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Abstract

Although class diagrams can be a useful asset within software development,
the size of reverse engineered diagrams may quickly become overwhelming in
a large scale software environment. One way of keeping diagrams small is to
condense them by removing the least important classes while keeping the re-
mainder. This can be done through the use of machine learning where metrics
of a class are used determine how important the class is. As not very many
metrics have been used in this setting, the purpose of this thesis is to identify
what metrics that are considered to be relevant for different stakeholders and
then to find how well the identified metrics work within the machine learner.
Furthermore, the thesis also aims at evaluating if the method as a whole is
useful within an industrial setting. The work was started by interviews in
collaboration with Ericsson where their opinion regarding the importance of
classes was gathered. Then followed the creation of a tool for condensing
diagrams and an analysis of the performance of the machine learner. Addi-
tionally, condensed diagrams were compared to reverse engineered diagrams.
Several new high performing metrics were found and extending the previ-
ous set of metrics improved the performance of the machine learner overall.
Some flaws were identified with the condensed diagrams, however they still
managed to perform better than reverse engineered diagrams with all classes
remaining and thus, the method should be considered advantageous in an
industrial setting.

Keywords: machine learning, condensing diagrams, metrics, class impor-
tance, reverse engineering
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Chapter 1

Introduction

The documentation of the software architecture is not only important for
creating the software, it is also very favourable to use as a means of com-
munication and as a tool for learning throughout the lifetime of the software
[1]. Thus, maintaining the documentation as the software evolves is certainly
beneficial. Nevertheless, this does not always happen in practise. Addition-
ally, manually creating new documentation of the architecture of the software
repeatedly as it evolves is a time consuming task.

One way to deal with this issue is to automatically reverse engineer the
source code into diagrams that represent the architecture of the software [2].
However, this method is not flawless. For any larger system, preserving all
the elements would result in diagrams of massive size. Too much detail would
be kept and the architecturally important elements would be indistinguish-
able and therefore, the diagrams would be rendered useless.

Thus, reverse engineering must be accompanied by a method to condense
the diagrams in order to only preserve relevant elements and efficiently dis-
play the architecture of the software. While at the same time, removing too
many elements renders the diagrams incomprehensible due to lack of infor-
mation available for the reader.

One way of automatically condensing diagrams is through the use of ma-
chine learning algorithms [3]. Such algorithms use a set of software metrics
as input. These metrics are called predictors as they are the key elements
that the algorithm learns and uses in its predictions. In this case, the pre-
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diction should be of whether or not a class is important enough to stay in
the diagram or not.

In the training phase, the algorithm is fed with manually created diagrams
representing software systems without including all classes along with reverse
engineered diagrams that do contain all the classes of the same systems [4].
By doing this, the machine learner is able to learn how to select the impor-
tant classes from the reverse engineered diagram, based on the values of the
predictors.

In the application phase, the algorithm is fed with a new reverse engineered
diagram and then uses the previously learnt knowledge in order to determine
which classes from the diagram that are the architecturally most important
and should be kept in the condensed diagram [4].

By letting the algorithm produce a value of importance for each class, rather
than only a binary value indicating whether or not the class should be in-
cluded, it is possible to sort the classes by importance and make condensed
diagrams at various levels of abstraction. Including very few of the most
important classes would produce a high level diagram while including many
of the most important classes produces a diagram of lower abstraction level.

1.1 Problem

At the moment, the set of software metrics that are used as predictors is very
limited [3, 4, 5]. These are explained further in section 3.1. Additionally, the
condensed diagrams from condensation with one set of metrics may not be
suitable for different kinds of stakeholders. E.g, a system architect might
have different opinions regarding what classes that are seen as important
compared to a developer.

Discovering what metrics that different stakeholders think are important
could not only improve the quality of the condensed diagrams for differ-
ent stakeholders, but creating a larger set of metrics to be used as predictors
could increase the accuracy of the predictions for all stakeholders.

2



1.2 Purpose

The aim of this thesis is to, in collaboration with Ericsson, gain more knowl-
edge regarding which software metrics that are perceived to be architecturally
important within the design of class diagrams for various stakeholders within
software development and use this knowledge to select metrics which advan-
tageously can be used as predictors in a machine learning algorithm for con-
densing reverse engineered class diagrams. By including a larger number of
predictors which are relevant to the architecture, the accuracy of the con-
densed diagrams from the machine learner could be improved.

Furthermore, this thesis presents a software prototype capable of condensing
reverse engineered class diagrams using the selected software metrics. Not
only should this prototype aid in validating the usefulness of the method of
condensing diagrams through the use of machine learning algorithms, but it
should also be able to be used within future research in this field.

1.3 Research questions

To address the problems described above, these three research questions are
the focus within the thesis:

• RQ1: Which metrics of a software class are considered to be architec-
turally important for different stakeholders within the software devel-
opment?

• RQ2: Which metrics of a software class can advantageously be used as
predictors in a machine learning algorithm to determine the importance
of the class?

• RQ3: Are class diagrams which are condensed through machine learn-
ing useful within industry?

RQ1 helps with gaining more knowledge within the area. Having information
about what is important gives a good indication of where useful metrics can
be found. However, while there may be a correlation between whether or
not a metric is perceived to be important and if the metric can be used as
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a predictor, it is not certain that all the metrics that are considered to be
important actually work well within the machine learner. RQ2, gives a direct
indication of which metrics that actually are useful and should be used within
the machine learner. RQ3 shows on a higher level whether or not the method
of condensing diagrams as whole works in a real world setting.
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Chapter 2

Background

In this chapter, both UML and machine learning are thoroughly explained
as they serve as a base for the entire thesis. Additionally, the company,
Ericsson, which the work is done in collaboration with is introduced.

2.1 UML

Unified Modeling Language (UML) is a language for defining and visualising
software models [6]. It was created in 1995 and has been an ISO standard
since 2005 [7]. While UML defines a lot of different building blocks, UML
diagrams can be divided into two main groups: diagrams describing the struc-
ture of the software and diagrams describing the behaviour that the system
has [6].

2.1.1 Structural diagrams

One of the diagram types that statically show the architectural structure of
the software system is the class diagram. A class diagram shows the classes
of the system along with the relationships between the classes [6]. A very
simple class diagram with four classes can be seen in figure 2.1.
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Figure 2.1: A very simple UML diagram generated in PlantUML

A class can be further extended to include attributes and operations. The
Door class which can be seen in detail in figure 2.2 has the attributes height
and colour as well the operations open and close.

Figure 2.2: A class with attributes and operations generated in PlantUML

Furthermore, several types of relationships exist. Simply using a line shows
association while a filled diamond shows aggregation and an empty triangle
shows generalisation. Additionally, relationships can be extended to include
the multiplicity that are allowed between the related classes. These relation-
ships can be seen in figure 2.3.
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Figure 2.3: A class with attributes and operations generated in PlantUML

Other commonly used diagrams are component diagrams showing compo-
nents and their relationships, object diagrams showing objects and their re-
lationships and deployment diagrams that show the nodes that the system
is deployed at and the relationships between those nodes.

2.1.2 Behavioural Diagrams

The behavioural diagrams how things are happening in the system. On of
these diagrams is the Sequence diagram. These diagrams look at how mes-
sages travel between objects and in what time order [6]. A simple sequence
diagram of how a student registers for a course can be seen in figure 2.4.
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Figure 2.4: Three classes with calls between them generated in PlantUML

Further diagrams that show the behaviour are use case diagrams which show
how actors interact with the system and activity Diagrams that show how the
flow goes between different activities in a system. Also, statechart diagrams
show the different states a system is in, as well as the possible transitions be-
tween states and events that can trigger the transitions. However, this thesis
only looks at the architectural structure and focuses on class diagrams.

2.2 Machine Learning

Machine learning denotes a very broad field of research. However, it all re-
gards intelligent software that is able to learn information and draw new
conclusions based on previously inputted data. There are many ways to
achieve such software, and many concepts that are involved.

The learning within the software can be divided into two different groups:
online learning and offline learning [8]. In offline learning, there is an initial
learning phase where a set of data is used to train the software. After that,
the software is able to directly draw conclusions in new situations. In online
learning however, the learning phase never ends. Whenever the software is
used to draw conclusions in new situations, the information regarding the
new stituation is also utilised within the software to further improve the re-
sults of future use.
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Furthermore, machine learning can also be separated into supervised, unsu-
pervised and reinforcement learning [9]. In supervised learning, the software
is given a set of data to learn, but also the correct output. Then the soft-
ware is capable of mapping given input with the wanted output. However,
in unsupervised learning, the correct output is not given. Instead, the soft-
ware may be able to find new information and draw conclusions which have
previously been unknown.

Reinforcement learning works very differently. During the training, the soft-
ware is not given a set of data, but instead it is given a value of how well it
performs in a certain situation. Additionally, it is up to the software itself
to discover how it should be tweaked to produce the best result. One could
say that this is using the method of trial and error.

Yet another way of approaching machine learning is to divide it into the
types of output it produces [10]. Different types of output could be for ex-
ample a linear model of the data, a rule for classification of new data or a
clustering of the inputted data. In this thesis, the machine learning used is
supervised with offline learning to solve a classification task.

2.3 Ericsson

One of the largest communication technology companies, Ericsson [11], has
undergone a change of software development platform within the EPG de-
partment. From previously using a Rhapsody based platform, they have
moved towards using an Eclipse based platform.

Rhapsody has been part of the Model Driven Engineering process and was
responsible for creating both architecture models and software implementa-
tion [12]. Thus, Rhapsody helped architects to keep track on changes in the
software architecture models (top-down approach). However, what is lacking
is visualisation from actual implementation (bottom-up approach) that is
suitable for different stakeholders. A tool that can complement Rhapsody’s
current views would aid in the architectural decision making process.

9



Chapter 3

Related works

3.1 Condensing using machine learning

Automatically creating condensed diagrams is not impossible. This is demon-
strated by Osman et. al. who used different machine learning techniques in
order to determine the importance of a class [4]. In their research, a set of
software metrics were used as predictors in the machine learning algorithms.
However, this set is very limited and extending it could improve the result
of the algorithms, and thus also improve the condensation of the diagrams.
Something that is consistent with the entire set of metrics used is that all
metrics are design metrics of the software, such as the number of operations
or the number of dependencies of a class. Development metrics such as the
number of times as class has been changed or the number of contributors are
not present at all.

Similarly, Osman et. al. used a machine learning technique in order to
create condensed diagrams as well [5]. However, in addition to the limited
set of software metrics as predictors, a set of predictors based on the class
name was utilised. A better result was achieved using both sets of predictors
than just using the initial set. This clearly shows that extending the set of
predictors can improve the condensed diagrams. Thung et. al. had a similar
approach where network metrics were looked into to extend the set of pre-
dictors [3]. Additionally, Steidl et. al. also used network metrics to find the
most important classes for reverse engineering [13].
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Another approach was taken by I. Sora and D. Todinca, who used fuzzy
logic to find the most important classes in a system [14]. The metrics that
were used in their work was however also limited. The number of methods,
the weight of the incoming and outgoing dependencies and the PageRank
value of a class was used as input for determining the importance.

Nevertheless, even though the possibility of creating these condensed dia-
grams exists, the availability of such tools is lacking. Furthermore, the num-
ber of tools with the capability of producing various views for different types
of stakeholders is especially insufficient.

3.2 Other tools

A comparison of four reverse engineering tools that do not utilise machine
learning for condensation was done by Belley and Gall [15]. This comparison
included the tools Refine/C, Imagix 4D, Rigi, and Sniff+. In the comparison
several groups of criteria were assessed: criteria for the parser of the source
code, criteria for the representation of the generated information, criteria for
the editing capabilities and the available views, and general criteria such as
supported platforms and toolset extensibility.

In the analysis it was determined that all tools had strengths and weak-
nesses and none of the tools could be considered as the best. However, a
problem with all tools is that the size of the system was so large that in the
graphical views, only parts of the system could be shown. Additionally, com-
plete views of the system could not be created because of technical reasons
such as development in multiple languages or systems with a client-server
pattern. Furthermore, traceability between views was lacking.

3.3 Class importance

A way of measuring the importance of a class was presented by Hammad et.
al. [16]. Individual classes were considered more important the more design
changes that had been made towards the class. These changes do not only
include the class itself, but also changes of relationships between the class
and other classes. Furthermore, the importance of groups of classes were also
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measured. During the research, it was found that not many classes actually
are important for the design.

3.4 Layouting

Other ways other than condensing diagrams exist in order to increase the
readability of diagrams. One way is to work with the layout of the elements
of the diagram. Several criteria for judging the layout were presented by D.
Sun and K. Wong [17]. Some of these criteria relate to the orientation of the
diagrams and the symmetry that can be seen within them. Others, however
are a bit more specific and include aspects such as joining inheritance arcs
rather than having completely separate lines or using colours to distinguish
different groups of entities from others. Also the length of edges and over-
lapping of elements are considered. While there may be a large variation in
these criteria, all aim towards the same goal: increasing the usability and
understandability of the diagrams.
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Chapter 4

Methodology

There were several steps involved in the working process. These can be seen
in figure 4.1. The first step was to gather information about what different
stakeholders think makes a class important in a software project in order to
find important software metrics. The second step involved creating a tool for
condensing diagrams. The third step was to gather a ground truth for the
importance of a set of classes. In the fourth step, statistics were applied to
determine the usefulness of each of the available metrics. The last step was
evaluation of the condensed diagrams created by the tool.

Figure 4.1: The steps in of the work.

The work was carried out as a case study in collaboration with Ericsson.
A case study is conducted in the real world and thus has a high degree of
realism at the cost of control [18]. As part of this thesis regards validat-
ing the usefulness of the machine learning method for condensing diagrams,
performing a case study is very appropriate.
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4.1 Step 1: Gathering opinions

To address RQ1, the opinions regarding which metrics that are considered
important were gathered through a case study in which the EPG department
at Ericsson was studied. More specifically, five employees within the depart-
ment were involved in the study.

These five employees were selected based on differences in roles and teams
rather than trying to replicate the circumstances fully and just have one type
of role in one team. Thus, it was possible to perform a cross-case analysis to
see differences between the different roles of the employees [19]. Additionally,
having multiple employees to be studied allowed for triangulation of data to
improve the accuracy of the result [18]. The roles and teams in the study
can be found in section 5.1.1.

4.1.1 Data collection

Data was mainly collected using qualitative methods. However, quantitative
methods were also utilised to support any conclusions that were drawn.

Qualitative

As the intention was to extend the limited set of metrics while determining
what people think makes a class important, exploratory means of gathering
information were required. Semi-structured interviews is one tool of data
collection which allows for usage of both open and closed questions and is
thus suitable for exploring the opinions of what is important [20].

Interviews were held with each of the five selected employees at different
occasions. Each interview was limited to a time period of 15 to 20 minutes.
A tape recorder was utilised during the interviews in order to increase the
correctness of the gathered data [20]. Furthermore, the recordings of the
interviews were transcribed.

The questions asked during the interview followed an interview sheet that
was made prior to the interviews. The interview sheet, which can be seen in
appendix A, contained questions regarding the working process and working
tasks in order to see the need of information the interviewees had from the
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software. Such questions included but was not limited to ”When there is
a change of requirements so that you need to build new software or change
existing software, how do you start working with the change?” and ”What
information do you want to find when you read class diagrams”.

Additionally, the interview sheet also contained more direct questions aimed
at looking at the importance of software classes. These questions included
but were not limited to ”Would class with perhaps a high cyclomatic com-
plexity or a large number of lines of code be more important for you?” and
”Does the fact that a class is changed by a lot of people make it more im-
portant to you?”.

Quantitative

Quantitative data was collected through a questionnaire. The questionnaire
was sent to, and was answered by, the same employees that were interviewed.
However, it was answered prior to the employees being interviewed.

The questions within the questionnaire regarded background information
rather than being exploratory. Information that was gathered includes the
current role and team, prior experience within software development and
UML notations, and regularly used diagram types.

4.1.2 Data analysis

During the analysis of the data, the method of coding was used to group
pieces of text. An editing approach was assumed [18], which means that a
few priori codes were used. These codes were based on what was found and
they were not defined prior to the analysis. The codes that were find are
listed and explained further in section 5.1.

Furthermore, the codes were mapped with the metrics that were available.
This was done by first grouping the metrics into groups where metrics mea-
suring similar things were put into the same groups. Then the defined codes
were linked to any metric group that was deemed to being able affect the
code in any way.
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4.2 Step 2: Creating tool

A tool that is capable of condensing diagrams through the use of a machine
learning algorithm was created to aid in RQ2 and RQ3. This tool uses the
k-nearest neighbour algorithm in order to learn in what situations a class is
considered important and in what situations it is less important and to pre-
dict how important new classes are. This is done in two distinct phases; one
learning phase and one prediction phase. The k-nearest neighbour algorithm
with five neighbours was selected as this was the algorithm which performed
the best when different algorithms were compared [4].

In the learning phase, several kinds of inputs are present and this can be
seen in figure 4.2. First of all, a reverse engineered diagram is inputted. This
diagram is reverse engineered from the source code using Enterprise Archi-
tect. From this diagram, the tool automatically extracts design metrics for
each class. These design metrics include:

• NumAttr = The number of attributes a class has

• NumOps = The number of operations a class has

• NumPubOps = The number of publicly available operations a class has

• Setters = The number of Setter operations in a class

• Getters = The number of Getter operations in a class

• DIT = Depth of inheritance

• EC Attr = The number of times the class is used as an attribute

• IC Attr = The number of attributes in the class with another class as
type

• EC Par = The number of times the class is used as parameter

• IC Par = The number of parameters in the class with another class as
type

Additionally, for each class, the development metrics that were available are
also inputted. These include:

16



• nloc = Number of lines of code for the last version during 2015.

• added = Sum of added lines of code during 2015.

• changed = Sum of changed lines of code during 2015.

• deleted = Sum of deleted lines of code during 2015.

• versions = Number of commits during 2015.

• prev versions = Number of commits during 2014.

• prev prev versions = Number of commits during 2013.

• age = Number of years the class has existed.

• cyclomatic complexity = McCabes cyclomatic complexity for the last
version during 2015.

• token count = Number of words in the class for the last version during
2015.

• parameter count = Sum of all arguments to all functions in that class
for the last version during 2015.

• contributors = Number of contributors during 2015.

• cumulative contributors = Number of contributors since the class was
created.

• defects = Number of defects during 2015.

• prev defects = Number of defects during 2014.

Furthermore, a rating of how important a class is for understanding the
package is inputted. This rating is an integer ranging from 1 to 10. This
input serves as the ground truth and is explained further in section 4.3.
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Figure 4.2: How the learning in the tool works.

The prediction phase is very similar. However, the difference is that in this
phase, the class rating is not inputted at all. Instead, what the tool does
is that it outputs a predicted rating for each of the classes in the reverse
engineered diagram.
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Figure 4.3: How the predictioning in the tool works.

All of the metrics that are inputted are normalised. The method of min-max
normalisation was used to ensure that all values of all metrics lie within the
range 0 to 100. Normalisation is cruicial for the tool as the distance mea-
suring algorithm k-nearest neighbour is used [21]. This is easy to see when
looking at for example the number of bugs in a class which is likely to be
even lower than 10, while the number of lines of code in a class could be as
large as a few thousand. The distance from differences in lines of code would
then greatly outweigh the differences in number of bugs if the values are not
normalised so that both metrics lie within the same possible range.

The tool is developed as an eclipse plugin. This is due to the fact that eclipse
is a widely popular development platform which also is currently being used
within Ericsson. The tool adds a view which contains the condensed diagram.
This allows for the diagram to be accessible side by side to the source code
while working.
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Figure 4.4: How the tool looks within the eclipse environment.

4.3 Step 3: Establishing ground truth

In order for the machine learner to be successful, the ground truth of which
the tool learns from needs to be of high quality. A ground truth that does
not match with reality would cause the tool to produce predictions that do
not match with reality either.

Similarly to the initial interviews, this ground truth was gathered by in-
teraction with employees at Ericsson. Additionally, also here, the employees
were selected based on differences in roles and teams. In total, three em-
ployees were involved in creating the ground truth. Two of the employees
who took part in creating the ground truth also took part in the interviews
described in section 4.1 while one new employee was included.

The employees were given a diagram over a class package of which they
were familiar with within their work duties. Additionally, they were pro-
vided with a list of the classes in that package. The employees were tasked
with, for each class in the package, giving a level of importance that the class
has for understanding the package. This level of importance was a number
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ranging from 1 to 10 where 1 means that the class is not important for un-
derstanding the package at all and 10 means that the class is very important
for understanding the package. The range from 1 to 10 was selected as it
is very detailed but not too detailed for employees to select a satisfactory
value. Thus, as it is very detailed, it allows for condensing diagrams to pre-
cisely the level of abstraction as any reader of the diagram would want to see.

The first employee had the role of design architect. This employee was given
a diagram with 51 classes and a diagram with 33 classes to be rated. Thus, a
total of 84 classes were rated. The second employee had the role of developer.
One diagram with 39 classes was rated by him. The last employee also had
the role of developer and he rated 100 classes. Thus, 84 classes were rated
by design architects while 139 were rated by developers.

4.4 Step 4: Analysis of metrics

An analysis of the machine learner was done to address RQ2. The perfor-
mance of the machine learner was measured in a few different ways. The
two common techniques, using the holdout method and using k-fold cross-
validation, were used. Additionally, for the metrics, the information gain
ratio was calculated to get a performance score of the individual metrics.
The ground truth described in section 4.3 was used as data for all techniques.

In the holdout method, the data is split into two sets; a training set and
a test set. Two thirds of the ground truth data was used for the training
set while the remaining third was used for the test set. Which data points
that were used in the training set and which that were used in the test set
was randomly selected. The proportion of using two thirds of the data in the
test set was chosen as this is a common proportion in the holdout method [21].

For the k-fold cross-validation, the same dataset, the ground truth, was
utilised. However, for this method, the data did not need to be split prior to
using the technique as this is part of the method itself.

For both the holdout method and cross-validation, the outcome is given as
the true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN) for each possible class importance value. Additionally, the
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accuracy is given along with the precision and recall to give better under-
standing of the results. In the holdout method, the full confusion matrix
showing the real and predicted values for each class is given for a separate
run.

The precision shows the proportion out of all positives that actually were
true positives. Thus, in this case, a high precision means that out of the
classes that were predicted to be at this importance value, a lot actually be-
long there. A low precision shows that many of the classes predicted to be in
a group actually belong to other groups. The recall shows the proportion of
true positives out of all the positives. Here, a high recall for an importance
value means that many of the classes that actually have that importance were
predicted to be at this importance. A lower value shows that the classes with
this importance were predicted to have a faulty importance rating.

Predicting a high importance value for a class that is not very important
is not advantageous, but might not affect the diagram as a whole very much.
However, a class that is very important may be needed to fully understand
the diagram and thus predicting such a class to not be important would be
very bad. Thus, it is desirable to have a high recall, especially for the higher
importance values. While a high precision would be advantageous as well, it
is not as important.

4.5 Step 5: Validation of Condensed diagrams

The condensed diagrams were validated by comparing how useful they are for
understanding a package to the reverse engineered diagram with all classes.
This validation addresses RQ3. Similarly to the interviews and the gathering
of ground truth, the validation of the tool was done together with employees
at Ericsson. Also here, the employees were selected based on differences in
roles and teams. In total, five employees were selected. Three of these took
part in the interviews described in section 4.1 while two new were introduced.

The selected employees were given three diagrams over a package which they
were familiar with through their work duties. One diagram contained all the
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classes and relations found from the reverse engineering. In the second dia-
gram, 20% of the classes were removed. These classes were predicted to be
the least important in the diagram. In the last diagram, 40% of the classes
were removed. Similarly, the classes predicted to be least important were
removed.

The employees were then tasked with giving a number showing how each
of the condensed diagrams performed compared to the reverse engineered
diagram when it comes to understandability of the package. This number
was on the scale from 1 to 5 where 1 means that the condensed diagrams
performed very badly and 5 means that the diagram performed very well.
Additionally, the employees were asked what made each of the condensed
diagrams good and what made the diagrams bad.

23



Chapter 5

Result

This chapter contains the results of all steps listed in section 4.

5.1 Gathered opinions

Firstly, the results of the questionnaire are shown. These are followed by
the codes that were defined in the analysis of the interviews. After that, a
mapping between the codes and metrics is given.

5.1.1 Participant background

As can be seen in figure 5.1 more than five answers were given from the five
employees who responded to the questionnaire. This is due to the fact that
ones work duties may overlap multiple working roles and thus, selection of
multiple roles were allowed. However, only one employee selected multiple
roles (Design Architect and Developer) while the others only indicated one
role. Furthermore, the three roles taking part in the questionnaire was Sys-
tem Architect, Design Architect and Developers.
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Figure 5.1: The roles of the employees who participated in the study

When it comes to the size of the teams, almost all employees were in teams
with six to ten members. The only exception was one employee who were in
a smaller team with only one to five members, which is shown in figure 5.2.
It should be noted that even though many were in teams of the same size,
none of the employees were part in the same team.

Figure 5.2: The size of the teams the employees who participated in the
study belong to
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Regarding the prior experience with software development, all of the em-
ployees have been working with software for a long time. The questionnaire
showed that all employees have over ten years of experience, and this can be
seen in figure 5.3.

Figure 5.3: Prior experience with software development of the employees who
participated in the study

However, for experience with UML, the answers were a bit more diverse. In
fact, as shown in figure 5.4, not a single employee gave the same answer as
another. Thus, the experience with UML ranges from less than a year to
over ten years.
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Figure 5.4: Prior experience with UML of the employees who participated in
the study

Figure 5.5 shows the diagrams that the employees use. When it comes to
the usage of the diagrams, all of the employees use class diagrams regularly.
Additionally, almost all employees also use sequence diagrams while a few
use state-chart diagrams. However, as figure 5.6 shows, diagrams are not
used very often. Though when looking on the usage on scale from one to
five, all employees gave responded with at least a two.

Figure 5.5: The diagram types used by the employees who participated in
the study
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Figure 5.6: The use of diagrams by the employees who participated in the
study

5.1.2 Defined codes

Several codes were found to be important in coding process after the inter-
views. The coding is described in section 4.1.2 and the defined codes are
described further below.

Connections

Something that was important within all the stakeholder groups were the
connections between different classes. When looking for information in class
diagrams, often their goal was to find how classes relate to each other. Some
interviewees indicated that the data sent between classes was important for
them while others thought the cardinality of the connections mattered. How-
ever, the mutual interest was metrics related to the coupling between the
classes.

Clusters

A system architect explained that he thought the clustering or grouping of
the classes was important for him. What he looked at was how different clus-
ters of classes interacted with other clusters. Furthermore, by seeing clusters,
he could analyse the properties of a cluster but also going down on a lower
level to look into the cluster when needed.
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What he said formed a cluster was mainly due to relations and interfaces.
A cluster should not have many relations to classes outside of the clusters.
Likewise, there should not be many interfaces that are used from the out-
side. However, within a cluster, there are a lot less restrictions on how the
relations and interfaces are placed. A lot of relations between classes as well
as shared use of data was allowed within the cluster.

A design architect agreed that clusters were meaningful as well. However, he
explained that in a cluster with high collaboration there were likely to exist
some important classes but some unimportant help classes as well.

Metrics that are relevant to these clusters are thus related to the coupling
between classes, but also to the available functions within the classes.

Erroneous classes

Classes that were affected by errors such as having bugs or breaking rules and
conventions were considered as more important for all stakeholders. They
explained that such classes could be an indication of a larger problem where
a fix or a redesign would be needed.

While one of the developers agreed that this erroneous classes were impor-
tant because of the effect they have on the system, he added that it is less
important in his role as developer as it would be in a role on a higher level
such as an architect.

Any metric related to faults in classes is relevant here. These could be met-
rics such as the number of bugs in the system or the number of changes that
have been made in the system.

Complexity

Complexity is something that was considered as important mainly for devel-
opers. A developer said that this is because if a change is needed to be done
in a complex class, it is more difficult to implement the change, thus making
the complex classes more important for him in his work.
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A developer explained that classes can be rather large but still not contain a
lot of logic. These classes could include a lot of boilerplate code and mostly
be used to send data back and forth. They could also be very repetitive in
what they do. While these classes with little logic still can be large, they
are often self explanatory and it is usually easy to understand them without
looking at them in more detail.

Additionally, one design architect added that complexity is not always im-
portant. An example of this was given with a class that had very specific
functionality. This class had a high complexity, but was only used in some
specific situation which rarely occurred. Such a class was therefore not con-
sidered as important within the system while still having a high complexity.

Another design architect pointed out that tools measuring complexity al-
ready are being used to find faults in the software. However, it rarely helped
him in his work and thus he disagreed with complexity making a class more
important.

Volatility

Classes that are changed a lot are more important according to each of the
stakeholder groups. Being changed a lot could be an indication of that some-
thing is wrong, and thus the design could be subject to change due to this.

However, one of the design architects also stated that there are some classes
that are core to the system that many changes go through. While these
classes are not showing any problems, they are still changed a lot and are
considered as important within the system.

Furthermore, another design architect mentioned that it is important for
him to keep track of the classes that are changed a lot to make sure that
they are maintained, even if there is no sign of error.

Change impact

A class that, when changed, has a high impact so that it may affect many
other classes in a way that the affected classes also need some kind of change
is something that was considered as important for all stakeholder groups.
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As these classes may affect many other, it is necessary to keep them well
maintained.

However, one developer explained that he was working on such a low level
where he needed to decide exactly what was needed to change for a feature
to be developed. Therefore, knowing that a class has a high impact did not
help him in his work as he already knew all the needed changes. Thus, he
did not consider such classes important.

Functionality

Both developers and design architects indicated that it is what type of func-
tionality a class is involved in that makes a class important. Classes that
are involved in the main functionality of a system are more important than
classes that are only used in some specific situation. Such an important func-
tionality could be starting up the system. On the contrary, a class which is
only used to perform a change in settings of the software is less important.

5.1.3 Mapping - Codes and metrics

The metrics that were available were mapped with the identified codes. This
mapping can be seen in figure 5.7. As can be seen, both Connections and
Clusters regard various design metrics. At the same time, neither Change
impact nor Functionality were related to any of the metrics that were avail-
able.
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Figure 5.7: The codes found through the interviews mapped with the avail-
able metrics.

5.2 Performance of metrics

Both in the holdout method and the cross validation, the outcome is given.
As there are ten possible values of the importance of a class and not a sim-
ple true or false, the outcome is given for all ten class importance values.
Furthermore, the distribution of the ground truth which is used as input in
the analysis can be seen in figure 5.8. However, 53 of these classes did not
have metrics available and were thus disregarded from the analysis and 170
classes remained.
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Figure 5.8: A histogram showing the distribution of the classes rated in the
ground truth.

5.2.1 Holdout method

The holdout method, which is described in section 4.4, was used with all dif-
ferent groups of metrics. Additionally, the method was used with all metrics
together.

All metrics

Figure 5.1 shows the result when all metrics were included. Generally speak-
ing, all class values have a high accuracy. It is larger than 0.8 in all cases
other than for class value 3. However, the precision is consistently lower than
the accuracy. For many class values, the precision is 0, which means that
there were no true positives. However, it spikes for some class values such
as class value 1 and class value 9 where it reaches a precision of 0.8750 and
0.7500 respectively. Similarly, the recall is very high for class value 1 and
then has a few spikes while it also goes to 0 for some class values.

From the outcome, it can be seen that there are a lot of true negatives
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for all class values. Class value 1 has a lot of true positives while the others
remain at very few. False negatives and false positives are less than 10 for
each of the class values.

Class Value Accuracy Precision Recall Outcome
1 0.9649 0.8750 1.0000 [TP=14, FP=2, TN=41, FN=0]
2 0.8772 0.3333 0.4000 [TP=2, FP=4, TN=48, FN=3]
3 0.7544 0.1000 0.1667 [TP=1, FP=9, TN=42, FN=5]
4 0.8421 0.3750 0.4286 [TP=3, FP=5, TN=45, FN=4]
5 0.8421 0.0000 0.0000 [TP=0, FP=6, TN=48, FN=3]
6 0.9649 0.0000 0.0000 [TP=0, FP=1, TN=55, FN=1]
7 0.8421 0.0000 0.0000 [TP=0, FP=1, TN=48, FN=8]
8 0.9474 0.0000 0.0000 [TP=0, FP=2, TN=54, FN=1]
9 0.8947 0.7500 0.3750 [TP=3, FP=1, TN=48, FN=5]
10 0.8772 0.0000 0.0000 [TP=0, FP=3, TN=50, FN=4]

Table 5.1: Results from holdout method with all metrics.

The confusion matrix in table 5.2 shows that there were a lot of classes with
importance value 1 that also were predicted to be 1. However, some classes
were predicted to be far form their actual values. This includes two classes
with importance value one which were predicted to be 9 and 10 respectively.
Additionally, some classes with importance value 8 were predicted to be lower
than 4.

Predicted
1 2 3 4 5 6 7 8 9 10

Actual
value

1 11 0 0 0 0 0 0 0 0 0
2 2 1 3 0 0 0 0 0 0 0
3 1 0 2 1 0 0 1 0 0 0
4 1 0 1 2 1 0 0 0 1 1
5 0 0 2 0 0 0 2 0 0 0
6 1 0 4 1 0 0 0 0 0 0
7 0 0 0 2 0 0 0 0 1 0
8 2 2 2 1 0 0 0 0 0 0
9 0 2 1 1 0 1 0 0 1 0
10 0 0 0 1 1 0 0 0 0 0

Table 5.2: Confusion matrix from one run of the holdout method with all
metrics.
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Design metrics

Similarly to when using all metrics, the design metrics have an accuracy
where most values are above 0.8 while the precision is low with a few ex-
ceptions. However, as can be seen in table 5.3, Class value 1 which only
had 2 false positives with all metrics increased to 14 false positive when us-
ing the design metrics only. Thus, the accuracy of class value 1 decreased
significantly from the previous table.

Class Value Accuracy Precision Recall Outcome
1 0.6842 0.4167 0.7143 [TP=10, FP=14, TN=29, FN=4]
2 0.8070 0.0000 0.0000 [TP=0, FP=9, TN=46, FN=2]
3 0.8596 0.0000 0.0000 [TP=0, FP=5, TN=49, FN=3]
4 0.7895 0.3077 0.5714 [TP=4, FP=9, TN=41, FN=3]
5 0.8947 0.0000 0.0000 [TP=0, FP=1, TN=51, FN=5]
6 0.9123 NaN 0.0000 [TP=0, FP=0, TN=52, FN=5]
7 0.8947 0.0000 0.0000 [TP=0, FP=1, TN=51, FN=5]
8 0.8772 0.0000 0.0000 [TP=0, FP=1, TN=50, FN=6]
9 0.8947 0.0000 0.0000 [TP=0, FP=2, TN=51, FN=4]
10 0.8772 0.0000 0.0000 [TP=0, FP=1, TN=50, FN=6]

Table 5.3: Results from holdout method with metrics related to the design.

The confusion matrix in table 5.4 is similar to previous confusion matrix
where many classes with importance of 1 were predicted to be 1.
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Predicted
1 2 3 4 5 6 7 8 9 10

Actual
value

1 12 1 0 0 2 0 0 0 1 0
2 2 1 0 0 0 0 0 0 0 0
3 0 3 2 0 0 0 0 0 0 1
4 0 1 0 3 1 0 0 0 0 1
5 0 1 3 2 1 0 0 0 0 0
6 0 1 0 0 0 0 0 0 0 0
7 1 0 1 2 2 0 0 0 1 0
8 0 1 1 1 1 0 1 0 0 0
9 0 0 0 0 0 0 0 0 1 0
10 1 3 0 1 0 0 0 0 0 0

Table 5.4: Confusion matrix from one run of the holdout method with only
design metrics.

Complexity

Table 5.5 shows a similar trend with high accuracy values and a precision
at 0 for most class values. Additionally, class value 1 has 16 false positives
which is the largest number of false positives in all metric groups.

Class Value Accuracy Precision Recall Outcome
1 0.6842 0.4285 0.8571 [TP=12, FP=16, TN=27, FN=2]
2 0.8596 0.0000 0.0000 [TP=0, FP=2, TN=49, FN=6]
3 0.8070 0.0000 0.0000 [TP=0, FP=5, TN=46, FN=6]
4 0.8421 0.2500 0.4000 [TP=2, FP=6, TN=46, FN=3]
5 0.9298 0.7500 0.5000 [TP=3, FP=1, TN=50, FN=3]
6 0.8947 0.0000 0.0000 [TP=0, FP=1, TN=51, FN=5]
7 0.9123 0.0000 0.0000 [TP=0, FP=2, TN=52, FN=3]
8 0.9649 NaN 0.0000 [TP=0, FP=0, TN=55, FN=2]
9 0.9123 0.4000 0.5000 [TP=2, FP=3, TN=50, FN=2]
10 0.8596 0.0000 0.0000 [TP=0, FP=2, TN=49, FN=6]

Table 5.5: Results from holdout method with metrics related to the com-
plexity.

For table 5.6, there are some bad predictions such as classes with importance
of 2 being predicted as 9 and 10 and a class with importance of 9 being
predicted to be 1.
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Predicted
1 2 3 4 5 6 7 8 9 10

Actual
value

1 8 0 7 0 0 0 1 0 0 0
2 1 0 2 0 0 1 0 0 1 2
3 1 0 0 1 1 0 0 0 0 0
4 1 0 3 1 0 1 0 0 0 1
5 1 0 3 1 1 0 0 0 0 0
6 0 0 2 0 0 0 0 0 0 0
7 1 0 2 0 2 0 0 0 0 0
8 0 0 3 1 0 1 0 0 1 0
9 1 0 1 0 0 1 0 0 1 0
10 0 0 0 0 0 0 0 0 1 0

Table 5.6: Confusion matrix from one run of the holdout method with only
complexity metrics.

Change history

Also when it comes to change history metrics, it is possible to see form table
5.7 that the same trends exist. However, in this case, class value 3 had a lot
of false positives rather than class value 1.

Class Value Accuracy Precision Recall Outcome
1 0.7895 0.4167 0.5000 [TP=5, FP=7, TN=40, FN=5]
2 0.8947 0.5000 0.3333 [TP=2, FP=2, TN=49, FN=4]
3 0.6842 0.0000 0.0000 [TP=0, FP=12, TN=39, FN=6]
4 0.8070 0.2857 0.2500 [TP=2, FP=5, TN=44, FN=6]
5 0.8947 NaN 0.0000 [TP=0, FP=0, TN=51, FN=6]
6 0.9298 0.0000 0.0000 [TP=0, FP=2, TN=53, FN=2]
7 0.8421 0.0000 0.0000 [TP=0, FP=4, TN=48, FN=5]
8 0.8070 0.1250 0.2000 [TP=1, FP=7, TN=45, FN=4]
9 0.9298 0.6250 0.8333 [TP=5, FP=3, TN=48, FN=1]
10 0.9474 NaN 0.0000 [TP=0, FP=0, TN=54, FN=3]

Table 5.7: Results from holdout method with metrics related to the change
history.

Looking at table 5.8, there are, just as previously, a lot of classes with im-
portance of 1 being predicted as 1, while there are some large mispredictions.
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Predicted
1 2 3 4 5 6 7 8 9 10

Actual
value

1 12 1 0 1 0 0 0 0 1 0
2 1 1 3 0 0 0 0 0 0 0
3 3 3 2 0 0 0 1 0 0 0
4 0 4 1 1 0 0 0 0 1 0
5 3 3 0 0 0 0 1 0 0 0
6 1 1 0 1 0 0 0 0 0 0
7 1 2 1 1 0 0 0 0 0 0
8 2 1 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0
10 0 1 0 0 1 0 0 0 0 0

Table 5.8: Confusion matrix from one run of the holdout method with only
change history metrics.

Error

All the data points for the metrics in the error group had the value 0. Cal-
culating the nearest neighbor when all data lie within the same point is not
practical and thus this group was disregarded for this test.

Comparison - holdout method

It is clear that for class importance value 1, using all metrics produced the
best result. A precision of 0.8750 and a recall of 1.0000 was reached while
both values were a lot lower for the other metric groups. For class value 2,
both design metrics and complexity metrics score 0 for both precision and
recall, however, change history manages to reach a precision of 0.5000 and
a recall of 0.3333. Design metrics only seem to perform well for class value
1 and 4. Complexity metrics perform well for importance values 1, 4, 5 and
9 but gets values of 0 for the others. Change history metrics reach non-zero
values for importance 1, 2, 4, 8 and 9, however, for class value 8, the precision
is as low as 0.1250 and the recall is 0.8333.

Predictions in many runs

When the holdout method was used 1000 times, the results, which can be
seen in table 5.9, were acquired. 1000 runs were used as the result was a bit
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varying between the different runs.

Metric group Accuracy Precision Recall
All 0.8644 0.3427 0.3423
Design 0.8605 0.3217 0.3214
Complexity 0.8529 0.2814 0.2810
Change history 0.8501 0.2694 0.2690

Table 5.9: The results of 1000 runs for each of the metric groups.

Overall, using all metrics gave the best results with the highest accuracy,
precision and recall. Design was just a little bit lower for all three values.
Complexity and change history metrics score the lowest.

5.2.2 Cross validation

Similarly to the holdout method, the cross validation method was used with
all different groups of metrics and with all metrics together. The cross vali-
dation was performed with 10 folds.

All metrics

When it comes to the result, the cross validation reached similar values to the
holdout method which can be seen in table 5.10. Thus, it had an accuracy
where most values are high and a precision and recall which are low with a
few exceptions.

Class Value Accuracy Precision Recall Outcome
1 0.8941 0.6875 0.9167 [TP=33, FP=15, TN=119, FN=3]
2 0.8000 0.1538 0.2500 [TP=4, FP=22, TN=132, FN=12]
3 0.8000 0.2069 0.3529 [TP=6, FP=23, TN=130, FN=11]
4 0.7882 0.2414 0.3333 [TP=7, FP=22, TN=127, FN=14]
5 0.8471 0.0909 0.0588 [TP=1, FP=10, TN=143, FN=16]
6 0.9000 0.1429 0.0833 [TP=1, FP=6, TN=152, FN=11]
7 0.8647 0.0000 0.0000 [TP=0, FP=6, TN=147, FN=17]
8 0.9235 0.5000 0.0769 [TP=1, FP=1, TN=156, FN=12]
9 0.9412 0.5714 0.3636 [TP=4, FP=3, TN=156, FN=7]
10 0.9118 0.0000 0.0000 [TP=0, FP=5, TN=155, FN=10]

Table 5.10: Results from cross-validation with all metrics.
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Design metrics

The results for the design metrics can be seen in table 5.11. Also here, there
are a lot of true positives for class value 1 while the others remain lower.

Class Value Accuracy Precision Recall Outcome
1 0.7882 0.5000 0.8055 [TP=29, FP=29, TN=105, FN=7]
2 0.8176 0.2222 0.3750 [TP=6, FP=21, TN=133, FN=10]
3 0.8471 0.2857 0.3529 [TP=6, FP=15, TN=138, FN=11]
4 0.7765 0.2424 0.3810 [TP=8, FP=25, TN=124, FN=13]
5 0.8471 0.0909 0.0588 [TP=1, FP=10, TN=143, FN=16]
6 0.9294 NaN 0.0000 [TP=0, FP=0, TN=158, FN=12]
7 0.8882 0.0000 0.0000 [TP=0, FP=2, TN=151, FN=17]
8 0.9176 0.0000 0.0000 [TP=0, FP=1, TN=156, FN=13]
9 0.9235 0.3750 0.2727 [TP=3, FP=5, TN=154, FN=8]
10 0.9000 0.1111 0.1000 [TP=1, FP=8, TN=152, FN=9]

Table 5.11: Results from cross-validation with metrics related to design.

Complexity

Results for complexity metrics are shown in table 5.12 and follow a similar
trend.

Class Value Accuracy Precision Recall Outcome
1 0.6824 0.3750 0.7500 [TP=27, FP=45, TN=89, FN=9]
2 0.9000 0.4000 0.1250 [TP=2, FP=3, TN=151, FN=14]
3 0.8471 0.1538 0.1176 [TP=2, FP=11, TN=142, FN=15]
4 0.7647 0.1935 0.2857 [TP=6, FP=25, TN=124, FN=15]
5 0.8647 0.2857 0.2353 [TP=4, FP=10, TN=143, FN=13]
6 0.9059 0.0000 0.0000 [TP=0, FP=4, TN=154, FN=12]
7 0.8706 0.1429 0.0588 [TP=1, FP=6, TN=147, FN=16]
8 0.9118 0.0000 0.0000 [TP=0, FP=2, TN=155, FN=13]
9 0.9118 0.3571 0.4545 [TP=5, FP=9, TN=150, FN=6]
10 0.8941 0.0000 0.0000 [TP=0, FP=8, TN=152, FN=10]

Table 5.12: Results from cross-validation with metrics related to complexity.
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Change history

Also for change history metrics, the trend can be observed and this is seen
in table 5.13

Class Value Accuracy Precision Recall Outcome
1 0.7765 0.4815 0.7222 [TP=26, FP=28, TN=106, FN=10]
2 0.8647 0.2941 0.3125 [TP=5, FP=12, TN=142, FN=11]
3 0.7647 0.1034 0.1765 [TP=3, FP=26, TN=127, FN=14]
4 0.8059 0.2500 0.2857 [TP=6, FP=18, TN=131, FN=15]
5 0.8765 0.0000 0.0000 [TP=0, FP=4, TN=149, FN=17]
6 0.8941 0.0000 0.0000 [TP=0, FP=6, TN=152, FN=12]
7 0.8647 0.0000 0.0000 [TP=0, FP=6, TN=147, FN=17]
8 0.8294 0.0556 0.0833 [TP=1, FP=17, TN=140, FN=12]
9 0.9176 0.3636 0.3636 [TP=4, FP=7, TN=152, FN=7]
10 0.9353 0.0000 0.0000 [TP=0 FP=1, TN=159, FN=10]

Table 5.13: Results from cross-validation with metrics related to change
history.

Error

As the same data was used here as in the holdout method, all values were 0
and this group was disregarded in the test.

Comparison - crossvalidation

The precision and recall does not as often go as low as zero for most of the
class values as it does in the holdout method. However, it is clear that the
different groups perform differently for the various class importance values.
Similar to in the holdout method, using all metrics greatly outperforms the
smaller metric groups for class importance value 1. For importance values
other than 1, the design metrics perform their best and reach their highest
values of recall at importance 2, 3 and 4. Additionally, the highest precision
is reached for importance 9. Complexity metrics, however, reach a high recall
for class value 1 and 9, but not very high for the others. When it comes to
change history metrics, importance values 1, 2, 4 and 9 reach the highest
values of recall and precision. However, 5, 6, 7 and 10 are all zero in both
recall and precision. Thus, some class importance values do not reach good
results for any metrics groups. Such importance values are 5, 6, 7, 8 and 10.
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5.2.3 Feature scoring

When it comes to the performance of each individual metric, it can be seen
in table 5.14 that IC Par and EC Par which both are design metrics score
the highest. These are followed by token count and cyclomatic complexity
which are located in the complexity group. Afterwards come the metrics
changed and added which both are related to the change history.

In the bottom of the table, however, are the metrics prev defects, defects,
prev versions and prev prev versions which all get a score of 0.
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Metric Group Name Information gain ratio
Design Metrics IC Par 0.4246
Design Metrics EC Par 0.3901
Complexity token count 0.3254
Complexity cyclomatic complexity 0.2684
Change History changed 0.2669
Change History added 0.2599
Design Metrics DIT 0.2559
Complexity parameter count 0.2470
Design Metrics EC Attr 0.2456
Complexity nloc 0.2411
Complexity average function nloc 0.2356
Design Metrics IC Attr 0.2250
Design Metrics nrOp 0.2062
Change History deleted 0.2032
Design Metrics nrGetter 0.1990
Design Metrics nrSetter 0.1894
Change History cumulative contributors 0.1882
Complexity median function nloc 0.1846
Design Metrics nrAttr 0.1820
Design Metrics nrPubOp 0.1795
Change History versions 0.1587
Change History contributors 0.1450
Change History age 0.1127
Errors prev defects 0.0000
Errors defects 0.0000
Change History prev versions 0.0000
Change History prev prev versions 0.0000

Table 5.14: Information gain ratio of each metric that was included.

5.3 Performance of condensed diagrams

All of the diagrams displayed in this section have had their names changed
due to confidentiality of the software. Each diagram has had their elements
being renamed separately. Thus, a class named Class 1 in one diagram may
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be a completely different class than a class with the same name in another
diagram.

5.3.1 Diagram 1

Figure 5.9 shows the diagram made out of all the classes of a package after
the reverse engineering process of the source code. This diagram along with
the diagram in figure 5.10 and figure 5.11 was sent to one of the employees.

Figure 5.9: Full reverse engineered package diagram with all classes remain-
ing.

Figure 5.10: Reverse engineered package diagram with the 80% most impor-
tant classes remaining.
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Figure 5.11: Reverse engineered package diagram with the 60% most impor-
tant classes remaining.

On the scale from one to five of how good the diagram is for understand-
ing the package, the employee gave figure 5.10 a four. He gave the reason
that almost all important classes were shown in the diagram while the less
important were excluded. However, there was one specific class which he
considered important that had been removed.

Similarly to the previous diagram, the figure 5.11 was given the score four.
The same reason was given and also here, one important class was removed
in the condensing process.

5.3.2 Diagram 2

Diagram 2, which is shown in figure 5.12 is significantly larger than diagram
1. This diagram was also sent to one employee along with the two condensed
versions.
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Figure 5.12: Full reverse engineered package diagram with all classes remain-
ing.
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Figure 5.13: Reverse engineered package diagram with the 80% most impor-
tant classes remaining.

Figure 5.14: Reverse engineered package diagram with the 60% most impor-
tant classes remaining.

The diagram shown in figure 5.13 was rated 3.5 on the scale from 1 to 5 by
the employee. The employee indicated that this was due to the fact that it
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had fewer classes than the original version.

The same employee gave the diagram in figure 5.14 a four. Similarly to
the previous diagram, the fact that it had fewer classes made was positive
in the employees opinion. Additionally, the increase of space between classes
made it easier to see the structure of the package.

Although both condensed diagrams increased the understandability of the
package compared to the original diagram, the employee stated that he would
need more information to fully understand the package. It was indicated that
a note with a brief explanation of the behaviour of the package would be
useful for understandability. Additionally, a label on a specific dependency
between two classes showing that one creates the other would be very helpful
in this specific case.

5.3.3 Diagram 3

Figure 5.15 shows the smallest diagram out of all the diagrams in the valida-
tion. This diagram was also send to one employee along with the condensed
diagrams.
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Figure 5.15: Full reverse engineered package diagram with all classes remain-
ing.

Figure 5.16: Reverse engineered package diagram with the 80% most impor-
tant classes remaining.
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Figure 5.17: Reverse engineered package diagram with the 60% most impor-
tant classes remaining.

The diagram shown in 5.16 was rated one on the scale from one to five. The
employee explained that not much information could be retrieved from the
diagram and that some of the most important classes were removed from the
diagram.

Similarly to the previous diagram, the diagram in 5.17 was also rated one due
to lack of information and important classes being removed. Additionally,
the lack of relations in the diagram was not well appreciated.

The employee explained that relations between classes generally never should
be removed. Additionally, the employee felt that the original reverse engi-
neered diagram was good at the current scope. It was indicated that con-
densation of diagrams should only be done when there are a lot more classes
where orientation is not as manageable.

5.3.4 Diagram 4

The diagram showed in figure 5.18 was given to two employees to be rated,
however, separately from each other.
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Figure 5.18: Full reverse engineered package diagram with all classes remain-
ing.

Figure 5.19: Reverse engineered package diagram with the 80% most impor-
tant classes remaining.
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Figure 5.20: Reverse engineered package diagram with the 60% most impor-
tant classes remaining.

The first employee rated the diagram in figure 5.19 to be a four. However
it was indicated that one of the sub-packages is missing a bit of information
and could be removed. The second employee gave the same diagram a rating
of 3. This employee stated that the layout was improved in the condensed
diagrams, and it became easier to follow the lines. However, there seemed to
be a lack of relations, especially in the case when the relation was using an
auto pointer. Additionally, classes that are not inside this package, but still
have relations to classes in the package would be useful to include. This is
to fully understand the purpose of classes inside the package.

For the diagram shown in figure 5.20, the first employee gave the rating
of four as well. He explained that the largest sub-package was better than in
the previous diagram, being more condensed while still showing interesting
information. However, two of the smaller packages had lost information was
was not considered to be less important. The second employee also rated this
diagram with a four. However, just as in the previous diagram, the second
employee saw the lack of some classes and relations as negative.
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5.3.5 Ratings of all diagrams

All of the ratings for the diagrams shown in the previous sections can be
seen in table 5.15. From the table, it is clear that the rating is at least as
high when there is just 60% of the classes left as when there is 80% of the
classes left. In all cases except for one diagram, the rating is at least 3, which
shows that the condensed diagrams performed at least as well as the original
reverse engineered diagram.

Condensed (80% remaining) Condensed (60% remaining)
Diagram 1 4 4
Diagram 2 3.5 4
Diagram 3 1 1
Diagram 4 (Employee 1) 4 4
Diagram 4 (Employee 2) 3 4
Average 3.1 3.4

Table 5.15: Ratings of the condensed diagrams.
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Chapter 6

Discussion

In this section, first the results are discussed. This is followed by threats that
may affect validity and future works to build further on the findings.

6.1 Gathered opinions

The background questions gave insight in the previous experience of the
involved interviewees. Something that was consistent between all the inter-
viewees was that all had a very thorough experience with software devel-
opment. In fact, all the interviewees had been part of the industry for at
least ten years. For the interviews, this was very helpful as they could give
rigorous answers in the interviews and elaborate on why something was seen
as important for them. However, while the experience with UML was a bit
more varying and not as rigorous for all interviewees, all interviewees were
still familiar with and regularly used class diagrams and could thus still pro-
vide valuable feedback.

From the interviews, several codes were defined. These codes represent what
makes a class important for the interviewees and the various information
needs they have from the software. While these are not direct metrics that
can be used within the machine learner, they give an indication of the type
of metrics that are important. Thus, it was possible to successfully link the
codes with with the metric groups and then use these groups within the ma-
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chine learner.

While many interviewees had the same opinion, that most aspects were con-
sidered very important for them, they put slightly more emphasis on some
aspects over others. Additionally, there were some instances were opinions
from different interviewees opposed each other. While differences in roles
contributed towards different opinions in some cases, it still happened that
interviewees with the same role disagreed with one other. Whether differences
in working tasks affected these disagreements or not was never determined.

RQ1: Which metrics of a software class are considered to be
architecturally important for different stakeholders within
the software development?
Metrics related to connections between classes, clusters of classes,
errors in classes, complexity of classes, volatility of classes, change
impact of classes and functionality of classes are considered architec-
turally important for all stakeholders.

6.2 Performance of metrics

When looking at all of the confusion matrices in section 5.2, it is clear that
there are a lot of true negatives for all difference class important values. This
is because one class is predicted to have just 1 out of the 10 possible impor-
tance ratings. Thus, even if a class is put in the wrong group, eight of the
groups would still count the class as a true negative. This high amount of
true negatives may cause the accuracy to look very high.

However, it should still be noted that a prediction that is wrong is neces-
sarily not bad. For example, a class which in reality has the importance
rating 9 would be considered to be very important. However, if it was pre-
dicted that this class only had the importance 8, it would be considered an
incorrect classification. But the value 8 is very close to 9, and even though
the class was wrongly classified, it would still be seen as very important.

Having ten different importance values allowed for being very precise when
selecting the size of the condensed diagrams. Putting the classes into fewer,
but larger, groups would either limit the possibilities of choosing the size as
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a lot of classes would have the same importance rating, or produce a need to
internally rank the classes within the groups. However, it would also make
the classification a lot easier. If for example a 3-point scale with values of low,
medium and high was used, then predicting in which group a class actually
belongs would not be as difficult of a task for the machine learner as when 10
different values are possible. This would of course improve the results overall,
but as previously stated, it wouldn’t allow to select very specific sizes of the
condensed diagrams.

Furthermore, one more drawback of using a 10-point scale is that there are
more differences in opinions among different employees. A class that is very
unimportant would probably be rated as low on the 3-point scale by most
individuals. However, using a 10-point scale, some people might rate the
class as having the importance of 1, while others could rate it as 2, or maybe
even higher.

Although both the precision and recall varied a lot between the different class
importance values, it remained high for the importance value of 1. Thus, a
lot of classes that actually had the importance of 1 were also predicted to be
of the importance 1. Additionally, it can be seen in the confusion matrices
that not very many important classes were predicted to have the importance
1. Therefore, the machine learner did very well in finding the least important
classes.

As table 5.14 shows, the metrics prev defects, defects, prev versions and
prev prev versions only managed to reach a score of 0. Furthermore, it was
not possible to perform the cross validation nor to use the holdout method
using the error metrics group which only included prev defects and defects.
It was suspected that there was something wrong with the retrieving of the
metric, however, it was confirmed by one of the employees that many classes
actually were very new and thus these metrics had yet not gotten higher val-
ues. Thus, the metrics were never removed from the analysis. Additionally,
if the analysis would have been performed on an older system, perhaps these
metrics would have yielded a higher result.

Furthermore, as table 5.14 shows, the groups of the highest scoring metrics
varied a lot. While the two highest rated metrics both were design metrics,
the subsequent two metrics belong within the complexity group while the
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next two are located in the change history group. Thus, it is not possible to
say that all metrics in one group are better as predictors than all metrics in
another group.

RQ2: Which metrics of a software class can advantageously
be used as predictors in a machine learning algorithm to de-
termine the importance of the class?
Design metrics, complexity metrics and Change history metrics work
well as predictors. More specifically, the metrics IC Par, EC Par, to-
ken count, cyclomatic complexity, changed and added have the best
information gain ratio out of all the tested metrics.

6.3 Performance of condensed diagrams

The ratings seen in table 5.15 show that only the condensed diagrams for
diagram 3 performed badly. This was due to the fact that diagram 3 was a
lot smaller than the other diagrams that were processed. If all diagrams were
of the same large size, the results would probably have been both better and
more consistent. However, it is yet left to be determined when a diagram is
too large and needs to be condensed and how much it should be condensed,
i.e. how many classes that should be removed from the diagram.

Feedback that was given included that in some cases, very important classes
had been removed. This is definitely due to a bad prediction of the machine
learner. This misbehaviour could possibly be avoided by further extending
the used set of metrics. Additionally, by using a ground truth that is larger
or more optimised for different stakeholders, this error could maybe be pre-
vented.

One more flaw in the diagrams that was found was the lack of relations
between classes in some cases. However, this was not due to bad predictions
by the machine learner, but rather due to the quality of the reverse engineer-
ing process. The reverse engineered diagrams that were used had already
a low amount of relations, and if these diagrams had been better, then the
perceived quality of the condensed diagrams would have been higher as well.
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Nevertheless, in all diagrams except diagram 3, the condensed diagrams were
deemed as good or better than the reversed engineered one.

RQ3: Are class diagrams which are condensed through ma-
chine learning useful within industry?
Yes, overall the condensed diagrams performed better than reverse
engineered diagrams with all classes in them.

6.4 Threats to validity

This section lists the possible threats to validity related to the work that was
performed. The possible validity threats are categorised according to Wohlin
et. al. [22].

6.4.1 Conclusion validity

The validation is due to the threat of low statistical power. As only five
employees were part of the validation, the average rating of the condensed
diagrams is by itself not very rigid. However, this threat was handled by
gathering more qualitative feedback that explained the flaws and the bene-
fits of the diagrams.

Furthermore, reliability of measures may affect the interviews as there of
course could be misunderstandings. However the questions were designed
to be very clear and easily understood, and further explanations were given
during the interviews whenever a misunderstanding occurred.

Additionally, reliability of measures is relevant within the analysis of metrics.
This is as no histograms were produced for the training and test set when
the holdout method was used. Having a histogram showing the distribution
for each of these sets could be useful for understanding the performance of
the metrics. However, a histogram for the entire dataset was given to better
understand the data.

6.4.2 Internal validity

As mentioned earlier, the lacking of relations between classes was seen as a
problem with the condensed diagrams. However, this was not due to the
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machine learner itself but due to the quality of the reverse engineered dia-
grams. Thus, instrumentation affects the internal validity here. However,
this threat was handled by reverse engineering diagrams through Enterprise
Architect which is a widely used tool for the development process [23]. By
using a state of the practice tool, the reverse engineered diagrams should be
considered favourable compared to a not as extensively used tool.

Additionally, the ground truth was used as an instrument in the valida-
tion of the condensed diagrams and the analysis of metrics. However, this
ground truth was created by a mix of design architects and developers. Thus,
the ground truth is based on the opinions of different types of stakeholders.
While it still managed to perform well, having different ground truths where
each would be made by only one type of stakeholder could possibly improve
the results further and make flaws and benefits of the method more obvious.

Furthermore, selection is a threat to the validity. While the selection aimed
at being objective and sought out to include people with varying roles and
using only people from different teams, the threat of selection could still af-
fect the work. It could be that the selected individuals were among the better
performing and more enthusiastic in their teams, or that the volunteers are
more motivated than the average employee.

6.4.3 Construct validity

Mono-method bias could affect the construct validity. While several meth-
ods were used in the analysis of metrics, the gathering of opinions was done
only through the use of interviews. It was considered to also use observa-
tion to further determine the information needs of the employees, however
due to time limitation, this was never performed. Although only interviews
were used to gather the opinons, background questions were sent to the in-
terviewees to get more knowledge regarding their background and further
strengthen their answers in the interviews.
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6.4.4 External validity

Interaction of selection and treatment is a small threat to validity. This is
because all the selected employees work within Ericsson. Thus, it is not cer-
tain that the same results would have been reached if another company had
been targeted for the work. While working procedures and use of technolo-
gies may vary between companies, it is still reasonable to believe that the
findings from Ericsson are valid in the settings of other companies as well.

6.5 Future work

There are two clear ways in which this work could be built further upon.
First of all, as figure 5.7 shows, neither Change impact nor functionality is
related to any group of metrics. While it would be difficult to find a good
way to automatically determine what functionality a class is part of, change
impact may not be as difficult. Thus, metrics related to the change impact
could be tried in a future experiment to see if these improve the accuracy of
the predictions.

Secondly, the list of codes found in the interviews could be extended and
thus finding more possible groups of metrics. Additionally, more metrics
could be used for the already existing codes. Also here, these new metrics
could be used in a future experiment to improve the predictions.

Furthermore, the tool that was developed throughout the process can it-
self be used directly within industry in order to identify important classes
within the system or even to automatically create condensed diagrams and
produce a visualisation over the software. However, it would be beneficial
for any company to try different strengths of condensation and not only use
60% or 80% classes remaining in the condensed diagrams as was tried within
this thesis.

Additionally, the tool could also be built further upon to increase function-
ality or improve usability. As the tool in some cases would predict very
important classes as not important at all, one way of adding functionality
could be to allow users to manually set the importance of wrongly predicted
classes and even include these in the ground truth. Additionally, building
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a more robust ground truth could improve the results of the tool and thus
making the tool a greater asset within industry.

61



Chapter 7

Conclusion

The method of using machine learning to determine the importance of a
software class in order to condense class diagrams to only contain the most
important classes was very limited in terms of the metrics that had previ-
ously been used as predictors. To extend the set of metrics, several interviews
were performed with different stakeholders to determine what they consider
as important for a software class. Using the knowledge of what they found
important, a tool was then built which is capable of condensing class dia-
grams. To see how well each metric that the tool uses performed, an analysis
was carried out. This analysis used both the holdout method and cross vali-
dation to get an understanding of how correct the predictions of the machine
learner was. Additionally, the information gain ratio of each metric used was
calculated. Furthermore, the end product of the condensation, the condensed
diagrams, were validated by comparing the flaws and benefits in relation to
reverse engineered diagrams where all classes still remained.

The results showed that there were several aspects of software classes that
were considered important for the various stakeholders. While some of these
aspects were related to the design metrics that were previously used as pre-
dictors, most of them were not and could instead be linked to new metrics
which had not been tried before. Furthermore, when these metrics were anal-
ysed, it was determined that out of the top performing metrics, there was a
good representation of metrics from different groups. More specifically, some
metrics related to the complexity of a class and to the change history scored
very highly in addition to the existing design metrics.
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The validation of the condensed diagrams was very positive. However, it
also showed that there were some flaws with the diagrams. In some cases,
important classes had received a low prediction and were removed from the
diagram. In other cases, the employee indicated that more information, such
as a description of a relation or a brief explanatory text would be needed
to fully understand the contents of the diagram. Nevertheless, the diagrams
overall received a good rating when comparing to the original reverse engi-
neered diagrams. In only one out of five diagrams, the condensed diagram
was deemed to be worse than the reverse engineered diagram.
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Appendix A

Interview Guide

• Role

– Work tasks?

• Get to know system.

– What system are you working with?

– Size of system?

– Are you working on high level architecture? Or on a lower level
with details?

• How do you make architecture decision?

– Can you please explain the process from a requirement from a
stakeholder to decision that affects the architecture

– When there is a change of requirements so that you need to build
new software or change existing software, how do you start work-
ing with the change?

• What diagrams do you regularly use? (Class diagrams, package dia-
grams, )

– When in the process do you use the diagrams?

– What information do you want to find when you read class dia-
grams?
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• What makes a class important? And why?

– What makes a class more important than another?

– Does the number of dependencies make a class more important?

∗ Type of dependency?

– Does the number of attributes make a class more important?

– Does the number of contributors make a class more important?

– Does the number of bugs make a class more important?

– Would class with perhaps a high cyclomatic complexity or a large
number of lines of code be more important for you?

– Does the fact that a class is changed by a lot of people make it
more important to you?

– Could you think of any more things that makes a class more im-
portant than another?

– Which classes are the least important ones? Why?

• When discussing with other stakeholders regarding needed changes,
what kind of information do you share/receive?

– Do you use diagrams to support the communication?

– What do you focus on when using the diagrams?

• Would a diagram where the least important classes have been removed
be useful for you?
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