the user inputs an RFA instead a request is sent to the Analyzer
and parsed before requesting the Finder. The Finder forwards the search, in
parallel, to the different data sources and combines the resulting entities. The
entities are then sent to the Ranker in a POST request, which in turn ranks
and sorts the entities before returning the resulting list of ranked entities. The
result of the Ranker is then forwarded as a result for the initial request from
the Viewer. Appendix A contains a component diagram of the application. The
following sections describe the component composition of each micro service
module.

6.3.1 Description of the Viewer

The Viewer constitutes the user interface of the application, it displays the data
produced by the Finder. A component diagram of the Viewer can be seen in
figure 2.

Figure 10: Watson Entity Viewer

The components of the viewer are:

• View - The visual parts of the user interface such as HTML, CSS etc.
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• Controller - Handles the logic of the interface and communicates with
the Resource for fetching external data.

• Resource - Handles the requests to the Analyzer and Finder services.

EIRA can either read an RFA or rely on the user to supply keywords. If an
RFA is sent, the Viewer forwards it to the Analyzer for keyword extraction. If
the user supplies the keywords instead, it sends these directly to the Finder.
Once the Finder returns the list of ranked researchers it shows them to the
user.

6.3.2 Description of the Analyzer

Using the Bluemix service Cognitive Insight, the analyzer finds high level con-
cepts in the content of a text file, such as an RFA. Figure 11 shows a component
diagram of the Analyzer.

Figure 11: Watson Entity Analyzer

The Analyzer is constructed by the following components:

• Routes - Supplies the EIRA API with paths to the functions and returns
an output that is used in other modules.

• Controller - Calls the Watson API Concept Insights and utilizes the
methods that it supplies. It then passes outputs from called methods for
further use in the next methods. Results are parsed and adapted for other
methods if needed.

6.3.3 Description of the Finder

The Finder in the intermediary between the different data sources and the
Ranker module. It is the main module and handles most of the logic in the
application. A component diagram of the Finder is shown in figure 12.
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Figure 12: Watson Entity Finder

The module consists of five components:

• Routes - Provides the REST API paths and forwards the search calls to
the Search Controller component.

• Search Controller - Handles the communication with the Ranker module
and the two handler components: Scopus and Microsoft Academic.

• Scopus Handler - Handles communication with the Scopus API.

• Microsoft Academic Handler - Handles communication with the Mi-
crosoft Academic API.

• Request Promise - handles the HTTP requests.

Any incoming request passes through the Routes component and gets forwarded
to the Search Controller. The Search Controller then relays the request to each
of the handlers. The handlers in turn parse the request and query their respec-
tive APIs for the query of the request through the Request Promise component.
They then restructure the returned data and return it to the Search Controller.
Once the Search Controller receives the returned data it merges it and makes a
request using the Request Promise component to the Ranker module to rank the
data. When the Ranker has returned the result, the Search Controller returns
it to Routes.
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6.3.4 Description of the Ranker

The Ranker module exists to rank a list of entities given some specified fields.
You are able to preemptively store set weights for the values of some fields in a
Cloudant database or simply rank a field on its existing numerical value. If a
field value for any of the objects is missing the field will be assigned the value
zero instead. Figure 13 shows a component diagram of the Ranker.

Figure 13: Watson Entity Ranker

The module consists of four components:

• Routes - Provides the REST API paths and forwards the request calls to
the Weight- and Rank controllers.

• Weight Controller - Communicates with the Cloudant database service
and handles temporary data caches.

• Rank Controller - Handles the logic behind ranking the entities.

• Request Promise - Handles the HTTP requests.

The first access point of the Ranker module is the Routes component. Routes
exposes different RESTful URL paths as an API and forwards any requests
to either the Weight Controller component or the Rank Controller component.
The Weight Controller communicates with the Cloudant DBaaS while the Rank
Controller handles all the logic behind ranking the entities.

To rank the entities a POST request must be performed on the path /api/rank

containing an object body with three different fields: entities, weightFields
and rankingFields. Each of the objects in the entities field will be ranked with
regards to the values of the other two fields. Any result produced by any of the
controllers are then passed back to the routes component that returns the result
to the requesting client.

The Ranker is built with flexibility in mind. We do not want to lock us down
into only ranking the entities that we produce in the Finder. As such, anyone
who desires to use the Ranker module could do so within the limitations of the
input format. We intend to build the Ranker and add it to the Bluemix services
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as a community created service. If IBM agrees to the idea of including it, the
Ranker could be used by others, too.
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7 Discussion

This section covers our thoughts and design decisions made throughout the
project and our reasoning behind them. Hardships and troubles that occurred
during development are explained and how they were solved. The chapter ends
with suggestions for future development.

7.1 Evaluation of results

The results produced by EIRA seems to vary in quality. The top results, Ola L
A Landgren, David M Notrica and Chi-Huey Wong all appear to be relevant and
competent researchers in their respective fields, judging by their titles. However,
the bottom results are much more difficult to evaluate. They are all related to
the topics and have some published articles in the field, but apart from that is
proved difficult to make any conclusion regarding their viability. All tests were
conducted manually by the project group, which lacks experience in evaluating
researchers, and the sources containing information about the researchers in
general seemed somewhat unreliable. This means that all evaluations executed
are crude, at best. EIRA would greatly benefit from some evaluation by experts
in the field, and it would be interesting to see how they would balance the
weights of the different fields in the ranking.

7.1.1 Evaluation of the Analyzer

The analyzer can be unreliable because of the concepts that EIRA thinks are the
best results. Because of cognitive computing, results can sometimes be incorrect
when analyzing text. Because of this, the analyzer sometimes cause problems
further along the data retrieval process. In some cases the best considered result
was not a suitable search term, e.g. names of institutions rather than diseases.
Searching our data sources for non-medical related terms causes invalid results.
After numerous tests we deem that the analyzer can provide a usable function
for EIRA. We trust that the user recognizes an incorrect result once a faulty
search occurs.

7.2 Software design decision evaluation

The application was structured as several modules, which resulted in changes
to one module not affecting the other modules. This structure made it easier
to divide the areas of what needed to be implemented and work independently.
The trade off was the number of repositories to version control and the number
of steps needed to put the entire code into a production state. However, once
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the application was running, parts of it could be taken offline for patching when
needed. Overall it was a good architecture choice.

Node.js proved to be well suited for the purpose of the project. It made devel-
opment easy and manageable thanks to the package manager NPM for Node.js
that has a wide variety of existing modules to support the development pro-
cess.

7.3 Data source selection

The data sources used to rank the researchers worked well overall. Although
there were some issues with regard to the amount of information available, it
seems it was enough to generally provide good results. The relevance of the
result depends on the data retrieved but since the sources of data used are con-
tinuously updated the output of the application should remain relevant.

7.3.1 Scopus

Scopus is well suited for the purpose of the project as it provides a system for
identifying authors as well as a lot of different data usable for ranking. Its
well documented API made development easy. There is only one problem with
Scopus, and that is the limitations on the API. Without this limitation, we
would be able to handle multiple times more data and rank accordingly, while
the execution time of the request would still be far below the current time.

It would be interesting to have the limits of the API removed. If the project
was to be further developed and refined in cooperation with IBM, then Scopus
might agree to a more suitable solution and give more leisure to the project to
enable faster and more complete results.

There could also be ways of circumventing the limits of the API. As explained in
section 6.2, there are two limits: one weekly and one throttling the throughput
of requests. The throttle appears to track IP-address or some other computer
specific attribute as multiple searches conducted from different servers at the
same time using the same API key does not slow each other down. The weekly
limit, on the other hand, appears to be tied to the API key as replacing a
blocked API key with an unused one enables the application to keep searching.
Thus circumventing the weekly limit is as simple as getting more API keys to
use with the application. The throttle could possibly be avoided by building
a distributed system or by using IP aliasing so that the requests come from
different addresses.
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7.3.2 Microsoft Academic

Microsoft Academic offers more breadth but less depth than Scopus; it can
return a lot more articles than Scopus in the same amount of time, but less
information is available for each article. Because of this, all researchers returned
in the top 20 by EIRA were found in Scopus (but not necessarily in Microsoft
Academic) since the researchers found exclusively in Microsoft Academic did not
have a H-index, SJR or SIR score. Since these scores were set to 0 by the ranker
if no value was found, the authors found exclusively in Microsoft Academic are
ranked solely based on citation count. It was easy to connect EIRA to Microsoft
Academic but since Microsoft Academic offered less information for each article
than Scopus, Scopus still worked better despite its flaws.

7.3.3 Discontinued data sources

During the course of development, other data sources that eventually were re-
moved from the final version were used. The initial targets for data extraction
were PubMed, Scopus and Web of Science. The APIs of PubMed and Web of
Science does unfortunately not offer any way of differentiating between authors
with the same name. This caused the results from PubMed and Web of Science
to have multiple articles written by people with the same name, but not always
the same person. Since there was no way to tell if they were the same person
or not, it would be possible that two authors with the same name could be
mistaken as the same person if PubMed and Web of Science were to be included
in the application.

7.4 Evaluation of the ranking criteria

The objective of the ranking was to find the most experienced and suitable
researcher for a specific research area. There is, however, only a limited amount
of data available that authors can be ranked upon. The challenge is to get the
best possible ranking based on the available data. The fields that are used for
ranking entities are discussed in this section.

7.4.1 Citations

One of the fields extracted from each author was the H-Index. The H-index
seems to be a good addition to the ranking since it accounts for the productivity
and impact over an entire career. All other criteria readily available only account
for the articles returned by the search, which in the case of Scopus only is the
most recent ones. Other measurements for this have been looked into, such as
overall citations and average citation per publication. Using the h-index was
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also a good choice considering it is based on Scopus database which is the main
data source. This made it easy to add to the application.

Another field extracted from each article was the citation count. Using this
number as a measurement of the impact of the articles seemed to give the
desired ranking. If an article has been cited by a lot of people it would prove
that the article reached an audience and was meaningful or impactful enough
to cause others to cite it. Because of this, its value was regarded highly in
the ranking process. In the end, the number of citations of each article was
summarized and added to the score of the author. Furthermore, it seems likely
that citation counts are exponential (since a well cited researcher and paper gets
more attention and consequently possibly more future citations). This might
have given the citation count too big of an impact on the final score, especially
for the top researchers.

7.4.2 Journals

The choice to add ranking value based on the journal an article is published in
was a good choice since it gives an indication of the quality of the article. Having
looked into many methods to rank journals such as Impact Factor, Eigenvector
and Source Normalized Impact per Paper, more research needs to be done in
order to determine which one provides the best indication. SJR seem to give
a good measurement through its complex algorithm. In addition to possibly
being the best it also worked well with the rest of the application thanks to it’s
connection to Scopus. It was also easy to implement thanks to its format that
was easy to add to the Ranker.

7.4.3 Institution

The web visibility section of SIR gives an indication of the influence of the
institution, however, it may not be the best indication. It was ultimately chosen
because of how easy it was to incorporate with the application. Access to the
research section of SIR could greatly improve the institution based ranking.
This is because it is a measurement of the research quality produced by the
institution whereas web visibility is only an indication of the influence of the
institution.

7.5 EIRA’s role in society

EIRA could prove useful as a recruiting or headhunting tool, enabling personnel
currently focusing on these roles to put their attention elsewhere. This could
prove a boon to the economy since less time is spent on administrative tasks
and can be spent on, for instance, research. However, developing machines to
do the work of people could prove disastrous to society in the long run. The
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potential mass unemployment replacing workers with machines could bring. It
will require a lot of effort to overcome and mitigate.

Another troubling aspect of EIRA is privacy. Information about our lives are
available on the internet and the development of tools like EIRA to sort and
categorize this information puts privacy at stake. The privacy of the individual
is impaired in favor of enabling the people with access to this data to make
better decisions. Whether this trade off is worth it or not is up for debate, and
needs to be discussed to make people aware of the intrusions in privacy this
trend brings.

7.6 Further development

The project has more or less only been implemented to such a degree that there
exist a base application of micro services. As such there are several possible
continuations that could further build upon the project. This section contains
thoughts on how to further develop the application and suggestions for future
projects.

7.6.1 Improving the Finder

The Finder is the largest of the modules and exists to asynchronously handle
the data extraction from multiple data sources. There are countless ways of
improving this module but a few stand out amongst the rest.

When trying to identify data that could help rank researchers you soon come
to the realization that the sources of the data are so different that the potential
of the application is huge; social media, data mining, research databases etc.
People put new data on the Internet every minute of every day, potentially
adding weight to different entities.

The true problem lies with finding and matching this data, realizing that one
entity is the same as another. If you could tap into that potent data with a
ranking module the results will get even more interesting.

We currently limit the field of search to areas related to medicine but that is
not a necessary limit; you could in theory rank an entity based on any data that
you find in the Finder.

Following the same train of thought, a simple way to increase the value of the
results would be to integrate more sources of data; databases of the same type
as Scopus, data mining services, etc.

So far all of the data sources in the project have presented an API that enables
the input of not only keywords but logical queries. One could for example query
Scopus for all documents containing tags with the keyword mouse but exclude
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those containing the word cat or dog. This could be done with the following
query:

KEY(mouse AND cat OR dog) [35]

Microsoft Academic have a similar way of handling logical operands but with
a different syntax. The same query in the Microsoft Academic syntax could be
written as:

AND(W=’mouse’, OR(W=’cat’, W=’dog’)) [36]

The Search Controller in the Finder module does support passing on anything
that is sent as a search string in the incoming request. But since Scopus and
Microsoft Academic use different syntax for logical operands this becomes in-
valid. A solution would be to add a layer for interpreting logical queries, then
each data source handler could translate those logical operands for their respec-
tive APIs. It is simple to do and would enable deeper communication with the
already implemented as well as future data sources.

7.6.2 Improving the Analyzer

The Analyzer could be improved by further developing the filtering process of
the result and reduce the irrelevant terms that can be sent to the Finder module.
Based on previous research there is a function within the Concept Insights API
that can retrieve metadata for the annotations. The result can be narrowed
down to relevant results by filtering with regard to the metadata. A possible
problem with this approach is that the metadata can be incorrectly tagged and
filter relevant data. With our current primitive filtering function there is a very
low chance to exclude data that can be relevant. The user determines whether
the results are good enough. According to prior tests a faulty return should be
clear to the user.

7.6.3 Improving the Ranker

The Ranker is the module that best represents the idea behind the project; to
rank entities with regards to their relevance given a certain phrase or a number
of keywords. The time spent on the project was divided by prioritizing data
retrieval functionality, more specifically the Entity Finder. Not until after the
Entity Finder was almost done did development of the ranker begin. This
has left the ranking in a state where much can be added. Another project,
probably at least as big as this one, could build upon what has been created
during the course of this project. What makes one article better than another?
What impact does it have for its author? What machine learning algorithms
could we use to improve the results? These are questions that keep emerging
whenever we work with the ranker module and so far none of them have been
truly answered.
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7.6.4 Error handling

Throughout the application, the error handling has been neglected due to the
time constraints of the project. Since all of the modules are written using
promises the error handling is easy to add.

In the Ranker, Finder and Analyzer there exists an error handler that could be
extended to better suit the project. This handler could then be used in every
”.catch()” function where the error was deemed necessary to handle.

The Viewer uses AngularJS which does not use bluebird to handle promise but
instead uses their own module called ”$q”. It is a small promise library that
also exposes functionality for handling errors. There are tons of packages and
extensions to install for such handling in AngularJS.

7.6.5 Dockerize

Since the application was implemented as a set of micro-services and using
Bluemix, the application itself is well suited for Docker [37]. Using Docker we
could convert each of the modules into a single docker image. These images
would then be used to create docker containers, running on the same machine
and communicating internally, removing the delay presented by sending requests
over HTTP to each module.

IBM Bluemix has great support for docker [38] and as such it would make even
more sense to ”dockerize” the application. A good way of doing this would be
to use Docker Compose [39] to handle the containers and networks of the docker
modules.

7.6.6 The impact of a Digital Object Identifier

DOI, or Digital Object Identifier, is a unique identifier for documents that have
been registered through the Digital Object Identifier System [30]. This could
have been used as an indication of how much effort had been put into the
articles extracted from different data sources. This was not done due to the
lack of research stating that this would be the case. The DOI is still extracted
if it exists but it is not taken into account during the ranking procedure.

During the construction of the ranking module, we hypothesized that the DOI
of an article could be used as an indicator of the validity of an article. The idea
was that an article that had a DOI would have been published in such a manner
that it required a DOI; for example in a prestigious journal etc. If this was the
case then some weight should be added to the score of the author responsible
for that article.

It is hard to determine how much of an impact factor we should provide for
documents that have such an identifier. While most of the documents on Scopus
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have a DOI, it is far from all of them. Further, the data retrieved by Microsoft
Academics have proved to more often than not be unable to provide a DOI.
All the articles that do not contain a DOI could easily be filtered out, but
often an article without a DOI in Microsoft Academic was found to have one in
Scopus.

In the end, all documents were used whether they contained a DOI or not
since the Microsoft Academics results might strengthen the results provided by
Scopus. No additional weight is provided for documents that contain a DOI
upon ranking. Further research might prove that such documents have a higher
value for the purpose of deciding the validity of an article.
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8 Conclusion

8.1 Problem solving

We had several difficulties trying to implement any Watson services from the
Bluemix service but to no avail because they required storage to function. We
can not use databases because Scopus asked us not to save their documents if we
decided to utilize their special access API calls. We ended up with an application
that is able to retrieve authors of articles from any area of expertise in any
academic field found in publications. This could arguably be more valuable than
local data searches. Although, there could be some quirks fetching data because
we depend on other services to be available. But even if one database is online
the application would still be functional but there would be less accurate results.
We are ultimately happy with the end product that we managed to develop
even though we had to overcome hurdles during planning- and development
phases.

8.2 Scratching the surface

With the entire effort of the project we only managed to connect data from two
different sources and rank the authors given a subset of available results. But
the application still produces a list of ranked authors that seemingly have a big
relevance to the given query. We noticed that the data we base our rankings on
is only the tip of the iceberg and we have barley scratched the surface. More
data sources, integrate AI solutions to the ranker module, calibrate the weights
related to different fields and then possibly add more data mining support;
these are all options that could possibly tap further into the potential of the
application.

8.3 Project plan fulfillment

In the introduction, we explained how the process of recruiting a team of re-
searchers was an unnecessarily time consuming process. EIRA solves this prob-
lem for a team organizer who is eager to start a research group. The organizer
now has the ability to find good candidates with one search. The process of
finding a researcher is now faster than ever. Seeing how our project is a proof
of concept it would be interesting to see what the software industry could pro-
duce.
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Figure 14: Component diagram
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