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Reduced order modelling of optimized transonic compressor rotor blades
MARCUS RINGSTRÖM
BJÖRN WALLIN
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The pursuit of efficient, compact and lightweight aircraft engines are important as it
leads to a reduction in specific fuel consumption. Compact and lightweight engines
result in compressor designs with high transonic rotor speeds and high stage loading
in order to maintain the desired pressure ratio. From an aerodynamic perspective,
this poses a challenge since it will be more difficult to design a compressor with
respect to high efficiency. Finding a faster design for transonic compressor rotor
blades with the same efficiency would therefore be beneficial.

In this thesis the blade generation method, multiple circular arc (MCA) blades
represented on conical surfaces was followed to investigate the feasibility of modelling
an already optimized 3D compressor rotor blade. In the MCA method conical
surfaces are used to approximate the axi-symmetric streamsurfaces in the blade rows,
where the MCA method is based on the piecewise preserving of constant turning
rate of camber. The complete MCA blade was formed by stacking individual blade
elements, where each blade element is defined by 11 design variables. These variables
are local blade angles, thickness and axial distances for the critical points on the
blade elements; leading edge, trailing edge, maximum thickness and transition. The
MCA blade was constructed with 15 spans, resulting in a total of 165 optimizing
variables. By employing variable reduction, the total number of optimizing variables
was reduced to 75. A multi-variable and multi-objective optimization was made
for these 75 variables with the NSGA-II as the optimizer. For the multi-objective
optimization two objective functions were formulated to compare the MCA blade
with the already optimized 3D blade profile. The objective functions describe the
average deviation in the airfoil shape between the blades and the maximum axial
cone deviation, which is to ensure that the blade elements are correctly stacked. A
design from the Pareto front, which traded the stacking for lower deviation in the
blade shape was evaluated using CFD as a performance tool. From the optimization
results, it was shown that the shape of the blade elements match the optimized
blade well. However, reaching the same stacking of the two blades was not achieved.
Results from CFD simulation indicated that the design point is close to the optimized
blade with a deviation in polytropic efficiency of 1 %. Combining the optimization
with the CFD results it was concluded that the reference blade can be constructed
with the MCA model and reach a operating point which was close to the reference,
in regards to operating pressure and corrected mass flow.

Keywords: compressor, multiple circular arc, MCA, conical surfaces, optimization,
CFD, reduced order modelling, blade design.
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Nomenclature

Abbreviations
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy
DF Diffusion Factor
DOF Degree Of Freedom
DP Design Point
IGV Inlet Guide Vane
LE Leading Edge
MCA Multiple Circular Arc
NSGA-II Non-dominated Sorting Genetic Algorithm
PRTT Total-to-Total Pressure Ratio
RANS Reynolds-Averaged Navier-Stokes
SNC Stacked Nurbs Curve
SOR Surface Of Revolution
TE Trailing Edge
Greek Symbols
τij Viscous stress tensor
α Cone half-angle, absolute flow angle
δ Cirumferential angle coordinate of stacking line, Deviation
δij Kronecker delta
ε Angular coordinate on conic surface as measured from ray passing through

blade element leading edge center
η Lean angle of stacking line in rθ-plane (positive in positive θ-direction)
ηp Polytropic efficiency
ηis Isentropic efficiency
γ Specific heat ratio
κ Local blade angle, the angle between the local R and the tangent to the local

blade element centerline or surface path
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λ Lean angle of stacking line in rz-plane (positive in positive z-direction
µ Laminar dynamic viscosity, Sutherland viscosity
µt Turbulent eddy viscosity
ω Pressure loss coefficient, angular velocicty
ρ Density
σ Solidity
θ Circumferential angle coordinate in cylindrical coordinate system (positive

θ-direction is from pressure surface to suction surface, tangential coordinate,
camber angle

ε Turbulent kinetic dissipation, Deflection
ξ Stagger angle, convenient constant on a segment
ζ Enthalpy loss coefficient
Miscellaneous Symbols
′ Isentropic state
− Ensemble average, Center of area coordinate
˜ Favre averaged (density averaged)
′′ Unresolved component
Roman
A Area of blade section
c Rate of turning
C Absolute velocity
cω Swirl velocity
Ca Absolute axial velocity
Cp Static pressure coefficient
cp Specific heat capacity at constant pressure, Static pressure coefficient
cv Specific heat capacity at constant volume
e Internal energy
h Enthalpy
I Blade section moment of inertia
k Turbulent kinetic energy
p Static pressure
Pr Laminar Prandtl number
Prt Turbulent Prandtl number
Q Heat
R Distance from vertex to point on cone, Gas constant, Radius

x



r Radial coordinate in cylindrical system
Rs Stage pressure ratio
S Entropy
s Path length along blade element centerline or surface, Entropy per unit mass
Sij Strain rate tensor
T Temperature
t Blade thickness
U Blade speed
ui Velocity vector in cylindrical coordinates
W Work
x Distance from axis of rotation along radial line passing through hub element

stacking point
y Coordinate perpendicular to z in contant x-plane
z Axial coordinate from hub element, leading edge center
Subscripts
0 Total condition
1 Arbitrary reference or known value, inlet rotor
2 Known value, outlet rotor
3 Known value, outlet stator
c Blade centerline
ca Center of area
h Hub element
i Inlet segment or leading edge
j Index denoting axial location
m Maximum thickness point, Meridional coordinate
max Maximum value
min Minimum value
n Normal to blade element centerline
o Outlet segment or trailing edge
p Pressure surface
s Suction surface
sp Stacking point
t Transition point between segments of blade
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1
Introduction

1.1 Background
In order to reduce the specific fuel consumption, aircraft engines are becoming more
compact and lightweight, leading to a reduction in the number of compressor stages.
A reduction of compressor stages lead to higher stage loading and also higher blade-
tip speeds and hence an increase in Mach number. Higher Mach numbers contribute
to a more complex compressor design, increasing computational cost. It would there-
fore be preferred to find a fast and simple method for generating transonic compres-
sor rotor blades.

A well known blade generation method is the multiple circular arc (MCA) method.
It was developed to control shock losses with the ability to control the chordwise
turning distribution [2]. In the MCA method the blade surfaces are constructed by
two circular arcs, which defines the chordwise turning. By constructing the blade
surfaces with circular arcs the chordwise turning is restricted, thus leading to a
more constrained design. The constraint in the MCA method is the reason for the
method being a simpler design, more constraints equals less parameters to modify.
However, the method must be investigated so that the constraint does not alter
the possibility of achieving good performance. Since compressor blades are usually
designed to turn the flow on meridional streamlines for which the MCA method
cannot handle, an approximation has to be done. The blade elements will instead
lie on conical surfaces, representing axi-symmetric streamsurfaces.
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1. Introduction

1.2 Purpose
The purpose of the thesis is to recreate an already optimized 3D blade profile with
MCA blade geometry and evaluate the difference in performance. The optimizing
process is carried out by using an multi-objective genetic algorithm written in the
Python programming language. The performance evaluation is done by using com-
putational fluid dynamics (CFD). The aim of this thesis is to investigate if it is
possible to recreate an optimized 3D blade profile with a reduced order model.

1.3 Limitations
Since it is a 30 ECTS thesis, there is a time constraint, meaning that the project is
limited to optimization and performance evaluation of the optimized blade. Results
from CFD can be further investigated if more time is spent on the subject. The
thesis include an extensive description of the MCA method in [2]. The optimization
was limited to geometrical deviation from an already optimized blade and not an
aerodynamic property. The thesis was limited to comparing a single optimized blade
and a comparable analysis of aerodynamic performance was carried out to quantify
the difference in performance between the two designs. The thesis did not include
testing the stability and accuracy of the method on other blades.
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2
Theory

2.1 Transonic axial compressor
Transonic axial flow compressors can in modern day aviation be found in both
commercial high-bypass ratio turbofan engines as well as military turbofans and
turbojets. It consists of a series of stages, where each stage is defined as a series of
rotor blades followed by a series of stator blades, illustrated in Fig 2.1.

V IGV Rotor Stator

Figure 2.1: Sketch of an axial flow compressor

The working principle of an axial flow compressor is as follows, the working fluid
is initially accelerated by the rotor blades, increasing the kinetic energy of the fluid
followed by a fluid deceleration at the stator blades, converting kinetic energy into
static pressure. The flow is always moving in a direction subjected to an adverse
pressure gradient, making the design of the compressor difficult with increasing pres-
sure ratios. The main task of the internal guide vane, IGV, is to direct the flow into
the first compressor stage, permitting the flow angle to vary with rotational speed to
improve off-design performance [1]. The IGV pre-swirls the flow to reduce tip Mach
number for the first stage. The set of rotor blades are attached to the inner cas-
ing, denoted as hub and the stator blades are fixed on the outer casing, denoted as
shroud. In transonic compressors, only a part of the outer span and tip is supersonic
while the axial velocity is subsonic. In modern transonic compressors, relative Mach
numbers up to 1.7 are used and single-stage pressure ratios above 2 are possible [3].
The main advantage of supersonic blade-tip speeds is that very high stage pressure
ratios can be obtained due to high work input to the flow [3]. High pressure ratios
are important as they make it possible to reduce the number of compressor stages
and thus leading to a reduction in engine size and weight. This is important as it
allows for a reduction in specific fuel consumption [5].
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2. Theory

The performance of compressor blades deteriorates with higher Mach numbers and
with Mach numbers exceeding unity in the blade passage, shock waves are generated
close to the blade-tip contributing to lower efficiency due to shock losses. High Mach
number flows also leads to a reduction in operating range of the compressor because
the flow becomes more sensitive to changes in inlet angle [3]. High relative Mach
numbers implies high mass flow rates which is favourable as it reduces the flow area,
making the machine more compact [3].

2.2 Thermodynamics
In this section, the most important parts of thermodynamics, relevant to this thesis
are presented.

2.2.1 Equation of state
Temperatures and pressures associated with many compressible flow applications
assume that the molecular distance between gas particles is widely separated, which
implies that the intermolecular forces between the particles are negligible. This is
the definition of a perfect gas. For a perfect gas, the equation of state can be written
as [4]:

p = ρRT (2.1)

where ρ is the density of air, R is the specific gas constant, T is the static temperature
and p is the static pressure.

2.2.1.1 Internal energy and enthalpy

The internal energy can be defined as the sum of rotation, vibration and kinetic
energies for all particles in a gas. For a calorically perfect gas, i.e, the temperatures
and pressures are low enough to consider heat capacity at constant volume and
pressure,i.e constant cp and cv, implying that internal energy, e and enthalpy, h can
be defined as [4]:

e = cvT

h = cpT
(2.2)

The specific heat capacity at constant pressure and volume can be defined as [4]:

cp =
(
∂h

∂T

)
p

(2.3)

cv =
(
∂e

∂T

)
v

(2.4)

For both thermally and calorically perfect gases, following relations can can be
defined as [4]:

R = cp − cv (2.5)

4



2. Theory

cp = γR

γ − 1 (2.6)

cv = R

γ − 1 (2.7)

Where γ is defined as γ = cp
cv
. The values of the constants defined above is listed in

table 2.1 below.

γ R cp cv
1.4 287

[
J

kgK

]
1004.5

[
kj
kgK

]
717.5

[
J

kgK

]
Table 2.1: Values of thermodynamic constants for air assuming a calorically

perfect gas

2.2.2 First law of thermodynamics
The first law of thermodynamics states that, if heat is added and work is done on a
system through a complete cycle∮

(dQ− dW ) = 0 (2.8)∮
dQ represents heat supplied to the system during the cycle and

∮
dW is the work

done by the system. If there is a change in the path between state 1 and state 2,
there is a change in energy in the system:

E2 − E1 =
2∫

1

(dQ− dW ) (2.9)

where E = U + 1
2mc

2 + mgz. Differential form for an infinitesimal change of state,
eq 2.9 can be written as

dE = dQ− dW (2.10)
Differentiating eq 2.10 with respect to time yields

dE

dt
= Q̇− Ẇ (2.11)

2.2.3 Second law of thermodynamics
The second law of thermodynamics states that, for a system passing through a closed
cycle involving exchange of heat can be expressed by the equality [3]:∮ dQ

T
≤ 0 (2.12)

Where dQ is an element of heat transferred to the system at a temperature T .For
a reversible process, then dQ = dQrev, and the equality in eq 2.12 holds. Reformu-
lating eq 2.12 for a reversible process yields∮ (

dQ

T

)
rev

≤ 0 (2.13)
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2. Theory

The concept of entropy is an important parameter due to its connection to losses
in a thermodynamic system. If there is a change in state between 1 and 2 along a
path, then entropy can be defined as [3]:

S2 − S1 =
2∫

1

dQrev

T
(2.14)

for a reversible process
S2 ≥ S1 (2.15)

for an adiabatic process, dQ = 0
S2 = S1 (2.16)

For a flow undergoing a process that is both reversible and adiabatic, entropy will
be constant, hence no entropy generation in the system. A process that is both
reversible and adiabatic is also referred to as isentropic.

2.2.4 Clausius Gibbs equation
From the first law of thermodynamics, and by using eq 2.14, the differential form of
internal energy can be written as [4]:

de = Tds− pdv (2.17)

Tds = de+ pdv (2.18)

Using the definition of enthalpy

h = e+ pdv (2.19)

Differentiating eq 2.19 yields

dh = de+ pdv + vdp (2.20)

Combining eq 2.18 and 2.20 gives

Tds = dh− vdp (2.21)

Eq 2.21 is a very important equation as it is written only in terms of system prop-
erties. The implication of this equation is that it is valid for a system undergoing
any process. Entropy is an important property as it quantifies the amount of work
lost in a process, this is of importance when analyzing fluid flows in turbomachinery,
as an increase in entropy equates to losses in the system and thus decreasing the
efficiency [3].

6



2. Theory

2.3 Blade Geometry

2.3.1 Compressor cascade blade nomenclature
A compressor cascade blade is described by a curved camber line and a thickness
profile distributed over the camber line [3]. The geometric parameters characterizing
the blade is illustrated in Fig 2.2.

α1

θ

i

ξ

δ

α2V2

V1

c

α′1

α′2

s

Figure 2.2: 2D compressor cascade geometry

The geometrical parameters are defined and briefly described in Table 2.2.

Name Notation Description
Stagger angle ξ Angle between chord line and axial flow direction

Solidity σ = c
s

Space and chord ratio
Blade inlet angle α

′
1 Angle between camberline and leading edge

Blade outlet angle α
′
2 Angle between camberline and trailing edge

Camber angle θ = α′1 − α′2 Change in angle of the camberline between le- and te

Table 2.2: Description of geometrical properties for a 2D compressor cascade
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2. Theory

The flow parameters corresponding to the variables introduced in Table 2.2 above
are described in Table 2.3 [3].

Name Notation Description
Incidence i = α1 − α′1 Difference between inlet flow angle

and blade inlet angle
Deflection ε = α1 − α2 Change in angle of the flow
Deviation δ = α2 − α′2 Difference between exit flow

angle and blade exit angle

Table 2.3: Description of flow parameters for a 2D compressor cascade

2.3.2 Coordinate system
In turbomachines it is common to express the geometry in terms of cylindrical
coordinates, illustrated in Fig 2.3.

r

x

rθ

uθ

Ω

Shroud

Hub

r um

ux

ur
Stream surface

Figure 2.3: Coordinate system for an axial compressor

The flow in a compressor is three-dimensional, where all three velocity components
varies in all directions. The flow situation is reduced to be axi-symmetric in which
the flow moves through the compressor on stream surfaces. The velocity component
along a streamsurface is called meridional velocity and is defined as [3]

um =
√
u2
x + u2

r (2.22)

The total velocity component could be expressed as

u =
√
u2
x + u2

r + u2
θ =

√
u2
m + u2

θ (2.23)

The swirl angle, α, is a measure of how much the flow is rotating in the machine
and is defined as

α = arctan
(
uθ
um

)
(2.24)

8



2. Theory

In compressors, the flow field within the rotating blades are described in a frame of
reference that is stationary relative to the rotating blades [3]. The relative velocity
is found by subtracting the tangential velocity component from the blade speed

vθ = uθ − U (2.25)

The relative flow angle is defined as the angle between the relative flow direction
and the meridional direction

β = arctan
(
vθ
um

)
(2.26)

The relation between the relative and absolute flow angle can be found by combining
eq 2.25 and 2.26 [3]:

tan β = tanα− U

um
(2.27)

9



2. Theory

2.4 Compressor performance

2.4.1 Shock structure in multiple circular arc blades
Multiple circular arc blades have widely been used to control shock losses and throat
area for transonic compressors. For supersonic flows where shock losses in blade
passages are prevalent, MCA blades has an advantage due to its ability to control
chordwise turning distribution [2]. For supersonic velocities, the flow exhibits a
shock pattern similar to Fig 2.4. A detached shock, or bow shock is formed caused
by the thickness of the leading edge and by the expansion waves formed by the
curvature at the suction surface. The expansion waves interact with the shocks
upstream and the strength of the shocks become weaker further upstream. Because
of the axi-symmetric geometry,the pattern is repeated and each blade will therefore
experience the same shock pattern. Most of the pressure rise is produced by the
passage shock formed at the blade leading edge travelling downstream where it
terminates in a normal shock somewhere on the neighbouring blade suction surface
[6], illustrated in Fig 2.4.

Bow shock Expansion waves

Passage shock

Figure 2.4: Shock structure of a 2D compressor cascade

The total pressure loss produced by the passage shock relates to the shock strength
and consequently the Mach number downstream from the leading edge. When the
flow expands through the expansion waves, the flow accelerates, increasing the Mach
number. The Mach number after the expansion could be found by using the Prandtl-
Meyer function which relates the Mach number before and after the expansion with
the flow turning angle. By using MCA blades, the Mach number is reduced by
limiting the chordwise turning at the suction surface, leading to a reduction in
shock strength and hence total pressure loss [2].

10



2. Theory

2.4.2 Efficiency
In this section, only the most important types of efficiencies will be discussed, isen-
tropic and polytropic efficiency, as they are the most frequently used when dealing
with flows in turbomachinery applications.

2.4.2.1 Isentropic efficiency

A compressor can be idealized as being adiabatic and reversible, meaning that the
entropy gradient is zero. The efficiency of a compressor can be expressed as the
ratio between actual and ideal work transfer. Due to the adiabatic nature of com-
pressors, the ideal thermodynamic process is isentropic, hence isentropic efficiency.
For a perfect gas, the isentropic efficiency can be written as [1]:

ηis = ∆T ′0
∆T0

= T0
′
2 − T01

T02 − T01
(2.28)

where ′ denotes the isentropic state. For a perfect gas, the temperature ratio could
be expressed in terms of pressure ratio

T0
′
2

T01
=
(
p02

p01

)( γ
γ−1)

(2.29)

Combining eq 2.28 and 2.29 yields

ηis = (p02/p01)(
γ−1
γ ) − 1

(T02/T01)− 1 (2.30)

2.4.2.2 Polytropic efficiency

By looking at eq 2.30, the isentropic efficiency drops with increasing overall pressure
ratio, which could lead to confusion. This can be avoided by using another definition
of efficiency for adiabatic compressors, the so-called polytropic efficiency, or small-
stage efficiency, ηp. For a real compression, the increase in enthalpy is larger than
the ideal enthalpy rise, which can be written as [6]:

dh0 = 1
ηp
dh
′

0 = 1
ηp

dp0

p0
(2.31)

By assuming a perfect gas and constant ηp over a finite pressure change, the tem-
perature ratio can be written in terms of pressure ratio

T02

T01
=
(
p02

p01

) (γ−1)
ηpγ

(2.32)

From (2.32), ηp could be rewritten as [6]:

ηp = γ − 1
γ

ln (p02/p01)
ln (T02/T01) (2.33)

If each stage in a multi-stage compressor had the same value of ηp, the polytropic
efficiency for the whole compressor would be equal to that stage. Using polytropic
efficiency instead of isentropic efficiency may therefore be better to use when ana-
lyzing different compressors.
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2.4.3 Euler Work Equation
For a compressor with angular velocity ω, the rate of which the rotor exert work on
the fluid is given by the expression

Ẇc = τω = ṁ (U2cω2 − U1cω1) (2.34)

Where τ is the angular momentum of the fluid passing through the rotor. By
assuming that the axial velocity and flow radius is constant, eq 2.34 can be rewritten
as

Ẇc = ṁU (cω2 − cω1)→ Ẇc

ṁ
= ∆Wc = U (cω2 − cω1) (2.35)

U

β1
α1

Ca1

Ca2
α2

β2

Cw1

Cw2

C1

C2

V1

V2

α3
C3

Rotor Stator

Figure 2.5: Velocity diagram for a single compressor stage

The relation for the angles for the rotor and stator can be found from Fig 2.5

U = cω1 + Vω1 = Ca tanα1 + Ca tan β1 (2.36)

U = cω2 + Vω2 = Ca tanα2 + Ca tan β2 (2.37)

Combing eq 2.36 and 2.37 yields

tanα1 + tan β1 = tanα2 + tan β2 → tanα2 − tanα1 = tan β1 − tan β2 (2.38)

The result from eq 2.38 and 2.35 give the following relation

∆Wc = UCa (tan β1 − tan β2) (2.39)

This input of energy will be used to raise the pressure of the fluid. This energy will
manifest itself as a rise in stagnation temperature of the fluid. The rise in stagnation
temperature for a stage can be expressed as [1]

∆T0s = T03 − T01 = T02 − T01 = UCa
cp

(tan β1 − tan β2) (2.40)

12
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The rise in pressure is very much dependent on the efficiency of the compression
process, the isentropic stage efficiency can be can be expressed as [1]:

ηs =

(
T0
′
3 − T01

)
(T03 − T01) (2.41)

The stage pressure ratio can then be expressed as

Rs = p03

p01
=
[
1 + ηs∆T0s

T01

] γ
(γ−1)

(2.42)

2.4.4 Loss Mechanisms in Axial Compressor Blades
Boundary layer growth and separation on a blade surface has a detrimental impact
on efficiency of the compressor. From thermodynamic principles we know that a
drop in total pressure lead to a rise in entropy, or lost work, which equate to losses
in a thermodynamic system. The task of quantify loss characteristics of separation
and boundary layer growth have been proved to be difficult due to a large num-
ber of factors involved, including inlet Mach number, surface velocity distribution,
Reynolds number and turbulence in the free-stream [3]. Analysis of cascade data
have led to the development of correlation models that could predict blade losses
and fluid deviation. In this section, these losses will briefly be discussed together
with typical loss coefficients in axial compressor blades relevant for this thesis.

2.4.4.1 Loss sources

Loss sources in a compressor blade can be defined as [20]:
• Profile losses
• Shock losses
• Tip-leakage losses
• End-wall losses
• Secondary flow losses

Profile losses
Profile loss can be divided into blade primary loss and trailing edge mixing loss.
Blade primary loss are associated with a loss in total pressure due to viscous forces
slowing the fluid down within the boundary layer at the blade surface. Trailing edge
mixing loss stem from thickness of the trailing edge and boundary layer thickness
on the pressure and suction surface, causing wake defect, mixing and thus entropy
generation. Mixing losses can be described as exchange of momentum and energy
between the wake and the freestream [15].

Shock losses
Shock losses are of concern only for transonic and supersonic compressor rotors.
Shocks are highly irreversible and contribute to losses indirectly through boundary
layer interaction, leading to boundary layer growth by a rise in static pressure pro-
duced by the shock. Entropy generation is thus a unique function of static pressure.
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The rise in static pressure lead to boundary layer separation and hence a drop in
total pressure [14].

Tip-leakage losses
Arise from flow leaking over the rotor tip and hub clearance of stator blade [14]. The
loss mechanism is driven by pressure difference between the pressure and suction
surface, causing the flow to roll along the suction surface to form a tip vortex [16].
Cornelius [17] conclude that for sufficiently small tip clearance, the main source of
losses are viscous losses generated at the shroud. For larger tip clearance, tip leakage
flow increases and the main source of losses are due to mixing [17].

Secondary flow losses
The loss mechanism from secondary flows are similar to those of tip-leakage. Vor-
tex formation results in mixing and dissipation of energy which results in entropy
generation and hence losses [20]. In addition, interaction of secondary flow with
the wall, boundary layer and wake contribute to additional losses. The source loss
mechanism is due to viscous effects, dissipation and mixing [20].

End-wall losses
End-wall loss is also referred to as secondary loss, arise from secondary flows gener-
ated at the annulus boundary layers passing through a blade row [14]. The growth
of end-wall boundary layer and mixing, together with dissipative effects result in
additional losses. End-wall losses, including secondary flow losses and tip-leakage
losses contribute to 50-70% of total losses [20].
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2.4.4.2 Loss coefficients in axial compressors

Modelling losses in compressors are vital as it is directly related to the efficiency
of the turbomachine. Loss coefficients, expressed in non-dimensional form are com-
monly used to quantify losses connected to compressors. Loss coefficients are con-
venient to use as they are easy to calculate from cascade data. In this section, the
most commonly used loss coefficients related to axial compressors are discussed and
defined.

Total pressure loss coefficient
Total pressure loss coefficient can be defined as an overall measure of the aero-
dynamic losses through the blade row. For compressors, the total pressure loss
coefficient can be defines as [3]:

ωp = (p01 − p02)
(p01 − p1) (2.43)

Where p01 is the inlet total pressure, p02 is the outlet total pressure and p1 is the
inlet static pressure.

Enthalpy loss coefficient
A more useful loss coefficient adopted for design purposes is the enthalpy loss coef-
ficient, ζ, which is defined as [14]:

ζ = h2 − h2s

h01 − h1
(2.44)

Where h2s is the final isentropic enthalpy, obtained in an isentropic expansion or
compression to the same state as the final static pressure.

Static pressure coefficient
One of the main objectives of a compressor is to produce a rise in static pressure, as
well as a defelction angle, ε. A performance parameter for static pressure is therefore
introduced. This parameter is called static pressure coefficient. For compressible
flows, the static pressure coefficient can be defined as [3]:

Cp = (p2 − p1)
p01 − p1

(2.45)
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2.4.5 Performance Characteristics For Transonic Axial Com-
pressors

For a transonic axial flow compressor, the performance can graphically be illustrated
by a compressor map, shown in Fig 2.6.

ṁ
√
T01

P01

p02
p01

Ω√
T01

100%90%
80%

70%
60%

50%

Surge line

Operating line

Speedline

Figure 2.6: Characteristic map for a transonic axial compressor

Total pressure ratio is plotted as a function of the corrected mass flow, ṁ
√
T01

p01
in

the form of curves for fixed values of the corrected rotational speed, Ω√
T01

, these
set of curves is also known as speedlines. Each speedline on the compressor map
terminates at a line of instability, also called surge line. The maximum point of the
speedline is referred to as surge point. Beyond this point the operation is unstable [3].
Compressor instability can be divided into stall and surge. Compressor stall could
be understood as flow separation from the blade’s suction- and pressure surface due
to large positive or negative angle of attack, the compressor blade is unable to build
up enough pressure and the flow starts to break up, leading to flow instabilities. A
stalled flow moves in the opposite direction of the blade rotation, giving the name
rotating stall [12]. In contrast to stall, compressor surge occurs when the compressor
blade is unable to withstand the rise in back pressure, leading to large amplitude
oscillations of the flow, which may result in a violent flow reversal out from the
compressor, leading to a complete breakdown of the compressor. By looking at the
speedlines it can be seen that when the corrected mass flow is at it’s maximum the
total pressure ratio is at it’s minimum. A further decrease in pressure ratio will
result in an increase in velocity to a point when it reach sonic conditions at the
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throat (M=1), the flow is then said to be choked. At this point, a further increase
in ṁ

√
T01

p01
is not possible [3]. The point where the flow is choked is also referred to

as choke point.

2.5 CFD
Computational fluid dynamics has become an indispensable tool in design and analy-
sis of turbomachinery. In this section, the governing equations and the corresponding
closure models required to model turbulence are presented and discussed.

2.5.1 Favre Averaging
Favre averaging is a filtering method commonly used when dealing with compressible
flows as it allows for the transport equations to be written in a form similar to the
conventional unfiltered equations. Filtering over an arbitrary flow variable ψ reads

ψ = ψ̃ + ψ
′′ (2.46)

Where ψ̃ is the Favre filtered quantity and ψ
′′ is the unresolved component of ψ.

Favre- filtering part of ψ yields

ψ̃ = ρψ

ρ
(2.47)

Where ρψ denotes Reynolds decomposition averaging. Recall that the average of a
fluctuating component is zero

ρψ′′ = 0 (2.48)

And
ρψ̃ = ρψ̃ = ρψ (2.49)

The Favre-filtered equations of momentum, energy and continuity is obtained by
applying the Favre filtering operator given by eq 2.47.
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2.5.2 Governing Equations And Turbulence Modeling
The compressible flow solver used to solve the flow field is based on the compressible
RANS equations with realizible k-ε as a turbulence model. The choice of turbulence
model is based on trade off between computational cost and accuracy. The reason
why the realizible k-ε is choosen is due to its ability to handle flows with boundary
layers subjected to adverse pressure gradients, separation and circulation [9]. The
boundary layer is modelled with conventional wall functions. The Favre-filtered
Navier-Stokes equations can in compact form be expressed as [7]:

∂Q
∂t

+ ∂Fj
∂xj

= H (2.50)

The state vector, Q, can be expressed as

Q =


ρ
ρũi
ρẽ0
ρk̃
ρε̃

 (2.51)

The flux vector, Fj, can be expressed as

Fj =



ρũi
ρũi ũj + pδij − τij

ρẽ0 ũj + pũj − cp
(
µ
Pr

+ µt
Prt

)
∂T̃
xj
− ũiτij

ρk̃ ũj −
(
µ+ µt

σk

)
∂k̃
∂xj

ρε̃ ũj −
(
µ+ µt

σε

)
∂ε̃
∂xj


(2.52)

The dissipation and production term from k and ε-equations is included in the source
vector H, and is given by

H =


0
0
0

Pk − ρε̃
(Cε1Pk − Cε2ρε̃) ε̃

k

 (2.53)

The production term, Pk, is modelled as

Pk =
(
µt

(
2S̃ij −

2
3
∂ũk
∂xk

δij

)
− 2

3ρ k̃δij
)
∂ũi
∂xj

(2.54)

Where δij is the kronecker delta, (ρ) , (p) represents the average of density and
pressure. Velocity vector (ũi), total internal energy (ẽ0), temperature

(
T̃
)
, turbu-

lent kinetic energy
(
k̃
)
and turbulence dissipation (ε̃) represents the Favre-averaged

quantities. Reynolds stresses are modeled with the Boussinesq assumption, mean-
ing that Reynolds stresses can be written in terms of turbulent viscosity and mean
velocity gradients [8]:

− ρ uiuj = µt
∂Ui
∂xj

(2.55)
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The viscous stress tensor τij can for a Newtonian fluid be written as

τij = (µ+ µt)
(

2S̃ij −
2
3
∂ũk
∂xk

δij

)
− 2

3ρ k̃δij (2.56)

The strain rate tensor S̃ij is defined as

S̃ij = 1
2

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
(2.57)

The realizable k − ε equation include a realizability constraint for the turbulent
viscosity µt [7].

µt = min

Cµρk̃2

ε̃
,

0.4ρk̃√
S̃ij S̃ij

 (2.58)

In order to close the system of equations, it is assumed that the gas is thermally per-
fect, in other words, internal energy, enthalpy and specific heat at constant volume
and pressure are described as being functions of temperature only

e = e
(
T̃
)

(2.59)

h = h
(
T̃
)

(2.60)

cv = de

dT̃
(2.61)

cp = dh

dT̃
(2.62)

Values of the closure model constants are listed in table 2.1

Cµ Cε1 Cε2 σε σk
0.09 1.44 1.92 1.3 1

Table 2.4: Values of closure model constants
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2.5.3 Wall Functions
The idea of employing wall functions is to apply boundary conditions some distance
away from the wall so that strong gradients of the flow variables are not solved
close to the wall, saving computational cost to the expense of not resolving the
flow in the viscous sub-layer. The first node should be placed in the fully turbulent
sublayer (30 < y+ < 100), also called log-law region, where wall functions are valid
[9]. In order to use wall functions, modifications of the turbulence models needs to
be carried out in order to account for the viscosity-affected near-wall region. In the
log-law region, the turbulent shear stress −ρuiuj is equal to the wall shear stress,
τw. Applying Boussinesq assumption yields [8]:

τw = −ρuiuj = µt
∂Ui
∂xj

(2.63)

Using the definition of the wall shear stress,τw = ρu2
∗, where u∗ is the friction velocity,

the mean velocity Ui can be expressed as [9]:

Ui = τwy

ρν
= u2

∗y

ν
(2.64)

or written in dimensionless form:

Ui
+ = yu∗

ν
= y+ (2.65)

where y+ is the dimensionless distance from the wall to the first node. The log-law
in dimensionless form reads

U+
i = 1

κ
ln
(
y+
)

+ 5 (2.66)

Where κ is the Von Kármán constant. Boundary conditions for the turbulent quanti-
ties, k and ε is found by assuming that the flow is in local equilibrium, i.e production
equals dissipation. This assumption is valid in the log-law region for y+ > 30. The
boundary condition for turbulent kinetic energy, k, is given by [9]

k = u2
∗√
Cµ

(2.67)

By considering local equilibrium, boundary condition for dissipation is given by [9]:

ε = Pk = uiuj
∂Ui
∂xj

= u2
∗
u∗
κy

= u3
∗
κy

(2.68)

Where κy is Prandtl’s mixing length.
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Methodology

In this chapter the methodology for the MCA blade generation, adopted from [2],
is described together with the optimization of blade parameters and CFD configu-
ration.

3.1 MCA
The conical approximation of the streamsurfaces used in the blade generation is seen
in Fig 3.1 where α is the cone half-angle.

Figure 3.1: Conical surface approximation of axisymmetric streamsurface [2]

An illustration of the blade layout on a cone is shown in Fig 3.2, where the Rε
coordinate system is used. In this coordinate system the cone surface is unwrapped
on a plane and the blade elements can with ease be described in a plane instead.
In the Rε coordinate system R is the length of an ray from the cone vertex to an
arbitrary point in the circle sector and ε is the angle from an reference ray to a
ray through the arbitrary point. The conical approximation of the streamsurface is
defined by ri, ro and z. They are radius for the leading edge center, trailing edge
center and the axial distance between the two radii which then forms the conical
surface by revolution around the rotation axis. The blade angle κ is defined by the
angle between a ray, R, and the tangent of the blade surface or centerline.
The methodology followed in [2] is only for the layout of blade elements on conical
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Figure 3.2: Conical coordinate system for blade element layout [2]

surfaces and omits the prior steps in the design process needed to establish the blade
properties. Each blade element is specified by 11 parameters:

• Radius from axis of rotation to the leading edge center, ric
• Radius from axis of rotation to the trailing edge center, roc
• Thickness at the leading edge, ti
• Thickness at the maximum thickness point, tm
• Thickness at the trailing edge, to
• Blade angle between R ray and centerline tangent at the leading edge, κic
• Blade angle between R ray and centerline tangent at the transition point, κtc
• Blade angle between R ray and centerline tangent at the trailing edge, κoc
• Axial distance from leading edge center to the centerline maximum thickness

point, zmc
• Axial distance from the leading edge center to the centerline transition point,
ztc

• Axial distance from the leading edge center to the trailing edge center, zoc
For the layout procedure, the blade element surfaces and centerline are constructed
by two segments, inlet and outlet, with their own constant turning rate, dκ/ds.
Where the inlet and outlet segment becomes tangent is called the transition point.
The parameters required before the layout and some nomenclature are illustrated in
Fig 3.3 and 3.4. The selection of these parameters are made with optimization and
this process is described in section 3.2.

3.1.1 MCA Blade Generation Procedure
The mathematical procedure of generating an MCA blade is described in detail in
the following sections. The steps of the procedure is based on the work done by [2].
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Figure 3.3: Blade element nomenclature [2]

3.1.1.1 Mathematical description of constant turning rate segment

In this section R and ε are defined as functions of the local blade angle, κ, for a
segment with constant turning rate, c.
For a constant blade turning rate the local blade angle can be described as

dκ

ds
= −c (3.1)

or

ds = −dκ
c

(3.2)

From Fig 3.3 the differentials of R and ε could be written as a function of the
infinitesimal element of the arc length, ds

dR = cosκds (3.3)
Rdε = sin κds (3.4)

Substituting ds in eq 3.3 and 3.4 with equation 3.2 gives the differentials as functions
of the blade angle κ.

dR = −cosκ
c

dκ (3.5)

dε = −sin κ
Rc

dκ (3.6)

Integrating equation 3.5 yields

R−R1 = 1
c

(sin κ1 − sin κ) (3.7)

The turning constant c in eq 3.7 can after some manipulation be written as

c = sin κ1 − sin κ
R−R1

(3.8)
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Figure 3.4: Definition of the blade thickness path [2]

where subscript 1 denotes a point with known values for the local blade angle and
radius. Eq 3.7 can after some manipulation be expressed as a constant

ξ = Rc+ sin κ = R1c+ sin κ1 (3.9)
Manipulation of 3.9 gives the blade angle for the maximum thickness point

κc = arcsin (ξ −Rc) (3.10)

Where ξ is a constant. From eq 3.9 it can be seen that if c = 0, κ is constant. In the
case that c = 0 or for constant κ, ε, a differential equation for ε can be formulated
as a function of κ1 and radius R

dε = tan κ1
dR

R
(3.11)

Eq 3.11 is an indefinite integral and the solution is given by

ε− ε1 = f (κ, κ1, ξ, R,R1) (3.12)

ε has four different solutions for κ, κ1 and ξ. The solutions for these three variables
are stated below [23]:

• If κ = κ1

ε = tan κ ln
(
R

R1

)
(3.13)

• If κ 6= κ1 and ξ2 > 1

ε = κ− κ1 + 2ξ√
ξ2 − 1

 arctan
1− ξ tan

(
κ1
2

)
√
ξ2 − 1

−
arctan

1− ξ tan
(
κ1
2

)
√
ξ2 − 1


(3.14)
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• If κ 6= κ1 and ξ2 < 1

ε = κ− κ1 + ξ√
1− ξ2

 ln

∣∣∣∣∣∣
1− ξ tan

(
κ
2

)
−
√

1− ξ2

1− ξ tan
(
κ
2

)
+
√

1− ξ2

∣∣∣∣∣∣−
ln

∣∣∣∣∣∣
1− ξ tan

(
κ1
2

)
−
√

1− ξ2

1− ξ tan
(
κ
2

)
+
√

1− ξ2

∣∣∣∣∣∣


(3.15)

• If κ 6= κ1 and ξ = ±1
ε = κ− κ1 ±

[
tan

(
π

2 ±
κ1

2

)
− tan

(
π

4 ±
κ

2

)]
(3.16)

3.1.1.2 Equations for thickness

The thickness path is described by a constant angle κn which is normal to to the
centerline

κn = κc ±
π

2 (3.17)

Where ± denotes path direction to suction- and pressure surface respectively. For
a curved thickness path, following equations can be defined

dR = cosκndt→ dt = dR

cosκn
(3.18)

dε = sin κndt
R

(3.19)

Eq 3.18 in 3.19 and integrate yields

R−Rc = t cosκn (3.20)

ε = εc + tan κn ln
(
R

Rc

)
(3.21)

where t is the path length along the blade centerline. From eq 3.18 and 3.19, the
thickness is a function of four variables: t, Rc, κn and εc. There are two solution for
κn:

• If κn = −π
2

ε = εc −
t

Rc

(3.22)

• If κn = π
2

ε = εc + t

Rc

(3.23)

If none of the above mentioned statements are satisfied, the expression for angu-
lar coordinate ε is given by eq 3.21. The procedure above returns the radius R
and angular coordinate ε. The maximum thickness point can be located on three
segments, inlet or outlet, or at the transition point. On the segment of maximum
thickness, eq 3.9, 3.12 and 3.8 gives three equations with three unknowns, κ, c and
ξ. Due to the complexity of solving these equations explicitly, iterative methods are
needed. The first iterative process consist of estimating κ and checking the resulting
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ε with the known ε- coordinate. Second step is to calculate the transition point of
the pressure- and suction surface. This is done by finding the intersection of the
surface curves with the thickness path of the transition point. Eq 3.14, 3.21 and 3.20
gives three equations for κ,R and ε. The complexity of eq 3.14 makes it difficult to
solve explicitly, another iterative process is needed to solve for the unknowns. This
iteration process consist of estimating R which is compared with a known Rtc and
calculated Rtc given by 3.24

Rtc = R

exp [tan κtc (εtc − ε)]
(3.24)

Where tc represent the transition point at the blade centerline. The last step is to
obtain the unknown values of ξ, c and κ for the surface of the inlet segment. The
transition point and trailing- or leading edge point and the angle at the transition
point on the pressure and suction surface of the last segment are now known. The
first iteration process is used in this step to find the final unknowns.

3.1.1.3 Stacking procedure

The stacking is constructed in such a way that the center of area for all blade
elements lie on the same stacking line. The first step in the stacking procedure
consist of finding the initial positioning of the blade element along the stacking line.
An initial approximation is to align the center of area of the blade element along
the stacking line. The center of area is calculated by evaluating following integrals

Rsp =
∫
RdA∫
dA

(3.25)

εsp =
∫
εdA∫
dA

(3.26)

Rsp and εsp is the stacking point for the radius and angular coordinate respectively.
The numerator from eq 3.25 and 3.26 can be written as∫

RdA =
∫ Roc

Ric
R2 [εs (R)− εp (R)] dR (3.27)

∫
εdA = 1

2

∫ Roc

Ric
R
[
ε2s (R)− ε2p (R)

]
dR (3.28)

∫
dA =

∫ Roc

Ric
R [εs (R)− εp (R)] dR (3.29)

In order to evaluate the integrals, the angular coordinates, εs and εp needs to be
calculated at the transition point of the suction- and pressure side. From eq 3.12,
εts and εtp can be expressed as

εp = εtp + f (κp, κtp, ξop, R,Rtp) (3.30)

εp = εtp + f (κp, κtp, ξip, R,Rtp) (3.31)
εs = εts + f (κs, κts, ξos, R,Rts) (3.32)
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εs = εts + f (κs, κts, ξis, R,Rts)) (3.33)

κp, κs, ξic.ξoc and radius R needs to be calculated at the transition point for the inlet
and outlet segments of pressure and suction side respectively

ξis = Rcis + sin κis (3.34)

κs = arcsin (ξis −Rcis) (3.35)

ξos = Rcos + sin κs (3.36)

κs = arcsin (ξos −Rcos) (3.37)

The equations above apply for outlet and inlet segment of the centerline at the suc-
tion surface. The same equations holds for the pressure side with the difference that
at the inlet, Rc ≤ Rtc and at the outlet Rc > Rts. The integrals given by 3.27, 3.28
and 3.29 are very difficult to solve analytically, numerical integration are therefore
needed. The numerical procedure of evaluating εs (R) and εp (R) is described below

Numerical procedure
Eq 3.27, 3.28 and 3.29 needs to be integrated numerically. Define a function with
input parameters

fstack = f (Roc, Ric, σ, Rts, Rtp, ξos, cos, ξop, cop, ξis, cis, ξip, cip, εts, κts, εtp, κtp)
(3.38)

σ is the number of integral points needed for integration. Eq 3.28, 3.29 and 3.30
can be written as a sum ∫

dA =
σ∑
i=1

f1∆R (3.39)

∫
RdA =

σ∑
i=1

f2∆R (3.40)

∫
εdA =

σ∑
i=1

f3∆R (3.41)

Where f1, f2 and f3 is the integrands of eq 3.28, 3.29 and 3.30. ∆R can be written
as

∆R = Roc −Ric

σ − 1 (3.42)

R = Ric (3.43)

The procedure of obtaining κ and ε for suction and pressure side is described below
• If R ≥ Rts

κs = arcsin (ξos −Rcos) (3.44)

εs = εts + fε (κs, κts, ξos, R,Rts) (3.45)

Else

κs = arcsin (ξis −Rcis) (3.46)

εs = εts + fε (κs, κts, ξis, R,Rts) (3.47)
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• If R ≥ Rtp

κp = arcsin (ξop −Rcop) (3.48)

εp = εtp + f (κp, κtp, ξop, R,Rtp) (3.49)

Else

κp = arcsin (ξip −Rcip) (3.50)

εp = εtp + f (κp, κtp, ξip, R,Rtp) (3.51)

The integral values can now be calculated by using a suitable numerical integration
method. The stacking points, εsp and Rsp can now be obtained.

Calculating variables needed for each blade element
Cone angle, α can be defined as

α =
(
roc − ric
zoc − zic

)
(3.52)

Where zoc − zic is the distance from leading- to trailing edge of the blade centerline
in the z-direction. roc− ric is the distance from leading- to trailing edge of the blade
centerline in radial coordinates. The R coordinate of the leading edge center can be
expressed as

Ric = ric
sinα (3.53)

From eq 3.53 it can be seen that eq 3.53 is not defined for α = 0, a small cone angle
is employed for calculating R-coordinates for leading, trailing and transition points
on the blade centerline. The R-coordinates for trailing, leading and transition points
are given by

Rtc = Ric + z − ztc
cosα (3.54)

Rmc = Ric + z − zmc
cosα (3.55)

Roc = Ric + z − zoc
cosα (3.56)

There are three possibilities for maximum thickness point, z − zmc:

• If z − zmc < z − ztc: Maximum thickness point, zmt belong to inlet segment
• If z − zmc > z − ztc: Maximum thickness point, zmt belong to outlet segment
• If z − zmc = z − ztc: Maximum thickness point coincide with the transition

point.
Now, the turning-rate constant, c and ξ can be obtained from eq 3.8 and 3.9 for
leading- and trailing edge on the blade centerline

cic = sin κic − sin κtc
Rtc −Ric

(3.57)

coc = sin κtc − sin κoc
Roc −Rtc

(3.58)
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ξic = Rtccic + sin κtc (3.59)

ξoc = Rtccoc + sin κtc (3.60)

In order to make the calculation of angular coordinates, εtc and εoc easier, the angular
coordinate for the transition point could be set to zero (εic = 0). This is due to
that the blade element are referenced from the leading edge. Angular coordinates
for trailing edge and transition point can now be calculated for leading and trailing
edge respectively

εtc = εic + fε (κtc, κic, ξic, Rtc, Ric) (3.61)

εoc = εtc + fε (κoc, κtc, ξoc, Roc, Rtc) (3.62)

R and angular coordinates for pressure and suction side at the inlet and outlet can
now be calculated

Ris, εis = ft

(
κic + π

2 , Ric,
ti
2 ,i c

)
(3.63)

Rip, εip = ft

(
κic −

π

2 , Ric,
ti
2 , εic

)
(3.64)

Ros, εos = ft

(
κoc + π

2 , Roc,
to
2 , εoc

)
(3.65)

Rop, εop = ft

(
κoc −

π

2 , Roc,
to
2 , εoc

)
(3.66)

ft is a function of points of known thickness. Blade angle κ at the point of maxi-
mum thickness on either pressure or suction side is equal to the angle at maximum
thickness point on the centerline, κmc = κms = κmp = κm. Equations for maximum
thickness point, R and angular coordinates at the maximum thickness point can
now be established

• If maximum thickness point belong to transition point

κmc = κtc (3.67)

εmc = εtc (3.68)

• If maximum thickness point belong to outlet segment

κmc = arcsin (ξos −Rmccoc) (3.69)

εmc = εoc + fε (κmc, κoc, ξoc, Rmc, Roc) (3.70)

• If maximum thickness point belong to inlet segment
κmc = arcsin (ξic −Rmccic) (3.71)

εmc = εic + fε (κmc, κic, ξic, Rmc, Ric) (3.72)

The surface curves for segments containing the maximum thickness point can now
be established for inlet, outlet and transition points. In order to find the curves for
the different segments, the correct κ must be iterated using eq 3.8, 3.9 and 3.12.
Functions for κ with input variables for the inlet segment at pressure and suction
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surface respectively

fκs = f (κic, εis, Ris, κm, εms, Rms) (3.73)

fκp = f (κic, εip, Rip, κm, εmp, Rmp) (3.74)

κ, c and ε for suction and pressure surface can now be obtained for the inlet segment

κis, cis, εis = fκs (3.75)

κip, cip, εip = fκp (3.76)

To find the transition point coordinates at the inlet segment, eq 3.10, 3.12 and 3.21
are used to iterate a correct R and ε for pressure and suction side respectively

fRs = f (Rtc, ξis, cis, κm, Rms, κtc, εtc, Rtc, εms) (3.77)

fRp = f (Rtc, ξip, cip, κm, Rmp, κtc, εtc, Rtc, εmp) (3.78)

R, ε and κ can now be obtained for pressure and suction surface at the inlet segment

Rts, εts, κts = fRs (3.79)

Rtp, εtp, κtp = fRp (3.80)

Coordinates for the outlet segment is done the same way as for the inlet. Iteration
using eq 3.8, 3.9 and 3.12 is used to find the correct κ at pressure and suction side

fκs = f (κoc, εos, Ros, κts, εts, Rts) (3.81)

fκp = f (κoc, εop, Rop, κtp, εtp, Rtp) (3.82)

κ, c and ξ can now be obtained for pressure and suction surface at the outlet segment

κos, cos, εos = fκs (3.83)

κop, cop, εop = fκp (3.84)

If the maximum thickness point coordinates is the same as the transition point
coordinates, then:
κtp = κtc, κts = κtc, Rtc = Rms, Rtp = Rmp, εts = εms, εtp = εmp. κ, c, ξ for the inlet
and outlet segment is given by

κos, cos, εos = fκs (3.85)

κop, cop, εop = fκp (3.86)

If the outlet segment contain the maximum thickness point, κ, c and ξ for suction
and pressure surface is given by eq 3.85 and 3.86. The transition point coordinates
for pressure and suction surface is given by eq 3.79 and 3.80. κ, c and ξ for the inlet
segment for the pressure and suction surface is given by eq 3.74 and 3.75.
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Second step in the stacking procedure
Second step in the stacking procedure consist of finding the cylindrical coordinates
of the blade element stacking points, θsp, zsp relative to a common reference. The
stacking point in the axial direction can be defined as

zsp = zsp,h + (rsp − rsp,h) tanλ (3.87)

Where h denotes hub - blade - element value. rsp can be defined as

rsp = Rsp sinα (3.88)

Rsp is the radial stacking point given by eq 3.25. The stacking point for the angular
coordinate is given by eq 3.26. The stacking point in θ- direction is expressed as

θsp = θsp,h + δ (3.89)

∆θsp,ic =
∫
εdA∫

dA sinα (3.90)

Where δ is defined as

δ = arcsin

rsp,h
rsp

(
tan η

1 + tan2 η

)
√√√√( rsp

rsp,h

)2

(1 + tan2 η)− tan2 η − 1


 (3.91)

λ is the lean angle positive in the z-direction and η is the lean angle positive in the
θ-direction, illustrated in Fig 3.5

Figure 3.5: Cylindrical and cartesian coordinate system for the blade [2]

Now, following coordinates can be calculated
(Roc, Ric, Rtc, Rmc, Rts, Rtp, ξos, cos, ξop, cop, εts, κts, εtp, κtp, Rsp, εmc,∆θsp,ic,

∫
εdA,

∫
rdA,

∫
dA, α,

rsp, Ris, Rip, Ros, Rop, εis, εip, εos, εop, εtc, Rmp, εmp, Rms, εms, εoc, ξis, ξip, cic, coc, cis, cip, κis, κip)
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Third step in the stacking procedure
Third step in the stacking procedure consist of calculating the x, y and z coordinates
of the blade elements. This is done by converting the obtained R and ε values using
the following conversion equations

x = R sinα cos
(

ε

sinα
+ θic − θsp,h

)
(3.92)

y = R sinα sin
(

ε

sinα
+ θic − θsp,h

)
(3.93)

z = zsp − (Rsp −R) cosα (3.94)

where the z value for the stacking point is zsp and the cylindrical coordinate of the
center at the leading edge radius is

θic = θsp − (θsp − θic) = θsp,h + δ − εsp
sinα (3.95)

Since R and ε have already been calculated for the leading edge, transition, max-
imum thickness and trailing edge points. The conversion to x, y and z for these
points can now be carried out. The most convenient approach is to calculate the
blade surface curves at constant z values. Therefore, the remaining points on the
blade surfaces are calculated by dividing the z interval of the complete blade into
constant segments. The upper and lower bounds of the z interval for the complete
blade are found by searching the leading and trailing edge coordinates for both sur-
faces of all blade elements. Before the cartesian coordinates of the blade surfaces can
be calculated it is first necessary to calculate R and ε coordinates at the established
z segments. To calculate ε the local blade angle, κ is needed. Where ε is calculated
with equation 3.12 and using the known values at the transition point as reference.
The equations for R, ε and κ at the surfaces are then given by eq 3.56, 3.12 and 3.10

• For the centerline
Rc = Ric + z − zic

cosα (3.96)

• z values belonging to the inlet segment
κc = arcsin (ξic −RcCic) (3.97)

Rp, εp = f (Rc, Cip, ξip, κtp, Rtp, εtp) (3.98)

Rs, εs = f (Rc, Cis, ξis, κts, Rts, εts) (3.99)

• z values belonging to the outlet segment
κc = arcsin (ξoc −Rccoc) (3.100)

Rp, εp = f (Rc, cop, ξop, κtp, Rtp, εtp) (3.101)

Rs, εs = f (Rc, cos, ξos, κts, Rts, εts) (3.102)

Now that R and ε values are known at each z value for every blade element the x
and y coordinates can be calculated with equations eq 3.92 and 3.93.
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Fourth step in the stacking procedure
The fourth step in the stacking procedure consists of interpolating the blade ele-
ment surface coordinates. For each x value the y and z coordinates defines the
blade section profile. The x values used are the previously calculated stacking
points. The y coordinates are interpolated using second order Lagrangian for all
x values and on each surface line with same z value. The blade element coordinates,[
x1,(p,s), y1,(p,s), zj

]
,
[
x2,(p,s), y2,(p,s), zj

]
and

[
x3,(p,s), y3,(p,s), zj

]
are consecutive points

along the z-axis. The eq for y(p,s) then becomes

y(p,s) = y1,(p,s)W1 + y2,(p,s)W2 + y3,(p,s)W3 (3.103)

where

W1 =

[
x− x2,(p,s)

] [
x− x3,(p,s)

]
[
x1,(p,s) − x2,(p,s)

] [
x1,(p,s) − x3,(p,s)

] (3.104)

W2 =

[
x− x1,(p,s)

] [
x− x3,(p,s)

]
[
x2,(p,s) − x1,(p,s)

] [
x2,(p,s) − x3,(p,s)

] (3.105)

and

W3 =

[
x− x1,(p,s)

] [
x− x2,(p,s)

]
[
x3,(p,s) − x1,(p,s)

] [
x3,(p,s) − x2,(p,s)

] (3.106)

Using this, yp and ys are calculated for each z.

Fifth step in the stacking procedure
This step consists of calculating the centers of area for blade sections. The center
of area coordinates are calculated by dividing the area moments by the area of
the blade section. Both area and and area moments are calculated by numerical
integration. The equations for area and area moments are as follows

A =
∫ zmax

zmin

∫ ys

yp
dy dz =

∫ zmax

zmin
[ys(z)− yp(z)] dz (3.107)

ycaA =
∫ zmax

zmin

∫ ys

yp
y dy dz =

∫ zmax

zmin

1
2
[
y2
s(z)− y2

p(z)
]
dz (3.108)

zcaA =
∫ zmax

zmin

∫ ys

yp
z dy dz =

∫ zmax

zmin
z [ys(z)− yp(z)] dz (3.109)

Sixth step in the stacking procedure
This last step in the stacking differ from the procedure followed in [2]. Instead
of using interpolating and tedious iterations, the blade elements are stacked by
calculation.
Now that all the blade elements have been calculated and positioned on their con-
ical surface they are moved so that their center of area coincides with the stacking
line. Each blade element have two possible motions on the cone surface, these are
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calculated to correctly place the blade elements. Firstly, the blade elements can be
displaced along the z axis, meaning the whole cone moves along z. Secondly, the
blade elements can be rotated θ, meaning that the cone is rotated around its own
axis. The translation and rotation directions are visualized in Fig 3.5. The stacking
point for each blade element is calculated by the intersection between a cylinder
with radius rca, illustrated in Fig 3.6, and the stacking line.

Figure 3.6: Conical coordinate system with blade element center of area radius
illustrated

Since the radius of the stacking point, rca, is independent of the offsets z and θ the
equation of a cylinder with radius rca can be written in the cartesian coordinate
system as

x = rca cos (θ) (3.110)
y = rca sin (θ) (3.111)

z = z (3.112)

Using the notation xca,h and yca,h for the stacking point coordinates of the hub blade
element, the stacking line in cartesian coordinate system shown in Fig 3.5 can be
written as

x = xca,h + z − zca,h
tan (λ) (3.113)

y = yca,h + (x− xca,h) tan (η) = yca,h + z − zca,h
tan (λ) tan (η) (3.114)

z = z (3.115)
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Imposing the condition that x2 + y2 = r2
ca in eq 3.113 and 3.114, the z coordinate

for the stacking point can be calculated for each blade element as

A0 = x2
ca,h + y2

ca,h (3.116)

A1 = 2 (xca,h + yca,h tan (η))
tan (λ) (3.117)

A2 = 1 + tan2 (η)
tan2 (λ) (3.118)

C1 = A0 − A1zca,h + A2z
2
ca,h − r2

ca (3.119)

C2 = A1 − 2A2zca,h (3.120)

C3 = A2 (3.121)

C3z
2 + C2z + C1 = 0 (3.122)

With the obtained z values from equations 3.116 to 3.122, the corresponding x and
y coordinates of the intersection between the stacking line and the cylinder can be
obtained from eq 3.113 to 3.115. Out of the two z solutions obtained from eq 3.122
the interesting one is the one which has a corresponding x coordinate greater than
xca,h. The θ coordinate is then obtained from eq 3.110 to 3.111. Now that the
correct θ and z are known, comparing them with the original values obtained from
the first iteration of the original procedure, the offsets in z and θ can be calculated.
Applying the offsets for all blade element points the correct positioning for each
blade element is found.

Connecting pressure and suction surfaces
The final step is to connect the blade surfaces with a circular arc. A circle is fitted
at the leading edge so that it is tangent to the lines from the pressure and suction
side. The same procedure is made for the trailing edge.

3.2 Optimization
In this chapter the search for optimal blade properties, ones defined in section 3.1,
is described.

3.2.1 Blade Representation
Before the optimization is initialized, it must be certain that the objects can be
matched. To be able to make the comparison of the MCA blade represented on con-
ical surfaces with another blade, not necessarily represented by cones, it is required
to represent the reference blade by airfoils described by the same conical surface
representation. In other words, to ensure the cones used in the MCA blade and the
blade used for comparison have the same cone half-angle and are equally positioned.
This is achieved by having the leading- and trailing-edge radius ric and roc, together
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with the axial length, zoc, fixed. This means that from the 11 blade properties, de-
scribed in section 3.1, three will remain constant reducing the number of parameters
required to be optimized to eight per spanwise blade element or 120 in total. The
reference blade can now be intersected with the cones for each span yielding a set
of airfoils that represents the blade on a conical surface. The intersects are made
at 15 spans to mimic the construction of the reference blade. The intersection is
illustrated in Fig 3.7.

Figure 3.7: Reference blade represented by airfoils on conical surfaces

3.2.2 Objective Functions
For the optimizer to evaluate solutions, objective functions are required. Since the
objective of the optimization is to recreate the reference blade with an MCA blade
using a geometrical approach, the objective functions are formulated with the aim
of evaluating the geometrical deviation.

Due to the MCA generation requiring the selection of the 5 blade properties for
each of the 15 spans, the optimization becomes multi-variable with 75 variables.
Where a set of 75 variables forms 15 individual blade elements stacked at a common
stacking line, which are then compared to the 15 intersects made of the reference
blade. The problem is inherently single objective since it can be reduced to distance
between points in two point clouds. However, instead of trying to tie the exact posi-
tion on each MCA blade element which matches the position on the reference blade
elements. The problem is simplified by comparing each blade element before they
are stacked. The individual blade elements are best compared in the rθ − x plane,
illustrated in 2.3, where they are translated to the same position in axial direction
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making the comparison at each x position entirely in rθ. The comparison between
blades are done with pressure and suction side independently. By comparing the
blade elements before the stacking simplifies the comparison but unfortunately adds
another objective function, deviation in stacking, making it multi-objective as well.
The two objectives can be formulated as:

Minimize: f1 (x) = d
Minimize: f2 (x) = dcones

Where dcones denotes the largest cone deviation, of all blade elements, in axial di-
rection and d denotes the average distance between the blade profiles, first averaged
for distance between all points on two blade elements then averaged for each span.
The objectives can be mathematical described as

d =
∑m

1

∑n

i
(riθi−rjθj)
n

m
(3.123)

dcones = max (|xi − xj|) (3.124)
where index i denotes points on the reference blade and j the corresponding point
on the MCA blade in the same x position. The points on the MCA blade have
been interpolated to match the x position of the reference blade. n represent the
number of points on each blade element and m represent the number of spans. The
difference between riθi and rjθj corresponds to the circumferential distance between
the two blade profiles. For the second objective function, xi and xj are the same
point on the MCA and reference blade, i.e trailing or leading edge, for each span.

3.2.3 Multi-objective optimization
Optimization of more than one objective function is known as multi-objective opti-
mization. In this type of optimization a trade-off between the conflicting objective
functions needs to be made. The optimizer cannot find a single solution that opti-
mizes all the objective functions. Instead several solutions are found which trades
one objective for another. When none of the objective functions can be improved
without sacrificing another, the solutions are said to be pareto-optimal.

3.2.4 Optimizer
The algorithm used for the optimization is a Non-dominated Sorting Genetic Al-
gorithm (NSGA-II). It is based on evolutionary processes where it tries to mimic
the process of natural evolution. Each variable to optimize are binary encoded in
an array called chromosomes. Each element in the chromosomes is called a gene.
The algorithm will deal with generations where a generation consists of populations
where each population consists of individuals which in turn consists of all the vari-
ables to optimize which are defined by the chromosomes. One individual will then
be one design to consider. The chromosomes are decoded to assign a value to the
variable. The genes are randomized and from there, the population is initialized
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from a predefined population size. From the population a tournament selection is
made between two randomly selected individuals to determine which shall form the
next generation. Crossover, which generates new individuals to the next generation
from the selected individuals of the tournament. Mutation is also included where
a single gene in an individual is changed. Elitism is also used to preserve the best
individuals of each generation. In the last step, the parent and offspring population
are combined where a fast non-dominated sorting and a crowding distance proce-
dure is implemented to rank the combined population with the best N individuals,
which are selected as new parent population [10].

3.2.5 Variable Range
The variables to optimize are blade properties that define the MCA blade. These
variables include local blade angle, κ, local thickness, t, and two axial distances
from the hub blade element leading edge to the maximum thickness and transition
point on the centerline. The blade angles and thicknesses are for three critical
points on the centerline, inlet, outlet and maximum thickness. In the optimization
a range is defined for each variable which will determine the time it takes to find
an optimal design. Therefore, finding a good range for the optimization variables is
vital. The chosen ranges are found by iteration where the values for thicknesses are
calculated from a preliminary camber line. The preliminary camberline is defined
by half the distance between pressure and suction side. The preliminary camberline
is illustrated in Fig 3.8. The range for local blade angles κ at the three points are
initialized by intuition. After the initial ranges are defined they are optimized in
the NSGA-II where each blade element is run individually. From the pareto front,
new ranges are found and this process is iterated until a satisfactory narrow range is
achieved. When the final variable ranges are found the complete blade is optimized
in the NSGA-II.

rθ

x

0% Span 50% Span 100% Span

Figure 3.8: Preliminary camberline used to determine initial range of thickness
and axial distance of transition/maximum thickness point
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3.2.6 Optimization Framework
The framework developed for this optimization is illustrated in 3.9. The variables
are initialized inside the virtual loop with a randomized population which with the
help of the NSGA-II finds the pareto-optimal designs. The found designs are added
to the variable database. From the variable database, MCA blades are generated.
The blades are then evaluated by the objective functions which enables the pareto
front to be extracted. If the designs are not converged the designs are run through
the virtual loop again to push down the pareto front.

Variable
database

New designs

MCA gen-
eration

Objective
functions Pareto front

Converged?

Finished!

Initial pop-
ulation

Performance
evaluation

NSGA-II
-Mutation
-Crossover

Converged? Populate next
generation

Yes

No

No

Yes
Virtual loop

Figure 3.9: Flowchart of optimization procedure
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3.3 CFD

3.3.1 Numerical Method
The solver used to solve the Favre-filtered, Reynolds-averaged unsteady Navier -
Stokes equations is called G3D::Flow, the code is an in-house code developed at
Chalmers University of Technology. G3D::Flow is a compressible solver used in
a wide range of turbomachinery applications. It is a finite-volume, density-based
solver using a three-stage Runge-Kutta time marching method. Diffusive fluxes are
computed using second order central differencing scheme in space and the convec-
tive fluxes are computed using third order upwind scheme, taking the propagating
direction of the flow into consideration. In order to capture the effects of shocks,
extra artificial numerical dissipation is added. Discretization of eq 2.50 is based on
the finite-volume method. Integrating over an arbitrary control volume , Γ, yields∫

Γ

∂Q
∂t
dV +

∫
Γ

∂Fj
∂xj

dV =
∫

Γ
HdV (3.125)

Applying the divergence theorem on the flux vector, Fj in eq 3.125, and taking the
average of the state vector, Q and H respectively yields

∂Q
∂t

∆V +
∫
∂Γ
Fjn̂dSj = H∆V (3.126)

Where the product n̂dSj is the net flux out of the control surface, ∂Γ. The surface
integral in eq 3.126 can over a control volume cell be approximated as

∫
∂Γ
Fjn̂dSj =

n∑
i=1

[FjSj]i (3.127)

Where n is all cell faces in the grid. Combining eq 3.126 and 3.127 yields

∂Q
∂t

∆V +
n∑
i=1

[FjSj]i = H∆V (3.128)

The flux term is approximated is by dividing the convective- and diffusive fluxes
identified from eq 2.52

Fj =


ρũi

ρũi ũj + pδij
ρẽ0 ũj + pũj

ρk̃ ũj
ρε̃ ũj

+



0
−τij

−cp
(
µ
Pr

+ µt
Prt

)
∂T
∂xj
− ũiτij

−
(
µ+ µt

σk

)
∂k
∂xj

−
(
µ+ µt

σε

)
∂ε
∂xj


(3.129)
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3.3.1.1 Time Stepping

The system of ODE:s from eq 3.129 can in vector form be expressed as

∂Q
∂t

= F (Q) (3.130)

Where Q contains all DOF in every cell and F (Q) is the time derivative of Q from
the flux term approximations. Eq 3.130 is solved explicitly in time using a three-
stage Runge-Kutta time marching method. The time stepping algorithm is outlined
below [11]

Q∗ = Qn + ∆tF (Qn) (3.131)

Q∗∗ = Qn + 1
2∆tF (Qn) + 1

2∆tF (Q∗) (3.132)

Qn+1 = Qn + 1
2∆tF + 1

2∆tF (Q∗∗) (3.133)

Where Qn = Q (tn) and Qn+1 = Q (tn+1). ∆t is the time step of the solver. n
denotes the previous time step and n+1 denote the next time step. Superscripts *
and ** denote sub-time steps.

3.3.1.2 Boundary conditions

Boundary condition is set as subsonic inflow for the inlet, while the outflow bound-
ary conditions are based on the method of characteristic. The outflow variables are
expressed in conservative form while the inflow variables are expressed in primitive
form.

Inlet
• Total temperature, T0.
• Total pressure, p0.
• Velocity component in the axial, radial and tangential directions ,ũx, ũθ, ũr.
• Turbulent kinetic energy, k.
• Turbulent kinetic energy dissipation rate, ε.

Outlet
• For three - dimensional unsteady turbulent flows, wave reflections in the do-

main pose problems of numerical instability, and must therefore be carefully
monitored. In order to improve numerical stability, a non-reflective boundary
condition is applied allowing these acoustic waves to leave the domain. This
boundary condition work as a static pressure boundary condition.

Blade surface
At the blade surface, following boundary conditions are specified

• Velocity vector, ũi. The tangential velocity component is placed at the first
cell adjacent of the wall using wall functions. The normal velocity component
is set to zero.

• The wall is assumed to be adiabatic, i.e zero heat flux at the surface. The
normal component of temperature is therefore set to zero.
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3. Methodology

• Turbulent kinetic energy, k, and turbulent kinetic energy dissipation rate, ε is
applied at the first cell adjacent to the blade surface using wall functions.

• Normal component of static pressure is set to zero, ensuring no flow through
the wall.

Periodic surface
For the surfaces, the flow is assumed to be rotational periodic. A periodic rotational
boundary condition is therefore applied.

Mixing planes
The interface between the rotational and stationary domains were treated by imple-
menting mixing planes with non-reflective properties. Applying mixing plane as a
boundary condition ensured a steady flow solution through the turbomachine [21].
The basis of mixing plane boundary condition is to first divide the interface into
circumferential sections by the grid lines at approximately constant radius. Next
step is to mass average the flow variables so each iteration is performed over the
circumferential sections. In this way, radial profiles over the corresponding flow vari-
ables can be obtained. The profiles from one side to the other side of the interface
are then exchanged and applied as a boundary condition. In this way, the averaged
flow variables at the mixing plane will be equal and thus satisfy conservation of
mass, momentum and energy [21]. Denton [22] pointed out that additional entropy
was generated due to shock waves and artificial losses due to numerical errors. This
extra loss will exceed the loss generated in the actual mixing process, which occurs
at multi-stage interfaces [21]. For transonic compressors, it is therefore reasonable to
conclude the mixing-plane method lead to under-prediction of the actual polytropic
efficiency.
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3.3.2 Computational Domain
The computational domain has been constructed using a general structured non-
orthogonal multi-block mesh generator called G3dmesh. O-grids are used for reso-
lution around the blade profile, while h-grids are used for the blade passages. The
use of wall functions require y+ values in the region 20 − 100. The computational
grid consist of 211000 cells, with approximately 100000 cells per domain. The design
grid used for computation is illustrated in Fig 3.10.

Figure 3.10: 3D grid surfaces and Blade-to-blade plane for rotor stator
configuration
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3.3.3 Settings
3.3.3.1 Mesh Settings

The 3D grid is generated by defining how many cells that should be included in each
direction. These cells are given a direction in 3D space with corresponding number
of nodes for each block number. A command file for rotor and stator is created
where the input parameters for the grid are defined. The blade geometry in the
command file is represented as an SNC profile. Hub, mid, shroud and tip from the
command file is defined as SOR surfaces. The command file is then exported to a
module translating the input from the command file, generating a 3D grid around
the blade profile. Stretching are taken care of by patching blocks at inlet, outlet and
passages. The module is generating an output file containing the grid properties,
which is then exported to G3dmesh for meshing.

3.3.3.2 Solver Settings

In order to start the CFD simulation, the necessary inputs required are included
in the run file. Solver settings, including numerics and flow properties required to
start the simulation are listed below

• Specify blade row speed
• Specify number of blades
• Specify rotation angles for rotor and stator
• Specify number of time steps
• Specify convergence criteria
• Specify CFL number
• Specify turbulence model
• Specify model constants and realizability factor for turbulence model
• Specify gas properties
• Specify extra damping for pressure and density

3.3.3.3 Generate Mesh and Run CFD

When the set up is done and the mesh is generated, the case is set to run. The
solution is initialized using a previous solution. The flow variables in each cell
are linearly interpolated between the inlet and outlet boundaries. Convergence are
monitored by checking mass averaged total- temperature and pressure as well as
inlet- and outlet mass fluxes.
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4
Results

In this chapter, results from the optimization and CFD simulations are presented
and discussed.

4.1 Optimization
The optimization is based on the procedure described in section 3.2, where the inlet
and outlet radius for each span, together with the axial distance between the radius
was kept constant.
From the individual blade element optimization, where stacking is not considered,
the optimal variable ranges could be found. The final iteration of the individual
optimization is shown in Fig 4.1 for hub, mid and tip span. The individual blade
elements are found to be a good match of the reference blade. The variable values
found from this optimization were used as range for the complete blade optimization,
where the stacking of blade elements will be considered. The thickness values were
calculated from the preliminary camber line described in section 3.2.5 and kept
constant to save time.

rθ

x

0% Span 50% Span 100% Span

Figure 4.1: Comparison of MCA and reference blade elements at hub, mid and
tip illustrated in rθ plane for the individual optimization
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The Pareto front from the final iteration of the complete blade optimization is
illustrated in Fig 4.2. It shows a trade off between blade shape fit and blade stacking
has to be made. It also shows that it is difficult to get a low deviation in the
stacking. The stacking deviation determines axial sweep of the blade. Therefore, it
was deemed that the blade shape will have a larger impact than the stacking, and
a design with low average distance in rθ was chosen.
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Figure 4.2: Pareto front from the final iteration

The selected MCA blade design is compared with the reference blade, which is
illustrated in Fig 4.3 at hub, mid and tip.

rθ

x

0% Span 50% Span 100% Span

Figure 4.3: Selected MCA design and reference blade at hub, mid and tip from
the pareto front illustrated in the rθ plane

The blade comparison shows that for the MCA blade, stacking deviates increasingly
along the span while the general blade shape at each span corresponds well with the
reference blade.
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4. Results

4.2 CFD

4.2.1 Stage Performance
To evaluate the stage performance, the MCA and reference blade are compared in
the same stage where the stator blade is same for both cases. The speedline for full
rotational speed is constructed. The speedline was obtained from operating points
generated with CFD simulations at varying pressure ratios. From the operating line,
the design point, DP, was obtained by finding the intersection between the operating
line and speedline. The design point from the MCA and reference blade is presented
in Fig 4.4.
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Figure 4.4: Compressor performance of MCA and reference blade at design speed

By assuming constant polytropic efficiency, an arbitrary operating point on the
working line defined by the throttle area was obtained by varying the pressure ratio,
and thereby calculating the corresponding mass flow. In this way, a large number of
operating points could be obtained and a working line could be constructed. Once
the working line is obtained, the distance between the two design points at design
speed can be evaluated. At design speed it can be seen from Fig 4.4 that the refer-
ence blade produces higher polytropic efficiency compared to the MCA blade. Peak
stage efficiency of the reference blade is roughly 1% higher compared to the MCA
blade. Performance of the individual components in the stage for the two blades are
outlined in table 4.1
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Properties MCA blade Ref blade Notation
Inlet mass flow [kg

s
] 38.595840 38.520980 ṁ1

Outlet mass flow [kg
s
] -38.596910 -38.52222 ṁ2

Mass flow difference [%] 0.2772 0.3219 ( ṁ1−ṁ2
ṁ1

) ∗ 100
Total pressure ratio [-] 1.646802 1.642992 PRTT

Corrected mass flow [kg
s
] 79.366195 79.211890 ṁcorr

Polytropic efficiency [%] 90.4839 91.5516 ηp
Static pressure coefficient, rotor [-] 0.412576 0.424000 CpR
Static pressure coefficient, stator [-] 0.181741 0.169914 CpS
Static pressure coefficient, stage [-] 0.348638 0.355734 CpRS
Pressure loss coefficient, rotor [-] 0.066837 0.057608 ωR
Pressure loss coefficient, stator [-] 0.043688 0.042623 ωS

Mean Swirl out [0] -10.050894 -10.189522 α2
Mean Swirl in [0] -16.770996 -16.902688 α1

Table 4.1: Performance for optimized and reference blade at design speed

The results summarized in 4.1 conclude that the performance agree fairly well.
Although the blades perform almost identical in terms of corrected mass flow and
total pressure ratio, a difference in polytropic efficiency can be noticed. Pressure loss
coefficient for stator and rotor is shown to be higher in the MCA blade compared
to the reference blade. An attempt to give more qualitative analysis to why there
is a discrepancy in efficiency is provided in the following sections.
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4.2.2 Simulation Results
The radial distribution of static pressure and Mach number magnitude are shown
at approximately 80% and 95% span in the form of contour plots, highlighting the
main differences between the two blades.

MCA blade Ref blade

(a) Mach number at 80% span (b) Mach number at 80% span

Figure 4.5: Cascade comparison of Mach number for the blades at 80% span

(a) Static pressure at 80% span (b) Static pressure at 80% span

Figure 4.6: Cascade comparison of static pressure for the blades at 80% span

(a) Static pressure at 95% span (b) Static pressure at 95% span

Figure 4.7: Cascade comparison of static pressure for the blades at 95% span
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Figure 4.8: Comparison of leading edge thickness for the two blade profiles

Illustrated in Fig 4.5 and 4.6, a detached shock is formed at the blade leading edge.
The MCA blade has a slightly higher incidence at the tip compared to the reference
blade. This imply that a suction peak is formed near the leading edge, whereby
the flow is decelerating. Shown in Fig 4.5a the Mach number at the suction surface
is slightly higher compared to the reference blade, which may be due to slightly
more curvature at the MCA blade, contributing to an acceleration of the flow due
to an increase in Prandtl-Meyer turning. The higher Mach number downstream
produce a near normal passage shock, terminating at the neighbouring blade suction
surface. From Fig 4.6, the passage shock is more normal compared to the reference
blade which is slightly more oblique, leading to an increase in shock strength and
entropy and hence shock losses and loss in total pressure. The increase in intensity
of the passage shock for the MCA blade may lead to an increase in shock-vortex
interaction as the tip-vortex crosses the shock. The shock-vortex interaction lead to a
deceleration of the flow, resulting in a sudden expansion of the flow and ultimately to
vortex breakdown. From Fig 4.5 and 4.6, the stronger passage shock from the MCA
blade lead to a larger static pressure gradient compared to the reference blade. Shock
losses in combination with mixed out losses from tip vortex breakdown contribute
to total pressure loss and thus an increase in entropy, resulting in a reduction in
aerodynamical performance, and hence lower the efficiency of the compressor. This
may be an explanation to why there is a discrepancy in efficiency between the two
blades.

50



4. Results

4.2.2.1 Spanwise distribution of total pressure and swirl

The spanwise profiles of total pressure and swirl at rotor leading and trailing edge
as well as stator trailing edge are presented in Fig 4.9 and Fig 4.10.
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Figure 4.9: Normalized radial span distribution of total pressure before and after
rotor

Overall, the results for the two blade profiles agree very well except for a small
deviation in total pressure at the trailing edge. The MCA blade is shown to produce
a loss in total pressure close to the shroud, this may be due the change in geometry
from the optimization, where the MCA blade was shown to have a thicker leading
edge compared to the reference blade, as well as more curvature on the suction
surface, leading to a stronger passage shock and hence an increase in shock loss and
shock-vortex interaction. The same spanwise profiles for the rotor are plotted for
the stator in Fig 4.10. Note that the same stator design is used for both stages and
the legend MCA and reference denotes the stage.
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Figure 4.10: Normalized radial span distribution of swirl angle after the rotor
and stator

Illustrated in Fig 4.10, swirl increases in the rotor and is added to the flow, and
according to the Euler work equation, an increase in total energy is produced by a
change in angular momentum. The task of the stator is to remove the swirl from the
flow, implying that the stator cannot add energy to the flow, but instead converting
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kinetic energy of the flow into internal energy by raising the static pressure. Fig
4.10 show that the the swirl for the two blade profiles are well matched for both
stator and rotor trailing edge.
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5
Conclusion

A multi-objective optimization of transonic compressor MCA blades has been ac-
complished with the use of NSGA-II as the genetic algorithm. Computational fluid
dynamics has been used as a tool to compare the performance of the MCA blade
with the reference blade. In order to recreate the reference blade with MCA ge-
ometry, two objective functions were formulated. The first objective describe the
mean average deviation in the rθ-plane, and the second objective describes the cone
displacement in the axial direction, ensuring that the blade elements are correctly
stacked. These objectives were optimized using five design variables at 15 spans,
describing the MCA blade geometry, resulting in a total of 75 optimizing variables.
NSGA-II produces a Pareto-optimal front of the conflicting objectives, producing
compromised solutions which enhances the result. Results from the optimization
showed an increase in leading edge thickness of the MCA blade compared to the
reference blade, which may contribute to an increase in shock loss. This may be
resolved by describe the leading edge in the form of an ellipse or higher order poly-
nomial instead of a circle. This would likely yield a more oblique leading edge,
which would be beneficial as it would reduce the shock strength. From CFD it was
shown that the reduced order model is capable of predicting the overall compressor
characteristics in terms of total to pressure ratio and corrected mass flow. However,
the reference blade produce a slightly higher polytropic efficiency compared to the
MCA blade. It was found that the difference between corrected mass flow and total
pressure ratio was ≈ 0.2%. Sequential quadratic programming was also used as an
optimizing method too see if it is feasible to reduce the computational cost. It was
shown that the SQP was significantly faster optimizing one individual blade span.
By comparison, it took 15 minutes to optimize one span using the NSGA-II, while it
took ≈ 15 seconds with the SQP. A grid independence study was not carried out due
to time limitations, this would have been beneficial as it would provide a finer mesh
with retained accuracy. The conclusion is that the model is capable of recreating an
already optimized blade with MCA blade geometry and producing results similar to
those of higher order models. Hopefully, these results could pave the way for new
loss correlation models.
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5. Conclusion

5.1 Future Work
It would be interesting to see if mean geometric deviation could be reduced further,
as the mean geometrical deviation resulted in a more blunt leading edge compared
to the reference blade, this could have contributed to a decrease in efficiency of the
compressor. It would also be interested if the CPU time for optimization could be
reduced as the computational cost is very high due to the vast amount of optimizing
variables. In hindsight, the optimization can be reduced to a single-objective prob-
lem by remove the second objective and instead use 3D interpolation between the
two blade profiles. This could be included in future work. Other optimizing methods
such as radial basis functions and metamodels in combination with NSGA-II could
be implemented in order to reduce the computational cost. Sequential quadratic
programming (SQP) would also be an interesting alternative for optimization. In
order to do more thoroughly analysis of the flow field, other turbulence models could
be tested.
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