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Plasma Instabilities in Ring and Bi-Maxwellian Electron Distribu-
tions

Albert Johansson
Department of Physics
Chalmers University of Technology

Abstract
Kinetic plasma instabilities affect a wide range of plasmas, from the small scales
of laser-generated plasmas, up to the very largest scales of astrophysical plas-
mas. These instabilities depend on details of the velocity distribution of the par-
ticles. However, it is experimentally challenging to initialize the system with a
sufficiently accurately known distribution function, that can be used for quanti-
tative studies of kinetic instabilities. Recent results have shown the possibility
of tailoring the velocity distribution through rapid ionization in laser-generated
plasmas. Examples of such distribution functions are the bi-Maxwellian and the
ring distributions. In this thesis, we have examined the electrostatic instability of
a ring distribution function. It was found analytically that the ring distribution
is electrostatically stable. Moreover, numerical simulations using the particle-in-
cell approach show that certain incomplete (anisotropic) ring distributions can
collapse to a complete (isotropic) ring distribution, through an electrostatic in-
stability. In additional particle-in-cell simulations, we confirm the prediction of
a previous analytical model of the effects of collisions on the Weibel instability
of a bi-Maxwellian electron distribution. Using the previously known analytical
model, it is found that collisions could play a major role in the Weibel instability
in laboratory plasmas. We find that the evolution of the non-fluctuating part of
the distribution is important during the time the instability grows to significant
amplitudes. Thus, the strength of the seed fluctuations in the beginning of the
simulation or experiment can impact the observed growth.

Keywords: plasma, 2D-isotropic electrostatic stability, two-stream instability, Weibel
instability, collisions, particle-in-cell simulation
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Chapter 1

Introduction

The concept of an instability in physics is very broad. Generally, instabilities occur
when a perturbation results in a positive feedback to itself. The perturbation will
continue to grow, until some limiting process becomes active. A simple example
is a ball on top of a hill. By perturbing the position from the top of the hill,
gravitation accelerates the ball further downwards. It will move away from the
top, with increasing velocity, until the hill ends. The position of the ball on the
hilltop is unstable. In contrast, if the ball is at the bottom of a pit, a perturbation
from that position yields a net acceleration towards the bottom of the pit. The
displacement of the ball remains limited for finite input energy; the position of the
ball is stable.

A plasma is simply put a gas of charged particles exhibiting collective behavior,
which can host an amazingly large number of waves. Particularly, when particles
are non-thermal, that is, are not in a local thermodynamic equilibrium, they can
cause some of the waves supported by the system to be unstable. To describe such
distributions, we use a kinetic formalism. This is a statistical description of the
plasma which resolves both the momentum and position spaces of the particles.

A large class of instabilities is driven by an anisotropy of the velocity distribu-
tion of the plasma constituents, and appear in a wide range of environments, e.g.
in solar corona (Marsch, 2006), intracluster medium (Roberg-Clark et al., 2016),
and Van Allen radiation belt (Horne et al., 2007). Moreover, the Weibel insta-
bility (Weibel, 1959) can play a major role in the generation of the cosmological
magnetic fields (Lazar et al., 2009). These instabilities depend on details of the
velocity distribution, and have been extensively studied theoretically.

Although many instabilities in a plasma have been studied theoretically, it is
experimentally challenging to initialize the distribution function sufficiently ac-
curately to study kinetic instabilities in the laboratory. Recently, Zhang et al.
(2019) used intense ultra-short laser pulses to initialize the velocity distribution
of electrons. The laser pulse can generate non-thermal velocity distributions
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through rapid tunnel ionization. They focus on two such non-thermal distribu-
tion functions. A linearly polarized laser pulse can be used to obtain a so called
bi-Maxwellian distribution; this is a Maxwellian distribution both parallel and
orthogonal to the propagation direction, but with different thermal width. A
circularly polarized laser pulse instead yields an electron velocity distribution re-
sembling a ring in the plane of polarization.

Each diametrical cut of the ring distribution has two opposing flows. Thus one
might naively expect it to be unstable to the so called two-stream electrostatic
instability. In addition, the ring distribution has a temperature anisotropy that
might be able to drive an electromagnetic instability. The stability properties of
the ring distribution to electrostatic and electromagnetic modes is thus of interest
for the interpretation of experiments.

In this thesis, we consider the electrostatic instability of a ring distribution, and
show analytically that it is stable. This implies that any electrostatic instability
signatures observed in experiments using a circularly polarized laser pulse must
come from imperfections in the ring distribution. For example, these imperfections
could be created at the boundary. We also studied a set of imperfections which
break the isotropy of the distribution in the plane of the ring. We find by particle-
in-cell simulations that distributions close to a ring, specifically ”incomplete” ring
distributions, collapse to one in an electrostatic instability (chapter 3).

The anisotropy of the ring or bi-Maxwellian distributions can destabilize the
Weibel instability, which grows on a much longer time-scale than the electrostatic
instabilities. On these time-scales, collisions may be non-negligible. Using particle-
in-cell simulations, we confirm a previously known analytical model of the effects
of collisions on the Weibel instability of a bi-Maxwellian electron distribution.
This analytical model predicts that collisions can play a major role in laboratory
plasmas. While the analytical model was known, our studies underline the impor-
tance of the (collisional) evolution of the non-fluctuating part of the distribution.
This introduces a dependence of the growth dynamics on the strength of the seed
fluctuations in the beginning of the simulation or experiment (chapter 4).
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Chapter 2

Theory

In this chapter, we will first go through some basic theoretical concepts of plasma
physics, which are required for later discussion. Then, we will dive into the electro-
static instabilities that can occur in the unmagnetized settings that we consider.
We will continue on the path of instabilities and cover the basic theory behind the
Weibel instability. Lastly, we will give a brief outlook on collisions, and finally end
by introducing the particle-in-cell (PIC) approach to kinetic plasma modeling.

2.1 Basic Plasma Physics Concepts
Plasma physics is a rich field where systems consisting of charged particles exhibit-
ing collective behavior are studied. Chen (1984) states the definition of a plasma
as: ”a quasineutral gas of charged and neutral particles which exhibits collective
behavior”. In a plasma, the physics is dominated by the electromagnetic inter-
actions. These forces are long range: they affect many particles simultaneously.
This leads to many particles moving coherently in a macroscopic fashion, hence
the collective behavior. Plasmas are quasineutral, which means that the charge
fluctuations in macroscopic volumes are much smaller than the total number of
either charges, and the net charge is practically zero.

Since plasmas consist of free charged particles, these constituents will move
and spatially distribute themselves to counteract external electric fields. This
shielding is not perfect, since the particles have some random thermal movement.
The phenomenon is called Debye shielding, and the characteristic length scale of
the shielding is called the Debye length, λD. The electromagnetic field from a
charged particle located at the center of a sphere of radius λD, the Debye sphere,
will inside this sphere resemble its unshielded form. By its nature, Debye shielding
is a statistical phenomenon caused by many particles. Therefore, there must be
many particles inside the Debye sphere, and for many plasmas of interest, this is
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indeed the case. Debye shielding is also the main reason the gas is quasineutral.
When the length scale of the system is much larger than the Debye length, low-
frequency electric fields are shielded from the plasma, and charge fluctuations are
confined to smaller volumes; and the overall plasma is quasineutral.

For the plasma to be dominated by electromagnetic interactions, it is not suf-
ficient that there are many particles in the Debye sphere. It is also necessary
that the interactions, collisions, between individual particles that contribute to
the plasma dynamics are of electromagnetic nature. Scattering events due to the
Coulomb force are called Coulomb collisions. There can also be collisions with
neutral particles. For the dynamics to be driven by electromagnetic forces, the
dynamics should mostly be affected by the Coulomb collisions.

To summarize, a plasma is a quasineutral gas exhibiting collective behavior.
This is fulfilled when three criteria are satisfied. Firstly, there must be many
particles within the Debye sphere. Secondly, the length scale of the system must
be much larger than the Debye length. Finally, the collisions should mostly be of
electromagnetic nature.

2.1.1 Distribution Function
As many particles are inside the Debye sphere, thus in any finite volume of in-
terest, it is particularly useful to employ a statistical description of the different
plasma particle species, and describe them by their respective distribution func-
tion, denoted f . The distribution function is a measure of the phase-space density
of particles with a specific velocity v at position x and time t. Phase space is the
six-dimensional space spanned by the position and momentum of the particles. If
we are specific about a species, denoted by α, we use a subscript. That is, fα is the
distribution function of species α. In this thesis we will normalize the distribution
function such that its velocity integral yields the number density of the species in
space nα(x),

nα(x) =
ˆ
fαd3v. (2.1)

Then fα(x,v, t)d3vd3x is the number of particles in the infinitesmal phase-space
volume d3vd3x, centered around the position x and velocity v at time t.

2.1.2 Vlasov Equation
The path that a single particle, of charge q, would take in phase space is governed
by Newton’s equations of motion. We will denote this path by x(t), v(t). Along
this path, the distribution function must be constant, as no particles can be cre-
ated or destroyed. Thus the total time (convective) derivative of the distribution
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function along this path must be 0,

0 = df(x(t),v(t), t)
dt = ∂f

∂t
+ dx(t)

dt ·
∂f

∂x
+ dv(t)

dt ·
∂f

∂v
. (2.2)

We know that the derivative of position with respect to (w.r.t.) time is the velocity,
dx/dt = v. The derivative of the velocity w.r.t. time is the acceleration. Using
Newton’s second law of motion and replacing the force with the Lorentz force, the
acceleration can be expressed as dv/dt = (q/m)(E +v×B), where q is the charge
of the particles, m is their mass, E is the electric field, and B is the magnetic
field. Combining these two observations, the equation above can be rewritten as

∂f

∂t
+ v · ∂f

∂x
+ q

m
(E + v ×B) · ∂f

∂v
= 0. (2.3)

The distribution function could, in principle, be expressed by the exact position
and momentum of each particle. This is equivalent to treating the particles indi-
vidually, which is, due to the shear amount of particles, impractical. Instead, we
will use coarse-graining to average the fields over some length scale much smaller
than the Debye length, but large enough to include enough particles to be sta-
tistically meaningful. Then the macroscopic physics is captured in an averaged
distribution function.1 This coarse-graining is possible due to the condition that
many particles must be within the Debye sphere.

However, just replacing fields and the distribution with their averages fails to
describe some of the granular effects from individual particles, in other words, the
microscopic fluctuations. These microscopic effects are summarized in a collision
operator, C{·}, which describes the effect of collisions on the distribution function.
The form of this operator depends on the physical properties of the system, and
has been derived in several different limits. With all this in mind, the statistically
averaged kinetic equation, so called Vlasov equation, reads

∂ 〈fα〉
∂t

+ v · ∂ 〈fα〉
∂x

+ qα
mα

(〈E〉+ v× 〈B〉) · ∂ 〈fα〉
∂v

= C{〈fα〉}, (2.4)

where the collision operator should preserve total energy and momentum as well
as the number of particles of the colliding particle pairs. The average brackets
refer to the coarse-graining, or ensemble averages. We will henceforth drop these
brackets, that is, 〈A〉 = A for quantity A. These equations are then coupled with

1Formally a generalization of the BBGKY procedure is employed, and will not be discussed
here. Intuitively, we can view it as an ensemble average over many systems with different initial
values.
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Maxwell’s equations,

∇ ·E = ρ

ε0
, ∇×E = −∂B

∂t
,

∇ ·B = 0, ∇×B = µ0J + µ0ε0
∂E

∂t
,

(2.5)

through

ρ =
∑
α

ˆ
qαfα d3v and J =

∑
α

ˆ
qαvfα d3v , (2.6)

and form a closed set of equations. Note that Maxwell’s equations are the same
for the coarse-grained fields as for the microscopic fields.

2.1.3 Averages
In this thesis, we will use several types of averages. These include a spatial average,
a fluid average, and an average over all particles. The spatial average of some
quantity A, denoted by brackets and a subscript x, is defined as

〈A〉x ≡
´
Ad3x´
d3x

, (2.7)

where the spatial volume being integrated over is the whole plasma volume. We
can also talk about the fluid average of the physical quantity A for species α,
denoted by brackets, superscript ”fluid” and subscript α. This is defined as

〈A〉fluid
α (x) ≡ 1´

fαd3v

ˆ
Afαd3v. (2.8)

This average corresponds to the average value of A over each particle located at
x.

The average of quantity A over all particles of species α is denoted with brack-
ets, superscript ”part”, and a subscript α. This average is defined by

〈A〉part
α ≡

´
A(t,x,v)fαd3vd3x´

fαd3vd3x
≈ 1
N

N∑
i=1

Aiα (2.9)

where Aiα is the microscopic quantity A for particle i out of N , of species α,
at time t, and A(t,x,v) is the coarse-graining of quantity A. Note that in the
case of small density fluctuations, and when A depends only on velocity, 〈A〉part

α

coincides with the fluid average. This particle average is useful in, for example,
the particle-based numerical modeling approach that we will later use.
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2.2 Electrostatic Instabilities
In this section, we will derive the linear properties of electrostatic instabilities
in a collisionless, unmagnetized plasma. This will be done by perturbing some
equilibrium distribution. We will mainly follow the derivation by Landau (1946),
with some additional explanatory steps, along the lines of the lecture notes by
Schekochihin (2021).

To better understand what an equilibrium distribution is, consider a 1D equi-
librium distribution f0 that satisfies ∂f0/∂t = 0, and consider the case when
it is separable, that is, f0(x, v) = X(x)V (vx). Using the electrostatic potential
E = − dφx(x)/dx , the Vlasov equation reads (unless dφx/dx ≡ 0)

1
q dφx

dx

∂X
∂x

X
= 1
mv

∂V
∂vx

V
. (2.10)

The l.h.s. depends only on x and the r.h.s. depends only on vx. As these are phase-
space coordinates, they are independent variables. Therefore, each side must be
constant. It will soon be apparent that the distribution is in thermal equilibrium
and the constant is −β = −1/(kBT ) where kB is Boltzmann’s constant and T the
temperature. Equating the l.h.s. and r.h.s. independently to the constant −β and
solving the differential equation yields our distribution function as

f0x = N exp
(
− qφx
kBT

)
exp

(
− mv2

x

2kBT

)
, (2.11)

where N is some normalization constant. In fact, if E = − dφ/dx 6= 0 almost
everywhere, then the general solution to an electrostatic equilibrium distribution
is given by any function of the energy,

f(x,v) = f
(1

2mv2 + qφ
)
, (2.12)

regardless of the number of dimensions. This can be checked by substituting it
into the Vlasov equation. If, on the other hand, dφ/dx ≡ 0, then E = 0, and
from the Vlasov equation we obtain ∂f0/∂x = 0. In other words, the distribution
is homogeneous in space, and there is no criteria on the velocity distribution.

Consider the unmagnetized, collisionless, electrostatic Vlasov equation given
by

∂fα
∂t

+ v · ∂fα
∂x

+ qα
mα

E · ∂fα
∂v

= 0. (2.13)
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We introduce a inhomogeneous part to the distribution function as a small per-
turbation. It is convenient to work with a plane-wave decomposition of the distri-
bution function,

fα(x,v, t) = f0α(v, t) +
∑
k 6=0

fkα(v, t) exp(ik · x), (2.14)

where fkα(v, t) is given by

fkα(v, t) = 〈fα(x,v, t) exp(−ik · x)〉x , (2.15)

and together yield the introduced perturbation. Note that as f0α is homogeneous
in space, it is an electrostatic equilibrium distribution.

We will work with the electrostatic potential φ, for which E = −∇φ. The
integration constant for φ is chosen such that the average of φ is 0. This choice is
quite convenient, as in Fourier space φ has only components with nonzero k. We
will work with the plane wave representation of the electrostatic potential,

φ(x, t) =
∑
k 6=0

φk(t) exp(ik · x), (2.16)

where φk(t) is given by

φk(t) = 〈φ(x, t) exp(−ik · x)〉x . (2.17)

When working with plane waves, we introduce a rectangular box of finite length,
hidden in which values of k are allowed in the sum. If the box is taken be of infinite
length, then the sum is replaced with an integral instead. However, we will later
look at the projection onto a single basis vector exp(ik · x), and then this difference
is irrelevant. Also note that when perturbations are small, we may consider each
of them independently in the linear limit.

Substituting eqs. (2.14) and (2.16) into eq. (2.13), we obtain

0 = ∂f0α

∂t
+
∑
k 6=0

exp(ik · x)∂fkα

∂t

+
∑

k

v · (ik exp(k · x)fkα)

+ q

mα

(∑
k

−ikφk exp(ik · x)
)
·

∂f0

∂v
+
∑
k 6=0

exp(ik · x)∂fkα

∂v

.
(2.18)

When considering linear theory, the perturbations are small compared to the mean,
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fk,α � f0α, so we may neglect second order terms, yielding

0 = ∂f0α

∂t
+
∑
k 6=0

∂fkα

∂t
exp(ik · x)

+
∑

k

v · ikfkα exp(ik · x)

− q

mα

∑
k

iφk exp(ik · x)k · ∂f0α

∂v
.

(2.19)

This equation is also satisfied for each basis vector individually, as the set of
exp(ik · x) is orthogonal in the L2-function space. The equation projected onto a
single exp(ik · x) for non-zero k gives

0 = ∂fkα

∂t
+ v · (ikfkα)− q

mα

iφkk · ∂f0α

∂v
. (2.20)

Projection onto the basis vector given by k = 0 instead yields ∂f0α/∂t = 0.
Retaining second-order terms would yield a non-zero time derivative of f0α.

As we are interested in the evolution of perturbations, we will solve eq. (2.20)
as an initial value problem. It is therefore convenient to Laplace transform our
equation to the dual time variable p. This is guaranteed to converge when the
function in question grows slower than exp(σt), for some real σ. The real part of
p must be sufficiently large, in the sense that Re(p) ≥ σ. The Laplace transform
is given by

L{h} =
ˆ ∞

0
h exp(−pt)dt, (2.21)

and its inverse by

L−1{ĥ} = 1
2πi

ˆ i∞+σ

−i∞+σ
ĥ exp(pt)dp. (2.22)

We denote the Laplace-transformed variables with a hat, L{fkα} = f̂kα.
Let the initial perturbation for some species α be fkα(v, 0) = gkα(v). Laplace

transforming eq. (2.20), we obtain

0 = gkα + pf̂kα + v · (ikf̂kα)− qα
mα

iφ̂kk · ∂f0α

∂v
. (2.23)

This is a linear equation in f̂kα. Solving for f̂kα, we obtain

f̂kα = 1
p+ iv · k

(
qα
mα

φ̂kik ·
∂f0α

∂v
+ gkα

)
. (2.24)
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Now, we need to couple this with Maxwell’s equations to form a closed set
of equations. As we are treating the problem electrostatically, we have Poisson’s
equation,

∇2φ(x, t) = −ρ(x, t)
ε0

= −
∑
α

qα
ε0

ˆ
fα(x,v, t)d3v, (2.25)

where we expressed the charge density as a sum of the charge moments over all
species in the plasma. With eqs. (2.14) and (2.16), we can now express eq. (2.25)
as

−
∑

k

k2φk exp(ik · x) = −
∑
α

qα
ε0

ˆ (
f0α +

∑
k

fkα exp(ik · x)
)

d3v, (2.26)

where we have introduced k = |k|. By projecting on a single plane wave, we obtain
that it holds for each k individually. Laplace transforming Poisson’s equation, and
noting that the only time dependence is in φkα and fkα, yields

k2φ̂k =
∑
α

qα
ε0

ˆ
f̂kαd3v, (2.27)

for nonzero k. Substituting the expression for f̂k in eq. (2.24) results in

ε0k
2φ̂k =

∑
α

qα

ˆ 1
p+ iv · k

(
qα
mα

φ̂kik ·
∂f0α

∂v
+ gkα

)
d3v, (2.28)

and solving for φ̂k yields(
1−

∑
α

q2
α

mαε0k2

ˆ
k · ∂f0α

∂v

v · k − ipd3v

)
φ̂k = 1

k2

∑
α

qα
ε0

ˆ
gkα

p+ iv · kd3v. (2.29)

We are now free to choose our coordinate system and can thus align the x axis
with the k vector. This means that k · ∂f0α/∂v = k ∂f0α/∂vx , and v · k = vxk.
Thus the integral can be expressed as

ˆ
k · ∂f0α

∂v

v · k − ipd3v =
˚

k ∂f0α
∂vx

vxk − ip
dvxdvydvz

=
ˆ

k

vxk − ip
d

dvx

¨
f0αdvydvzdvx

=
ˆ
kf ′0α(vx)
vxk − ip

dvx.

(2.30)

Here f0α(vx) is the marginal distribution in vx to the joint distribution f0α =
f0α(vx, vy, vz), and f ′0α(vx) its derivative w.r.t. vx.
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By examining eq. (2.29), we see that the potential times some function depen-
dent on p and k equals the time evolution of the initial charge distribution. If
f0α is analytical, and the same is true for gkα, then both integrals must also be
analytical. Then φk is analytical everywhere except where the prefactor of φ̂k is
0. The prefactor of φ̂k is called the dielectric function ε(p, k),

ε(p, k) = 1−
∑
α

ω2
pα

nαk2

ˆ
f ′0α(vx)
vx − i pk

dvx, (2.31)

where we have introduced the plasma frequency satisfying ω2
pα = q2

αnα/(ε0mα).
The integral in the dielectric function is defined for Re(p) > σ, and thus guar-

anteed to be defined for at least some Re(p) > 0. The integration path crosses
a pole when Re(p) = 0. Moving p around can be seen as deforming the curve
relative to p, and thus we will cross a pole if we where to deform it past p = 0.
We must therefore add the residue that we otherwise would miss (Landau, 1946).
Recalling the residue theorem, we have the following definition of the integral

ˆ
f ′0α(vx)
vx − i pk

dvx =



ˆ
f ′0α(vx)
vx − i pk

dvx, Re(p) > 0

πif ′0α

(
ip

k

)
+ P
ˆ

f ′0α(vx)
vx − i pk

dvx, Re(p) = 0

2πif ′0α
(
ip

k

)
+
ˆ

f ′0α(vx)
vx − i pk

dvx, Re(p) < 0.

(2.32a)

(2.32b)

(2.32c)

To obtain the time evolution of the electrostatic potential, we must transform
back to φk from φ̂k by inverse Laplace transforming

φk = L−1{φ̂k} = 1
2πi

ˆ i∞+σ

−i∞+σ
φ̂k exp(pt)dp. (2.33)

By analytically continuing φ̂k, we can deform the integral path by taking Re(p)→
−∞, which will eventually enclose all poles of φ̂k. The deformed integration path
is not changed topologically, as we close it in ±i∞, or in other words, on the top
of the Riemann sphere. Using the residue theorem, we, by eq. (2.33), obtain that

φk =
∑
i

ci exp(pit), (2.34)

where the sum goes over all poles of φ̂k. Contributions will only be from poles as
the integral over the curve goes to zero as exp(pt) (as we took Re(p)→ −∞). The
coefficients ci depend on the initial perturbation gkα. As we noted before, φ̂k is
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analytical everywhere except when ε(p, k) = 0. We can therefore look for zeros of
ε(p, k) and say something about how perturbations will evolve in time. Positive real
part of zeros of ε(p, k) in p yields an exponential growth of the potential, so called
inverse Landau damping, whilst negative real part yields exponential decay of the
potential, so called Landau damping. We are interested in these zeros as they tell
whether there are any unstable solutions for a given k. In real plasma systems,
practically there are always fluctuations at all wave numbers. This means that
if there exist unstable wave numbers, they will grow exponentially to significant
values, no matter how small the fluctuations are that they grow from. Generally,
the wavenumber corresponding to the largest growth rate will dominate.

2.3 Weibel Instabilities
Here we will reproduce the derivation of the equations governing the Weibel insta-
bility. The derivation used here deviates slightly from that performed originally by
Weibel (1959). In contrast to the electrostatic instabilities, the growing modes are
perpendicular to the propagation direction, in other words, it is a transverse wave.
However, the steps of the derivation are analogous to those of the electrostatic
instabilities. We will mostly follow Davidson (1983) but without introducing a
background magnetic field, as we do not intend to consider magnetized plasmas.

We start with the collisionless Vlasov equation,
∂fα
∂t

+ v · ∂fα
∂x

+ qα
mα

(E + v×B) · ∂fα
∂v

= 0, (2.35)

which is the same as eq. (2.4) with the collision term neglected. It is convenient
to move to Fourier space. The perturbations correspond to non-zero k and are
assumed to be small, which yield

∂fkα

∂t
+ v · ikfkα + qα

mα

(Ek + v×Bk) · ∂f0α

∂v
= 0, (2.36)

where we neglected second order terms. To eliminate the time derivative, we will
again use the Laplace transform L to the dual time variable p, defined by eq. (2.21),
and its inverse defined by eq. (2.22). We will again denote transformed variables
with a hat. By Laplace transforming eq. (2.36) we obtain

pf̂kα + v · ikf̂kα + qα
mα

(Êk + v× B̂k) · ∂f0α

∂v
= init, (2.37)

and solving for f̂kα yields

f̂kα = init− 1
p + v · ik

qα
mα

(Êk + v× B̂k) · ∂f0α
∂v

, (2.38)
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where we have gathered terms from the initial perturbation as ”init”.
To close the equations we will use Maxwell’s equations. The equations needed

are Ampère’s law and Faraday’s law. We Fourier transform these equations in the
spatial variable to k and Laplace transform in time to p. The Fourier transform
is denoted by a k index and the Laplace transform by a hat. By ignoring exactly
what the initial perturbations are (as these contribute to the initial coefficient and
not the growth rate), we obtain

∇×E = −∂B

∂t
⇒ ik× Êk = −pB̂k + init (2.39)

∇×B = µ0

(
J + ε0

∂E

∂t

)
⇒ ik× B̂k = µ0

(
Ĵk + ε0pÊk

)
+ init (2.40)

where ”init” incorporates the initial perturbations. The current can be expressed
using the distribution function as

Ĵk =
∑
α

qα

˚
vf̂kαd3v

=
∑
α

ω2
pαε0

nα

˚
v

−1
p+ v · ik (Êk + v× B̂k) · ∂f0α

∂v
d3v + init,

(2.41)

where we used eq. (2.38) to express the distribution function, and we have also
noted that ω2

pα = nαq
2
α/(mαε0).

Let us now align the z axis with the propagation direction, k = (0, 0, k) and
look for transverse wave solutions. Align the x-axis with the perturbation direction
of the electric wave, i.e. Êk = (Êk, 0, 0). Faraday’s law then becomes B̂k =
(0,−ikÊk/p, 0)+ init, and the l.h.s. of Ampère’s law is ik× B̂k = (−k2Êk/p, 0, 0).
By eliminating the magnetic field in favor of the electric field, the Lorentz force
acting on the equilibrium distribution can be expressed as

(Êk + v× B̂k) · ∂f0α

∂v
= Êk

[
∂f0α

∂vx
+ −ik

p

(
vx
∂f0α

∂vz
− vz

∂f0α

∂vx

)]
. (2.42)

We will now put it all together in Ampère’s law eq. (2.40). The x component of
Ampère’s law reads[

−p2 − c2k2 +
∑
α

ω2
pα

nα

˚ (
vx
∂f0α

∂vx
− ikv2

x

p+ ikvz

∂f0α

∂vz

)
d3v

]
Êk = init, (2.43)

where we noted that µ0ε0 = 1/c2. The term in the integrand containing ∂f0α/∂vx
can be evaluated through integration by parts, and it yields −nα. This results in
our final expression:(

−p2 − c2k2 −
∑
α

ω2
pα −

∑
α

ω2
pα

nα

˚
v2
x

vz − ip
k

∂f0α

∂vz
d3v

)
Êk = init. (2.44)
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By the same argument as for the electrostatic case2, the roots pi of the factor in
front of Êk yield electric-field terms of the form exp(pit). Using this observation,
we arrive at the xx component of the dielectric tensor, that is, the effect of Ex on
the electric displacement in the x direction,

εxx = −p2 − c2k2 −
∑
α

ω2
pα −

∑
α

ω2
pα

nα

˚
v2
x

vz − ip
k

∂f0α

∂vz
d3v. (2.45)

Note that for ck � ωpα, we recover the vacuum dispersion relation ω2 − k2c2 = 0,
where we used p = −iω such that a real ω yield purely oscillating waves.

A more careful analysis of the dielectric tensor is done by Davidson (1983),
where he lets the origin of the velocity coordinate system be at the average particle
velocities in the x and y direction. This is done because then only diagonal elements
to the dielectric tensor will be nonzero. The εzz is identical to the electrostatic
dielectric function we derived in the previous section, and the εyy is symmetric
to εxx in the sense that vx is replaced by vy. The dispersion relation is given by
det{ε} = εxxεyyεzz = 0.

2.3.1 Separable Distribution Functions in Velocity Space
We can consider the case when the distribution function has a separable vz depen-
dence. Then we can do the integrals separately, and the integral over vx and vy
yield 〈v2

x〉
part
α , and we arrive at

εxx = −p2 − c2k2 −
∑
α

ω2
pα −

∑
α

ω2
pα

nα

〈
v2
x

〉part

α

ˆ
f ′0α(vz)
vz − ip

k

dvz, (2.46)

where f0α(vz) is the marginal distribution in vz and f ′0α(vz) its derivative. If now
the distribution in vz is a Maxwellian, then we can express the dispersion relation
in terms of the plasma dispersion function, Z, defined as

Z(ζ) = 1√
π

ˆ ∞
−∞

exp(−u2)
u− ζ

du, (2.47)

where the integral is performed according to Landau’s prescription (see eq. (2.32)).
The dispersion relation when the distribution in the z direction is a Maxwellian
becomes

εxx = −p2 − c2k2 −
∑
α

ω2
pα −

∑
α

ω2
pα

〈v2
x〉

part
α

2 〈v2
z〉

part
α

Z ′(ζα), (2.48)

2The argument starts at eq. (2.33).
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where ζα = ip/(k
√

2 〈v2
z〉

part
α ), and Z ′(ζ) = −2(1 + ζZ(ζ)) is the derivative of the

plasma dispersion function w.r.t ζ.

2.4 Collisions in Plasmas
Here we will give a very brief outlook on Coulomb collisions in plasmas. We will
start by the derivation for the deflection angle in Rutherford scattering. Then we
will give a simple model of the accumulation of many small angle scattering events,
and shortly discuss other models.

Consider an electron approaching an ion with speed v0, and with impact pa-
rameter b. The impact parameter is defined as the smallest distance of approach
that would occur if no forces act between the particles. As the ion mass is much
larger than the electron mass, we may approximate the ion as stationary. Due to
conservation of energy, the outgoing speed must also be v0, and conservation of
angular momentum yields that the final orthogonal distance must also be b. In
light of this symmetry, introduce the canonical radial coordinates (r, φ), as shown
in fig. 2.1, with their origin at the ion’s position, and align the y-axis with the
direction of the final change in momentum.

In this coordinate system, the Coulomb force is at all times directed in the
radial direction, and thus the angular momentum is conserved. The initial angular
momentum is −mev0b. If scattered an angle 2θ, the change in momentum is
∆py = −2v0me sin(θ). The scattering angle yields the boundary conditions on φ.
The force directed towards the final change in momentum is

Fy = − Ze2

4πε0r2 sin(φ), (2.49)

where Ze is the ion charge. The impulse from this force is

Iy =
ˆ ∞
−∞

Fydt. (2.50)

Now note that r2 dφ/dt = −bv0 is the angular momentum (apart from the constant
mass factor) and is conserved. Thus the impulse is

Iy = −
ˆ ∞
−∞

Ze2

4πε0r2 sin(φ)dt = Ze2

4πε0bv0

ˆ ∞
−∞

sin(φ)dφ
dt dt. (2.51)

The indefinite integral is just − cos(φ), and the limits are φ = π + θ and φ = −θ,
which yields

Iy = − Ze2

2πε0bv0
cos(θ). (2.52)
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x
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b
φr

Figure 2.1: The path of an electron colliding with an ion in the coordinate system
used here in describing the kinematics of charged particle collisions. We have
defined the y-axis to be the symmetry axis, and given the particle a positive speed
in the x-direction. From these Cartesian coordinates, the radial coordinates (r, φ)
are defined. The electron starts at infinity with an angle φ = π + θ, impact
parameter b and speed v0. Symmetry implies that the electron will obtain the
angle φ = −θ after passing the ion (located at the origin), and thus scattered at
an angle 2θ.

Equating this to the change in momentum we obtain

tan(θ) = Ze2

4πε0bmev2
0
. (2.53)

By using the center-of-mass coordinate system instead, the resulting expression
for half the scattering angle can be expressed as

tan(θ) = Ze2

4πε0µbv2
0
, (2.54)

where µ is the reduced mass,

µ = mαmα′

mα +mα′
, (2.55)

and mα and mα′ are the masses of the colliding particles.
Several of these scattering events add up to a significant scattering angle. For

small angles, tan(θ) ≈ θ. In this limit, the diffusion of the velocity is proportional
to θ2. For small angle collisions, we must consider 2θ < 1, which in turn means
b > bmin, where bmin is the radius such that 2θ = 1, and coincides with the closest
approach in a head-on collision between particles with the same kind of charge. As
electric fields in a plasma are shielded on length scales larger than λD, we consider
the case when b < λD.
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An annular beam of radius b and width db with density n, speed v0 would,
during a time τ , undergo an accumulated scattering angle of nτv0θ

22πbdb. We
may write the total scattering angle from such small-angle scattering events as

∆θtot = nτv0

ˆ λD

bmin

θ22πbdb = Z2e4

4π2ε20m
2
ev

3
0
2πτn ln

(
λD

bmin

)
. (2.56)

We define the collision frequency as ν = (2πτ)−1 such that ∆θtot = 1, and introduce
the quantity ln Λ = ln(λD/bmin). Consider electron–ion collisions, and let the
characteristic relative speed be the electron thermal speed, v0 = vth. Then we
obtain the characteristic electron–ion collision frequency

νei = Z2e4

4π2ε20m
2
ev

3
th
ni ln Λ, (2.57)

where ni is the ion density.
We call ln Λ the Coulomb logarithm, that in the plasmas of interest here is larger

than unity. If ln Λ is larger than unity, then small angle scatterings dominate.
However, in dense plasmas, ln Λ can be of order unity, then large angle collisions
become important. In addition, in high density plasmas, many particle interactions
and quantum effects become important. Moreover, very rare collisions can be
important, for example in electrostatic shocks (Sundström et al., 2019). There are
much more elaborate models which takes these effects into account.

The collisions will gradually increase the entropy, and eventually drive any
distribution function towards a Maxwell distribution3. A simple collision model is
the Krook model (Bhatnagar, Gross & Krook, 1954). Then the collision operator
is given by

C{f} = −ν(f − fR), (2.58)

where f is the distribution function, ν some collision frequency and fR the distri-
bution to which f wants to relax.

The isotropization caused by collisions will naturally compete with instabil-
ities driven by anisotropies. Intuitively, collisions will lower the growth rate of
an instability. In the case where the electron distribution function is a Maxwell
distribution in all directions, but has a different width in one of the directions,
that is, it has a temperature anisotropy, it is called a bi-Maxwellian. We define
the temperatures T‖ = me 〈v2

z〉
fluid
e and T⊥ = me 〈v2

x〉
fluid
e = me

〈
v2
y

〉fluid

e
. Wallace

et al. (1987) uses the Krook model to analytically find the effect of collisions on
3More generally the Maxwell-Jüttner distribution in the relativistic limit.
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the Weibel instability in the case of a bi-Maxwellian distribution. He finds that
the corrected growth rate γC can be expressed as

γC = γ −
(

1− T‖
T⊥

)
ν, (2.59)

where γ is the collisionless growth rate, and here the collision frequency is defined
as

ν =
e2ω2

pe
√
me

4πε0T 3/2
‖

log
(

1.166T‖
2~ωpe

)
. (2.60)

Here ~ is the reduced Planck’s constant. We see that collisions lower the Weibel
growth rate, confirming our intuition.

2.5 PIC Simulations
In this section, we will give a brief introduction to the particle-in-cell (PIC) ap-
proach to numerical, kinetic modeling of plasmas, which is a particle-based method.
Since the number of particles in any physically relevant plasma system is so large
that following them individually would be numerically infeasible, so called macro-
particles are introduced, each representing many particles. These macro-particles
are evolved in time, as if they where ordinary particles obeying Newton’s and
Maxwell’s equations. Evolving particles in both location and momentum is re-
ferred to as pushing.

The PIC loop consists of pushing the macro-particles using the Lorentz force.
Then the charge and current densities are interpolated onto the electromagnetic
grid. With these interpolated charge and current densities, Maxwell’s equations
are solved. The new fields are interpolated to the particle positions, and the loop
starts over.

We can also view the macro-particles as discrete volume elements in phase
space. The interpolation of the macro-particles onto the electromagnetic grid is
what causes them have a volume in phase space. Therefore, we do not simulate
the evolution of a phase-space volume, even though the particles are given a finite
width. A schematic picture of this is presented in fig. 2.2, where the trajectory of
macro-particle A is shown in real space. In this figure, for simplicity, the particle
is given a shape of a rectangle, and its density is spread evenly over this rectangle.
When solving Maxwell’s equations, their integral form is used, and A deposits
its contribution to the overall charge and current densities through how much
its rectangle is intersecting with any grid cell in the discretization grid for the
Maxwell’s equations. The shape of the spread of A in phase space is given by the
interpolation scheme used, where the rectangle is one possible choice.
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x

y

A

Figure 2.2: A hypothetical path of a particle A. The particle moves along its tra-
jectory in real space. The rectangle symbolizes the extent of the particle A in real
space. An equal point of view is that we simulate the phase-space volume around
A. At each time step, the macro-particle deposits its charge and current density
contribution to the electromagnetic grid through some interpolation method. It is
this interpolation that defines the spatial extent of the macro-particle.

There are several different possible numerical implementations to achieve a PIC
approach. A common way is to use a so called extended leapfrog algorithm to push
the particles. The leapfrog algorithm updates the positions of the particles half a
time step, then updates their velocities a full time step, and finally updates their
positions the final half of the time step. The procedure is then repeated. The
extended leapfrog algorithm was introduced by Boris (1970), and is commonly
referred to as the Boris pusher. The basic concept is to use the leapfrog scheme
for the electric field part, and for the magnetic field rotate the velocity vector with
an angle corresponding to its gyro-motion. It is also common to discretize the
electromagnetic fields on a Yee mesh (Yee, 1966). Then the locations of where
the electric and magnetic fields are evaluated are shifted half a grid cell from each
other. It is particularly useful when considering the integral form of Maxwell’s
equations. Using Stokes’ theorem, the integral of the curl of the magnetic field
over a cell surface is the line integral along the edges of that surface, which reduces
to a sum of the magnetic field values, as these are evaluated in the middle of the
edges of a cell. The volume integral over the divergence of the electric field over the
cell is by Gauss’ theorem a surface integral over the cell boundary, which reduces
to a sum of all electric fields at the faces of the cell.

In fig. 2.3, the Yee mesh is illustrated. Blue vectors correspond to the electric
field and red vectors to the magnetic field. The total flux of the electric field out
from this cell is the sum over all electric field values which are evaluated at the
center of the faces of the cell. The total rotation of the magnetic field for any
face of the cell is the sum over all magnetic field components at the edges of that
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Figure 2.3: The Yee mesh. Electric fields shown by the blue arrows are evaluated
on the center of the faces. These contribute to a flux in and out of the cell,
corresponding to the charge density by Gauss’s law. The magnetic fields shown in
red are evaluated on the center of the edges. For each surface they contribute to a
rotation, coupled to the current density by Ampere’s law. In turn, by shifting the
cell half a step across a cell diagonal, it will show a similar picture, but instead
with the electric fields evaluated on the edges and magnetic fields on the faces.
This then couples the rotation of the electric field with the magnetic field through
Faraday’s law. The magnetic field values on the faces are then used in Gauss’s law
for magnetism.

face. By moving the cell half a step in each direction (diagonally), we transpose the
electric fields to the edges and the magnetic fields to the faces. It is now possible to
advance the magnetic field with Faraday’s induction law, using the same concept
with the edges and faces to calculate flux.

We sometimes considered collisions in our simulations. Then, we used the
model by Nanbu (1997). They consider each small random velocity change indi-
vidually and calculate the distribution of the scattering angle after N successive
scattering events. This approach is extended with weighting schemes in Nanbu &
Yonemura (1998) to be suitable for PIC, and got further improved by Perez et al.
(2012). Since they consider each binary scattering event individually, eq. (2.54)
still holds to express the scattering of a single small angle collision. Especially
when ln Λ is not large, the choice of collision model can be of importance, see for
example the discussion in section 3.2 in Sundström et al. (2020). We found good
agreement with our simulations and previous analytical results, and did therefore
not test other collisional models.

In this thesis, the Smilei (Derouillat et al., 2018) PIC code is used. Particu-
larly, we will use the implemented Yee mesh and the Boris pusher. We will use an
interpolation order of four when the macro-particles are interpolated to configu-
ration space (and their velocities are point velocities). The boundary conditions
in configuration space are periodic boundary conditions. It is possible to simulate
one to three spatial dimensions. When simulating N spatial dimensions and M
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momentum dimensions, it is referred to as a NDMP simulation. For example,
a 1D3P simulation uses one space dimension and three momentum dimensions.
Since momentum space is not represented by a mesh, unlike the spatial dimen-
sions, most PIC simulations retain all three momentum dimensions, even at lower
spatial dimensionality.
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Chapter 3

Electrostatic Stability of the Ring
Distribution

In this chapter, we will first give a summary of our analytical derivation of the
electrostatic stability of the ring distribution. Complementary material to the
derivation can be found in appendix A. Then, we will show results from PIC
simulations of partially open ring distributions. In other words, the distributions
have gaps, and are not 2D-isotropic. We will find that these can either close
themselves to ring distributions, or collapse to a more Maxwell-like distribution.

3.1 Electrostatic Stability of the Ring Distribu-
tion

In this section, we will give a summary of the results from our analytical deriva-
tion of the electrostatic stability of ring distributions. Explanatory steps between
equations are found in appendix A.

3.1.1 Dielectric Function for a Cold Ring
We will start with a cold (no thermal broadening) ring distribution. Using a
density plot, we visualize the distribution function in vxvy-space in fig. 3.1a. The
marginal distribution in vx is visualized in fig. 3.1b. Mathematically, we can write
down the joint distribution function in polar coordinates as

f(vr, θ) = ne

2πvm
δ(vr − vm), (3.1)

where δ is the Dirac delta distribution, vr is the speed in the vxvy-plane, θ the
polar angle, vm is the speed determining the radius of the ring that we shall refer
to as the mode speed, and ne is the density of electrons.

22



Figure 3.1: The cold ring electron distribution in panel (a) and its marginal distri-
bution in panel (b). In panel (a), a density plot is used to visualize the distribution
function. The distribution is infinitesimally narrow. We observe a divergence in
the marginal distribution as |vx| → vm (panel (b)). This divergence is not present
in distribution representations of the delta function.

We use eq. (2.31) to express the dielectric function. To evaluate the integral,
we consider the case when Re(p) > 0. In this case, the integral is defined by
eq. (2.32a). We can express the marginal distribution as

fx(vx) =


ne

π
√
v2

m−v2
x

, if |vx| < vm

0, if |vx| > vm.
(3.2)

We be evaluating the integral in eq. (2.31) to obtain the dielectric function.
A slightly more general form of the dielectric function than the one obtained in
this section will later be used to show the electrostatic stability. To compact the
notation, we transform to the dimensionless variables u = vx/vm, α = p/(vmk)
and β = vmk/ωpe. In this notation, and by integrating by parts, we obtain

ω2
pe

k2
1
ne

ˆ ∞
−∞

dfx
dvx

vx − ip/k
dvx = β−2 1

π

ˆ 1

−1

1√
1− u2

1
(u− iα)2 du, (3.3)

which is also what one obtains using the heat kernel representation of the delta
distribution. This integral form is listed in Gradshteyn & Ryzhik (2007, sec. 2.252),
and can be simplified by using the substitution ξ = −i(u − iα)−1. With this
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substitution, it is possible to express the integral as

β−2 1
π

ˆ 1

−1

1√
1− u2

1
(u− iα)2 du

= β−2 −i
π
√

1 + α2

ˆ u=1

u=−1

α√
((1 + α2)ξ − α)2 + 1

dξ.
(3.4)

By transforming according to η = (1 +α2)ξ−α, we obtain an integral on the form
(1 + η2)−1/2 which has the primitive function sinh(η),

β−2 −i
π
√

1 + α2

ˆ u=1

u=−1

α√
((1 + α2)ξ − α)2 + 1

dξ

= β−2 −iα
π(1 + α2)3/2

[
sinh−1(η)

∣∣∣∣∣
u=1

u=−1
.

(3.5)

One needs to be careful to check that the primitive function is analytical along the
integration path, which is true in this case. Analyzing the limits yields that[

sinh−1(η)
∣∣∣∣∣
u=1

u=−1
= −iπ, (3.6)

and after algebraic manipulations, we arrive to the dielectric function

ε(p, k) = 1 +
p
ωpe(

v2
mk

2

ω2
pe

+ p2

ω2
pe

)3/2 . (3.7)

Recall that the details of the calculation can be found in appendix A.

3.1.2 Dielectric Function for Warm Ring
Next, we would like to know how a finite thermal width affects the dielectric
function. To obtain this expression, we first find a general expression for the
integral in eq. (2.32a). By using the trick that any function can be expressed
as a convolution between a delta distribution and itself, we can use our previous
integration result to find that for any 2D-isotropic distribution f(vr, θ) = f(vr) we
have

−
ω2

pe

k2
1
ne

ˆ ∞
−∞

dfx(vx)
dvx

vx − i pk
dvx = 1

ne

ˆ ∞
0

f(vr)
p
ωpe(

v2
rk

2

ω2
pe

+ p2

ω2
pe

)3/2vrdvr. (3.8)
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Here fx(vx) is used to denote the marginal distribution of f(vr).
To obtain a ring shape with a width, we a use a rotated Maxwellian,

f(vx, vy) = N exp

−
(√

v2
x + v2

y − vm
)2

v2
d

, (3.9)

where N is the normalization constant such that the distribution integrates to ne,
vm is the speed at which the distribution function attains its maximum (the mode
speed), and vd corresponds to the thermal width of the distribution around the
mode speed. The normalization constant is

N = ne

2π

{
v2
d

2 exp
(
−v

2
m
v2
d

)
+ vmvd

2
√
π
[
1 + erf

(
vm

vd

)]}−1

. (3.10)

By inspecting eq. (3.8), we note that the factor multiplying f has a primitive
function in vr given by

χ(vr) =
p
ωpe√

v2
rk

2

ω2
pe

+ p2

ω2
pe

, (3.11)

up to a constant factor. Substituting to χ, we can express the integral for a rotated
Maxwellian as,

2π
ne

ˆ ∞
0

f(vr)
p
ωpe(

v2
rk

2

ω2
pe

+ p2

ω2
pe

)3/2vrdvr

= 2π
ne

ω2
pe

k2

ˆ 1

0
N exp

−
(
p
k

√
1
χ2 − 1− vm

)2

v2
d

dχ.

(3.12)

For small vd it is possible to Taylor expand the exponent in χ around its maximum.
Expanding to second order yield an integral of a Gaussian, and extending the
limits from [0, 1] to [−∞,∞], we can find an approximate form to the integral
analytically. This is basically the saddle point method. It is found that

2π
ne

ω2
pe

k2

ˆ 1

0
N exp

−
(
p
k

√
1
χ2 − 1− vm

)2

v2
d

dχ

≈ 2π3/2Nvdvm

ne

p
ωpe(

v2
mk

2

ω2
pe

+ p2

ω2
pe

)3/2 .

(3.13)
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This yields the dielectric function as

ε(p, k) ≈ 1 + 2π3/2Nvdvm

ne

p
ωpe(

v2
mk

2

ω2
pe

+ p2

ω2
pe

)3/2 . (3.14)

This is quite similar to the result from the cold ring. Note that when vd/vm → 0,
we recover the dielectric function from a cold ring.

3.1.3 Stability of Ring Distributions
We note that for both the cold ring and warm ring, the dielectric function is of
the form

εS(p, k) = 1 + S

p
ωpe(

v2
mk

2

ω2
pe

+ p2

ω2
pe

)3/2 , (3.15)

where S > 0 is some shape parameter. To show the inexistence of roots corre-
sponding to growing modes, we will use Cauchy’s argument principle in the fourth
quadrant in p. The fourth quadrant in p corresponds to electric waves propa-
gating in the positive x direction, and growing exponentially in magnitude. As
the problem is symmetric to rotations around the z-axis, propagation direction
can without loss of generality be chosen arbitrarily in the xy-plane. Cauchy’s ar-
gument principle states that for a simple counter-clockwise oriented closed curve
δΩ,

Z − P = 1
2πi

‰
δΩ

g′(z)
g(z) dz, (3.16)

where Z and P are the number of zeros and poles of g in Ω, respectively, g is a
meromorphic function on Ω, and Ω the interior of δΩ. This assumes that there are
no poles or zeros on δΩ. Now as

´
(g′/g)dz = log(g(z)), we can evaluate the total

infinitesimal changes in the argument of g(z) to obtain the number of zeros minus
the number of poles. If g(z) is analytical inside Ω, then we can obtain the number
of zeros by evaluating the change in argument. Note that the Nyquist method can
be proved using this principle.

We use the normalized variables β = vmk/ωpe (as before) and G = p/ωpe to
simplify our algebraic expressions. Physically, the real part of G is the normalized
growth (decay) rate when it is positive (negative). The imaginary part of G is the
corresponding normalized oscillation frequency. Roots of εS(p, k) = 0 are given by

0 = (β2 +G2)
√
β2 +G2 + SG =: h(G), (3.17)
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Re(G)

Im(G)

ε

R

Figure 3.2: The curve δΩR, used to find
the argument variation of h. As R goes
to infinity and ε to 0, the curve encloses
the entire fourth quadrant.

Re(h(ε− ix))

Im(h(ε− ix))

Figure 3.3: A schematic picture of the
set {h(ε − ix) : x ∈ [0, R]}. We prove
that it can only cut the negative real
axis; the argument of h goes to π/2
when x approaches infinity, and is 0
when x = 0.

where we defined h(G). The change in argument is calculated over the closed curve
δΩR = [ε, ε− iR]∪ δΩC ∪ [R, ε], shown in fig. 3.2. Here δΩC is the quarter circular
arc, shifted by ε to the right in the fourth quadrant in the complex plane. We can
parameterize it as δΩC = {z : z = ε+R exp(iθ), θ ∈ [−π/2, 0]}.

As h(G) is holomorphic on the interior of δΩR, the total change in its argument
yields the number of roots times 2π. Note that a zero of h(G) is a zero of εS and
vice versa. The radius R will be taken to infinity and ε to zero to capture the entire
fourth quadrant. The shift by ε is needed as the line segment given by [0i,−iR]
will cut 0 (implying that there might exist a purely complex root).

The change in argument for the curve given by [R, ε] is 0, as for any real positive
G the argument of h is 0. When R is sufficiently large, we have that |h−G3| < |G3|
on δΩC . We can therefore use G3 to find the change in argument of h on δΩC ,
which yields 3

2π.
For the [ε, ε − iR] curve, we parameterize it with G = ε − ix, x ∈ [0, R].

Analyzing the argument of h at the end points yield that it starts at 0, since it
is real and positive at x = 0. When x → ∞, the argument goes to π/2 as the
imaginary part diverges to +∞, as x3, whereas the real part diverges to −∞, as
x3/2. The goal is to show that h(ε− ix) only cuts the negative real axis. Then the
change in argument is −3

2π, as we only cut the negative real axis and the curve
departs from (β2 + ε2)3/2 + Sε− i0. A schematic picture of the curve is shown in
fig. 3.3.

It is now left to show that h(ε − ix) only cuts the negative real axis. As the
imaginary part of h(ε − ix) is always negative when 0 < x < β, h does not cut
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the real axis when 0 < x < β. For x ≥ β, we can consider the Taylor expansion in
ε to find where Im(h) = 0. It is not obvious that it is possible to Taylor expand
to find where the imaginary part is zero. In appendix A.5, we use an explicit
expression for the principal square root to show that it is possible, but it requires
more algebra. We find that

h(ε− ix) = ε
(
S − 3x

√
x2 − β2

)
+ i[(x2 − β2)

√
x2 − β2 − Sx] +O(ε2). (3.18)

Note that we have used x > 0 and ε > 0 to evaluate what sign to use for the
principle branch of the square root. Solving Im(h) = 0, we find that

Sx = (x2 − β2)3/2 +O(ε2). (3.19)

We can rewrite the real part of h to match this expression,

Re(h) = ε

x

√
x2 − β2

(
Sx√
x2 − β2 − 3x2

)
+O(ε2). (3.20)

Using eq. (3.19) to evalute the term containing S, and then using the inequality
−x2√x2 − β2 ≤ 0, we find that

Re(h) +O(ε2) = − ε
x

√
x2 − β2

(
2x2 − β2

)
≤ − ε

x

(
x2 − β2

)3/2
= −εS, (3.21)

where we in the last equality again used eq. (3.19). This means that Re(h) is
strictly negative for sufficiently small ε as both S and ε are strictly positive. Thus h
only cuts the real axis at strictly negative real values, and the change in argument
is −3

2π. All in all, the total change in argument is 0. As this is true for any
sufficiently small ε > 01, we have no roots in the fourth quadrant.

We have arrived to the main result of this section, all distributions yielding
a dielectric function that has the form of eq. (3.15) are linearly, electrostatically
stable. These distributions include ring distributions of a small finite width and of
zero width. It is known that 3D isotropic distributions are electrostatically stable,
which can be proven by showing that the marginal distribution of a 3D isotropic
distribution is decreasing monotonically in kinetic energy. We have found that
a class of 2D isotropic distributions is also electrostatically stable, even though
they have a clear non-monotonicity in kinetic energy, as seen in fig. 3.1b. The
stability of the cold ring distribution is a strong indication that likely a much
larger class of 2D-isotropic distributions, if not all, are stable. For these to be
stable, it is sufficient to show that the integral will yield a dielectric function on
the form eq. (3.15). Note that this concerns strictly the electrostatic stability; the
ring distribution is unstable to the (electromagnetic) Weibel instability.

1It must be true for any ε > 0, although it is not what we have proven here.
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3.2 PIC Simulations of Partially Open Rings
Since the ring is electrostatically, linearly stable, it is not expected to disintegrate
in an electrostatic simulation. This is indeed what we observe, and thus, being
of no additional interest, do not show these simulations here. In this section,
we will instead present particle-in-cell (PIC) simulations that test how robust the
ring distribution is to imperfections in its isotropy. We simulated several circular
arc distributions. These distributions consist of two circular arcs opposite each
other. The arcs were given the same radius, but with different angular span and
thermal width, between different simulations. We first describe the setup used,
and then discuss the results from our simulations. If the circular arc distribution
is sufficiently close to a ring, it collapses to one.

3.2.1 Simulation Setup
The simulations are performed using the PIC code Smilei (Derouillat et al., 2018),
and done in 2D3P. All cases use a mode speed of vm = 0.054c, corresponding to
kinetic energy of 750 eV. We normalize the time coordinate to ωpe, and thus the
value of the density will not appear explicitly.

In the cold case, all the electron macro-particles have the mode speed vm, and
are randomly distributed in polar angle in the pxpy-plane. For the 70 % closed
cases, there are two gaps at opposing polar angles with a gap size of 15 % (54◦),
and for the 90 % cases, there are two gaps at opposing polar angles with a gap
size of 5 % (18◦). The initial distributions can be seen in panel (a) of figs. 3.4–3.7.
For the warm distributions, the same setup was used, but we added a random
Maxwellian term corresponding to a temperature of T = 60 eV in both px and py.
Mathematically, the initial velocities are

vx0 = vm sin(Θ) + vth√
2
N (0, 1), (3.22)

and

vy0 = vm cos(Θ) + vth√
2
N (0, 1), (3.23)

where N (0, 1) is a normally distributed random variable with mean 0 and standard
deviation 1, and Θ is a random variable uniformly distributed on [ηπ, (1− η)π] ∪
[(1+η)π, (2−η)π] where η is 0.15 for the 70 % closed case and 0.05 in the 90 % closed
case. In the cold case, the N (0, 1) term is removed. Note that in the warm case,
the Maxwellian thermal broadening allows particles to obtain arbitrary angles,
although it does not fully close the gaps. We initialize the third velocity direction
to zero. The ions are placed randomly in space with zero velocity, and are not
evolved.
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Figure 3.4: The marginal distribution function in xpx-space in panels (a)–(e) (top
row), and the marginal distribution in pxpy-space in panels (f)–(j) (bottom row).
Time evolves when moving along each row. The initial distribution is a 90 %
closed warm ring with its mode speed at 0.054c (corresponding to kinetic energy
of 750 eV) and a width from a Maxwellian distribution with a temperature of 60 eV.

The simulation box size is 100λD × 100λD (defined for T = 60 eV) and is split
into 1024 × 1024 cells. The time step is approximately 64 % of the Courant-
Friedrichs-Lewy (CFL) time and we simulate for a duration of 120ω−1

pe for the
cold particles and 200ω−1

pe for the warm particles. Each cell contains on average 8
particles of each species, and the particles are randomly distributed in space with
a uniform distribution.

3.2.2 Dynamics of Incomplete Ring Distributions
We find that when the circular arc distribution is sufficiently close to a ring, it
collapses to one. We will present four cases: a 70 % closed cold ring, a 70 % closed
warm ring, a 90 % closed cold ring, and a 90 % closed warm ring. The evolution
of the 90 % closed warm and cold distributions are shown in fig. 3.4 and fig. 3.5,
respectively. In figs. 3.6 and 3.7 the evolution of the 70 % closed warm/cold ring
is shown. For all figs. 3.4–3.7, the top row shows the marginal distribution in pxx-
space, and the bottom row shows the marginal distribution in pxpy-space. The
coloring is normalized to the maximum of the distribution at each specific time.
Each column corresponds to a specific time. In all cases, except for the 70 % closed
cold ring, the distribution tends to a ring distribution, seen in panels (j) of figs.
3.4–3.6. Instead, the 70 % closed cold ring tends to something which could be an
intermediate step towards a Maxwellian, seen in fig. 3.7j.
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Figure 3.5: The marginal distribution function in xpx-space in panels (a)–(e) (top
row), and the marginal distribution in pxpy-space in panels (f)–(j) (bottom row).
Time evolves when moving along each row. The initial distribution is a 90 % closed
cold ring and with a constant speed of 0.054c (corresponding to kinetic energy of
750 eV).

In all cases, the instability produces phase-space signatures of a two-stream
instability (TSI). Bernstein, Greene & Kruskal (1957) find that plasmas support
non-linear (quasi-)steady state solutions, which we refer to, after the initials of
these authors, as BGK modes. There are examples in the literature for BGK
modes to form when the TSI reach a large amplitude. A certain class of BGK
modes is reminiscent of a hole in phase space (similar to the structure seen in
fig. 3.6e); these are called phase-space holes. Ghizzo et al. (1988) finds that such
holes, initially generated on scales corresponding to the fastest growing wave num-
ber of the instability, tend to undergo coalescence to form larger phase-space holes.
In the non-linear phase of the instability, these holes attract each other, and merge
successively. Eventually, only one hole is left, and small wavelength structures are
damped. This merging can be understood analytically by examining the eigen-
functions of the perturbations (Siminos, Bénisti & Gremillet, 2011).

We observe the creation and merging of phase-space holes in the top row of
figs. 3.4–3.7. For all cases, except the 70 % warm case, successive merging events
make the marginal pxpy-distribution more ring shaped (bottom row of figs. 3.4,
3.5 and 3.7) During a merge, the ring shape is disturbed. In the final time step,
after all merges, the distribution is almost completely ring shaped (panel (j) of
figs. 3.4–3.7). When we start with a complete ring distribution, we do not obtain
any phase-space holes (not shown here).

Interestingly, even though we observe holes in the xpx distributions, the pxpy
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Figure 3.6: The marginal distribution function in xpx-space in panels (a)–(e) (top
row), and the marginal distribution in pxpy-space in panels (f)–(j) (bottom row).
Time evolves when moving along each row. The initial distribution is a 70 %
closed warm ring with its mode speed at 0.054c (corresponding to kinetic energy
of 750 eV) and a width from a Maxwellian distribution with a temperature of 60 eV.

marginal distribution in the final time step is ring shaped. For the 90 % closed
cases, the density profile in x tends to the average density after the instability
phase. To show this, we compare the Fourier modes of the distribution fke with
f0e from eq. (2.14). The modes fke are the spatial fluctuations of the distribution.
We can write the spatially averaged root mean square density fluctuation δne
through

(δne)2 :=
〈(ˆ

fed3v − ne

)2〉
x

=
∑
k 6=0

ˆ
fke(v, t)d3v

ˆ
f−ke(v′, t)d3v′. (3.24)

In fig. 3.8, δne/ne is plotted over time, using the l.h.s. of eq. (3.24)2. As we see,
the density fluctuations rise initially due to the instability, but then later decay
when the average velocity distribution becomes sufficiently isotropic (ring shaped)
to become linearly stable. For all cases except the 70 % warm case, density fluctu-
ations tend to small values over time. Instead, in the 70 % warm case, the density
fluctuation seem to saturate. We expect from linear theory that small density
fluctuations will eventually disappear through phase mixing and Landau damp-
ing. However, as we noted previously, there can be equilibrium distributions which
are non-homogeneous in space (see for example eq. (2.12)). These distributions –

2We analytically perform the dy integral by approximating the y density fluctuations to be
0, due to numerical limitations on resolving the full 2D fluctuations.
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Figure 3.7: The marginal distribution function in xpx-space in panels (a)–(e) (top
row), and the marginal distribution in pxpy-space in panels (f)–(j) (bottom row).
Time evolves when moving along each row. The initial distribution is a 70 % closed
cold ring and with a constant speed of 0.054c (corresponding to kinetic energy of
750 eV).

the previously mentioned BGK modes – can be non-linearly stable. Although it is
very interesting to know if the final distribution is a non-linear stable distribution
or not, it is out of the scope of this thesis.

We also notice that the marginal py distribution changes much slower (than
the marginal px distribution), seen best by the sharp flat edges in fig. 3.7g. This is
due to that instabilities in py are much less prominent. When examining the xy-
distribution, it is clear that there are almost no perturbations in the y-direction.
This is expected, as the initial marginal distribution function in py is proportional
to the one in fig. 3.1b, but zero at about [−1.0vm,−0.9vm] and [0.9vm, 1.0vm], which
is much less like a two-stream and more like Maxwellian or a flat distribution.

A possible explanation why the distribution closes into a ring can be the mini-
mization of free energy. Consider an electron with a fixed energy, and only moving
in the xy-plane. Also consider the case where no large electrostatic potentials are
present. Then the particle is constrained to be on the circle in vxvy-space (as
the kinetic energy is approximately conserved). With this constraint the free en-
ergy is minimized by maximizing its entropy. The entropy is maximized when the
particle is allowed to be anywhere on circle in phase space, corresponding to the
distribution assuming a ring shape. For larger energy transfers in particle–wave
interactions (more perturbed), one could imagine that the distribution changes
more and instead reach the Maxwell distribution.

One limitation of these simulations is that a particle with vx = vm = 0.054c,
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Figure 3.8: Root mean square density fluctuations relative to the average density
for the four different cases. As the ring becomes more and more closed, the pertur-
bations become smaller and smaller. Note that the range on the time axis differs
between the panels.

and xmax ≈ 1cω−1
pe , returns to its original x position after a time of t ≈ 20ω−1

pe , due
to the periodicity of the simulation domain. To make sure this does not impact
the qualitative result, we simulated the cold 70 % case and 90 % case with doubled
box size and doubled number of cells in each direction, keeping the same number of
particles per cell (not shown in separate figures). Then, consistently with previous
results (Ghizzo et al., 1988), the number of holes doubled. For the 70 % case it
also becomes clearer that it does not evolve into a ring. However, the 90 % case
still evolves into a ring.

Using a different boundary condition could affect the result. For example,
Zhang et al. (2019, S1) finds that for a Maxwellian distribution (linearly polarized
laser), streaming instabilities can be driven by streams formed by the reflections
from the sheath. This should also be the case for the ring distribution, but is
outside the scope of this thesis.
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Chapter 4

Effects of Collisions on the Weibel
Instability

In this chapter, we will consider the effects of collisions on the Weibel instabil-
ity. We will examine the case when the electron distribution function is a bi-
Maxwellian, and the anisotropy is of order unity. We start by describing the
simulation setup, and the methods used to calculate growth rates numerically and
semi-analytically. Finally, we investigate the effect of collisions on otherwise the
same setup. We compare results with previously known analytical results, and
find good agreement. Using the previous analytical model combined with our cal-
culation of the growth rate, we give a brief outlook on collisional effects on the
Weibel instability in laboratory plasmas.

4.1 Simulation Setup
We use Smilei (Derouillat et al., 2018) for the PIC simulations of the bi-Maxwellian
distributions. The simulations are performed in 2D3P. The bi-Maxwellian is ini-
tialized with

T‖ ≡ me

〈
v2
z

〉part

e
= 1.5 keV, (4.1)

and

T⊥ ≡ me

〈
v2
x

〉part

e
= me

〈
v2
y

〉part

e
= 5 keV. (4.2)

Thus, the distribution function in velocity space is given by

f(vx, vy, vz) = ne
m3/2
e

2πT⊥
√

2πT‖
exp

(
−me

v2
x + v2

y

2T⊥

)
exp

(
−me

v2
z

2T‖

)
, (4.3)
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where me is the electron mass and ne is the electron density1. The distribution
has no imposed spatial dependence at the initialization, although the randomness
of the macro-particle locations are sufficient as seed fluctuations. When we use
collisions in our simulations, we scan the density to explore the impact of collisions.
Without collisions, we can normalize the time coordinate to ωpe and then the
density does not appear explicitly.

The simulation box is taken to be 1000λD‖ × 50λD⊥ where λD‖ is defined from
T‖ and λD⊥ is defined from T⊥. We divide the box into 8192 × 512 cells, and
initialize with 50 macro particles per cell and species. In order to reduce storage
requirements, we only output field data from every 128th point and 16th point in
the parallel and transverse directions, respectively, yielding a 64× 32 output grid.

Both electrons and ions are given random initial positions and velocities. The
ions are either He+ or He2+ with an isotropic temperature of 1.5 keV. In reality,
helium would be fully ionized at temperatures in the keV range. However, by
varying the charge, we obtain another way to vary the collision frequency.

For each setup, a total of three simulations are performed. These are done
to reduce the impact of the specific form of the initial seed, as we have placed
the particles with random initial positions and velocities. A random placement
corresponds to that the number of particles in a given volume follow the binomial
distribution. For large number of particles in the volume, this is very close to a
normal distribution, meaning we seed with almost white noise.

Simulations last for at least 300ω−1
pe , and the time step is approximately 58 %

of the CFL time. How long each of the simulations lasts is given in table 4.1. Note
that the growth rates are very small compared to the plasma frequency, forcing
the long simulation times. Since the Weibel growth rate is lower (relative to ωpe)
for higher densities (higher collision frequency), the simulations are run longer at
higher densities.

4.2 Analysis of Growth Rates
In this section, we will go through how we calculate the different growth rates. We
will start by explaining how the growth rates are calculated from the simulations,
and then cover how we compute the semi-analytical solutions. Finally, we com-
pare the semi-analytical growth rates with the growth rates from the collisionless
simulations.

1We simulate in two spatial dimensions, so the density in the simulations is a surface density.
To achieve the 3D density, the macro-particles are weighted to represent a line density instead
of a number of particles.
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Table 4.1: Simulation parameters used for each value of the density ne. The first
column shows the density, the second column the ion charge, and the last column
the simulation times.

ne (cm−3) Z Simulation Time (ω−1
pe )

– – 300
1× 1018 1 300
1× 1020 1 300
1× 1022 1 300
1× 1022 2 400
1× 1023 1 400
1× 1023 2 400
1× 1024 1 400
1× 1026 1 500

4.2.1 Numerical Computation of Growth Rates
To find the growth rates numerically, we fit an exponential to the spectral repre-
sentation of the observed magnetic field. We have chosen the simulation box to be
in the xz-plane, where the z-direction corresponds to the direction with the lowest
temperature.

First we need the wave vector spectral representation of the magnetic field. To
obtain the magnetic field fluctuation amplitude as a function of kz, we first average
the magnetic field over x. Then we use SciPy’s FFT routine (Virtanen et al.,
2020) to obtain the spectral representation of the y component of the magnetic
field. Growth rates are obtained by minimizing the L2 norm between the spectral
representation and an unknown exponential function. Minimization is done with
SciPy’s minimize function, where the constant pre-factor as well as the exponential
growth rate are free parameters.

We notice that the magnetic field has modes oscillating in time, in addition
to a growing mode, as seen in fig. 4.1a. The oscillation frequency is much larger
than the growth rate. If an oscillating mode has an amplitude comparable or large
compared to the initial growing mode, there will be a large error in the computed
growth rate. To reduce the effect of the oscillations, we time-average the spectral
representations over 2ω−1

pe . Moreover, we find that the change in the instantaneous
temperature anisotropy caused by the instability lowers the growth rate. Due to
these two factors, the time interval in which we minimize the L2 norm has to be
chosen carefully. Therefore, the growth rates are calculated in the beginning of the
increase in electromagnetic energy, to find a compromise between the need for large
amplitude in the growing mode and having a sufficiently constant instantaneous
temperature.
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To show these two competing factors, we plot the electromagnetic energy evo-
lution in fig. 4.1a as well as the inverse anisotropy in fig. 4.1b, for the three colli-
sionless simulations. The inverse anisotropy is given by

A−1 ≡
T‖
T⊥
, (4.4)

and is thus a measure on the change in instantaneous temperature. In these
simulations, the energy starts rising at the time tωpe ≈ 150. Already at tωpe = 250,
the anisotropy has changed visibly, and at tωpe ≈ 300 the change is substantial.
At t ≈ 200ωpe, we find a good compromise between constant anisotropy, and
sufficiently large growing-mode amplitude.

We noticed that the growing modes seed fluctuation level is different in different
simulations, due to the random placement of particles. Therefore, a time shift is
performed to make the electromagnetic energy graphs match. This is done by
shifting time such that the energy curves overlap at the end of the simulations,
when the impact of the oscillations is the smallest. With this time shift, the energy
curve in the different simulations follow each other, apart from the early, oscillation
domination, parts of the simulations. Note that more (macro-)particles reduces
the initial seed fluctuations.

For each simulation setup, we have done three simulations. The only difference
between these simulations is the initial positions and initial velocities of the macro-
particles, due to their random initialization. We estimated the error with the
standard deviation, given by

σ2 = 1
2

3∑
i=1

(γi(k)− γ̄(k))2, (4.5)

where

γ̄(k) = 1
3

3∑
i=1

γi(k), (4.6)

and γi(k) is the calculated growth rate for simulation i, as a function of wave
vector. The error bars plotted in the graphs throughout this chapter represents
this standard deviation. This estimate might, however, not be very accurate, given
the small sample size.

4.2.2 Semi-Analytical Solutions to the Plasma Dispersion
To find the roots of the plasma dispersion relation given by eq. (2.48), we im-
plemented a Newton solver2 in the programming language C. The solver uses the

2The solver is available from https://github.com/albjohan/NSWeibel2Diso.
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Figure 4.1: In panel (a), we show the total electromagnetic energy for the colli-
sionless simulations. We have shifted the time such that the energy graphs match
that of the final time step of the simulation reaching the lowest electromagnetic
energy. This is done since the initial positions are random, and thus the time at
which the simulation reaches the end of linear phase is also random. With this in
mind, we see that the growth of electromagnetic energy is very similar in the three
cases. In panel (b), we show the inverse anisotropy versus the shifted time. The
inverse anisotropy is given by A−1 = T‖/T⊥, and it changes significantly before the
growth in electromagnetic energy has ended (which is after the simulation ends).
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normalization given by c = 1 and ωpe = 1. We solve εxx = 0 from eq. (2.48), in the
limit where the ion dynamics is negligible, in other words, the sums only include
the electron species. The general concept of a Newton solver is to iterate with

xn+1 = xn −
f(xn)
f ′(xn) , (4.7)

where f is the function whose zeros we want to find. The solver uses the variable
ω = ip. The derivative of εxx w.r.t. ω is

ε′xx(ω) = 2ω − A

kvthz
(2ζ + (2ζ2 − 1)Z(ζ)), (4.8)

where A = T⊥/T‖ is a measure of the anisotropy, ζ = ω/(k
√

2 〈v2
z〉

part
e ), and Z is the

plasma dispersion function. Equation (2.48) is valid for a Maxwellian distribution
in vz and we thus have that vthz ≡

√
2T‖/me. It is valid for any distribution in vx,

as long as vx and vz are independent. At each step, the new value is given by

ωn+1 = ωn −
ω2
n − k2 − 1 + A(1 + ζnZ(ζn))

2ωn − A
kvthz

(2ζn + (2ζ2
n − 1)Z(ζn))

. (4.9)

To calculate Z(ζ), we use the identity

Z(ζ) = i
√
π exp

(
−ζ2

)
[1 + i erfi(ζ)], (4.10)

where erfi(ζ) is the imaginary error function. The standard math library is used
to calculate exp(−ζ2) for complex numbers, and libcerf (Johnson & Wuttke) is
used to calculate erfi(ζ). Starting points for the iteration are chosen on a uniform
3D grid in (ω, γ, k) space. The user determines which ranges are covered, and
how dense the grid is. We have scanned in ranges of 0 < ω < 2, 0 < γ < 2 and
0 < k < 200, with various density. Typically, we have used 100 points in each
direction and reduced the maximum values scanned successively.

4.2.3 Comparison Between Numerical and Analytical Re-
sults

The comparison of numerical and analytical growth rates as a function of k is
shown in fig. 4.2. Semi-analytical solutions for T‖ = 1.5 keV and T⊥ = 5 keV are
shown with the red solid line. Growth rates from the simulations are calculated
in the interval tωpe ∈ [190, 210] (blue circles) as well as tωpe ∈ [210, 230] (green
diamonds), where t is the shifted time. There is a slight shift towards lower growth
rates at the later time interval, which can be explained by the small reduction in
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Figure 4.2: Growth rate from simulations in blue circles and green diamonds, cal-
culated as described in section 4.2.1 in different time intervals, and semi-analytical
growth rate in the linear limit in red line, calculated as described in section 4.2.2.
Difference between the growth rates calculated for tωpe ∈ [190, 210] (blue circles)
and tωpe ∈ [210, 230] (green diamonds) could possibly be due to the change in
anisotropy.

anisotropy. Linear theory and simulations are found to agree well, within the
accuracy of the PIC simulations.

Note that the growth rates from the simulations at the smallest non-zero wave
numbers are significantly smaller than the analytical prediction (red curve). That
the numerical estimate for γ at kc/ωpe ≈ 0.25 is essentially zero in the first time
interval (blue circle), and it is comparable to (but still smaller than) the theoretical
value in the second time interval (green diamond), indicates that it took a longer
time for this mode to grow to significant amplitudes to be suitable for a growth
rate estimate. In the simulations performed, we observe a trend that the initial
magnetic field energy seed increases with increasing k. The late growth of the
modes caused by the weak seeding at low k is causing the apparent discrepancy
between the simulated and analytical growth rates.
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4.3 Collisional Effects on the Weibel Instability
Growth

In this section, we examine numerically the effect of collisions on the Weibel in-
stability, in the presence of anisotropic electron distributions. The collision model
used is the one implemented in Smilei (Derouillat et al., 2018), developed by Nanbu
(1997) and Nanbu & Yonemura (1998). It is further improved by Perez et al.
(2012). We include both electron–ion, as well as electron–electron collisions. The
density and ion charge are varied between the simulations, yielding different colli-
sion frequencies. As collisions depend differently on the density compared to the
collisionless Weibel growth rate, it is no longer possible to remove the explicit
density dependence by normalizing to the plasma frequency.

4.3.1 Collisional stabilization of the Weibel Instability
We vary the electron density and ion charge to find when collisions dominate the
Weibel instability completely. The maximum growth rate versus the collision fre-
quency, ν (eq. (2.60)), is shown in fig. 4.3. Numerical growth rates are shown by
the blue diamonds. The maximum growth rate from the semi-analytical solution is
shown with the red line. We show the correction derived in Wallace et al. (1987),
eq. (2.59), with a dashed green line. Note that we do not use their collisionless ana-
lytical solution of the growth rate, but rather the solution from our semi-analytical
solver. The collisionless growth rate they give has a small discrepancy compared
to our semi-analytical solution. Our simulations confirm their theoretical estimate
of the collisional effect on the Weibel instability. Using Z = 2, we find that in this
setting, the Weibel instability is stabilized at ne ≈ 2× 1024 cm−3, corresponding
to ν/ωpe ≈ 0.039.

When the growth rate was derived analytically, the initial value problem was
considered. What we choose as our initial time in the analytical calculation is
arbitrary, as long as the perturbations are small at that time. The collisions have
reduced the anisotropy at the time for which we calculate the growth rate numeri-
cally, in addition to directly lowering the growth rate. Therefore, the initial seed in
our simulations is of higher importance for higher collision frequencies, which could
be the cause for the large error at the second highest collision frequency. However,
for the highest collision frequency considered, collisions reduce the growth rate so
much that the growing mode never becomes visible. In this case, collisions have
almost completely isotropized the distribution function at the final time step.

The Krook model is a simple collision model, and differs from the detailed
model implemented in Smilei. This could be a possible cause to the difference
observed in our numerical simulations to the analytical model. Surprisingly, the
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Figure 4.3: Maximum numerical growth rate versus collision frequency. In blue
diamonds, the result from the simulations are shown. Semi-analytical solution
without collisions is shown with the solid red line, and corrections to it from
eq. (2.59) is shown with the dashed green line.

models agree very well. This level of agreement might not be reached with other
distribution functions, as the Krook model deforms the distribution function to
a Maxwellian distribution exponentially. As we use a bi-Maxwellian distribution,
the marginal distribution is Maxwellian for any of the parallel/orthogonal axes
(but with a different width).

4.3.2 Outlook on Experiments
Although the parameters in the simulations are experimentally unfeasible (high
temperature/density, some cases with unphysical charge), it should be possible to
scale the parameters to more experimentally suitable values. As the simulations
agree well with the Krook model’s prediction, we can expect that the Krook model
can give a guideline as to at which collision frequencies we can expect a signifi-
cant effect on the Weibel growth rate. Note that the simulation parameters were
chosen such that they satisfy the CFL criteria, simulate over a time such that
tmaxγ � 1, and resolve λD, within the computational cost. If λD is to be resolved
in the PIC simulation, experimentally accessible parameters may not be feasible
to simulate using the PIC approach, due to the increasing requirements on the
spatial resolution at lower temperatures.

If we scale to an electron density of 5× 1018 cm−3, and consider a bi-Maxwellian
electron distribution with T‖ = 60 eV and T⊥ = 214 eV, we obtain semi-analytically
a collisionless maximum growth rate of γmax ≈ 0.0059ωpe. Using eq. (2.59) with
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He2+ ions, we find that the corrected maximum growth rate is γC
max ≈ −0.0063ωpe.

In this setting, according to the model, collisions would suppress the Weibel in-
stability. Lowering the density to 1017 cm−3 instead yields a corrected growth rate
of γC

max ≈ 0.0036ωpe. That is, the Weibel instability is not suppressed completely.
It would be interesting if experiments could be carried out, testing the validity of
both our simulations and the analytical derivation by Wallace et al. (1987).
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Chapter 5

Conclusions

In this thesis, we have studied instabilities in plasmas, where the electron dis-
tribution is bi-Maxwellian or ring shaped. It is known that a bi-Maxwellian is
electrostatically stable, because it decreases monotonically with energy in all di-
rections. In this thesis, we have used linear stability theory to show analytically
that 2D ring distributions are stable against electrostatic instabilities. Further-
more, we have also shown that the ring distribution with a small thermal width
is also electrostatically stable. The stability of the ring-like distributions is re-
markable because of its non-monotonicity (even that of its marginal distributions,
unlike for 3D-isotropic distributions) and sharp features in velocity space.

We further find, by employing PIC simulations, that incomplete (anisotropic)
rings can collapse to a ring distribution (isotropic) through an electrostatic insta-
bility. This electrostatic instability resembles the two-stream instability in phase
space, and it is capable of creating BGK modes (Bernstein, Greene & Kruskal,
1957). The resulting non-linear modes have a hole-like structure and they tend
to merge until a single phase-space hole is left, consistent with previous results
concerning similar structures (Ghizzo et al., 1988; Siminos, Bénisti & Gremillet,
2011). Depending on the gap size in the incomplete rings, we find that they either
collapse to closed ring-like distributions, or to a more simple Maxwell-like distri-
bution. Supporting our analytical results, simulations with a complete (isotropic)
ring distribution do not generate an instability.

Although the ring-shaped distribution is found to be analytically stable, this
thesis studies such distribution functions with periodic boundary conditions, and
does not take boundary effects into account. It would therefore be interesting to
study these boundary effects theoretically. For example, for a Maxwellian dis-
tribution, reflective boundary conditions create streams which drive streaming
instabilities (Zhang et al., 2019). This break in isotropy at the boundary should
also create streams in the case of a ring distribution.

We also investigate the effects of collisions on the Weibel instability of a bi-
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Maxwellian electron distribution, through PIC simulations. Collisions and the
Weibel instability compete to isotropize the distribution function. It is found that
the direct effect of collisions on the Weibel growth rate agrees well with analytical
results using the Krook model (Wallace et al., 1987). For order unity anisotropies,
their analytical work predicts that collision frequencies must be comparable to the
largest Weibel growth rate in order to suppresses the Weibel instability completely.
We have also found that the evolution of the non-fluctuating part of the distri-
bution function is important during the time the instability grows to significant
values. Therefore, the initial strength of the seed fluctuations in the beginning of
the simulation or experiment can impact the observed growth.

Our results indicate that collisions could play a major role in the Weibel insta-
bility in a laboratory setting. It would be very interesting if experiments producing
similar anisotropy, e.g. employing the field-ionization method employed by Zhang
et al. (2019), could test theoretical predictions regarding the suppression of the
Weibel instability.
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Appendix A

Supplementary Material for the
Analytical Proof of Electrostatic
stability of Ring Distributions

A.1 Finding the Marginal Distribution of the Cold
Ring

The marginal distribution is given by

fx(vx) = ne

2πvm

ˆ ∞
−∞

δ
(√

v2
x + v2

y − vm
)
dvy. (A.1)

For any |vx| > vm, we have that
√
v2
x + v2

y − vm > 0, so
ˆ ∞
−∞

δ
(√

v2
x + v2

y − vm
)
dvy = 0. (A.2)

When |vx| < vm, we can use the following
ˆ
δ(b(x))dx =

∑
x0∈{x:b(x)=0,b′(x)6=0}

1
|b′(x0)| , (A.3)

for delta distributions. We let g(vy) =
√
v2
x + v2

y−vm be the argument to the delta
distribution. The derivative is given by dg

dvy = vy√
v2
x+v2

y

, which is 0 when vy = 0. We

see that g = 0 if and only if vy = ±
√
v2

m − v2
x, which is real when vx ≤ vm. Then,
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for |vx| < vm we arrive to

fx(vx) = ne

2πvm

ˆ ∞
−∞

δ
(√

v2
x + v2

y − vm
)
dvy (A.4)

= ne

2πvm

∑
vy=±
√
v2

m−v2
x

∣∣∣∣∣∣
√
v2
x + v2

y

vy

∣∣∣∣∣∣ = ne

π

1√
v2

m − v2
x

. (A.5)

A.2 Evaluating the Integral in the Dielectric Func-
tion for a Cold Ring

We start with eq. (2.32), and consider the case when Re(p) > 0. This is eq. (2.32a),
with limits as plus and minus infinity. Before specifying which distribution function
we use, we can integrate by parts

ˆ ∞
−∞

f ′0α(vx)
vx − i pk

dvx =
[
f0α(vx)
vx − i pk

∣∣∣∣∣
∞

−∞
+
ˆ ∞
−∞

f0α(vx)
(vx − i pk )2 dvx. (A.6)

We do not cross any poles since Re(p) > 0. The boundary term is zero since f
goes to zero at ±∞, as it is a distribution function. Now we can substitute the
marginal distribution, eq. (3.2), into the expression

ˆ ∞
−∞

f0α(vx)
(vx − i pk )2 dvx =

ˆ vm

−vm

ne

π

1√
v2

m − v2
x

1
(vx − i pk )2 dvx. (A.7)

The reason why we first integrate by parts and then substitute the marginal dis-
tribution, is to deal with the delta distribution correctly. Changing variables to
u = vx/vm, the limits change to −1 and 1. We also multiply with the prefactor in
front of the integral in eq. (2.31), to find

ω2
pe

nek2

ˆ vm

−vm

ne

π

1√
v2

m − v2
x

1
(vx − i pk )2 dvx = β−2 1

π

ˆ 1

−1

1√
1− u2

1
(u− iα)2 du, (A.8)

where we introduced α = p/(vmk) and β = vmk/ωpe. This result yields eq. (3.3).
Gradshteyn & Ryzhik (2007, sec. 2.252) suggests the substitution ξ = −i(u−

iα)−1 to transform the form of the integral. The choice of the −i prefactor is made
on purpose. We will later want that

√
ξ2 = ξ for the principal branch of the square

root. It is indeed the −i pre factor that achieves this, since

ξ = −i
u− iα

= −i
u+ Im(α)− iRe(α) = Re(α)− i(u+ Im(α))

Re(α)2 + (u+ Im(α))2 . (A.9)
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Now recall that α = p/(vmk) and that we have chosen the case when Re(p) > 0,
which translates directly to Re(α) > 0. Using eq. (A.9), we can see that this
implies Re(ξ) > 0, which is the requirement for

√
ξ2 = ξ.

Inverting the relation between ξ and u, we find the relation between the differ-
entials

1
ξ

= iu+ α⇒ i

ξ2 dξ = du⇒ −idξ = 1
(u− iα)2 du. (A.10)

It removes the (u − iα)−2 factor in the integrand, which is the point with the
substitution. Now we will need to evaluate the square root in the integrand (in
r.h.s. of eq. (3.3)). We find that

1
ξ
− α = iu⇒

(
1
ξ
− α

)2

= −u2, (A.11)

so that ξ times the square root can be expressed as

ξ
√

1− u2 =
√
ξ2 + (1− αξ)2 =

√
((1 + α2)ξ − α)2 + 1

√
1 + α2

, (A.12)

where we first used that
√
ξ2 = ξ to move it into the square root, and then

completed the square in ξ. Inverting and moving the ξ factor to the r.h.s. we find

1√
1− u2

=
√

1 + α2ξ√
((1 + α2)ξ − α)2 + 1

. (A.13)

We are now ready to substitute eq. (A.10) and eq. (A.13) into the integral, to
obtain

β−2 1
π

ˆ 1

−1

1√
1− u2

1
(u− iα)2 du = β−2−i

π

ˆ u=1

u=−1

√
1 + α2ξ√

((1 + α2)ξ − α)2 + 1
dξ. (A.14)

We note that the nominator is almost the inner derivative of the square root
factor. By extracting a factor (1 + α2)−1/2 and then adding and subtracting α in
the nominator, we obtain

β−2−i
π

ˆ u=1

u=−1

√
1 + α2ξ√

((1 + α2)ξ − α)2 + 1
dξ

= β−2 −i
π
√

1 + α2

ˆ u=1

u=−1

(1 + α2)ξ − α + α√
((1 + α2)ξ − α)2 + 1

dξ,
(A.15)
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where (1 + α2)ξ − α is half the inner derivative of the square root. We have that

β−2 −i
π
√

1 + α2

ˆ u=1

u=−1

(1 + α2)ξ − α√
((1 + α2)ξ − α)2 + 1

dξ

= β−2 −i
π
√

1 + α2

[√
((1 + α2)ξ − α)2 + 1

∣∣∣∣∣
u=1

u=−1
.

(A.16)

We have arrived to the r.h.s. of eq. (A.12), which, by examining the l.h.s of
eq. (A.12), shows that the integral is 0. This finally leads to

β−2 −i
π
√

1 + α2

ˆ u=1

u=−1

(1 + α2)ξ − α + α√
((1 + α2)ξ − α)2 + 1

dξ

= β−2 −i
π
√

1 + α2

ˆ u=1

u=−1

α√
((1 + α2)ξ − α)2 + 1

dξ,
(A.17)

which results in the equality in eq. (3.4).
By substituting η = (1 + α2)ξ − α, we find

β−2 −i
π
√

1 + α2

ˆ u=1

u=−1

α√
((1 + α2)ξ − α)2 + 1

dξ

= β−2 −iα
π(1 + α2)3/2

ˆ u=1

u=−1

1√
1 + η2 dη,

(A.18)

where we now see that the integrand is the derivative of sinh−1(η). To know that
sinh−1(η) is analytical on our integration path, we need to analyze the path in the
complex plane. Expressing η as a function of u, we find

η = −i1 + α2

u− iα
− α

= −i1 + Re(α)2 − Im(α)2 + 2iRe(α) Im(α)
u+ Im(α)− iRe(α) − Re(α)− i Im(α).

(A.19)

Algebraic simplification yields

η = Re(α)(1− u2)
(u+ Im(α))2 + Re(α)2

− i(1 + u2) Im(α) + u(1 + Re(α)2 + Im(α)2)
(u+ Im(α))2 + Re(α)2 .

(A.20)
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We see that Re(η) > 0 for u in (−1, 1), if Re(α) > 0. Since α = p/(vmk) and we
have chosen Re(p) > 0, it follows that Re(α) > 0. Thus we do not pass the branch
cuts of sinh−1, and we obtain

β−2 −iα
π(1 + α2)3/2

ˆ u=1

u=−1

1√
1 + η2 dη

= β−2 −iα
π(1 + α2)3/2

[
sinh−1(η)

∣∣∣∣∣
u=1

u=−1
,

(A.21)

which is the equality in eq. (3.5).
We can use eq. (A.20) to analyze the limiting behavior of η at the integration

limits. For u = ±1, Re(η) = 0. When u = 1, we have that

Im(η) = −2 Im(α) + 1 + Re(α)2 + Im(α)2

(1 + Im(α))2 + Re(α)2 = −1. (A.22)

Instead, when u = −1, we find

Im(η) = −2 Im(α)− 1− Re(α)2 − Im(α)2

(−1 + Im(α))2 + Re(α)2 = 1. (A.23)

In addition, sinh−1(η) = log
(
η +
√
η − i

√
η + i

)
. When u = ±1, we find that√

η − i
√
η + i = 0. Thus the lower bound is given by log(i) = iπ/2, and the upper

bound is given by log(−i) = −iπ/2. Finally, we arrive at[
sinh−1(η)

∣∣∣∣∣
u=1

u=−1
= i(−π2 −

π

2 ) = −iπ, (A.24)

so that

β−2 −iα
π(1 + α2)3/2

[
sinh−1(η)

∣∣∣∣∣
u=1

u=−1
= −β−2 α

(1 + α2)3/2 . (A.25)

This can be rewritten as

−β−2 α

(1 + α2)3/2 = −
p
ωpe(

v2
mk

2

ω2
pe

+ p2

ω2
pe

)3/2 , (A.26)

and can be directly replaced into the the dielectric function (eq. (2.31)). This
results in eq. (3.7).

54



A.3 Integral in Dielectric Function for General
2D-isotropic Distribution

Consider a general isotropic distribution in 2D momentum space f(vx, vy) = f(vr).
As the distribution function is 2D isotropic, we can choose the wave vector arbi-
trarily without loss of generality, and choose it to be in the x-direction. The
integral is given by

ω2
pe

k2
1
ne

ˆ ∞
−∞

dfx(vx)
dvx

vx − i pk
dvx =

ω2
pe

k2

ˆ ∞
−∞

fx(vx)(
vx − i pk

)2 dvx

=
ω2

pe

k2

ˆ ∞
−∞

ˆ ∞
−∞

f(vr)(
vx − i pk

)2 dvydvx,
(A.27)

where we first integrated by parts and then used that the marginal distribution is
given by

fx(vx) =
ˆ ∞
−∞

f(vr)dvy, (A.28)

where vr =
√
v2
x + v2

y. The boundary term from partial integration is 0 as f is a
distribution function, which means that it, along with its derivatives, tends to 0
at ±∞. We can express f in terms of a convolution with a delta distribution and
itself,

f(vr) =
ˆ ∞

0
δ(vm − vr)f(vm)dvm. (A.29)

Using this trick, the integral becomes

ω2
pe

k2
1
ne

ˆ ∞
−∞

ˆ ∞
−∞

f(vr)(
vx − i pk

)2 dvydvx

=
ω2

pe

k2
1
ne

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
0

f(vm)δ(vm − vr)(
vx − i pk

)2 dvmdvydvx.
(A.30)

We would now like to interchange integration order so that we can use our
cold ring results. To do this, we invoke Fubini’s theorem. It holds for Re(p) 6= 0,
since then the denominator, (vx − ip/k)2, is never 0. Then, the absolute value
of 1/(vx − ip/k)2 acquires a maximum, and thus the integral must be less than a
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constant times the integral over f , which is finite. Thus Fubini’s theorem holds,
allowing us to interchange the order of the integrals, to obtain

ω2
pe

k2
1
ne

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
0

f(vm)δ(vm − vr)(
vx − i pk

)2 dvmdvydvx

=
ˆ ∞

0
f(vm)

ω2
pe

k2
1
ne

ˆ ∞
−∞

ˆ ∞
−∞

δ(vm − vr)(
vx − i pk

)2 dvydvxdvm.

(A.31)

We can now use what we found from the cold ring to evaluate the dvxdvy integral
to
ˆ ∞

0
f(vm)

ω2
pe

k2
1
ne

ˆ ∞
−∞

ˆ ∞
−∞

δ(vm − vr)(
vx − i pk

)2 dvydvxdvm

= −
ˆ ∞

0

2πvm

ne
f(vm)

p
ωpe(

v2
mk

2

ω2
pe

+ p2

ω2
pe

)3/2 dvm.
(A.32)

Finally, by changing notation from vm to vr in the last integral we obtain that

ω2
pe

k2
1
ne

ˆ ∞
−∞

dfx
dvx

vx − i pk
dvx = −2π

ne

ˆ ∞
0

f(vr)
p
ωpe(

v2
rk

2

ω2
pe

+ p2

ω2
pe

)3/2vrdvr. (A.33)

A.4 Dielectric Function for Warm Ring Distri-
bution

We create the warm ring with a rotated Maxwellian,

f(vx, vy) = N exp

−
(√

v2
x + v2

y − vm
)2

v2
d

, (A.34)

where N is the normalization constant such that the distribution integrates to ne,
vm is the speed at which the distribution function attains its maximum (the mode
speed), and vd corresponds to the thermal width of the distribution around the
mode speed. The normalization constant is

N = ne

2π

{
v2
d

2 exp
(
−v

2
m
v2
d

)
+ vmvd

2
√
π
[
1 + erf

(
vm

vd

)]}−1

. (A.35)
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By inspecting eq. (3.8), we can note that the factor multiplying f has a prim-
itive function in vr given by

χ(vr) =
p
ωpe√

v2
rk

2

ω2
pe

+ p2

ω2
pe

, (A.36)

up to a constant factor. With χ, we can express vr as

vr = p

k

√
1
χ2 − 1. (A.37)

We have that

dχ
dvr

= − k2

ω2
pe

p
ωpe
vr

(v2
rk

2

ω2
pe

+ p2

ω2
pe

) 3
2
. (A.38)

The limits are given by χ → 0 as vr →∞, and χ = 1 for vr = 0. Substituting to
χ in the integral in eq. (3.8), we obtain

2π
ne

ˆ ∞
0

f(vr)
p
ωpe(

v2
rk

2

ω2
pe

+ p2

ω2
pe

)3/2vrdvr = 2π
ne

ω2
pe

k2

ˆ 1

0
f

(
p

k

√
1
χ2 − 1

)
dχ, (A.39)

where we have interchanged order of the limits in exchange for the minus sign
in the derivative. Inserting the expression for the rotated Maxwellian (eq. (3.9))
yields

2π
ne

ω2
pe

k2

ˆ 1

0
f

(
p

k

√
1
χ2 − 1

)
dχ = 2π

ne

ω2
pe

k2

ˆ 1

0
N exp

−
(
p
k

√
1
χ2 − 1− vm

)2

v2
d

dχ.

(A.40)

We will evaluate the integral by Taylor expanding the exponent to second order
at its maximum. As it is analytical in Re(p) > 0, we can evaluate the integral for
purely real p and then the result holds for all p with Re(p) > 0. Let

g(χ) =

(
p
k

√
1
χ2 − 1− vm

)2

v2
d

, (A.41)

be the negative exponent. Then

dg
dχ = −

p
k

√
1
χ2 − 1− vm

v2
d

p

k

2
χ3
√

1
χ2 − 1

, (A.42)
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which is zero if and only if

p

k

√
1
χ2 − 1 = vm. (A.43)

The second derivative of g at this point is

d2g

dχ2

∣∣∣∣∣ p
k

√
1
χ2−1=vm

= 2
v2

d

p
k

1
χ3
√

1
χ2 − 1

2
∣∣∣∣∣∣∣ p
k

√
1
χ2−1=vm

= 2
v2

d

p4

v2
mk

4

(
1 + v2

mk
2

p2

)3

.

(A.44)

Expanding g around its minimum to second order, we find that

2π
ne

ω2
pe

k2

ˆ 1

0
N exp

−
(
p
k

√
1
χ2 − 1− vm

)2

v2
d

dχ

≈ 2π
ne

ω2
pe

k2

ˆ 1

0
N exp

−
1
v2

d

p4

v2
mk

4

(
1 + v2

mk
2

p2

)3
χ− 1√

1 + v2
mk

2

p2


2dχ.

(A.45)

We now want to extend the integral limits to ±∞. For this to be accurate, the
minimum point should be sufficiently far away from the limits 0 and 1. Sufficiently
far away means that 1

2(χ− χ0)2g′′ is large. For the lower limit, we have

1
v2

d

p4

v2
mk

4

(
1 + v2

mk
2

p2

)2

= v2
m
v2

d

(
p2

k2v2
m

+ 1
)2

≥ v2
m
v2

d
, (A.46)

which is always much larger than unity if vm/vd � 1. For the upper limit, we
instead have

1
v2

d

p4

v2
mk

4

(
1 + v2

mk
2

p2

)3
1− 1√

1 + v2
mk

2

p2


2

= v2
m
v2

d

(
p

kvm
+ vmk

p

)3

√

p

vmk
−

√
p
vmk√

1 + v2
mk

2

p2


2

= v2
m
v2

d

(
α + 1

α

)3
√α− √

α√
1 + 1

α2

2

,

(A.47)

58



where α = p
vmk

. Analyzing the infimum over the set of α > 0, α ∈ R, we find
that

(
α + 1

α

)3
√α− √

α√
1 + 1

α2

2

> 1/4, (A.48)

so that for vm/vd � 4 we can safely extend the integral limits, and find

2π
ne

ω2
pe

k2

ˆ 1

0
N exp

−
1
v2

d

p4

v2
mk

4

(
1 + v2

mk
2

p2

)3
χ− 1√

1 + v2
mk

2

p2


2dχ

≈ 2π
ne

ω2
pe

k2

ˆ ∞
−∞

N exp
− 1

v2
d

p4

v2
mk

4

(
1 + v2

mk
2

p2

)3

χ2

dχ

= 2π3/2Nvdvm

ne

ω2
pe

k2
k2

p2
(

1+v2
mk

2

p2

)3/2

= 2π3/2Nvdvm

ne

p
ωpe(

v2
mk

2

ω2
pe

+ p2

ω2
pe

)3/2 ,

(A.49)

where we used the known integral of a Gaussian. This results in eq. (3.14). Note
that even though we only considered α real, if the expression is analytical in α and
holds for real α, it holds for complex values as well. Though, for which complex α
the expansion holds requires a more detailed study.

A.5 Taylor expansion in eq. (3.18)
We have that

h(G) = (β2 +G2)
√
β2 +G2 + SG, (A.50)

G = ε − ix with x > 0 and ε > 0. The principal branch of square root for a
complex number z = y − ix is given by

√
y − ix =

√√
x2 + y2 + y

2 − i

√√
x2 + y2 − y

2 , x > 0. (A.51)
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In our case, we have√
β2 + (ε− ix)2 =

√
β2 + ε2 − x2 − 2ixε

=

√√√√√(β2 + ε2 − x2)2 + 4ε2x2 + β2 + ε2 − x2

2

− i

√√√√√(β2 + ε2 − x2)2 + 4ε2x2 − (β2 + ε2 − x2)
2 .

(A.52)

With this, we may write the imaginary part of h(ε− ix) as

Im(h) = (x2 − β2 − ε2)

√√√√√(β2 + ε2 − x2)2 + 4ε2x2 − (β2 + ε2 − x2)
2

− 2εx

√√√√√(β2 + ε2 − x2)2 + 4ε2x2 + β2 + ε2 − x2

2 − Sx.

(A.53)

To be able to Taylor expand to find Im(h) = 0, we must have that the solution is
found in x > β+κ for some fixed (in ε) κ > 0, since otherwise |β2 − x2| can become
arbitrarily small compared to ε. When 0 < x <

√
β2 + ε2, all terms are negative,

so there exists no solutions. Now we are looking in the case when x >
√
β2 + ε2.

At x =
√
b2 + ε2, we find that

Im(h)
∣∣∣∣∣
x=
√
β2+ε2

= −2ε3/2(β2 + ε2)3/2 − S
√
β2 + ε2 < −Sβ. (A.54)

Thus, due to the continuity of h, there is a finite distance κ independent of ε such
that Im(h) < 0 for β < x < β + κ. It is then possible to Taylor expand in ε for
x > β + κ, such that x2 − β2 is guaranteed to be large compared to ε2 (and thus
x is large compared to ε). Note that for these x,

x2

x2 − β2 (A.55)

acquires a maximum. Finding eq. (3.18) is a matter of applying standard Taylor
expansions to eq. (A.52).

60


	Introduction
	Theory
	Basic Plasma Physics Concepts
	Distribution Function
	Vlasov Equation
	Averages

	Electrostatic Instabilities
	Weibel Instabilities
	Separable Distribution Functions in Velocity Space

	Collisions in Plasmas
	PIC Simulations

	Electrostatic Stability of the Ring Distribution
	Electrostatic Stability of the Ring Distribution
	Dielectric Function for a Cold Ring
	Dielectric Function for Warm Ring
	Stability of Ring Distributions

	PIC Simulations of Partially Open Rings
	Simulation Setup
	Dynamics of Incomplete Ring Distributions


	Effects of Collisions on the Weibel Instability
	Simulation Setup
	Analysis of Growth Rates
	Numerical Computation of Growth Rates
	Semi-Analytical Solutions to the Plasma Dispersion
	Comparison Between Numerical and Analytical Results

	Collisional Effects on the Weibel Instability Growth
	Collisional stabilization of the Weibel Instability
	Outlook on Experiments


	Conclusions
	Supplementary Material for the Analytical Proof of Electrostatic stability of Ring Distributions
	Finding the Marginal Distribution of the Cold Ring
	Evaluating the Integral in the Dielectric Function for a Cold Ring
	Integral in Dielectric Function for General 2D-isotropic Distribution
	Dielectric Function for Warm Ring Distribution
	Taylor expansion in eq:ESrootshepstaylor


