(@

794

17
2

<=

N

TN
%
\I

N X,:%)

}f/

Real-time Indirect |Hlumination

Image Space Light L attice Photon Mapping with Spherical

Harmonics

Master of Science Thesisin Computer Science

FREDRIK NOREN
PATRIK SJOLIN

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, 2010

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Real-Time Indirect [llumination
Image Space Light Lattice Photon Mapping using Spherical Harmonics

Fredrik Norén
Patrik Sj6lin

© Fredrik Norén, 2010.
© Patrik §j6lin, 2010.

Examiner: UIf Assarsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
Image illustrating some of the effects achieved with the technique presented in this thesis.

Department of Computer Science and Engineering
Goteborg, Sweden 2010

Abstract

Rendering accurate indirect illumination is a hard problem that recently have seen algorithms closing
in on real-time performance.

We present an algorithm that takes inspiration from two recently developed techniques on the subject.
The algorithm provides both low-frequency indirect illumination and caustic effects with render times
comparable to state of the art techniques in the area. The downsides are mainly discretization problems in
the final rendering and the high dependancy on the CPU.

Sammanfattning

Rendering av hogkvalitativ indirekt ljussittning &r ett svart problem inom datorgrafik dar det nyligen
presenterats algoritmer som ndrmar sig exakta resultat i realtid.

Vi presenterar en algoritm som ar influerad av tvd nya algoritmer som behandlar detta problem. Al-
goritmen stodjer bade lagfrekvent indirekt ljussattning och kaustik-effekter och &r jamforbar i hastighet
med det allra senaste inom omradet. De storsta nackdelarna med algoritmen &r diskreteringsproblem i
slutrenderingen och att den &r CPU-beroende.

CONTENTS CONTENTS

Contents Ol 9
- B3 Imjection] 10
1 Introductionl g 54 Rendering) 11
(1.1 Problem statement|
- |6 Implementation Details| 12
[2__Previous work 3
b1 Platforml 12
|3 Image Space Photon Mappingl 4 m 13
3.1 Traditional Photon Mapping]. 5 [6.3 Bidirectional scattering distribution |
3.2 Firstbouncel 5 | function (BSDF)[. 13
3.3 Tracing| 6 [6.4 Light Lattice] 13
3.4 Photon sglattingl 6 n-interactivemodel 13
B35 _Discussion]o 6
[7__Results & Discussion| 13
4 LPY , , 6 [7T Comparison between ISPM, LDV & |
4.1 Reflective shadow maps and Virtual | — 00 LY 3
| point lights|. 6 72 Profilingl 13
4.2 Injection| 6 T = 16
4.3 Propagation| 6 : MEAMONS! - - - - -« vvee e
11 Cascaded Gridsl o oo v oot 7 .31 Performancel. 1o
7 3 = 7 732 Visualdefects| 16
[5__Our method| 8 18 __Conclusions| 16
p.1 Bouncemap| 8 8.1 Futureworkl 16

1 INTRODUCTION

Figure 1: Example image rendered using our method. Three effects are especially visible in this image; the indirect
illumination and color bleeding on the walls, the caustics in the center of the ring, and the indirect shadows underneath
the ring. The indirect illumination intensity is exaggerated for demonstrative purposes.

1 Introduction

One of the most important groups of techniques
in realistic offline rendering in recent years are
the so called Global Illumination techniques. The
term refers to techniques which simulate secondary
bounces of light in a scene, which adds realism in
the final rendering. Global illumination adds vi-
sual appeal and can sometimes help make images
clearer to the observer, and achieving the same effect
with other techniques is both difficult and time con-
suming. Traditionally, global illumination solutions
have been limited to offline renderers, but recent ad-
vances in computer hardware, especially graphics
cards, has open up the door to real-time, or at least
interactive, global illumination solutions. A com-
plete solution which runs in real-time and handles
all of the most common lighting effects is still to be
found, but partial solutions have been developed to
take care of effects such as ambient occlusion, indi-
rect illumination (color bleeding), contact shadows
and caustics.

Our method, Image Space Light Lattice Pho-
ton Mapping (ISLLPM), takes the best of two re-
cent papers, Image Space Photon Mapping (ISPM)
[McGuire and Luebke, 2009] and Light Propagation

Volumes (LPV) [Kaplanyan and Dachsbacher, 2010]
(both described in more detail later), which both
claim to handle subsets of global illumination in
real-time. Our idea is to substitute the slow and of-
ten bottlenecking photon splatting in the ISPM pa-
per, by a lattice of spherical harmonics, similar to
the one presented in the LPV paper. By doing this
we hope to increase the performance of the ISPM-
technique without losing any capabilities of the tech-
nique.

Compared to the LPV technique, we should be
able to handle more high-frequency lighting effects.

Whereas many of the recent interactive/real-
time global illumination techniques focuses on
games, we believe that our technique is more suit-
ible for previews of offline global illumination ren-
derings, which in many cases can take hours before
the artist gets a result. Our technique would enable
the artist to assess how light will flow in the scene,
where for example the caustics will be visible, what
areas will be too dark, or too brigth and so forth.
Moreover, the artist would be able to move around
objects, change material properties and lights, and
get an instant response in the preview.

1.1 Problem statement

2 PREVIOUS WORK

1.1 Problem statement

Light exiting a surface can be described using the so
called rendering equation:

Lo(x,w) = Le(x,w)—k/Q fr(x, 0, w)Li(x, w) (W' n)dw’

where L, is the light exiting from a surface point
x in the direction w, L. is the emitted illumination,
fr is the material properties, L; is incoming light and
n is the surface normal.

To render a scene we have to be able to solve the
rendering equation. Both a rasterizing and a ray-
tracing renderer have to at some point calculate how
much light exits a surface at a particular position, in
a particular direction; that is, solving the rendering
equation. A first thing to notice about the rendering
equation, is that we can split the incoming light into
two groups; direct and indirect light, where direct
light indicates light that comes directly from a light
source and has not bounced of any surfaces, and in-
direct is all other light, that has bounced on one or
several surfaces.

This gives us:

Lo(x,w) = Le(x,w)+

/ fT(X?“‘/a W)Lidwect (x, w/)(w/ ’ n)dw/+
Q

/ fr (X, w/7w)Liindi'r'ect (Xvw/)(w/ : n)dw’
Q

Depending on the material properties, this can
be split down into three more sub-categories; lam-
bertian, glossy and reflective/refractive materials.

All of these materials can be approximately
solved for the direct illumination fairly easy, and
most 3D applications do this today. This is usually
done approximately by representing the reflection of
the light source as a specular highlight on the sur-
face.

This report will focus on solving two things; first
we will simulate light transport in the scene, in
which we handle any kind of material, and secondly
we will use this information to render the indirect
illumination.

Light transport in our solution is just a coarse ap-
proximation of reality, which means that we only
have limited information about the light transport
for each pixel we render. Reflective and glossy mate-
rials require more precision in the light transport so-
lution, since their material functions heavily depend

on the angle, whereas the lambertian materials are
indifferent to where the light comes from and thus
can work with all the light that hits the surface. Be-
cause of this we focus mainly on lambertian surfaces
when it comes to rendering.

-

Figure 2: Example of indirect shadows with ISLLPM

2 Previous work

A large amount of work has been put into indirect
lighting, both real-time and offline. Since this paper
focuses on real-time indirect illumination, we will in
this section primarily present work relevant to this
field.

Common to almost all techniques presented here
is the use of a deferred renderer, producing Geom-
etry buffers (G-Buffers), which was introduced in
[Saito and Takahashi, 1990]. Creating G-Buffers is
usually the first step in a deffered renderer. The
buffers store information such as normals, depths
and diffuse colors. These buffers are then used to
compute the final image.

Virtual Point Lights

Virtual Point Lights (VPLs) was first introduced in
the classical Instant Radiosity paper [Keller, 1997].
The idea was to create a large number of point lights,
each with a shadow map, to simulate indirect illumi-
nation. The biggest problem was however that you
needed to render all these shadow maps for each
VPL, and thus you had to choose between poor per-
formance or temporal inconsistencies.

There exists a number of papers dealing with
countering this tradeoff, such as [Laine et al., 2007]
in which they present a clever scheme for deciding

3 IMAGE SPACE PHOTON MAPPING

which VPLs needs to be removed and inserted to
minimize temporal inconsistency.

[Ritschel et al., 2008|] extended the instant radios-
ity idea further by rendering so called imperfect
shadow maps for each VPL. Their idea is to create
small and partial shadow maps for each VPL each
frame, which they demonstrated gave little visual
error. To do this, they created a point representa-
tion of the scene geometry, and for each imperfect
shadow map they choose a subset of these points.
This subset was then rendered to a texture, creating a
coarse approximation of a shadow map, which was
then improved in a push and pull step. By creat-
ing all these shadow maps in the same pass on the
same texture resource, they were able to do this very
quickly. These imperfect shadow maps were then
used as shadow maps for the VPLs, in the same man-
ner as the classical Instant Radiosity paper.

Reflective Shadow Maps

One way to quickly create VPLs is by render-
ing a so called Reflective Shadow Map (RSM)
[Dachsbacher and Stamminger, 2005]. The RSM
technique builds on the classical shadow map-
ping technique [Williams, 1978]], but augments the
shadow map with material and surface normals in-
formation. The original RSM paper does not create
any explicit VPLs, but rather consider each texel of
the RSM as a VPL. These VPLs are then randomly
sampled during rendering to calculate the indirect
illumination.

Other screen-space techniques

Screen-space techniques has become ubiquitous re-
cently, and usually comes at a much lower cost
than world-space alternatives. One fairly recent
technique is the Screen-Space Directional Occlusion
(SSDO) [Ritschel et al., 2009b] which builds on the
popular Screen-Space Ambient Occlusion (SSAO)
[Mittring, 2007] technique and enhances it with di-
rectional information, which can then used to calcu-
late local indirect illumination, or together with an
environment map; directional shadows. Although,
among other drawbacks, it does not provide physi-
cally correct results, it is very fast and adds very little
overhead to the traditional SSAO.

[Ritschel et al., 2009a] took this idea even further
and did final gathering in screen space by quickly
doing so called micro rendering of the scene from
the world space position of each screen space pixel,

through a technique similar to the Imperfect Shadow
Maps technique. These were then used to calculate
the indirect illumination of the surface.

Photon mapping

Traditional photon mapping was introduced in
[Jensen, 1996, and the idea is to do path tracing from
the light sources rather than from the screen, and
then use this information to calculate indirect illumi-
nation. Path tracing itself was presented in its earli-
est form in [Kajiya, 1986].

[Dachsbacher and Stamminger, 2006|] introduced
the idea to use splatting for indirect illumination.
Their idea was to create a limited number of VPLs
from an RSM, and then render these VPLs using
splatting, i.e. by drawing a geometry around the
kernel to identify the pixels the VPL might affect,
and then calculate the contribution and additively
blend the results together.

The idea in ISPM [McGuire and Luebke, 2009]
(detailed in section [3) is to accelerate parts of the
photon mapping technique on the GPU, specifically
the initial bounce and the final gathering, using
splatting. The tracing however was still done on the
CPU.

Lattice based

LPV [Kaplanyan and Dachsbacher, 2010] (detailed
in section |4) presents a method which is based
on light propagation in a lattice. Spherical Har-
monics (SH) (excellent introduction in [Green, 2003]
and [Sloan, 2008]]) is used to represent both light
and geometry in the grid cells. The propaga-
tion scheme is inspired by the Discreet Ordinance
Method [Chandrasekhar, 1950].

The idea to use SH to represent geometry has also
been presented in [Guerrero et al., 2008].

3 Image Space Photon Mapping

ISPM is a technique developed by Morgan McGuire
and David Luebke in 2009, which utilizes the GPU
to accelerate parts of the traditional photon map-
ping. The technique is reasonably fast and runs in
real-time on concurrent hardware for some scenes,
and converges towards perfect results (i.e. the same
as offline rendered images) given enough time and
number of photons.

3.1 Traditional Photon Mapping

3 IMAGE SPACE PHOTON MAPPING

RSM —P» Bounce map | CPU Tracing | Photon splatting \
/ Final Image
Screen G-Buffer | Direct light /

Figure 3: Flow chart of the ISPM algorithm

Some of the lighting effects the technique han-
dles is; indirect illumination (including color bleed-
ing), caustics (both reflective and refractive) and
indirect shadows (also known as contact shad-
ows). The technique comes with several drawbacks
though; beyond the classical problems of photon
mapping (area light sources and participating me-
dia) it also suffers from two bottlenecks (both of
which will be detailed later); for some scenes the
CPU tracing is a bottleneck, for other scenes the pho-
ton volumes splatting overdraw is an bottleneck.

We will here give a very brief overview of the
technique. More details can be found in the original

paper.

Figure 4: Example of image rendered with ISPM

3.1 Traditional Photon Mapping

Traditional photon mapping is based on the idea that
you trace photons from the light source out into the
scene, inserting a photon into a photon map each
time the photon bounces off a surface. Then you use
this photon map in the rendering step to calculate
the indirect illumination a point receives.

The initial bounce is the computationally heavi-

est, since it contains the largest number of photons
that are still alive. A typical survival rate of photons
per bounce is 20%, meaning that all in all, the ini-
tial bounce often corresponds to almost 80% of the
computations.

The final step is done by finding the N-closest
photons to a screen space pixel’s world space posi-
tion, often accelerated by using for example a k-d
tree [Fussell and Subramanian, 1988|.

Both the first bounce and the final rendering
steps can be accelerated using the GPU.

3.2 First bounce

The first bounce can be calculated by rasterizing the
scene onto an RSM and then calculating the bounce
maps, which contain the photons after hitting their
first surface with all their values, and discards the
photons that gets absorbed. These maps are used,
together with a noise texture for random values, to
calculate the initial bounce photons in their state just
before leaving the surface. Most of these photons
will be discarded.

i

Figure 5: Overdraw visualized. Darker colors indicate
more overdraw, with a maximum of about 200 overdraws
in the purple areas.

3.3 Tracing

4 LPV

3.3 Tracing

The bounce map is then read to the CPU, where the
tracing of the photons continue. For most scenes,
one CPU bounce is enough, but doing more than
one is easily handled. At each bounce the photons
are stored in the photon map, in the same manner as
traditional photon mapping.

3.4 Photon splatting

Finally, we draw the the scene with direct lighting,
and then render the photons on top of this. Each
photon is rendered with a volume, covering its ker-
nel size, using additive blending. For each pixel the
incident light is calculated and permuted with the
surface properties at that position, together with in-
formation from the photon, such as power, incident
direction and path density.

3.5 Discussion

The major drawback with this technique is twofold.
First, the CPU tracing puts a heavy load on the CPU,
and becomes the bottleneck in complex scenes. Sec-
ond, for the splatting to be smooth we need large
kernel sizes, resulting in massive overdraw and thus
a fillrate bottleneck.

The advantages are that the technique converges
to the ground truth, and that it handles caustics and
indirect shadows.

4 LPV

Cascaded Light Propagation Volumes for Real-
Time Indirect [lumination (hereon referred to
as LPV) [Kaplanyan and Dachsbacher, 2010] utilizes
the GPU to a high degree to perform indirect illu-
mination. It primarily handles low-frequency light,
but can also handle glossy surfaces and participat-
ing media. However, it cannot handle caustics and
other high-frequency lighting effects.

4.1 Reflective shadow maps and Virtual
point lights

The first step of the algorithm is the initialization of
the LPV. This is done by rendering a RSM, on the
GPU, from every light source in the scene. Each texel
in the RSM correspond to a VPL. The contribution

from the VPLs are not computed individually. They
are only used for the initialization of the LPV.

4.2 Injection

Two volumes are used to store injected data, a LPV
and a geometry volume (GV). The LPV is a three di-
mensional grid where every grid cell contains a SH
representing the directional distribution of intensity.
The GV is also a three dimensional grid with grid
cells containing SHs. It represents the geometry in
the scene and is used during propagation in order to
simulate ambient occlusion and avoid light to reach
blocked surfaces. The SHs in the GV represents the
directional distribution for probability of light prop-
agation.

For every VPL stored in the RSM, SH coefficients
are calculated using a conical projection on the nor-
mal to the surface of the pixel. The coefficients given
by the projection is scaled with the flux stored in
the VPL. Geometry information stored in the RSMs,
such as normals and depths, are further used in or-
der to initialize the GV in a similar manner.

4.3 Propagation

The propagation, as the name suggests, is a process
of spreading light throughout the grid according to
the directional distribution intensity stored in the
SHs.

The first iteration operates on the LPV received
from the injection stage. Every cell in the LPV prop-
agates information to its six neighbours according to
the three axial directions. Every neighbour of the
source grid cell receives light on five of its six faces.
The contributions from the five faces are added to-
gether and blended into the SH of that grid cell. Fig-
ure [/] illustrates this process in two dimensions by
showing how an SH adds its contribution I(w) to a
face in direction w. To determine the visibility of a
face from the source cell’s center, the solid angle is
calculated from each face, which corresponds to the
area of the face projected onto the sphere’s surface.
The final contribution is then calculated by multiply-
ing the projected area with the intensity 7(w) found
in the direction from the source cell’s center to the
center point of the face as seen in figure[7] The con-
tribution I (w) is then reprojected into the neighbour-
ing cell’s SH in the direction of the normal pointing
towards that face.

4.4 Cascaded Grids 4 LPV
RSM P VPL Injection 3
/ Propagation | LPV Rendering
Geometry Injection \
Final Image
Screen G-Buffer = Direct light /

Figure 6: Flow chart of the LPV algorithm

Figure 7: This illustrates the process of propagating light
into neighbouring grid cells where I(w) is the intensity
found by decoding the SH with direction w. The neigh-
bouring SH receives the contribution by projecting it with
the normal n.

To get good looking low-frequency lighting, sev-
eral iterations needs to be performed. As mentioned
earlier, the first iteration is run on the LPV received
from the injection stage. Further iterations are run in
a "ping-pong" manner where the second iteration is
run on the results produced by the first iteration and
the third run on the second and so on. During this
process, a LPV containing the accumulated results
from all iterations is used.

4.4 Cascaded Grids

The LPV-algorithm uses cascaded LPVs where grids
closer to the viewer are of higher resolution than

those far away. The benefit in doing so is that fewer
iterations are needed during propagation thanks to
the finer details produced from having a higher den-
sity of SHs closer to the viewer. To determine the
grid resolution they simply scale the local grid res-
olution with the distance from the camera in the
viewing-direction.

4.5 Rendering

The final rendering takes the LPV containing the ac-
cumulated results as input which is recieved from
the iterations run in the propagation step. In figure
a result showing low-frequency indirect illumina-
tion can be seen.

Figure 8: This illustrates the low-frequency indirect illu-
mination produced by the LPV-algorithm.

The actual process of rendering the final image

5 OUR METHOD

is very straightforward thanks to the simplicity of
dealing with SHs. By extracting the information
from the LPV based on the normals of the pixels seen
by the camera, the LPV-algorithm additively blends
the results together.

5 Our method

Our method is inspired by both the ISPM and the
LPV papers. From ISPM we have the ideas of us-
ing an RSM to calculate the first batch of photon
bounces, a so called bounce map, and to then trace
these photons in the scene. From LPV we take the
notion of representing lighting in the scene with
spherical harmonics in a lattice, as well as parts of
the injection scheme.

The result of this is that we can simulate all the ef-
fects the traditional photon mapping technique han-
dles, i.e. our technique converges to photon map-
ping given enough time and processing power. At
the same time it is also very fast, since we eliminate
the overdraw bottleneck the ISPM technique suffers
from.

The tradeoff consists of having to do the tracing
on the CPU, which for us is the bottleneck on most
systems.

The algorithm can be broken down into the fol-
lowing steps:

1. Do the first photon bounce on the GPU by cal-
culating a bounce map

2. Read the photons to the CPU and do the re-
maining bounces as in traditional photon map-

ping

3. Inject the photons by point rendering into a
Spherical Harmonics Lattice (SHL)

4. Create a G-Buffer for the screen
5. Calculate direct lighting

6. Draw the indirect illumination by using the
SHL and the screen G-Buffer

Figure 10: Surface normals coupled with the outgoing
direction vectors of the corresponding bounce map. The
box is built using diffuse surfaces while the ring is fully
reflective and the sphere fully transmissive.

Name | Size | Description

P float3 | Photon power

Nout float | Index of refraction for hit surface

Pp float | Path density (scaled by likelihood
of taken photon path)

Wo float3 | Outgoing direction of the photon

z float | Photon position depth

Table 2: Bounce map layout

5.1 Bounce map

The first bounce when performing photon mapping
on a scene is by far the heaviest bounce, since no
photons have been absorbed yet. The number of
live photons decreases significantly at each bounce,
making computations a lot faster for greater depths.
Thankfully, we can move the first bounce calcula-
tions to the GPU by rendering an RSM, which in turn
is used for bounce map generation.

5.2 Tracing

5 OUR METHOD

RSM P Bounce map | CPU Tracing

Photon Injection

SHL Rendering

Final Image

Screen G-Buffer

el >

Direct light

Figure 9: Flow chart of our algorithm

The RSM contain the world space position, the
surface normal and the material properties of each
texel as seen from the light source where each texel
represents a live photon. These values are then used
to calculate the properties of the outgoing photons
(see table [5) surviving the first bounce.

There are four different types of bounces, not
counting photon absorption, that can determine the
outgoing direction of the photon after the bounce.
These are:

e Lambertian - Uniform scatter in a hemisphere

Glossy - Scatter in a lobe around the reflection
vector

e Mirror - Perfect reflection
e Transmissive - Refraction

The resulting bounce map for an example scene
is shown in figure

The probabilities for the different types of
bounces are contained in the previously mentioned
material properties. They are divided into lamber-
tian, specular (glossy and mirror bounces) and trans-
missive components with asum p = pr+pgs+pr <1
for each color. The probability of a photon being
absorbed at the first bounce is thus 1 — p. The ma-
terial properties also contain the index of refraction
constant for the material as well as a specular expo-
nent value that decides the characteristics of specu-
lar bounces.

In the case of a refraction bounce, the power is
negated in order to be able to distinguish the refrac-
tive bounce from a normal bounce when extracting

photons on the CPU. This is also the only case where
the index of refraction variable might differ from its
incoming value.

5.2 Tracing

Once the first bounce has been computed, the results
are read back to the CPU for further tracing. This
is done in the same manner as the ISPM technique,
which in turn follows the traditional photon map-
ping tecnique quite closely.

While the bounce map stores the photons di-
rectly after their first bounce, the photon map stores
the photons just before each bounce. The data stored
for each photon contains all the information needed
for the upcoming injection stage, where the color
contribution to the target grid cell is computed. The
final properties of the photons sent further to the in-
jection stage can be found in table 3| The photons
obtained from the bounce map are not stored in the
photon map, since these surfaces are better handled
by a direct illumination render pass.

Name | Size | Description

P, float3 | Power

z float3 | Position

Ty, float3 | Hit surface normal
W; float3 | Incoming vector

Table 3: Photon map layout

The tracing depth can be limited as a mean to re-
duce computation times. The first indirect bounce

Technique || Initial bounce | Remaining bounces | Rendering

ISPM RSM + Bounce map | CPU Tracing Photon splatting

LPV RSM + Injection Propagation LPV rendering

Our method || RSM + Bounce map | CPU Tracing Photon injection + LPV rendering

Table 1: Comparisons of steps in the techniques

5.3 Injection

5 OUR METHOD

Photons
1st bounce

Photons
2nd bounce

Final image

Figure 11: Visual representation of a photon map at the first and second bounce respectively and the final rendered
image. The photons in the first bounce are not stored in the accumulated photon map as this light is represented by
direct lighting. The ring is reflective and the sphere is refractive/translucent, which is especially visible in the patterns

produced by the photons in the second image.

provides the most important contribution to the fi-
nal image for diffuse and mildly glossy surfaces. It
is therefore a reasonable optimization to skip further
tracing for low-frequency light. Nevertheless, trans-
missive and highly specular surfaces still need mul-
tiple bounces since this light is high-frequency and
gives small, but strong, contributions to the scene.

To accelerate the photon tracing, a kd-tree is con-
structed for each object. We also utilize multi-core
capabilities of modern hardware by launching one
thread per core to handle a subset of the photons.
Since they operate on separate data we do not need
any more synchronization mechanisms than a single
barrier to tell when the tracing is completed on all
threads.

5.3 Injection

Until here, our method has followed a similar algo-
rithm as the ISPM to generate the photon maps. In
the next step of our algorithm, we leave the ISPM
completely to avoid the fillrate issues inherited with
splatting used in ISPM. Instead of splatting photons
to the screen using polyhedrons, our method uses
lattices where the photons are represented by SHs
as in the LPV-algorithm. In each grid cell there is a
spherical harmonic approximating a color in a cer-
tain direction. Since each SH can only hold one
color, three grids are needed in order to cover the
red, green and blue spectrum.

In difference to the LPV-algorithm, our method
does not need a second grid for storing blocking in-
formation from the geometry in the scene, since we
use photon tracing.

When inserting photons into the grid, three val-
ues are needed per photon in order to perform pro-
jection, which is the construction of the coefficients
corresponding to a SH. The formula used for projec-
tion is shown below, and is described in more depth
in [Sloan, 2008].

= [F(s)y(s)ds

Each coefficient f/™ is calculated by integrating
the function f(s), that we want to approximate, mul-
tiplied by the basis function y;”. Those coefficients
will be used during the final rendering pass in order
to decode the information encoded into the spherical
harmonic. A representation of spherical harmonics
contained in a grid is shown in figure

Each photon is sent to the vertex shader together
with its color, normal and incident direction. The
incident direction s is sent as input to y]"(s) and the
color is used to scale the four coefficients returned by
y;"(s). Instead of integrating over the domain pro-
vided in the formula, we additively blend the con-
tributions together for each photon corresponding to
the given grid cell.

Our method wants to be able to represent light
with different frequencies, spanning from low-
frequency indirect illumination to high-frequency
caustics. In order to achieve this, we need vari-
ous densities of SHs corresponding to different fre-
quency spectrums. We solved this by creating lat-
tices of different resolutions, where higher resolu-
tion means a higher density of spherical harmonics
and visa versa.

For each grid we perform a unique render pass
covering all photons that corresponds to the fre-

10

5.4 Rendering

5 OUR METHOD

quency spectrum provided by grid being rendered.
The actual algorithm for injection is very simple, as
seen below.

1. Find the gridcell gc; corresponding to the pho-

ton p;

Compute the coefficients:
" = y" (ps.incident Direction)

Scale with red, green and blue:
red = p;.power.red * c]"

green = p;.power.green x c|"
blue = p;.power.blue x ¢

Blend the three results to their corresponding
render target

b |

Figure 12: This is a visual representation of spherical har-
monics storing the directional distribution of red light.
The blue sphere connected to each harmonics represents
the negative direction of the SH. The size of the harmon-
ics corresponds to the intensity of red light stored in that
particular harmonic. Notice the large SH in the bottom
right corner where the amount of color bleeding is large.

5.4 Rendering

This section deals with the indirect illumination,
which is the final step of the rendering. This final
rendering is done after the direct lighting has been
computed.

For being able to use the information stored in
the grids to produce indirect lighting, a G-Buffer is
needed where normals and depths are stored. With
the direct lighting and G-Buffer rendered, the final
render pass becomes an easy task thanks to the sim-
plicity and efficiency inherited from SH. The for-
mula used for extracting the coefficients represent-
ing colors from given directions can be seen below.

11

m,,m

1Y

fls) =0 oS (s)

The power f(s) in direction s is calculated by
summing dot products of the basis function y;*(s)
and the four coefficients f;" stored in the grid. The
direction s for which we want to approximate a
color, is determined by the normal of that pixel. The
world space normals are stored in the G-Buffer. The
depth value in the G-Buffer is also needed in order to
determine the world position of the pixel being ren-
dered. The world position is then used to determine
where to sample in the grid.

The three contributions f(s), for red, green and
blue, are additively blended into the final image that
was previously drawn to the screen. This process is
done in screen space for all pixels. Since we have a
collection of grids spanning up the whole spectrum
of frequencies, one render pass has to be done for
each of those spectrums. No further work has to be
done in order to perfect the final image. By just addi-
tively blending together the passes, a good looking
result is found. The addition of indirect lighting is
illustrated in figure

The algorithm executed in the pixel shader can
be described in a couple of small steps as seen below
(notice that the color c is a vector of three compo-
nents and s is a matrix of three sample vectors, each
representing one of the red, green and blue grid).

1. Extract sample s from the grid using the world

space position of pixel p.

m

Calculate final color ¢ from s - y;™(n) where n is
the world position normal to pixel p.

Blend color ¢ to screen space position of pixel
p.

A problem that arose from using sparse grids for
low-frequency light is that borders appear between
grid cells. This is because there is simply no guaran-
tee that the information stored in two adjacent SHs
results in a smooth transition on the surface reading
from the two SHs. This problem is illustrated in fig-
ure

We addressed the problem by blurring the infor-
mation stored between adjacent SHs in order to pro-
duce redundancy amongst neighbouring harmonics
to increase the likelihood of smooth transitions be-
tween grid cells. We tried using several kernels of
different sizes and patterns.

With the grid being in three dimensions, a large
amount of samples are needed in order to achieve

6 IMPLEMENTATION DETAILS

Direct Lighting Indirect Lighting Direct + Indirect Lighting

Figure 13: An illustration of how the final rendering step adds indirect lighting to the scene. The second picture
represents the indirect illumniation being added into the first picture representing the direct lighting. The final result
from adding the two pictures together is displayed in the third picture.

a sufficient amount of blurring. To get decent look-
ing results we had to take at least one sample from
every neighbour to a grid cell which gives rise to 26
samples due to the inherent complexity of three di-
mensions.

In figure[15|a 3x3x3 kernel is used to reduce the
hard transitions between grid cells.

Since computing the blurring in screen space is
not always favourable for low-freugnecy grids, we
perform the blurring in SHL space for sparse grids
in order to save performance. This is similar to the
propagation used in the LPV-algorithm where infor-
mation was spread to neighbouring SHs.

Figure 15: A kernel using 27 samples (3x3x3) is used to
invoke redundancy between neighbouring SHs.

6 Implementation Details

This section goes into detail about the implementa-
tions that were used for running the tests described
in section (7).

6.1 Platform

All tests have been run on an NVIDIA Geforce GTS
250 GPU together with an Intel Core 2 Quad Q8300
2.5GHz chip overclocked to 3.0GHz and 4GB of
physical memory. The programs were written in
HLSL and C# 3.5 using DirectX 10.0 via the SlimDX
Figure 14: Notice the borders that appear on surfaces DirectX API and ran on a Windows 7 64-bit system.
where the information stored in the SHs differ in an un- Quyr algorithm would have benefited greatly from a
pleasant way. faster processor with more cores; more so than both

12

6.2 Photons

7 RESULTS & DISCUSSION

of the compared techniques since they are more de-
pendant on the GPU. Nevertheless, the chosen ma-
chine represents a typical gaming computer of today.

6.2 Photons

The initial photon count is set to 20000 photons
with the G-buffer sizes set accordingly. The survival
rate for diffuse surfaces is typically only 20%, but is
much higher for more specular or transmissive sur-
faces.

The photons are currently set to only bounce
once for diffuse surfaces in order to improve perfor-
mance. As described in section this does not af-
fect the quality of the final image much.

6.3 Bidirectional scattering distribution
function (BSDF)

We implemented a BSDF based on that of
[McGuire and Luebke, 2009] that deals with lam-
bertian, glossy, mirror reflections and transmissive
terms. Instead of using three channels per term (one
for each color component) a single value was used.
The BSDF is used when building the bounce and
photon maps.

6.4 Light Lattice

The [Kaplanyan and Dachsbacher, 2010] paper on
Light Propagation Volumes lets the grid follow the
camera as it moves around the scene. For simplic-
ity, our implementations of both our own algorithm
and LPV uses static non-cascaded grids fitted to
the scene instead of the dynamic grid-solution pre-
sented in the LPV-paper. Implementing this for our
algorithm should be no harder than doing it for the
LPV-algorithm.

Three different grid sizes seem to be sufficient
for representing low-, medium- and high-frequency
light with grid side lengths of 4, 8 and 128 cells re-
spectively for the cornell box shown throughout the
report.

Various different sampling patterns used to solve
the grid cell border problem described in section 5.4]
were tested and a 3x3x3 grid with uniform weight-
ing turned out to give the best results. Other
tested sampling schemes were linear sampling, non-
uniformly weighted 3x3x3 sampling, axis-adjacent
sampling and a few different sampling patterns in
a 5x5x5 grid.

6.5 Non-interactive mode

Considering one of our target applications of this
technique is previews of renderings, we imple-
mented a non-interactive mode. In this mode, the
user first positions the objects in the scene. Then, a
one time calculation of the lighting solution is com-
puted, and stored in the SHLs. The SHLs are then
used in the normal way, permitting the user to move
around the camera freely, with an accurate lighting
solution from any angel, but with a much higher
framerate, since only parts of our algorithm is used
at this stage. This also enables the user to use a much
greater number of photons, getting a more accurate
lighting solution.

7 Results & Discussion

In this section we present the results and limitations
of our algorithm. We also present a comparison be-
tween our algorithm and the ISPM- and the LPV-
algorithm.

7.1 Comparison between ISPM, LPV &
ISLLPM

We ran the three algorithms on three different scenes
as seen in figure The first scene is a standard
cornell box, the second is a cornell box with some
more complexity added to it, and the final scene is
sponza. In the cornell box scene, our method works
fine running on 20 FPS or more, but in sponza the
photon-tracing cannot match the performance of the
LPV-algorithm.

7.2 Profiling

We profiled our algorithm on two different scenes.
The algorithm is split into seven parts where two
parts are run on the CPU. Those two are the initial-
ization of the photon map and the bouncing. In table
the results are shown from profiling our algorithm
in the cornell box scene which can be seen in figure

iV

By adding more complexity to the scene it is clear
that the final step gets faster in comparison to the
two steps run on the CPU, which can be seen in ta-
ble[6l The scene used can be seen in figure

13

7.2 Profiling 7 RESULTS & DISCUSSION

ISPM LPV ISLLPM

o_

ISPM LPV ISLLPM

Figure 16: The scene used for comparing the performance of the three different techniques presented in this paper.

Scene | FPSISPM | FPSLPV | FPSISLLPM
Cornell box 3 66 25

Complex Cornell box | 3 67 23

Sponza 1 12 1

Table 4: Comparison between the ISPM, the LPV, and our method for three different scenes.

Figure 17: Scene used for profiling.

14

7.2 Profiling

7 RESULTS & DISCUSSION

Operation | Time Elapsed [ms] | Amount of time [%)]
Bounce map <1 <1

Init Photon map | 11 12

Tracing 45 49

Injection 2 2

Scrren G Buffer | <2 <2

Direct light <2 <2

Draw lpv 31 34

Table 5: Profiling the different stages of the ISLLPM algorithm when only using low frequency lighting.

Figure 18: Scene used for profiling.

Operation | Time Elapsed [ms] | Amount of time [%)]
Bounce map <1 <1

Init Photon map | 12 8

Tracing 94 66

Injection 2 2

Scrren G Buffer | <2 <2

Direct light <2 <2

Draw lpv 31 21

Table 6: Profiling differenet stages of the algorithm when using both low and high frequency lighting.

15

7.3 Limitations

8 CONCLUSIONS

7.3 Limitations

We found some limitations causing problems for
both the performance and the graphical quality. A
hardware dependant limitation is that the method
requires shader model 4.0 to get access to the geom-
etry shader used frequently in our method.

7.3.1 Performance

The performance of our algorithm is two-folded. It
can handle everything from low-frequency lighting
to high-frequency lighting, but at a cost, which is
performance. The initialization of the photon map
and the bouncing becomes a troublesome bottle-
neck, even when running the tests on a Intel Core
2 Quad Q8300 2.5GHz chip overclocked to 3.0GHz.
In the case of more complex scenes, which are suit-
able for games, the tasks computed by the CPU takes
more than 99% of the total running-time, and thus
releases almost all load on the GPU. Tendencies of
this kind can be seen in table[f] where the amount of
time doing tracing increases just by adding a couple
of spheres to the cornell box.

With upcoming modern hardware, where more
cores are introduced on the CPU, such techniques as
ours can come in handy. Anohter possibility is to im-
plement the photon tracing on the GPU which might
become more popular, especially with the compute-
shaders introduced with Directx 11.0.

Figure 19: The high-frequency caustics suffer from dis-
cretizing problems due to the grid.

16

7.3.2 Visual defects

The only defect that we found using our algorithm,
was the grainy high-frequency lighting. In most
cases the grainy lighting was not visible. It can be
partially solved by increasing the resolution of the
grid or increasing the amount of photons, but we can
never get around the inherited discretization prob-
lem that comes with using grids. Increasing the res-
olution of the grid also affects performance greatly
since the number of grid cells increase exponentially
with increasing the grid size.

Our method is not able to handle participating
media since our photons are attached to surfaces
and has no further communication with surround-
ing medias. The LPV-algorithm handles this very
well thanks to their propagation step where infor-
mation is further spread throughout the LPV.

Another graphical effect that we believe will be
hard to achieve is glossy surfaces.

8 Conclusions

The algorithm presented managed to run faster than
our implementation of the ISPM-technique while
still providing caustics which is not handled by
the LPV-algorithm. There were some discretization
problems for high-frequency light as expected, but
most of this could be removed by sacrificing perfor-
mance.

The algorithm presented has many possible im-
provements and features that can be added and
some of these are presented in the Future work sec-
tion.

8.1 Future work
Photon tracing

In most scenes, our technique is bound by the CPU
photon tracing. Although work has been done in our
implementation to optimize this step, there is most
likely much more that can be done.

An interesting step would also be to move the
tracing to the GPU. Modern hardware and software
allows generic programs to be run on the GPU,
which opens up the door to practical ray tracing on
the GPU.

REFERENCES

REFERENCES

High-frequency lighting

We handle high-frequency light by having a high
resolution SHL. As described in the results section,
the problem with this is that we have to trade be-
tween high memory usage and discretization prob-
lems.

An alternative would be to use photon splatting
for high-frequency light [McGuire and Luebke, 2009],
but still use our SHLs for the low frequency light.
The problem in the ISPM paper with the pho-
ton splatting was overdraw, but since the high-
frequency lighting effects usually only cover a very
small portion of the screen, the overdraw should be
limited.

Cascading SHLs

Our solution uses a hierarchical set of SHLs, to
handle both high- and low-frequency light. How-
ever, these does not scale with the distance from
the camera. This means that we in many cases
get a too low SHL resolution close to the cam-
era, and a too high resolution far away from it.
To solve this, we suggest implementing something
similar to the cascading LPVs in the LPV paper
[Kaplanyan and Dachsbacher, 2010].

References

[Chandrasekhar, 1950] Chandrasekhar,
Radiative Transfer. Dover Pubn Inc.

S. (1950).

[Dachsbacher and Stamminger, 2005] Dachsbacher,
C. and Stamminger, M. (2005). Reflective shadow
maps. In I3D '05: Proceedings of the 2005 sympo-
sium on Interactive 3D graphics and games, pages
203-231, New York, NY, USA. ACM.

[Dachsbacher and Stamminger, 2006] Dachsbacher,
C. and Stamminger, M. (2006). Splatting indirect
illumination. In I3D '06: Proceedings of the 2006
symposium on Interactive 3D graphics and games,
pages 93-100, New York, NY, USA. ACM.

[Fussell and Subramanian, 1988] Fussell, D. S. and
Subramanian, K. R. (1988). Fast ray tracing using
k-d trees. Technical report, Austin, TX, USA.

[Green, 2003] Green, R. (2003). Spherical harmonic
lighting: The gritty details. Archives of the Game
Developers Conference.

17

[Guerrero et al., 2008] Guerrero, P, Jeschke, S., and
Wimmer, M. (2008). Real-time indirect illumina-
tion and soft shadows in dynamic scenes using
spherical lights.

[Jensen, 1996] Jensen, H. W. (1996). Global illumi-
nation using photon maps. In Proceedings of the
eurographics workshop on Rendering techniques '96,
pages 21-30, London, UK. Springer-Verlag.

[Kajiya, 1986] Kajiya, J. T. (1986). The rendering
equation. SIGGRAPH Comput. Graph., 20(4):143-
150.

[Kaplanyan and Dachsbacher, 2010] Kaplanyan, A.
and Dachsbacher, C. (2010). Cascaded light prop-
agation volumes for real-time indirect illumina-
tion. In I3D “10: Proceedings of the 2010 ACM SIG-
GRAPH symposium on Interactive 3D Graphics and
Games, pages 99-107, New York, NY, USA. ACM.

[Keller, 1997] Keller, A. (1997). Instant radiosity. In
SIGGRAPH '97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive tech-
niques, pages 49-56, New York, NY, USA. ACM
Press/Addison-Wesley Publishing Co.

[Laine et al., 2007] Laine, S., Saransaari, H., Kontka-
nen, J., Lehtinen, J., and Aila, T. (2007). Incremen-
tal instant radiosity for real-time indirect illumi-
nation. In Proceedings of Eurographics Symposium
on Rendering 2007, pages xx—yy. Eurographics As-
sociation.

[McGuire and Luebke, 2009] McGuire, M. and Lue-
bke, D. (2009). Hardware-accelerated global illu-
mination by image space photon mapping. In Pro-
ceedings of the 2009 ACM SIGGRAPH/EuroGraphics
conference on High Performance Graphics, New York,
NY, USA. ACM.

[Mittring, 2007] Mittring, M. (2007). Finding next
gen: Cryengine 2. In SIGGRAPH "07: ACM SIG-
GRAPH 2007 courses, pages 97-121, New York,
NY, USA. ACM.

[Ritschel et al., 2009a] Ritschel, T., Engelhardt, T.,
Grosch, T., Seidel, H.-P.,, Kautz, J., and Dachs-
bacher, C. (2009a). Micro-rendering for scalable,
parallel final gathering. In SIGGRAPH Asia '09:
ACM SIGGRAPH Asia 2009 papers, pages 1-8,
New York, NY, USA. ACM.

[Ritschel et al., 2008] Ritschel, T., Grosch, T., Kim,
M. H., Seidel, H.-P.,, Dachsbacher, C., and Kautz, J.

REFERENCES REFERENCES

(2008). Imperfect shadow maps for efficient com- [Saito and Takahashi, 1990] Saito, T. and Takahashi,
putation of indirect illumination. In SIGGRAPH T. (1990). Comprehensible rendering of 3-d
Asia '08: ACM SIGGRAPH Asia 2008 papers, pages shapes. SIGGRAPH Comput. Graph., 24(4):197-
1-8, New York, NY, USA. ACM. 206.

[Ritschel et al., 2009b] Ritschel, T., Grosch, T.,, and [Sloan, 2008] Sloan, P-P. (2008). Stupid spherical
Seidel, H.-P. (2009b). Approximating dynamic harmonics (sh) tricks.
global illumination in image space. In I3D "09:
Proceedings of the 2009 symposium on Interactive 3D [Williams, 1978] Williams, L. (1978). Casting curved
graphics and games, pages 75-82, New York, NY, shadows on curved surfaces. SIGGRAPH Comput.
USA. ACM. Graph., 12(3):270-274.

18

