
Java exception matching in real time using fuzzy logic
Master of Science Thesis

Karl Tillström

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, May 2010

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Java exception matching in real time using fuzzy logic

KARL TILLSTRÖM

© KARL TILLSTRÖM, MAY 2010.

Examiner: BROR BJERNER

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE­412 96 Göteborg
Sweden
Telephone + 46 (0)31­772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2010

Abstract

This thesis deals with the problem of matching Java exceptions that
originates from the same problem, but looks a bit dissimilar. The match-
ing must be done within reasonable time to be able to be carried out
automatically. Di�erent ways of utilizing fuzzy string matching logic is
examined in general and how to apply it to Java exceptions speci�cally.

The exceptions are divided into separate logical parts and the analysis
deals with how to weight the importance of the parts and application of
fuzzy matching between them. Java exceptions can be linked in �caused
by� chains depending on where they occur and what e�ects they have. In
short - an exception can cause other exceptions to occur, and thus the
�rst exception is a �caused by exception� to the second one.

In this thesis the resulting algorithm groups exceptions together with
their �caused by�:s and compares the top and bottom exceptions of the
chain with other top and bottom exceptions to �nd matches. To de-
termine degree of similarity a number of fuzzy string matching algo-
rithms where examined including �Levenshtein�, �Damerau-Levenshtein�,
�Needleman-Wunch�, �Jaro-Winkler�, �Bitap�, �Boyer-Moore� and in some
degree �Ukkonen�. In the end, a modi�ed version of the original Leven-
shtein algorithm - utilizing lazy evaluation and thresholding - was deter-
mined the best suited comparison algorithm for this problem.

1

Abstract

Den här examenstesen berör problemet om att matcha avbrott i Java
(eng: exceptions) som härrör från samma problem, men av olika anled-
ningar ser lite olika ut. Matchningen måste göras inom rimlig tid för att
kunna användas automatiskt av andra applikationer i realtid. För att
lösa detta undersöks olika sätt att applicera s.k. fuzzy string matching-
algoritmer på Java-avbrott.

Java-avbrott är uppdelade i olika logiska delar och analysen handlar
om hur man kan vikta hur viktiga de olika delarna är och hur fuzzy string
matching kan användas för att få fram likheter. Java-avbrott kan även
vara ihoplänkade i orsaks-kedjor (eng: caused by) beroende på var de
uppstår och vilka e�ekter de har. Kortfattat kan ett avbrott orsaka att
ett annat uppstår och då blir det första avbrottet ett orsaksavbrott till
det andra.

I den här tesen grupperas avbrott ihop med deras orsakande avbrott
och det översta i kedjan sätts ihop med det understa och jämförs med
andra topp- och bottenavbrott. För att avgöra graden av likhet mellan
de olika delarna har ett antal �fuzzy string matching�-algoritmer jäm-
förts: �Levenshtein�, �Damerau-Levenshtein�, �Needleman-Wunch�, �Jaro-
Winkler�, �Bitap�, �Boyer-Moore� och i viss mån �Ukkonen�. Slutligen har
en modi�erad variant av Levenshteinalgoritmen visats vara bäst lämpad
för det här problemet - en Levenshtein med modi�kationen att den an-
vänder �Lazy evaluation� samt ett tröskelvärde för hur olika strängar får
vara som mest innan de kastas bort.

2

Contents

1 Preface 4

2 Introduction 5

2.1 Purpose . 5
2.2 Delimitation . 6
2.3 Original project de�nition . 6

3 Analysis and methodology 8

3.1 Overall project plan . 8
3.1.1 Methodology . 8
3.1.2 Analysis and result . 8

3.2 Exception de�nition . 12
3.2.1 Methodology . 12
3.2.2 Analysis . 13

3.3 Matching rules . 17
3.3.1 Methodology . 17
3.3.2 Analysis . 18

3.4 Algorithms . 18
3.4.1 Method . 18
3.4.2 Analysis . 19

3.5 Program structure . 26
3.5.1 Methodology . 26
3.5.2 Analysis . 26

3.6 Storage (database) model . 27
3.6.1 Methodology . 27
3.6.2 Analysis . 28

3.7 User interfaces . 38
3.7.1 Methodology . 38
3.7.2 Analysis . 39

4 Results 42

4.1 Exception de�nition . 42
4.2 Matching rules . 44
4.3 Fuzzy string matching algorithm 44
4.4 Program structure . 44
4.5 Storage (database) model . 48
4.6 Application user interface . 49

4.6.1 Web application . 49
4.6.2 Web service . 51

5 Discussion 52

6 Conclusion 52

7 Bibliography 53

8 Literature 54

9 Glossary and index 55

3

1 Preface

This report is a part of a master thesis project in Computer science and Engi-
neering at the department of Computer Science, Chalmers University of Tech-
nology, Gothenburg, Sweden. The project was performed over a period of 8
months at the company Amadeus located at Sophia Antipolis, France and marks
the end of the authors studies to a Master of Science in Computer Science and
Engineering.

First o� all I would like to thank Amadeus for the great opportunity and
all e�orts to support my work � in particular Raphael Kubler � my tutor, the
Production Support team (PSU) � his team and also Hugo Questroy and Lau-
rent Cognard from the NRE team for their excessive support of the project.
I would also like to give a special thanks to �the Swedish ma�a� at Amadeus
for great company and quick integration into the French life - in particular To-
bias �Tumm� Engvall for convincing me, that a master thesis in France was the
way to go. At Chalmers I would like to thank Bror Bjerner for supervising the
project in a very non problematic way, in spite of French bureaucracy's e�orts
to make things complicated.

Last but not least, I would like to thank Meea for support on everything else
in life during this Master thesis!

4

2 Introduction

This thesis is about matching Java exceptions with each other to determine de-
gree of similarity between them and to do so with acceptable performance. An
exception origins from a certain point in the source code. However depending
on di�erent circumstances such, as version of code, platform, and machine type
- the very same exception generated from the exact same source code, doesn't
look exactly the same each time. Therefore, no simple check of exact equality
can be used for exception matching. Exceptions originating from the same point
of source should of course be considered to be equal even though they might
di�er slightly in appearance. The matching is thus to be done by �rst de�ning
which features that are relevant in an exception and then by constructing log-
ical rules and algorithms to calculate the resemblance given those features. A
proof of concept application should be constructed, that executes the task with
reasonable performance to be able to be used in daily work in a big production
environment.

Amadeus has several big web based systems running on WebLogic platforms,
which produce a huge amount of exception logs every day. Due to the complexity
of programming and system development, exceptions are an inevitable e�ect
and most often indicate some error either in code or in design. Encountered
exceptions must �rst be recognized as either a previously unknown exception or
an exception in the process of being resolved, before any action should be taken
to correct the error. Given a big system in production, this is infeasible to carry
out manually, due to the sheer amount of exception logs produced every day. It
is also problematic to carry out automatically, since fuzzy matching algorithms
tend to be heavy performance wise, which is one major issue to solve within
this thesis.

To keep track of exceptions (and other problems), Amadeus uses �Prob-
lem tracking records� or in short: PTRs. The goal of the program developed
to implement the Java Exception matching, is thus to be able to match given
exceptions to existing PTRs regarding the same, previously encountered excep-
tion.

Amadeus has also developed internal frameworks and other software stan-
dards that new developments should be implemented in conjunction with. There
are particularly two such internal systems the developed application will be deal-
ing with: SPIN1 and SWAT2. SPIN is a Java framework with additional policies
and SWAT is an automated testing tool and data storage, which deals a lot with
exceptions. Hence, the exception model developed here will also be usable by
SWAT.

2.1 Purpose

The problem to solve is how a method of matching Java Exceptions can be
developed that utilizes the speci�c features of the Java Exception structure and
syntax and is possible to implement and be used in a production environment
with high data �ows, in real time. Two exceptions that are considered to be
equal are not necessarily identical and must thus be matched based on particular
rules regarding their properties/features and some variation of fuzzy logic. What

1SPIN is a framework and set of policies developed internally within Amadeus
2SWAT is a data collection and analysis project within Amadeus

5

these rules are is a part of the problem and must be developed along with the
logic that should implement them for a complete working solution. This implies
a trade o� between accuracy and performance and a big part of the problem is
to �nd a method that is usable with good enough accuracy and performance in
practice and not just in theory.

To solve this problem, di�erent rules, logic and algorithms will be analyzed
and tested and as the �nal result a complete application for the task will be
constructed based on the results of the analysis and testing. The application
should be developed using a modular approach and by multiple possibilities of
user/application interfaces, to be able to be used by di�erent platforms and
teams within Amadeus. Di�erent matching rules of the exception features will
be tried out and tested, to �nd one that gives a result, that is useful for daily
work with exception logs. Di�erent algorithms for fuzzy string matching will
be evaluated to �nd one that performs well enough to manage the performance
requirements � e.g exception matching should appear to be done in �no time�
for the user, regardless of the amount of exceptions kept track of. A data model
for storing the results will be evaluated and implemented with respect to storage
size, performance requirements, and data integrity.

2.2 Delimitation

In its context, the de�nition of the problem yields a couple of constraints:

� Only WebLogic generated exceptions are guaranteed to be compliant with
the application.

� Since the matching part is the only relevant function of the application,
only the features of an exception needed for matching are stored, i.e. that
no complete exceptions are stored and thus the application may need to
be complemented with some storage of complete exceptions for problem
investigation.

� The application is an interface for single exception matching � thus no
form of parser of log �les or likewise is implemented.

I know of no other existing exception matching applications and thus the prior
work done in the �eld that is applicable to this project, is mainly general fuzzy
string matching.

2.3 Original project de�nition

Exception application tracker

The internship will consist of two main studies:

1. Functionality:

The trainee will examine a way to store exception in the database
with an associated problem record.

This study will involve the following aspects:

� Exception stake trace management

6

� A algorithm to compare an exception to other exception and provide a
percentage matching number

� Impacted Production systems

� Referenced Problem records

� Automatic Problem record creation for new error/exception

2. GUI:

The trainee will study the development of a Left/Right UI window
to allow people to compare an exception in the log �le with one
stored in the database. The trainee will also study the proposal of a
web service to allow other application to invoke the service in batch
mode to identify already existing exception

7

3 Analysis and methodology

The analysis and methodology is divided in eight sub-chapters, each describing
a di�erent building block of the master thesis. Since many of the parts depend
on the progress made in other parts, the analysis and methodology section is
not chronological, except for each sub-chapter itself.

3.1 Overall project plan

Before the project was started, a plan needed to be created that de�ned each
step necessary to reach the goal of the completed Master thesis.

3.1.1 Methodology

Since the project is quite vaguely de�ned; I expected that the project de�ni-
tion and constraints would evolve during the course of the project and thus no
standard development process was chosen. Mainly to be able to spend time on
progressing forward instead of trying to adapt the reality to the model when
more information was discovered and de�ned. However, a project plan is needed
to be able to produce a solution that solves the actual problem and does so in
time and with a good result.

To construct a good project plan, I analyzed the project description and
constructed design documents and presentations based on several processes and
methods. The design documents had suggestions on strategy, de�nitions, and
constraints of the project and the process to create it. Feedback on the document
contents was given by my tutor, my team and other parties involved. The design
documents where to be quite blunt and general at �rst, with each part more
thoroughly speci�ed as the development reached it.

3.1.2 Analysis and result

Exception de�nition and parser A good feel for the knowledge in the
area of fuzzy matching was needed to come up with a good plan of how the
project should be implemented. If there were particularly good methods and
algorithms that needed the data to be handled in a certain way, it is easier to
build the application in a way that supports it from the beginning than trying
to adapt it after a while. A bunch of algorithms were studied (found in the
algorithms section) and also how to break down an exception into features suit-
able for string matching (found in the exception de�nition section). In addition
to string matching, an idea of automatic clustering of exceptions through a self
organizing arti�cial neural network such as a Kohonen map3 was thought of
but not investigated further. Amadeus keeps problem tracking records (PTRs)
to which the exceptions were to be associated with. It was quickly found that
there were really no feasible way of searching the PTR data storage for existing
exception PTRs, so in order to associate the exceptions the application had to
keep a data storage of its own. The application data storage started out empty
and was successively �lled with exceptions as they were discovered.

This lead up to a �rst suggestion of the order to analyze the di�erent parts
of the master thesis, a program structure, and an implementation phase plan.

3http://en.wikipedia.org/w/index.php?title=Self-organizing_map&oldid=206987930

8

Algorithm 1 General project plan

Part 0 � Preparation

� De�ne what constitutes an Exception (feature extraction)

� Study Spin & Swat for possible integration

� Finalize a working copy of the design document

� Study unit tests

Part 1 � Test and development framework

� Java Interfaces for all modules

� Simple log �le parser

� Local Database

� One classi�er / PTR Matcher

� Simple UI (Java Application)

Part 2 � Algorithm trials

� Internal benchmarker

� Research, implement and try out di�erent classi�ers / matchers

� Simple neural net trial for the severity classi�er

Part 3 � Beta version

� Migrate to �nal database solution

� Real GUI (Web based?)

� Web service

� Optimize log parser

Part 4 � If there is time

� PTR generator

� Reports

� Class ownership linkage

9

An additional idea was to try to automatically classify how severe the ex-
ceptions were by using some sort of self learning neural network. The classi�er
would learn to recognize the severity of exceptions better and better by getting
feedback from the user and it would be a help to the team to prioritize the
resolution of the exceptions. All needed information was to be kept in the data
store for each exception, so a table of occurrences and a table of stack traces
would be created.

A presentation with the main purpose of gathering feedback on what was
needed from the application was held for representatives from all teams inter-
ested in the project. Two conclusions were drawn from the presentation. The
�rst one that two existing Amadeus internal projects/frameworks; SPIN and
SWAT; should be investigated with the intention of integrating this project with
them. The other that it was inconclusive so far what interfaces there should be
to the system, in addition to a web service and some sort of left/right GUI.

The SPIN project is an e�ort to collect the internal tools into one single
project for easy sharing of code and functions and also to ensure the quality of
the code through policies and development routines. The idea of this project
is to make use of the library and also ensure the maintainability and further
development through the SPIN routines.

For this project SWAT can be seen as an internal system mainly for log �le
and exception management and storage. The idea is to gather all exception
related data in one single place and thus it would be preferable if this project
can be integrated with SWAT.

To progress from this point, a design document was created to be used as a
project de�nition for all parties to agree upon. The design document were to
de�ne:

� Description of the project Goals & Objective of the project

� In which context the project were to be used

� Major constraints to take into consideration

� Development methodology

� Time plan, split up in phases

� Requirements of the application

� Use cases

� User interfaces

� Program structure / System architecture

� Database model

In parallel to writing the design document; SPIN & SWAT integration was
studied and a draft of a suitable database model was created. With the parts
of the design document needed to progress through a new presentation/meeting
done, a new presentation was held to decide upon whether to go with SPIN
& SWAT, settle on the database model, decide which version of Java to use
(since not all projects were up to date with the latest Java version), and also
what types of user interfaces to develop. In short, the meeting decided to go

10

with SPIN & SWAT, Java version 1.5, to use the proposed database model, and
for user interface only use a web based one developed through another internal
library called �Aria�. Aria is an AJAX based web GUI library developed at
Amadeus.

With the new directives to use SPIN, a prede�ned set of project planning
documents were to be used � and thus the original design document was never
completed, but split up into the appropriate SPIN project documents instead.
So now the project was managed by:

� Project description
An overall description of the project

� Technical description
The details on how the project should be implemented, including UML
diagrams, database diagrams and related things.

� Road map
A time plan for the implementation of the project.

While working on the SPIN documents; three main areas were investigated; Fi-
nalizing a SWAT compatible data model, de�ning how to work with stack traces
of exceptions, and what algorithms that should be implemented for fuzzy string
matching. For more information on the development, see the the appropriate
sub chapters.

At this point, the internship subject felt to have grown a bit out of hand,
so after a meeting with Raphael Kubler and Eric Durand it was decided to
limit the project more to the original internship subject. In reality this meant
to limit the data model to only include one copy of each exception and put
the responsibility of exact recreation of exception occurrences on SWAT. This
project should be using a database of its own, but the database should be easily
linkable to SWAT. For each exception occurrence in SWAT, a PTR connection
should be able to get by querying this project's database. After a meeting with
Laurent Cognard, the team leader of the NRE team which are responsible for
both the SPIN and the SWAT project, a new database model was decided upon
and the responsibility of linking SWAT to this project was put on the NRE
team4. The development of the database model can be followed in the database
sub chapter.

At this point, the project was quite clearly de�ned and a phase consist-
ing of mainly implementation started. The database model was implemented
and appropriate stored procedures created, all according to Amadeus database
policies. De�nition of exception features and matching rules were developed
through analyzing data, suggesting strategies to the team and getting feedback.
The part that needed most adaptation, was the parser that should translate an
exception, entered as a text blob, into an �exception object� used internally.
The problem is that exceptions might look a bit di�erent � they are intended
for human interpretation and thus the syntax varies a lot. In the end regular
expressions were created to parse each feature of the exception and cycles of
testing the parser on more and more syntaxes was performed. After each cycle,
the regular expression were updated according to the results and feedback. To
be able to easily accept new syntaxes further on, the regular expressions were

4The NRE team is responsble for �non regression� testing

11

decided to be updateable through the application interface,. Algorithms and
matching rules were implemented and benchmarked to �nd the optimal ones to
use.

Due to the fact that SPIN was problematic to get up and running on the
local machine, a new sub goal was added. A non web based prototype would
be created to be able to test the ideas and get feedback from the team without
having to wait for the SPIN installation to get up and running. Thus, a proto-
type was created using a Java Swing interface5, which were tested by the team
and a lot of feedback were given.

The �nal step was to get SPIN working, convert the Swing application into
a web based one using SPIN libraries, and then to get it up and working. The
details of the web based UI are found in the GUI sub chapter.

In the end, the Web service goal was cut from the project, since there was
no time to implement it.

3.2 Exception de�nition

The cornerstone of the project is the Java exceptions encountered on a WebLogic
platform and therefore all analysis depend on the de�nition of them. In short,
an exception is �thrown� by a Java program when an error that is not handled
occurs and it contains information of what type of error it is and where it
occurred. WebLogic stores these exceptions in log �les and they can look slightly
di�erent with a lot of di�erent syntaxes and content.

####<May 13, 2008 5:27:04 AM GMT> <Error> <JRes> <mucwwp106> <aetmeurope2node7a>

<ExecuteThread: '18' for queue: 'JRES'> <kernel identity> <> <000000> <com.amadeus.ocg.standard.action.rulesdriven

.util.UtilitiesRulesDriven> <Error in tripPlanInModification;jsessionid=LpmpGKqnVTLfbQKnPnDwQVlSJx1JCwbxDB7GltfY1TZfGqw

nGnzd!-1436525840!1339964487!1210656318450> ava.lang.NullPointerException

at org.apache.struts.tiles.definition.ComponentDefinitionsFactoryWrapper.getDefinition

(ComponentDefinitionsFactoryWrapper.java:84)

at org.apache.struts.tiles.TilesRequestProcessor.processTilesDefinition(TilesRequestProcessor.java:152)

at org.apache.struts.tiles.TilesRequestProcessor.processForwardConfig(TilesRequestProcessor.java:302)

at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:229)

at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1194)

at org.apache.struts.action.ActionServlet.doPost(ActionServlet.java:432)

at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)

at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)

at weblogic.servlet.internal.ServletStubImpl$ServletInvocationAction.run(ServletStubImpl.java:1072)

at weblogic.servlet.internal.ServletStubImpl.invokeServlet(ServletStubImpl.java:465)

at weblogic.servlet.internal.ServletStubImpl.invokeServlet(ServletStubImpl.java:348)

at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:6981)

at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321)

at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:121)

at weblogic.servlet.internal.WebAppServletContext.invokeServlet(WebAppServletContext.java:3892)

at weblogic.servlet.internal.ServletRequestImpl.execute(ServletRequestImpl.java:2766)

at weblogic.kernel.ExecuteThread.execute(ExecuteThread.java:224)

at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:183)

Figure 1: Example of an exception

3.2.1 Methodology

The main problem in exception de�nition, is to �nd a de�nition of structure
that covers all exception syntaxes and variations to be able to store, compare,
and work with the exceptions. In order not to store too much data, it is also
important to take into consideration, how much information content in an ex-
ception that is relevant enough to store. Storing too much would have an impact
on both search performance, and storage size.

5Regular windows application

12

The method used was to analyze a number of exception logs, trials to �nd
previous work done on the subject on the Internet, and writing prototypes and
getting feedback from the production support team. The production support
team, PSU, are working a lot with exceptions and is one of the intended recipi-
ents of the tool.

Finally, a prototype of a parser was built and it was extended incrementally
to include all found exception syntaxes. Supplementary unit tests were written
to make sure that the newly added syntax did not break the old de�nitions and
by that, the �nal parser was evolved.

3.2.2 Analysis

A search on the Internet did not result in any �ndings of particular work done
on the subject of exception classi�cation, storing, and/or matching. Therefore,
an ad hoc approach was used to come up with a usable exception de�nition.

The �rst approach was to mark a number of features in an exception and
based on that, in addition to overall exception structure and syntax, trying to
categorize di�erent exceptions into a number of categories. If a practical number
of possible categories were discovered, a data model representing the di�erent
categories was to be created.

The analyze yielded the exception feature de�nition as follows:

� Date and Time
The date and time the exception was thrown

� Machine name
The name of the server on which the executing code was run

� Class
The class that the exception occurred in

� Class message
A message that is bundled with the class

� Exception Type
The type of the exception e.g. NullReferenceException

� Exception Message
The message generated within the exception

� Caused by clauses
If the exception is generated by other exceptions, the generating exceptions
are stored as caused by clauses. Also known as �inner exceptions�

� jsessionID
The session ID the user had at the web server when the exception occurred

� Relevant part of the stack trace
Stack trace that refers to the application code and not to the platform
(e.g. WebLogic)

A number of exceptions with the suggested features extracted, where sent to the
Production Support Team for feedback. The conclusions resulted in that there

13

were no particular categories that the exceptions could be divided into, but
rather a model with the same features for all were proposed. The features could
be either present or not present in an individual exception. Also the number
of features where reduced to the ones that were concluded as the most relevant
of the problem at hand. The reducing was motivated by, that the application
should only match exceptions and not be part of the investigation or the solution
of them.

Features decided to be relevant in an exception:

� Exception type

� Exception message

� Class name

� Class message

� Is a caused by

� Relevant Stack trace

Suggested features later concluded to be irrelevant:

� Date Time

� Machine name

� jSessionID

Whether or not each feature is a mandatory part of an exception had to be
�gured out. A �rst approach was to set Exception Type and Class Name as
always present. This theory was later on discarded, since counter examples
were discovered and in the end no feature was actually always present in all
exceptions.

In addition to the features, the over all structure of an exception is de�ned as
a �Top exception� with a stack trace followed by 0...n �Caused by exceptions�.
The caused by exceptions are strictly speaking di�erent exceptions, but they
are all linked together in an �exception chain�. The �chain structure� may be
important later on in the comparison algorithms.

14

Figure 2: Exception with its exception features

15

The parser To transform an exception text blob into an entity of exception
features, a parser had to be de�ned. Thus, the structure of the exception was
further divided into:

� First line (containing class name and class message)

� Second line (containing exception type and exception message)

� Relevant stack trace

� Irrelevant stack trace

� 0..n Caused by:s (including Raised on:s)

� Caused by row containing exception type and exception message

� Relevant stack trace

� Irrelevant stack trace

A state machine to parse the features was implemented with four states:

1. First row � Next row will be the �rst row

2. Second row � Next row will be the second row (or part of it)

3. Stack trace � Next part will be part of stack trace

4. Irrelevant stack trace � Next part is irrelevant stack trace, caused by row,
or �end of exception�

Using the state machine, each line was parsed in regard to which state the parser
was in. Two approaches were tested to parse the individual row: by tokenization
and by regular expressions.

� Tokenizer

� Description
The tokenizer splits the row into entities (words) based on a set of
characters used as delimiters. Using this method, the parser goes
through entity by entity and at each it determines the meaning of
the entity that follows it. E.g. if entity 3 is �<error>� entity 7 will
be the exception type.

� Advantages

* Complex logic can be implemented to parse virtually any form
of exception syntax.

� Disadvantages

* Di�cult to update for new syntaxes � needs a recompilation and
redeployment

* Cumbersome to program

* In general slow performance

* Might yield unexpected results if unknown syntax is encountered.

� Regular expressions

16

� Description
Regular expressions is an industry standard of describing patterns
for string matching. It is made up of a pattern string, which is
compiled6 and then used to match text input. For more information
see footnote. 7

� Advantages

* Standard and well known way of writing text matching.

* In general a fast method (depending on the complexity of the
pattern).

* In contrary to the tokenizer, it will always return something even
if the syntax is unknown. With unknown syntax, it is likely that
an empty string is returned; which is far advantageous compared
to thrown exceptions.

* Easily updateable, only a pattern needs to change to incorporate
new syntaxes.

� Disadvantages

* Not possible to model everything into a matching expression.

* Di�cult to understand and maintain

Conclusions Exception syntax is very varying and inconsequent. Thus, it is
very complex to write the parsing by a tokenizer. However, with the tokenizer
method it is more possible to adapt to each and every case of the exception
syntax. As time goes, new exception syntax will be discovered and the need
of updating the parser will be quite high and occur quite often. Thus, regular
expressions are superior since they are updateable without recompiling the code.

To handle the exception, it is stored in an entity representation that consists
of the exception features in string form. The entities are implemented as a
double linked list to be able to represent the �Caused by� structure.

3.3 Matching rules

What is called matching rules in this thesis, is the actual method on how the
exception features and matching algorithms are combined and used to calculate
if and how much two exceptions match each other. The problem is to conclude
what features that are most important, how they should be combined, and how
the �Caused by� structure should be dealt with. Does the �top� exception matter
more than the middle or bottom ones? Should they be combined in some sort
of weighted sum?

3.3.1 Methodology

The purpose of the project is to construct methodologies to be able to �nd
matching exceptions that seem to be a bit unsimilar, when they should in fact
be treated as equal. Hence, the superior matching rule will be found by testing
di�erent matching rule candidates against each other. However, performance is

6The possibility to compile the regular expression is not general, but is implemented in
Java.

7http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=347265226

17

also a factor to take into consideration and the best matching rule is the one
that produces a good enough result within reasonable time (which in this case
is around one second at tops for a single exception matching query).

3.3.2 Analysis

An exception consists of one main exception and zero or more �caused by�
exceptions, each consisting of a number of features. The �rst thing that has to
be determined is which of the exceptions in the chain that is the most relevant
one (if not all) and what features that makes it so. A meeting with Raphael
Kubler and Eric Durand yielded three di�erent approaches to test: to only
match the �top� exceptions, to only match the �bottom� exceptions (the last
caused bys of every exception), or to match them both. The exceptions in the
middle of the exception chain was regarded as irrelevant, based on the experience
in exception investigation and solving of the production support team.

Benchmarking A small benchmarking application was created to test out the
di�erent matching rules. Three di�erent fuzzy string matching rules were used
to minimize the impact of the fuzzy string matching algorithm in the tests. The
rules were set up to parse a big number of known exceptions and the execution
time was measured, see Table 1

Matching of 12 test exceptions (same as in the unit test cases for the parser)
Only top Only bottom Both top and bottom

Lazy Levenshtein 0.203 0.172 0.823
Small Levenshtein 0.307 0.359 0.989

Standard Levenshtein 0.588 0.625 1.656

Table 1: Match rule benchmarking

Conclusions are that �only top� and �only bottom� are essentially the same
performance-wise. However, with further investigation of the results gotten from
the three di�erent rules; the production team concluded that only the rule that
used both �top� and �bottom� exceptions produced good enough results. So the
matching rule that was �nally chosen was the one that matched both �top� and
�bottom� exceptions, despite it being the slowest one.

3.4 Algorithms

An exception's features are in the majority of cases made up by strings and
therefore algorithms for comparing strings must be implemented. The require-
ments are that strings should be measured for similarity, without the algorithm
using too much time and resources.

3.4.1 Method

To �nd the best suited algorithm, the �eld of fuzzy string matching algorithms
was investigated. What is interesting is how the special properties of each
algorithm suites the particular circumstances of Java exception matching. The
found candidates were implemented and benchmarked to determine which one
that was the best suited for the task.

18

3.4.2 Analysis

After studying the �eld of string matching on Wikipedia and Topcoder8 a num-
ber of properties were concluded. String matching is generally done through
calculating the so called editing distance between the strings. The editing dis-
tance is de�ned as the number of single operations (such as inserting a character,
deleting a character, transposing two characters etc.) needed to transform the
�rst string into the second one. Thus, equal strings have an editing distance
of 0 and the more dissimilar the strings are � the higher editing distance they
have.

Examined algorithms

1. Levenshtein distance9

(a) General description
The Levenshtein distance is a measure of the minimum amount of ed-
its, in the form of inserted characters, changed characters, or deleted
characters, that are needed to transform one string into another.
Good example taken from the Wikipedia article10 on Levenshtein
distance:
�As an example, the Levenshtein distance between "kitten" and "sit-
ting" is 3, since the following three edits change one into the other
and there is no way to do it with fewer than three edits:
1.kitten � sitten (substitution of 's' for 'k')
2.sitten � sittin (substitution of 'i' for 'e')
3.sittin � sitting (insert 'g' at the end). �

The standard way of calculating the Levenshtein distance between
two strings is by using dynamic programming;

The matrix is initialized with the two strings as its sides and a [0..n],
[0..m] cost count in the �rst row and column, where n and m are the
respective string lengths.
The matrix is traversed from upper left to lower right with the cost
rules for each position in the strings, de�ned as:

i. If the characters are equal; the cost is the same as the one up-
per left from the cost being calculated. Thus, if the strings are
completely equal, the cost will be 0 since it will propagate from
upper left to bottom right in a diagonal.

ii. If the characters are not equal, the cost is the minimum of the
one to the left +1, the one to the upper left+1, and the one
above+1. In e�ect, this constitutes the insertion, substitution,
and deletion of a characters.

iii. When the lower right corner is reached, the total string editing
distance is the cost of that cell.

8http://software.topcoder.com/catalog/document?id=8457494
9http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=222332508

10http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=222332508

19

Figure 3: Dynamic programming Levenshtein example

As a side note, the exact steps to transform the �rst string into
the other one is possible to store by storing the routes taken in
the matrix and then backtrack when all the cost calculations are
done. However, this is irrelevant for the particular application of
Java exception matching.

(b) Applicability to exception matching
The Levenshtein algorithm is highly applicable to exception match-
ing since exceptions can be matched based on the similarity of their
features � which are in fact strings.

(c) Time/space complexity
Given the dynamic programming approach, the time and space com-
plexity is O[n×m], with n and m being the respective lengths of the
input strings

2. Damerau-Levenshtein 11

(a) General description
The Damerau-Levenshtein is a modi�cation to the original Leven-
shtein algorithm with the addition of another editing action: trans-
positions. Hence, it measures the distance between strings based on
insertions, substitutions, deletions and transpositions

(b) Applicability to exception matching
The added bene�t compared to the original Levenshtein is mostly
applicable in problems concerning strings that are misspelled. Ex-
ceptions are computer generated and thus the edit action of transpo-
sitions adds no gain. This algorithm is therefore discarded in favor
of the original Levenshtein.

11http://en.wikipedia.org/w/index.php?title=Damerau%E2%80%93Levenshtein_distance&oldid=218621877

20

3. Needleman-Wunsch12

(a) General description
The algorithm is used to compute the optimal alignment between two
similar strings and the metric is basically a gap penalty. If the strings
are identical, there will be no gap in the alignment of them and the
number of gaps will increase proportionally with the dissimilarity
of the strings. The calculations are implemented using a dynamic
programming approach.

(b) Applicability to exception matching
The alignment itself is of no interest to exception matching, how-
ever the gap penalty can very much be used as a quanti�cation of
how similar exceptions (strings) are. However, it has no gain over
the standard Levenshtein distance since they both are implemented
through dynamic programming and both have the same time/space
complexity

4. Jaro-Winkler 13

(a) General description
The Jaro-Winkler algorithm also matches the strings through dy-
namic programming.
Each string is looped through, character by character. If the current
character in one string exists in the other string within the distance
of half the string length, it is considered a match. The total editing
distance between the strings is a normalized average of individual
character matches. Therefore, the algorithm does not take charac-
ter order into consideration and slightly dissimilar strings can thus
be considered a perfect match. The algorithm is designed to gen-
erate a normalized result, regardless of the strings compared, the
Jaro-Winkler distance is always between 0.0 and 1.0.

(b) Applicability to exception matching
Since the characters in di�erent exceptions are highly unlikely to be
permutations of each other, the Jaro-Winkler distance might be used
as a similarity measurement of exceptions. It is not as intuitive as
the Levenshtein distance, but the metric makes perfect sense for the
sole purpose of getting a match percentage between exceptions. It
does not o�er any improvement to Levenshtein though, since the
time/space complexity is the same.

(c) Time/space complexity
All characters in string 1 is compared one by one with half the char-
acters of string 2 and then vice versa. This gives Θ[2 × (n×m

2)] =
O[n×m].

5. Bitap 14

12http://en.wikipedia.org/w/index.php?title=Needleman%E2%80%93Wunsch_algorithm&oldid=215012856
13http://en.wikipedia.org/w/index.php?title=Jaro-Winkler_distance&oldid=216235867
14http://en.wikipedia.org/w/index.php?title=Bitap_algorithm&oldid=211541671

21

(a) General description
The Bitap algorithm is used to search for patterns in a text using
mainly bit wise operations and calculates the Levenshtein editing
distance between them. Although the time complexity is O[n ×m],
the algorithm still has better performance than the Levenshtein al-
gorithm (which also performs in O[n×m]), since bit wise operations
are very fast.

(b) Applicability to exception matching The bitap algorithm only per-
forms good with patterns of small sizes � such as the word length of
the machine. Since the pattern in this case is one of the exceptions
(which is considerable longer than the word length), the algorithm is
not suitable for exception matching.

(c) Time/space complexity O[n×m]

6. Boyer-Moore 15

(a) General description
The Boyer-Moore is a fast string searching algorithm. It �nds exact
matches of a string within another string and actually performs better
the longer the strings are.

(b) Applicability to exception matching
In string matching terms speaking, exceptions are long. Therefore,
the fact that the algorithm performs better on long strings than short
is a good fact. The time/space complexity is also really good. Unfor-
tunately, it is completely useless for Java exception matching since it
only �nd exact matches.

(c) Time/space complexity
Worst case: O[n]

7. Ukkonen 16

(a) General description
The algorithm compares the strings with a threshold value that varies
from 0 to the editing distance between the strings and stops as soon as
the correct editing distance is found. Thus the worst case is the length
of the longest string, since it is the maximum editing distance17. This
algorithm was quite hard to �nd good information on, but it needed
not to be investigated further since another algorithm has the same
complexity � see the �Tweaking and specialization� section.

(b) Applicability to exception matching
The algorithm is just as suited to exception matching as the original
Levenshtein distance algorithm.

15http://en.wikipedia.org/w/index.php?title=Boyer%E2%80%93Moore_string_search_algorithm&oldid=221497526
16http://software.topcoder.com/catalog/document?id=8457494
17To transform string A (shortest) into string B(longest), one way is to substitute all the

characters in A with the Length(A) �rst characters in B and add the rest of the characters in
B. Thus the editing distance will always be less or equal to the length of the longest string in
the comparison.

22

(c) Time/space complexity
O[n× d] where n is the length of the smaller of the two strings and d
is the distance between them. Thus, the time complexity is between
O[n] and O[n×m] since the worst case distance is the length of the
longest string.

Tweaking and specialization of the algorithms

� Algorithm variations

� Thresholding

For Java exception matching, the exact editing distance is not neces-
sarily relevant. If it is big, the exception just is not a match. Hence,
the performance and thus the running time of the algorithms can
be improved by stopping the calculations after a certain distance is
found � the threshold. If the threshold is reached, then the strings
are considered to be 100% dissimilar and the program can go on to
the next calculation instead.

� Lazy evaluating Levenshtein

In the investigation of the Levenshtein algorithm, a tweak of it was
encountered. It is possible to rewrite it to utilize lazy evaluation.
Lazy evaluation has the e�ect that only the values actually needed
to reach the result is evaluated and execution time can be reduced.
This reduces the time complexity into O[m[1 + d]] where m is the
length of the longest string and d is the distance between them.
The principle of the algorithm is simple; the Levenshtein algorithm
uses dynamic programming to reach its result and thus the resulting
editing distance between the strings will end up in the lower right
corner of the distance matrix. Using regular Levenshtein, the dis-
tance matrix will be calculated from left to right, top to bottom. A
much faster way to reach the bottom right is to �nd the diagonal
from upper left to bottom right which contains the lower right ele-
ment and then traverse the matrix diagonally instead of horizontally.
However, to calculate a value in the matrix, one must still know the
three elements surrounding it on the top, top-left, and left. So in the
lazy evaluating diagonal algorithm, these values has to be calculated
�rst and thus by only using this modi�cation we gain nothing (since
the whole matrix has to be calculated nonetheless).
But an observation18 is made that when the minimum cost function
is evaluated, not all values need to be calculated. The minimum cost
function takes the minimal of three values � top, top-left, and left)
and returns the smallest of the three. Summarized; given that the
element on top is less than the element in top left; then the element
on the left is greater than or equal to the top left value. Hence, the
left value doesn't have to be calculated at all. If a value which would
result of a whole new diagonal to be calculated can be ignored, a huge
gain in performance is achieved. This results in a performance com-
plexity of O[n] ≤O[x] ≤O[n×m]. Hence, the algorithm runs in O[n]

18http://www.csse.monash.edu.au/~lloyd/tildeStrings/Alignment/92.IPL.html

23

if the strings are equal and it runs in O[n×m] if they are completely
di�erent. This matches the complexity of the original Levenshtein
algorithm with highly probable performance gain in reality. Added
the bene�t of thresholding the algorithm; the worst case complexity
will never be reached since the calculations will be aborted before-
hand. Thus, the lazy evaluating Levenshtein with thresholding will
always be faster and smaller in space, than the original one. At least
in theory.
One note to mention; the Lazy algorithm needs to be implemented
using Objects in the Java implementation. The original Levenshtein
can be implemented using nothing but standard integer arrays as
memory storage. For small strings the original may run faster than
the lazy one, given the overhead needed in time and space for creating
Java Objects.

� Small memory Levenshtein algorithm

Another variation of the standard Levenshtein algorithm concerns
the memory requirements. Given two large strings, the memory re-
quirement to store the distance matrix grows very big; O[n×m] and
it is not uncommon for the application to run out of memory. In
exception matching in particular, the stack trace of an exception can
be quite long and OutOfMemory is a reasonable outcome. One com-
mon solution to this is generally implemented based on the fact that
to calculate a value in the distance matrix, only the current row and
the one above it is needed. Hence, just store those two rows at all
times. This obviously reduces the space requirements from O[n×m]
to O[n× 2]), where n is the length of the smallest of the two strings.
The performance is still however the same as the original Levenshtein
algorithm, since all values need to be calculated and unfortunately it
cannot be combined with the lazy evaluating algorithm. In reality,
the time to execute the algorithm may be smaller than in the origi-
nal algorithm since there is an overhead in time to create the large
chunks of memory needed to store the distance matrix.

Benchmarking To �nd the best performing algorithm for the application of
Java Exception matching, a benchmarking tool was created. The tool compared
a number of long and short strings of varying complexity and measured the
running time and space requirements.

De�nition of terms used in the benchmarking

Equal strings Two random strings that are equal

Similar strings Two random strings that are up to 30% di�erent. (close or
equal in length)

Random strings Two completely random strings (also in length) short string:
Between 20 and 100 characters long string: between 1000 and 3000 char-
acters

What is wanted from this benchmarking is an estimate of how the algorithms
work in the extreme cases: equal, and totally random strings. But also how it

24

works on average in between, under circumstances which resembles exceptions
somewhat. Hence, the similar strings tests were added.

Java exceptions are very structured and the text is quite repetitive and
thus they are quite far from random strings. This property has been simulated
somewhat by limiting the alphabet out of which the strings are created from.
All strings are made up from solely the lowercase letters a-o and thus many
equalities and repetitions will occur.

The similar strings are constructed as follows: A string out of the limited al-
phabet is constructed randomly with a random length. This string is duplicated
and the copy is then modi�ed in three ways: adding, deleting and changing of
characters. A random number of up to 10% of the the length of the string is
generated for each operation and that number of modi�cations are then made.
Finally the two strings are used for matching each other.

The selections of boundaries of the string lengths and also the construction
method and degree of similarity of the strings has not been investigated further
since the values seem to have given a good estimate on the behaviors of the
di�erent algorithms. It is not the actual numbers, but the algorithm behaviors
that are interesting.

100 Strings generated, Threshold: drop at 40% mismatch
Lazy Thresholded Lazy Leven Apache Standard SmallStandard SmallStandard Threshold

Max size 5500 4300 4000 4000 50000+ 50000+

Equal

short 0.0 0.0 0.016 0.016 0.015 0.016

long 0.015 0.0 16.236 15.282 12.235 12.25

Similar

short 0.016 0.0 0.016 0.015 0.0 0.016

long 6.656 6.516 18.017 16.704 13.86 13.829

Random

short 0.016 0.015 0.0 0.016 0.0 0.016

long 10.454 25.439 15.214 14.007 11.226 8.713

Table 2: Fuzzy string matching benchmarking (time in seconds)

Table conclusions

� Space requirements

The small memory version of the algorithm clearly outperforms the others.
In fact, I have not found any limit to what sizes it can handle, but given
the context of exception matching; a size of 50000 characters is more than
su�cient. However, the others are quite likely to run out of memory
during exception comparison every once in a while given their max length
of approximately 5000 characters.

� Performance

The string composition of exceptions can mostly be seen as either long

25

and similar or long and completely dissimilar with an addition of a couple
of short string features. It is the length that is dominant in the calculation
time. Thus, the winner should be the Thresholded Lazy evaluating Lev-
enshtein, with the Small Standard Thresholded as a runner up. A note on
the running time of long random strings and the small standard thresh-
olded algorithm has to be made. At �rst glance, one may think that the
running time should be approximately the same on all long strings since
it is a dynamic programming algorithm. However, the shorter time on
long random strings is probably due to the fact that the threshold gets hit
faster than in the other cases.

3.5 Program structure

3.5.1 Methodology

What is meant by program structure in this report, is how the system is archi-
tectured to implement all parts needed to do Java exception comparisons. This
includes what language, what models, what patterns used, and so forth. To �nd
out what combination that is the best suited one a number of parameters was
analyzed: the context in which the program will operate in, what users will use
it and how, for how long will it be used, what are the needs of updateability
and maintainability, what are the need of extendability, and so forth. To inves-
tigate this, �rst of all the project description was consulted. Practices learned
during my education and prior experience was considered and information on
the Internet was analyzed. Another obvious big source of knowledge was the
team in which I worked and the team leader Raphael Kubler.

3.5.2 Analysis

From the project description (found in the introduction chapter 2.3) a few con-
straints can be extracted: the application will interact with external systems,
use a database, have a graphical user interface, and also a web service entry
point. From the production support team it was learned that the project was
mainly about Java exceptions, the standard development language used is Java,
and many of the servers where running Java EE applications. Thus Java would
be a quite convenient selection of language for the program. For the user inter-
face, there is mainly two ways to go: old fashioned windows application interface
or a purely web based interface. This far in the process, none is really said about
what would be best for the main user interface other a web service is desired in
addition to it.

There is however not anything that limits the application to use only one of
the options, so to be able to implement both versions, a variation of the model
view controller structure was decided upon. This way the main application logic
is interface independent and both a windows interface and a purely web based
interface can be built on top of it. An additional layer was added �vertically�,
a utility layer, to keep things better structured logically. The utility layer con-
tained classes that all layers needed access to, such as data entity carriers and,
common functions.

The layers are dependent on each other from top to bottom, the view can
only access the controller layer and the controller layer can only access the

26

Figure 4: Architecture of solution

data model layer, but not in the reversed direction. Hence, the data model
implementation can be completely replaced (e.g. if the underlying database
brand is changed) as long as it implements the same interface as the previous
model. The same obviously goes for the controller layer. This way there can of
course be as many user interfaces connected to the controller layer as needed,
all independent of each other. The only exception is the utility layer, which is
accessible by all other layers but cannot access any other layers itself.

Another great advantage of this model is that the program structure is easy
to maintain, understand, and also easy to extend and build further upon. The
diagrams of the �nal layers are found in 4.4 and the design of the web view in
particular, is found in 4.6.

3.6 Storage (database) model

To be able to match the Java exceptions, some sort of storage of known excep-
tions are needed to match against. In the construction of a good Java exception
matching method for matching in real time, the design of the data storage is a
highly important part.

In this particular implementation, the matched exceptions should be paired
with the Problem tracking record (PTR) that Amadeus keeps in order to resolve
the issue. The PTRs are not searchable and thus the PTR association must
make use of the storage of known exceptions kept by the application. A standard
and de�nitely fully good solution is to use a modern DBMS. Amadeus is using
MS SQL Servers and for this project a database was created in one of them.
The question to investigate is thus how the information should be structured
into tables and relations. Also what data and how much data, but that is more
a general question of the project than just the database.

3.6.1 Methodology

The problem was analyzed and when a model was concluded, database diagrams
were proposed. After some rounds of feedback from NRE and PSU teams a �nal
database diagram was set.

When implementing a database, a set of methodologies exist to ensure things
as data integrity, security, and so forth. Amadeus enforces a number of them,
which were used and in addition to that some were investigated and implemented
as well.

27

3.6.2 Analysis

A �rst suggestion The �rst suggestion is a normalized data model, which
captures all the selected features of the exception. It also contains tables to
store the occurrences and complete stack traces of the exceptions, in order to
be able to have all available information stored.

Taking SWAT and SPIN into consideration After a meeting with NRE
and PSU it was decided that this project should use the internal framework
SPIN and also be compatible with the internal SWAT project. Hence, the
database model was to follow the SPIN policies and work together with SWAT.
The model was now to be implemented within the SWAT database with the
occurrence and complete stack trace tables taken care of SWAT. The model
(tables) speci�c to this application would handle just one copy of each exception
with a shortened �relevant stack trace� and only by combining it with the SWAT
tables, a complete exception instance could be recreated. However, to build the
link between the SWAT tables and the Exception Tracker tables, the Exception
tracker obviously has to be run. See Figure 6

28

Figure 5: Normalized data model

29

Figure 6: Data model in conjunction with S.W.A.T

30

Limit to internship subject � removing occurrences After a meeting
with Raphael Kubler, the database model was revised to more closely match
the original internship description, i.e. the occurrences and complete stacktraces
was removed. In reality, the e�ect was to move the Exception Tracker database
out of the SWAT database to be a completely stand alone database and move
all of what was necessary to recreate complete exception occurrences to the
responsibility of the SWAT project.

The data model is only supposed to store the data which is relevant for
matching with found exceptions. In practice, this means that only the �rst
occurrence of an exception is stored � only unique exceptions are interesting �
and the number of occurrences is not stored at all. Since the exception is not
stored in full, it is not possible to reconstruct all the information given in the
original exception. However in combination with SWAT, this will be possible.
See Figure 7

31

Figure 7: Final database diagram

Relevant information When exceptions are compared, performance is an
important issue. Therefore the amount of information must be limited so only
what is truly relevant is used in the computations. Since fuzzy string matching
is very costly, the more �ltering of exact matching parts that can be done
by the database, the better performance. In the model of an exception, the
information has been divided into what can be matched exactly and what needs
to be matched by fuzzy matching. See Figure 8

32

Figure 8: Fuzzy vs exact matching in database

The fuzzy matching is a very costly operation and therefore it must be fully
optimized and avoided in all cases where it is not necessary. As a part of
the optimization, the stack trace of the exception is limited to what is really
necessary for the comparison. What constitutes a �relevant� stack trace then?
There isn't really much research done in this area from what I could �nd, so it
is very much a matter of empirical research. At a �rst glance, the stack trace
can be divided into parts based on �caused by� clauses. Each �caused by� clause
and of course the main exception itself, has each its own stack trace. Further,
the stack trace can be divided into application speci�c stack trace and other
stack trace. The application speci�c stack trace stems from the application
itself, while the other stack trace comes from the platform that is executing the
application � in this case WebLogic. Only the application stack trace is relevant
in this project, since it's in the application that the exception is thrown and
should be resolved. Thus it is the application stack trace that is de�ned as the
relevant stack trace.

General database implementation details There are essentially two ways
to go when manipulating data, either to allow dynamic SQL to run on the
database or to only allow the use of stored procedures. By allowing dynamic
SQL, the database is (or can be) updated by writing SQL queries directly in
the application that is used along with the database. On the other hand, if only
stored procedures are allowed, all SQL is written within the database and the
application only sends parameters when data manipulation is to be done in any
way. There are mainly two advantages with using the latter approach, stored
procedures. First of all the performance is better since MS SQL Server precom-
piles all stored procedures. Secondly, it is easier to �ne tune security permissions
of the applications, i.e. the application can update data using the update stored
procedure without actually having write-permissions to the underlying table, as
long as it has execute permission on the stored procedure. And of course it is
limited to running only prede�ned SQL queries (those in the stored procedures)
and cannot therefore run potentially harmful queries that are crafted by the
malicious user. The disadvantages are that it takes time to write all possibly
needed stored procedures and also that the application is later limited to run-
ning the stored procedures and cannot use any specially crafted SQL queries
which could possibly yield better performance and/or easier programming.

33

For data insertion and manipulation, the way of doing everything through
stored procedures chosen. This means that insert, update, delete and get proce-
dures corresponding to every table was created. Since this is a cumbersome and
quite time costly job, a a tool called MyGeneration19 was used, which generates
stored procedure code for each table based on a template.

Data integrity In a normalized database, data integrity is of importance.
More concretely no duplicate data should exist and when entries in one table
references an entry in another table, the other entry must actually exist. Prob-
lems with this can arise during data insertion, e.g. some data insertion can fail
during data modi�cation and therefore a reference is left hanging loose. The
responsibility to prevent breaks in data integrity should reside as much as pos-
sible within the database itself � it should not be possible to manipulate data
in a way which breaks the data integrity. Although, it is not always possible to
achieve perfect data integrity checks using SQL alone, so additional logic might
be needed in the application using the database. Measures to uphold data in-
tegrity is the use of constraints, error handling, transactions, triggers and in a
way; testing.

Constraints Constraints in a database can be put in place for ensuring that
only �valid� values can be stored by regarding some set of rules. The advantage
by implementing constraints is that one cannot later have an invalid value stored
due to programming errors, since the database itself just won't allow it. In this
data model I'm enforcing unique, referential and not null constraints.

Unique constraints make sure that no two or more columns in the database
table can contain the same value. However, these are implemented as indexes
and MS SQL Server has a limitation on the size of indexes, which leads to that
�elds of size bigger than 900 bytes (such as RST_STACKTRACE) cannot have
unique constraints. So to avoid being inconsistent, no unique constraints are
added, but instead the insert and update stored procedures checks that they are
not inserting any duplicates. One exception for the unique constraints is that
all primary keys automatically have a unique constraint on them.

Referential constraints (foreign key constraints) make sure that when a col-
umn in table A references a value in table B, the value must exist. There is
foreign key constraints added between all tables that references each other in
the data model and the EXC_EXCEPTION also has a foreign key constraint
on itself to be able to chain �caused by exceptions�. In the EXC_EXCEPTION
table nulls are allowed in the self reference since not all exception is caused by
other exceptions.

Not null constraints decide if a �eld may contain NULL values or not. This
makes sure that it's not possible to add null data to �elds which should contain
values and it is therefore a good practice to enforce NOT NULL where appropri-
ate. This practice is followed in the data model. However, since exceptions can
look so di�erent, the EXC_EXCEPTION table actually allows nulls in most
�elds.

Check constraints are used to make sure that values entered are conforming
to special rules, e.g. an integer should only be able to take on certain values or a
date must be later than another date etc. This is only needed at one place in the

19http://www.mygenerationsoftware.com

34

data model, in the PTR_PTR table to make sure that the PTR_CLOSEDATE
is greater or equal to (or null) the creation date .

Error handling As in all coding, running SQL queries can result in errors.
In MS SQL Server this is indicated by a value di�erent from 0 in the internal
@@error variable, which is set after each statement that is executed. Since it
is set after each statement, the error checking code becomes quite lengthy, for
example :

IF (@@error <> 0) print @@error

will always print out 0, since it is highly unlikely that the IF statement will fail.
This is handled by assigning the value of @@error to a local variable and then
acting upon that value.

DECLARE @err int

SELECT @err = @@error

IF @err <> 0

BEGIN

print 'ERROR: ' + cast(@err as nvarchar)

END

When a stored procedure is executed, it is a bit more complicated since an error
can arise both from a failure within the stored procedure as well as from the
failure of the execution of it. Hence, the @@error must be checked directly after
the call as well as the returned value from the stored procedure:

DECLARE @err int

EXEC @err = storedProcedure @Variable1=@Value1

SELECT @err = coalesce(nullif(@err, 0), @@error)

IF @err <> 0

BEGIN print 'ERROR: ' + cast(@outerERR as nvarchar)

END

Also, the stored procedure should notify its caller if an error occurs within it
that it does not handle itself, by setting its return value to something else than
0. This is unfortunately not possible in the �Get procedures� which returns a
dataset, but on the other hand it is highly unlikely that they will fail since they
more or less is simple �SELECT statements�.

Transactions If an error occurs, all changes up to that point should be
reverted to avoid semi complete data (in this case exceptions) stored. This
atomicity is accomplished by using transactions. A transaction can be either
committed or rolled back, which means that all changes within the scope of the
transaction are either saved in the database or none are. The stored procedures
for inserting and deleting an exception relies heavily on this since an exception
references a lot of parts stored in other tables. If some part fails to be stored
when inserting an exception, the remaining parts of the incomplete exception

35

should not be inserted either. As well as when an exception is removed and the
clean up of its referenced parts fails, the deletion should be aborted.

If an executed stored procedure fails within the scope of a transaction, the
transaction will not treat this as an automatic rollback. Therefore the error must
be detected and the transaction rollback must be explicitly called. The complete
error handling code for each stored procedure call is therefore implemented as:

DECLARE @err int

EXEC @err = storedProcedure @Variable1=@Value1

SELECT @err = coalesce(nullif(@err, 0), @@error)

IF @err <> 0

BEGIN

print 'ERROR: ' + cast(@outerERR as nvarchar)

ROLLBACK TRANSACTION

END

Within the insertion and update stored procedures, a check is done to ensure
that the insertion or update will not result in any duplicate data. Since the
check for duplicates and modi�cation of data is two distinct steps, they have to
be performed as one atomic action if the duplicate check should be reliable when
the data is inserted. Hence, these stored procedures contain transactions and
they become nested when they are executed by the spEXC_I_INSERT proce-
dure. One problem with nested transactions in Transact SQL is that the inner
transaction cannot be rolled back separately from the outer. Luckily, this poses
no problems in this particular case since no data modi�cations are made when
the procedure checks for duplicates. It is therefore safe (data integrity-wise)
to commit the transaction instead of rolling it back in the case of a duplicate
found.

Tests In regular programming, automatic tests are often included in the
process. This makes sure that the code does what it is supposed to and is used
to verify that everything still works later on when changes have been made
(a.k.a. regression tests).

The application uses automatic tests via JUnit and since the stored proce-
dures are mostly automatically generated, it would be a good idea to implement
automatic testing of the database as well. The tests are written in SQL and
then generalized and generated for all tables using MyGeneration. The good
thing with this is that it results in pure SQL code, so no extra software is needed
to execute the tests. All tests are run within a transaction, which is rolled back
when the test is �nished so that the tests do not leave any data behind when
they are done. The transaction is also rolled back when some part fails, which
has the e�ect that only the �rst potential error is found per test run. On the
other hand this also makes sure that no tests fail due to previous errors when
they really should not.

Problems with the auto generation method The EXC_EXCEPTION
table is too complex for simple insert, update, retrieve, delete tests due to its
heavy dependence on other tables, so tests of EXC_EXCEPTION had to be
written manually.

36

Since the PTE_PTR_EXCEPTION table consists merely of primary key
references (it is a many to many link table), it could not be tested with the
simple auto generated tests.

One problem with having the �getters� implemented by stored procedures as
opposed to user de�ned functions is that the result of the stored procedure must
be stored into a temporary variable before it can be checked. MS SQL Server
2000 has two ways of storing result sets; temporary table and table variable.
Result sets of stored procedures can only be stored in temporary tables (tables
pre�xed with #) and thus those are created and used throughout the tests.
Temporary tables are automatically removed by the server when the session
terminates and they are also not visible to other users of the database (as long
as they are not made global).

Test case 1; INSERT, UPDATE, GET, DELETE.

Pseudo code:

* Insert four rows into the table

* Check that the rows were inserted correctly using the �GET� procedure

* Update row 2 with valid values

* Check that the update succeeded

* Update row 3 with duplicate values

* Check that the update failed

* Insert duplicate row

* Check that the insert failed

* Try to delete row4

* Check that the delete succeeded

* Clean up all test data

Test case 2, EXC_EXCEPTION, INSERT UPDATE GET DELETE

Pseudo code:

* Insert exception A and B

* Insert exception C partly referencing the same entries as exception A

* Check that the rows were inserted correctly

* Update Exception B using strings

* Check that the update succeeded Update Exception B using reference ids

* Check that the update succeeded using the �GET� procedure

* Delete Exception C

* Check that the delete succeeded and only the unused references remain

* Delete Exception A

* Check that all references (now unused) are removed as well

* Clean up all test data

The stored procedures For each table there are 4 stored procedures gen-
erated; Insert, Update, Get and Delete. The insert and update procedures are
responsible for not adding any data which would yield duplicates and therefore
they are searching to see if the potential new data already exists before any
changes are made. The insert and update procedures return the identity value
of the created row, using an output parameter (or if the data already existed,
the old identity value is returned).

All procedures except for the Get procedure return their success state as
the return value (which if of course not possible in the Get procedure since it

37

returns the requested result set). The Get procedures could be implemented
using �User de�ned functions�, which are directly usable in queries (whereas
stored procedures must be executed separately), but in manner to be consistent,
the functionality was implemented using stored procedures.

The exception model has many �elds that are nullable, e.g. exception mes-
sage, class message, caused by exception and so forth. Thus, the insert and
update stored procedures need to be able to handle the case when only a few
of the �elds should be inserted or updated. In order to be able to update only
a few �elds of a table without having to write an update stored procedure for
every possible combination of �elds; the update procedure ignores any null val-
ues that it receives. All parameters have null as default and thus the caller
of the procedure may omit all parameters that are not to be updated. This
complicates the implementation somewhat since the standard states that null
are to be treated as unde�ned. Hence the comparison:

@parameter = null

will never become true � comparisons with null should use the �is� construction,
i.e.

@parameter is null.

Since it is impossible to know beforehand if the parameter will be null or contain
a value; the update procedure must check for both. This is easiest shown with
an example:

UPDATE [CIN_CLASSINFORMATION]

SET [CIN_CLASSNAME]=CASE

WHEN @CIN_CLASSNAME IS NULL THEN

[CIN_CLASSNAME]

ELSE

@CIN_CLASSNAME

END

WHERE [CIN_CLASSID] = @CIN_CLASSID

The parameters of the stored procedure is pre�xed with an �@�.
The �nal database diagram is found in the results section.

3.7 User interfaces

3.7.1 Methodology

To be able to create good user interfaces, it has to be concluded how the ap-
plication will be used and by whom. In what environment the application will
run is also important and thus the method of how the graphical user interfaces
should be created was by discussing it with the team, creating prototypes and
further �nalize them through feedback.

38

3.7.2 Analysis

First of all there was to be decided whether the user interface should be a
windows application one or a web based one. After a series of meetings it
was concluded that the application should have a web interface and be running
within the SPIN framework on a WebLogic server. This greatly reduced the
possibilities of design choices, since the SPIN project de�nes how the design
should look for all its components to look similar and not cause confusion.
Another e�ect of the SPIN choice is that the internal Amadeus framework Aria
(which was previously decided to be used) could not be used, since it relied on
a newer version of Java than the SPIN project supported.

The SPIN framework was although a bit complicated to get up and running
on the local machine, so while trying to get it all to work a parallel Java Swing
view was created just to be able to continue the development of the actual
project. The whole purpose of the swing version was to be able to test out the
functionality of the application and thus there were absolutely no e�ort made
to make it look good or even be user friendly.

What the prototype however gave, was the con�rmation of the general idea
of the user interface was acceptable.

Web interfaces can be made in in�nite number of ways using whatever lan-
guage that feels suitable � it all comes down to how the server is con�gured.
Since it was decided in this case that the project should be a part of SPIN, it was
narrowed down to using Java and in particular Java server pages for creating
the web pages that made up the user interface. The standard way of making
Java based web application is by using Java2 Enterprise Edition (J2EE)20 and
a subset of the methods o�ered by it was also used in this project. One note
to make is that given the small size of this project, no servlets were used in the
implementation, but rather the jsp pages used the underlying program classes
(the controller layer) directly.

In web interfaces, there is mainly two ways of how user input is handled,
through postbacks (which is the old standard way) or through AJAX (a newer
and increasingly more popular way). Via post backs, the input will be sent to
the server and the whole page will be reloaded and nothing can be done by the
user until it is completely recreated. By utilizing AJAX on the other hand, Java
script is used to send the input �behind the scenes� and then the response is
displayed on the current page directly, also through the use of Java script. The
AJAX method is much more complex, but also much more user friendly. What
ultimately decided which way to go was how much time that could be a�orded
to spend on implementing it. The post back method would be quicker, so it
was really up to how fast an acceptable AJAX interface could be developed.
Fortunately there are open source, free projects that has implemented good
frameworks of AJAX and one was decided upon to try out; �JQuery� 21. The
result was above expectation and given that by using Jquery, the project could
be completed on time with the superior AJAX interface, the choice was quite
obviously to go with AJAX though JQuery. The approach used was to divide the
page into di�erent content panes and through AJAX load an internal page which
processed the request and displayed the result into the appropriate content pane.

The interface was now constructed by 4 main pages, which internally used 7

20http://java.sun.com/javaee/index.jsp
21http://jquery.org/

39

behind the scenes pages that did calculations and other work. See Figure 9 for
a screenshot.

Figure 9: Screenshot of web user interface

40

Short description of the pages

� main.jsp

Is the main interface to the program. Here exceptions can be entered and
searched for in the internal database. It has 6 <div> panels on it in which
it loads the result of the users actions through AJAX.

� displayException.jsp

Renders a view of an exception in terms of its features. If another
exception is loaded, the similarity is also displayed using percentage
and color. This internal page is also used in the listExceptions.jsp
page.

� displayDi�.jsp

Displays the di�erence between two exceptions using a traditional
Di� view, using colors.

� changePTRAssociation.jsp

Executes the functions of changing the PTR association of the loaded
exception in the internal database .

� deleteException.jsp

Deletes the loaded exception from the internal database.

� addToDatabase.jsp

Adds the entered exception to the internal database.

� serachException.jsp

Performs the search of similar exceptions to the one entered and
displays matches in a sorted list along with match percentages.

� listExceptions.jsp

Is a search page for managing the exceptions stored in the internal database.

� listExceptionResult.jsp

Performs the search and displays the result in a list.

� errorPage.jsp

Is displayed if the application encounters an unexpected error in any page.

� con�gure.jsp

Con�gures the regular expressions used to extract the exception features.

For screenshots, see the results chapter.

41

4 Results

The result of the master thesis is the best found methodology of matching
Java exceptions, employed within a web based application. Each sub part of
the methodology and path to put it all together is presented in di�erent sub
chapters within this result chapter.

4.1 Exception de�nition

An exception is split up in a number of exception features, a stack trace and
zero or more caused by exceptions, which in turn have their own features, stack
trace and zero or more caused by exceptions.

Features

Class name: The class which threw the exception

Class message: A message associated with the class and exception

Exception type: The exception type

Exception message: The message associated with the exception type and in-
stance

Relevant stack trace: The stack trace that is relevant for solving the prob-
lem; e.g. the stack that is from the application itself and not from the
containing server.

42

Figure 10: Exception features

43

4.2 Matching rules

When comparing the exceptions, a set of rules on how to compare the di�erent
exception features is needed. The resulting rule chosen is to compare the top
exception in the chain of caused by exceptions and the last one at the bottom of
the chain. The features are compared by �ltering out all exceptions that does
not have the exact exception type and then applying fuzzy string matching
on the rest of the features. The result is the average match metric, which is
normalized to be represented in a match percentage.

There is probably room for improvement in the matching rules if a more
optimal solution is needed. However, this rule was good enough for meeting the
performance criteria of the application implemented to perform the matching
job.

4.3 Fuzzy string matching algorithm

Two algorithms are possible to use in the application: the thresholded lazy eval-
uating Levenshtein algorithm and the thresholded small memory Levenshtein
algorithm. Both calculates the standard Levenshtein edit distance between the
strings, i.e. how many inserts, substitutions and deletions of characters that are
needed to convert the �rst string into the other. The thresholding results in the
calculations being aborted if the strings are detected to be too dissimilar. The
strings are then considered in�nite unequal. Since unsimilar exceptions are ir-
relevant for the application, this greatly speeds up the process without lowering
the quality of the results.

The lazy evaluation speeds up the process by only calculating the necessary
values to reach the result, however it might run out of memory in the process
and thus the � Small memory Levenshtein algorithm� is possible to use instead.

4.4 Program structure

The application that performs the matching job is structured as a Model View
Controller application, with the modi�cations that the view is completely de-
tached from the model (necessary to make a web interface) and an extra utility
layer is added, which all other layers can access. The model, utility and con-
troller namespaces are made up of ordinary Java classes and the presentation
layer is made up of Java server script pages, see Figures 11,12,13 and 14 for
details.

44

Figure 11: UML class diagram of the Data model

45

Figure 12: UML class diagram of the Controller layer

46

Figure 13: UML class diagram of the Utility layer

47

Figure 14: Diagram of the Presentation layer

4.5 Storage (database) model

The storage model is implemented in a MS SQL Server 2000 and thus uses T-
SQL. Stored procedures are implemented for all data modi�cations. See Figure
15

48

Figure 15: Database diagram

4.6 Application user interface

4.6.1 Web application

The user interface to the application created to do the matching job, is web
based and written in Java 1.4 and Java server pages. The layout conforms
to the SPIN policy. It utilizes jQuery22 to implement AJAX support. See
screenshots in Figure 16, 17 and 18.

22http://www.jquery.org

49

Here, an exception has been entered, viewed and searched for. A possible can-
didate has been selected for viewing the di�erences.

Figure 16: Main page

50

Figure 17: List of exceptions in database

Figure 18: Con�guration of exception features

4.6.2 Web service

The web service was unfortunately not implemented due to lack of time.

51

5 Discussion

The application ful�lls the intended requirements and is now used on a daily
basis. As a performance goal, the matching process is fast enough, but it is
yet unknown how it will perform when the database gets larger. Even more
studies can easily be done on how to optimize the matching rules and algorithms
further to improve the speed. How the system will perform in cooperation with
the SWAT system is not investigated and it might need some adaptation for
it to work in reasonable performance. Unfortunately there was no time to
implement the web service. However, given the modular MVC structure used
in the program it should not be di�cult at all to implement one.

If the syntax of handled exceptions are even further expanded, the method
used with precompiled regular expressions can be unfeasible to maintain23, the
system might need to be rewritten to parse exceptions in two steps: �rst de-
termine what type of exception syntax it is, and then apply the appropriate
regular expressions for it.

6 Conclusion

The method of fuzzy string matching works good in the area of exception
matching, using the proposed de�nition of exception features. The performance
needed seems to be fully met in the implementation. However, how it scales as
the database grows bigger is yet unknown.

Suggestions of further development is to implement the link to SWAT, im-
plement the web service interface, and also to look at the possibility of using
a weighted sum instead of an average in the matching rule to get even smarter
matching results. And �nally, to update the parsing regular expressions to cover
all new exception syntaxes encountered.

23The regular expressions would at some point become too complicated for manual man-
agement

52

7 Bibliography

L. Allison, Lazy Dynamic-Programming can be Eager , Information processing let-
ters 43(4) 207-212,
http://www.csse.monash.edu.au/~lloyd/tildeStrings/Alignment/92.IPL.ps,

2008-07-01

Top coder software, String Distance1.0 Component Speci�cation,
http://software.topcoder.com/catalog/document?id=8457494,

2008-07-01

Wikipedia, Boyer-Moore algorithm,
http://en.wikipedia.org/w/index.php?title=Boyer%E2%80%93Moore_string_search_algorithm&oldid=221497526,

2008-07-01

Wikipedia, Damerau-Levenshtein algorithm,
http://en.wikipedia.org/w/index.php?title=Damerau%E2%80%93Levenshtein_distance&oldid=218621877,

2008-07-01

Wikipedia, Jaro-Winkler algorithm,
http://en.wikipedia.org/w/index.php?title=Jaro-Winkler_distance&oldid=216235867,

2008-07-01

Wikipedia, Kohonen Map,
http://en.wikipedia.org/w/index.php?title=Self-organizing_map&oldid=206987930,

2008-07-01

Wikipedia, Levenshtein distance,
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=222332508,

2008-07-01

Wikipedia, Needleman-Wunsch algorithm,
http://en.wikipedia.org/w/index.php?title=Needleman%E2%80%93Wunsch_algorithm&oldid=215012856,

2008-07-01

Wikipedia, Regular expressions,
http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=347265226,

2008-07-01

53

8 Literature

Stephen Stelting, robust JAVA Exception Handling, Testing and Debugging,
Prentice Hall, 2005

54

9 Glossary and index

AJAX: Technology for dealing with user input on homepages without using
post backs

ARIA: Internal Amadeus framework for web 2.0 interfaces

"Caused by" exception: An exception that causes another exception to oc-
cur.

DBMS: Database management system

GUI: Graphical user interface

Matching rule: A set of de�nitions on how the features of an exception should
be combined to determine similarities and search matches.

NRE: Non regression testing team

PSU: Production support team

PTR: Problem tracking record

Regular expression: A notion for matching text patterns

Relevant stack trace: The part of the stack trace that is from the application
code and not referring to the platform (WebLogic)

SPIN: Internal Amadeus software library and policy collection for development

SWAT: Internal Amadeus application for handling exception logs etc

WebLogic: Platform for running J2EE applications

55

Index

Algorithm performance, 25
Algorithm space requirements, 25
Application architecture, 26, 44

Benchmarking fuzzy string matching,
24

Benchmarking matching rules, 18
Bitap, 21
Boyer-Moore, 22

Damerau-Levenshtein, 20
Data integrity, 34
Database, 48
Database error handling, 35
Database stored procedures, 37
Database Unit tests, 36
Design documents, 10, 11

Editing distance, 19
Exception de�nition, 8, 12, 42
Exception features, 13, 14, 42
Exception parser, 8, 16

Final string matching algorithm, 44
Fuzzy string matching, 19

Jaro-Winkler, 21

Lazy evaluating Levenshtein, 23
Levenshtein distance algorithm, 19

Matching rule, 17
Matching rules, 44

Needleman-Wunsch, 21

Small memory Levenshtein algorithm,
24

Thresholding, 23

Ukkonen, 22

56

