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cell lung cancer
Louise Stauber Näslund
Department of Clinical Genetics and Genomics
Sahlgrenska University Hospital

Abstract

Background Immunotherapy has revolutionized the treatment of non-small cell lung
cancer (NSCLC) in the last decade. However, not all patients respond to im-
munotherapy and current biomarkers used for patient selection are not optimal.
Therefore, new and better biomarkers are urgently needed. This study aims to find
genetic biomarkers predicting immunotherapy response in NSCLC patients.

Method Tumor DNA was sequenced for 44 NSCLC patients undergoing immunother-
apy. Variants in 597 genes from GATC Biotech’s OncoPanel All-in-One were assessed
in silico and the genetic landscape was characterized. Kaplan-Meier analysis using
log-rank test was used to assess the association of the top frequently mutated genes
with survival and Cox regression was used to adjust for patients-related factors. Asso-
ciation with immunotherapy response was evaluated using Pearson’s chi-squared test.

Results Patients with KRAS mutation and KRAS/LRP1B co-mutation were iden-
tified to be associated with prolonged survival (p=0.033 and p=0.022) and a trend
for preferable immunotherapy response was observed. Patients with a low number
of variants classified as pathogenic, likely pathogenic and ”VUS+”was also found to
be associated with survival (p=0.032) and were more likely to be responders of im-
munotherapy compared to patients with a high number of these variants (p=0.020).

Conclusion This project has further supported the role of KRAS as a potential
predictive biomarker of immunotherapy response and has provided evidence for
the KRAS/LRP1B co-mutation and the number of classified variants as potential
biomarkers. Further studies including more patients may find additional results sup-
porting the presented findings.
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1 Introduction

This project is a part of a study conducted at the Department of Clinical Genetics
and Genomics at Sahlgrenska University Hospital.

1.1 Background

Lung cancer is the second most diagnosed cancer worldwide, with approximately
2.2million (11.4 %) new cases in 2020, and remains the leading cause of cancer death,
with an estimated 1.8million (18 %) deaths [1]. Despite modern treatment, includ-
ing molecular targeted therapies against driver oncogenes such as ALK fusions and
EGFR mutations, the five-year survival is still unsatisfactory as patients diagnosed
with lung cancer during 2010-2014 had a five-year survival estimate of only 10−20 %
in most countries [2][3].

Non-small cell lung cancer (NSCLC) accounts for nearly 85 % of all lung cancer
cases and encompasses the subtypes lung adenocarcinoma (LUAD) and lung squa-
mous cell carcinoma (LUSC) [4]. The majority of patients with NSCLC have distant
metastases by the time of diagnosis, and as a result the cure rates are low and the
risk for progression and relapse are high [4][5].

In the last few years, treatment strategies for patients with NSCLC have changed
considerably following the introduction of immunotherapy targeting immune check-
point programmed cell death-1 (PD-1) and programmed cell death-1 ligand (PD-L1).
Immune checkpoint inhibition (ICI) has achieved remarkable clinical results due to
improved overall survival and durable responses for NSCLC patients without action-
able driver mutations [6][7][8]. Unfortunately, only a minority of NSCLC patients
experience durable clinical benefit of ICI treatment and many patients relapse in
short time frame or experience life threatening immunotoxicity [9][10][11].

Due to the heterogeneity of ICI response, it is important to be able to select
patients with a high likelihood of clinical response. However, predictive biomarkers
of PD-1 and PD-L1 inhibition are few and often not optimal. To date, only PD-
L1 expression and tumor mutation burden (TMB) are approved for clinical use as
biomarkers for ICI treatment of NSCLC, although TMB has not yet been approved
by the EMA [6]. Despite being promising, PD-L1 expression and TMB are far from
optimal and new biomarkers are urgently needed.

In recent years, several new biomarkers have been under investigation. ranging
from genetic and immunologic biomarkers to tumor-derived components in the blood.
The focus in this thesis are genetic biomarkers, where broad genomic sequencing
approaches, including whole-exome sequencing have been used to investigate the
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genetic landscape of tumors to identify genetic patterns or specific mutations among
patients and in individual tumors that can be used as biomarkers for ICI response.

1.2 Aim

The aim of this project is to characterize the genetic landscape of patients with
NSCLC in order to identify genetic biomarkers predicting immunotherapy response.
This will be done by first evaluating and interpreting DNA variants, followed by
an analysis of the most frequently mutated genes. Finally, survival analysis will be
used to associate mutations in individual genes, co-mutations, and different groups
of variant data to survival and immunotherapy response.

1.3 Delimitations

This project will screen for variants in 597 genes found in GATC Biotech’s Onco-
Panel All-in-One. Only synonymous, non-synonymous, short frameshift indels, splice
variants in the +1/+2 or -1/-2 position, inframe, and stop/start-loss variants will be
evaluated. Only variants with an allele frequency ≥5 % will be included in the anal-
ysis due to the the poor quality of the Formalin-Fixed Paraffin-Embedded (FFPE)
tumor samples used for sequencing.
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2 Theory

This section describes important concepts and terminology related to the project.

2.1 Immunotherapy

Immunotherapy aims to use the patients own immune system to kill cancer cells. For
patients with NSCLC, one type of immunotherapy is immune checkpoint inhibition
(ICI), meaning antibody inhibition of the immune checkpoints PD-1 or PD-L1. Cur-
rently, the FDA has approved two PD-1 inhibitors (nivolumab and pembrolizumab)
and two PD-L1 inhibitors (atezolizumab and durvalumab) for use as NSCLC im-
munotherapy treatment [12].

2.1.1 Immune checkpoint inhibitors

T cells are involved in the immune response against bacteria, fungi, viruses, para-
sites, and tumors. Although necessary, they can cause inflammation, which can lead
to autoimmunity or immunopathology and must therefore be tightly regulated. The
immune system is regulated by regulatory cells from the innate and adaptive immune
system and immune checkpoints that control T-cell activation. The regulatory cells
and immune checkpoints are often enhanced during cancer or inflammation to sup-
press and evade the immune system, which has made them important therapeutic
targets [13].

Immune checkpoints have distinct receptors and ligands. Relevant for this project
is the receptor PD-1 and its ligand PD-L1 [13]. PD-1 is mainly expressed on the
surface of T cells and PD-L1 is mostly expressed on different types of cancer cells, such
as lung cancer and melanoma [14]. PD-1/PD-L1 ligation suppresses T-cell function
and is the key mechanism of cancer cells to evade the immune system [12]. By
blocking PD-1 or PD-L1 using anti-PD-1/PD-L1 antibodies, the T-cell suppression
is avoided, meaning the T-cell regain their ability to kill cancer cells (Figure 1) [13].
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Figure 1: PD-1/PD-L1 ligation suppresses T cell function and inhibits T cells killing tumor cells.
Introducing antibodies blocking either PD-1 or PD-L1 allows the T cells to kill the tumor cells.

(From the National Cancer Institute © (2015) Terese Winslow LLC).

2.1.2 Established biomarkers of ICI response

Biomarkers are measurable biological characteristics that can be used to predict
immunotherapy response and be used as a basis for treatment decisions by selecting
patients with a high likelihood of clinical response to treatment [15]. To date, PD-L1
and tumor mutation burden (TMB) are the only approved predictive biomarkers for
PD-1/PD-L1 inhibition [6].

PD-L1 expression on tumour tissue is determined using immunohistochemistry
and is represented as a tumor proportion score (TPS). TPS is the percentage of
viable tumor cells showing partial or complete membrane PD-L1 staining in relation
to all viable tumor cells and is given as <1 %, 1 %-49 %, and ≥50 % [16][17]. PD-L1
positivity is defined as a TPS of ≥1 % and has been associated with significantly
longer progression-free survival (PFS) and overall survival (OS) [18][19]. Currently,
a TPS of ≥50 % is used to select stage IV NSCLC patients for first-line monotherapy
using pembrolizumab [20].

Tumor mutation burden (TMB) is in this project defined as the total number of
non-synonymous mutations per coding area of a tumor genome in either tumor tissue
or blood, and is reported as mutations per megabase (Mb) of DNA. Tumors with a
higher number of somatic mutations have been associated with a greater generation
of neoantigens and subsequent development of immunogenicity. It has therefore
been suggested that patients with a high TMB respond better to ICI compared to
patients with low TMB , which has been supported by reports of longer PFS and OS
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in patients with a TMB higher than 10 mutations/Mb [21][22][23]. Currently, the
FDA has approved TMB as an agnostic biomarker for selecting patients for treatment
with pembrolizumab using a cut-off of ≥10 mutations/Mb [6].

Although promising, PD-L1 expression and TMB are far from optimal biomark-
ers. Studies have shown that patients negative for PD-L1 expression can present
durable response to immunotherapy and improved OS [18]. In addition, there is
no consistent standard for measuring PD-L1 expression in tumor cells. Different
definitions of PD-L1 positivity, detection platforms, and evaluation systems makes
it difficult to compare PD-L1 expressions between clinical trials [24]. Similar is-
sues can be found for TMB, where there is no standard assessment across research
and clinical studies. There are also many factors that can influence the TMB mea-
surement, including the quality and quantity of the sample, sequencing platform,
included mutations, genome coverage, bioinformatic pipeline, and the definition of
what is considered high or low TMB [25].

2.2 Survival analysis

The main assessment in many cancer studies is survival time, which is the time from
a starting point to an event of interest, often death. The difficulty of this type of
data is that censoring often occurs, making the survival data incomplete. Censoring
can happen when: (a) a patient has not experienced the event before the last follow-
up date; (b) a patient is lost to follow-up; or (c) a patient drops out or experiences
another event that makes further follow-up impossible. Another problem is that
survival data is rarely normally distributed, rendering many methods of analysis
non-applicable. Therefore, special methods called survival analysis are necessary,
which typically include univariate Kaplan-Meier survival analysis, log-rank tests,
and multivariate Cox (proportional hazards) regression [26].

Kaplan-Meier survival analysis nonparametrically estimates the survival function
(also called cumulative survival or survival probability) from observed survival times.
The survival function describes the probability that an individual survives from the
time of origin to a specified future time. Mathematically, the survival function is
described as

S(ti) = S(ti−1)(1−
di

ni
)

where the probability of being live at time ti, called S(ti), is determined by the
probability of being alive at time ti−1, called S(ti−1), the number of patients alive
just before time ti, called ni, and the number of events at time ti, called di. At
time t0 = 0, the probability is S(0) = 1. By dividing the time period into smaller
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intervals, the survival function can be calculated by multiplying the probability of
surviving from one interval to the next, with the assumption that events happen
independently from each other. The survival function is often plotted against time
in Kaplan-Meier curves, which allows for estimations of median and mean survival
times. Since survival data is often skewed, the estimated median is usually reported
rather than the mean. Survival between groups can then be compared using the
log-rank test, which is one of the most widely used nonparametric tests to compare
survival between groups [26].

Cox (proportional hazards) regression is the most widely used multivariate method
for analyzing survival data in the medical field. Statistical models, like Cox regres-
sion, is a way to assess survival with respect to multiple patient-related factors (co-
variates), such as age or smoking history, that could potentially affect the survival
time. Additionally, they can provide an estimated effect of each factor [27]. The
Cox regression model is a multiple linear regression of the logarithm of the hazard
model and describes the relation between the hazard model and a set of covariates.
In turn, the hazard model describes the probability that a patient under observation
experiences the event around a certain time point. Cox regression is mathematically
written as

h(t) = h0(t)∗ exp(b1x1 +b2x2 + ...+bpxp)

where the hazard function h(t) is dependent on a set of covariates (x1,x2,...,xp) whose
impact is described by the respective regression coefficients (b1,b2,...,bp). h0(t) is the
baseline hazard, and exp(bi) is the hazard ratio (HR), which describes the relation
between the probability of events in a treatment group compared to the probability
of evens in a reference group. Covariates with a hazard ratio >1 are negatively asso-
ciated with survival and covariates with a hazard ratio <1 are positively associated
with survival [27].

Related to survival analysis is the association between a factor, such as a mutation
in a gene, and immunotherapy response. In this project, this is evaluated using
Pearson’s chi-squared test, which provides a p-value and an odds ratio (OR). The
OR represents the odds of an outcome based on a particular exposure and is given
as a number between 0 and infinity. In this case, the outcome is immunotherapy
response, and the exposure is a mutation in a gene of interest. In the scope of this
project, an odds ratio (OR) <1 means that the mutated gene is associated with lower
odds of immunotherapy response and an odds ratio above 1 that the mutated gene
is associated with higher odds of immunotherapy response [28].
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2.3 Variant types and cancer gene terminology

Throughout this thesis, variant, alteration and mutation are used interchangeably
to describe nucleotides that differ in the sequenced tumor samples compared to a
reference genome.

There are different types of variants evaluated in this project, including non-
synonymous, synonymous, frameshift, inframe, stop-and startloss, and splice site
mutations. Non-synonymous mutations alters the protein sequences and include
missense and nonsense mutations. Missense mutations replace an amino acid with
another and nonsense mutations introduce a stop codon. Synonymous mutations are
mutations that do not alter the protein sequence and frameshift mutations can either
be insertions or deletions and shifts the way the DNA is read. Inframe mutations
are deletions where the reading frame is preserved. Stop- and startloss mutations are
mutations that affect the termination and initiation codon, respectively. Splice site
mutations occur at the boundary of exons and introns, and can disrupt how the gene
is read by disrupting existing ones or creating new splice sites. Splice site mutations
in a position marked ”+” occur in the nucleotides just after the exon, and those
marked ”-” occur just before the exon [29][30]. In addition, mutations can be divided
into driver and passenger mutations, where driver mutations cause the initiation and
proliferation of cancer and passenger mutations do not [31].

Cancer genes can also be divided into oncogenes and tumor suppressor genes,
where oncogenes are genes that are related to the formation and growth of cancer
and tumor suppressor genes help regulate the growth cells [31].
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3 Methodology

This project encompasses data analysis of tumor DNA NGS data. Sample collection
and sequencing was done previous to the project.

3.1 Study cohort

Patients with NSCLC (stage III or IV) suitable for immunotherapy, were recruited
from Gothenburg and Skövde, Sweden, during 2019-2021. Previous treatments, age,
sex, or smoking status were not exclusion criteria. Patients were followed from the
start of the immunotherapy treatment through, at most, 5 cycles of immunotherapy.
At 10 months after the first treatment, the patients were divided into responders
and non-responders. Responders were defined as patients with partial response,
stable disease or complete response, and non-responders was defined as patients with
progressive disease. Patients that had passed away before the 10 month cut-off were
denoted as non-responders.

3.2 Ethics approval and confidentiality

The study was approved in 2018 by the Central Ethical Review Board in Gothenburg
(diary number 953-18). Written informed consent was obtained from each partici-
pant and all personal data was gathered previous to this project and was regulated
according to the General Data Protection Regulation (EU 2016/670). The obtained
samples were registered in a biobank according to the Law of biobanks in healthcare
(SFS 2002:297). In total, 54 patients were included in the study this project is apart
of.

3.3 Samples and tumor sequencing

Formalin-fixed paraffin-embedded (FFPE) tumor samples were taken from archival
tumor tissue obtained before the start of immunotherapy treatment for each patient.
The FFPE tumor material was sequenced for 597 cancer genes in GATC Biotech’s
OncoPanel All-in-One (v2) by Eurofins Genomics (Europe Sequencing Gmb, Ger-
many) using Genome Sequencer Illumina HiSeq (San Diego, CA, USA). Quality
assessment of the raw data, mapping and variant calling was also performed by Eu-
rofins Genomics. Genomic DNA from blood samples from each patient was also
sequenced in order to filter out germline mutations in the tumor DNA, as to only
retain somatic mutations. The data was then filtered further to only include variants
with an allele frequency of ≥5 % and a population frequency <1 % (to filter out many
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of the (likely) benign variants). In total, 44 out of 54 patients had tumor material
sequenced and were included in this project.

3.4 Identification of genetic biomarkers

In this project, variants in individual genes, co-mutations, and groups of variants
were evaluated as biomarkers. Manual evaluation and classification of the variants
was the first step of the analysis.

3.4.1 Classification of variants

The classification of the tumor DNA variants was done according to the ComPerMed
workflow created by Froyen et al. [32], illustrated in Figure 2. ComPerMed uses the
five biological classes of the ACMG & AMP Standards and Guidelines published
by Richards et al. [33] and includes the classes ”Pathogenic”, ”Likely Pathogenic”,
”Variant of Unknown Significance (VUS)”, ”Likely Benign”, and ”Benign”.

Figure 2: ComPerMEd workflow for biological classification of somatic variants, generated by
Froyen et al. [32]. (1) Technical filtering and manual evaluation in IGV. (2) Check if variants are

present in healthy population databases. (3) Check if variants are previously known to be
pathogenic using the Consensus Pathogenic Variant (CPV) list. (4) Check if variants have a clear

loss of function mutation, in which case it is checked if the variant is located in a tumor
suppressor gene or in an oncogene. (5) Variants with no clear loss of function mutation is further

classified using a scoring system and if scoring 1.5, evaluated in Alamut for nucleotide
conservation and physicochemical effect. Adapted from Froyen et al. [32]

9



Initially, the variants were manually evaluated in Integrative Genomics Viewer
(IGV) (v2.11.9) [34] to remove sequencing artefacts missed during previous filtering.
Hg38 was used as the reference genome. The evaluation was done based on: dis-
tribution in forward and reverse reads, where variants were evaluated as artefacts if
they only appeared in one direction or if the distribution was unbalanced; sequencing
depth; and mapping, where variants were evaluated as artefacts if the mapping con-
tained many surrounding errors or looked like structural errors. All artefacts were
discarded from further analysis.

The remaining variants were then checked for their presence in the healthy pop-
ulation (Figure 2-Box 2). Using the gnomAD database (v2.1.1 and v3.1.1) (https:
//gnomad.broadinstitute.org/), the ethnic-based minor allele frequency (MAF)
was determined for each variant, where variants with an ethnic-based MAF ≥0.1 %
and <1 % were directly classified as “Likely Benign” and those ≤1 % as “Benign”.
Variants with an MAF <0.1 % or not reported in the gnomAD database required
further classification and were checked to see if they were previously known to be
pathogenic using the Consensus Pathogenic Variant (CPV) list (Figure 2-Box 3) (full
list is found in Froyen et al. [32]).

Variants included in the CPV list were directly classified as ”Pathogenic”, while
variants not included in the CPV list were evaluated for having a clear loss of function
(LoF) mutation (Figure 2- Box 4). LoF mutations included frame shift, introduction
of stop/start codon, loss of stop/start codon, and ± 1,± 2 splice sites. Variants with
a LoF mutation were then checked for being located in an oncogene, in which case
the variant was classified as a ”VUS”, or in a tumor suppressor (Ts) gene, in which
case the variant was classified as ”Likely Pathogenic”. To find out if the variant
was located in an oncogene or a Ts gene, the Ts & Oncogene list by Froyen et al.
[32] was used, as well as the Cancer Gene Census (CGC) catalogue in COSMIC
(https://cancer.sanger.ac.uk/census).

Variants without a clear LoF mutation (Figure 2- Box 5), for example missense
or in-frame indel mutations, were further classified using a scoring system (Table 1).
The scoring table was modified compared to Froyen et al. [32]. The first parameter
scored the variants based on the total number of entries for that specific amino acid
change in that specific position in the Catalogue of Somatic Mutations in Cancer
(COSMIC, https://cancer.sanger.ac.uk/cosmic). For solid tumors, a score of
”+2”was given to variants with a total number of entries ≥ 50 and a score of ”0”was
given for variants with entries below 10. Intermediate numbers were given a score of
”+1”.

The second parameter described by Froyen et al., relates to the theoretical pre-
diction tools SIFT and MutationTaster. In this project, however, the number of
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Table 1: Scoring Table for the biological variant classification of non-loss-of-function variants.

Parameter Score +2 Score +1 Score +0.5 Score 0 Score -1

Total # of entries of that particular
AA change at that position in COS-
MIC

≥ 50 50 > x > 10 - ≤ 10 -

Prediction scores in VarSome -
≥ 75%

Damaging
75% > x ≥ 50%
Damaging

< 50% Damaging -

Harmful in functional studies (Var-
Some)

- - Yes Not reported No

Described in Varsome (ACMG classifi-
cation) and ClinVar

- -
As (Likely)
Pathogenic

Not described/
unknown

As (Likely)
Benign

Variants with a final score of ≥ 2 were classified as ”Likely Pathogenic”. Variants with a final score < 2 were
classified as ”VUS”. Adapted from Froyen et al. [32].

theoretical prediction tools examined were expanded to encompass those included
in the database VarSome (https://varsome.com/). A score of ”+1” was given to
variants where more than 75 % of the prediction tools predicted the variant to be
damaging. Variants predicted to be damaging by between 50−75 % were given a
score of ”0.5”, and variants predicted to be damaging by <50 % were given a score of
”0”. The number of prediction tools available ranged from 3 to 19 between variants
and was not taken into consideration when scoring the variants.

The third parameter was used to determine if the variant had been previously
mentioned as harmful or not in functional studies. For this, VarSome was used to find
relevant publications for each variant. If the variant had been reported as harmful in
functional studies a score of ”0.5” was given, if not reported a score of ”0” was given
and if a variant was found to not be harmful a score of ”-1” was given.

The fourth parameter related to if the variant had been previously classified or
described in a genomic database. In contrast to what is described by Froyen et al
[32], both VarSome (ACMG classification) and ClinVar were taken into consideration
in this project and a score was given for each database depending on the stated
classification. Variants classified as ”(Likely) Pathogenic” in VarSome or ClinVar
were given a score of ”0.5” and variants of ”Unknown significance” or not described
were given a score of ”0”. Variants described as ”(Likely) Benign” were given a score
of ”-1”.

A final score was then calculated from the four parameters and variants with a
score of ≥ 2 were classified as ”Likely Pathogenic” and variants with a score < 2 were
classified as ”VUS”. In order to differentiate variants classified as VUS, variants with
a score ”1.5” were evaluated in Alamut for nucleotide conservation among species
and physicochemical effect of the amino acid change. This was also a modification
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compared to the workflow described by Froyen et al. [32]. Variants with a high con-
servation and moderate to high physicochemical effect were scored an additional 0.5
points and were classified as ”VUS+”, which in this project means variants classified
as VUS that are more towards a likely pathogenic classification.

Exceptions to the ComPerMed workflow were done for TP53, BRCA1 and BRCA2
according to the procedure by Froyen et al [32]. Variants in TP53 that were found
in OncoKB (https://www.oncokb.org/) were classified as ”(Likely) Pathogenic”.
Truncating and splice site TP53 variants not found in OncoKB were classified as
”Likely Pathogenic”, unlike what is described by Froyen et al [32]. Missense vari-
ants not found in OncoKB were assessed using the International Agency for Re-
search in Cancer (IARC) TP53 database (http://p53.iarc.fr/)), which com-
piles information on human TP53 variations in relation to cancer [35], and Seshat
(http://vps338341.ovh.net/). Variants not found in any of the listed resources
were classified as ”VUS”.

Variants in BRCA1 and BRCA2 were evaluated as described by Froyen et al [32],
meaning that clear LoF mutation were classified as ”Pathogenic” and other variants
were evaluated using the following databases: ARUP (http://www.arup.utah.edu/
database/BRCA/), InterVar (http://wintervar.wglab.org/), ClinVar (https://
www.ncbi.nlm.nih.gov/clinvar/), Enigma (https://brcaexchange.org/), and
LOVD (https://databases.lovd.nl/shared/genes).

3.4.2 Variants located in driver genes

After classification, the variants were evaluated for being located in driver genes
or not, using information about known driver genes from the Cancer Gene Census
(https://cancer.sanger.ac.uk/census). Genes that were not previously known
to be drivers, were then searched in a database developed by Dietlein et al [36], that
predicts if the gene is a driver or not based on unusual nucleotide context. If the gene
was found in either database as a driver for NSCLC (lung adenocarcinoma or lung
squamous cell carcinoma) or lung cancer, it was denoted as a driver. Genes found in
either database as a driver for other types of cancer excluding NSCLC or lung cancer
and genes not found in either database were not denoted as drivers NSCLC.

3.4.3 Identification of frequently mutated genes

Based on the variant data for the cohort, a TXT file annotated by the hg38 reference
genome was generated, which only included three columns: sample ID, mutated gene
name and the variant types included in this project. The TXT file was then visualized
in a waterfall plot using the R package GenVisR, which ranks mutated genes in
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descending order of mutation frequency. Only genes with a mutation frequency over
20 % were displayed.

3.4.4 Statistical analysis

Survival was estimated using the Kaplan-Meier method and differences in overall
survival between groups was assessed using log-rank tests (Mantel-Cox). Overall
survival (OS) was defined as the time from the start of immunotherapy to death
or to the last follow-up date. Multivariate Cox (proportional hazards) regression
was conducted to adjust for patient-related factors such as age, gender, smoking
history, PD-L1 expression, and TMB. Pearson’s chi-squared test was used to assess
the association to immunotherapy response. The data analysis was done using IBM
SPSS (v.28.0.1.1).
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4 Results

4.1 Clinical characteristics of NSCLC patients

From 2019 to 2021, 44 patients with NSCLC undergoing immunotherapy had tumor
DNA sequenced and were included in this project. Of these 44 patients, 19 (43.2 %)
were male and 25 (56.8 %) female. 11 patients (25.0 %) were current smokers, 29
(65.9 %) previous smokers, and 4 were non-smokers (9.1 %). Among the patients, 20
were aged under 70 (45.4 %) and 24 over 70 (54.5 %). The most common subtype pf
NSCLC in the cohort was LUAD, accounting for 75.0 % (33 of 44) of all the cases and
LUSC for 25.0 % (11 of 44). There were 8 patients (18.2 %) with stage III NSCLC
and 36 (81.8 %) with stage IV. Table 2 summarizes the clinical characteristics of the
patients.

Table 2: Clinical characterisation of patient cohort

n (%)

All patients 44 (100 %)

Gender

Male 19 (43 %)

Female 25 (57 %)

Age

≤70 20 (45 %)

>70 24 (55 %)

Stage

III 8 (18 %)

IV 36 (82 %)

Histology

Adenocarcinoma 33 (75 %)

Squamous cell carcinoma 11 (25 %)

Smoking status

Current 11 (25 %)

Previous 29 (66 %)

Never 4 (9 %)

ICI response

Responder 25 (57 %)

Non-responder 19 (43 %)
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4.2 Somatic mutation landscape in NSCLC

Based on the waterfall plot of the 44 patients in the cohort, 10 genes were found
to have a gene mutation frequency above 20 % (TP53, LRP1B, CSMD3, KRAS,
KMT2C, FAT3, ADGRB3, TRRAP, SPTA1, and FLT1 ), where TP53 had the high-
est mutation frequency (29 of 44, 65.9 %) (Figure 3). The majority of patients (37 of
44, 84.0 %) had at least one mutation among of the most frequently mutated genes
and the most common mutation type was missense mutations.

Figure 3: Waterfall plot displaying the most frequently mutated genes in 44 NSCLC patients.
Genes with a mutation frequency greater than 20 % were arranged in descending order of mutation

frequency (left panel) and different mutation types were represented by different colors (right
panel). TMB for each patient is included in the top panel and clinical data in the lower panel.

The cohort consists of patients diagnosed with LUAD (33 of 44, 75 %) and LUSC
(11 of 44, 25 %) and the most frequently mutated genes were found to differ between
the diagnoses (Figure 4). Among patients with LUAD, the most mutated genes
were TP53 (18 of 33, 56 %) followed by LRP1B (16 of 33, 48 %), and included
the gene ATM (8 of 33, 24 %), which was not frequently mutated among LUSC
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patients (Figure 4A). For patients with LUSC, the most frequently mutated genes
were, TP53 (10 of 11, 90.9 %) followed by CSMD3 (7 of 11, 64 %), and included genes
not frequently mutated in LUAD patients such as CUBN (5 of 11, 45 %), ERBB4
(4 of 11, 36 %), SETBP1 (3 of 11, 27 %), and PREX2 (3 of 11, 27 %) (Figure 4B).

Figure 4: Waterfall plot of the genetic landscape of patients diagnosed with (A) LUAD and (B)
LUSC. Mutation frequency for genes with frequency higher than 20 % are is displayed in
descending order in the left panels. Mutation type is represented by different colors.

4.3 Technical analysis and classification of tumor DNA variants

In total, 2572 variants from 44 patients were evaluated in IGV after filtration using
a 5 % allele frequency cut-off. Of these, 1633 variants (63.5 %) were evaluated as
artefacts and discarded from further analysis. The remaining 939 variants (36.5 %)
were evaluated as true and included in the final analysis, where 18 variants (1.91 %)
were classified as ”Pathogenic”, 134 (14.3 %) as ”Likely pathogenic”, 755 (80.4 %)
as ”VUS” and 6 variants (0.64 %) were classified as ”Benign” or ”Likely Benign”.
From the scoring table containing 737 variants, 59 variants classified as ”VUS” were
evaluated for nucleotide conservation and physicochemical effect in Alamut, out of
which 26 variants (2.77 %) were re-classified as ”VUS+”.

The majority of the pathogenic variants were located in KRAS (15 of 18, 83.3 %),
and many of the likely pathogenic variants were found in TP53 (28 of 134, 20.9 %).
Variants classified as ”VUS” were mainly found in CSMD3 (30 of 755, 3.97 %),
LRP1B (23 of 755, 3.04 %), KMT2C (18 of 755, 2.38 %) and FAT3 (14 of 755,
1.85 %). Half of the variants classified as ”Benign” and ”Likely benign” were located
in BRCA1 and BRCA2. Among the genes classified as ”VUS+”, no gene was found
in majority.
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4.4 Overall survival analysis

Kaplan-Meier survival analysis was conducted for the most frequently mutated genes,
which included TP53, LRP1B, CSMD3, KRAS, FAT3, KMT2C ADGRB3, TRRAP,
SPTA1, and FLT1. Cox regression analysis was preformed for genes with significant
association to survival to adjust for patient-related factors. A p-value < 0.05 was
deemed significant. Pearson’s chi-squared test was used to find associations between
genes and immunotherapy response.

4.4.1 Individual genes

Wildtype TP53 (15 of 44, 34.1 %) was found to be significantly associated with
improved overall survival (log-rank test p=0.015, Figure 5A). The estimated mean
survival was longer for wildtype TP53 compared to mutated TP53 (29 vs 19 months),
and the estimated median survival was 24 months for mutated TP53 and was not
found for wildtype TP53. The association between TP53 and survival did not remain
significant when taking patient related factors into account (Cox proportional hazards
regression, HR 3.23, [95 % CI, 0.802-12.924], p=0.098, Figure 5B). There was a trend
towards response in patients with wildtype TP53, however it was not significant
(Pearson’s chi-squared test, p=0.450, OR=0.618, Figure 5C).
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Figure 5: Association of TP53 mutation with survival and immunotherapy response in NSCLC
cohort.(A) Kaplan-Meier curve showing overall survival of patients with wildtype (n=15) and
mutated (n=29) TP53. The p-value shown was determined from the log-rank test. (B) Cox

regression analysis adjusting for gender, PD-L1 expression, age, smoking history and TMB. TP53
wildtype used as reference. (C) Association betweenTP53 (wildtype and mutated) and

immunotherapy response was determined from a Pearson’s chi-squared test.

KRAS mutation (15 of 44, 34.1 %) showed a significant association with improved
overall survival (log-rank test p=0.033, Figure 6A). The estimated mean survival
was shorter for wildtype KRAS compared to mutated (18 vs 29 months), and the
estimated median survival was 24 months for wildtype KRAS and was not found
for mutated KRAS. In multivariate Cox regression, mutated KRAS did not remain
significantly associated with survival (HR 0.435, [95 % CI, 0.083-2.288], p=0.326,
Figure 6B). There was a trend for immunotherapy response among patients with
mutated KRAS, however, it was not significant (Pearson’s chi-squared test, p=0.450,
OR=1.629, Figure 6C).
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Figure 6: Association of KRAS mutation with survival and immunotherapy response in NSCLC
cohort.(A) Kaplan-Meier curve showing overall survival of patients with wildtype (n=29) and
mutated (n=15) KRAS. The p-value shown was determined from the log-rank test. (B) Cox

regression analysis adjusting for gender, PD-L1 expression, age, smoking history and TMB. KRAS
wildtype used as reference. (C) Association between KRAS (wildtype and mutated) and

immunotherapy response was determined from Pearson’s chi-squared test.

In Kaplan-Meier survival analysis, mutation in LRP1B (20 of 44, 45.4 %) was
significantly associated with improved overall survival (log-rank test p=0.033, Fig-
ure 7A). The estimated mean survival for wildtype LRP1B was 19 months compared
to 29 months for mutated LRP1B and the estimated median survival was 24 months
for wildtype LRP1B but was not found for mutated LRP1B. In multivariate Cox
regression, mutated LRP1B did not remain significantly associated with survival
(HR 0.072, [95 % CI, 0.114-1.098], p=0.072, Figure 7B), and there was no signifi-
cant association between immunotherapy response and wildtype or mutated LRP1B
(Pearson’s chi-squared test, p=0.956, OR=0.967, Figure 7C).
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Figure 7: Association of LRP1B mutation with survival and immunotherapy response in NSCLC
cohort.(A) Kaplan-Meier curve showing overall survival of patients with wildtype (n=24) and
mutated (n=20) LRP1B. The p-value shown was determined from the log-rank test. (B) Cox
regression analysis adjusting for gender, PD-L1 expression, age, smoking history and TMB.

LRP1B wildtype used as reference. (C) Association between LRP1B (wildtype and mutated) and
immunotherapy response was determined from Pearson’s chi-squared test.

Other genes included in the Kaplan-Meier analysis were not significantly associ-
ated with survival (CSMD3 p=0.989, ADGRB3 p=0.730, FAT3 p=0.828, KMT2C
p=0.544, FLT1 p=0.851, SPTA1 p=0.180, TRRAP p=0.931, KEAP1 p=0.647)
(Appendix A, Figure A1 and A2).

4.4.2 Co-mutations

Different co-mutations of the top mutated genes in this cohort were analyzed. In
Kaplan-Meier survival analysis, co-mutations between LRP1B andKRAS, and LRP1B
and TP53 were found to be significantly associated with survival (p=0.022, Figure
8A; p=0.036 Figure 8B). Significant association with survival was also found for
patients with TP53, KRAS, and LRP1B co-mutation (p=0.027, Figure 8D). TP53
and KRAS co-mutation was not found to be significantly associated with survival
(p=0.099, Figure 8C). Other co-mutations tested were not significantly associated
with survival (TP53 and KEAP1 p=0.833; TP53 and KMT2C p=0.356; KRAS and
KEAP1 p=0.700; KRAS and KMT2C p=0.304) (Appendix A, Figure A3).
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Figure 8: Kaplan-Meier curve showing overall survival of patients with (A) KRAS mutation
(KRAS(+)) and wildtype (n=5) or mutated (n=10) LRP1B (p=0.022); (B) TP53 mutation
(TP53(+)) and wildtype (n=14) or mutated (n=15) LRP1B (p=0.036) ,(C) TP53 mutation
(TP53(+)) and wildtype (n=6) or mutated (n=9) KRAS (p=0.099); (D) TP53 mutation
(TP53(+)), KRAS mutation (KRAS(+)), and wildtype (n=3) or mutated (n=6) LRP1B

(p=0.027).

In multivariate cox regression analysis, patients with TP53 and LRP1B co-
mutation, and TP53 and KRAS co-mutation were positively associated with sur-
vival, however, it was not significant (HR 0.322, [95 % CI, 0.084-1.226], p=0.097;
HR 0.559, [95 % CI, 0.079-3.983], p=0.559). Cox regression could not be preformed
on patients with KRAS and LRP1B co-mutation or KRAS, LRP1B and TP53 co-
mutation due to too few events (data not shown).

Associations between the co-mutations and immunotherapy response were made
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for co-mutations with significant association with survival as well as the TP53/KRAS
co-mutation. For theKRAS/LRP1B co-mutation, there was a trend for immunother-
apy response among patients with the co-mutation, however it was not significant
(Pearson’s chi-squared test p=0.464, OR=2.250). In patients with the TP53/LRP1B
co-mutation there was a trend for being non-responders (Pearson’s chi-squared test
p=0.362, OR=0.500) and among patients with the TP53/KRAS co-mutation there
was no trend between the groups (Pearson’s chi-squared test p=0.822, OR=1.200).
No association with response could be made for the TP53/KRAS/LRP1B co-mutation
due to too few cases.

4.4.3 Groups of variants

Currently, PD-L1 expression and TMB are the only predictive biomarkers used for
patient selection. Kaplan-Meier analysis showed no association between PD-L1 or
TMB and survival (log-rank test p=0.321, Figure 9A; log-rank test p=0.612, Figure
9B). Neither PD-L1 expression or TMB were found significantly associated with
survival in multivariate cox regression analysis (HR 0.919, [95 % CI, 0.270-3.126],
p=0.892, Figure 9C (top panel); HR 1.720, [95 % CI, 0.515-5.752], p=0.378, Figure
9C (lower panel)). There was a trend for immunotherapy response among patients
with a PD-L1 ≥50 % and among patients with a TMB < 10 mut/Mb, however,
it was not significant (Pearson’s chi-squared test p =0.123, OR=2.600; p=0.317,
OR=0.538,9D )
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Figure 9: Association of PD-L1 expression and TMB with survival and immunotherapy response.
Kaplan-Meier curve showing overall survival of patients with (A) a PD-L1 expression of: <1 %
(n=8); 1−49 % (n=13); and ≥50 % (n=23), and (B) patients with low (<10 mut/Mb, n=25) or
high (≥10 mut/Mb, n=19) TMB. The p-values shown were determined from the log-rank test.

(C) Cox regression analysis of PD-L1 expression (top panel) and TMB (lower panel). D
Association between PD-L1 expression (left panel) and TMB (right panel) and immunotherapy

response was determined from Pearson’s chi-squared test.

Different groupings of the variant data was made in an effort to investigate al-
ternative biomarkers in regards to TMB. In this project, TMB included all non-
synonymous mutations in the tumor genome, regardless of their classification. Ini-
tially, the survival based on the number of variants in each classification was analyzed.
Kaplan-Meier analysis showed that the number of VUS variants were less associated
with survival compared to the other classifications (number of pathogenic variants,
log-rank test p=0.110, Figure 10A; number of likely pathogenic variants, log-rank
test p=0.004, Figure 10B; number of ”VUS+”, log-rank test p=0.176, Figure 10C;
number of VUS, log-rank test p=0.481, Figure 10D).
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Figure 10: Kaplan-Meier analysis for patients with (A) a high (≥1, n=18) or low (<1, n=26)
number of pathogenic variants; (B) a high (≥4, n=17) or low (<4, n=27) number of likely

pathogenic variants; (C) a high (≥1, n=17) or low (<1, n=27) number of ”VUS+”; (D) a high
(≥15, n=19) or low (<15, n=25) number of VUS.

The classified variants were then grouped together in different ways, where the
combination of all classified variants, in a similar way as TMB, showed no associ-
ation with survival or immunotherapy response (log-rank test p=0.684; Pearson’s
chi-squared test p=0.956, OR=0.976, Appendix A, Figure A4A and B). A ”refined”
version of TMB was then investigated, only containing the total number of pathogenic
and likely pathogenic variants in each patient. Kaplan-Meier showed no significant
association with survival (log-rank test p=0.079, Figure 11A), although there was
a trend for improved survival among patients with less than five of these variants.
Cox regression analysis showed no significant association with survival (p=0.080, Fig-
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ure 11B). Having less than five variants classified as likely pathogenic and pathogenic
showed a significant association with immunotherapy response (Pearson’s chi-squared
test p=0.009, OD=0.131, Figure 11C).

Figure 11: Kaplan-Meier curve showing overall survival for patients with a high (≥5, n=13) or
low (<5, n=31) number of variants classified as likely pathogenic and pathogenic.(B) Cox

regression analysis adjusting gender, PD-L1 expression, age, smoking history and TMB. A number
of variants less than five was used as reference. (C) Association between the number of variants

and immunotherapy response was determined from Pearson’s chi-squared test.

The number of variants classified as ”VUS+” were then added to the likely
pathogenic and pathogenic variants. In Kaplan-Meier analysis, having less than 5
variants classified as likely pathogenic, pathogenic or ”VUS+”was significantly asso-
ciated with improved survival (log-rank test p=0.032, Figure 12A). Having less than
five of these variants remained significantly associated with survival in cox regres-
sion analysis (HR 3.562, [95 % CI, 1.088-11.663], p=0.036, Figure 12B) and showed
a significant association with immunotherapy response (Pearson’s chi-squared test,
p=0.020, OR=0.212, Figure 12C).
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Figure 12: Association of the number of variants classified as likely pathogenic, pathogenic and
”VUS+” with survival and immunotherapy response in NSCLC cohort.(A) Kaplan-Meier curve
showing overall survival of patients with a low (<5, n=27) and high (≥5, n=17) number of these
variants. The p-value shown was determined from the log-rank test. (B) Cox regression analysis
adjusting for gender, PD-L1 expression, age, smoking history and TMB. Number of variants <5
was used as reference. (C) Association between the number of likely pathogenic, pathogenic and
”VUS+” variants and immunotherapy response was determined from Pearson’s chi-squared test.

Overall survival was also compared based on the number of variants in driver
genes but no significant association to survival was found (Appendix A, Figure A5).
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5 Discussion

The aim of this project was to characterize the genetic landscape of NSCLC patients
in order to find genetic biomarkers associated with immunotherapy response. This
was done by starting with a comprehensive evaluation and interpretation of DNA
variants from sequencing data, followed by an analysis of the most frequently mutated
genes. Survival analysis was then used to associate mutations in individual genes,
co-mutations, and different groups of variant data to survival and immunotherapy
response.

5.1 Evaluation and classification of variants

Initially, the DNA variants were manually evaluated in IGV to remove artefacts. This
is considered good practice when working with FFPE-material since these samples
are often of poor quality and the variant data often contain many sequencing errors
due to the formalin-fixation [37]. The variants were then classified using a workflow
developed by Froyen et al. [32], which is based on the ACMG AMP guidelines
that details standards and guidelines for classification of germline variants [33], but
contains modifications to better suit classification of somatic variants. In this project,
the workflow from Froyen et al. was further modified to include more prediction tools,
information about predicted classification from both VarSome (https://varsome.
com/) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and information
from Alamut to differentiate variants classified as ”VUS”. The purpose of these
modifications was to develop the classification of somatic variants further.

5.2 Characterization of genetic landscape of NSCLC patients

The genetic landscape of the patients was analyzed using a waterfall plot displaying
the most frequently mutated genes in the cohort. Exploring the top frequently mu-
tated genes is important to find the genes that are the most relevant to investigate as
biomarkers, and in this case, it was important to find genes that had a high enough
mutation frequency to get decent results since the cohort is relatively small. We found
that the top frequently mutated genes for the cohort were TP53, LRP1B, CSMD3,
and KRAS, and when the cohort was divided based on histologic subtype, we ob-
served differences in the top mutated genes between patients diagnosed with LUAD
and LUSC. For patients with LUAD, the top mutated genes were similar to what we
found for the whole cohort and included TP53, LRP1B, KRAS, and FAT3. For pa-
tients with LUSC, TP53 and LRP1B were among the top frequently mutated genes,
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but we also observed genes not found in patients with LUAD or in the whole cohort,
including KMT2D, ERBB4 and SETBP1. The top mutated genes for the whole
cohort and for the histologic subtypes are consistent with previous research, where
TP53 has been consistently reported as the highest mutated gene for many types
of cancers, including both LUAD and LUSC [38][39][40][41]. Additionally, KRAS,
FAT3, and LRP1B have all been found to be frequently mutated in LUAD patients,
which is consistent with the findings in this project [41][38][42]. For patients with
LUSC, some of the most commonly reported mutations are TP53, ERBB4, KEAP1,
and KRAS [43], out of which only KEAP1 was not found frequently mutated.

5.3 Genes associated with survival and response

To find genetic biomarkers predicting immunotherapy response in individual genes,
we analyzed the association of mutated genes with survival and response. Survival
analysis of the most frequently mutated genes showed that patients with mutated
KRAS where more associated with immunotherapy response than patients with wild-
type KRAS and was significantly associated with survival. This is in agreement with
previous studies, suggesting that KRAS is a potential biomarker for immunotherapy
response [44][45]. Additionally, mutated LRP1B was found significantly associated
with survival, which is consistent with other studies [42][46], however, no association
with response was found, indicating that mutated LRP1B alone is not a poten-
tial biomarker. Wildtype TP53 was also significantly associated with survival and
showed a trend to associate with immunotherapy response. In the literature, there
are contradicting reports on TP53, where some studies indicate that wildtype TP53
is associated with survival and better immunotherapy outcome [47], while others
report that patients with mutated TP53 displays improved survival and preferable
immunotherapy response [45]. The role of TP53 as a predictive biomarker therefore
remains unclear.

5.4 Co-mutations associated with survival and response

In addition to looking at mutations in individual genes, co-mutations of the top fre-
quently mutated genes were analyzed. A few of the these co-mutations showed signif-
icant association with survival. The co-mutations TP53/LRP1B and KRAS/LRP1B
have not been mentioned much in the literature, however, both co-mutations were
associated with survival, where patients with the KRAS/LRP1B were more likely to
be responders and patients with the TP53/LRP1B more likely to be non-responders.
This suggests that the KRAS/LRP1B could be a potential biomarker, however, the

28



sample size in this case is small and the association is not significant, meaning the
results might not be representative of a larger population. The TP53/LRP1B co-
mutation is likely not a predictive biomarker.

The TP53/KRAS co-mutation showed a trend towards improved survival. This
is in agreement with the literature, where many studies have reported improved
survival in patients harbouring the TP53/KRAS co-mutation compared to patients
with no or single mutation in either of the genes [47][48]. However, in contradic-
tion to previous studies, there was no association with response among patients with
the TP53/KRAS co-mutation. One possible explanation for the discrepancy is the
small study cohort and the small number of patients with this co-mutation. Further-
more, the TP53/KRAS/LRP1B co-mutation was also significantly associated with
improved survival, however, due to the small sample size, no real conclusions can be
drawn from the results.

5.5 Groups of variants associated with survival and response

Currently, only PD-L1 expression and TMB are used to guide treatment decisions
among patients with NSCLC. It was therefore of interest to see the level of association
of these biomarkers with survival and immunotherapy response in this cohort. We
found that neither high or low TMB was associated with survival, nor was PD-L1
expression. There was an association, though not significant, with immunotherapy
response among patients with a high PD-L1 expression, which is consistent with
previous research [18] [19]. There was also an association for immunotherapy response
among patients with a low TMB, which contradicts some reports [21][22][23], but
there are also reports that TMB is not connected to response [49], suggesting that
TMB in not a sufficient predictor of benefit from immunotherapy.

Different groups of the variant data were analyzed in an attempt to find an alter-
native biomarker to TMB. Unlike TMB, where a higher number of mutations have
been associated with improved overall survival, having a low number of variants clas-
sified as likely pathogenic, pathogenic and ”VUS+”was found to be significantly as-
sociated with survival, even after taking patients-related factors into account. There
was also a significant association with immunotherapy response among patients with
a low number of these variants. Similar results were found when looking only at the
number of likely pathogenic and pathogenic variants, although no significant asso-
ciation to survival was found. Additionally, we found that looking at all variants,
regardless of classification, and only variants classified as ”VUS”showed no significant
association with survival or immunotherapy response. This suggests, in contrary to
TMB, that the classification of the variants is an important factor for predicting re-
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sponse, more so than the total number of unclassified variants, and that the number
of likely pathogenic, pathogenic and ”VUS+” variants is a potential biomarker for
response. However, it should also be considered that the underlying co-mutations
among the pathogenic, likely pathogenic and ”VUS+” variants may play a role in
these results and not just the classification itself. We also found that generally, not
all driver genes seem to be associated with survival or immunotherapy response.
This conclusion is in agreement with previous results, since some of the pathogenic
variants are also drivers.

Altogether, the results suggest that some individual genes and co-mutations can
be more linked to survival and immunotherapy response than others, and could there-
fore potential biomarkers of ICI response. It should be noted, however, that these
genes and co-mutations were less associated with response than PD-L1 expression,
suggesting that they are not sufficient enough to replace already established biomark-
ers. The results also showed that patients with variants classified as likely pathogenic,
pathogenic and ”VUS+” in certain genes or in combination of genes seemed to re-
spond to immunotherapy. This suggests that a ”refined” TMB that considers the
classification of variants may provide a more effective biomarker than the traditional
TMB.

5.6 Limitations

One of the main limitations in this study was the relatively small cohort, which makes
it difficult to obtain significant results that are representative for a larger population.
Another limitation is that some of the included patients have had immunotherapy in
combination with chemotherapy. This opens the possibility of observing the effects
of chemotherapy instead of only immunotherapy, however, the cohort would be sub-
stantially smaller if only patients with monotherapy were included. An additional
limitation is that we only looked at SNP/indels and not, for example, copy number
variants, structural variants or fusion genes, which can also be important.

5.7 Future prospects and societal impact

Providing precision medicine tailored to individuals is a big the goal within health-
care, and the identification of genetic biomarkers predicting immunotherapy response
is a major step towards this aim. In the future, combinations of many different types
of biomarkers, including genetic, immunologic and tumor-derived biomarkers in the
blood, may provide a clearer picture of what makes a patient respond or not respond
to immunotherapy.
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6 Conclusions

In conclusion, this project provides insight into the genetic landscape of NSCLC
patients and the immunotherapeutic implications of mutations and co-mutations of
frequently mutated genes. This project provides evidence that mutated KRAS, co-
mutation of KRAS/LRP1B, and most importantly, counting the number of variants
based on classification are potential biomarkers for predicting immunotherapy re-
sponse among NSCLC patients.
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[34] J. T. Robinson, H. Thorvaldsdóttir, A. M. Wenger, A. Zehir, and J. P. Mesirov,
“Variant review with the integrative genomics viewer,”Cancer research, vol. 77,
no. 21, e31–e34, 2017. doi: 10.1158/0008-5472.CAN-17-0337.

[35] L. Bouaoun, D. Sonkin, M. Ardin, et al., “Tp53 variations in human cancers:
New lessons from the iarc tp53 database and genomics data,”Human mutation,
vol. 37, no. 9, pp. 865–876, 2016. doi: 10.1002/humu.23035.

[36] F. Dietlein, D. Weghorn, A. Taylor-Weiner, et al., “Identification of cancer
driver genes based on nucleotide context,” Nature genetics, vol. 52, no. 2,
pp. 208–218, 2020. doi: 10.1038/s41588-019-0572-y.

[37] S. Q. Wong, J. Li, A. Y. Tan, et al., “Sequence artefacts in a prospective series
of formalin-fixed tumours tested for mutations in hotspot regions by massively
parallel sequencing,”BMC medical genomics, vol. 7, no. 1, pp. 1–10, 2014. doi:
10.1186/1755-8794-7-23..

35

https://www.genome.gov/genetics-glossary
https://www.genome.gov/genetics-glossary
https://www.cancer.gov/publications/dictionaries/genetics-dictionary
https://www.cancer.gov/publications/dictionaries/genetics-dictionary
https://www.cancer.gov/publications/dictionaries/cancer-terms
https://www.cancer.gov/publications/dictionaries/cancer-terms
https://doi.org/10.3390/cancers11122030
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1158/0008-5472.CAN-17-0337
https://doi.org/10.1002/humu.23035
https://doi.org/10.1038/s41588-019-0572-y
https://doi.org/10.1186/1755-8794-7-23.


[38] M. Zhu, L. Zhang, H. Cui, et al., “Co-mutation of fat3 and lrp1b in lung adeno-
carcinoma defines a unique subset correlated with the efficacy of immunother-
apy,” Frontiers in immunology, vol. 12, 2021. doi: 10.3389/fimmu.2021.
800951.

[39] J. Gao, B. A. Aksoy, U. Dogrusoz, et al.,“Integrative analysis of complex cancer
genomics and clinical profiles using the cbioportal,” Science signaling, vol. 6,
no. 269, pl1–pl1, 2013. doi: 10.1126/scisignal.2004088.

[40] C. Gao, H. Li, C. Liu, et al., “Tumor mutation burden and immune invasion
characteristics in triple negative breast cancer: Genome high-throughput data
analysis,” Frontiers in Immunology, vol. 12, p. 1328, 2021. doi: 10.3389/
fimmu.2021.650491.

[41] J. D. Campbell, A. Alexandrov, J. Kim, et al., “Distinct patterns of somatic
genome alterations in lung adenocarcinomas and squamous cell carcinomas,”
Nature genetics, vol. 48, no. 6, pp. 607–616, 2016. doi: 10.1038/ng.3564.

[42] H. Chen, W. Chong, Q. Wu, Y. Yao, M. Mao, and X. Wang, “Association of
lrp1b mutation with tumor mutation burden and outcomes in melanoma and
non-small cell lung cancer patients treated with immune check-point block-
ades,” Frontiers in immunology, vol. 10, p. 1113, 2019. doi: 10.3389/fimmu.
2019.01113.

[43] R. S. Heist, L. V. Sequist, and J. A. Engelman, “Genetic changes in squamous
cell lung cancer: A review,”Journal of Thoracic Oncology, vol. 7, no. 5, pp. 924–
933, 2012. doi: 10.1097/JTO.0b013e31824cc334.

[44] E. A. Eklund, C. Wiel, H. Fagman, et al., “Kras mutations impact clinical
outcome in metastatic non-small cell lung cancer,” Cancers, vol. 14, no. 9,
p. 2063, 2022. doi: 10.3390/cancers14092063.

[45] Z.-Y. Dong, W.-Z. Zhong, X.-C. Zhang, et al., “Potential predictive value of
tp53 and kras mutation status for response to pd-1 blockade immunotherapy in
lung adenocarcinoma,”Clinical cancer research, vol. 23, no. 12, pp. 3012–3024,
2017. doi: 10.1158/1078-0432.CCR-16-2554.

[46] B. El Osta, M. Behera, S. Kim, et al., “Characteristics and outcomes of patients
with metastatic kras-mutant lung adenocarcinomas: The lung cancer mutation
consortium experience,” Journal of thoracic oncology, vol. 14, no. 5, pp. 876–
889, 2019. doi: 10.1016/j.jtho.2019.01.020.

36

https://doi.org/10.3389/fimmu.2021.800951
https://doi.org/10.3389/fimmu.2021.800951
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.3389/fimmu.2021.650491
https://doi.org/10.3389/fimmu.2021.650491
https://doi.org/10.1038/ng.3564
https://doi.org/10.3389/fimmu.2019.01113
https://doi.org/10.3389/fimmu.2019.01113
https://doi.org/10.1097/JTO.0b013e31824cc334
https://doi.org/10.3390/cancers14092063
https://doi.org/10.1158/1078-0432.CCR-16-2554
https://doi.org/10.1016/j.jtho.2019.01.020


[47] S. Assoun, N. Theou-Anton, M. Nguenang, et al., “Association of tp53 muta-
tions with response and longer survival under immune checkpoint inhibitors in
advanced non-small-cell lung cancer,” Lung Cancer, vol. 132, pp. 65–71, 2019.
doi: 10.1016/j.lungcan.2019.04.005.

[48] F. Zhang, J. Wang, Y. Xu, et al., “Co-occurring genomic alterations and im-
munotherapy efficacy in nsclc,”NPJ Precision Oncology, vol. 6, no. 1, pp. 1–12,
2022. doi: 10.1038/s41698-021-00243-7.

[49] L. Paz-Ares, C. Langer, S. Novello, et al., “Pembrolizumab (pembro) plus
platinum-based chemotherapy (chemo) for metastatic nsclc: Tissue tmb (ttmb)
and outcomes in keynote-021, 189, and 407,” Annals of Oncology, vol. 30,
pp. v917–v918, 2019. doi: 10.1093/annonc/mdz394.

37

https://doi.org/10.1016/j.lungcan.2019.04.005
https://doi.org/10.1038/s41698-021-00243-7
https://doi.org/10.1093/annonc/mdz394


Appendix A Kaplan-Meier curves

Kaplan-Meier analysis for patients with wildtype or mutated; CSMD3 (p=0.989),
ADGRB3 (p=0.730), FAT3 (p=0.828) and KMT2C (p=0.544), showed no signifi-
cant association with overall survival (Figure A1).

Figure A1: Kaplan-Meier curve showing overall survival for patients with (A) wildtype (n=25)
and mutated (n=19) CSMD3 (B) wildtype (n=36) and mutated (n=8) ADGRB3 (C) wildtype

(n=33) and mutated (n=11) FAT3 (D) wildtype (n=34) and mutated (n=10) KMT2C
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Kaplan-Meier analysis for patients with wildtype or mutated; FLT1 (p=0.851),
SPTA1 (p=0.180), TRRAP (p=0.931) and KEAP1 (p=0.647), showed no significant
association with overall survival (Figure A2).

Figure A2: Kaplan-Meier curve showing overall survival for patients with (A) wildtype (n=35)
and mutated (n=9) FLT1 (B) wildtype (n=35) and mutated (n=9) SPTA1 (C) wildtype (n=35)

and mutated (n=9) TRRAP (D) wildtype (n=39) and mutated (n=5) KEAP1

39



Kaplan-Meier analysis was also conducted on different co-mutations, which were
not significantly associated with survival (TP53 and KEAP1 p=0.833 (Figure A3A),
TP53 and KMT2C p=0.356 (Figure A3B), KRAS and KEAP1 p=0.700 (Figure
A3C), and KRAS and KMT2C p=0.304) (Figure A3D).

Figure A3: Kaplan-Meier curve showing overall survival for patients with (A) mutated TP53 and
wildtype (n=X) and mutated (n=X) KEAP1 .(B) mutated TP53 and wildtype (n=X) and

mutated (n=X) KMT2C. (C) mutated KRAS wildtype (n=X) and mutated (n=X) KEAP1 (D)
mutated KRAS and wildtype (n=X) and mutated (n=X) KMT2C
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Kaplan-Meier analysis of patients with a high (≥20) or low (<20) total number
variants showed no significant association to survival (long-rank test p=0.684, Figure
A4A). No significant association with immunotherapy response was found (p=0.824,
OR=0.873, Figure A4B).

Figure A4: (A)Kaplan-Meier curve showing overall survival for patients with a high (≥20, n=20)
or low (<20, n=24) total number of variants. B No association between the total number of

variants and immunotherapy response was found.

Kaplan-Meier analysis of patients with a high (≥5) or low (<5) number of variants
in driver genes showed no significant association to survival (p=0.860) (Figure A5).
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Figure A5: Kaplan-Meier curve showing overall survival for patients with a high (≥5, n=16) or
low (<5, n=28) number of variants in driver genes.
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