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Abstract

With the increasing use of the Internet and social media, the amount of
available data has exploded. As most of this data is natural language text,
there is a need for efficient text analysis techniques which enable extraction
of useful data. This process is called text mining, and in this thesis some of
these techniques are evaluated for the purpose of integrating them into the
visual data mining software TIBCO Spotfire®).

In total, five analysis models with different running time, memory use and
performance have been analyzed, implemented and evaluated. The tf-idf vec-
tor space model was used as a baseline. It can be extended using Latent Se-
mantic Analysis and random projection to find latent semantic relationships
between documents. Finally, Latent Dirichlet Allocation (LDA), Joint Senti-
ment/Topic model (JST) and Sentiment Latent Dirichlet Allocation (SLDA)
are used to extract topics. The latter two are extensions to LDA which also
detects positive and negative sentiment.

Evaluation was done using the perplexity measure for topic modeling, average
precision for searching and classification accuracy of positive and negative
reviews for the sentiment models. It was concluded that for searching, a
vector space model with tf-idf weighting had similar performance compared
to the latent semantic models for the test corpus used. Topic modeling
showed to provide useful output, however at the expense of running time. The
JST and SLDA sentiment detectors showed a small improvement compared to
a baseline word counting classifier, especially for a multiple domain dataset.
Finally it was shown that they had mixed sentiment classification accuracy
from run to run, indicating that further investigation is motivated.
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Chapter 1

Introduction

According to a widely accepted rule [1, 2] about 80% of all business data
is in unstructured form, for example e-mail messages, documents, journals,
images, video, audio and so on. Clearly this unstructured data is a huge
source of information that businesses and research can take advantage of
to find new opportunities, trends and relationships. If we also take into
consideration the current boom in social networking such as blogs and instant
messaging, the importance of being able to assess unstructured data becomes
even more evident. Most of this unstructured data is in text format, which
is readable by humans but not easily interpretable by computers.

1.1 Problem

The TIBCO Spotfire®Platform (Spotfire) is a line of products for interactive
visualization which includes both an engine for interactive graphics and an
engine for high performance database queries. In combination, this makes it
possible to interact graphically with large data sets. However, in its current
state it offers no text analysis techniques.

1.2 Goal

With this thesis, we explore the possibilities of analyzing and visualizing
larger amounts of texts in Spotfire. The aim is to evaluate some text anal-
ysis techniques in current research. Specifically, the following features are



implemented and evaluated as they could be useful for both current and
future Spotfire users.

Topic modeling Extracting topics from a collection of documents and rep-
resenting the documents as mixtures of these topics, enabling the user
to explore the collection and find relationships.

Information retrieval Finding documents relevant to an information need,
often defined by a search string.

Sentiment detection Analyzing the sentiment of a text, thus extracting
positive and negative aspects.

The purpose of the implementation is not to be a complete text analysis
solution, but instead a proof of concept and possible foundation for future
development.

1.3 Scope

Many text analysis techniques are language dependent. As most of Spotfire’s
customers use English data sources, this is the language which is used for
evaluation in this thesis.

In the context of search, one often distinguishes between word and content
based search. The former is a way of matching strings against strings, where
one can accept typos using approximate string matching. This project will
only focus on the latter, i.e. content based search.

All the techniques examined are unsupervised, which means that they can
be directly applied to data without any prior training with annotated data.
The reason for this choice is that Spotfire customers come from different
areas and annotated training data may not be available.

1.4 Method

The project has been carried out in three different phases to fulfil the goal.
In these phases, the following inquiry was undertaken:

In the first phase, a review of available text analysis techniques were con-
ducted to get an overview of the field. Based on this review a subset of the



found techniques was chosen for further investigation. An implementation
was then made in the second phase, enabling evaluation of these techniques.

In the last phase the techniques were evaluated in a series of experiments in
order to assess their current state, and for measuring future improvements.
For topic modeling, experiments on the impact of number of topics were done.
The information retrieval experiments were performed by measuring search
precision. Finally, experiments were conducted to determine the classification
accuracy of the implemented sentiment detectors. The running time and
memory use for all implementations was also analyzed, to give a hint of their
possible integration points in Spotfire.

1.5 Report outline

Chapter 2 describes the theory needed to understand the rest of the re-
port. First a short introduction to the Spotfire Client is given, followed
by a brief overview of text mining. Then all the techniques used are
introduced in the order they are executed in the implemented pipeline:
preprocessing, analysis and then visualization of the results.

Chapter 3 gives the details of how the techniques were implemented, along
with their problems and considerations. A short overview of the testing
tools implemented in Spotfire is given in appendix A.

Chapter 4 presents the results from the experiments performed. These re-
sults indicates how well the techniques work in their current state. This
project evaluates three features: topic modeling, information retrieval
(content based search), and sentiment detection. Also some output
examples are given to show how the results can be presented to the
user.

Chapter 5 discusses the implementation and its possible improvements.
Also the results of the experiments are evaluated.

Chapter 6 presents the conclusions made during this thesis. It finally leads
up to some recommendations regarding which of the techniques that
could be integrated into Spotfire.



Chapter 2

Theory

Before starting the implementation, a literature study had to be done in or-
der get an overview of the current research in the field. In this chapter the
result of this study is presented. We first give an overview of what Spotfire
is and how it is used. Then some basic concepts and techniques needed to
understand the rest of this report are given, such as what a corpus and bag
of words is. Finally the techniques for finding latent semantic relationships
between documents are explained. The chapter ends with the theory be-
hind self-organizing maps, a technique which can be used to visualize high
dimensional data.

2.1 Spotfire

Spotfire is a data analysis and visualization platform [3]. In Spotfire, users
can create their own analytic applications which can then be viewed by a
large number of users on many different devices like personal computers, cell
phones and tablets. See figure 2.1 for an example of an analysis. In this
section, we describe briefly how Spotfire can be used.
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Figure 2.1: The Spotfire client user interface. An analysis consists of one or
more pages which contain dynamic visualizations. The filters enable the users to
analyze subsets of the data.

The first step of creating an analytic application is to identify the data. It
can be data from experiments, web site usage statistics, gene data, sales
numbers etc. These are imported into Spotfire as data tables, as can be seen
in figure 2.2.

Table
Record No Order Friority Sales Total Discount ShipMethod  Delivery Time  GrossProfit  Customer Name Region State Market Segment

70681 2-HIGH 227,60 000 REGULAR AIR 3 5066 Roy Skaria CENTRAL ILLINOIS: SMALL BUSINE
7062 3-MEDIUM 2981 012 REGULAR AIR 3 49,92 Thomas Boland  CENTRAL MINNESOTA CORPORATE
7063 3-MEDIUM 51,62 010 REGULAR AIR 3 26,06 Thomas Boland  CENTRAL WISCONSIN CORPORATE
7064 3-MEDIUM 32,98 002 REGULAR AIR 3 -489 Thomas Boland  CENTRAL MINNESOTA CORPORATE
7085 5-LOW 8375 009 REGULAR AR 3 148 JesusOcampe  CENTRAL MINNESOTA CONSUMER
70686 1-URGENT 13,02 007 REGULAR AR 3 0,80 HeatherJasHa... WEST NEVADA CORPORATE
7087 1-URGENT 283,00 001 REGULAR AIR 3 29,94 Heather Jas-Ha.. WEST CALIFORNIA CORPORATE
7088 4-NOT SPECIFI 740085 005 REGULAR AIR 3 258761 Lynn Smith-Reed EAST NEW YORK HOME OFFICE
7089 4-NOT SPECIFI 5084,18 012 REGULAR AIR 3 148281 Lynn Smith-Reed  EAST VERMONT HOME OFFICE
7000 4-NOT SPECIFI 277,00 002 REGULAR AIR 3 104,38 Lynn Smith-Reed  EAST VIRGINIA HOME OFFICE
7075 E-LOW 13768,64 001 REGULAR AIR 3 011,10 Noel Staavos CENTRAL ILLINOIS: SMALL BUSINE
7076 2-HIGH 9571 004 REGULAR AIR 3 35,03 Thomas Seio EAST VERMONT HOME OFFICE
7077 2-HIGH 5339,68 008 EXPRESS AR 2 2102,45 JasperCacioppo  EAST VIRGINIA HOME OFFICE
7078 2-HIGH 38278 007 REGULAR AIR 3 17,35 JasperCacioppo  EAST CONNECTICUT  HOME OFFICE
7079 2-HIGH 2929 004 REGULAR AIR 2 841 Patrick O'rill WEST WASHINGTON  CORPORATE
7080 2-HIGH 24958 002 REGULAR AIR 2 -87,73 Patrick O'Brill WEST ARIZONA CORPORATE
7068 1-URGENT 24633 003 REGULAR AIR 3 -154,26 DebraCatiniEnt... WEST ARIZONA CORPORATE
7069 3-MEDIUM 84,02 000 REGULAR AIR 3 177 HeniaZydlo WEST OREGON CORPORATE
7070 3-MEDIUM 634,35 005 REGULAR AIR 3 218,69 HeniaZydio WEST OREGON CORPORATE
7071 2-HIGH 2475 007 REGULAR AIR 3 794 MathewReese  WEST WASHINGTON  CONSUMER

Figure 2.2: An example data table in Spotfire.

In Spotfire, an analysis of the data is created using standard visualizations
like bar charts, scatter plots, tree maps, network graphs and so on. These are
organized into one or more pages in the analysis in order to separate different



aspects of the data. Finally, the application is published so that the end users
can explore the analysis by interacting with it, for example by filtering out
subsets of the data. Through these interactive analytic applications, the
users can gain new knowledge.
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Figure 2.3: The filters panel where the user can select which rows that should
be shown in the visualizations.

The filters panel is shown in figure 2.3. In an analysis the user can filter out
data using for example check box (Order Priority), range (Sales total) and
list box (Customer name) filters on each column in the data table. Also a
text filter is available which filters using pattern matching.

2.2 Text mining

Discovering new previously unknown facts by analyzing data is called data
mining [4]. These new facts can be used as an inspiration for new theories
and experiments. The difference between data mining and text mining is
that in the latter, facts are extracted from natural language text. Normal
data mining deals with numerical and discrete data types which are easily



readable by a computer while natural language text is not. What is needed
is a computer program which can read and fully understand text, which is
not available in the foreseeable future [4].

A closely related area is information retrieval where the user specifies an in-
formation need defined as a search query, which the system then analyses
to find a set of relevant documents. The key aspect of text mining as com-
pared to searching, is that when searching you already know what you are
looking for while in mining one explores the data to find previously unknown
relationships. Yet, these areas have quite a lot in common.

To be able to perform text mining some text analysis have to be incorporated
early in the process, in contrast to data mining where techniques for finding
patterns can be employed directly on the data. Today there are two main
approaches to text analysis, natural language processing and the statistical
approach. The former is based on parsing text into parse trees using gram-
matical rules to extract information at sentence level. In this thesis however,
we focus on the statistical approach which performs the analysis based on
word frequencies and word co-occurrence.

2.3 Preprocessing

To perform analysis directly on a whole text is generally not applicable,
hence the text needs to be broken down into smaller pieces, for example into
sentences or words, in a preprocessing step. A preprocessing step may also
contain some transformations applied to the text, depending on the problem
at hand. Examples of such transformations include stop word removal and
stemming. In this section we explain some of these concepts and how various
techniques can be combined to preprocess text, guided by the following simple
example of a text, fetched from the BBC News website!.

http://www.bbc.co.uk/news/world-asia-pacific-13032122, Accessed at 2011-
05-23


http://www.bbc.co.uk/news/world-asia-pacific-13032122

A powerful earthquake has hit north-east Japan, exactly one month after
the devastating earthquake and tsunami. The 7.1-magnitude tremor trig-
gered a brief tsunami warning, and forced workers to evacuate the crippled
Fukushima nuclear plant. The epicentre of the quake was in Fukushima
prefecture, and struck at a depth of just 10km (six miles). It came as
Japan said it was extending the evacuation zone around the nuclear plant
because of radiation concerns.

Table 2.1: Example input text to be processed

The input data to a text mining application is a corpus (pl. corpora), which
is a set of documents [5]. A document is a text, for example an email, web
page, chapter in a book, answer to an open question etc. The example above
could for instance be one of the documents in a huge collection of news
articles to be analyzed. These documents are often stored as a sequence of
bytes in a database or file system. When it comes to importing documents
into an application for further processing, the documents may be stored
in proprietary formats like Microsoft Word and Adobe PDF, so specialized
import functions are needed for each format. Furthermore, the texts may
use different encoding schemes like ASCII, UTF-8 or other nation specific
standards. This information may be provided by meta data or be required
by the user, but there are also heuristic methods for determining the encoding
[6]. The bottom line is that the importer ensures that all the documents come
in the same encoding.

2.3.1 Tokenization

The first step in analyzing the content of a document is to identify the ele-
ments it consists of. This can be done by a lexer. A lexer takes a sequence
of characters as input and splits it into tokens which usually are the words,
a process called tokenization. A simple approach to do this is to simply split
on all non-alphanumeric characters. This can however be a problem in some
cases. For example, how should the lexer treat the sequence aren’t? With
this approach the result would be two tokens, aren and ¢, which would be
undesirable. Another problem is punctuation marks (are they the end of the
sentence or just marking an abbreviation?). Even worse is Chinese where
there are no white spaces.

Another way to perform the tokenization is to parse the text according to a
predefined set of rules. A rule is basically a pattern to be matched given an



input string. Such solutions can be realized with among other things regular
expressions. There are applications for automatically generating lexers given
a rule set. An example of such an application is flex? that generates source
code for a lexer in C.

Referring to the example document given in the introduction of this chapter,
using the simplest approach described above, the tokens shown in table 2.2
would be generated. Note that the word north-east is split into two tokens
while it in this case would be correct to identify it as one token.

A, powerful, earthquake, has, hit, north, east, Japan, exactly, one, month,
after, the, devastating, earthquake, and, tsunami, The, 7, 1, magnitude,
tremor, triggered, a, brief, tsunami, warning, and, forced, workers, to,
evacuate, the, crippled, Fukushima, nuclear, plant, The, epicentre, of, the,
quake, was, in, Fukushima, prefecture, and, struck, at, a, depth, of, just,
10km, six, miles, It, came, as, Japan, said, it, was, extending, the, evacu-
ation, zone, around, the, nuclear, plant, because, of, radiation, concerns

Table 2.2: Example document split into a comma. separated list of tokens.

For more information about the difficulties in tokenization, see Manning et

al. [5].

2.3.2 Bag of words

Given the documents as list of tokens, we could now start comparing them
for equality by for example comparing each word position, i.e. compare word
position 1 in document 1 with word position 1 in document 2 and so on for
all the words. Clearly, the probability of the same word occurring at the
same position in both documents is very low. Therefore the bag of words
model is applied which makes the assumption that all words are conditionally
independent of each other. This means that for example John loves Mary is
considered equal to Mary loves John. It is a simplifying assumption which is
commonly employed in information retrieval and statistical natural language
processing [5].

Applying the bag of words model directly to the tokens often results in huge
bags as a natural language has many words. Given a document there are
only a few words in it which tell us what the document is about. This is a

2flex: The Fast Lexical Analyzer, http://flex.sourceforge.net/
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problem when comparing texts, so a series of techniques have been invented
to reduce the size of the vocabulary. In the next sections a short introduction
to some of them are given.

2.3.3 Stop words

A stop word is a predefined word by the user that should be filtered out, i.e.
removed from documents. A large proportion of the words in a document are
function words such as articles and conjunctions. Examples of such words in
English are and, is, of and so on. In the bag of words model, these words
don’t tell us anything about the content of a text, so they are usually added
to the stop word list. Also numerics can be removed from the text in some
applications.

The function words need to be manually identified for each language. An-
other way of deciding which stop words to use is to find them using word
frequency when constructing the vocabulary list of the corpus. A word oc-
curring in most of the documents in a corpus will not help discriminate the
documents from each other, hence it may be removed from the corpus by
adding it to the stop word list.

There are however cases where functional words are of importance, for exam-
ple phrase search. Consider the phrase to be or not to be. By using functional
words as stop words, this phrase would be completely removed.

Returning to the example document, the remaining words after performing
stop word and numeric removal are shown in table 2.3. In this example the
stop word list from the Snowball project [7] has been used.

powerful, earthquake, hit, north, east, Japan, exactly, month, devastat-
ing, earthquake, tsunami, magnitude, tremor, triggered, brief, tsunami,
warning, forced, workers, evacuate, crippled, Fukushima, nuclear, plant,
epicentre, quake, Fukushima, prefecture, struck, depth, miles, Japan, ex-
tending, evacuation, zone, around, nuclear, plant, radiation, concerns

Table 2.3: Example document with stop words and numerics removed.

2.3.4 Stemming

Many words in a text is not in its lemma form. For example, squirrel and
squirrels refer to the same concept if you ask a human, but a computer treat
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them as completely different words. This means that a document containing
only the form squirrel will not be seen as similar to a document containing
squirrels. There are a couple of known ways to cope with this problem.

One technique is to use a dictionary which maps all known words and their
inflections to their lemma form. This is called lemmatization. Although
efficient, this technique requires access to such a dictionary which may not
be available. It also requires that the dictionary always is up to date since
new words are regularly added to languages.

Another approach is suffix stripping algorithms, which was first examined by
Porter for English [8] but now exist for many languages [7]. These algorithms
simply follow a small set of rules which removes the suffixes. This approach is
called stemming since it leaves only the stem of the word, for example brows
for browse and browsing. Although the results may not be real words, it
maps words with standard inflections into the same stems, and thus reduces
the number of word types. A potential problem with this approach is that
words with different semantic meaning (which should be separate words in the
analysis) can be stripped to the same stem. Below is the example document
with Porters stemming algorithm applied to it.

power, earthquak, hit, north, east, Japan, exactli, month, dev-
ast, earthquak, tsunami, magnitud, tremor, trigger, brief, tsunami,
warn, forc, worker, evacu, crippl, Fukushima, nuclear, plant, epi-
centr, quak, Fukushima, prefectur, struck, depth, mile, Japan, ex-
tend, evacu, zone, around, nuclear, plant, radiat, concern

Table 2.4: Example document with stemming applied.

2.3.5 Compound words and collocations

A weakness of the bag of words model is that it ignores word order. This can
be a problem for languages which separates compound words, for example
English. Consider the string New York which should be treated as one term
instead of two, which would be the case if a simple space splitting tokenizer
was used. To remedy this problem, experiments have been made where
word n-grams are used as words together with single words [9]. A n-gram
is a scientific term for n consecutive entities, in this case words (other text
analysis techniques for example statistical language detection use character
n-grams instead). By applying this technique we can for example find high
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frequencies of the 2-gram New York instead of New and York. Below is an
example of the word bi-grams (2-grams) of a sentence.

This is an example.

|_ This|| This is|[is an| ‘ an example ‘ ‘ example ,‘

Table 2.5: The word bi-grams of a small sentence. Underscore denotes sentence
boundaries.

In other languages like Swedish and German, compound words are not sep-
arated by spaces. In these cases it can instead be relevant to identify the
words that the compound words includes. This can be achieved with the aid
of a dictionary [5].

2.4 Analysis

With the preprocessing done, further analysis techniques can be applied to
extract information. Typical tasks in text analysis include categorization,
topic modeling, entity extraction, summarization, sentiment analysis, de-
tecting trends and so on, however in this project only a subset of them are
evaluated due to time restrictions. In this section some algebraic and statis-
tical methods for this subset are introduced.

2.4.1 The Vector Space Model

One way of representing the bag of words model is the vector space model.
In this model each document is represented as a vector of term frequencies.
Terms are simply the word classes which remains after the preprocessing
steps like stemming and stop word removal. Comparing two documents in
this model is then a matter of using a distance measure (see section 2.4.1.5)
between their term frequency vectors.

2.4.1.1 Occurrence matrix
Once the vocabulary is decided, an occurrence matrix A can be formed to

represent the entire corpus. In this matrix the rows corresponds to terms
and the columns to the documents. The entry A, contains the frequency of
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term w in document d. Column d in such a matrix is consequently the term
frequency vector of document d. In table 2.6 below is an example occurrence
matrix constructed from the three preprocessed documents: d; = cat feline
paw cat fur, do = feline fur paw tail and ds = dog tail paw smell drugs.

B
(oR
w

cat
feline
paw
fur
tail
dog
smell
drugs

SO O === o

—_ R =, Ok OO

O OO N

Table 2.6: Example occurrence matrix

Here, we can see that the columns are the document vectors and the rows the
term vectors. The matrix is usually very large and sparse, as a language has
many words but a document contains only a small subset of them. Storing
this entire matrix in computer memory can therefore be a problem. A sparse
matrix data structure is often employed to solve this problem. There are
several ways how to do this as every technique has its own benefits. When
constructing the matrix, one often uses a simple structure, for example:

e A dictionary which maps row and column indices to values.

o A list of lists. Each row or column is stored in a list of non zero values
along with their indices.

e Sorted coordinate list, which is a list of 3-tuples containing row index,
column index and value.

All of the above have performance weaknesses when it comes to matrix op-
erations, so the final matrix is then converted to a compressed sparse row or
column format, depending on if accesses to entire rows or columns are likely
[10]. In the compressed sparse column format, the matrix is stored using
three arrays: A, JA and I A. A contains all non-zero entries in column ma-
jor order, and JA contains their row indices. [ A contains the indices in the
other arrays where each column starts. (2.1) below is a small example of a
matrix using the compressed sparse column format. Note that this example
matrix is not sparse enough to take advantage of the format. In a corpus it
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is not uncommon that the matrix density is below 1%, so for these matrices
large amounts of memory can be saved.

4 A=11 2 3 4 5 ¢
5| <= ¢ JA=[0 2 2 0 1 2] (2.1)
6 IA=10 2 3 6

N O =
w o O

Looking up the value in cell (0,2) (assuming a zero based index) corresponds
to first looking up the values at I A[2] and I A[3]. These values indicate the
index interval in JA where to look for the row number 0. The row number
can be found using binary search. In this case we find it at JA[3], and the
value 4 is found in A[3]. In total, this is a O(log(R)) function, where R is
the number of rows.

2.4.1.2 Weighting schemes

In the original information retrieval systems, the document vectors were just
the sets of terms they contained [11]. This means that either a term was
associated with a document or not, and no other information was stored. A
comparison between two documents were then just the number of terms they
had in common, i.e. the size of the intersection of the corresponding sets.
This was computed as the dot product between their vectors.

Research has shown that by assigning weights to the terms (the entries in the
occurrence matrix), information retrieval performance can be improved [11].
These weights are often the product of three different measure components
for the term as in equation (2.2).

A =tfcyg - cfe, - neq (2.2)

The term frequency component ¢ fc,, represents the frequency of the term in
the document. A document with higher frequencies of certain terms are more
likely to treat the subject those terms are about. However, there are terms
that occur with high frequency in all documents, for example function words
or the word computer in a corpus about computers. These terms should have
lower weight since they are not unique to any specific document or topic in
the corpus. To solve this a collection (corpus) frequency component cfe,,
can be used, which is a function of the number of documents a term w is
associated with. Finally, the weights can be normalized using a normalization
component ncg so that longer documents get the same amount of weight as
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shorter documents. A list of weighting components can be found in table
2.7.

Term Frequency Component tfc,4

1.0 Binary, assigns weight 1 to terms present in the doc-
ument, 0 otherwise.
Nwd Term frequency, number of times the term w occurs

in document d.

Corpus Frequency Component cfc,,

1.0 No weighting. Words which occur in every document
will get a high weight despite that they don’t give
much information.

log % Log inverse document frequency. D is total number
of documents in the corpus, d,, is the number of doc-
uments the term w occurs in. Gives lower weight to
words occurring in almost every document in the col-

lection.

Normalization Component ncy

1.0 No normalization, long documents get high weights
since they probably have more occurrences of the
terms.

1/ng Normalize on number of terms in document ng.

Table 2.7: Occurrence matrix weighting schemes

The combination of term frequency, log inverse document frequency and
document length normalization is a common weighting function:

Nwd D

— X log — 2.3
n, s (2.3)
This combination is called tf-idf. The first approach similar to tf-idf was
suggested by Salton et al. [11], with the only difference that they used
Euclidean vector normalization instead of document length normalization.

2.4.1.3 Latent Semantic Analysis
The vector space model in its basic form has two problems, synonyms and

homonyms. Synonyms are words that have the same meaning but are spelled
differently. For example, if a user enters a query cats that query will not

15



match a document which only contains the word felines even if they both
refer to the same animal species. Homonyms are words that are spelled
the same but mean different things depending on context, for example bank
which can both refer to a financial institution and a sand mass in a river.

One way of attacking these problems is to reduce the noise in the matrix by
applying dimension reduction [5]. Instead of having exact mappings between
terms and documents (many dimensions), one wants to find a way to extract
a lower dimensional concept space where cat and feline are not orthogonal to
each other. Similarly the documents are represented in this low dimensional
space. Deerwester et al. [12] proposed to perform singular value decomposi-
tion (SVD) on the occurrence matrix. SVD is an operation which factorizes
a matrix A into three matrices:

A=U-S-vT (2.4)

If Ais W x D (W is the vocabulary size, D the number of documents), then
UisW xW, SisW x D and V is D x D. The columns of U are called
the left singular vectors of A and are the eigenvectors of AAT. Similarly,
the columns of V' are the right singular vectors which are the eigenvectors of
AT A. Finally, S is a diagonal matrix which contains the square roots of the
eigenvalues of the corresponding vectors in U and V. These values are called
the singular values. According to convention they are sorted in descending
order along with their corresponding column vectors in U and V' [12].

By only keeping the K largest singular values in S (and their corresponding
columns in U and V'), one creates a rank K approximation A’

A%AIZUK'SK'V;; (25)

Here, U, is W x K, Sk is K x K and Vg is D x K. See figure 2.4 for a
visual interpretation. This way the information in A is transformed into a K-
dimensional concept space. By this transformation the noise like redundant
words are ignored and only the semantic meaning of the elements are kept.
The actual decomposition ensures that the Frobenius norm of the difference
between A and A’ is minimized. The Frobenius norm is defined as the Eu-
clidean length but for matrices. The rows of Uk are now the concept vectors
of the terms and the rows of Vi are the concept vectors of the documents.

16



Figure 2.4: Visual interpretation of the singular value decomposition. Only
the K most important singular vectors are kept, thus reducing the number of
dimensions.

Choosing the number of dimensions K is a recurring issue in text model-
ing. Too many dimensions will result in no improvement over the default
vector space model, while too few dimensions will be too coarse for informa-
tion retrieval purposes. According to Bradford [13], moderate sized corpora
(hundred of thousands of documents) need around 300 dimensions to give
good results, while larger corpora (millions of documents) need around 400
dimensions. See chapter 4 for our own experiments.

In our previously mentioned example regarding the synonym problem with
cat and feline, lets consider two documents d; and dy. Both treat the subject
of cats, however d; only uses the term cat while d; only uses the term feline.
A user who enters the query cat will however probably get both documents
returned if they share many other cat related terms, for example paw, tail,
fur and so on. The singular value decomposition has detected that cat and
feline are related, and thus their concept vectors are not orthogonal as their
counterparts in the basic vector space model.

2.4.1.4 Random Projection

Although efficient in keeping the information of the occurrence matrix, the
singular value decomposition is computationally expensive. See chapter 4 for
running time experiments. It has been shown that a cheap random projection
can successfully replace the SVD computation [14, 15]. In this technique,
each document d is assigned an index vector 74 of length K. As LSA usually
uses 300-400 dimensions, it is suggested that K should be set to a couple of
thousands [15]. A small number ¢ (~ 10 — 50) of randomly chosen position
pairs in the index vector are assigned 1 and —1. The full matrix A can then
be approximated in a smaller matrix U by adding the generated index vector
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to all rows in U corresponding to the terms in the document. This is done
for each document until the final A approximation U is computed. The full
algorithm is shown in algorithm 1.

Algorithm 1 Random Projection pseudo code

U < newMatriz(W, K)
for all de D do
iq <— new Vector(k) with ¢ random positions set to 1 and -1
for all wed do
U(w) < U(w) + 14
end for
end for
return U

When the algorithm has finished, the matrix U is a word-concept matrix
similar to the one produced by singular value decomposition. To produce
the document-concept matrix V', each document vector in the original matrix
A is multiplied with the random projection matrix U according to equation
(2.6).

V=A".U (2.6)

2.4.1.5 Distance measures

Since both documents and terms are represented as vectors in the vector
space model we can apply standard measures to assess the distances between
them. A simple measure is the 1-norm of the difference, also known as the
Manhattan distance (2.7). Another measure that can be used is the Euclidean
distance, which is the 2-norm. Equations (2.7) and (2.8) below shows how to
calculate these distances between two vectors x and y with K dimensions.

di(x,y) = Z |%; — il (2.7)

dxy) = |3 (i~ )2 (2.8)

=1
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There is however one problem by using these in our context. Consider a short
document d; containing the term cat 2 times and the term paw 1 time, and
a long document ds containing cat and paw 100 times each. The Euclidean
distance between these two vectors would be very large even though the
documents probably deal with the same topic. To solve this problem the
cosine similarity (2.9) can be used instead.

Xy
cos(x,y) = Ty (2.9)

The cosine similarity, which gives the cosine angle between two vectors, is
defined as the dot product of the two vectors divided by the lengths of the
vectors. Hence the lengths of the corresponding documents are no longer an
issue. Note that the cosine gets larger for more similar documents, opposed
to (2.7) and (2.8) which gets smaller.

2.4.1.6 Querying

When considering getting relevant documents given a user specified query,
we would when using the basic vector space model just treat the query as
a document vector (with the corresponding weighting scheme). A distance
measure is then used to get a ranking of all document vectors based on how
similar they are to the query vector.

If LSA has been applied to the original occur

k W Kk Kk

e ] = q | x

Figure 2.5: Transformation of a previously unseen query/document vector ¢ into
K-dimensional concept space.

Since the query vector now is in concept space, we can get a ranking for each
document. This is done by using a distance measure on the transformed
query vector and each document vector in the document-concept matrix V.
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A similar procedure is done when random projection has been used. The
query vector q is multiplied by the term-concept matrix U in order to get
the low dimensional vector q. This vector is then compared to each row in
the document-concept matrix V', i.e. each low dimensional document vector.

2.4.1.7 Evaluation methods

To evaluate how well the models represent the data some kind of performance
metric is needed. In the information retrieval domain two popular metrics
for search engines are precision (2.10) and recall (2.11) [5]. These two metrics
give indications of how well the search results match the information need.
The information need is often defined by a search query consisting of a short
phrase or some keywords. For each query, a subset of the documents in the
evaluation corpus are labeled as relevant.

TP
Precision = ———— 2.1
recision = oo (2.10)
TP
ll = ——F—— 2.11
Reca TPLEN (2.11)

T P indicates true positives, i.e. the number of documents correctly classified
as relevant. Similarly, F'P is the number of false positives (irrelevant docu-
ments classified as relevant) and F'N is false negatives (relevant documents
classified as irrelevant). The precision measure indicates the proportion of
relevant documents in the returned set, given the query. Recall on the other
hand is the proportion of how many of the relevant documents that are re-
turned. These measures often show an antagonistic behaviour as increasing
recall by considering larger search results often lowers precision. A perfect
result would have both high precision (all the results were relevant) and high
recall (all the relevant documents were returned).

When comparing two searching systems, their 11-point precision recall curves
are often compared. These plot precision levels at 11 levels of recall (0.0, 0.1,
..., 1.0). They are often interpolated as well, which means that for each
level of recall, the maximum precision for that or any higher level is plotted,
see figure 2.6. If multiple queries are used, the average is computed for each
recall level. If only a single performance measure is wanted, the mean average
precision can be used, which is the average precision for all levels of recall.
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Figure 2.6: Example interpolated precision recall curve.

Precision and recall can also be combined into the F-score (see equation
(2.12)) [9]. The parameter « indicates how important recall is compared
to precision. For a« = 0, the F-score becomes precision, o = 1 gives equal
importance to both measures, while a > 1 gives higher weight for recall. The
F-score ranges from 0 to 1, just as precision and recall.

(14 «) - Precision - Recall

F, = —
« - Precision + Recall

(2.12)

2.4.2 Probabilistic Topic Models

While LSA using SVD or random projection have been used successfully in
many areas, for example indexing of documents [12] and images [16, 17], they
are not statistically well founded for text as they are based on linear algebra.
As an alternative to LSA, Hoffman introduced Probabilistic Latent Semantic
Analysis (PLSA) [18] which is a probabilistic generative model. This model
was later refined by Blei et al. in Latent Dirichlet Allocation (LDA) [19].
Apart from just modeling text, LDA has also been applied to for example
images [20] and music [21]. In this section we give an introduction to how
these models work and how they can be calculated.
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2.4.2.1 Generative models

The idea behind a generative model is that it is assumed that the observed
data has been generated by some generative process. For example, the data
4 heads and 6 tails could be the observed data from the generative process
of flipping a coin 10 times. Using this observed data, the model parameter
indicating the probability distribution of the coin (only one probability p
here) is inferred by some inference method.

Topic 1 Topic 2 Topic 3
president, soviet, orbit, rocket, nasa, thrust, newton,
usa, economy, astronaut, moon, force, gravity,
nation earth mass, energy

Soviet Space
History

Basics of Space
Flight

il L

Figure 2.7: In probabilistic topic models it is assumed that each document is a
mixture of topics and that each topic is in turn a bag of words from which the
words are drawn.

In probabilistic topic models, it is assumed that all the words in the corpus
are observations from a generative process which uses some latent (hidden)
variables. A topic z in this model is a multinomial distribution over words
with probability mass function P(w|z). We will call the distribution of topic
z (.. This means that given a topic, we can draw words which are common
for this topic. For example, given the topic about space we may get the words
orbit, rocket and astronaut with high probability while words like computer
and strawberry belonging to other topics have low probability. This also
allows the model to deal with homonyms as the same word can occur in
different topics and therefore have multiple meanings.
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Similar to the topics, each document is modeled a multinomial distribution
over topics 4, with probability mass function P(z|d). A document can there-
fore be a mixture of a couple of topics, for example the imaginary document
Soviet Space History in figure 2.7 is a mixture of space science and politics.
Similarly, the document Basics of Space Flight is a mixture of space science
and physics, and not so much about politics. Putting it all together we get
the total probability of a word w in a document d:

P(w,d) =Y P(w|z = k)P(z = k|d) (2.13)

k=1

Here we denote K to be the number of topics in the model, which is a user
specified parameter. This is the PLSA model, often called the aspect model.
If the parameters 8 and 6 are known, we can generate a corpus by performing
algorithm 2.

Algorithm 2 The generative process of the PLSA model

for all de€ D do
for all 71 €d do
zgi ~ Multinomial(0,)
wg; ~ Multinomial(f.,,)
end for
end for

Compare this to the process of flipping a coin, thus generating outcomes of
heads and tails. The generative process of models like this is often described
by a graphical model, which shows the variables and their dependencies.
Figure 2.8 shows PLSA in this graphical notation.

OHO-@

Figure 2.8: Graphical model of PLSA in plate notation. Each document has a
topic distribution 6 which the topic assignments are drawn from.

N

D
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The circles in figure 2.8 represents random variables and the plates surround-
ing them shows repetition. For example, there is one distribution for each
document, while there is a topic assignment zy for each of the N words
in the document. This way of illustrating repetition in graphical models is
called plate notation. A shaded variable means that it is observed, in our
case we can only observe the word assignments w. The other variables are
latent, which means that we assume that they are there and we want to infer
them. For example, the topic assignment zy4 to each word is a latent variable.
Finally, the arcs between variables show their dependencies.

2.4.2.2 Latent Dirichlet Allocation

A drawback of the PLSA model is that it doesn’t make any assumptions
about how [ and 6 are generated. This makes it difficult to cope with new
documents. In LDA [19] the model is extended by introducing Dirichlet
priors on these distributions. This means that when generating the corpus,
we also assume that each 6; and Sy is drawn from Dirichlet distributions
with parameters a and n, respectively. The generative process now follows
algorithm 3 and is illustrated with the graphical model in figure 2.9.

Algorithm 3 The generative process of LDA

for all k€ K do
Br ~ Dirichlet(n)
end for
for all de€ D do
04 ~ Dirichlet(«)
for all 7 €d do
zgi ~ Multinomial(6y)
wa; ~ Multinomial(f.,,)
end for
end for
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Figure 2.9: Graphical model for LDA in plate notation. The topic-word and
document-topic distributions are sampled from Dirichlets parameterized by a and

n.

D

The Dirichlet distribution is used since it is the conjugate prior to the multi-
nomial distribution and this simplifies statistical inference of the model [19].
A sample from a K-dimensional Dirichlet is a point on the K — 1 simplex.
The simplex consists of all points whose components sum up to 1, so in 3
dimensions the 2-simplex is all points in the triangle with corners in (1,0, 0),
(0,1,0) and (0,0,1). This means that a draw from a Dirichlet can be used
as the probability distribution of a multinomial.

The hyperparameters oy, as, ..., ax decide how the points on the simplex are
distributed, i.e. how probable a certain document distribution is. They can
be interpreted as pseudo counts, which in the case of topic distributions for
documents can be seen as prior word assignments to each topic. For example,
setting a; to 5 would give higher probability of generating documents about
topic j as it would be interpreted as every document has at least 5 words from
that topic. For our purposes it is convenient to use a symmetric Dirichlet with
a single parameter & = a3 = ap = ... = ag as the topics are unknown. There
have been some experiments which used asymmetric priors [22], however this
is not used in this thesis. The parameter « is now a smoothing parameter.
For av < 1, the probability gets higher at the corners of the simplex which
means that documents tend to focus on only a few topics, while higher «
smoothes the distribution so that mixtures of all topics are more common.
Setting « to 1 gives a uniform distribution over the simplex. See figure 2.10
for Dirichlet distributions with different parameters. n can be interpreted
similarly as it is also a hyperparameter for a Dirichlet. For example, a high
1 gives a lot of smoothing, which means that words are allowed to occur in
many topics.
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2.4.2.3 Inference using Gibbs sampling

Given the observed data, the structure of the generative model and its hy-
perparameters « and 7, it is possible to infer the model parameters § and 6.

Figure 2.11 illustrates the problem of inference.

Topic 1

Topic 2

Topic 3

Figure 2.11: The task of the inference method is to estimate the words used in

Soviet Space

History

Basics of Space

Flight

each topic and the topic associations for each document.

Exact inference of the parameters is intractable, so various approximation
methods like variational Bayes [19], collapsed Gibbs sampling [23] and col-
lapsed variational Bayes [24] can be used. In this thesis the collapsed Gibbs
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sampling method is used as it has a simple implementation and gives good
results.

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm, which
means that it randomly walks through the solution space guided by the full
conditional distribution (figure 2.12). This requires some further explanation.
The solution space is in this case all possible distributions over words [ and
distributions over topics . These distributions can however be approximated
if z is known, the topic assignment of each word in the corpus. Our solution
space is therefore instead all possible topic assignments to all words. Here,
and [ are integrated out and this is why it is called collapsed Gibbs sampling.
The MCMC algorithm then randomly transitions between states guided by
a simple rule and picks samples (assignments of z) along the way.

Figure 2.12: Visual interpretation of MCMC. The MCMC algorithm starts at a
random point (x) in solution space. It then walks around guided by some simple
rule until it converges (grey area), where samples (circles) are taken.

The simple rule is in our case defined by the conditional probability of a word
being in a certain topic. Each word token in the entire corpus is considered in
turn and a new topic is sampled for the word given all the other word topic as-
signments. This conditional distribution is written as P(zq; = j|z2_q4i, W, 1, @),
where z_4 denotes all topic assignments except the currently considered one.
Griffiths and Steyvers [23] showed that this probability can be calculated by:

Ngk + & Ny + 1
ng+ Kang +Wn

P(zg = k|z_gi,m, ) (2.14)

Here, n, is the number of tokens of type w assigned to topic k, ny the total
number of tokens assigned to topic k, ng, the number of tokens in document
d assigned to topic k and ngz the total number of tokens in document d.

27



Observe that the probabilities are unnormalized so the sampling needs to be
adapted for this. Note that the right part of the formula is the probability
of word w under topic k, corresponding to . Similarly the left part is the
probability of a word being from topic k under document d, which is #. From
a full sample z we can estimate $ and # according to equations 2.15 and 2.16.

nwk+77
w=—"_"1 2.15
B n, + Wn ( )
Mgk + &
Oy, = ——— 2.16
dk ng + Ka ( )

The full MCMC algorithm is visualized in figure 2.12. First, z is initiated
to a random topic assignment, marked by x in the figure. Then the topic
assignment of each word token is resampled according to the multinomial
probability distribution given by equation 2.14. The count variables are
updated after each token. This is performed for the entire corpus a couple of
times, called the burn-in period (dashed line in the figure). The purpose of
the burn-in period is to let the Markov chain stabilize to better estimations of
the posterior (grey area). After the burn-in, samples of § and [ according to
equations 2.15 and 2.16 are taken at regular intervals. The samples are taken
with some spacing, called lag, to ensure that they are independent. When
the algorithm is finished the samples are averaged to get the final posterior
distributions. The full algorithm is described in pseudo code in algorithm 4.

Algorithm 4 LDA inference using collapsed Gibbs sampling

for ¢ =0 to Iterations do
for all de D do
for all i €d do
zgi ~ Multinomial(Probability according to equation (2.14))
Update count variables n
end for
end for
if ¢ > BurnIn and ¢ mod lag =0 then
Store [ and 6 according to equations (2.15) and (2.16)
end if
end for
return Average of stored § and 6

The problem is then to choose the hyperparameters a and 7. Heuristic meth-
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ods have shown that a = 50/K and n = 0.01 gives good model estimations
[23]. Several estimation methods to learn them are known, however no ex-
act closed form solution exists. The most exact method is using a iterative
maximum likelihood estimation [25]. It uses the count variables available
in the Gibbs sampler to update the a parameter each iteration according
to equation (2.17). W is the digamma function, the derivative of logI'(z).
The gamma function is an extension of the factorial function adapted to real
numbers. The equation for estimation of 7 is similar to the one of a.

o (30 S, U(ng + o) — DKW ()
K- ((C 9(ng+ Ka)) — DU (Ka))

(2.17)

For a thorough explanation of probabilistic topic models and parameter esti-
mation the reader is referred to the technical note by Gregor Heinrich [25].

2.4.2.4 Topic visualization

Extracting the most significant terms for each topic, i.e. labeling the topics,
is useful for gaining insights what each topic roughly is about. As an example
of use, by labeling the topics one could create a visualization that lets the
user explore the whole corpus by drilling down into the individual topics. A
user could then quickly locate documents of interest. See the Topic Model
Visualization Engine [26] for an example of this.

Depending on the wanted result there are a couple of different ways to extract
the terms. The most straight forward approach is to take the n number of
terms that are most probable for each topic. These probability values are
found in S for topic k.

2.4.2.5 Distance measures

Given the model distributions, for example the word distributions for two
topics, it is possible to compute the distance between them. Measures such
as those described in section 2.4.1.5 can be used if we consider the distribu-
tions as vectors in a geometric space [27], but other measures may be more
appropriate for probability distributions.

When considering for example the distance between two documents d, and
dp, we want to asses how dissimilar their corresponding distributions 6, and
0, are. To accomplish this, according to Steyvers and Griffiths [27], two
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distance measures that can be used and work well in practice are (2.18) and
(2.19).

KL(60,00) = 5(D(0n,05) + (61, 6.) (2.18)

Here D(0,,0,) = Zle a1 logy g‘jT: is the Kullback Leibler divergence which
is 0 only when Vk : 0, = 0p. It is an asymmetric divergence measure which
means that D(6,,0;,) # D(6,0,). Equation (2.18) above is a symmetric ver-
sion of the Kullback-Leibler divergence, so that the order of the documents is
ignored. Equation (2.19) below is a measure called the symmetrized Jensen-
Shannon divergence. It is a measure of how dissimilar the distributions are
to their average (6, + 6,)/2.

7500, 00) = 5 (D(0n, 0+ 0)/2) + Dy, (6. +0,)/2) (2.19)

Another distance measure, the Hellinger distance, can also be used according
to Blei et al. [28]. See equation (2.20) for its definition.

H(0a,05) = > /0ot — /O (2.20)

2.4.2.6 Querying

For performing queries and getting a ranked list of relevant documents,
Steyvers and Griffiths [27] suggests to model it as a probabilistic query to
the topic model. That is, for each document d calculating the conditional
probability of the query ¢ given the document, P(q|d). The calculation is
given in Equation (2.21) below.
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P(q,d) = [[ P(w|d) (2.21)

weq

=1I>_ Pwlz = k)P(z = kld)

weq k=1

K
= [1>_ Brwb

weq k=1

This approach calculates the probability that the topic distribution of the
document has generated the words associated with the query. The document
which gives the maximum probability is the one which matches the query
best.

Another approach is to infer the topic distribution of the query. This is done
in a similar fashion to the original model inference, except that only the
topic assignments for the query are resampled. Once the topic distribution
of the query is inferred, it can be compared to all other documents using
some similarity measure.

2.4.2.7 Evaluation methods

To compare different models, a metric indicating of how well the model fits
the data is needed. Just as in the vector space model, the precision and recall
measures can be used for evaluating the information retrieval performance.

A common evaluation method for probabilistic models is to measure the abil-
ity of the model to generalize to unseen data. First, a model is built on a
subset of the corpus and the remaining documents are held-out. Then the
total probability of the model generating the held-out data is computed. As
the log probability becomes large negative numbers, one often uses the per-
plexity instead (see equation (2.22)) [19, 27]. It is defined as the exponent of
the inverse of the average log probability of a word. The perplexity is mono-
tonically decreasing as the model likelihood increases, so a lower perplexity
indicates better generalization performance.

_ ZdDzl log P(wq)
Z?:l nd

Perplexity(Dies;) = exp( ) (2.22)
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The perplexity measure is however a purely mathematical evaluation method.
The purpose of modeling topics is that the posterior distributions 6 and [
should be interpretable by humans. Large scale user studies show that models
giving lower perplexity may give less semantically interpretable topics [29],
indicating that it may not be the best evaluation method.

2.4.3 Sentiment detection

A popular application of text analysis is sentiment detection. An example
is to detect positive and negative feedback about a product by analyzing
online forums and blogs. This requires some kind of prior knowledge about
sentiment (for example, what words are positive/negative /neutral?) to guide
the algorithm. The supervised approach to this is to train a model with a
corpus which is annotated with the sentiments of each document. In this
thesis we focus on the unsupervised approach which uses a sentiment lexicon,
i.e. a mapping from words to sentiments.

2.4.3.1 Combined sentiment topic models

There have been many approaches to sentiment detection on various levels
(word/sentence/document). Commonly, these do not model topics which
makes them less informative to the user as they only give an overall sen-
timent. A simple approach to modeling both sentiments and topics is to
first find the topics using LDA and then perform sentiment detection on the
topics [30]. There are however approaches which find sentiments and topics
simultaneously [31, 32]. The advantage of this is that the same word can
have different polarities in different domains. For example, the word unpre-
dictable could have a positive meaning when talking about movies, while it
can be negative in the context of car maneuvering.

32



D

Figure 2.13: Joint Sentiment/Topic model

Lin and He [32] proposed a Joint Sentiment Topic (JST) model which as-
signs both a sentiment label [ and a topic z to each word. As can be seen in
figure 2.13, a document is modeled as a distribution over sentiments and a
distribution over topics for each sentiment. This means that the generative
process first draws a sentiment and then chooses a topic given that senti-
ment. The word is then generated from a distribution which depends on
both sentiment and topic. A similar model called Sentiment-LDA (SLDA)
was proposed by Li et al. [31]. It reverses the order of generation of senti-
ments and topics compared to JST, so a word is first assigned a topic and
then a sentiment given that topic. A document is therefore a distribution
over topics and a distribution over sentiment labels for each topic. See figure
2.14 for a graphical presentation of its generative model. Similar to LDA, the
multinomial distributions 6, 7 and  are drawn from Dirichlet distributions.
Experiments have shown that the JST model has better performance of the
two in detecting sentiment at document level [33].
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Figure 2.14: Sentiment-LDA

Both these models need a prior knowledge of known sentiment words, for
example good is most likely a positive word. As previously mentioned, this
knowledge is acquired from one or many sentiment lexicons which are avail-
able online [34, 35]. This prior knowledge is used during the inference by
looking up each word in the corpus in the lexicon and assigning it the known
sentiment if it is found. Other words are randomly assigned.

2.4.3.2 Inference using Gibbs sampling

Just as with LDA, the combined sentiment topic models can be inferred
using Gibbs sampling. The only difference is that both the sentiment label
[ and the topic assignment z needs to be resampled for each word. The full
conditional probability for a certain assignment is shown in equation (2.23)
for JST and in equation (2.24) for SLDA.

nds_’_’y Ngsk, + nwsk+n
ng + Syngs + Kang + Wn

P<ldz’ = §,%di = k|1—diyz—dz‘,%0@7}) X (2-23)

Ndk + & Ngks T 7Y Nwks T 1)
ng + Kang + Syngs + Wn

P(zg =k, lg = s|z_gi, 1 gi, 0,7, 1) (2.24)

Here the count variables n, are defined the same way as before. For example,
ngsk denotes the number of words in document d assigned to sentiment s and
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topic k. From the full sample consisting of z and 1, estimation of £, ¢ and 7
can be done. The calculations are shown for JST in equation (2.25) and for
SLDA in equation (2.26) below.

Nuwsk + n

= Quop = kT s T 2.25

B ng. + Wn dsk ngs + Ka d ng + Sy ( )
Nuwks + 1 Nar + @ Naks + Y

o = ks Ty M= ks T 2.26

Phew = W * T g+ Ka W=t Sy (2%

2.4.3.3 Evaluation methods

Evaluating how well a model detects the correct sentiments is done on doc-
ument level in this project. Evaluation on sentence level is not investigated
but as an example it is useful for reviews where both positive and negative
aspects are presented.

The requirement is that there exist labeled test data, i.e. documents that
have already been classified as either positive or negative by for example a
group of humans. When performing evaluation, the task is to first infer the
sentiments for each document in the test data. The inferred sentiments are
then compared to the ground truth labels.

In the proposed models in this section, the documents on a whole are not
being directly assigned a sentiment label during inference. Instead, each
word is either inferred as positive or negative (or neutral). Clearly, when
performing evaluation, each of these words have to be taken into account. In
[31] this is naturally achieved by calculating the probability of a sentiment s
given a document d.

The calculations of these probabilities differ even though the models are very
similar. Equations (2.27) and (2.28) shows how to do the calculations when
using the JST and SLDA model, respectively.

P(s|d) = mgs (2.27)
P(s|d) = Zedk " Mdks (2.28)



Here we can see that the probability for sentiment s in document d in JST is
simply the probability found in 7. For the SLDA model we need to consider
the distribution of topics 04 too, as m depends on it here.

2.5 Visualization

Given different distance measures it is possible to compute which documents
and terms (and topics) that are similar to each other in the semantic space.
In a text mining application these similarities can then be used when trying
to discover previously unknown relationships. It is common to use some sort
of visualization to aid with the text mining. The main problem with visu-
alization in this context is that it is not possible to plot the vectors directly
since they have too many dimensions, hence they must first be converted to
a low dimensional space while still maintaining their characteristics.

One technique that can be used for getting a low dimensional view of high
dimensional data is to employ a self-organizing map (SOM) [36], which is an
artificial neural network used for unsupervised learning. A SOM consists of
a number of neurons, each with an associated K-dimensional weight vector.
The neurons are laid out in low dimensional space and together forms a map.
For example, if a 2-dimensional space is used then each neuron gets an x and
y-component specifying its position in the map. Figure 2.15 illustrates an
example SOM.

y {0.13,0.24,0.21,0.01, 0.38, 0.03 }

Lodooo
100000
100000
ibstelelele
1O0000

Figure 2.15: An example 2-dimensional SOM with 25 neurons. An example
6-dimensional weight vector is shown for the neuron at position (2,5).

Common for artificial neural networks is that they are trained with training
data so that they later can be used in a classification process. In our case
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the training data are the document or term vectors (or topic vectors). When
learning the network, the weight vectors are updated so that they characterize
the training data vectors given some sort of distance measure. This usually
implies that the weight vectors have to be of the same dimensionality as the
vectors in the training data. The learning is done in a number of iterations
as shown in algorithm 5 below.

Algorithm 5 Self-organizing map training

for i =0 to Iterations do
t—t+1
s < random sample from data
y < argmin(sim(s,n))

for all n € map do
n < n + h(t,pos(n), pos(y))(s — n)
end for
end for

For each iteration a random training sample s is picked from the training
data. Then the neuron y with the most similar weight vector is selected ac-
cording to the distance measure. Then each neuron n in the map is updated
to be more similar to s according to an update function which depends on it-
eration number ¢ and the map positions of the neurons. The update function
is usually taken to be the Gaussian described in equation (2.29).

|ypos - npos‘
h(t, Nyos, Ypos) = a(t —_ 2.29
( p YP ) Oé( )exp( 20'(t)2 ) ( )
Here, a(t) is called the learning rate and o(¢) is the neighborhood function.
They are both monotonically decreasing functions in the number of iterations
t performed. Note also that n,,s and y,,s are the 2d positions of the neurons
in the grid, and their computed distance is the Euclidean distance.

When the SOM has been trained it is used to place the documents or terms
in a visualization. This is achieved by for each such sample (i.e. document or
term), finding its most similar neuron in the SOM (like y in the training), and
assigning that neurons position to the sample. All high-dimensional vectors
will now have a low-dimensional representation.

One important issue is deciding the number of neurons to use in the SOM. To
reduce the probability that two documents are mapped to the same neuron,
a number larger than the number of documents should be used.
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Chapter 3

Implementation

In this chapter, we describe the implemented text analysis pipeline. Note
that what is presented here is not a final product but an example of how a
text analysis toolkit can be implemented. As the Spotfire Platform API is
implemented in Microsoft C# .NET, this language was used.

First an overview of the text analysis pipeline is presented, describing the
recommended work flow. Then an explanation of each module in the pipeline
is given, along with its implementation issues and considerations.

3.1 Overview

The text analysis is performed by a pipeline of functions which transform
their input and passes it on to the next function. Which functions to use
and how they are configured is decided by the user, see appendix A for the
user interface in Spotfire.

The input is a collection of character strings, where each string is a document.
The task of the preprocessing step is to split the strings into tokens using a
tokenizer, followed by optional word filters and stemming. The resulting bag
of words corpus has a fixed vocabulary, so the documents are represented by
series of term identifiers instead of a list of tokens.

All models take a corpus as input, which is used for building the model.
The vector space models output concept vectors and the probabilistic topic
models output probability distributions, however these are all treated the
same. The output can then be used for comparing documents using distance
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measures or for direct inspection using a visualization in Spotfire. An op-
tional step is to project the model output into two dimensional space using

a self-organizing map. A complete data flow diagram can be seen in figure
3.1.
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Vector space models
Documents

|| S

g - =k =
Rand
andom

Bag of words Projection
corpus a !

g Self organizing - |:'>
- °

Probability
distributions

Sentiment Detectors = T I] )

Concept
vectors

2d
coordinates

- <
%]
=

LDA

JST

SLDA

Figure 3.1: Data flow diagram over the text analysis framework.

An example use of the pipeline is shown in listing 3.1. The Corpus class han-
dles all the preprocessing. It also takes a ILanguageDetector as some text
filters need to know the language, however this component is not explored in
detail in this thesis. It uses simple character n-gram statistics from texts in
different languages for classification.

// Documents that are to be included in the corpus
List<String> docs = new List<String>();
docs.Add("This is an example document");
docs.Add("Another example document");

// Match [A-Za-2z0-9_] as words using a regex
ITokenizer tok = new RegexTokenizer (@"\w+");

// Train a language detector using bi-grams
NGramLanguageDetector 1d = new NGramLanguageDetector (2);
1d.AddLanguage (Language.en, "here is a long text");
1d.AddLanguage (Language.de, "hier ist ein langer text");

// Stop word filter by reading from comma-separated files

StopWordFilter swf = new StopWordFilter ();
swf.AddStopWordsFromFile (Language.en, "enStopWords.txt");
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swf.AddStopWordsFromFile (Language.de, "deStopWords.txt");

// The word filters to use

List<IWordFilter> wf = new List<IWordFilter>();

wf.Add (swf);

wf.Add (new MinWordLength (2)); // Words with length < 2
wf.Add (new MostCommonTerms (20));// 20 most common terms
wf.Add (new SnowballStemmer ()); // Do stemming

// Create the corpus
Corpus ¢ = new Corpus("MyCorpus", docs, tok, 1ld, wf);

// Create a LDAModel with 5 topics, alpha = 0.9 =
IModel 1lda = new LDAModel ("MyLDAModel", ¢, 5, 0.9, 0.01);
while (lda.Iterate())
{

// Report progress

double p = (double)lda.CurrentIteration / lda.Iterations;
}

Listing 3.1: An example use of the text analysis toolkit.

In the following sections it is described how each step is implemented along
with some considerations.

3.2 Preprocessing

The preprocessing step in this project is specific to text as this was the focus
of this work. Other preprocessing pipelines could be implemented to gener-
ate bag of words representations of for example image or sound data. The
implemented dimension reduction models could then be applied with little
to no modification. In this section it is described how the text preprocessing
pipeline can be implemented.

3.2.1 Corpus

The class Corpus represents a collection of documents, which is what all of
the implemented models have as base input. Required input to a corpus,
apart from a set of documents, is a tokenizer and a list of word filters. One
problem with our implementation is that there is no support for incremental
adding of documents to a corpus: when all documents have been added, the
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tokenizer and word filters are applied and the vocabulary is fixed. This is
due to problems in the implemented models, see chapter 5.

The current implementation stores the corpus as two parts, the documents
and their vocabulary. A vocabulary is a mapping from the original word
string to an integer term identifier and the other way around. Using the
vocabulary, the documents are simply lists of word indices stored as integers.

This means that the memory use of a corpus is linear in the number of tokens
and word types, i.e. O(DN + W).

3.2.2 Tokenization

While natural language word tokenization is a scientific field on its own, the
choice was made to not focus on this area. Tokenizers implement the interface
ITokenizer. Only one tokenizer, RegexTokenizer, was implemented using
the .NET regular expression class Regex. This allows the user to enter a
regular expression for what is supposed to be parsed as words. This simple
implementation was chosen to give more focus to the analysis techniques
later in the pipeline, but still give the user the ability to specify his/her own
parsing pattern.

The time complexity of this operation depends on the expression but often
a simple one will do (only matching groups of alphanumerical characters),
which gives a running time linear in the input data [37]. No part of speech
tagging or other natural language processing is supported by the output,
so the tokenizer only takes a string as input and returns a list of strings
corresponding to the words found.

3.2.3 Word filtering and stemming

When the corpus has been tokenized, a series of word filters are applied to
reduce the number of words. A word filter is like a transformation, so it
can not only remove words but it can also generate new words or transform
the words (for example stemming). Common for all word filters is that
they take a list of strings as input and return a list of strings. Word filters
implement the interface IWordFilter and the following word filters have
been implemented:

MinWordLength removes words shorter than a specified number of charac-
ters, for example 2 or 3.
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MinWordFrequency removes words which occur less than or equal a specified
frequency in the entire corpus.

MostCommonTerms removes the n most frequent words.

NGramGenerator generates word n-grams from the token sequence in each
document.

NumericRemover removes all numeric tokens, for example 123 and 3.14.

StopWordFilter filters out all words according to a user specified list. In
our experiments the lists from the Snowball project [7] were used.

TfIdfFilter is a more advanced version of MostCommonTerms. It uses the
term specific tf-idf formula (3.1) to decide which words to keep in the
corpus.

D
Ny X logd— (3.1)

Here, n,, is the corpus wide frequency of word w, D is the total number
of documents and d,, is the number of documents word w occurs in.

SnowballStemmer This filter does not explicitly remove words, but instead
clip the word tokens to their stems using stemmers from the Snowball
project [7]. This package was chosen as it is open source (BSD license)
and a C# implementation was available!. The languages currently sup-
ported are Danish, Dutch, English, Finnish, French, German, Italian,
Norwegian, Portuguese, Russian, Spanish and Swedish.

As can be seen, the MinWordFrequency, MostCommonTerms and TfIdfFilter
filters require the entire corpus to be read in before they can be applied as
they need corpus wide word statistics (n,, d,). This can be a problem in
applications where new documents are presented continuously, and is one
reason to why the corpus was decided to be fixed. Adding new documents
to an already filtered corpus could potentially filter out words which should
not be filtered out, as the new documents could change their statistics.

http://snowball.tartarus.org/archives/snowball-discuss/0943.html
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3.3 Analysis

In this section the implemented techniques for analyzing preprocessed text
are outlined briefly. All the models described implement the IModel interface.
What defines a model is that it has a reference to a Corpus, that it is possible
to perform queries to find documents, that document and term similarities
can be computed, and also that individual document and term vectors can
be accessed. Example code for how a built model can be used follows in
listing 3.2.

// Use the cosine distance measure
IDistanceMeasure dm = new Cosine();

// A query returns the similarity for each document
List<double> distQuery = m.PerformQuery("a query", dm);

// Get distance for the first document in the corpus
double distDocl = distQuery [0];

// Vector for the first document in the corpus
Vector vecDocl = model.GetDocumentVector (0) ;

// Gets distances to all documents from first document
List<double> distsDocl = model.GetDocumentDistances (0, dm);

Listing 3.2: An example use of a built model.

3.3.1 Math classes

As many models use sparse vectors and matrices, classes for these structures
had to be implemented. The implemented classes can be seen in figure 3.2.
The SparseVector is simply a sorted list of (index,value) pairs, which reduces
the running time of a comparison between two vectors to linear in number of
non zero values. The dense format uses a full array, which gives fast lookup
but expensive comparisons.
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Figure 3.2: UML diagram for the vectors and matrices.

The matrix classes are correspondingly implemented. The SparseMatrix
class uses the compressed sparse column format which was described in sec-
tion 2.4.1.1. It provides low memory use at the cost of O(log N) lookup time
for single values, however accessing whole columns is cheap (which is the case
when accessing whole documents as in search). The diagonal matrix saves
memory by only storing the values on the diagonal in an array.

3.3.2 Vector space models

) Model Q IWeightingScheme Q IWeightingScheme

| IModel

[E3 | vSModel [E3 [ Identity [ | TermFrequency (¥
Interface Class f IWeightingSch: ®) Class Class
Interface
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Figure 3.3: The vector space models and weighting schemes

The vector space models only implement the IModel interface as shown in
figure 3.3. Below is a short description for each of those models.

VSModel is the basic vector space model as described in section 2.4.1. It
utilizes a compressed sparse column matrix to store the occurrence
matrix, thus it minimizes memory use to O(DN), the number of non
zero values in the occurrence matrix. When querying the model, the
sparse vector format is used thus improving running time.

LSAModel implements Latent Semantic Analysis as described in section 2.4.1.3.
The number of dimensions K is given as an input parameter. This
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model uses the las2 algorithm in SVDLIBC to perform the singular
value decomposition, as it seems to be the fastest and most widely
used implementation [38, 39].

In the implementation the matrices Ug, Vi and Uk - Sl}l are stored for
computational efficiency. If memory usage is to be as low as possible,
it is enough to store Ui and Sy while still being able to perform both
queries and assessing document similarities. The documents can always
be transformed into the semantic space by interpreting them as queries
and using the query procedure as previously illustrated in Figure 2.5.
The Uk and Vi matrices are dense, however Sk is stored as a diagonal
matrix. Summing up, the memory use of the LSA model is O(K (W +
D)). As the document vectors are not sparse, a full query to the model
is O(DK) in running time.

RPModel implements a simple random projection model according to section
2.4.1.4. The model currently uses a dense format for storing the U and
V' matrices, resulting in a memory use of O(K (W + D)) just as in the
LSAModel. Similarly the querying is O(DK) in running time since a
distance measure is applied between each document concept vector and
the query.

3.3.3 Weighting schemes

The VSModel uses an occurrence matrix to represent the corpus, and the
LSAModel also uses such a matrix before the singular value decomposition.
These matrices are calculated by a weighting scheme which implements the
IWeightingScheme interface. A scheme takes a Corpus and creates a sparse
matrix according to some weighting function. In the theory, these are de-
scribed as a combination of three different components; term frequency, cor-
pus frequency and normalization. As tf-idf is the most popular combination,
it was chosen to be implemented directly together with some other sim-
pler schemes for comparison. The interface also defines a function for prop-
erly weighting new documents, for example queries, so that they match the
weighting of the occurrence matrix. The implemented schemes are described
below.

Identity is the boolean approach which ignores the term frequencies, set-
ting A,q to 1 if w occurs in d, otherwise 0.

TermFrequency simply counts the term frequencies n,4 and store them as
they are.
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RelativeTermFrequency normalizes the term frequencies by document lengths,
thus giving long and short documents equal importance.

TfIdf calculates the full tf-idf formula according to equation (2.3) in theory
section 2.4.1.2.

3.3.4 Probabilistic topic models

The interface ITopicModel extends IModel and is used for all topic models.
A topic model adds specific topic extensions such as extracting the most
probable terms (thus getting a topic label) and getting topic distributions.
See figure 3.4.
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Metheds & GetDocumentSentiment

W GetTopiclabel
& GetTopicVector
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| LDAModel ¥ [ JISTModel ¥ | SLDAModel ¥
Class Class Class

Figure 3.4: The probabilistic topic models

Apart from the implemented topic models which also models sentiment (de-
scribed in the next section), one pure topic model has been implemented,
namely LDAModel. This model implements Latent Dirichlet Allocation using
collapsed Gibbs sampling as described in section 2.4.2.3. Using the approach
described in pseudo code in algorithm 4 in that section, the running time
complexity is O(DNK) for each iteration. There are some optimizations
available discussed in chapter 5.

Memory-wise, the algorithm needs the count arrays n.,x, ng and ng (ng is
simply the document length, retrieved from the corpus) and the 6 and /3
arrays. Just as the indices of the count arrays implies, their dimensions are
W x K and D x K, resulting in a memory use of O(K (D + W)). The 6 and
[ arrays are used to store the posterior distributions are of equivalent size.
Finally, all the topic assignments z of the words in the corpus needs to be
stored as well, giving a final memory use of O(K (D + W) + DN).
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Specifying the number of burn-in iterations can be difficult since it varies
with corpus and model size. The implemented sampler therefore checks if
the model perplexity has converged after each sampling iteration according
to a relative change threshold. Once it has converged, it starts taking sam-
ples with a specified interval and computes the probability distributions by
averaging them.

Querying the model is implemented using equation (2.21) in the theory as
proposed by Steyvers and Griffiths. As the probabilities become very small
due to the multiplication, the log probability is used in order to avoid floating
point precision errors.

3.3.5 Sentiment detection

The interface ISentimentDetector is implemented by all sentiment detec-
tors. The currently implemented detectors all need a sentiment lexicon as
input. It is simply an array which indicates prior known sentiments for each
word. Words with unknown sentiment are set to -1.

Note that available lexicons offer positive, negative and neutral sentiments,
hence mappings to these are given as input. However, the implementation
supports any number and type of word labels. The lexicon could for example
be eco related words, thus detecting the eco friendliness of a document.

JSTModel and SLDAModel are the Joint Sentiment Topic model and Sentiment-
LDA model, as described in section 2.4.3.1. The sentiment lexicon given is
used in both the initialization step and the iteration steps during Gibbs sam-
pling, thus giving the words found in the lexicon a fixed label. Just as with
LDA, the sampler checks for convergence using the perplexity measure.

As the sentiment detectors also models sentiment, their memory use is slightly
higher than LDA. In the JST case, the count arrays are ngs, Ngsk, Nwse and
nse. This results in a memory use of O(SK (D + W)), which shows that the
sentiments adds another factor S compared to LDA. The probability dis-
tribution samples 0, 5, and © have a corresponding memory use. Finally,
besides the topic assignment z, also a sentiment assignment 1 is stored.

3.3.6 Distance measures

The IDistanceMeasure is an interface for all functions used to compare two
numeric vectors, returning a distance. The vectors can either be concept
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vectors or probability distributions depending on which model was used to
generate them. As all functions should be directly comparable it was defined
that a lower result means better match. Below is a short description on how
they were implemented.

Manhattan Manhattan distance, defined in equation (2.7).
Euclidean Fuclidean distance, defined in equation (2.8).

Cosine Cosine measure, defined in equation (2.9). Since the returned value
needs to be lower when the vectors match, 1 —cos(x,y) is used instead.

SymKullbackLeibler The symmetric Kullback-Leibler divergence according
to equation (2.18).

JensenShannon The Jensen-Shannon divergence according to equation (2.19).

Hellinger The Hellinger distance according to equation (2.20).

3.4 Visualization

The self-organizing map is implemented according to algorithm 5. The simi-
larity function can be chosen from the standard measures depending on which
type of input is chosen. For the update function, the learning rate is defined
as the exponential function in equation (3.2). The neighborhood function o
is also an exponentially decreasing function, defined in (3.3).

) (3.2)

a(t) = agexp(—

max

o(t) =ro exp(—M) (3.3)

tmax
Here, ay is the initial learning rate, set to a value between 0 and 1. rg is the
initial influence radius, which should be set proportional to the map radius.
The log(ry) part in (3.3) is multiplied in so that the radius goes down to 1
in the last iteration.

The time complexity of finding the neuron with the most similar weight
vector is linear in the number of neurons and number of dimensions. This
can be quite time consuming when finding the position for each document
or word, so the implementation also provides a sampling approximation for
this. It’s pseudo code is described in algorithm 6.
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Algorithm 6 Self-organizing map sampling estimation
Npest < @
for 7 =1 to Samples do
n < random neuron in map
while In,,.,, € Neighbors(n); sim(n,e,,s) < sim(n,s) do
n < Ny
end while
if sim(n,s) < sim(npes,s) then
Npest < N
end if
end for

It picks a random neuron n in the map, and then checks if any of the neighbors
are more similar to the target document/word s. If so, it takes the neighbor
instead and repeats the process until no better neighbor has been found.
In order to reduce the risk of ending up in local mimima, a series of such
samples are taken and the best is returned. This is called a random-restart
hill climbing algorithm.
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Chapter 4

Experiments

In order to evaluate the techniques and find appropriate parameters, a series
of experiments have been implemented. These experiments can also be used
to evaluate future improvements to the implementations. This chapter gives
the details and results of these experiments and the data sets that have been
used. All experiments were run on a standard desktop computer with Intel

Core 2 Duo 6400 processor and 4 GB RAM.

4.1 Preprocessing

For the experiments, four different corpora were used:

Medline The OHSUMED test collection contains 348566 abstracts from
MEDLINE, an online medical information database. It was originally
used by William Hersh [40] for information retrieval purposes. In our
experiments we have used a subset of 20000 documents, along with 63
topics and their relevance judgments used in the TREC-9 filtering track

[41].

20NewsGroups A collection of 20000 newsgroup documents, evenly parti-
tioned across 20 newsgroups [42]. From this corpus 101 documents from
each group was selected, resulting in a collection of 2020 documents
with 730338 word tokens. This corpus is well suited for clustering and
topic extraction experiments as it is naturally partitioned into groups.
Some groups are more similar to each other, like com.sys.ibm.pc.hardware
and com.sys.mac.hardware, while other are very unrelated like sci.electronics
and soc.religion.christian.
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PolarityDataset Version 2.0 of a movie review dataset used by Pang and
Lee [43]. Contains 1000 positive and 1000 negative movie reviews,
containing a total of 1336782 word tokens.

MultiDomain A collection of 8000 reviews from four different domains:
books, dvds, kitchen and electronics. It was first used by Blitzer et al.
[44].

In the experiments, different versions of the corpora have been used. For
example, when generating topic labels in LDA it is preferred to have the
words in their original form as they are more readable. Other applications like
searching could however benefit from stemming. In table 4.1 below the corpus
sizes given different word filtering schemes are given. For all experiments the
RegexTokenizer was set to match words as \w-+. This regex matches one
or more letters, digits and underscores as a word token.

Medline 20NewsGroups | PolarityDataset MultiDomain
Filters Terms  Tokens | Terms Tokens | Terms  Tokens | Terms  Tokens
1. None 47110 2641399 | 42559 730338 | 39696 1336782 | 39179 1110961
2. L 47074 2505138 | 42522 675052 | 39659 1259869 | 39142 1033471
3. LS 46956 1648486 | 42400 421584 | 39537 718824 | 39020 565248
4. LSN 44880 1571566 | 38732 401851 | 39202 714912 | 38368 559646
5. LSNF 44850 1429899 | 38702 364210 | 39172 640000 | 38338 495555
6. LSNP 32349 1571566 | 29448 401851 | 25250 714912 | 25662 559646
7. LSNPF | 32319 1381738 | 29418 359514 | 25220 625655 | 25632 484228
8. LSNPT | 25000 1564217 | 25000 388039 | 25000 623715 | 25000 558984

Table 4.1: Corpus sizes with different word filters applied. L = Min-
WordLength(2), S = StopWordFilter, N = NumericRemover, F = MostCommon-
Terms(30), P = SnowballStemmer, T = TfldfFilter(25000)

4.2 Topic modeling

In the topic modeling experiments, the 20NewsGroups corpus was modeled
using LDA. The stop word list for English was used, together with a min-
imum word length filter set to 2 and a numeric filter. Also the 30 most
common terms were removed. No stemming was performed in order to keep
the words readable when extracting the most probable words for the topics.
This corresponds to row 5 in table 4.1. As recommended by Steyvers and
Griffiths [23], o was set to 50/K and 1 to 0.01 in all experiments.
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4.2.1 Checking for convergence

In order to decide when to stop the burn-in and start taking samples, the
model perplexity is used. After each iteration the current perplexity is com-
pared to the previous, and once the relative change is below a certain thresh-
old the model is assumed to have converged.
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Figure 4.1: Perplexity for a LDA model with 50 topics, as a function of number
of iterations.

In figure 4.1, the perplexity is plotted as a function of iterations performed.
It starts to stabilize after about 200 iterations, which means that it can start
to take samples. The convergence threshold was set to 0.1% for the following
experiments, and this results in about 200 iterations. For each number of
topics, the average perplexity of 5 models has been taken. Figure 4.2 plots
the average number of iterations needed to converge as a function of number
of topics used. As can be seen, it is relatively constant.
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Figure 4.2: Average number of iterations needed for the perplexity to converge.

While the number of iterations needed is almost constant in topics, the whole
estimation process requires linearly more time. See figure 4.3. This is no
surprise as one Gibbs sampling iteration is O(DNK), i.e. linear in number
of topics. Still, a model with 200 topics completes in about 5 minutes for a
corpus with 364210 word tokens.
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Figure 4.3: Time needed for the perplexity to converge.

4.2.2 Choosing number of topics
The number of topics used also affects the generalization performance, i.e.

the perplexity. Figure 4.4 shows that the perplexity for this corpus decreases
as the number of topics increase.
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Figure 4.4: Model perplexity as a function of number of topics.

However, choosing too many results in uninterpretable topics due to overfit-
ting while too few generate too broad topics. Instead a held-out perplexity
measure can be used. In the next experiment a test set consisting of 20%
of the corpus was held-out when building the model. The first half of these
held-out documents were inferred by the model, and the rest was used for the
perplexity calculation. The perplexity of this test set now settles at around
100 topics.
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Figure 4.5: Perplexity of a 20% held-out test set as a function of number of
topics.
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4.2.3 Examples

By looking at the top 10 most probable words in each topic for the 50 topics
model, one can get an idea of what they are about. In table 4.2 below
three topics from the 20NewsGroups corpus are shown. Here, one can easily
understand that topic 8 is about Christianity, probably identified from the
posts in the soc.religion.christian, talk.religion.misc and alt.atheism news

groups.

Topic 8 | Topic 32 | Topic 43
god space year
jesus nasa game

christian earth games
bible shuttle | baseball
christ orbit team

church mission runs
christians mars players

religion lunar win
atheism center season
faith data player

Table 4.2: The most probable words for three topics in the 20NewsGroups corpus.

With the estimated distributions we can perform filtering on topics in Spot-
fire. This is achieved by importing the distributions as new columns in the
data table containing the original documents. See appendix A for details on
the Spotfire integration. As an example, consider the document in figure 4.3
below, found by filtering to documents mainly consisting of words assigned
to topic 8 and 32. In this figure the words assigned to these two topics are
colored, while non-colored words (except for those removed during prepro-
cessing) belong to other topics. The full topic distribution for the document
is shown in figure 4.6, visualized using the bar chart in Spotfire.
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From: caldwell@facman.ohsu.edu (Larry Caldwell)

Subject: Re: SUNDAY! THE DAY OF OUR LORD!

pharvey@quack.kfu.com (Paul Harvey) writes:
>dlecoint@garnet.acns.fsu.edu (Darius_Lecointe) writes:

>>Exactly. Sunday worship is in honor or the *SUN*, not the *SON* of
God.

>Same thing, isn’t it? It’s pronounced the same? What other heavenly
>beings are resurrected? The moon? That would by lunacy, at least to a
>sunday worshiper.

I have heard that the sabbath was originally determined by the phases of
the moon, and had elements of moon worship. Early stuff, Egyptian in
nature.

Table 4.3: An example document from the 20NewsGroups corpus colored by
topic assignments. The following Color-Topic combinations are used: Blue-Topic
8, DarkRed-Topic 32.

0,02
o mm -I m mm ---II - I-llll-ll -I - m

Figure 4.6: Topic distribution for the example document. As can be seen this
document is mainly about topic 8.

4.3 Information retrieval

In the information retrieval experiments, a subset of the OHSUMED test
collection was used. This subset consist of Medline documents from 1988
to 1991, together with 63 topics and the documents that are relevant for
each topic. The relevance judgments are definitely relevant and possibly
relevant. In our experiments these labels are merged into just one set of
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relevant documents. Furthermore, each topic has a title and description in
the dataset. These are merged into a query in our experiments.

When creating the corpus the same filters as in the topic modeling experi-
ments were used. This corresponds to row 5 in table 4.1.

4.3.1 Weighting schemes and distance measures

Both the VS and LSA models use occurrence matrices for internal represen-
tation. Using different weighting schemes can improve information retrieval
performance. In the first experiment tf-idf weighting was compared to raw
term frequencies for the VS model using the cosine distance measure. The
results clearly indicate that tf-idf is beneficial, with an 11 point recall average
precision of 0.442 compared to 0.359. See figure 4.7.

0,9

0,8

0,7

0,6

c

g os \

‘S

g 0,4 \\ ——Tf
0,3 \\k\-\ ~-Tfldf
0,2

0,1 \\“.\
N

0 o1 02 03 04 05 06 07 08 09 1
Recall

0

Figure 4.7: Precision for the basic vector space model with and without tf-idf
weighting.

The normalized term frequency weighting scheme (without the idf-part) was
not used as its performance is no different to raw term frequencies when using
the cosine distance measure (cosine normalizes the vectors). In the following
experiments, tf-idf was used for both VS and LSA.

o7



59 N N

205 \ \ —o—Manhattan
[

S04 ~#-Euclidean

: Cosine
NN S

o o1 02 03 04 05 06 07 08 09 1
Recall

Figure 4.8: Precision for different distance measures at 11 different recall levels.
The weighting scheme is tf-idf.

The cosine distance measure proved to give the best results compared to the
other vector space distance measures. Euclidean distance was second best at
0.378 average precision, while the Manhattan distance falls far behind. See
figure 4.8.

4.3.2 Choosing number of dimensions

All dimension reduction models require a parameter K which indicates the
number of dimensions or topics to use. Each model has its own optimal
K, so the next experiment shows how it should be set in order to optimize
information retrieval performance for this particular corpus. In figure 4.9
the 11 point recall average precision is plotted as a function of the number
of model dimensions. It shows that the LDA model outperforms the other
models for 600 topics and higher for this corpus. As the VS model doesn’t
perform any dimension reduction, it is constant. Note that it performs well
with an average precision of 0.442 in this benchmark.
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Figure 4.9: Average precision for increasing number of topics in the models.

As the LDA model gets increasingly better results the model perplexity for
this corpus was inspected, shown in figure 4.10. It settles at around 600-800

topics, just as the average precision in figure 4.9.

3000

2500 +&

2000 5

1500 L

Perplexity

1000

<
*
L 4
L 4
*
*
*

500

0 T T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 9S00 1000 1100

Topics

Figure 4.10: LDA perplexity for the Medline corpus for increasing number of
topics.
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4.3.3 Model comparison

Using the best combination for each model, their precision curves can be
compared. Since the average precision doesn’t increase much after 800 di-
mensions for any of the models, these models have been selected for the
comparison, shown in figure 4.11 below. It shows that the LDA model with
800 topics performs best. Their building times are shown in table 4.4.
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Figure 4.11: Final precision comparison for different models.

Model | Building time
VS 3.5s
RP 4.8s
LSA 20m 26s
LDA 1h 51m

Table 4.4: Building time for the models for the Medline corpus.

4.4 Sentiment detection

For the sentiment detection experiments, two corpora were used. The first
corpus is the PolarityDataset, which contains 1000 positive and 1000 negative
movie reviews. This is used for general sentiment detection in one domain. As
the JST and SLDA models also detects topics in order to account for different
words for expressing sentiment in different domains, a second dataset called
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MultiDomain was used. It contains reviews from four different domains:
books, dvds, kitchen and electronics.

The combined topic/sentiment models were compared to a baseline sentiment
detector which simply counts the number of positive and negative words
found in each review, and picks the label which had most words. For both
corpora, the same filtering scheme as the previous experiments was used, i.e.
row 5 in table 4.1. A symmetric 7 set to 1 was used, as no recommendation
was found in the literature.

4.4.1 Neutral sentiment

The first experiment to perform was to decide whether to only model words
into positive or negative sentiment, or to also include a neutral label. The
sentiment lexicon MPQA [35] was used in all experiments, and it contains
neutral sentiments as well. As most words in a review belong to the neutral
label, the final classification only considered the positive and negative labels.
In this experiment 1 topic was used and the accuracies were averaged over 5
models.

Baseline JST SLDA

Dataset PN PN PNN PN PNN
PolarityDataset | 65.3% | 68.9% 68.1% | 69.9% 69.3%
MultiDomain 60.6% | 52.4% 62.3% | 52.4% 62.2%

Table 4.5: Accuracy of the three sentiment detectors with and without neutral
labels. PN = Positive and negative labels. PNN = Positive, negative and neutral
labels

Table 4.5 above shows the average accuracy for the three detectors with and
without neutral labels. Note that JST and SLDA get very similar results as
they in practice become the same model when the number of topics is set
to 1. For PolarityDataset the incorporation of neutral labels didn’t result
in any improvement, but for MultiDomain there were clearly a rather large
improvement. Hence it was decided to use neutral labels (PNN) for the
following experiments.
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4.4.2 Choosing number of topics

Just as with LDA, choosing the right number of topics is of importance.
While the PolarityDataset only contains reviews from one domain, there are
several genres and/or aspects of movies which could have different word uses.
This can be of importance when analyzing the results in detail. For example,
one might get a topic which treats acting performance. Also, positive words
for a scary movie might not be positive for a movie for children, suggesting
that also the PolarityDataset may benefit from more topics. This leads us to
examine how the number of topics affects the results. The accuracy of the
models for PolarityDataset using different number of topics were tested and
the results are shown in figure 4.12 below. For each number of topics, the
results of 5 models were averaged.
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Figure 4.12: Accuracy plotted as a function of number of topics for Polarity-
Dataset. The baseline sentiment detector is constant as it doesn’t model topics.

The results shows that the classification accuracy for both models decreases
as more topics are used. SLDA even falls below the baseline classifier for
higher number of topics. Also, the results vary heavily for different model
instances as shown by the standard deviation error bars.

Another experiment was performed on the MultiDomain dataset, in order
to see if there is any difference in performance when the reviews are from
different domains. The results are shown in figure 4.13. Here we can see that
the accuracy increases slightly from having only one topic to a couple more.
Still the quality of the results vary heavily shown by the error bars.
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Figure 4.13: Accuracy for the MultiDomain corpus.

4.4.3 Examples

The pure classification performance of the combined sentiment /topic models
is interesting as an evaluation measure, however it is most likely the extracted
topics that are of interest for the user. As in LDA, the most probable words
for each combined topic and sentiment can be extracted from ( to get an idea
of what the topics represent. In table 4.6 below are the 10 most probable
words for two topics extracted by a 5 topic SLDA model for the Polarity-
Dataset corpus. It can be seen that topic 4 is about animated movies and

topic 5 is about romantic comedies.

Topic 4 Topic 5
Positive  Negative  Neutral Positive  Negative Neutral
star horror know funny bad new
disney ship show love comedy city
young scream re humor guy james
joe killer big best script york
voice effects think romantic least big
new last ve gets doesn enough
animated deep now role nothing bond
murphy movies don friends isn lee
wars summer something town goes godzilla
original scary still kids re take

Table 4.6: The most probable words for two sentiment topics in the Polarity-

Dataset corpus.
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4.5 Visualization

In the final experiments, the self-organizing map algorithm was evaluated.
As the random-restart hill climbing algorithm described in section 3.4 is
an approximation algorithm, the first experiment examined the number of
random restarts needed for a good result, to give indications of how many
to use for other data. The learning rate parameter o was set to 0.4, map
size to 250 x 250 and it was run for 1000 iterations '. In this experiment
synthetic data in form of 5 unit vectors in 5 dimensions was used for easy
evaluation. Figure 4.14 below show final error maps for different number of
random restarts.

Figure 4.14: Error maps for increasing number of restarts. The top left map has
used no restart (only one sample), up to 16 samples for the bottom right.

An error map (also called U-matrix, unified distance matrix) is a bitmap
where the brightness of each pixel is scaled by how similar its weight vector
is to its neighbors. Dark areas indicate large changes in the weight vectors
between neighboring nodes, i.e. borders between clusters. In the above
example a good result is 5 clearly distinguishable clusters, which is achieved
already at 6-7 random restarts. See figure 4.15 for a solution from the exact
algorithm where all neurons are inspected to find the best matching. For a
further discussion about the random restart algorithm, see section 5.5.

Figure 4.15: Error map from a run with exact best matching.

Lo and iterations recommended by http://www.multid.se/genex/hs530.htm
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In the next diagram, the random-restart algorithm is compared to the stan-
dard solution in running time. This time the 20NewsGroups corpus was
used, fitted by an LDA model with 20 topics. The time measured is the total
building time, i.e. first building the map using 10000 iterations, then finding
the best matching neuron for each of the 2020 documents in the dataset. It
can be seen that the approximation algorithm is about 10 times faster, with
a linear increase in running time for number of restarts.
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Figure 4.16: Running time for self-organizing map

As an example use, the words for the 20NewsGroups corpus was plotted onto
the self-organizing map and was visualized using the scatter plot in Spotfire.
The words was then colored by their probability of being generated by the
topic about space, see figure 4.17. As we can see, the words jupiter, mercury
and pluto are all plotted near each other.
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Figure 4.17: Words from 20NewsGroups in a self-organizing map.
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Chapter 5

Discussion

This project has been a combination of research in the text analysis area
and production of a prototype text analysis pipeline. The primary focus has
been to find and evaluate techniques which could be interesting for a future
integration into Spotfire. In this chapter we discuss the techniques that have
been implemented and the results from the experiments. Future possible
enhancements are also discussed.

5.1 Preprocessing

The tokenizer and word filters implemented in this project is a compilation
of ideas presented in the literature. As the implementation allows the filters
to work on the entire corpus at once, collection wide statistics can be used for
filtering. An example of this is the filter which removes the n most common
terms. The downside with this approach is that documents cannot be added
once the corpus has been built (i.e. the filters have been applied). Adding
new documents could for example introduce new concepts to the corpus,
but those words could be removed by the MinWordFrequency filter as they
had a low frequency in the original documents. The cost induced by this
restriction is that the corpus needs to be rebuilt whenever new documents
are added. As the tokenization and filters are linear in running time, this
was not considered a problem compared to the running time of building the
latent semantic models later in the pipeline.

A document is in our implementation represented as a list of term indices.
As a term may occur several times in the same document, memory could
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be saved by instead saving the document as a list of (term,frequency) pairs
as in the bag of words model. It was however decided to use the former
representation as it allows future models to use the word order information.

As mentioned in the theory, the tokenization and preprocessing steps used
in this thesis are quite simple. The regular expression used for tokenization
in the experiments was naive and didn’t even produce correct words in some
cases. This was due to the decision to put more focus on the analysis. Still,
there are several opportunities for implementing more features here:

Part-of-speech tagging adds a label for each word, indicating its word
category [45] based on surrounding words. Common word categories
are nouns, verbs, adjectives, adverbs etc. This could disambiguate
homonyms, which would improve the techniques presented in this the-
sis.

Named Entity Recognition is the task of finding named entities in text
and sorting them into categories, for example people, organizations,
dates, locations and so on [46]. This technique could prove useful when
examining for example which companies that tend to co-occur.

Natural language parsing determines the grammatical parse tree of a
sentence. Some experiments with combining this with LDA have been
done with lower perplexity as a result [47].

5.2 Topic modeling

Early in the project, it was concluded that LDA and generative models are a
hot topic in the area. Therefore, the main focus has been on this probabilistic
approach. The advantage of the probabilistic topic models is that they not
only give a low dimensional representation of the documents (like LSA) for
finding latent semantic relationships, but they also provide meaningful inter-
pretations of each latent dimension by extracting the most probable words.
Choosing the number of such topics to use is however a problem, as choosing
too many gives uninterpretable topics while too few gives too broad. The
held-out perplexity measure can be a good indicator, however in the end it
is up to the user.

Although creating a model usually takes more time than a user can wait when
using Spotfire, some optimizations can be made to lower the LDA model
building time. FastLDA [48] by Porteous et al. provides a fast sampling step
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for the basic LDA model, which gives a lower expected complexity of the
factor K in O(DNK). Experiments shows that this improves performance
by 3-8 times, increasing in the number of topics used.

The Gibbs sampler is currently single threaded, although it can be multi-
threaded as in MALLET [49] and Newman et al. [50]. This approach basi-
cally splits the corpus between the threads in the sampling process, ignoring
update conflicts to the count arrays. The conflicts are eliminated by simply
recalculating the count arrays every ith iteration. This gives an almost per-
fect parallelization with neglectable sampling errors [50]. Finally, the entire
sampler is now implemented in C#, so performance could be improved by
moving the code to for example C++.

Also memory use can be of importance when working with large corpora. The
count arrays n, used in the topic models are usually sparse, which indicates
that a sparse data structure could be used. The sparsity of these arrays is
actually controlled by the hyperparameters o and 7.

One problem with the implemented LDA model is that there is no support
for incremental adding of documents after the model has been built. Current
research now focuses on such incremental models [51], however due to time
restrictions these were not examined. Another benefit of such techniques
is that an LDA model then can be trained with only a small subset of the
users corpus. Hence the user wouldn’t have to wait hours for moderate
sized corpora. Instead a smaller model would be built, and the rest of the
documents added later on.

Even though in text mining one tries to discover previously unknown rela-
tionships, it could be of interest for a user to be able to specify something
about what the topics should contain. This would mean that a way of as-
signing priors for topics have to be incorporated. One way would be to let
the user choose some small number of words that a topic should be about.
How to accomplish this sort of behaviour have to be investigated. Two ap-
proaches we believe would work is to either always sample these particular
words into the corresponding topic, or increasing the count variables during
initialization so that these words get a high probability for these topics. By
implementing user specified topics, the user can set up topics that he or she
already knows are present in the corpus.
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5.3 Information retrieval

In the experiments it can be seen that many dimensions have to be used to
beat the vector space model. If information retrieval alone is to be used, i.e.
being able to filter on topics is not of importance, then the simple vector
space model with tf-idf applied might be used instead of for example LDA
and LSA. This can be seen in the experiments where precision for the vector
space model is comparable to these models. The important thing here is that
the time for building a vector space model is magnitudes faster than for the
other two. It should be noted that the Medline corpus which was used in
the experiments uses large amounts of medical terms. These are often very
specific, which we believe could reduce the need for latent semantic models.
To examine if this is the case, another evaluation corpus could be used.

In the experiments, the average precision measure was used to evaluate per-
formance. It assumes that there is an unsorted set of documents in the corpus
that are relevant for a certain query. In reality, a user wants to get the 10
most relevant documents presented and disregards the rest of the results.
This calls for another evaluation method which uses a corpus with sorted
relevance sets for the queries, and puts more weight to the first hits returned
by the system.

For pure search engines there are other scoring functions which doesn’t simply
compare two (weighted) term frequency vectors like in our implementation.
The most popular of these functions is the Okapi BM-25', which could be
implemented and evaluated if only a search engine is to be integrated into
Spotfire.

It would also be interesting to combine approximate string matching with the
latent semantic space. An example would be to incorporate Netrics which is
a fast approximate string matching technology 2, and then assign a weight
for the importance of query-string and query-semantic similarity. It could
also be used as a preprocessing step to detect and correct misspellings.

5.4 Sentiment detection

The result of the sentiment detection experiments was not always as ex-
pected. Increasing the number of topics gave better results for the MultiDo-

http://en.wikipedia.org/wiki/Okapi_BM25
’nttp://wuw.netrics.com/
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main corpus while it degraded performance for the PolarityDataset, indicat-
ing that combined sentiment/topic models perform well for mixed domain
data. Common for both evaluation corpora is that the classification accu-
racy for JST and SLDA vary remarkably. This particular problem has not
been presented in previous work, which raises the question whether these two
models would be appropriate to use. In a realistic setting only one model is
estimated, hence the ability to detect correct sentiment for a model might
be worse than expected. We believe this could be improved by incorporating
a more extensive sentiment prior, since there are a huge amount of random
assignments made for each document. Further experiments have to be made
to evalute how much impact the prior sentiment assignments have.

A better sentiment prior is only one of many improvements that could be
made to the sentiment detection models. Below are two examples:

Negation An aspect that is overlooked for prior sentiment assignments is
negated terms. Consider the sentence This is not a good movie. Since
the term good is positive, a positive label will always be assigned to
it using the current approach. In this case however good should be
assigned a negative label, since the word not negates it. More or less
sophisticated techniques could be incorporated to find these negated
words, for example NegEx 3.

Conjunctions There is also a potential to increase accuracy by modeling
conjunctions in sentences. Consider the sentence The story is good but
the actors are not. This sentence clearly expresses a positive opinion on
the story but a negative one for the actors. Here, but is changing the
polarity. There exists such a model which extends SLDA by modeling
conjunctions, called Dependency-SLDA [31].

For the experiments done it should be noted that the corpora have docu-
ments that on a whole are classified as positive or negative. However, we
are in fact trying to detect positive and negative topics, hence these corpora
might not be optimal for evaluation. It is usually the case that documents
such as reviews include both positive and negative aspects, and also neutral
statements. So a corpus annotated on either word or sentence level would be
interesting to perform experiments on.

The running time for the sentiment detectors was not measured in the exper-
iments, however their running time and memory use is clearly higher than
LDA. This is due to the extra factor added by the sentiment labels. As they

3http://code.google.com/p/negex/
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are so similar to LDA, the same optimizations as those mentioned in section
5.2 should apply here as well.

5.5 Visualization

For the self-organizing map implementation, the original incremental building
method was used. Other approaches like the batch method * can give even
lower running times. The batch method basically considers batches of data
samples at a time and does an update of the map based on all of them at
once. Still, the random-restart method proposed in this thesis should be
possible to combine with the batch method.

The number of random restarts needed for the synthetic data in the exper-
iments was as expected as the data could be clearly separated into these
clusters. Based on this, we believe that the number of restarts should be
chosen corresponding to the diversity of the input data. However, this has
to be investigated further as time restrictions prevented more experiments.

Finally, for a text mining application the map could be made even more
informative to the user. As both documents and words are projected down
to K dimensions by the dimension reduction models in this thesis these could
be placed in the map together, giving guidance to the user how the corpus is
organized. The user could then drill down by examining documents plotted
close to words of interest.

“http://www.cis.hut.fi/somtoolbox/theory/somalgorithm.shtml
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Chapter 6

Conclusions

The goal of this thesis was to explore and analyze different text analysis tech-
niques for topic modeling, information retrieval and sentiment detection, to
give hints of possible integration in Spotfire. A restriction made was that all
the techniques should be unsupervised, i.e. they should not need annotated
training data. The implementation described in this project is an example
of how a text analysis solution could be implemented. It allows for eas-
ily implementing new filtering schemes or other preprocessing steps. It also
makes it easy to extend with more models. Based on this implementation,
experiments were made for evaluating the techniques.

It has been shown that for information retrieval, i.e. finding relevant docu-
ments given a query, all the implemented models perform relatively equally
on the specific test corpus, with LDA slightly outperforming the other. One
big issue however is that an LDA model takes considerably more time to build
than a vector space model which performs well in our experiments. Hence
for implementing information retrieval in Spotfire, if preprocessing time is of
importance, it is suggested that the vector space model should be used. The
experiments have also shown that different measures for assessing document
similarities give different information retrieval results, but the cosine distance
measure worked well for all models. Regarding the weighting schemes, tf-idf
proved to be the best choice.

With topic modeling implemented in Spotfire, a user would be able to per-
form filtering on topics to discover related documents. However, due to the
time needed for inference, either the model building should be done sepa-
rately or a faster sampler would have to be used. If user waiting times are
critical, building a model in the client using the current implementation is
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not a viable solution for large corpora. Still, a model could be built on a
static data set and saved along with the analytic application, and then be
efficiently used by the end users. Extracting topic distributions and perform-
ing search on a built model are efficient operations and can be done in real
time.

We have also shown that combined topic/sentiment detection using JST or
SLDA might not be good solutions, since the accuracy from the experiments
vary remarkably for different models. However, this accuracy is based on
documents annotated as positive or negative, while these models find positive
and negative topics. Hence a different annotated corpus should be used for
evaluation. Still, the topics given by the sentiment models are informative
and could be used for user guidance.

By using a self-organizing map, documents in concept space can be projected
to two (or three) dimensions for visualization. However, for better text min-
ing capabilities, a text oriented visualization could be implemented. For
example the documents could be plotted together with their most probable
words, so that the user directly in the visualization can see what documents
are about and where they are in the semantic space.

To conclude, using text analysis could be beneficial since approximately 80%
of all data is in unstructured form. The main trade-off to consider is speed
and efficiency versus the intricacy of the technique(s) used. The time needed
for building a model such as LDA would be a big bottleneck for software
like Spotfire where the key is real time data processing, but as discussed
improvements can be made.
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Appendix A

Spotfire integration

The user interface for the text analysis toolkit is organized as a set of tools.
The general workflow is illustrated in figure A.1. It is assumed that the
user has started Spotfire and loaded some data which contains one or more
text columns. These are parsed and filtered into a Corpus using the corpus
manager. The model manager can then be used to create a model from the
corpus. Finally, the output tools uses corpora and models to create new
tables or columns in Spotfire, where they can be visualized.

| File Storage |
Tt ﬁ B ﬁ u m
Data Table a % Spotfire

Data Table
= Corpus Model
@ Manager Manager Concept Space E>
\ =

Language

Figure A.1: Spotfire text analysis work flow.

Corpus manager This tool is used for constructing a Corpus. The user
specifies the data table and the string column(s) that all text should
be taken from. The user also choses a tokenizer, a language detector,
and which filters to use and in what order they should be applied.
When everything has been set-up the corpus is built by treating each
row in the selected column(s) as a document. If multiple columns are
selected, the content in these will be merged into one document. A
reference to the corpus is then saved for further use in the other tools.
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There is also support for loading and saving corpora.

Corpus Manager ﬂw
Loaded Corpora 1
Build Corpus

Name: MovieReviews

DataTable:  [Data Table -

Columns: [C] sentiment

Language: [Zgram Language Detector ']

Tokenizer [F{egex Tokenizer 'w+ ']

Word Fiters: |[V] Min word length (2) ~ | [ Movelp
[¥] Stopword Remover ¥ ;]
[T] Numeric Remaver = -Mmte Down
[T] Snowball Stemmer ‘ ‘ -
["] 2-gram Generator w
[¥] TH-Idf Top 25000 words -

S

Figure A.2: Corpus manager dialog

Model manager The model manager provides an interface for the user to
create a model from a corpus. Each model has it’s own properties, for
example the maximum number of Gibbs sampling iterations allowed to
do for the LDA model. A reference to each model is saved just as in the
corpus manager. As a model takes some time to compute, the dialog
also allows the user to save an estimated model to file for later use.
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Model Manager S|

Loaded Models

Load

Save

Build Model

Name

Corpus lMuwaReviews ']

Model Type | Latent Dinchist Alocation -

Number of topics 20

Alpha 1.00
Eta 0.10

Convergence max terations | 200

Convergence threshold 0,0001 =
Samples 5 =

Sample lag 5

Ready
| Build

Figure A.3: Model manager dialog

Query The query tool is as the name implies used for performing queries.
The user selects which model and distance measure to use. Either the
user can enter a search string, or the id (row number, zero based) of a
document to use as a query. The resulting distance for each document
is then outputted to a column chosen by the user.

Quey D ]
Model [ -
Distance Messure | Symmetic Kulback Leibler Divergence v |
Output Column Query
Input @ Query () Document
Query/DoclD

Figure A.4: Query dialog

Language The language dialog lets the user output the estimated language
of each document as a new column. This is only meaningful if a lan-
guage detector other than a ConstantLanguageDetector was used.
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Corpus [Moweﬁeviews ']

Output Column Language

|

Figure A.5: Language dialog

Concept space The concept space dialog is a simple dialog which lets the
user output the document concept vectors (for vector space models)
and probability distributions (for topic models) as new columns. It

can also output the used vocabulary along with their low dimension
representation.

Concept Space - @

Qutput @ Documents () Words
Table Data Table -
Words per topic 10 =

Figure A.6: Concept space dialog

Self-organizing map This tool uses the implemented SOM to output doc-
ument and term positions in two dimensions. There are a couple of
parameters to be set by the user such as the number of iterations and
the size of the map. The algorithm to use (approximation or exact)
must be also be set by either setting samples to -1 (exact) or a positive
value for approximation. When the SOM has been built, the x and y
positions for the documents (or terms) are outputted in a table speci-
fied by the user. It is also possible to use the previously trained SOM
for outputting positions. Hence by training the SOM with for exam-

ple documents, it is possible to output term positions with respect to
document positions.
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Self Organizing Map ' S|

Model [ -]

Distance Mszstre | Symmetric Kulback Leibler Divergence~ |

Dimensions 150 = 150 =
lterations 500 =
Samples 0 =
Build Data @ Documents () Words () Previous
Output Data @ Documents () Words

Table Data Table -

%

Figure A.7: Self-organizing map dialog
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