
Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, March, 2010

Design, implementation and evaluation of RWTP-
Gateway for FTP based data transfer
Master of Science Thesis in Networks and Distributed Systems

WAJAHAT TARIQ

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Design, implementation and evaluation of RWTP-Gateway for FTP based data transfer

WAJAHAT TARIQ

Examiner: Ali Salehson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden March 2010

CHALMERS University of Technology

Deutsche Thomson OHG

Hannover Network Protocols Lab

Design, implementation and evaluation

of RWTP-Gateway for FTP based data

transfer

by

Wajahat Tariq

A thesis submitted in partial fulfillment for the

degree of Master of Science

in

Networks and Distributed Systems

Computer Science and Engineering

Supervisor Dr. Eduard Siemens

Examiner Ali Salehson

March 2010

http://www.chalmers.se
http://www.thomson.net
mailto:wajahat@student.chalmers.se
http://www.chalmers.se/en/sections/education/masterprogrammes/programme-descriptions/networks-distributed
http://www.chalmers.se/cse/
mailto:eduard.siemens@thomson.net
mailto:e3mahdi@chalmers.se

“As long as there were no machines, programming was no problem at all; when we had a

few weak computers, programming became a mild problem, and now that we have gigan-

tic computers, programming has become a gigantic problem. As the power of available

machines grew by a factor of more than a thousand, society’s ambition to apply these

new machines grew in proportion, and it was the poor programmer who found his job in

this exploded field of tension between the ends and the means. The increased power of the

hardware, together with the perhaps more dramatic increase in its reliability, made solu-

tions feasible that the programmer had not dared to dream about a few years before. And

now, a few years later, he had to dream about them and even worse, he had to transform

such dreams into reality! It is no wonder that we found ourselves in a software crisis ”

E. Dijkstra (The Humble Programmer, “ACM Turing Award Lectures: The First 25

Years”, Addison-Wesley, 1987, pages 17-32)

Abstract

The trend of video processing is increasing towards a digital arena and making use of

distributions over the internet. Hence, movies in the near future will be more digitial

and highly detailed. The new technology that is being used today is called as the 4K

technology, where 4K refers to the high resolution of the movie which is 4096x2160

pixels. This resolution gives a more detailed image than what can be seen on commonly

available HD-TVs, plasmas, computer screens or digital projection systems. This high

resolution implies that a huge amount of data would be processed when transferred over

the Internet, which in turn requires considerably large data rate, around 2.5 Gbps, in

the presence of delay and packet loss. The Internet reliable transport protocol TCP

cannot handle such data rate due to its limitations when considering its congestion

control mechanism. This is where a Reliable WAN (Wide Area Network) Transport

Protocol (RWTP), developed by the company “Deutsche THOMSON OHG”, plays its

role. RWTP has been shown to have the capability to transfer data at a rate of 5 Gbps

over WAN even in the presence of delay and packet loss. Though, it lacks the ability to

perform collaborative tasks with most commonly available applications like File Transfer

Protocol (FTP). In this thesis work a proxy mechanism is implemented to make RWTP

perform these collaborative tasks with one of the most commonly used applications; i.e.

FTP in this case. An implementation scenario is completed in C++ and tested on 1

Gbps Ethernet network with 1 Gbps switches, 10 Gbps network routers and 10 Gbps

network emulator to emulate delay and packet losses. Using 4K digital technology with

5000 frames where each frame is 50 MBytes gives a total of 250 GBytes data. The

result of thesis work show that this amount of data can be transferred from Hannover,

Germany to Los Angeles, United States in 42 minutes using RWTP-Gateway with FTP.

On the other hand, with a direct FTP connection using TCP it takes 37 hours, but

only 28 hours with a proxy-based FTP connection using TCP. Hence, RWTP-Gateway

with FTP gives a significant reduction in transmission time by providing high speed

data transfer with a factor of 50 in comparison with a direct FTP connection and with

a factor of 40 in comparison with proxy-based FTP connection using TCP.

Acknowledgements

First of all I would like to thank Eduard Siemens at “Deutsche THOMSON OHG” for

offering me this thesis in the first place. I found it to be a very good thesis which

was both challenging and interesting. I also thank Andreas Aust for providing help,

comments and suggestions not only with the implementation but also with the thesis

report as well. I would also like to thank Jens Brocke for describing RWTP in detail.

Thanks to Ali Salehson at CHALMERS University of Technology for being my thesis

examiner and providing valuable comments on the report. Finally, I would like to thank

my parents for their encouragement and support.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables viii

Abbreviations ix

1 Introduction 1

2 Background 4

2.1 OSI model . 4

2.2 TCP/IP . 6

2.2.1 Transmission Control Protocol . 7

2.2.1.1 Connection establishment 7

2.2.1.2 Reliable data transfer . 8

2.2.1.3 Connection termination 8

2.2.1.4 TCP Congestion control 9

2.2.1.5 TCP congestion control extensions 10

2.2.1.6 Random Early Detection (RED) 10

2.2.1.7 Proxy-based TCP extensions of congestion control 10

2.2.2 User Datagram Protocol . 10

2.3 File Transfer Protocol . 11

2.3.1 Active mode . 12

2.3.2 Passive mode . 13

2.4 WAN acceleration . 14

2.4.1 RWTP . 15

2.5 Proxy servers . 15

2.5.1 Classical application proxies . 16

3 Design 18

3.1 Control channel block . 19

3.1.1 client-side proxy authentication block 20

3.1.2 FTP authentication block . 21

3.1.3 Client-side proxy routing block . 22

iv

Contents v

3.1.4 FTP command reference block . 23

3.1.5 Control connection setup sequence 25

3.1.6 FTP initial command sequence . 30

3.2 Data channel block . 32

3.2.1 Data channel connection sequence 33

4 Implementation 38

4.1 Modules . 39

4.1.1 ClientSideProxy . 40

4.1.2 ServerSideProxy . 40

4.1.3 CTCPServer . 41

4.1.4 STCPClient . 41

4.1.5 ProxyAuthentication . 42

4.1.6 ProxyStream . 43

4.1.7 ProxyCmdRef . 44

4.1.8 RWTPClient . 44

4.1.9 RWTPServer . 45

4.1.10 ProxyDataConnection . 45

4.1.11 ProxyRouter . 47

4.2 Flow chart: client-side proxy . 47

4.3 Flow chart: server-side proxy . 50

5 Performance Evaluation 52

5.1 Network Emulator . 53

5.2 TCP window size adjustment . 54

5.3 Measuring TCP bandwidth performance with Iperf 55

5.4 Testing FTP using a direct TCP connection 56

5.5 Testing an indirect connection with TCP based-proxy 57

5.6 Testing an indirect connection with RWTP-based proxy 58

5.7 Performance Evaluation . 59

6 Summary and Future work 62

A Network performance tables 63

B CPU usage plots 66

Bibliography 72

List of Figures

2.1 PDU . 4

2.2 OSI Layers . 5

2.3 TCP : Connection establishment . 8

2.4 TCP : Connection termination . 9

2.5 UDP header . 11

2.6 Active mode . 12

2.7 FTP and NAT . 13

2.8 FTP : Passive mode . 14

2.9 Proxy . 15

2.10 Classical proxy . 16

3.1 Proxy design . 18

3.2 Control Channel Blocks . 19

3.3 client-side proxy authentication . 21

3.4 FTP authentication sequence . 22

3.5 client-side proxy routing process . 22

3.6 Path determination . 23

3.7 FTP command reference process . 25

3.8 Control connection setup sequence . 26

3.9 Overall control connection setup sequence 29

3.10 Basic FTP commands . 30

3.11 Initial command sequence . 31

3.12 PASV command and its responce . 34

3.13 Data channel connection sequence . 35

3.14 Gateway scenario . 36

3.15 Gateway scenario with RWTP . 37

4.1 Implementation model . 39

4.2 TCP WAN connection . 42

4.3 RWTP WAN connection . 45

4.4 Flow chart: client-side proxy . 49

4.5 Flow chart: server-side proxy . 51

5.1 The network model used for performance evaluation 53

5.2 10 Gbps Network Emulator . 54

5.3 TCP Bandwidth measurement scenario with Iperf 56

5.4 Testing Direct connection . 57

5.5 Testing an indirect connection with TCP based proxy 58

vi

List of Figures vii

5.6 Testing an indirect connection with RWTP based proxy 58

5.7 Performance analysis . 59

5.8 TCP vs RWTP with 0.1 percent packet loss 60

5.9 TCP vs RWTP with 0.3 percent packet loss 61

B.1 CPU Usage at FTP client . 66

B.2 CPU Usage at FTP server . 67

B.3 CPU Usage at Client side proxy (TCP as WAN connection) 68

B.4 CPU Usage at Server side proxy (TCP as WAN connection) 69

B.5 CPU Usage at Client side proxy (RWTP as WAN connection) 70

B.6 CPU Usage at Server side proxy (RWTP as WAN connection) 71

List of Tables

3.1 TCP Over WAN Performance Tuning . 36

5.1 Iperf TCP Performance . 56

5.2 Performance analysis table for TCP-proxy, RWTP-proxy and direct con-
nection . 61

A.1 Performance analysis table for TCP Proxy, RWTP Proxy and direct con-
nection without emulator . 63

A.2 Performance analysis table for TCP Proxy, RWTP Proxy and direct con-
nection with 0.1 percent packet loss . 64

A.3 Performance analysis table for TCP Proxy, RWTP Proxy and direct con-
nection with 0.3 percent packet loss . 65

viii

Abbreviations

AECN Anti ECN

BDP Bandwidh Delay Product

ECN Explicit Congestion Notification

FTP File Transfer Protocol

Gbps Giga bits per second

GBps Giga Bytes per second

GHz Giga Hertz

HTTP Hyper Text Transfer Protocol

ISO International Standards Organization

LAN Local Area Network

LLC Logical Link Control

MAC Media Access Control

Mbps Mega bits per second

MBps Mega Bytes per second

NIC Network Interface Card

OSI Open System Interconnect

PEP Performance Enhancing Proxy

RED Random Early Detection

RFC Request For Comments

RTT Round Trip Time

RWTP Reliable WAN Transport Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

UDT UDP-based Data Transfer

WAN Wide Area Network

ix

Chapter 1

Introduction

As of June 2009, there are 1.66 billion Internet users according to Internet World Stats

and the number is increasing day by day [1]. Also, bandwidth demanding applications

with reliable data transfer are gaining popularity.

The most commonly used protocol for reliable data transfer over the Internet is TCP. It

allows applications to communicate reliably over the unreliable IP packet-switching net-

work. It does so while dynamically increasing its sending window size which represents

the amount of data that can be sent without having to wait for their acknowledgement

[2]. TCP suffers limitations in transfering over large distances because the mechanisms

implemented for reliable data transfer and congestion control will be effected by long

delays and packet losses.

Getting good TCP performance with high latency and high bandwidth needs tuning of

the software implementation. A properly tuned TCP can achieve up to 100 Mbps but

beyond that in a high latency environment its performance starts to degrade. The reason

for this degradation in performance is TCP congestion control algorithm controlling the

sending window size [3].

When considered with standard and even enhanced versions of TCP there is a huge gap

between the available bandwidth and the bandwidth being utilized i.e. throughput.

TCP performance will also be degraded largely due to packet losses. Due to being

reliable, TCP will ensure to receive acknowledgement otherwise it retransmits that part

of data after time out. This retransmission process to recover from errors and losses

causes the effective bandwidth to be dropped below the available bandwidth between

the end devices.

Latency is an issue which is related to the distance and the speed of signal propogation

since, the speed of signal propagation in vacuum is constant “299,792,458 meters/second”

1

Chapter 1. Introduction 2

and in fibre is roughly 66 percent of speed of signal propogation in vacuum which is

200,000,000 meters/second [4]. Latency is directly proportional to the distance between

two end points of communicating devices. Hence, the larger the distance, the more

will be the delay. The distance for example between Los Angeles, United States and

Hannover, Germany is 10,000 kilometers, the latency between them over transcontinental

links becomes:

latency = Distance / Speed = 10,000/200,000 = 50 milli seconds

The sending window size is always limited by the so called Bandwidth Delay Product

(BDP). With a window size of 64 KB and 100 milli seconds delay the highest possible

rate is around 5.6 Mbps. Further, the trend in professional movie production is moving

towards a fully digital, file based and distributed workflow. High-quality film material

for digital cinema capable of 4K resolution (4096x2160) requires approximately 2.5 Gbps

for high speed transmisisons [5]. To transmit such amount of data over larger distances

having a Round-Trip Time (RTT) of 100 milli seconds, a high speed reliable transport

protocol is required.

Such a reliable transport protocol has been developed by the company “Deutsche THOM-

SON OHG” and is named Reliable Wide Area Network Transport Protocol (RWTP).

This protocol has been shown to have the capability to transfer data at the rate of 5

Gbps in a single stream via transcontinental links with high delay even in the presence

of packet losses.

An implementation of this protocol with a file transfer application is currently avail-

able for high-end Linux-based computer systems. Unfortunately, legacy equipment like

Windows-based or Mac OS-based systems currently cannot benefit from RWTP’s WAN

performance. One possibililty to perform bulk data transfer over WAN with FTP in the

presence of delay and packet losses is to use a proxy mechanism and enable it to adopt

a high data transfer capability. Hence in order to investigate the advantages of RWTP,

an RWTP-based gateway with FTP-based data transfer is designed, implemented and

evaluated.

The implementation of proxy application for FTP-based data transfer is carried out in

C++ using Linux and tested on a system with processor 2.4 GHz with 8 cores. The

scenario is implemented on a 1 Gbps Ethernet network consisting of 1 Gbps switches

and 10 Gbps network routers. In addition to this a 10 Gbit network emulator is used

for performance analysis in the presence of delay and packet loss.

This report contains only minimal description about the proprietary protocol (RWTP)

and its mechanisms. The full report is delivered to the company “Deutsche THOMSON

Chapter 1. Introduction 3

OHG”, since they required some restrictions on the published content of the report. The

remainder of this report is structured as follows. In chapter 2, background information

related to the thesis is given. The background information includes some basic network-

ing concpets leading towards TCP, UDP and the transport protocol RWTP. FTP and

proxy mechanism is also explained to provide a basic foundation before moving towards

the design phase which is explained in chapter 3. Design phase will describe the two

core application blocks, control block and data block which will be further explained in

detail along with functions and methods. Chapter 4 starts with an overview of the im-

plementation of all the modules and flow chart is given at the end. Performance analysis

in different scenarios and the corresponding results are discussed in chatper 5. Summary

and future work is described in chapter 6. Appendix A consists of network performance

tables and appendix B at the end contains the CPU and network performance plots.

Chapter 2

Background

Whenever two computers need to communicate with each other, they have to be con-

nected and the flow of information from one computer to another has to follow some

rule in a well-defined format or syntax. This syntax or the set of rules is known as

a protocol [6]. Over the years many protocols are developed but for the two systems

to communicate they should adopt the same set of protocol. These protocols include

mechanisms for the devices to identify and make connections with each other so that

they will be able to communicate data.

Communication between two systems is all about transfering data from one system to

another in the form of Protocol Data Unit (PDU) as shown in figure 2.1. Each PDU

has some piece of control information added as header so that it could travel from one

system to another [7]. The same protocol on each system will use the header information

for its work.

Figure 2.1: PDU

2.1 OSI model

OSI model has been an essential element of computer network design since its confir-

mation in year 1984 [8]. It is an abstract model which shows how network devices and

protocols should work together and communicate with each other. It is a technology

4

Chapter 2. Background 5

standard maintained by the International Standards Organization (ISO). In order to

making systems communicate efficiently over the network, the entire communication

task is divided into smaller functions in different levels which we refer to as layers. OSI

model conceptually divides communication functions into seven layers where the lower

layers deal with the electrical signals, chunks of binay data and perform routing across

networks. On the other hand, higher layers deal with the requests and their responses,

representation of data and all functions related to the user applications. It was orig-

inally conceived as a standard architecture for building network systems and indeed,

many poplular network technologies today reflect the layered OSI model. The seven

layers of OSI model are:

Figure 2.2: OSI Layers

Chapter 2. Background 6

The physical layer is responsible for transmitting raw bit stream over physical link. Also,

it is responsible for converting bit stream into electrical signals by following suitable

signalling and coding schemes.

It is designed to ensure reliable data transmission over a noisy physical channel [9]. This

is usually done by adding a trailer for error control of the frame. It may also control the

access to the physical medium between many devices.

The network layer is responsible for addressing and forwarding the packets. It has the

task to find the ultimate destination for the packets and also performs the routing for

so that packets could reach the correct destination.

The transport layer performs segmentation. If the received data from the upper layer

is larger than the acceptable packet size, it divides the data into smaller chunks for

transmission. It may perform retransmissions if the data is not received correctly at the

destination. It is also responsible for sending the data at rate acceptable to the receiver

i.e. it handles flow control otherwise it might overwhelm the receiver. Transport layer

provides end-to-end transfer of data with optional types of control.

The session layer establishes, maintains and terminates a communication sessions which

refers to the logical connection between two devices. It also recognizes the names so

that only permissible parties participate in the sessions. These sessions enables systems

on the network to share information.

The presentation layer is respnsible for providing data in a user-specific format which

different systems use to store and manage their data. It is also responsible for encryption.

In this way, the application has nothing to worry about the conversion or decryption of

data.

The application layer is the highest layer of OSI model and its purpose is to serve as

a window between two correspondent processes so that they may be able to exchange

information in an open enviroment. Application layer is the interface between user

application programs and the communication system so that the user programs will be

able to access services that are available over the Internet.

2.2 TCP/IP

TCP/IP is a reference model and the protocol architecture that is developed for the

Internet. It is a set of the most important protocols in the world. It is named for its

two important protocols TCP and IP. TCP/IP provides communication services for the

Chapter 2. Background 7

user applications across any underlying physical network. Two different transport layer

protocols, TCP and UDP are discussed in this section.

2.2.1 Transmission Control Protocol

This protocol is layer 4 protocol which makes use of the services provided by the underly-

ing Internet protocol IP (layer 3). TCP handles the data received from application layer

are segments of variable length information which will be delivered in IP datagrams. One

of the most commonly used transport layer internet protocol is Transmission Control

Protocol (TCP). It fits into a layered protocol architecture just above a basic Internet

Protocol [10] which provides TCP a way to send and receive segments of variable length

of information enclosed in internet datagram [11]. TCP is reliable, it has error recovery

mechanism. It is full featured transport layer reliable and connection oriented protocol.

This is why TCP helps us to developing client and server applications. It provides trans-

port layer addressing mechanism which helps applications to make multiple connections

using single IP address.

2.2.1.1 Connection establishment

Before any data transfer the TCP performs a three way handshake. Normally a client

will initiate a TCP connection to a destination server. The following scenario is occurred

when TCP connection is established.

• Server must be in waiting state to accept an incoming connection.

• The client side TCP initiate the process by sending a segment with a SYN flag set

to 1 which informs the server its initial sequence number for the data.

• The server acknowledges the client with a segment containing its initial sequence

as well containing its own initial sequence number the segment will have both SYN

and ACK flag set to 1.

• The client then acknowledge the server with a segment with the flag ACK set to

1.

The number of segments required for this process is three, that is why this is known as

three way handshake.

After this stage, connection is successfully established. Data is reliably transferred and

after that, connection is terminated.

Chapter 2. Background 8

Figure 2.3: TCP : Connection establishment

2.2.1.2 Reliable data transfer

Data transfer in TCP is reliable because each segment has a sequence number and

acknowledgement fields in the header. The sequence number is used by the sender to

keep track of the data bytes that have been sent acknowledge or waiting to be sent. The

receiver make use of the sequence number to order the received data and to acknowledge

them to the ssender. If segments are not acknowledged, the sender may retransmit. It

has a sliding window mechanism in which unacknowledged transmissions are detected

and are retransmitted. TCP also uses the checksum to verify that the received data is

error-free or not.

2.2.1.3 Connection termination

TCP connection termination is done by four segments as shown in the figure as shown

in figure 2.4.

• When client wishes to close it sends a FIN segment set to 1, indicating that client

has finished sending data and now wishes to close the connection.

• Server on the other end of the network sends ACK of the received FIN segment.

• Client will wait some time giving the sever the possibility to terminate its data

sending. When the server has no more data to send it will include a FIN flag set

to 1 in the last segment in which the client will act in the same way.

Chapter 2. Background 9

• The TCP on the client system sends an ACK back to it.

Figure 2.4: TCP : Connection termination

2.2.1.4 TCP Congestion control

In normal cases when TCP performing data transfer it does also congestion control in

order to avoid the overwelming network by excessive packets. TCP starts after some

threshold with incrementing its sending window size by one segment after each RTT

(RTT). When it detects congestion due to missing ACKs from the receiver it decreases

the window size by one half [12]. Considering a high bandwidth connection with high

latency with 10,000 segments and since TCP reduces the window by one half in case

of congestions therefore the window size now after congestion becomes 5000 segments.

TCP then starts to increase one packet each RTT, if the RTT is 100 milli seconds then

the time required to come back to 10,000 segments would be 500 seconds [13].

TCP congestion control mechanism is combined with error recovery mechanism. The

arrival of an acknowledgement to the sender identifies that there is no congestion on the

network and causes the window size to be increased by one segment. In case of normal

congestion TCP will decrease its window by one half this is why its scheme is know as

Additive Increase and Multiplicative decrease (AIMD).

Chapter 2. Background 10

2.2.1.5 TCP congestion control extensions

TCP congestion control can be performed by getting explicit or implicit notifications

from routers or some other complex proxy-based methods.

2.2.1.6 Random Early Detection (RED)

Accross the network any router has the ability to drop packets only if its queue is full

otherwise the packet has to stay a while in the queue and wait for its turn to be forwarded

on its to destination. In case of congestion this queuing scheme becomes responsible for

the loss of packets [14]. This packet loss due to queuing scheme has a negative effect on

the fairness and throughput of TCP. In order to enhance the rate that the router drops

packets in queue there are methods developed and generally called the active queue

management one of these is RED algorithm which measures the mean queue length as

control variable and compares it with two threshold queue length parameters. If mean

queue length is less than the minimum queue threshold then packets are stored in the

queue and later forwarded to the destination. On the other hand if mean queue length

is more than the max queue threshold all arriving packets are dropped. If the mean

queue length is between the upper and lower threshold then packets are dropped based

on some probability. Hence, by using RED the fairness of TCP connections traversing

the router is increased [15].

2.2.1.7 Proxy-based TCP extensions of congestion control

This is done by splitting a single TCP connection into two parts. The first part connects

the sender to the proxy and the second part connects the receiver to the proxy. Also

this proxy has the capability to act as sender and receiver in case it receives data from

sending party and needed to send it to the recipient party. The advantage of using such

a mechanism is that each TCP connection can be handled with a shorter response time.

In case of congestion control mechanism is initiated this response time will be smaller

than on bigger networks. This will give a much better performance of TCP. This type

specific type of proxies is known as performance enhancing proxies (PEPs) [16].

2.2.2 User Datagram Protocol

User Datagram Protocol (UDP) is the simple transport protocol which provides similar

addressing mechanisms like TCP but no reliability, is connectionless and data might get

lost.

Chapter 2. Background 11

Figure 2.5: UDP header

UDP only provides multiplexing via port numbers and message integrity via checksum.

Length field indicates the size of the segment header and the user data.

Therefore, UDP application must be willing to face some loss, errors, duplication or

datagrams may also go out of order [17].

Even though it is less reliable, there are applications over the Internet making use of

UDP. Some of them are Real Time Protocol (RTP) for real time multimdeia applications

and TFTP (Trivial File Transfer Protocol) for transferring files.

2.3 File Transfer Protocol

File Transfer Protocol (FTP) is a protocol for transferring files over the internet. It is

most commonly used to download a file from a server or upload to a server by making

use of TCP connections [18].

FTP relies on a pair of TCP connections to perform its operation by establishing two

different channels.

• Control channel

• Data Channel

Control channel is identified by TCP port number 21. All the commands are sent to

FTP-server via this channel. Also, the responses of the commands are received via this

Chapter 2. Background 12

control channel. For example, username and password to FTP-server will be sent on

control channel “user abc”, “pass ****”. The responses are received on the same control

channel “230 login successful” or “530 incorrect login”.

Data channel utilizes TCP port 20 for all data transfer between FTP client and FTP

server. For example when the command for viewing directory “List -aL” is entered, the

request is sent via control channel and the response of the command is sent on the data

channel on TCP port 20.

Apart from FTP channels, there are two different modes in which FTP-client and FTP-

server establishes a connection with each other.

• Active mode

• Passive mode

2.3.1 Active mode

In active mode, FTP-client connects to FTP-server by establishing a control connection

on TCP port 21. FTP-client chooses a random port higher than 1023 to make connection

with FTP-server on TCP port 21. When FTP-client wishes to make a data connection

with FTP-server it sends a port command as shown in the figure 2.6, along with the IP

address and port number to FTP-server to connect to. Also, FTP-client starts listening

on that for the data channels.

Figure 2.6: Active mode

Chapter 2. Background 13

FTP frequently fails when data has to pass through a firewall, because firewalls limit

the use of number of ports to pass the unwanted traffic through them unless or until

opened deliberately for specific connection in specific direction [19].

When FTP-client is behind the firewall, then active mode FTP will not work because

the firewall might not know which of the clients behind it should receive the returned

connection. The problem caused by FTP-client programs is by using PORT command

to establish FTP data connections. In this case FTP-server has to make a connection

back to FTP-client. But in the presense of restrictive firewalls which forbids every

incoming connection will not allow a connection from FTP-server to FTP-client causing

data transfer mechanism to fail [20].

Another problem with active mode FTP occurs when FTP-client program sends a PORT

command to FTP-server from behind the Network Address Translator.

PORT a1, a2, a3, a4, p1, p2 (2.1)

Figure 2.7: FTP and NAT

When this PORT command is sent to FTP-server and it tries to connect back to FTP-

client, this request is dropped by the NAT router on the way to FTP-client. Because

the port number is not existing in the translation table.

However, passive FTP works better in case of FTP clients protected by a firewall.

2.3.2 Passive mode

In passive mode, FTP-client connects to FTP-server to establish a data connection.

First FTP-client makes a control connection with FTP-server on TCP port number 21.

Chapter 2. Background 14

It chooses a random port higher than 1023. When FTP-client wishes to transfer data,

it sends a PASV command to FTP-server. As shown in the figure, FTP-server then

responses with “227 Entering passive mode (a1,a2,a3,a4,p1,p2)”. Where “a1.a2.a3.a4”

is the IP address and “p1*256+p2” is the port number. After receiving the address from

FTP-server, FTP-client makes a data connection to the port specified by the FTP-server

as shown in figure 2.8.

Figure 2.8: FTP : Passive mode

Passive mode FTP implies that FTP-server does not make an attempt to establish data

connection to FTP-client. Instead, FTP-client will initiate the data connection avoiding

problems with firewall and NAT.

2.4 WAN acceleration

The applications that are used to work fine over the smaller network are now moving

to global Internet and the major problem that these of applications are facing is longer

responce time. Even working on the applications to improve their performance over

WAN does not seem to be fruitful in some cases. Developers look for ways to increase

the performance over WAN without having to make changes on the application itself

[21].

Bandwidth range is extending and the capability of protocols in comparison to link

speed is laging behind. For example, currently the fastest present standard is 10 Gbps

Chapter 2. Background 15

Ethernet. In novermber 2006, a group of IEEE agreed to a 100 Gbps Ethernet version.

40 Gbps networks are currently under development by IEEE [22].

One of the ways to perform a bulk data transfer over WAN in the presence of delay and

packet losses is to use a proxy mechanism and enable it to adopt a high data transfer

capability.

2.4.1 RWTP

RWTP (Reliable WAN Transport Protocol) is a transport protocol for high-speed data

transmission over wide area networks developed by “Deutsche THOMSON OHG”. It has

the capability to support global data transfer of terabyte sized data sets [23]. RWTP

can be considered as WAN protocol that is able to achieve a data rate of upto 2.6 Gbps

over long distance connection that often exhibits high latency or packet loss. RWTP

uses UDP to transfer data and extends it with properties such as reliability and flow

control [24]. Thus, RWTP can be seen as a better version of TCP in terms of avoiding

limitations of TCP over WAN.

One of the products utilizing RWTP is availabe and is used for data transport and

storage access of motion pictures and television post production. It is well known as

NetFlight adopted by Talon Data Systems [25].

2.5 Proxy servers

The term proxy means to act on the behalf of another. As shown in the figure 2.9, a

proxy server is a system that lies in between client and server and forwards requests

from client to servers and responses from servers to clients. When a request arrives at

the proxy from client at first it analyzes the request, then it forwards the request to the

server. Server sends the response back to the proxy. Again proxy analyzes the response

and forwards it to the client [26]. By doing so, proxy applications help in providing

anonymity to the client and server. Thus client can access the resources on the server

and server can serve the requests for the client without knowing that each other are

connected [27].

Figure 2.9: Proxy

Chapter 2. Background 16

2.5.1 Classical application proxies

A classical application proxy is a program that knows how to behave as both client and

server. A classical proxy may modify or add a message on its way to client or server

[28]. It implements the specific protocol being used by both client and server programs.

In addition to that, the client must also have the knowledge to direct its request to the

proxy and inform it about the final destination [29]. Essential qualities that a proxy

server should have are as follows:

• It must be able to recognize clients and accept their connections.

• It must also understand the clients request and direct their requests to the final

destination.

• It must be able to locate the final destination and make a connection with it.

• After establishing the connection with the client and the server, it must be able

to relay requests and responses.

Hence, classical proxies not only provides security benefits among clients and servers but

also provides the opportunity to make optimizations, logging and caching mechanisms

to make the transfer be even more efficient.

Lets consider an example for classical application proxy. First of all, client must have

the knowledge of classical existing proxy, so that it could direct its requests to the proxy

instead of directing its requests directly to the server. Therefore, the client first makes

a connection with proxy server. After making a successful connection with the proxy

server it informs the proxy about the final destination address, to which the requests

will be sent to.

Figure 2.10: Classical proxy

Chapter 2. Background 17

Now the proxy server will locate the server and makes a connection with it.

As shown in the figure 2.10, client sends a request to proxy server and informs it that

the final destination of the request is web server. Proxy server locates web server and

makes a connection and forwards the request.

Chapter 3

Design

In this chapter, design of proxy application for FTP-based data transfer is discussed.

The designing process is done under the consideration of the RFC 959 for File transfer

Protocol [18] and RFC 1919 for classical and transparent proxies [29]. The design of

the proxy application for FTP data transfer is performed in a way such that one proxy

is placed near FTP-client and another is placed near FTP-server. The proxy near

FTP-client is referred to as client-side proxy and similarly the proxy near FTP-server is

referred to as server-side proxy. The scenario includes local networks of 1 Gbps connected

by 10 Gbps routers via high-end Linux servers for client-side and server-side proxies as

shown in figure 3.1.

Figure 3.1: Proxy design

The proxy application for client-side and server-side proxy is divided into two main

blocks.

18

Chapter 3. The design 19

• Control channel block

• Data channel block

3.1 Control channel block

Control channel block is further subdivided into four different blocks.

• Proxy authentication block

• Proxy routing block

• FTP authentication block

• Command reference block

Figure 3.2: Control Channel Blocks

FTP-client is a client program which logs into FTP-server and sends requests over the

network. In this case FTP-client should also have the capability to recognize the pres-

ence of proxy along the way to the FTP-server over the network. Hence, FTP-client

first addresses the client-side proxy and then informs client-side proxy about the final

destination FTP-server.

In our scenario, client-side proxy is the first communication point for FTP-client. Client-

side proxy accepts a connection from FTP-client, also FTP-client informs client-side

proxy about the final destination FTP-server. Client-side proxy also makes a decision

about the server-side proxy based on the destination address.

Chapter 3. The design 20

Server-side proxy accepts incoming connection request from client-side proxy. Server-

side proxy also receives final destination FTP-server address from client-side proxy. It

makes a FTP connection with FTP-server.

As soon as connection of server-side proxy with FTP-server is established, FTP-server

requests for authentication details from server-side proxy. FTP-server performs authen-

tication and sends the login status back to FTP-client via server-side proxy.

3.1.1 client-side proxy authentication block

Proxy servers, apart from providing proxy services usually are also used to provide

authentication [30]. FTP-client logs into client-side proxy after successful authentication.

It sends its credentials after establishing a direct connection with client-side proxy first

and after successful connection it send its credentials. First it sends username to client-

side proxy as:

user username (3.1)

Client-side proxy after receiving username responds with “Please specify password” re-

quest to FTP-client and waits for password. FTP-client upon receiving password request

from client-side proxy replies with password to client-side proxy as:

pass ∗ ∗ ∗ ∗ (3.2)

After receiving username and password from FTP-client, client-side proxy performs

authentication and sends back the status of login process back to FTP-client as shown

in figure 3.3.

Chapter 3. The design 21

Figure 3.3: client-side proxy authentication

3.1.2 FTP authentication block

The authentication process on this architecture is performed after FTP-client connects

with client-side proxy. Then FTP-client sends information about final destination to the

server-side proxy in the form:

usename@ipaddress (3.3)

Where username is the credential for authentication on FTP-server, “ipaddress” is the

address of final destination FTP-server on which final destination FTP-server is listening

on.

This information is passed on to server-side proxy which extracts the address and user-

name of final destination FTP-server. It makes a connection with FTP-server and then

after successful connection server-side proxy sends username to FTP-server.

After receiving username, FTP sever sends a “Please specify password” request to server-

side proxy, which forwards it to client-side proxy and client-side proxy finally delivers

it to FTP-client as shown in figure 3.4. FTP-client understands the request and sends

back “pass ****” in response to password prompt request which reaches FTP-server via

client-side and server-side proxy.

Chapter 3. The design 22

Figure 3.4: FTP authentication sequence

3.1.3 Client-side proxy routing block

Since there are a number of FTP-servers involved and also there are different server-side

proxies for these FTP-servers therefore client-side proxy must make a decision about

which server-side proxy to connect to.

Figure 3.5: client-side proxy routing process

Client-side proxy makes a decision about server-side proxy from the destination address

of incoming FTP request i.e. from FTP-server’s address.

Chapter 3. The design 23

It initiates a simple routing process. Client-side proxy compares the network address of

FTP-server address with the network address stored in the routing table as a text file

for routing reference. If the network address of the destination address of FTP-server

matches with the network address present in the routing table then client-side proxy

connects with the address present next to the matched network address in the routing

table.

The comparison process involves conversion of FTP-server address into binary and per-

forming AND operation between the subnet mask of network address stored in the

routing table which is also converted to binary, the resultant which is also a network ad-

dress is compared with the stored network address in the routing table, if both matches

then the address present next to the matched entry is fetched for client-side proxy to

make a connection with it.

Figure 3.6: Path determination

3.1.4 FTP command reference block

After proxy authentication, client-side proxy routing and FTP authentication, the path

from FTP-client to FTP-server is now available via client-side and server-side proxy for

sending and receiving commands.

The initial exchange of commands between FTP-client and server is usually getting basic

information about the server system like system type, features and modes supported by

FTP-server.

Chapter 3. The design 24

Example of one such initial communication scenario between an FTP-client and server

is shown below:

Server: Accepted a connection from abc@xyz.net

Client: 220 Welcome to FTP-server

Client: 331 Please specify password.

Server: pass ****

Client: 230 Login successful

Server: SYST

Client: 215 UNIX Type: L8

Server: FEAT

Client: 211-Features:

EPRT

EPSV

MDTM

PASV

RESET STREAM

SIZE

TVFS

211 End

Server: PWD

Client: ”/home/user”

In our scenario, all commands that are specified by the FTP-client must pass through

the client-side proxy and server-side proxy. Client-side proxy is the first one which is

going to be encountered by FTP-client when sending commands to FTP-server as shown

in figure 3.7.

Therefore, client-side proxy must be able to understand these FTP commands so that

only valid commands passes over the network, rest of the invalid commands should be

dropped by the client-side proxy and should not be allowed to travel over the network.

Chapter 3. The design 25

Figure 3.7: FTP command reference process

Since the correct command for specifying correct username is “user” not “usr” therefore

the command “usr” is dropped and is not allowed to pass over the network and FTP-

client is informed about the invalid command input. So that FTP-client may inform

the user about invalid command input and prompt the user again to input a correct

command.

3.1.5 Control connection setup sequence

The overview of the sequence in which the control connection is established from FTP-

client to client-side proxy, client-side proxy to server-side proxy and finally from server-

side proxy to FTP-server is shown in figure 3.8. The components involved in the initial

connection setup sequence are:

• Proxy authentication block

• Proxy routing block

• FTP authentication block

• Command reference block

When FTP-client wants to transfer files by establishing a connection with FTP-server,

which is first encountered by client-side proxy and was waiting and listening on specific

IP address and port number to accept an FTP incoming client’s request. It means that

client-side proxy is also acting like FTP-server, waiting for FTP-client to connect to

and process it’s request. Processing not only involves forwarding the request to FTP-

server but might also process or modify the request at some situations and send the

reponse back. However in this case FTP-client is aware of the fact that there is a proxy

Chapter 3. The design 26

Figure 3.8: Control connection setup sequence

mechanism operating in between FTP-client and FTP-server. This is why FTP-client

first logs in to the client-side proxy and the authentication process at client-side proxy

simply requires a username and password.

Soon after establishing a TCP connection with client-side proxy, it sends a welcome

message to FTP-client

220 Welcome message (3.4)

This welcome message is used by FTP-client to start FTP authentication by sending

credentials to client-side proxy.

The number “220” indicates that it is a welcome message, the rest of the message can

be altered and makes simply no change in the default processing of FTP-client or server

programs. Upon receiving a welcome message from client-side proxy, FTP-client sends

its credentials to client-side proxy to get itself authenticated. FTP-client sends username

to client-side proxy in the form as in (3.1).

Client-side proxy receives the username from FTP-client and sends a password request

“331 Please specify the password” to FTP-client. Then FTP-client sends password to

client-side proxy which performs authentication and sends its response back to client-side

Chapter 3. The design 27

proxy, in case authentication is successful FTP-client receives successful login message

“230 Login successful” from client-side proxy.

After successful authentication of FTP-client by client-side proxy, now client-side proxy

will have to make a decision about which server-side proxy to connect to. client-side

proxy makes this decision by referring the routing table and comparing the network

address present in the routing table with the network address of final destination FTP-

server.

If there is match, meaning both network addresses are the same then the entry next to

the matched network address is considered as the designated server-side proxy for the

specific FTP-client.

Client-side proxy, after authenticating FTP-client sends fake welcome message “220

Welcome to FTP-server” to FTP-client. FTP-client trusts that its from FTP-server

and sends credentials for authenticating itself into FTP-server. FTP-client first sends

username to client-side proxy trusting client-side proxy would forward it to FTP-server,

but the situation behind the wall is different. The username sent to client-side proxy

have the syntax as in (3.3).

The syntax of the username is mentioned as such to identify the address of final destina-

tion FTP-server [29]. It is forwarded to server-side proxy, server-side proxy extracts the

username and address of FTP-server, makes a connection with FTP-server and sends

the username to FTP-server as in (3.1).

After receiving username from server-side proxy, FTP-server sends a password request

message “331 Please specify the password” to server-side proxy. server-side proxy for-

wards this password request message to client-side proxy and client-side proxy delivers

it to FTP-client.

FTP-client understands the password request message and sends the password to FTP-

server via client-side proxy and server-side proxy. FTP sever performs authentication

and sends the status of the authentication process to FTP-client via server and client-

side proxy respectively. If authentication is successful, FTP-client receives a “230 Login

successful” message from FTP-server via server and client-side proxy.

As soon as FTP-client receives successful login message from FTP-server via server-side

proxy and client-side proxy, the connection is now setup and can be used to perform

signalling between FTP-client and FTP-server. The commands from FTP-client are

sent to FTP-server over this connection.

Chapter 3. The design 28

The user protocol interpreter initiates the control connection. The control connection has

similar properties like a Telnet protocol. They both send data, username and password

over the internet in plain text. FTP uses Telnet protocol on control connection.

This is done by implementing the rules of Telnet procotol into the procedure of connect-

ing the user plane to the server plane into the FTP protocol. It can also be achieved by

making use of Telnet protocol to make a control connection between user plane and the

server plane [18].

As soon as user initates the connection process, standard FTP commands are exchaged

from the user plane to the FTP-server via this control connection.

The control coonection can also be established by some special FTP-client programs

that after making a direct connection with FTP-server process sends the commands via

this control connection independently without the intervtion of the user and the replies

are transmitted over this control conection from the FTP-server plane to user plane [18].

These commands may be used for performing authentication, getting FTP-server system

information, setting FTP-server in either active or passive mode and setting the mode in

which the data transfer will take place either ASCII or binary. All of these commands are

sent over this connection from FTP-client to FTP-server. Also the response or outcome

of these commands are sent back to FTP-client via this connection.

This is the only connection which will remain active unless or until either of FTP-

client or FTP-server terminates by sending a “QUIT” command or by message “221

Goodbye”. “QUIT” command can be sent either from FTP-client or server program

and the responce of the “QUIT” command is “221 Goodbye” message. After receiving

“221 Goodbye” message as an acknowledgement of “QUIT” command the connection is

closed.

The detailed sequence diagram of initial connection setup sequence from FTP-client to

client-side proxy, from client-side proxy to server-side proxy and finally from server-side

proxy to FTP-server overall, is shown in figure 3.9.

Chapter 3. The design 29

220 Welcome to ftp server.

TCP connection, this
includes a 3 way handshake.

220 Welcome to client side proxy.

user test

331 Please specify password.

pass ****

user tariqw-stud@141.11.96.72

TCP connection, this includes a 3
way handshake

230 Login successful.230 Login successful.230 Login successful.

FTP Client Client Side
Proxy

Server
Side Proxy

FTP
Server

331 Please provide password.

Pass ****

Pass ****

220 Welcome to server side
proxy

user tariqw-stud@141.11.96.72

331 Please provide password.

TCP, connection this includes a
3 way handshake.

user tariqw-stud

331 Please provide password.

Pass ****

Figure 3.9: Overall control connection setup sequence

Chapter 3. The design 30

3.1.6 FTP initial command sequence

First connection is the main logical TCP connection that is created when FTP session

is established. It lasts for the entire FTP session and is used to transfer commands or

control information like username, password etc. However, it is not used to transfer data

over this connection [31]. After the connection is setup, there are a few common FTP

commands a client sends to FTP-server to get information about the FTP-server system

capabilities and the features and further commands and modes it supports. Some of the

commonly used FTP commands that are used to get information from FTP-server are

shown in figure 3.10.

Figure 3.10: Basic FTP commands

These commands are passed from FTP-client to FTP-server via client-side and server-

side proxy. When “SYST” command is entered on FTP-client it is first passed on to

client-side proxy which checks the validity of the command and passes it to server-

side proxy and finally, server-side proxy directly delivers it to FTP-server. FTP-server

process the request and sends the response of the command, for instance the remote

system is UNIX “215 UNIX: L8”, to the server-side proxy which forwards it to client-

side proxy and finally client-side proxy delivers it to FTP-client. The sequence diagram

taken from the FTP-client server communication via client and server-side proxy is

shown in figure 3.11.

Chapter 3. The design 31

FTP Client Client Side
Proxy

Server
Side Proxy

FTP
Server

SYST SYST SYST

215 UNIX Type: L8 215 UNIX Type: L8 215 UNIX Type: L8

FEAT FEAT FEAT

211- FEAT … 211 End 211- FEAT … 211 End 211- FEAT … 211 End

OPTS UTF8 ON OPTS UTF8 ON OPTS UTF8 ON

200 Always in UTF8 mode 200 Always in UTF8 mode 200 Always in UTF8 mode

PWD PWD PWD

257 „/“ 257 „/“ 257 „/“

PASV PASV PASV

227 Entering passive mode
(10.11.96.74:5000)

227 Entering passive mode
(10.11.96.73:6000)

227 Entering passive mode
(10.11.96.72:7000)

QUIT QUITQUIT

221 Goodbye 221 Goodbye 221 Goodbye

Figure 3.11: Initial command sequence

Chapter 3. The design 32

3.2 Data channel block

In order to transfer data from FTP-client to FTP-server or from FTP-server to FTP-

client, data connection is to be established first. The earlier connection was used

for transferring commands from FTP-client to FTP-server and also receiving their re-

sponses. Now the data transfer process requires a separate connection. The first con-

nection for sending control information is control channel and the second connection

for transferring data is the data channel. In this case, passive mode is considered for

establishing a data channel with FTP-server. FTP-client will make a passive mode

connection request to FTP-server via client-side and server-side proxy and the connec-

tion is established from FTP-server to FTP-client via serve side and client-side proxy

respectively.

The data transfer process involves converting the characters to standard format. For

example when transferring from a storage location on one system to storage location on

the other system, it is necessary to perform data transformations because data repre-

sentation on two different systems might be different. For setting similar representation

FTP-client can specify the command ASCII to set the data representation type to ASCII

[18].

For example in this case a file is requested from FTP-server, FTP-server responds the

request by first informing FTP-client about the data type of the requested information

and then begins transferring the data.

RETR testfile.dpx

150 Opening Binary mode data connection for testfile.dpx (1025102567 bytes)

ASCII is the default for transferring data and is supported by almost every FTP-client.

It is used when both FTP-client and server would like to transfer files to either of them

unless specified by either of them to be more convenient with EBCDIC. By doing so,

the sender will convert the data from its own representation form to the form requested

by the receiving party.

Besides data types FTP also requires the structure of the file to be specified. There are

three different types of file structures as specified in [18].

• File-structure

• Record-structure

• Page-structure

Chapter 3. The design 33

File structure has no internal structure and is considered to be a continuous sequence of

data byte. In record structure file is considered to be a sequence of records and finally in

page structure the file is made up of independent indexed pages. However, file structure

is the default to be used when no structure command has been used. It is important to

note the structure because it affects transmission mode, interpretation and storage of

the file.

3.2.1 Data channel connection sequence

Considering the passive mode for data connection, data connection process initiates

when client issues a passive mode command PASV to FTP-server. As soon as FTP-

server receives PASV command it responds with a reply “227 Entering passive mode

(a1,a2,a3,a4,p1,p2)” along with the IP address and port number where, “a1.a2.a3.a4”

is the IP address and “p1*256+p2” is the port number of FTP-server data connection

address to connect to.

PASV command is first sent to client-side proxy which forwards it to server-side proxy

and server-side proxy finally delivers it to FTP-server. FTP-server process the PASV

command and sends back its response by opening a listener on a specific IP address and

a random port number.

This specific listener is for FTP-client to connect to and expect to receive data on it.

The response “227 Entering passive mode (a1,a2,a3,a4,p1,p2)” is sent to FTP-client via

server and client-side proxy respectively.

The passive mode response “227 Entering passive mode (a1,a2,a3,p1,p2)” on the way

to FTP-client first reaches server-side proxy, what server-side proxy does is instead of

forwarding the passive mode response as it is to client-side proxy, it makes a connection

with FTP-server on the address specified in the passive mode response message.

For example, in passive mode response message, the IP address and port number speci-

fied by FTP-server is “192,168,10,11,23,112” which is received by server-side proxy. Now

server-side proxy instead of forwarding it to client-side proxy makes a direct connection

with FTP-server.

Now server-side proxy will send the passive mode response message along with its own

IP address and port number for client-side proxy to make a connection with it. For

example the passive mode response sent by FTP-server is “227 Entering passive mode

(10,1,1,1,25,112)”.

Client-side proxy receives the passive mode response message from server-side proxy

and makes a connection with it, modifies the passive mode response message received

Chapter 3. The design 34

from server-side proxy to its own IP address and port number and starts listening on

it. From the figure shown below client-side proxy sends “227 Entering passive mode

(11,1,1,1,150,23)” to FTP-client.

When FTP-client receives a passive mode response message “227 Entering passive mode

(11,1,1,1,150,112)” from client-side proxy, FTP-client makes a connection with client-

side proxy as shown in figure 3.12.

Figure 3.12: PASV command and its responce

Now the connection is established from FTP-client to client-side proxy, from client-side

proxy to server-side proxy and finally server-side proxy is also connected to FTP-server.

This path will now be used to transfer files from FTP-client to FTP-server or vice versa.

This is how the connection from FTP-client to client-side proxy from client-side proxy

to server-side proxy and from server-side proxy to FTP-server is established. Now lets

discuss about the sequence it follows to establish this data connection and the role

of control channel in establishing this data channel. The sequence diagram for the

establishment of data channel also with the role of control channel along with its control

information sequence is shown in figure 3.13.

When FTP-client wishes to get a file from remote FTP-server, it first sends a PASV

command to FTP-server via client and server-side proxy. The PASV command puts

FTP-server in passive mode and enables it to open a connection on one its random port

Chapter 3. The design 35

Figure 3.13: Data channel connection sequence

from a specified range of ports and sends it to FTP-client. Instead the PASV command

response message “227 Entering passive mode (a1,a2,a3,a4,p1,p2)” is first received by

server-side proxy which makes a connection with it modifies the passive mode response

message with its own IP address and port number and sends it to client-side proxy.

Client-side proxy also performs the same task, makes a connection with the address

specified in the passive mode response message i.e. with server-side proxy, modifies the

passive mode response message received from server-side proxy with its own IP address

and port number and sends it to FTP-client. When FTP-client receives passive mode

response message from client-side proxy it makes a connection with it. Finally, the path

from FTP-client to FTP-server via client and server-side proxy is now ready to transfer

Chapter 3. The design 36

data.

Since FTP-client and client-side proxy are usually in the same network, there might not

be that much latency in transferring the data files from client-side proxy to FTP-client

or vice versa. Similarly, FTP-server and server-side proxy also usually lies in the same

network therefore the latency would not be that much to consider a high data rate

transfer mechanism for these connections. That is why TCP type connection is used

as a link between FTP-client and client-side proxy and also from server-side proxy to

FTP-server as shown in 3.14.

Figure 3.14: Gateway scenario

The data from server-side proxy to client-side proxy or from client-side proxy to server-

side proxy travels over the Internet and has to face latency and packet loss, due to which

the data rate is reduced significantly over this link. Even after the introduction of “RFC

1323 TCP Extensions for High Performance” [32] which was published in 1992 the data

rates with latency 70 milli seconds with enhanced window sizes is shown in table 3.1.

Window size Theoretical max throughput Realistsic throughput

8 KB 0.9 Mbps 0.8 Mbps
16 KB 1.9 Mbps 1.8 Mbps
32 KB 3.7 Mbps 2-3.5 Mbps
64 KB 7.5 Mbps 3-7 Mbps
128 KB 15 Mbps 6-14 Mbps
256 KB 30 Mbps 10-25 Mbps
512 KB 59.9 Mbps 20-40 Mbps
1 MB 119.8 Mbps 30-60 Mbps
2 MB 239.7 Mbps 60-100 Mbps

Table 3.1: TCP Over WAN Performance Tuning - Stanislav Shalunov. TCP
Over WAN Performance Tuning and Troubleshooting. September 2005

In order to achieve high data rates even in the high latency network environments we

need a reliable wide area network protocol faster than TCP.

Chapter 3. The design 37

A transport protocol developed by “Deutsche THOMSON OHG” is RWTP. This pro-

tocol has the capability to transfer data at the rate of 5 Gbps per single stream via

transcontinental links even in the presence of delay and packet losses.

Therefore we use this protocol as a link between client-side proxy and server-side proxy.

Now the path from FTP-client to FTP-server becomes, FTP-client is connected to client-

side proxy with TCP, client-side proxy is connected to server-side proxy with RWTP

(Reliable Wide Area Network Transport Protocol) and finally server-side proxy is con-

nected to FTP-server with TCP. The diagram for this path is shown in figure 3.15.

Figure 3.15: Gateway scenario with RWTP

Since now the link is ready for data transfer to and from FTP-client and FTP-server,

it can efficiently travel from one end to another. Now the system is ready to be tested

over the network under different latency conditions and packet loss rates.

Chapter 4

Implementation

The implementation of proxy application for FTP based data transfer is done in C++

using open source operating system Linux. Testing is performed on Intel(R) Xeon(R)

2.4GHz processors with 8 cores and 8 GBytes RAM. The scenario is implemented on a

1 Gbps Ethernet network, consisting of 1 Gbps switches and 10 Gbps network routers.

C++ “Deutsche THOMSON OHG” proprietary libraries/classes that are used in the

implementation process are:

“CIPSocket” library is used because it provides a simple interface for client/server

programming. It includes classes for “CTCPSocket” for establishing TCP connections

and “CRWTPSocket” for establishing RWTP connections.

“lutils” library includes “CIPAddress” which is used to convert the IP address from

string format to “CIPAddress”, it is used as argument in “CTCPSocket” and “CRWTP-

Socket”. “CStringUtils” is used for string conversions and “CStringTokenizer” class is

used to parse the string, “RETURN TOKEN” and “CLUSTER DELIMITER” are used

as argument for “CStringTokenizer”.

The basic requirement of the application to be developed is that it should accept con-

nections from FTP-client, perform its authentication receives address of FTP-server and

establish a connection with server-side proxy based on address of FTP-server. Authen-

tication at FTP-server is performed by sending credentials received from FTP-client to

FTP-server via client-side and server-side proxy. Upon request of a file to be uploaded

or downloaded data channel is created and data is transferred using RWTP protocol

which is specially used only on data channel for high-speed data transfer.

The implementation process not only involves performing socket programming for the

application but also requires knowledge of object-oriented programming to divide the

38

Chapter 4. Implementation 39

concepts described in the previous chapter into smaller modules. The division is done

such that their functionality is clearly understandable and distinguishable among the

other modules. The description of these components is given in an unambiguous way in

this chapter.

4.1 Modules

Different modules that take part in C++ implementation process are:

Figure 4.1: Implementation model

• CTCPServer: Accepts TCP connections.

• STCPClient: Establishes TCP connections with TCP servers.

• ProxyAuthentication: Performs authentication of FTP-client.

Chapter 4. Implementation 40

• ProxyRouter: Performs routing and locates server-side proxy.

• ProxyStream: After authentication and locating server-side proxy, it opens a com-

munication stream.

• ProxyCmdRef: Proxy command reference checks the validity of commands.

• ProxyDataConn: Proxy data connection establishes a data connection.

• RWTPClient: RWTP based client. It makes a connection with RWTP server on

server-side proxy, this connection is used for data transfer.

• RWTPServer: RWTP based server. It accepts a connection from RWTP client on

client-side proxy, this connection is used for data transfer.

4.1.1 ClientSideProxy

The public interface for “ClientSideProxy” module includes a constructor that accepts

“CIPAddress” for “ClientSideProxy” module and “Run” method initiates the “ClientSide-

Proxy” execution process. Constructor of “ClientSideProxy” module is used to set the

“CIPAddress”, type of system which is client-side proxy in this case and concurrency

count which indicates concurrency capability of “ClientSideProxy” module or the capa-

bility to accept and establish a number of connections. In “Run” method of “ClientSide-

Proxy” module “STCPClient” and “CTCPServer” module are used for accepting and

establishing TCP connections. Then “ProxyAuthentication” modules is referenced with

“CIPAddress” of ClientSideProxy as argument for authentication of FTP-client at client-

side proxy. Then “LocatingSSP” method is called for getting “CIPAddress” of server-

side proxy, this process is later discussed in more detail in “ProxyAuthenticaion” and

“ProxyRouter” module. “STCPClient” module is called with “CIPAddress” of server-

side proxy to make a connection with server-side proxy. “ProxyStream” module is used

to open a communication stream between client-side proxy and server-side proxy. Over-

all, client-side proxy provides the interface for client-side proxy modules.

4.1.2 ServerSideProxy

The public interface for “ServerSideProxy” module includes a constructor that accepts

“CIPAddress” for “ServerSideProxy” module and “Run” method initiates the “Server-

SideProxy” execution process. Constructor of “ServerSideProxy” module is used to set

the “CIPAddress”, type of system which is server-side proxy in this case and concurrency

count which indicates concurrent capability of “ServerSideProxy” module or the capabil-

ity to accept and establish a number of connections simultaneously. In “Run” method

Chapter 4. Implementation 41

of “ServerSideProxy” module “STCPClient” and “CTCPServer” module are used for

accepting and establishing TCP connections. “LocatingFTPServer” method is accessed

from “ProxyAuthentication” module which returns the “CIPAddress” of FTP-server.

Then “STCPClient” module is accessed with “CIPAddress” of FTP-server to make a

connection with FTP-server. “FTPServerAuthentication” method from “ProxyAuthen-

tication” module is accessed which receives the authentication status from FTP-server.

“ProxyStream” module with “CIPAddress” of server-side proxy as well as FTP-server

is used to open a communication stream between server-side proxy and FTP-server.

Overall, server-side proxy provides the interface for server-side proxy modules.

4.1.3 CTCPServer

The public interface for “CTCPServer” includes a constructor, “CTCPServer init” and

“CTCPListen” method. Constructor is used to set it as a listening socket and puts

into singleton mode. “CTCPServer Init” method accepts “CIPAddress” as argument.

client-side TCP server is a TCP server that waits for connections from TCP client.

“CTCPSocket” is used for accepting TCP connections. If “Accept” call fails then a value

is returned from “CTCPServer” identifying failed “Accept” with logged error message.

Otherwise, “CTCPSocket” is returned.

4.1.4 STCPClient

The public interface for “STCPClient” includes a constructor, “STCPClient Init” and

“STCPConnect” method. Constructor is used to set it as a non-listening socket. “STCP-

Client Init” accepts “CIPAddress” as argument. Server-side TCP client is a TCP client

that makes a connection with TCP server. “CTCPSocket” is used in this case for mak-

ing a connection with TCP server. If “Connect” call fails then a value is returned

from “STCPClient” identifying failed “Connect” with logged error message. Otherwise,

“CTCPSocket” is returned. Scenario is shown in figure 4.2.

Chapter 4. Implementation 42

Figure 4.2: TCP WAN connection

4.1.5 ProxyAuthentication

The public interface for “ProxyAuthentication” module includes a constructor, “CspAu-

thentication”, “LocatingSsp”, “SspAuthentication”, “LocatingFTPServer” and “FTPServer-

Authentication” methods. “CspAuthentication” accepts “CTCPSocket” of client-side

proxy it sends a “220 Welcome message” to FTP-client and receives username from it

in a receive buffer using “Recv” system call from “CIPSocket” library, after receiving

username, “331 Please specify password” request is sent to FTP-client. It then responds

with password. Proxy authentication module then responds with status of authentica-

tion. If authentication is unsuccessful “530 Incorrect login” is sent with a false boolean

as return value, otherwise “230 Login successful” message is sent with a true return

boolean from “CspAuthentication” module.

“LocatingSsp” module sends another “220 Welcome message” to FTP-client. This “220

Welcome message” makes FTP-client to give away its credentials for FTP-server. This is

going to help in making a decesion about which server-side proxy to rely on by referencing

so called routing table from “ProxyRouter” module. FTP-client sends username for

FTP-server in the form as shown below:

user username@ipaddress

Where “user” is the command and “ipaddress” is the address of final destination FTP-

server. IP address of FTP-server is extracted, port number is appended at the end

on which FTP-server is listening on. Then proxy authentication module sends “331

Please specify password” request to FTP-client, upon receiving it FTP-client replies

with password. Username and password are extracted and stored into a buffer for

future references. “ProxyRouter” module is referenced with argument “CIPAddress” of

FTP-server to get “CIPAddress” of server-side proxy.

Chapter 4. Implementation 43

“SspAuthentication” method accepts “CTCPSocket” as argument and sends username

received in “LocatingSsp” method to server-side proxy and upon receiving “331 Please

specify password”, password is also sent to server-side proxy module. After that “Ss-

pAuthentication” waits for authentication status from server-side proxy. If status of

authentication from server-side proxy about FTP-server is unsuccessful then a value is

returned identifying unsuccessful authentication with logged error message.

“LocatingFTPServer” accepts “CTCPSocket” of client-side proxy and receives username

from client-side proxy sent from “SspAuthentication” method, the username is extracted

separately and IP address is also extracted along with port number. “CIPAddress” of

FTP-server is returned.

“FTPServerAuthentication” method accepts “CTCPSocket” of FTP-server and sends

username as shown below:

user username

It was received from client-side proxy in method “LocatingFTPServer” and waits for

a message from FTP-server, after receiving “331 Please specify password” server-side

proxy sends password to FTP-server and waits for authentication status using “Recv”

call, if authentication is unsuccessful, it is indicated by a false boolean with a logged

error message. Otherwise a true boolean is returned indicating successful login.

4.1.6 ProxyStream

The public interface for “ProxyStream” includes a constructor, “Proxy Init” and “Prox-

yStream Run” methods. “ProxyStream” constructor sets “RETURN TOKENS” and

“CLUSTER DELIMITERS”. “Proxy Init” accepts two “CTCPSocket” and the type of

the system which is either client-side proxy or server-side proxy.

“ProxyStream Run” method on client-side proxy when receives a message from FTP-

client it passes the reference to proxy command reference module “ProxyCmdRef” de-

pending upon the return value from proxy command reference module identifying the

validity of the command it is forwarded to server-side proxy otherwise if the value iden-

tifying an invalid command the command is not forwarded to server-side proxy.

When it receives a message from server-side proxy, it checks for PASV mode response

message and if it is PASV mode response message it transfers the reference to proxy

data connection module. After receiving the reference back from proxy data connection

Chapter 4. Implementation 44

module it modifies the PASV mode response message with its own IP address and

forwards it to FTP-client.

Similarly, proxy stream on server-side proxy when receives a message from FTP-server

it checks for PASV mode response message and if it is PASV mode responses message

it transfers the reference to proxy command reference module. After receiving the refer-

ence back from proxy command reference module it modifies the PASV mode response

message with its own IP address and forwards it to client-side proxy.

After receiving an identification for “QUIT” or “221 Goodbye” message from “Proxy-

CmdRef” module, “CTCPSocket” are closed and the module returns successfully.

4.1.7 ProxyCmdRef

The public interface for Proxy command reference “ProxyCmdRef” module includes

a constructor and “CmdRef” method. Constructor sets “RETURN TOKENS” and

“CLUSTER DELIMITERS”. “CmdRef” method accepts commands and system status

as argument. System status defines the type of system whether it is a client-side proxy

or a server-side proxy and commands are FTP based. “CmdRef” method checks for

valid commands and passes them if they are valid otherwise invalid commands are not

passed over the network. By doing so network will be saved from the extra overhead of

transmitting invalid commands and their responces all the way back from FTP-server

informing that the command was invalid.

“CmdRef” method receives command as argument, it checks for the validity of that

command by comparing previously stored basic set of FTP commands with extracted

first part of command, if it is valid i.e. present in the stored set of basic commands an

integer value is returned identifying the validity of the command. On the other hand if

the command is invalid an integer value is returned identifying the invalid command.

It also checks for responses of commands, if the command received is a PASV mode

response message, reference is passed further onto proxy data connection module “Prox-

yDataConn” along with the response message and system status.

4.1.8 RWTPClient

The public interface for “RWTPClient” includes a constructor, “RWTPClient Init” and

“RWTPConnect” method. Constructor sets into a non-listening socket. “RWTPClient

Init” accepts “CIPAddress” as argument. “RWTPConnect” creates a non-listening

“CRWTPSocket”, sets send and receive buffer sizes to 16 MBytes, packet size to 8800

Chapter 4. Implementation 45

bytes and data rate is set to 10 Gbits/second. It is used at client-side proxy to estab-

lish a connection with server-side proxy. If “Connect” call fails then a value is returned

from “RWTPClient” identifying failed “Connect” with logged error message. Otherwise,

“CRWTPSocket” is returned.

4.1.9 RWTPServer

The public interface for “RWTPServer” includes a constructor, “RWTPServer Init” and

“RWTPListen” method. Constructor sets it as a listening socket and puts it into sin-

gleton mode. “RWTPServer Init” method accepts “CIPAddress” as argument. “RWT-

PListen” creates a listening “CRWTPSocket”, sets send and receive buffer sizes to 16

MBytes, packet size to 8800 bytes and data rate is set to 10 Gbits/second. RWTP

based server accepts “CIPAddress” type IP address, creates “RWTPSocket” and starts

listening on it. Also, it accepts a RWTP based connection. It is used at server-side

proxy to accept a connection request from client-side proxy. If “Accept” call fails then

a value is returned from “CTCPServer” identifying failed “Accept” with logged error

message. Otherwise, “CRWTPSocket” is returned as. Scenario is shown in figure 4.3.

Figure 4.3: RWTP WAN connection

4.1.10 ProxyDataConnection

The public interface for “ProxyDataConn” includes a constructor, “Dataconn Init”,

“ServerSideProxyDataConn” and “ClientSideProxyDataConn” methods. Constructor

sets “RETURN TOKENS” and “CLUSTER DELIMITERS”. “Dataconn Init” method

accepts command and system status as argument. “Dataconn Init” accepts passive

Chapter 4. Implementation 46

mode response message and the type of the system, either client-side proxy or server-

side proxy. It extracts the IP address and port number from passive mode response

message

227 Entering passive mode (192,168,1,1,23,50)

The IP address is extracted, each octet of IP address is extracted as string and is

appended with dotted notation to make a complete 32 bit IP address. Port number

is also extracted as string but is then also converted to integer so that first octet is

multiplied with “256” and then added with the second octet to get a complete 16 bit

port number. The IP address along with port number in the form “192.168.1.1:5938” is

used to get “CIPAddress” type address for “CIPSockets”.

Type of the system is used to check whether it is a client-side proxy or server-side

proxy. In case of server-side proxy, the connection is made with the address of type

“CIPAddress” by making a “CTCPSocket” and establishing a connection with it which

is FTP-server. After that IP address of server-side proxy is fetched from the text file

“ServerSideProxyAddress.txt”, first octet of port number is fixed at “25” second port

number is randomly generated to keep the range of port number being used for this WAN

connection in the range of 6400-6655 and finally appended together and is used with IP

address to get “CIPAddress” which is used by “ServerSideProxyDataConn” method to

start listening on “CRWTPSocket” for client-side proxy to connect to.

Similarly in case of client-side proxy, “ClientSideProxyDataConn” method, “CRWTP-

Socket” connection is established with the IP address received from “Dataconn Init”

method. After that client-side proxy fetches its IP address from “ClientSideProxyAd-

dress.txt”, first octet of port number is fixed at “24” and the second octet is randomly

generated to keep the port range used for connection with FTP-client limited in the range

of 6144-6399 and finally appended together and is used with IP address to get “CIPAd-

dress” which is used by “ClientSideProxyDataConn” to start listening on “CTCPSocket”

for FTP-client to connect to.

server-side proxy after establishing successful connections with FTP-server and client-

side proxy, server-side proxy sends and receives in a loop until EOF is reached and

sockets are closed. Similarly, client-side proxy after establishing successful connections

with server-side proxy and FTP-client, client-side proxy sends and receives in a loop

until EOF is reached and sockets are closed.

The send and receive process links the two different connection types RWTP and TCP

by receiving the data on “CTCPSocket” and sending it to “CRWTPSocket”.

Chapter 4. Implementation 47

4.1.11 ProxyRouter

The public interface for “ProxyRouter” includes a constructor and “ReferRoutingTable”

method. “ReferRoutingTable” accepts “CIPAddress” as argument which is the destina-

tion address of FTP-server in our case. It fetches the network address and its subnet

mask present in the routing table configuration file “ProxyRoutingTable.txt”. It con-

verts the received destination address of FTP-server to binary along with the subnet

mask from the routing table file. After converting them to binary, an AND operation is

performed between the destination address and subnet mask. This operation gives the

network address of the destination address. It is then converted back to dotted decimal

notation. Then the resultant network address is compared with the network address

stored in the “ProxyRoutingTable.txt” file, if there is a match then address next to the

matched network address which is the address of server-side proxy is fetched from the

“ProxyRoutingTable.txt” and returned. By doing so routing mechanism is tested on

this smaller scale testbed which generalizes its concept and can also be used on a large

network with several routers.

4.2 Flow chart: client-side proxy

Client-side proxy starts by first accepting a connection from FTP-client. Then FTP-

client provides credentials to client-side proxy for authentication. If authentication is

successful, client-side proxy locates the address of server-side proxy, otherwise connection

is terminated.

After locating server-side proxy, client-side proxy establishes a connection with it, sends

credentials of FTP-client to log into FTP-server. client-side proxy waits for authenti-

cation status message from server-side proxy. If authentication into FTP-server is not

successful then FTP-client is informed about the status and connection is terminated.

Otherwise, a connection is setup between FTP-client and FTP-server via client-side and

server-side proxy.

The commands that pass through client-side proxy from FTP-client are checked by

client-side proxy whether the command being passed is valid or not. If the command is

not valid it is dropped and is not sent over the network otherwise command is sent to

server-side proxy.

The response of command received from server-side proxy is also checked for passive

mode response, if there is a passive mode response message from server-side proxy, client-

side proxy makes a connection with it, modifies the passive mode response message with

its own address and sends it to FTP-client and starts listening on the address sent to it.

Chapter 4. Implementation 48

After establishing a successful connection with server-side proxy and accepting a con-

nection from FTP-client it receives data from either direction, i.e. from FTP-client or

from server-side proxy. At end of file the connection is closed and the thread is ter-

minated. If client-side proxy receives a command “QUIT” from FTP-client, it sends it

to server-side proxy and terminates the connection. The connection is also terminated

when client-side proxy receives “221 Goodbye” message from server-side proxy as shown

in figure 4.4.

Chapter 4. Implementation 49

Accepts connection from
FTP client

Authenticate FTP client

Locate server side proxy

Connect to server side proxy

Receive command from FTP
client

Check for valid command

End

Check for passive mode
response command

Makes connection with server side
proxy and sends modified passive mode
response message with its own address

to FTP client

Accepts connection from
FTP client

Receive data from server
side proxy and sends it to

FTP client

Sends command to server
side proxy

Sends credentials from FTP
client to server side proxy

Receive login status from
server side proxy

End of file / connection
closed

Receive response from
server side proxy.

Checks for QUIT/221
Goodbye messege

Failed

Failed

Checks for QUIT/221
Goodbye messege

1

2

2

1

Successful

NoYes

No

Yes

Yes

No

No

Yes

Forwards response to client
side proxy

Successful

Invalid Valid

3

3

2

Start

Figure 4.4: Flow chart: client-side proxy

Chapter 4. Implementation 50

4.3 Flow chart: server-side proxy

server-side proxy accepts a connection from client-side proxy and receives credentials

from it. After that it extracts address of final destination FTP-server from the credentials

and makes a connection with FTP-server.

After making a successful connection with FTP-server, server-side proxy sends creden-

tials received from client-side proxy to FTP-server for authentication. If authentication

is successful, server-side proxy opens a communication stream between client-side proxy

and FTP-server.

Server-side proxy receives commands from client-side proxy and forwards it to FTP-

server, it also checks for “QUIT” command from client-side proxy. If it receives a

“QUIT” command or “221 Goodbye” message from client-side proxy it terminates. Oth-

erwise it will continue receiving commands from client-side proxy and forwarding it to

FTP-server.

It also receives the response of commands from FTP-server. It checks whether the

response is a passive mode response or not. If it is a passive mode response then it

makes a connection with the address specified in the passive mode response message,

modifies it with its own address and forwards it to client-side proxy and waits for it to

establish a connection with it. Otherwise if its not a passive mode response message it

is forwarded to client-side proxy.

The connection established from passive mode response message is used for transfering

data, as soon as data is completely transferred server closes the data connection and

continue receiving response of commands from FTP-server as shown in figure 4.5.

Chapter 4. Implementation 51

Accept connection from
client side proxy

Receive credentials from
client side proxy

Extract address of FTP
server from credentials

Connect to FTP server

Sends credentials to FTP
server for authentication

Receive commands from
client side proxy

Forwards commands to
FTP server

Checks for QUIT command

End

Receive response from FTP
server

Checks for passive mode
responce message

Makes connection with FTP server
and sends modified passive mode

response message with its own address
to client side proxy

Accepts connection from
client side proxy

Receives data from FTP
server and sends it to client

side proxy

Checks for end of file or
closed connection

Forwards response to client
side proxy

Checks for 221 Goodbye
message

1

1

1

Failed

Successful

No

Yes

Yes No

Yes

No

Yes

No

Start

Figure 4.5: Flow chart: server-side proxy

Chapter 5

Performance Evaluation

In this chapter, performance test of the proxy scenario is performed. This is achieved

with a network emulator to evaluate the system model against delay and packet losses.

In this scenario FTP-client and client-side proxy or server-side proxy and FTP-server

belong to the same local network with a link speed of 1 Gbps. The connection from

each proxy towards the WAN is using 10 Gbps full-duplex fiber link. The proxies are

interconnected by using 10 Gbps routers (the cloud) as shown in the figure 5.1. In this

way each proxy has two network interface cards. One of them is used to connect the

proxy over the network and the other is used to connect either to the FTP-client in case

of client-side proxy or to the FTP-server in case of server-side proxy.

Both client-side proxy and server-side proxy are running on high-end Linux systems.

Each system has 4 processors of 3 GHz and RAM of 8 GBytes.

Tests are performed to compare the performance of using TCP and RWTP for data

transfer with varying delay levels on a range of 6 up to 200 ms (milli seconds) with

packet loss rate of 0.1 percent and 0.3 percent. In the first phase, link utilization is

measured by using Iperf tool with no delay and no packet loss to check the maximum

level that the link can provide. Iperf tool is also used to show the performance a direct

TCP connection in transfering raw data or using FTP in the presense of delay and

packet losses.

In the second phase, the performance of indirect connection using TCP as well as RWTP

is evaluated.

52

Chapter 5. Performance Evaluation 53

Figure 5.1: The network model used for performance evaluation

5.1 Network Emulator

Network emulation can be achieved by introducing a device on the network that alters

the packet flow in a way that reproduces closely the behaviour of the network equipment

on traffic [33]. The device can be either a computer running a software on it that alters

packets as they passes through, or it can also be a specific device dedicated to perform

emulation process. Variety of attributes possesed by a network emulator are latency,

bandwidth, packet loss and jitter.

The Anue Network Emulator is a hardware tool that simulates real world network con-

ditions for tests and validation of network-based products and solutions prior to their

deployment. Anue XGEM Advanced Ethernet Network Emulators are ideal for precisely

simulating WAN using 10 Gbps Ethernet interfaces in a lab environment [34].

Chapter 5. Performance Evaluation 54

Figure 5.2: 10 Gbps Network Emulator

5.2 TCP window size adjustment

TCP is the most commonly used protocol on the Internet for reliable, connection ori-

ented, window based data transfer. TCP window size is usually equal to the TCP send

and receive buffer size. Any mismatch might lead to problems like receive buffer is too

small to store the received data [35]. In traditional TCP the receiving window size can-

not be larger than 64 KBytes because the header field that is used to tell about the

window size is 16 bits long. The theoretical maximum throughput supported by having

a window size of 64 KBytes with a RTT delay of 100 ms.

Windowsize/RTT = 64KBytes/100milliseconds = 5Mbps (5.1)

After the introduction of “RFC 1321 on TCP Extensions for High Performance”, TCP

window size can be increased to 1 GBytes [32]. By increasing the TCP window size to

16 MBytes the theoretical maximum throughput with a RTT delay of 100 ms becomes.

Windowsize/RTT = 16MBytes/100milliseconds = 1.3Gbps (5.2)

Chapter 5. Performance Evaluation 55

TCP send and receive buffer sizes can be modified by changing the default values in the

kernel. Increasing TCP transmit and receive buffer sizes, “tcp rmem” and “tcp wmem”

respectively may give tremendous increase in throughput on high bandwidth networks

[36]. The optimal buffer sizes can be calculated as:

buffersize = Bandwidth ∗RTT (5.3)

For example the available bandwidth is 100 Mbps and a RTT of 50 ms the buffer size is

about 610 KBytes, “tcp rmem” and “tcp wmem” should be set to 610 KBytes.

Modifying “tcp rmem” tells the kernel about the receive buffer size parameters and

similarly for the “tcp wmem” which tells the kernel about transmit buffer size parameters

per TCP connection. When changing the buffer size there are three variables, the first

value informs the kernel about the minimum receive or transmit buffer, the second

value informs the kernel about the default receive or transmit buffer and the third

value informs the kernel about the maximum receive or transmit buffer for each TCP

connection. According to the above calculations the window size will be modified to be

16 MBytes for send and receive buffers. With this buffer size and the available 1 Gbps

bandwidth the performance will be evaluated with a RTT of 100 ms.

5.3 Measuring TCP bandwidth performance with Iperf

“Iperf” is a tool to measure wired and wireless link bandwidth and throughput. It is used

to check the health of the link by making end to end status measurements using TCP

or UDP. It is available as open source for both Windows and Linux systems. Typical

scenario for performing bandwidth measurement using “Iperf”, is running a server on

one system and a client on another system. When the two systems are interconnected

by a network the client side of Iperf will measure the throughput of the received data

from the server side.

In Linux based system the Iperf server is started by the command line as:

iperf -s -w256k

The switch -s runs Iperf in server mode and -w is the window size being used, here 256

KBytes is being used. Iperf is started in client by the command line as:

iperf -c [Ip address of server] -w256k -i 2

Here the switch -c runs iperf in client mode and -i indicates the interval in terms of

seconds between perodic bandwidth reports.

Chapter 5. Performance Evaluation 56

Figure 5.3: TCP Bandwidth measurement scenario with Iperf

Measuring the performance has been done on links of 1 Gbps and 10 Gbps between the

systems.

Window size Link capacity Delay Throughput

256 KB 1 Gbps 0.03 milli seconds 948 Mbps
256 KB 10 Gbps 0.03 milli seconds 9.88 Gbps
256 KB 10 Gbps 50 milli seconds 52.7 Mbps
256 KB 10 Gbps 100 milli seconds 26.4 Mbps
16 MB 10 Gbps 100 milli seconds 33.6 Mbps

Table 5.1: Iperf TCP Performance

As shown in table 5.1, a window size of 256 KB will give data transfer rate of 26.4 Mbps

when delay is 100 ms. Now by increasing TCP window size to 16 MB the data rate is

33.6 Mbps. These measurements has been done with a packet loss of 0.1 percent.

5.4 Testing FTP using a direct TCP connection

First the data transfer rate for direct TCP connection of SmartFTP client with FTP-

server is measured. Smart FTP-client is installed on a windows based machine with a

dual core AMD Opteron(TM) processor, 2.60 GHz with 4 cores, 2.75 GBytes of RAM

and a 1 Gbps network interface card. Vsftpd is used as FTP-server on Linux machine

with dual core AMD opteron processor with 2.60 GHz with 4 cores and 7.85 GBytes of

RAM. RAID is used as storage for high speed data transfer. The scenario is shown in

figure 5.4. A throughput of 896 Mbps is observed with direct TCP connection on a 1

Gbps link by transferring a file of 8 GBytes.

Chapter 5. Performance Evaluation 57

Figure 5.4: Testing Direct connection

5.5 Testing an indirect connection with TCP based-proxy

In this scenario the TCP-connection between FTP-client and server is now split into

three connections. FTP-client is connected to a client-side proxy with a TCP connection,

then client-side proxy makes a TCP connection to the server-side proxy and the third

TCP connection is from server-side proxy to the FTP-server as shown in figure 5.5.

Each of the proxies is running on an Intel(R) Xeon(R) 3 GHz processor with 4 cores

and 7.79 GBytes RAM.

When a file of 8 GBytes is transferred from FTP-server to FTP-client via server and

client-side proxies, the throughput achieved is 808 Mbps.

The throughput is still not sufficient and not increased beyond 33.6 Mbps. This is

because of the high RTT which will cause TCP degrading the throughput by many

retransmissions due to time-out. That is why in case of data transfers over 10 Gbps link

from client-side proxy to server-side proxy over the WAN enviroment in the presence of

delay and packet losses a different protocol is used other than TCP so that the availability

of 10 Gbps is properly utilized by moving to higher data rates for bulk data transfers in

the presense of delay and packet losses.

Chapter 5. Performance Evaluation 58

Figure 5.5: Testing an indirect connection with TCP based proxy

5.6 Testing an indirect connection with RWTP-based proxy

In this scenario there will be also an indirect connection from FTP-client to FTP-server

using client-side and server-side proxies. However the proxies will use RWTP to make

the connection between them as shown in figure 5.6.

The throughput achieved when transferring the same file of 8 GBytes from FTP-server

to FTP-client via server-side and client-side proxies is 768 Mbps.

Figure 5.6: Testing an indirect connection with RWTP based proxy

Chapter 5. Performance Evaluation 59

5.7 Performance Evaluation

The performance evaluation is achieved by introducing a delay of 6 to 200 ms with two

different packet loss rates of 0.1 percent and 0.3 percent by the aid of 10 Gbps network

emulator. This is performed for TCP as well as RWTP in the scenario shown in figure

5.7.

Figure 5.7: Performance analysis

The throughput measured at different delays with a packet loss of 0.1 percent is shown

in figure 5.8.

RWTP performance is almost constant for delays between 12 and 50 ms. Having higher

delay causes the performance of RWTP to degrade the throughput below 800 Mbps.

But in case of TCP at 6 ms delay, the throughput is below 300 Mbps and it undergoes

a continuous decrease as delay increases and becomes 14 Mbps at 200 ms.

Direct TCP connection, from FTP-client to FTP-server is slightly worse than TCP con-

nection using a proxy. This is so, because when using proxies each TCP connection

can be handled with a shorter response time as compared to larger response time when

direct TCP connection is used across bigger networks [16]. This is especially impor-

tant when congestion control mechanism is considered as it has strong impact on TCP

performance.

Chapter 5. Performance Evaluation 60

Figure 5.8: TCP vs RWTP with 0.1 percent packet loss

Considering the data rate at 50 ms and 0.1 percent packet loss RWTP gives 816 Mbps

while a direct TCP connection gives 17 Mbps, hence giving a brilliant factor of 48.

Similarly, TCP with proxy gives 36 Mbps which makes the factor equal to 22.

Now considering the data rate at 50 ms and 0.3 percent packet loss RWTP gives 808

Mbps and a direct TCP connection gives 15 Mbps, hence giving a factor of 53. Similarly,

TCP with proxy gives 20 Mbps which makes the factor equal to 40.the performance of

TCP vs. RWTP in the presence of delay is shown in figure 5.9.

From the plot it is shown that RWTP almost remains at a constant rate below a delay

of 50 ms, as soon as delay increases more than 50 ms a degradation in performance is

shown in figure 5.9. This is because of the limitations of buffer sizes and calculated delay

(distance of 10,000 kilometers).

With a packet loss of 0.3 percent the data rate at 6 ms delay is below 200 Mbps and

continues to decrease as delay increases and becomes 6 Mbps as delay reaches 200 ms.

Similarly, performance of direct connection using TCP is slightly worse than TCP with

proxy. However, comparing RWTP with TCP there is still a huge gap in performance

between them.

RWTP gives a much better data transfer rate as compared to direct FTP connections or

proxy based using TCP. Transferring a file of 125 GBytes on a network with a distance

Chapter 5. Performance Evaluation 61

Figure 5.9: TCP vs RWTP with 0.3 percent packet loss

of 10,000 kilometers (delay of approximately 50 ms) from Hannover, Germany to Los

Angeles, United States with 0.3 percent packet loss the results are shown in table 5.2.

Connection type Data rate Transfer Time

Direct 15 Mbps 19 hours
TCP Proxy 20 Mbps 14 hours

RWTP Proxy 808 Mbps 21 minutes

Table 5.2: Performance analysis table for TCP-proxy, RWTP-proxy and
direct connection

Using 4K digital technology with 5000 frames each frame contains 50 MBytes which

makes a total of 250 GBytes can be transfered from Hannover, Germany to Los Angeles,

United States in 42 minutes using RWTP. On the other hand with a direct FTP connec-

tion using TCP it takes 37 hours but only 28 hours with a proxy-based FTP connection

using TCP.

Since, RWTP performs better in terms of high-speed data transfer, client-side and server-

side proxy using RWTP protocol on data channel has, as expected, shown a better

performance.

Hence, RWTP-Gateway with FTP is an appropriate solution for transferring bulk data

over high speed networks in the presence of delay and packet losses.

Chapter 6

Summary and Future work

In this thesis work the protocol RWTP is examined with a proxy mechanism collaborat-

ing with FTP on 1 Gbps Ethernet networks interconnected by 10 Gbps routers and the

network model performance is investigated using 10 Gbps network emulator. To make

RWTP perform collaborative tasks with FTP a proxy mechanism has been designed so

that a proxy gateway is implemented for each end between FTP-client and server. Each

proxy is capable of converting transport protocol from TCP to RWTP so that RWTP

is used over WAN and TCP is used locally. Control channel uses TCP throughout, on

the other hand data channel uses TCP from FTP-client to client-side proxy. Similarly,

from server-side proxy to FTP server TCP is used. In order to enhance performance

capability the send and receive buffer size is tuned by extending the default values. After

implementation several tests were run to evaluate the implementation. The results pre-

sented in chapter 5 shows that by adopting a proxy mechanism for high data rate using

RWTP, the collaborative tasks can be performed with common existing applications like

FTP so that high data rate capability is properly utilized.

During the work some ideas arised regarding the further development of RWTP proxy.

One idea is to implement this proxy scenario providing support for HTTP, SAMBA,

NFS and other most common file sharing protocols.

Enhancement in the proxies can also be made by implementing caching mechanisms.

For example client side can store data responses for future requests. On subsequent

requests the cache can help serving and responding without consuming any additional

resources. This caching mechanism has been shown to be fruitful for applications like

HTTP. In order that the proxy will work well with FTP caching it needs to have file

storing capabilities. This task should be investigated more in the future.

62

Appendix A

Network performance tables

Connection type Data rate

Direct 896 Mbps
TCP Proxy 808 Mbps

RWTP Proxy 768 Mbps

Table A.1: Performance analysis table for TCP Proxy, RWTP Proxy and
direct connection without emulator

63

Appendix A. Network performance tables 64

Connection type Delay Data rate

Direct 6 milli seconds 117 Mbps
TCP Proxy 6 milli seconds 254 Mbps

RWTP Proxy 6 milli seconds 720 Mbps
Direct 12 milli seconds 62 Mbps

TCP Proxy 12 milli seconds 130 Mbps
RWTP Proxy 12 milli seconds 793 Mbps

Direct 18 milli seconds 42 Mbps
TCP Proxy 18 milli seconds 85 Mbps

RWTP Proxy 18 milli seconds 653 Mbps
Direct 24 milli seconds 32 Mbps

TCP Proxy 24 milli seconds 67 Mbps
RWTP Proxy 24 milli seconds 816 Mbps

Direct 30 milli seconds 28 Mbps
TCP Proxy 30 milli seconds 58 Mbps

RWTP Proxy 30 milli seconds 808 Mbps
Direct 36 milli seconds 24 Mbps

TCP Proxy 36 milli seconds 51 Mbps
RWTP Proxy 36 milli seconds 798 Mbps

Direct 42 milli seconds 21 Mbps
TCP Proxy 42 milli seconds 42 Mbps

RWTP Proxy 42 milli seconds 808 Mbps
Direct 50 milli seconds 17 Mbps

TCP Proxy 50 milli seconds 36 Mbps
RWTP Proxy 50 milli seconds 816 Mbps

Direct 100 milli seconds 10 Mbps
TCP Proxy 100 milli seconds 21 Mbps

RWTP Proxy 100 milli seconds 671 Mbps
Direct 200 milli seconds 7 Mbps

TCP Proxy 200 milli seconds 14 Mbps
RWTP Proxy 200 milli seconds 354 Mbps

Table A.2: Performance analysis table for TCP Proxy, RWTP Proxy and
direct connection with 0.1 percent packet loss

Appendix A. Network performance tables 65

Connection type Delay Data rate

Direct 6 milli seconds 122 Mbps
TCP Proxy 6 milli seconds 122 Mbps

RWTP Proxy 6 milli seconds 792 Mbps
Direct 12 milli seconds 60 Mbps

TCP Proxy 12 milli seconds 68 Mbps
RWTP Proxy 12 milli seconds 800 Mbps

Direct 18 milli seconds 40 Mbps
TCP Proxy 18 milli seconds 48 Mbps

RWTP Proxy 18 milli seconds 816 Mbps
Direct 24 milli seconds 30 Mbps

TCP Proxy 24 milli seconds 32 Mbps
RWTP Proxy 24 milli seconds 800 Mbps

Direct 30 milli seconds 25 Mbps
TCP Proxy 30 milli seconds 32 Mbps

RWTP Proxy 30 milli seconds 816 Mbps
Direct 36 milli seconds 20 Mbps

TCP Proxy 36 milli seconds 28 Mbps
RWTP Proxy 36 milli seconds 816 Mbps

Direct 42 milli seconds 17 Mbps
TCP Proxy 42 milli seconds 24 Mbps

RWTP Proxy 42 milli seconds 816 Mbps
Direct 50 milli seconds 15 Mbps

TCP Proxy 50 milli seconds 20 Mbps
RWTP Proxy 50 milli seconds 808 Mbps

Direct 100 milli seconds 8 Mbps
TCP Proxy 100 milli seconds 11 Mbps

RWTP Proxy 100 milli seconds 541 Mbps
Direct 200 milli seconds 4 Mbps

TCP Proxy 200 milli seconds 6 Mbps
RWTP Proxy 200 milli seconds 280 Mbps

Table A.3: Performance analysis table for TCP Proxy, RWTP Proxy and
direct connection with 0.3 percent packet loss

Appendix B

CPU usage plots

Figure B.1: CPU Usage at FTP client

66

Appendix B. CPU usage plots 67

Figure B.2: CPU Usage at FTP server.

Appendix B. CPU usage plots 68

Figure B.3: CPU Usage at Client side proxy (TCP as WAN connection). Sudden
fall or rise in network plot and CPU usage plot identifies the completion of one data

transfer or start of another data transfer.

Appendix B. CPU usage plots 69

Figure B.4: CPU Usage at Server side proxy (TCP as WAN connection). Sudden
fall or rise in network plot and CPU usage plot identifies the completion of one data

transfer or start of another data transfer.

Appendix B. CPU usage plots 70

Figure B.5: CPU Usage at Client side proxy (RWTP as WAN connection). Sudden
fall or rise in network plot and CPU usage plot identifies the completion of one data

transfer or start of another data transfer.

Appendix B. CPU usage plots 71

Figure B.6: CPU Usage at Server side proxy (RWTP as WAN connection). Sudden
fall or rise in network plot and CPU usage plot identifies the completion of one data

transfer or start of another data transfer.

Bibliography

[1] Miniwatts Marketing Group. Internet usage statistics, the internet big picture.

Internet World Stats, June 2009. URL http://www.internetworldstats.com/

stats.htm.

[2] Charles Kozierok. The tcp/ip guide: A comprehensive, illustrated internet protocols

reference. page 1648, October 2005.

[3] Kiran Sultan Habibullah Jamal. Performance analysis of tcp congestion control

algorithms. International Journal of Computers and communications, 2:9, 2008.

URL http://www.wseas.us/journals/cc/cc-27.pdf.

[4] Stuart Cheshire. It’s the latency, stupid. May 1996. URL http://www.

stuartcheshire.org/rants/Latency.html.

[5] Sony. Fact book 2006. December 2006. URL http://www.sony.net/SonyInfo/

IR/library/fact/FY06_3Q.pdf.

[6] Don Johnson. Communication protocols. URL http://cnx.org/content/m0080/

latest/.

[7] John Daintith. Packet. A Dictionary of Computing, 2004. URL http://www.

encyclopedia.com/doc/1O11-packet.html.

[8] Bradley Mitchell. Osi model reference guide. URL http://compnetworking.

about.com/cs/designosimodel/a/osimodel.htm.

[9] Alan Fekete Nancy Lynch, Yishay Mansour. The data link layer: Two im-

possibility results. Laboratory for Computer science, Massachusetts Institute

of Technology, 1988. URL http://groups.csail.mit.edu/tds/papers/Lynch/

podc88-datalink.pdf.

[10] J. (ed.) Postel. Internet protocol - darpa internet program protocol specification.

USC/Information Sciences Institute, September 1981.

72

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.wseas.us/journals/cc/cc-27.pdf
http://www.stuartcheshire.org/rants/Latency.html
http://www.stuartcheshire.org/rants/Latency.html
http://www.sony.net/SonyInfo/IR/library/fact/FY06_3Q.pdf
http://www.sony.net/SonyInfo/IR/library/fact/FY06_3Q.pdf
http://cnx.org/content/m0080/latest/
http://cnx.org/content/m0080/latest/
http://www.encyclopedia.com/doc/1O11-packet.html
http://www.encyclopedia.com/doc/1O11-packet.html
http://compnetworking.about.com/cs/designosimodel/a/osimodel.htm
http://compnetworking.about.com/cs/designosimodel/a/osimodel.htm
http://groups.csail.mit.edu/tds/papers/Lynch/podc88-datalink.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/podc88-datalink.pdf

Bibliography 73

[11] California 90291 Information Sciences Institute University of Southern California

4676 Admiralty Way Marina del Rey. Transmission control protocol. DARPA

INTERNET PROGRAM PROTOCOL SPECIFICATION, September 1981.

[12] Jitendra Padhye Sally Floyd, Mark Handley. A comparison of equation-based and

aimd congestion control. ACIRI, page 12, May 2000. URL http://www.icir.org/

tfrc/aimd.pdf.

[13] Steve Thompson. The cold hard truth about tcp/ip performance over the wan.

Computer Technology Review, August 2004. URL http://findarticles.com/p/

articles/mi_m0BRZ/is_8_24/ai_n7072133/?tag=content;col1.

[14] M. Hassan and R. Jain. High performance tcp/ip networking: Concepts, issues,

and solutions. 1, 2003.

[15] J. Crowcroft B. Davie S. Deering D. Estrin S. Floyd V. Jacobson G. Minshall

C. Partridge L. Peterson K. Ramakrishnan S. Shenker J. Wroclawski L. Zhang

B. Braden, D. Clark. Recommendations on queue management and congestion

avoidance in the internet. Network Working Group, 1, April 1998. URL http:

//www.faqs.org/rfcs/rfc2309.html.

[16] J. Griner G. Montenegro Z. Shelby J. Border, M. Kojo. Performance enhancing

proxies intended to mitigate link-related degradations. Network Working Group,

June 2001. URL http://www.isi.edu/in-notes/rfc3135.txt.

[17] J. Postel. Rfc 768 user datagram protocol. Network Working Group, August 1980.

URL http://www.ietf.org/rfc/rfc0768.txt.

[18] J. Postel. Rfc 959 - file transfer protocol. Network Working Group, October 1985.

URL http://www.faqs.org/rfcs/rfc959.html.

[19] D. Brent Chapman Elizabeth D. Zwicky, Simon Cooper. Building internet firewalls.

2, June 2000.

[20] Mike Gleason. The file transfer protocol (ftp) and your firewall / network address

translation (nat) router / load-balancing router. NcFTP Software, April 2005. URL

http://www.ncftp.com/ncftpd/doc/misc/ftp_and_firewalls.html.

[21] Andrew R. Hickey. The wan speeds up. TechTarget ANZ, Novem-

ber 2005. URL http://searchnetworking.techtarget.com.au/articles/

17491-The-WAN-speeds-up.

[22] 100 gigabit ethernet. . URL http://en.wikipedia.org/wiki/40_Gigabit_

Ethernet.

http://www.icir.org/tfrc/aimd.pdf
http://www.icir.org/tfrc/aimd.pdf
http://findarticles.com/p/articles/mi_m0BRZ/is_8_24/ai_n7072133/?tag=content;col1
http://findarticles.com/p/articles/mi_m0BRZ/is_8_24/ai_n7072133/?tag=content;col1
http://www.faqs.org/rfcs/rfc2309.html
http://www.faqs.org/rfcs/rfc2309.html
http://www.isi.edu/in-notes/rfc3135.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.faqs.org/rfcs/rfc959.html
http://www.ncftp.com/ncftpd/doc/misc/ftp_and_firewalls.html
http://searchnetworking.techtarget.com.au/articles/17491-The-WAN-speeds-up
http://searchnetworking.techtarget.com.au/articles/17491-The-WAN-speeds-up
http://en.wikipedia.org/wiki/40_Gigabit_Ethernet
http://en.wikipedia.org/wiki/40_Gigabit_Ethernet

Bibliography 74

[23] University of Illinois at Chicago. Udt: Udp based data transfer protocol. breaking

the data transfer bottleneck. National Center for Data Mining. URL http://udt.

sourceforge.net/udt-sc08-poster.pdf.

[24] Robert L. Grossman Yunhong Gu. Udt: Udp-based data transfer for high-

speed wide area networks. Computer Networks: The International Journal of

Computer and Telecommunications Networking, 51:1777–1799, May 2007. URL

http://portal.acm.org/citation.cfm?id=1229240.

[25] Talon Data Systems. Netflight. URL http://www.talondata.com/pdf/servers/

network/net_flight/NetFlightDatasheet.pdf.

[26] Bruce S. Davie Larry L. Peterson. Computer networks: a systems approach. 2007.

[27] Proxy server. whatis?com, December 2008. URL http://whatis.techtarget.

com/definition/0,,sid9_gci212840,00.html.

[28] J. Mogul H. Frystyk L. Masinter P. Leach T. Berners-Lee R. Fielding, J. Gettys.

Hypertext transfer protocol – http/1.1. June 1999. URL http://tools.ietf.org/

html/rfc2616#page-46.

[29] M. Chatel. Classical versus transparent ip proxies. Network Working Group, March

1996. URL http://www.ietf.org/rfc/rfc1919.txt.

[30] Scott Mueller Terry William Ogletree. Upgrading and repairing networks. page

807, 2006.

[31] Min Sik Kim Xincheng Zhang Simon S. Lam Y. Richard Yang, Yang Richard Yang.

Two problems of tcp aimd congestion control. June 2000. URL http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.126.3446.

[32] D. Borman V. Jacobson, R. Braden. Tcp extensions for high performance. Network

Working Group, May 1992. URL http://www.ietf.org/rfc/rfc1323.txt.

[33] Network emulation. . URL http://en.wikipedia.org/wiki/Network_emulation.

[34] Xgem 10g ethernet network emulators. . URL http://www.anuesystems.com/.

[35] Tcp tuning guide. 2009. URL http://fasterdata.es.net/TCP-tuning/.

[36] Oskar Andreasson. Ipsysctl tutorial 1.0.4. 2002. URL http://ipsysctl-tutorial.

frozentux.net/chunkyhtml/tcpvariables.html.

http://udt.sourceforge.net/udt-sc08-poster.pdf
http://udt.sourceforge.net/udt-sc08-poster.pdf
http://portal.acm.org/citation.cfm?id=1229240
http://www.talondata.com/pdf/servers/network/net_flight/NetFlightDatasheet.pdf
http://www.talondata.com/pdf/servers/network/net_flight/NetFlightDatasheet.pdf
http://whatis.techtarget.com/definition/0,,sid9_gci212840,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci212840,00.html
http://tools.ietf.org/html/rfc2616#page-46
http://tools.ietf.org/html/rfc2616#page-46
http://www.ietf.org/rfc/rfc1919.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.3446
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.3446
http://www.ietf.org/rfc/rfc1323.txt
http://en.wikipedia.org/wiki/Network_emulation
http://www.anuesystems.com/
http://fasterdata.es.net/TCP-tuning/
http://ipsysctl-tutorial.frozentux.net/chunkyhtml/tcpvariables.html
http://ipsysctl-tutorial.frozentux.net/chunkyhtml/tcpvariables.html

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Background
	2.1 OSI model
	2.2 TCP/IP
	2.2.1 Transmission Control Protocol
	2.2.1.1 Connection establishment
	2.2.1.2 Reliable data transfer
	2.2.1.3 Connection termination
	2.2.1.4 TCP Congestion control
	2.2.1.5 TCP congestion control extensions
	2.2.1.6 Random Early Detection (RED)
	2.2.1.7 Proxy-based TCP extensions of congestion control

	2.2.2 User Datagram Protocol

	2.3 File Transfer Protocol
	2.3.1 Active mode
	2.3.2 Passive mode

	2.4 WAN acceleration
	2.4.1 RWTP

	2.5 Proxy servers
	2.5.1 Classical application proxies

	3 Design
	3.1 Control channel block
	3.1.1 client-side proxy authentication block
	3.1.2 FTP authentication block
	3.1.3 Client-side proxy routing block
	3.1.4 FTP command reference block
	3.1.5 Control connection setup sequence
	3.1.6 FTP initial command sequence

	3.2 Data channel block
	3.2.1 Data channel connection sequence

	4 Implementation
	4.1 Modules
	4.1.1 ClientSideProxy
	4.1.2 ServerSideProxy
	4.1.3 CTCPServer
	4.1.4 STCPClient
	4.1.5 ProxyAuthentication
	4.1.6 ProxyStream
	4.1.7 ProxyCmdRef
	4.1.8 RWTPClient
	4.1.9 RWTPServer
	4.1.10 ProxyDataConnection
	4.1.11 ProxyRouter

	4.2 Flow chart: client-side proxy
	4.3 Flow chart: server-side proxy

	5 Performance Evaluation
	5.1 Network Emulator
	5.2 TCP window size adjustment
	5.3 Measuring TCP bandwidth performance with Iperf
	5.4 Testing FTP using a direct TCP connection
	5.5 Testing an indirect connection with TCP based-proxy
	5.6 Testing an indirect connection with RWTP-based proxy
	5.7 Performance Evaluation

	6 Summary and Future work
	A Network performance tables
	B CPU usage plots
	Bibliography

