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Aggregated Set Membership Proofs
Aggregated Signature-Based Set Membership Proofs and implementation in Client
and Server Verifiable Additive Homomorphic Secret Sharing
Hanna Ek
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis addresses the issue of inflated computational complexity for the verifi-
cation of multiple zero-knowledge proofs. More precisely, verification of numerous
zero-knowledge set membership proofs performed by a single verifier is considered.
To reduce the computations required by such a verifier Aggregated Set Membership
Proofs are introduced.
Aggregated set membership proofs unifies multiple set membership proofs into one
aggregated proof, such that the validity of the aggregated proof implies the validity
of all individual proofs. Completeness, soundness and zero-knowledge requirements
are established for zero-knowledge aggregated set membership proofs.
A concrete construction of aggregated set membership proofs is presented and proved
to satisfy the completeness, soundness and zero-knowledge requirements. The con-
struction is a partial aggregation of signature-based set membership proofs, [5], and
is referred to as aggregated signature-based set membership proofs.
A general technique to verify clients in verifiable additive homomorphic secret shar-
ing is derived. The clients are verified by computing zero-knowledge proofs, derived
from Pedersen commitments, of some given statement and then the proofs are val-
idated by a verifier. If the proved statement is that the shared secrets belong to a
discrete set, clients construct set membership proofs. Usually, several clients partic-
ipate in verifiable additive homomorphic secret sharing protocols resulting in that
the verification of clients is computationally expensive.
A prototype implementation considering 100 clients showed that the runtime for ver-
ification of clients was reduced by 13% when verifying an aggregated signature-based
set membership proof compared to verifying the same proofs without performing the
aggregation.

Keywords: Aggregated Set Membership Proofs, Zero-knowledge proofs, VAHSS,
cryptography
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1
Introduction

The digitalisation of our society leads to a need for cryptographic protocols to ob-
tain online security and privacy. In many online applications, users are required
to provide some information to legitimise themselves. This could for example be
providing your membership number to verify that you are a member of a site.

In many applications, however, it is sufficient to share more abstract information.
Consider the example with the membership number. To prove that you are a member
of a group it is sufficient to prove that you are one of the members, without specifying
which one.

To illustrate the above idea, consider two parties Alice and Bob. Alice is a
subscriber to Bob’s paper and wishes to convince Bob of this, without revealing
who she is. Bob has a list of all subscribers, but without knowing who Alice is, he
does not feel certain that she is on the list. Therefore, Alice constructs a proof that
her name is on the list. Bob receives this proof and checks its validity. Bob is now
convinced that Alice’s name is on the list, but not which of the names it is, and
allows Alice to get access to the paper. For the remainder of this thesis, Alice will
be denoted as the prover and Bob as the verifier.

A cryptographic construction that allows a prover to convince a verifier that a
secret is in a set without revealing the secret is called a set membership proof. Con-
structions of set membership proofs are computationally expensive. Consequently, a
lot of research has been done to reduce the computations required to construct and
verify set membership proofs. Usually, the constructions are optimised considering
one prover and one verifier, as in the example above with Alice and Bob. We are
considering constructions consisting of multiple provers and one verifier. An exam-
ple of such a construction is the verification of clients in a VAHSS protocol, [19]. In
such a construction, using set membership proofs, the computational complexity for
the verifier grows linearly with the number of provers. This since the verifier has to
verify all received proofs individually.

A method for reducing the computations required of the verifier is aggregating
the proofs beforehand. Then the verifier only needs to verify one proof, the ag-
gregated proof. The aggregated proof should be such that its validity implies the
validity of all individual proofs.

The aim of this thesis is to investigate the possibilities to aggregate set mem-
bership proofs, in order to reduce the computational complexity for verification of
multiple provers.
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1. Introduction

Purpose
This paper consists of two parts. The first is to explore the possibility to aggregate
set membership proofs, in order to reduce the computational complexity required
to verify multiple proofs of different instances. Initially, a general description of
aggregate set membership proofs is sought. Then, given such a description we
provide a concrete construction of an aggregated set membership proof and prove
its security.

The second purpose is to obtain a method for extending a VAHSS construction,
[19], to verify clients’ inputs. Then we compare the runtime of using aggregated set
membership proof contra Bulletproof for the verification of clients.

Limitations
The exploration of obtaining a construction of an aggregated set membership proofs
is limited to investigate if one specific set membership proof can be aggregated.

Contribution
The main results obtained in this paper are:

• A general description of aggregated set membership proofs including the com-
pleteness, soundness and zero-knowledge requirements such proofs should ful-
fil.

• A construction and implementation of an aggregated signature-based set mem-
bership proof. The presented construction is proved to satisfy the complete-
ness soundness and zero-knowledge properties for aggregated set membership
proofs.

• The VAHSS construction using homomorphic hash functions to verify servers
[19] is modified to additionally verifying clients’ inputs. The clients’ inputs are
verified using either range proofs or set membership proofs. The construction
is also modified to be compatible with aggregated set membership proofs for
the verification of clients.

• Implementation of all proposed constructions in Golang and runtime compar-
ison of the constructions.

Related work

Zero-Knowledge proofs

Set membership proofs

Set membership proofs are zero-knowledge proofs proving that a secret belongs to
a discrete set. A construction of set membership proofs based on bilinear groups
and public signatures of elements in the set is presented in [5]. Their construction
has a computational complexity of O(1) for the construction and verification of
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1. Introduction

the set membership proofs. However, when multiple proofs are verified at once the
computational complexity grows linearly in the number of proofs.

Range Proofs

Range proofs are strongly connected to set membership proofs, but instead of prov-
ing that a secret belongs to a discrete set, they prove that a secret belongs to a
numerical range.

Bulletproofs are state-of-the-art range proofs used in many real-world applica-
tions. Bulletproofs prove that a secret belongs to a given range, by making use
of an inner-product argument [4]. Bulletproofs can be aggregated using a simple
multi-party computation protocol. Consequently, aggregation of Bulletproofs re-
quires interaction between the provers during the construction of the proof. Unlike
the focus of this paper, where non-interactive aggregation of zero-knowledge proofs
is considered.

A recently published paper presents range proofs that are faster than Bullet-
proofs for both the prover and the verifier, [8]. Their range proofs make use of square
decomposition methods by converting commitment schemes over Zp into proofs over
Z between bounded-range integers. In applications where multiple provers partici-
pate each proof is verified individually, leading to that the computational complexity
of the verification grows linearly in the number of provers.

Prio+
Prio+, [1], computes aggregated statistics on multiple clients data, without revealing
the data of individual clients and is robust against malicious clients. Communication
between the servers, of constant size per client, is required to compute the aggregated
statistics of the clients’ data. Prio+ is strongly connected to the Prio construction,
[7], and can be seen as a development that reduces the computations required by
the clients. In Prio+ clients use Boolean secret-sharing to convince servers of their
honesty, instead of computationally expensive zero-knowledge proofs. Prio+ consti-
tutes the same purpose as client and server VAHSS. However, in Prio+ the servers
must communicate to verify the clients unlike client and server VAHSS where no
communication is required between the servers.

Organisation
In chapter 2 the theoretical background is presented. First cryptographic principles
are treated then a more detailed description of set membership proofs and range
proofs is given. Chapter 3 presents a general definition of aggregated set member-
ship proofs. Based on this definition chapter 4 presents a construction of an aggre-
gation of signature-based set membership proofs. This construction is implemented
and compared in terms of runtime with itself for different settings and additionally
compared to the state-of-the-art Bulletproofs in chapter 5. Chapter 6 presents a
client and server VAHSS. Clients are verified using Bulletproofs, aggregated and not

3



1. Introduction

aggregated signature-based set membership proofs. In chapter 7 a discussion about
the results is given together with a conclusion.

4



2
Background

This chapter presents the theory used in this paper. In section 2.1 first notation,
theorems, definitions and assumptions are stated, then cryptographic preliminar-
ies are explained. In section 2.2 two different types of zero-knowledge proofs are
presented, more precisely signature-based set membership proofs and Bulletproofs.

2.1 Preliminaries

Notations
To make the text more comprehensive the following notations and definitions are
defined here:
F = Zp denotes a finite field, where p is a large prime and G denotes a unique
subgroup of order q. g ∈ G is defined to be the group generator of G and h ∈ G a
group element, such that logg h is unknown and h is a co-prime to p. The notation
y ∈R Y, means that an element y is chosen at random from the set Y.

Definitions, Theorems and Assumptions
The assumptions given here are the assumptions that all cryptographic construc-
tions in this paper rely on. The discrete logarithm assumption and the q-strong
Diffie Hellman assumption defined below does not hold in the presence of quantum
computers. Thus the cryptographic constructions presented in this paper are not
guaranteed to be post quantum secure.

Definition 1 (Pseudorandom Function (PRF)). Let S be a distribution over
{0, 1}l and Fs : {0, 1}m → {0, 1}n a family of functions indexed by a string s in the
support S. It is defined that {Fs} is a pseudo random function family if, for every
PPT (probabilistic polynomial time) adversary A, there exists a negligable function
ε such that:

|Pr[AFs(·) = 1]− Pr[AR(·) = 1]| ≤ ε,

where s is distributed according to S and R is a function sampled uniformly at
random from the set of all functions mapping from {0, 1}n to {0, 1}m.

Definition 2 (Euler’s totient function). The function Φ(n) is defined as the
counter of the number of integers that are relative primes to n in the set {1, ..., n} .
Note if n is a prime number φ(n) = n− 1.

5



2. Background

Theorem 1 (Euler’s Theorem). For all integers x and n that are co-prime it
holds that: xΦ(n) = 1 (mod n), where Φ(n) is Euler’s totient function.

From Theorem 1 it follows that for arbitrary y it holds that xyΦ(n) = 1 (mod n).

Assumption 1 (Discrete logarithmic assumption). Let G be a group of prime
order q, further let g ∈ G be a group generator of G and y ∈ G be an arbitrary group
element. Then it is infeasible to find x ∈ F, such that y = gx

Assumption 2 (q-strong Diffie Hellman Assumption). Given a group G, a
random generator g ∈ G and powers gx, ..., gxq , for x ∈R F and q = |G|. It is then
infeasible for an adversary to find (c, g

1
x+c ), where c ∈ F.

Homomorphic Secret Sharing
Homomorphic secret sharing (HSS), [15], hides a secret x by splitting it into shares,
such that any subset, S, of shares smaller than a threshold τ , i.e |S| < τ , reveals
no information about the value of x. If a secret x is split into m shares denoted xi,
such that i ∈ {1, ...,m} and to reconstruct the value of x at least τ shares has to be
combined, it is called a (τ,m)-threshold scheme. In this paper, the threshold is set
equal to the number of shares, τ = m.

Verifiable Additive Homomorphic secret sharing

In this paper Verifiable Additive homomorphic secret sharing (VAHSS) is of interest.
The additivity property for a HSS means that the secret is reconstructed by

computing the sum of at least τ shares, i.e x = ∑τ
i=1 xi. This is denoted Additive

Homomorphic Secret Sharing (AHSS).
VAHSS is a construction of AHSS where m parties, referred to as servers, col-

laborates to compute the sum of multiple clients’ secrets. Each client split their
secret into m shares and sends one share to each server. The servers compute and
output a partial sum of all received shares. The final sum is computed by summing
the servers outputs. For VAHSS constructions a proof σ is constructed that verifies
that the final sum is the correctly computed sum of the clients’ secrets.

In section 6.1 a specific construction of a VAHSS is presented and in Appendix
A the correctness, security and verifiability requirement of a VAHSS construction is
stated.

Homomorphic hash functions
Let H be a cryptographic hash function, H : F 7→ G, any such function should
satisfy the following two properties:

• Collision-resistant It should be hard to find x, x′ ∈ F such that x 6= x′ and
H(x) = H(x′).

• One-Way It should be computationally hard to find H−1(x).
A homomorphic hash function should also satisfy the following property:

6



2. Background

• Homomorphism For any x, x′ ∈ F it should hold that H(x + x′) = H(x) ∗
H(x′).

A homomorphic hash function that satisfies the thee properties is the function
H1(x) : F 7→ G and H1(x) = gx, [20].

Pedersen Commitment scheme
A Pedersen commitment is a commitment to a secret x ∈ F, defined as E(x,R) =
gxhR, where R ∈R F, [14]. The Pedersen commitment satisfies the following theo-
rem:

Theorem 2. For any x ∈ F and for R ∈R F, it follows that E(x,R) is uniformly
distributed in G. If two commits satisfies E(x,R) = E(x′, R′) while x 6= x′ then it
must hold that R 6= R′ mod q and

x− x′ = (R−R′) logg h mod p (2.1)

Proof. The statements of the theorem follows from solving for logg(h) in E(x,R) =
E(x′, R′)

Theorem 2 implies that if someone knows the discrete logarithm of h with re-
spect to g this person is able to provide two equal commits, E(x,R) = E(x′, R′)
such that x 6= x′. It is impossible to construct two equal commits hiding different
secrets, since loggh is assumed to be unknown. The Pedersen commitment scheme is
computationally binding under the discrete logarithm assumption and it is perfectly
hiding of the secret, [14].

The Pedersen commitment is homomorphic. Hence for arbitrary messages x1, x2 ∈
F, random values R1, R2 ∈R F and the commits Ci = E(xi, Ri), i ∈ {1, 2}, it holds
that C1 · C2 = E(x1 + x2, R1 +R2).

A Pedersen commitment scheme can also be defined for vectors and is then
called Pedersen vector commitment. Consider a n dimensional vector x ∈ Fn, let
g = (g1, ..., gn) ∈ Gn and h ∈ G where G is a group of order q as above. A
commitment to the vector x = (x1, ..., xn) with the random value R ∈R F is then
defined as E(x, R) = gxhR = hR

∏n
i=1 g

xi
i and the commitment is a value in the

one-dimensional group G.

Bilinear mapping
Bilinear mapping (also called bilinear pairing) maps two group elements from one
group to an element in another group. This paper considers admissible bilinear
mapping fulfilling Definition 3. Generally, the definition of an admissible bilinear
mapping maps two elements from different groups to a third group, i.e the map
e : G1 × G2 → GT , in this paper it always holds that G1 = G2 and thereby the
definition is given on this form.
Definition 3 (Admissible Bilinear Map). Let G1,GT be two multiplicative cyclic
groups of prime order p such that there exists an admissible bilinear map e : G1 ×
G1 → GT . Let G∗1 = G1\{1}. Then the bilinear map e fulfils:

7



2. Background

• Bilinear: for any group element g ∈ G∗1 and a, b ∈ F,

e(ga, gb) = e(g, g)ab

• Non-degenerated: e(g, g) 6= 1
• The bilinear map is efficiently computable

Bohen-Boyen Signatures
Consider a bilinear map e, defined in the previous section. The bilinear property
of the mapping e can be used to create digital signatures. Bohen-Boyen presented
a signature scheme that exploits the bilinear property of the mapping e to verify
signatures [3]. In short, the scheme works as: the signer knows the secret key x
and distributes the public key gx. To sign a message m the signer uses the secret
key, x, and computes σ = g1/(x+m). This signature is q − secure to forgery under
the q-Strong Diffie Hellman Assumption. Verification is done by checking that
e(σ, y · gm) = e(g, g), which holds due to the bilinearity of e.

Non-interactive Zero-Knowledge proof
Zero-Knowledge proofs (ZKP) is a cryptographic primitive that was first presented
in [10]. The idea behind a ZKP is that after successfully performing a ZKP a certain
statement has been verified to be true (or false) without having revealed any other
information beyond the statement begin true (or false). In this thesis non-interactive
ZKP (NIZKP) that ensures proof of knowledge (PoK) are considered.

A NIZKP consists of two parties the prover and the verifier. The prover knows
a witness and wants to prove to the verifier that the witness satisfies a statement.
Denote the statement with S and the witness by x such that (S, x) ∈ R, where R
is a polynomial time computable binary relationship. Let L denote a NP language
consisting of statements with witnesses in R. A definition of NIZKP is given in
Definition 4.
Definition 4. NIZKP of the relation R consists of three ppt algorithms: SetUp,
Prove and a Verify [11]. The algorithm SetUp outputs a common reference string
denoted σ given the security parameter and an intended statement size. The al-
gorithm Prove takes as input the common reference sting σ, the statement S and
witness x such that (S, x) ∈ R and outputs a proof Σ. The algorithm Verify takes
the common reference sting σ, the statement S and the proof Σ as input and outputs
0 or 1, where 0 is interpreted as rejection and 1 as acceptance. A NIZKP scheme
should fulfil the three properties:

• Completeness Given proof Σ of a witness x satisfying the statement S, it
should hold that Prob[Verify(σ, S,Σ) = 1] = 1.

• Soundness Given a proof Σ of a witness x not satisfy the statement S
Prob[Verify(σ, S,Σ) = 1] < ε, for a sufficiently small ε.

• Zero-knowledge A NIZKP is computationally zero-knowledge if it is possible
to simulate the proof of a true statement without knowing the witness. Con-
sider a polynomial time simulator Sim = (Sim1, Sim2). Where Sim1 outputs
a simulated reference string σ̃ and a simulated trapdoor τ . Sim2 takes the

8



2. Background

simulated trapdoor τ and a statement as input and outputs a simulated proof
π̃ For a non-uniform stateful adversary A , it should hold that:

Prob[(S, x) ∈ R and A(π) = 1] ≈ Prob[(S̃, x̃) ∈ R and A(π̃) = 1],

where (S, x) = A(σ) and (S̃, x̃) = A(σ̃).
Zero-knowledge range proof (ZKRP) and zero-knowledge set membership proofs

(ZKSM) where the statement being proved is that the witness belongs to a prede-
termined range or set, will be considered in this paper.

Fiat-Shamir heuristic
The Fiat-Shamir heuristic [2] can be used to convert an interactive construction to
a non-interactive construction. In this paper, it is used to construct non-interactive
ZKP. A non-interactive ZKP requires no communication between the prover and
verifier during the construction of the proof. In interactive constructions, the verifier
sends a challenge c ∈R F to the prover that is included in the proof to convince the
verifier of its validity. The Fiat-Shamir heuristic replaces the random challenge sent
by the verifier with the output of a hash function computed from the partial-proof
up to this point. The Fiat-Shamir heuristic converts an interactive ZKP to a non-
interactive ZKP while preserving security and full zero-knowledge, relying on the
random oracle model (ROM) [2] .

2.2 Set Membership Proofs and Range Proofs
Zero-knowledge set memberships proofs allow a prover to convince a verifier that
the value is in an allowed set, without revealing any other information about the
value. Formally they are proofs of the statement:

{(g, h ∈ G, C;x,R ∈ F) : C = gxhR ∧ x ∈ Φ}, (2.2)

where Φ is some known set.
Zero-knowledge range proofs prove that a value belongs to a range, instead of a

set. Since ranges are continuous sets, zero-knowledge range proofs are less general
than zero-knowledge set membership proofs. Zero-knowledge range proofs do not
reveal any information beyond the fact that the value belongs to the range. Formally
they are proofs of the following statement:

{(g, h ∈ G, C;x,R ∈ F) : C = gxhR ∧ x ∈ {"predetermined allowed range"}. (2.3)

Hereafter zero-knowledge set memberships proofs and zero-knowledge range
proofs are denoted set memberships proofs and range proofs respectively.

Note that the above statements assume that x is a secret hidden in a Pedersen
commitment. This is not a requirement for set membership proofs and range proofs,
however only such proofs are studied in this thesis.

All set membership proofs and range proofs presented in this paper fulfils Defi-
nition 4.

9



2. Background

Signature-based Set membership proofs
This section presents a construction of set membership proofs referred to as signature-
based set membership proofs, originally presented in [5].

Bohen-Boyen signatures, Ai for each element i in the set Φ, is published in the
set up phase. The signature-based set membership proofs have a computational
complexity of O(1) for the proof construction and verification, assuming that the
signatures {Ai}i∈Φ are known to both the prover and the verifier

To prove a secret is in the set Φ, the prover chooses the public signature repre-
senting the secret x, i.e Ax, and publishes the value V = Aτx, where τ ∈R F. Then
constructs a proof that convinces the verifier that: 1) the published value V is indeed
equal to Aτx where Ax is a signature of x ∈ Φ. 2) the secret in the pre-published
Pedersen commitment C is a commitment to the same secrets as the signature V .

Construction 1 describes the PPT algorithms (SetUp, Prove, Verify) that
builds a signature-based set membership proof. Construction 1 is modified compared
to the original construction of signature-based set membership proof, presented in
[5], according to the Fiat-Shamir heuristic. The notation e(·, ·) in the construction
refers to an admissible bilinear mapping as defined previously in section 2.1.

Construction 1 : Non-interactive set membership proofs
Goal: Given a Pedersen commitment C = gxhR and a set Φ, prove that the secret
x in the commitment belongs to the set Φ without revealing anything else about x.

• SetUp (1λ,Φ) −→ (sk, pp)
Let g be a generator of the group G and h an element in the group such that
logg(h) is unknown. Pick uniformly at random χ ∈R F and put sk = χ. Define
y = gχ and Ai = g

1
χ+i ∀i ∈ Φ, output pp = (g, h, y, {Ai}i∈Φ).

• Prove (pp, C, x,Φ) −→ Σ = (V, a,D, zx, zτ , zR)
Pick uniformly at random τ ∈R F, choose from the set {Ai} the element Ax
and calculate V = Aτx. Pick uniformly at random three values s, t,m ∈R F.
Put a = e(V, g)−se(g, g)t and D = gshm. Then use these values to compute
the challenge, c = Hash(C, V, a,D). Given this challenge compute zx = s−xc,
zR = m − Rc and zτ = t − τc, finally construct and publish the proof, Σ =
(V, a,D, zx, zτ , zR).

• Verify (pp, C,Σ) −→ {0, 1}
Check if D ?= CchzRgzx ∧ a ?= e(V, y)ce(V, g)−zxe(g, g)zτ . If the equality holds
return 1 otherwise return 0.

Signature-based range proofs

Signature-based set membership proofs can be used to construct efficient signature-
based range proofs. Rewriting the secret x in base u such that,

x =
l−1∑
j=0

xju
j,

10



2. Background

b− ul a b a+ ul

Figure 2.1: Extending range proofs to consider arbitrary ranges. It is illustrated
that if x ∈ [b− ul, b) ∧ x ∈ [a, a+ ul) then x ∈ [a, b]

and then using set membership proofs to prove that xj ∈ [0, u) ∀j ∈ Zl, constructs
to a range proof that x ∈ [0, ul).

This range proof can be generalised to consider arbitrary ranges [a, b], where
a > 0 and b > a. This is obtained by realising that proving that x ∈ [a, a + ul)
and x ∈ [b− ul, b), is equivalent to proving that the secret, x, belongs to the range
[a, b]. Figure 2.1 illustrates the intuition and correctness of the statement. Proving
x ∈ [a, a + ul) and x ∈ [b− ul, b) can be translated into proving x− a ∈ [0, ul) and
x− b+ ul ∈ [0, ul), since both a, b are public.

In [6] an optimised implementation of the signature-based range proof, for arbi-
trary ranges, is presented, reducing the complexity with a factor of 2. This rather
small reduction is important when a verifier is required to check the validity of
multiple range proofs simultaneously.

Bulletproofs
Bulletproofs are state-of-the-art range proofs that are integrated into many real-
world protocols. They are for example used in crypto-currencies, to prove that a
value is in an allowed range or above some threshold. In this paper, Bulletproofs
are used for runtime comparison with other constructions and to verify the clients’
inputs in a VAHSS construction.

Bulletproofs are originally presented in [4] and prove that a secret in a Pedersen
commitment belongs to the range [0, 2n), where n is a power of 2.

The construction of Bulletproofs builds on the inner product argument. The
inner product argument is an argument of knowledge that s,q in a Pedersen vector
commitment, Pv = gshq, satisfies a given inner product. Given a Pedersen com-
mitment C = gxhR, of the secret x, a prover wants to convince a verifier that the
secret belongs to the interval [0, 2n). The binary representation of the secret x is
x ∈ {0, 1}n which can be equivalently written as x = 〈x,2n〉. This inner product
can the be used to construct an inner product argument of the vector x, i.e the
secret x.

Bulletproofs modified according to the Fiat-Shamir heuristic are considered.
A construction of non-interactive Bulletproofs and a non-interactive inner product
argument is given in [12].
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3
Aggregated Set Membership

Proofs

It is of high importance to keep the computational complexity for the verification of
set membership proofs small, specially in applications where one verifier validates
multiple provers. If set membership proofs, which are proofs of the statement:

{(g, h ∈ G, C ∈ G;x,R ∈ F) : C = gxhR ∧ x ∈ Φ},

are used to verify multiple provers then the verifier would have to verify each prover
individually. This leads to that the computational complexity for verification grows
linearly in the number of provers and the verification algorithm quickly becomes a
bottleneck in application where many provers participates.

This motivates the question if set membership proofs can be aggregated, and
thereby decreasing the computations required to verify multiple provers.

A definition of aggregated set membership proofs is presented in Definition 5.
An aggregated set membership proof is defined to be a 5-tuple of PPT algorithms,
(SetUp, Prove, Aggregate, CalculateChallanges, Verify ).

Definition 5 (Aggregated set membership proofs). Aggregated set membership
proofs are a zero-knowledge proof of the statement:{

(g, h ∈ G, {Ci}i∈S ∈ Gn; {xi}i∈S , {Ri}i∈S ∈ Fn) : Ci = gxihRi ∀i ∈ S

∧ xi ∈ Φ ∀i ∈ S
}
.

(3.1)

Where Ci is a Pedersen commitment to the secret xi ∈ F and Ri ∈R F are chosen
at random, for all i ∈ S.

The statement implies that after successfully having performed an aggregated
set membership proof protocol, it is proved that for all i ∈ S: Ci is a Pedersen
commitment to a secret xi belonging to the set Φ.

A construction of aggregated set membership proofs is a 5-tuple of PPT-algorithms
(SetUp, Prove, Aggregate, CalculateChallanges, Verify).

• SetUp (1λ,Φ) −→ (pp, sk)
On the input 1λ, where λ is the security parameter and the set Φ the algorithm
outputs a secret key, sk, and public parameters, pp.

• Prove (pp, i, Ci, xi,Φ) −→ Σi

On the input, the public parameters pp, i ∈ S denoting the index of the prover
pi, a secret xi and a Pedersen commitment Ci of the secret. The algorithm

13
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outputs a polynomial time verifiable zero-knowledge proof of the statement in
equation (2.2), denoted Σi.

• Aggregate (pp, {Σi}i∈S −→ Σa

Given a set of set membership proofs {Σi}i∈S the algorithm aggregates the
proofs into one zero-knowledge proof of the statement in equation (3.1) denoted
Σa.

• CalculateChallenges ({Ci}∈S , {σi}i∈S) −→ {ci}i∈S
On the input {Σi}i∈S the algorithm computes and outputs the challenges ci =
Hash(Σi) for all i ∈ S.

• Verify (pp,Σa, {Ci}i∈S , {ci}i∈S) −→ {0, 1}
On input the aggregated set membership proof public parameters, pp, aggregated
proof, Σa, the Pedersen commitments, {Ci}i∈S , and challenges ,{ci}i∈S , the
algorithm outputs either 1 or 0.

Aggregated set membership proofs consist of the following parties: provers, an
aggregator and a verifier. A schematic figure of the interaction between the parties
is seen in Figure 3.1. The provers, a group of many individual provers, individually
run the algorithm Prove and publishes the computed proof. The aggregating party
retrieves all proofs, runs the algorithm Aggregate and publishes the aggregated
proof. Finally, the verifier validates the aggregated proof by running the algorithm
Verify. The aggregation can be split between multiple parties implying there are
many aggregators, this is discussed more in the next chapter. The algorithms SetUp
and CalculateChallenges is either performed by the verifier or by an independent
trusted party.

The algorithms of aggregated set membership proofs, presented in Definition 5,
should fulfil the below completeness, soundness and zero-knowledge requirements:

• Completeness Given xi ∈ Φ, where Ci is a Pedersen commitment of xi, for all
i ∈ S, it should hold that Verify(Aggregate({Prove(pp, i, Ci,Φ)}i∈S)) = 1.

• Soundness If for any i ∈ S xi /∈ Φ, then the probability
Prob[Verify(Aggregate({Prove(pp, i, Ci,Φ)}i∈S)) = 1] < ε, for a sufficiently
small ε.

• Zero-knowledge It should be possible to simulate the proof of a true state-
ment without knowing the witness.

These requirements can be seen as a modification of the requirements given in
Definition 4 to aggregated set membership proof.
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Figure 3.1: Schematic figure of the interaction between Provers, Aggregator and
Verifier in aggregated set membership proofs.
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4
Aggregated Signature-Based Set

Membership Proofs

This chapter presents a construction of aggregated set membership proofs derived
from the non-interactive signature-based set membership proofs, [5]. In section
4.2 it is proved that the aggregation is sound and in section 4.3 the completeness,
soundness and zero-knowledge requirements, stated in the chapter 3, is proved to
hold for the aggregated signature-based set membership proofs.

4.1 Construction
Construction 2 presents an aggregated signature-based set membership proof, de-
rived from the non-interactive signature-based set membership proofs [5].

The algorithm Aggregate, in Construction 2, partly aggregates a group of set
membership proofs by constructing the aggregated proof, Σa. The aggregated values
Da, zxa , zRa in Σa are computed according to Equation (4.1).

Da =
∏
i∈S

D

∏
j∈S
j 6=i

cj

i = g

∑
i∈S

(∏
j∈S
j 6=i

cj

)
si

h

∑
i∈S

(∏
j∈S
j 6=i

cj

)
mi

zxa =
∑
i∈S

( ∏
j∈S
j 6=i

cj

)
zxi =

∑
i∈S

( ∏
j∈S
j 6=i

cj

)
si −

( ∏
j∈S

cj
)∑
i∈S

xi

zRa =
∑
i∈S

( ∏
j∈S
j 6=i

cj

)
zRi =

∑
i∈S

( ∏
j∈S
j 6=i

cj

)
mi −

( ∏
j∈S

cj
)∑
i∈S

Ri

(4.1)

The set S denotes the index set of the provers and each prover pi i ∈ S publishes
a set membership proof Σi = (Vi, ai, Di, zxi , zτi , zRi) constructed according to the
algorithm Prove. The challenges, denoted ci for i ∈ S, are computed according to
the algorithm CalculateChallenges.

The above aggregation has the computational complexity O(|S|2). This is re-
duced to be linear in |S|, by considering the following optimization. Instead of
computing the product ∏j∈S, j 6=i cj for each i, it is sufficient to compute the product
c = ∏

j∈S cj once and then the truncated product can be obtained by noting that∏
j∈S,j 6=i cj = c/ci. Thereby, for each i ∈ S, it is sufficient to perform one division

instead of computing the product ∏j∈S, j 6=i cj.
Due to the aggregation, the equality Da = ∏

i∈S C

∏
i∈S ci

i hzRagzxa is checked
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once instead of once for each proving party in the protocol. This can bee seen
by comparing the algorithm Verify in Construction 2 with running the algorithm
Verify in Construction 1 once for each prover.

Construction 2 : Aggregation of non interactive set membership proof
Goal: Given the Pedersen commitments Ci = gxihRi , for i ∈ S. The construction
proves that all secrets xi belong to the set Φ, without revealing anything else about
the secrets.

• SetUp (1λ,Φ) −→ (sk, pp)
Let g be a generator of the group G and h an element in the group such that
logg(h) is unknown. Pick uniformly at random χ ∈R F and put sk = χ. Define
y = gχ and Ai = g

1
χ+i ∀i ∈ Φ, output pp = (g, h, y, {Ai}i∈Φ).

• Prove (pp, i, Ci, xi,Φ) −→ Σi

Pick uniformly at random τi ∈R F, choose from the set {Ai} the element Axi
and calculate Vi = Aτixi . Pick uniformly at random three values si, ti,mi ∈R F.
Put ai = e(Vi, g)−sie(g, g)ti , D = gsihmi , c = Hash(Ci, Vi, ai, Di) and compute
zxi = si − xici, zRi = mi − Rici and zτi = ti − τici. Finally construct and
publish the proof Σi = (Vi, ai, Di, zxi , zτi , zRi).

• Aggregate (pp, {Σi}i∈S) −→ Σa

Given a set of proofs {Σi}i∈S . Aggregate the values
({Di}i∈S , {zxi}i∈S , {zri}i∈S) 7→ Da, zxa , zRa according to equa-
tion (4.1). Construct and publish the aggregated proof Σa =
({Vi}i∈S , {ai}i∈S , Da, {zxi}i∈S , zxa , {zτi}i∈S , zRa).

• CalculateChallenges ({Ci}i∈S , {Σi}i∈S) −→ {ci}i∈S
For all i ∈ S parse the proof Σi, then compute the challenge ci =
Hash(Ci, Vi, ai, Di). Finally output the set of all challenges {ci}i∈S .

• Verify (pp,Σa, {Ci}i∈S , {ci}i∈S) −→ {0, 1}
Compute the product of the challenges c = ∏

i∈S ci. Check if Da
?=(∏

i∈S Ci
)c
hzRagzxa ∧ ai

?= e(Vi, y)cie(Vi, g)−zxie(g, g)zτi for all i ∈ S. If the
equalities hold return 1 otherwise return 0.

In Construction 2 the algorithm Prove is run by all provers, the algorithm
Aggregate is run by the aggregating party and the algorithm Verify is performed
by the verifier. The algorithm SetUp is assumed to be performed in advance by a
trusted party.

In the aggregated signature-based set membership proof the challenges are given
as input to the verification algorithm, unlike Construction 1 where they are com-
puted in the verification algorithm. This raises the question, which party should be
responsible for computing the challenges? It is not desired that the party performing
the aggregation computes the challenges since it creates opportunities for cheating.
For the same reason, the proving parties should not compute the challenges. The
challenges are constructed according to the Fiat-Shamir heuristic. Two important
characteristics of the Fiat-Shamir heuristic are that: the prover does not know the
challenge when constructing the proof and that the verifier re-computes the chal-
lenge, to check that it is correctly computed. If the challenges are computed by the
aggregating party they are known when constructing the aggregated proof and if
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they are computed by the provers they are never checked. Thereby, the algorithm
CalculateChallenges in Construction 2 is assumed to be performed by an honest
party independent of both the proving parties and the aggregating party.

Another alternative is to provide the entire proofs {Σi}i∈S as input to the ver-
ification algorithm, enabling the verifier to compute the challenges. This would
consequently increase the computations required by the verifier. For the rest of this
paper, if nothing else is mentioned, it is assumed that the algorithm Calculate-
Challenges is performed according to Construction 2 by a trusted party.

Multiple aggregating parties
To reduce the computational load of the aggregating party it is possible to split the
aggregation between multiple parties.

Let the set K represent the set of parties performing the aggregation, and the
set Sk represent the assigned set of set membership proofs to the kth aggregating
party. The sets Sk for k ∈ K are such that ⋃k∈K Sk = S and Si

⋂Sj = ∅ for all
i, j ∈ K such that i 6= j.

An aggregated signature-based set membership proof, where the aggregation is
split between several parties, is presented in appendix B in Construction 5. The
adjustments made compared to Construction 2 are: the algorithm Aggregate
is performed by each party in the set K on the input (pp, {Σi}i∈Sk), outputting
the aggregated proof Σak . The algorithm Verify is performed once on the input
(pp, {Σak}k∈K, {Ci}i∈S , {ci}i∈S) and is modified, compared to Construction 2, such
that it verifies multiple aggregated proofs. By letting the set of aggregating parties
K consist of one element k, and Sk = S constructions 2 and 5 are equivalent.

An illustrative figure of how the aggregation is split between the aggregating
parties is seen in Figure 4.1. Each prover generates a set membership proof, and
then sends it to its assigned aggregating party. Then each aggregating party aggre-
gates the received set membership proofs, according to the algorithm Aggregate in
Construction 5, and sends the aggregated proof to the verifier. Finally the verifier
validates all aggregated proofs.

In Figure 4.1 the computation of the challenges is done by an independent
party, which introduces a new party to the scheme. To compute the challenges
without introducing a new party the aggregating parties can compute the challenges.
However, as discussed previously the same party that aggregates a set of proofs
should not compute the challenges for these proofs. To use the aggregating parties
for the computations, assume that they are not collaborating and linked in a closed
chain. Then each aggregating party computes the challenges for the set of proofs
aggregated by the consecutive party in the chain.

4.2 Soundness of Aggregation
In this section it is proved that the aggregation must be performed according to
the algorithm Aggregate if the aggregated proof Σa validates true in Construction
2. This is proved under the assumption that: proving parties are not communicat-
ing or collaborating between themselves, proving parties are not communicating or
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Figure 4.1: Provers outsourcing their set membership proofs to their assigned
aggregator that in turn publishes an aggregated set membership proof.
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collaborating with the aggregating party (or parties), the set membership proof in
Construction 1 is sound and Da 6= Cc. In this section the product of the Pedersen
commitments, ∏i∈S Ci, is denoted C and the product of the challenges, ∏i∈S ci, is
denoted c.

If Da = Cc, it would be possible for an aggregating party to choose the values
Da, zxa , zRa according to: Da = Cc, zxa = φ(p), zRa = φ(p). For the above choice
of Da, zxa , zRa the equation, Da

?= CchzRagzxa holds trivially true, independent of
whether the commitment Ci and the values zxi , thereby zxa , hides the same secret
for all i ∈ S. Therefore it is required that Da 6= Cc.

Under the assumption discussed above, Theorem 3 states that the aggregation
must be performed according to the algorithm Aggregate for the algorithm Verify
to validate true, in Construction 2.

Theorem 3 (Soundness of aggregation). Let A be a PPT adversary. Assume
A has access to the input to the algorithm Aggregate in Construction 2 and the
Pedersen commitment, {Ci}i∈S , but no other information. Assume that the adver-
sary A cannot collaborate with the provers, that the provers cannot collaborate with
each other and that the set membership proof in Construction 1 is sound.

Under these assumptions the adversary A has a negligible probability of con-
struction Σa such that: Prob(Verify(pp,Σa, {Ci}i∈S , {ci}i∈S)) = 1, where Da 6= Cc

and zxa 6=
∑
i∈S

(∏
j∈S,j 6=i cj

)
zxi.

Proof. The soundness of signature-based set membership proofs and that the algo-
rithm Verify checks that ai ?= e(Vi, y)cie(Vi, g)−zxie(g, g)zτi , for all i ∈ S, implies
that the values Vi, ai, zxi , zτi of Σi must be computed according to the algorithm
Prove in Construction 2. The values zRi and Di are not used directly in the ver-
ification, thus the only requirements are that zRi ∈ F and Di ∈ G, for all i ∈ S.
Assume, without loss of generality that Da = gαhβ, where α, β ∈ F.

Assume that the adversaryA, can construct a valid proof Σa, such that: Da ∈ G,
zxa , zRa ∈ F and zxa 6=

∑
i∈S

(∏
j∈S,j 6=i cj

)
zxi .

For the aggregated proof to be valid it must hold that Da = CchzRagzxa which
implies that the values α, β, zxa , zRa must satisfy:

gαhβ = CcgzxahzRa .

The values of Cc cannot be modified by the adversary since it is sent directly from
the provers to the verifier. The Pedersen commitments are assumed to be on the
form Ci = gxihRi for all i ∈ S and the challenges are correctly computed and checked
by a trusted party.

Consequently, by expanding the right hand side of the equality it follows that,

gαhβ = gc
∑

i∈S xi+zxahc
∑

i∈S Ri+zRa .

If α 6= c
∑
i∈S xi + zxa and β 6= c

∑
i∈S Ri + zRa , the above equality contradicts

to the binding property of the Pedersen commitments. Thereby, the values α, β, zxa
and zRa must satisfy: α = c

∑
i∈S xi + zxa and β = c

∑
i∈S Ri + zRa .
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This can be rewritten as α− zxa = c
∑
i∈S xi mod Φ(p) and β − zRa = c

∑
i∈S Ri

mod Φ(p). The sums ∑i∈S xi and
∑
i∈S Ri are assumed to be unknown.

Thereby, under the assumption that zxa 6=
∑
i∈S

(∏
j∈S,j 6=i cj

)
zxi the adversary

has a negligible probability of choosing α, β, zxa , zRa such that Da = CchzRagzxa .
It follows that zxa = ∑

i∈S

(∏
j∈S,j 6=i cj

)
zxi , which contradicts the assumption and

proves the theorem.

Note that the theorem would still hold even if several untrusted parties aggre-
gated subsets of the proofs and a verifier validated all the aggregated proofs.

4.3 Completeness, Soundness and Zero-Knowledge

In this section, it is proved that Construction 2 fulfils the completeness, soundness
and zero-knowledge requirements stated in chapter 3. This is proved under the as-
sumption that the aggregation is performed according to the algorithm Aggregate,
provers cannot communicate or collaborate with each other and that Construction
1 satisfies the requirement stated in Definition 4. The requirements also hold for
Construction 5, considering |K| > 1.

Completeness

To prove the completeness of Construction 2, it has to be proved that
Verify(Aggregate({Prove(pp, i, Ci, xi,Φ)}i∈S)) = 1. To prove this, let Σi for i ∈ S
denote proofs constructed by the algorithm Prove and Σa denote the aggregation
of these proofs obtained according to algorithm Aggregate. For all i ∈ S, let Ci
denote the Pedersen commitment of the secrets xi and ci denote the challenge used
in the proof.

Then by the completeness property of the signature-based set membership proof
[5], it holds that:

ai = e(Vi, y)cie(V, g)zxie(g, g)zτi ∀ i ∈ S.

It remains to argue that Da = CchzRagzxa , where C = ∏
i∈S Ci and c = ∏

i∈S ci.
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By construction it holds that:

Da =g
∑

i∈S

(∏
j∈S
j 6=i

cj

)
si

h

∑
i∈S

(∏
j∈S
j 6=i

cj

)
mi

,
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(∏
i∈S
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)∏
i∈S ci

h

∑
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(∏
j∈S
j 6=i

cj

)
mi

g
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(∏
j∈S
j 6=i

cj

)
si−
(∏

j∈S cj

)∑
i∈S xi

=
(
g
∑

i∈S xih
∑
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h
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j∈S
j 6=i

cj
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(∏
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∑
i∈S
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j∈S
j 6=i

cj
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si−
(∏

j∈S cj

)∑
i∈S xi

=g
∑
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j∈S
j 6=i

cj

)
si

h

∑
i∈S

(∏
j∈S
j 6=i

cj

)
mi

,

=⇒ Da = CchzRagzxa

Combining the above results it has been shown that Da = CchzRagzxa ∧ ai =
e(Vi, y)cie(Vi, g)−zxie(g, g)zτi for all i ∈ S. Implying thatVerify(Aggregate({Prove(
pp, i, Ci, xi,Φ)}i∈S)) = 1.

Zero-Knowledge

The zero-knowledge property of Construction 2 follows from the zero-knowledge
property of Construction 1.

Soundness

The aggregated set membership proof in Construction 2 satisfies the soundness prop-
erty stated in chapter 3 under the assumptions that the aggregation is performed
according to the algorithm Aggregate in Construction 2, that provers cannot com-
municate or collaborate and that the set membership proof in Construction 1 satisfies
the soundness in Definition 4. To prove this it has to be shown that if for any i ∈ S
the secret xi /∈ Φ then it holds that
Prob[Verify(Aggregate({Prove(pp, i, Ci, xi,Φ)}i∈S)) = 1] < ε, for some negligible
ε.

Let T denote the index-set of the malicious provers. Assume that all honest
provers pi, such that i ∈ S\T , computes their set membership proofs, Σi, according
to Prove.

If the algorithm Verify validates true then ai = e(Vi, y)cie(V, g)zxie(g, g)zτi for
all i ∈ S. Thereby the soundness assumption of the set membership proofs in
Construction 1 implies that the values ai, Vi, zxi , zτi must be computed according to
the algorithm Prove in Construction 2. Implying that the malicious provers, pi for
i ∈ T , must construct their set membership proofs, Σi, and Pedersen commitments,
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Ci, such that the following is fulfilled:

Vi = Aτixi , ai = e(Vi, g)−sie(g, g)ti ,
Di = gs̃ihm̃i , zxi = si − xici,
zτi = ti − τici, zRi ∈ F,
Ci = gx̃ihR̃i ,

where x̃i 6= xi and xi ∈ Φ. It is not required that s̃i = si, m̃i = mi, R̃i = Ri are
equalities nor inequalities.

For the algorithm Verify to validate true it has to hold that Da = CchzRagzxa ,
where Da, zRa , zxa is the aggregation of Σi for all i ∈ S according to equation (4.1).
By expanding the equality it follows that:

Da =g
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j∈S
j 6=i

cj

)
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Both above equations can be interpreted as Pedersen commitments. It is as-
sumed, under the discrete logarithm assumption, that two Pedersen commitments
cannot be equal unless their arguments are equal. This implies that the exponents
of g and h are equal for the two above equations. Consider the exponent of g this
leads to: ∑

i∈T

( ∏
j∈S
j 6=i

cj
)
s̃j =

∏
j∈S

cj
(∑
i∈T

x̃i +
∑
i∈T

xi
)

+
∑
i∈T

( ∏
j∈S
j 6=i

cj
)
si. (4.2)

It remains to argue that the equality in equation (4.2) cannot hold unless x̃i = xi
for all i ∈ S.

First consider the case when the set T only consists of one element, implying
that there is only one malicious prover. Without loss of generality assume that this
is the kth prover, pk. Under this assumption equation (4.2) can be rewritten as,( ∏

j∈S
j 6=k

cj
)
s̃k =

( ∏
j∈S
j 6=k

cj
)
ck
(
x̃k + xk

)
+
( ∏
j∈S
j 6=k

cj
)
sk =⇒ s̃k = ck

(
x̃k + xk

)
+ sk

If it would be possible to choose s̃k = ck
(
x̃k + xk

)
+ sk, it would contradict the

soundness assumption of Construction 1. Thereby if |T | = 1, it must hold that
x̃k = xk.
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Assume |T | > 1 and k ∈ T such that pk is a malicious prover. Under the assump-
tion that the provers cannot communicate or collaborate, the proofs {Σi}i∈S,i 6=k, can
be considered random values for the prover pk. Equation (4.2) can be rewritten as:

( ∏
j∈S
j 6=i

cj
)
s̃k +

Random︷ ︸︸ ︷∑
i∈T
i 6=k

( ∏
j∈S
j 6=i

cj
)
s̃j =

( ∏
j∈S
j 6=k

cj
)
ck
(
x̃k + xk

)
+
( ∏
j∈S
j 6=k

cj
)
sk

+

Random︷ ︸︸ ︷∏
j∈S

cj
(∑
i∈T
i 6=k

x̃i +
∑
i∈T
i 6=k

xi
)

+

Random︷ ︸︸ ︷∑
i∈T
i 6=k

( ∏
j∈S
j 6=i

cj
)
si

If x̃k 6= xk, this would imply that it is possible to cheat in Construction 1 by adding
random values to Di and zxi . This is a contradiction to the soundness assumption
of the set membership proof in Construction 1. This implies that x̃k = xk.

Thereby, it is proved that if for any i ∈ S the secret xi /∈ Φ, it holds that
Prob[Verify(Aggregate({Prove(pp, i, Ci, xi,Φ)}i∈S)) = 1] < ε, for a negligible ε.

Theorem 4 (Completeness, Zero-Knowledge and Soundness). Assume that
the aggregated proof Σa is computed according to algorithm Aggregate in Construc-
tion 2, that the parties constructing the proofs, {Σi}i∈S , cannot communicate and
that the set membership proof in Construction 1 satisfies the requirements stated
in Definition 4. Then the aggregated signature-based set membership proof in Con-
struction 2 satisfies the completeness, zero-knowledge and soundness requirements
for aggregated set membership proofs, stated in chapter 3.
Proof. The proof follows from the arguments given above.
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5
Implementation and Evaluation

The construction of aggregated signature-based set membership proofs derived in
chapter 4 is in this chapter implemented and evaluated in terms of runtime. The
construction is compared with itself for different settings in section 5.2 and in section
5.3 it is compared to the state-of-the-art Bulletproofs.

5.1 Implementation

A prototype of the aggregated signature-based set membership proofs is imple-
mented in Golang. The implementation is based on the code for the signature-based
set membership [13], and is available on GitHub [9]. Both the construction consid-
ering one aggregating party and the construction considering multiple aggregating
parties are implemented in Golang.

The purpose of the implementation is to test the above-proposed constructions
and provide runtime evaluations, consequently the code should not be considered as
a secure implementation.

Implementation parameters

The parameter settings used for the implementation are defined below.
The number of provers is fixed to 100, unless otherwise stated, and the verifier is

assumed to be a single party. The number of aggregating parties, |K|, varies between
|K| = 1, 5, 10 or 20. The set of proofs are split evenly between all aggregating parties
implying that |Sk| is equal for all k ∈ K.

The set Φ consists of 182 elements belonging to the interval [0, 1000].
The signature-based set membership proofs are based on an elliptic curve group,

using the libsecp256k1 library from the Go-Ethereum repository. Since the fastest
known algorithm to solve the elliptic curve discrete logarithm problem (ECDLP)
requires O(

√
n) steps, the underlying field has to be of size ∼ 256-bits to obtain

a 128-bit security. Therefore the finite field F = Zp, where p is a 256-bit prime
number.

The hardware used for benchmarking, throughout the entire paper, has 1.6 GHz
Dual-Core Intel Core i5−5250U CPU, 8GB 1600 MHz DDR3 RAM and runs macOS
10.15.
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Table 5.1: Timing in seconds for algorithms Aggregate and Verify in Construc-
tion 5 considering different numbers of aggregating parties, |K|.

|K| Aggregate [s] Verify [s]
1 58.84 8.09
2 19.10 8.15
5 2.22 8.16
10 0.60 8.33

Not aggregated - 9.29

5.2 Trade-off between Aggregation and Verifica-
tion

The aggregation of set membership proofs is computationally heavy. To reduce the
computation required by a single aggregating party the aggregation can be split
between several aggregating parties as in Construction 5 in Appendix B. If the set
K in Construction 5 consists of one single element and Sk = S, then constructions
2 and 5 are equivalent. Hence this section will consider Construction 5 for various
number of aggregating parties.

Table 5.1 presents the trade-off between increased verification time due to vali-
dating multiple aggregated proofs and reduced runtime of an individual aggregating
party obtained by splitting the aggregation between several parties. The number
of aggregating parties varies between 1, 2, 5 and 10, while the number of proofs is
fixed to 100. An individual aggregating party thus has to aggregate 100, 50, 20 or
10 proofs respectively and the verifier has to verify 1, 2, 5 or 10 aggregated proofs
respectively. In Table 5.1 the runtime for the algorithm Aggregate is given per
aggregating party and the runtime for Verify is for verification of all aggregated
proofs.

It is noted that the aggregation is a computationally demanding procedure.
Considering one aggregating party, the runtime required to aggregate 100 proofs is
almost one minute. While the reduction in runtime for verifying the aggregated proof
instead of verifying all 100 proofs separately is just above one second. This illustrates
that aggregation does not reduce the total runtime for the entire construction, but
rather move computations from one party to another and thereby allows offloading
computations from the verifier.

Figure 5.1, which is a visualisation of the values in Table 5.1, shows that if the
aggregation is shared between a set of aggregating parties the runtime per aggregat-
ing party is reduced almost exponentially. At the same time the increased runtime
for verifying multiple aggregated proofs is linear. Resulting in that splitting the
aggregation between a set of aggregating parties reduced the total runtime for the
construction and per aggregating party.
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Figure 5.1: Timing in seconds for running the algorithms Aggregate and Verify
in Construction 5 considering different numbers of aggregating parties. The number
of aggregating parties varies between 1, 2, 5 and 10. The figure is a visualisation of
the results presented in Table 5.1.

5.3 Comparison to Bulletproofs
In this section, the construction of aggregated signature-based set membership
proofs are compared to the state-of-the-art Bulletproofs. The focus of compari-
son is the runtime of a party verifying of multiple proving parties. In this section
the aggregation is considered to be performed by a single party, i.e |K| = 1. Before
presenting the results, Bulletproofs are described in more detail.

Bulleproofs settings
The original paper about Bulletproofs [4] presents a method for aggregating Bul-
letproofs such that n parties, each having committed to a Pedersen commitment,
can generate a single Bulletproof verifying that each commitment hides a secret in
an allowed range. The proposed method for aggregation is an interactive construc-
tion, since it is required that all provers construct their proofs using for the same
challenges. If the provers were to use different challenges the verification would fail.

To Conclude, Bulletproofs can be aggregated with the cost of an interactive
construction. Since this paper aims to investigate non-interactive constructions,
non aggregated Bulletproofs are considered. Therefore the verifier has to verify all
Bulletproofs separately, i.e once for each prover.

The computational complexity for verification of a Bulletproof depends on the
maximum upper bound of the range, i.e it depends on n determining the range
[0, 2n). This motivates to see how the runtime is affected by considering different
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Table 5.2: Runtime for verification of 100 proofs constructed using three different
ZKP. The three considered proof constructions are: Bulletproofs, with a maximal
upper bound equal to 28 and 232, and aggregated signature-based set membership
proofs.

Verify [s]
Bulletproofs, n = 8 2.98
Bulletproofs, n = 32 10.22
Aggregated Set Membership Proofs 8.09

maximal upper bounds. The maximal upper bound of Bulletproofs is 2n, for some n
that is a power of 2. Two different values of n are considered for comparison n = 8
and n = 32.

Bulletproofs can be modified to allow arbitrary ranges [a, b], such that b < 2n
and a < b , with the same approach as presented for the signature-based range proofs
and illustrated in Figure 2.1. This is exploited and the range is set to [18, 200].

Runtime Comparison
This section will compare runtime results considering the verification of 100 proofs
using Bulletproofs and aggregated signature-based set membership proofs. Bullet-
proofs with an upper bound equal to 28 and 232 are considered meaning that in total
three constructions are compared.

A remark is that the computational complexity of Bulletproofs depend on the
variable n, where n determines the maximal upper bound of the range. The signature-
based set membership proofs have a computational complexity of O(1) for the proof
construction and verification, meaning that the complexity is independent of the
size of the set Φ. Therefore, to provide a comparison between Bulletproofs and ag-
gregated signature-based set membership proofs considering different applications
scenarios, the runtime for verification of Bulletproofs is presented considering two
different values of n.

Table 5.2 shows the runtime for the verification of 100 proofs using the three
considered constructions.

Bulletproofs with an upper bound equal to 28 is considerably faster than the
other constructions, however, it is highly limited in its applications since the upper
bound is fairly low. The runtime for Bulletproof with an upper bound equal to 232

is longer than for aggregated set membership proofs. Thus, aggregated signature-
based set membership proofs is a relatively fast and yet flexible implementation.

In Figure 5.2 the runtime for verification is given as a function of the number
of provers. In addition to the above constructions, signature-based set membership
proofs are considered. The runtime has been measured considering 1, 25, 50, 75, 100, 125
and 150 provers respectively. From the figure, it is seen that there is a linear rela-
tionship between the number of provers and the runtime for verification. It is also
seen that the runtime relationship between the different constructions seen in Table
5.2, appears to remain independent of the number of provers.
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Figure 5.2: Runtime for verification of multiple provers as a function of the num-
ber of provers. Verification of four different constructions of proofs are considered:
aggregated signature-based set membership proofs, signature-based set membership
proofs, Bulletproofs with a maximal upper bound equal to 28 and Bulletproofs with
a maximal upper bound equal to 232.

In Figure 5.2 it is noted that the difference between the runtime for the aggre-
gated signature-based set membership proof and the ordinary signature-based set
membership proofs, increases with the number of provers. This result is expected
since the difference in the number of computation performed by the verifier increases
linearly with the number of provers.

To conclude, whether Bulletproofs or aggregated signature-based set member-
ship proofs are faster in terms of runtime for the verifier depends on the application,
since the runtime for verifying Bulletproofs depends on the maximal upper bound
of the range. The rule of thumb is that aggregated signature-based set membership
proofs are faster when considering a large range and Bulletproofs are faster when
considering a small range. It is however always true that set membership proofs are
more flexible than range proofs since they allow non-continuous discrete sets. An
important thing to mention, although not the focus of this comparison, is that the
set-up phase of aggregated signature-based set membership proofs is linear in the
number of elements in the set, resulting in that it is computationally demanding for
large sets.
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6
Application in VAHSS

In this chapter, an application of the aggregated set membership proof is presented
and evaluated. As discussed in chapter 1, VAHSS is an example where multiple data
providers, henceforth denoted clients, participate. In this chapter first a construction
of VAHSS that verifies the servers computation is presented, then it is derived
how to extend the verification to also include the clients. Then different methods
for verifying clients are compared. The comparison mainly focuses on comparing
aggregated signature-based set membership proof presented in Construction 2 with
the state-of-the-art Bulletproofs for verification of clients to see how the runtime of
the construction is affected.

6.1 VAHSS

The considered construction of VAHSS presented in [19], implemented and bench-
marked in [18], makes use of homomorphic hash functions to verify the computations
performed by servers.

Assume that n clients and m servers participate in the VAHSS construction.
The sets N = {1, ..., n} and M = {1, ...,m} are introduced to simplify notation.
The clients are denoted ci for i ∈ N , and their respective data xi. The servers in
the construction are refereed to sj for j ∈M.

Each client ci splits the secret xi into m shares, denoted {xij}j∈M, such that
xi = ∑

j∈M xij and sends one share to each server. Each server sj, j ∈ M, receives
shares from all n clients and computes and publishes the partial sum yj = ∑

i∈N xij.
Then the final sum can be computed by any party by summing the public partial
sums, which gives y = ∑

j∈M yj = ∑
j∈M

∑
i∈N xij = ∑

i∈N
∑
j∈M xij = ∑

i∈N xi.
A proof σ of the servers computations is obtained accordingly. Each client ci

publishes a checksum τi = gxi+Ri , where xi is the secret hidden by the distributed
shares and Ri ∈R F is such that Rn = φ(p)d

∑n−1
i=1 Ri

φ(p) e −
∑n−1
i=1 Ri. Each server sj

computes a partial proof σj = gyj . Finally the verification is done by checking if∏
j∈M σj = ∏

i∈N τi ∧
∏
i∈N τi = gy. If it holds the servers computations are proved

to be correct. For a precise implementation and proof of correctness, security and
verification the reader is refereed to the original paper about VAHSS [19].
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6.2 Client and Server VAHSS

The VAHSS construction discussed in section 6.1 assumes honest clients and verifies
the servers. This section extends the VAHSS construction to verify both the clients’
input and the computations performed by the servers. First it is stated how to
extend the VAHSS construction to additionally verify clients. Then a construction,
using range proofs or set membership proofs, to verify clients is derived. It is then
discussed how such a construction can be modified to use aggregated set membership
proofs for verification of client’ inputs.

Extending VAHSS to verify clients
To ensure honest clients it is not sufficient to construct and perform a set member-
ship proof and a VAHSS scheme separately. In such a protocol the verifier cannot
be sure that the secret proven to be in the allowed set is the same as the secret hid-
den by the shares. The same principle holds considering range proofs. Therefore,
a connection between the shares generated in the algorithm ShareSecret in the
VAHSS construction and the secret hidden in a Pedersen commitment is desired.
Proving that the sum of the shares is equal to the secret in a Pedersen commitment
and then proving that the secret in the Pedersen commitment is in an allowed range
or set convinces the verifier that the shares represent a secret that is in the allowed
range or set.

In the VAHSS construction the clients publishes, in addition to the shares, the
checksums τi for the secrets xi. Recall that the definition of the checksum is τi =
gxi+Ri . Hereafter, the clients compute and outputs the Pedersen commitments πi =
gxihRi , instead of the previously computed checksums τi. Given a commitment πi,
the clients can construct a range proof or set membership proof of the committed
secret. It remains to argue that this would ensure the verifier that the secret hidden
by the shares is the same secret proved to be in the allowed range or set as for all
i ∈ N .

Assume that client ck commits to the value x̂k in the Pedersen commitment
πk, constructs the shares {xkj}j∈M such that xk = ∑

j∈M xkj 6= x̂k and generates
a ZKP that x̂k belongs to the set Φ or range [a, b]. Since xk 6= x̂k this does not
necessarily imply that the secret hidden by the shares belongs to the range or set.
Then ∏m

i=1 πi 6= gy and thereby the verification of servers does not succeed. Thus
it has to hold that xk = x̂k for the protocol to succeed and any cheating client is
detected. It is not possible to determine which party cheated and more precisely
not even if the cheating party was a client or a server.

Remark 1. The correctness, security and verifiability requirements of a VAHSS
construction holds after replacing the checksums τi = gxi+Ri with a Pedersen com-
mitment πi = gxihRi in the VAHSS construction, [19].

Additionally if a range proof or set membership proof, denoted Σi, that satis-
fies the soundness, completeness and zero-knowledge requirements of zero-knowledge
proofs is constructed of the secret xi in the Pedersen commitment πi, for all clients
ci in the VAHSS construction. Then any PPT adversary A who can modify the
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Pedersen commitments πi to any π′i ∀i ∈ T , where T is the set of corrupted clients,
has a negligible probability of choosing a commitment π′i such that verification of all
the proofs Σi and the VAHSS validates true.

Proof of remark: The remark follows from that replacing τi with πi for i =
1, ..., n, it still holds that:

∏
i∈N

πi =
∏
i∈N

gxihRi = g
∑

i∈N xih
∑

i∈N Ri = gyh
φ(N)

⌈∑n−1
i=1 Ri

φ(N)

⌉
= gy

Thereby it follows that:
n∏

i∈N
τi =

∏
i∈N

πi.

Further the Pedersen commitment is perfectly hiding as well as computationally
binding and thus it follows that the requirements are still fulfilled.

From the soundness of range proofs and set membership proofs, and the above
argument that the secret hidden in the commitment πi must be the same as the
secret obtained by combining the the shares {xij}j∈M for all i = N , it follows that
any adversary who can modify the commitments πi has a negligible probability of
doing so such that the proofs Σi and the VAHSS construction validates true. �

Verifying clients using set membership proofs or range proofs
A VAHSS where clients are verified by publishing range proofs or set membership
proofs is presented in Construction 3. In order to clarify the changes made to
extend the construction to verify clients, the differences to the VAHSS construction
presented in [19] are pointed out.

The algorithms ShareSecret andVerify has been modified, and the algorithms
ProveSecret and GenerateCommitment have been added. More precisely, the
algorithm ShareSecret does not output the checksum τi, instead the Pedersen com-
mitment πi is computed in the algorithm GenerateCommitment. The algorithm
ProveSecret constructs a set membership proof or range proof denoted Σi given
the commitment πi. In addition to the steps of the algorithm Verify in the VAHSS
construction presented in [19], the algorithm Verify also validates the proofs Σi for
all i ∈ N .

The algorithmsGenerateCommitment andProveSecret are executed by the
clients and the other algorithms are executed by the same party as in the VAHSS
construction in [19].

Remark 1 implies that Construction 3 satisfies the correctness, security and ver-
ification requirements for a VAHSS construction and that the verification of clients’
input satisfies the completeness, soundness and zero-knowledge requirements of the
considered range proofs or set membership proofs.

Verifying clients using aggregated set membership proofs
Construction 4 describes a client and server VAHSS compatible with aggregated
set membership proofs for verification of clients. The algorithms in Construction 4
are the same as in Construction 3 except that the algorithm PartialAggregate is
introduced and the algorithm Verify is modified.
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Construction 3 : Client and Server Verifiable additive homomorphic se-
cret sharing
Goal: Compute the sum y = ∑n

i=1 xi. The values xi are kept secret. The servers
computations and the clients shared values are verified.

• ShareSecret (1λ, i, xi) 7→ {xij}j∈M
Pick uniformly at random the coefficients, {ai}i∈{1,..,t} ∈R F and define a t-
degree polynomial pi to be on the form pi(X) = xi +a1X + ...+atX

t. Put the
shares xij = λijpi(θij) for j ∈M. The parameters θij and Lagrange coefficients
λij are chosen such that pi(0) = ∑m

j=1 λijpi(θij). Output {xij}j∈M.
• GenereteCommitment(1λ, i, xi) 7→ πi

Let Ri ∈ F be the output of a PRF such that Rn ∈ F satisfies Rn =
φ(N)d

∑n−1
i=1 Ri

φ(N) e −
∑n−1
i=1 Ri. Compute and output πi = E(xi, Ri) = gxihRi .

• ProveSecret (pp, xi, πi) 7→ Σi

Construct a range proof or set membership proof, denoted Σi, for the Pedersen
commitment πi of the secret xi, on the range [a, b] or a set Φ. All required
public parameters, pp, needed to construct the proof Σi is assumed to be
pre-shared and known by all parties.

• PartialEval (j, {xij}i∈N ) −→ yj
Compute and output yj = ∑n

i=1 xij.
• PartialProof (j, {xij}i∈N ) −→ σj

Compute and output σj = ∏n
i=1 g

xij = g
∑n

i=1 xij = gyj = H1(yj).
• FinalEval ({yj}j∈M) −→ y

Compute and output y = ∑m
j=1 yj.

• FinalProof ({σj}j∈M) −→ σ

Compute and output σ = ∏m
j=1 σj = ∏m

j=1 g
yj = g

∑m

j=1 yj = gy = H1(y).
• Verify ({πi}i∈N , x, y, {Σi}i∈N ) −→ {0, 1}

Compute and output σ = ∏n
i=1 πi ∧

∏n
i=1 πi = H1(y)∧{VerifyProof(Σi)}i∈N .

VerifyProof is the verification algorithm of the proofs {Σi}i∈N .
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The algorithm PartialAggregate is run by all aggregating parties in the set
K and the algorithm Verify is modified such that it verifies the aggregated proofs
instead of the individual clients’ proofs.

If the server computing the partial sums yj are responsible for aggregation of
the clients set membership proofs, then no new parties are introduced to the VAHSS
construction to aggregate the proofs. Then the set K is equal toM in construction
4.

For aggregation in Construction 4 to be sound, the aggregation must either be
performed by a trusted party or split between at least two aggregating parties.

If the aggregation is performed by an untrusted party, this party can cheat in the
aggregation of the proofs, by exploiting that the sum y can be computed once the
servers have performed the algorithm PartialEval and that h

∑
i∈N Ri = 1modφ(p).

Note that this induces that the assumptions of Theorem 3 are not fulfilled, since
the aggregation party has additional knowledge beyond the input to the algorithm
Aggregate and the commitments {Ci}i∈S . Since y is known to the aggregating
party, the aggregated proof Σa can be constructed as, Da = Ck+c, zRa = kφ(N) and
zxa = ky, where y = ∑

i∈N xi and k ∈R F. Then it follows that:

Da = Ck+c =
(
gk
∑n

i=1 xihk
∑n

i=1 Ri)
)(
g(
∏n

i=1 ci)
∑n

i=1 xi)h(
∏n

i=1 ci)
∑n

i=1 Ri)
)

CchzRagzxa = Cchkφ(N)gky =
(
g(
∏n

i=1 ci)
∑n

i=1 xi)h(
∏n

i=1 ci)
∑n

i=1 Ri)
)
hkφ(N)gky

=
(
g(
∏n

i=1 ci)
∑n

i=1 xi)h(
∏n

i=1 ci)
∑n

i=1 Ri)
)
gkyhkφ(N)d

∑n−1
i=1 Ri

φ(N) e)

=⇒ Da = CchzRagzxa .

It has been shown that if one party aggregating all clients’ set membership proofs
the aggregation is not sound, since the aggregated proof can be constructed such
that it validates true without proving the statement in equation 3.1.

If multiple parties aggregates subsets of the proofs, the assumptions in Theorem
3 holds, this follows from that the sum of the secrets and random values are unknown
considering any true subset of the clients.

Under the assumption that the aggregation is sound, Remark 1 applies to Con-
struction 4. Thereby, if the aggregation is performed by a trusted party or is split
between at least two independent aggregating parties, Construction 4 satisfies the
correctness, security and verification requirements for a VAHSS construction and the
verification of clients’ input satisfies the completeness, soundness and zero-knowledge
requirements of the considered range proofs or set membership proofs.

6.3 Implementation
An implementation of Constructions 3 and 4 is obtained to investigate the proposed
clients and server VAHSS in a practical setting and comparing the runtime for
different methods for verifying clients.

Bulletproofs, aggregated and non-aggregated signature-based set membership
proofs implemented in Golang are publically available on Github, [13] [9]. The
VAHSS construction implemented in both python and C++, is available at [17] and
[16] respectively.
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Construction 4 : Client and Server Verifiable additive homomorphic se-
cret sharing
Goal: Compute the sum y = ∑n

i=1 xi. The values xi are kept secret. Servers
computations and clients shared values are verified.

• ShareSecret (1λ, i, xi) 7→ {xij}j∈M
Pick uniformly at random the coefficients, {ai}i∈{1,..,t} ∈R F and define a t-
degree polynomial pi to be on the form pi(X) = xi +a1X + ...+atX

t. Put the
shares xij = λijpi(θij) for j ∈M. The parameters θij and Lagrange coefficients
λij are chosen such that pi(0) = ∑m

j=1 λijpi(θij). Output {xij}j∈M.
• GenereteCommitment(1λ, i, xi) 7→ πi

Let Ri ∈ F be the output of a PRF such that Rn ∈ F satisfies Rn =
φ(N)d

∑n−1
i=1 Ri

φ(N) e −
∑n−1
i=1 Ri. Compute and output πi = E(xi, Ri) = gxihRi .

• ProveSecret (pp, xi, πi) 7→ Σi

Construct a range proof or set membership proof, denoted Σi, for the Pedersen
commitment πi of the secret xi, on the range [a, b] or a set Φ. All required
public parameters, pp, needed to construct the proof Σi is assumed to be
pre-shared and known by all parties.

• PartialEval (j, {xij}i∈N ) −→ yj
Compute and output yj = ∑n

i=1 xij.
• PartialProof (j, {xij}i∈N ) −→ σj

Compute and output σj = ∏n
i=1 g

xij = g
∑n

i=1 xij = gyj = H1(yj).
• PartialAggregate (pp, k,Sk, {Σi}i∈Sk) −→ Σak

On the input {Σi}i∈Sk where Sk ⊆ {1, ..., n}, the set of proofs is aggregated
according to the algorithmAggregate in Construction 2 and aggregated proof
Σak is published.

• FinalEval ({yj}j∈M) −→ y
Compute and output y = ∑m

j=1 yj.
• FinalProof ({σj}j∈M) −→ σ

Compute and output σ = ∏m
j=1 σj = ∏m

j=1 g
yj = g

∑m

j=1 yj = gy = H(y).
• Verify ({πi}i∈N , x, y, {Σak}k∈K) −→ {0, 1}

Compute and output σ = ∏n
i=1 πi∧

∏n
i=1 πi = H(y)∧{VerifyProof(Σak)}k∈K.

VerifyProof is the verification algorithm in Construction 2.
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To implement Construction 3 and 4, the VAHSS algorithms need to be callable
from the same programs as the algorithms for Bulletproofs, signature-based set mem-
bership proofs and aggregated signature-based set membership proofs. The VAHSS
algorithms have been translated to Golang, to solve the problem of having the im-
plementations written in different programming languages. The implementation is
available at [9].

To provide an implementation of Construction 3 and 4 besides translating the
VAHSS code to Golang the implementations have also been slightly modified. The
VAHSS construction has as discussed above been adjusted such that it considers
a Pedersen commitment πi instead of the checksum τi. The implementations of
Bulletproofs, signature-based set membership proofs and aggregated signature-based
set membership proofs have also been adjusted to be compatible with the VAHSS
algorithms. These adjustments are merely to merge the constructions and does
not change the semantics of the constructions. The modified implementations are
available at [9].

Implementation parameters
The finite field F is generated by a prime of size 256-bit.

The number of servers is set to 5, |M| = 5, and the number of clients to 100,
|N | = 100. The set of aggregation parties K is assumed to consist of a single party,
meaning that |K| = 1.

Remark that the trade-off between runtime for aggregation and verification de-
pending on the number of aggregation parties is presented in section 5.2. The result
presented there translates directly to the runtime of the aggregation and the veri-
fication of clients in a server and client VAHSS. Thereby, although |K| = 1 in this
section the runtime considering multiple aggregating parties can be obtained by
studying the results presented in chapter 5.

The range is set to [18, 200] for the implementation of Bulletproofs, and thus
the upper bound of the Bulletproof is set to 2n, where n = 8. The size of the set Φ
is put to the length of the range, |Φ| = 200− 18 = 182, for both the aggregated and
not aggregated signature-based set membership proofs.

A final remark about the implementation is that its purpose is to test the above-
proposed constructions and provide runtime evaluations, the code has not been
tested enough to be considered as a secure implementation.

6.4 Prototype analysis
The runtime for the algorithms in Construction 3 and 4 is presented in Table 6.1.
Construction 3 is benchmarked considering two different constructions for verifying
clients: Bulletproofs and signature-based set membership proofs. Construction 4 is
benchmarked considering aggregated signature-based set membership proofs, with
a single trusted aggregating party.

In Construction 3 and 4 there is one algorithm called Verify, verifying both
clients and servers. To separately measure the runtime for verifying the servers
and clients the algorithm Verify is split into two procedures, VerifyServers and
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VerifyClients. The first procedure, VerifyServers, performs the verification of
the servers computations. The second procedure VerifyClients, verifies the clients
by evaluating their range proofs or set membership proofs. To clearly state what the
algorithms VerifyServers and VerifyClients correspond to, consider the following
reformulation of the algorithm Verify:

• Verify (pp, {πi}i∈N , y, {Σi}i∈N ) −→ {0, 1}
Verify the clients and servers according to,
– VerifyServers ({πi}i∈N , y) −→ {0, 1})

Compute and output σ = ∏n
i=1 πi ∧

∏n
i=1 πi = H(y).

– VerifyClients ({πi}i∈N{Σi}i∈N ) −→ {0, 1}
For each proof Σi, verify that it is correct. This implies runningVerifyProof(πi,Σi)
for all i ∈ N , where VerifyProof is the verification algorithm associated
with the algorithm used to construct the proof, Σi. If the proofs have
been aggregated then the verification is performed for each aggregated
proof instead of for each clients proofs. If all proofs are correct return 1,
else 0.

Return VerifyServers ∧VerifyClients

Table 6.1: Runtime for the algorithms in Construction 3 and 4. The runtime of
Construction 3 is presented using Bulletproofs and signature-based set membership
proofs to verify clients. Aggregated signature-based set membership proofs are used
to verify clients in Construction 4

Construction 3 Construction 4
Bulletproofs Set membership Aggregated Set membership

GenerateShares 95 [µs] 98 [µs] 98 [µs]
ProveSecret 53 [ms] 66 [ms] 66 [ms]
PartialEval 78 [µs] 71 [µs] 71 [µs]
PartialProof 273 [µs] 5255 [µs] 5255 [µs]
Aggregate 59 [s]
FinalEval 689 [ns] 699 [ns] 699 [ns]
FinalProof 50 [µs] 115 [µs] 115 [µs]
VerifyClients 2979 [ms] 9288 [ms] 8120 [ms]
VerifyServers 1672 [µs] 7947 [µs] 7947 [µs]

In Table 6.1 the runtime for all algorithms are consistently faster when using
Bulletproofs to verify the clients. Note that the considered range is [18, 200], hence
it is sufficient to use n = 8 for the upper bound for the Bulletproofs. In section 5.3
it is noted that the runtime for verification of multiple clients increased significantly
if the upper bound of the range is increased. This implies that if a larger range
is considered the aggregated signature-based set membership would be faster than
Bulletproofs for verification of all clients. This is seen in Chapter 5 in Figure 5.2.

Uniformly, independent of which construction used to verify clients, the runtime
for VerifyServers is approximately 103 times faster than for VerifyClients. This
highlights how expensive the verification of clients is and motivates the attempt
to reduce the computations required to verify multiple clients by aggregating set
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membership proofs.
Considering the runtime of VerifyClients, it is noted that aggregation of

signature-based set membership proofs reduce the runtime by 13%. The set mem-
bership proofs are only partly aggregated and thereby the runtime depends on the
number of provers. Consequently, when a large number of clients participate the
verification of clients still becomes a bottleneck of the construction.

It is noted that the algorithms PartialProof, FinalProof and VerifyServers
differs noteworthy in runtime for different constructions for verifying clients. These
algorithms, as described in Construction 3 and 4, are seemingly independent of
the construction used to verify clients. The difference in runtime comes from that
different libraries for the elliptic curve groups are used for Bulletproofs and the
signature-based set membership proofs. The libraries have not been benchmarked
against each other, and whether the difference in runtime can be reduced via opti-
misations has not been investigated.
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Discussion and Conclusion

Discussion

The simplest aggregation of set membership proofs is to construct the aggregated
proof as the element-wise product of all individual proofs. Appendix C states how
such an aggregation can be implemented. It also shows that it results in a construc-
tion that does not satisfy the completeness requirement of aggregated set member-
ship proofs, implying that cleverer aggregation is required.

Moreover, it is noted that if the challenges are equal for all proofs, then the
completeness requirement is satisfied for the first part of the validation. The chal-
lenges depend on randomness in the proofs, thereby it cannot be guaranteed that
they are equal. In the aggregated signature-based set membership proof presented in
chapter 4 the challenges appear as a product, which resolves the problem of unequal
challenges.

The complexity of the presented aggregated signature-based set membership
proof depends on the number of provers, since ai = e(Vi, y)cie(Vi, g)−zxie(g, g)zτi is
checked separately for each proof Σi, i ∈ S, in the verification. Therefore it can
be interpreted as a partial aggregation of the proofs. A complete aggregation of
the signature-based set membership proofs fulfilling the completeness requirement
has not been found nor proved impossible to construct. The reasoning of why a
complete aggregation of the signature-based set membership proofs does not fulfil the
completeness requirement is given in appendix D. In the verification of the signature-
based range proofs derived from the signature-based set membership proofs [5], the
equality ai = e(Vi, y)ce(Vi, g)−zxie(g, g)zτi is checked separately for each j ∈ Zl. This
can be seen as an indicator that it is not possible to efficiently aggregate the entire
signature-based set membership proofs.

The presented construction of aggregated signature-based set membership proof
can be translated to a construction of aggregated signature-based range proofs.
The signature-based range proofs are very similar in construction to the signature-
based set membership proofs and thereby the aggregation can easily be adjusted to
aggregate the range proofs. Details on how to generalise the aggregation are not
given, but it follows directly from inspection.

Using set membership proofs or range proofs to verify clients in a VAHSS con-
struction prevents clients from cheating, but no requirement ensures that clients do
not lie. Cheating means that a client shares a value not in the allowed set or range
and lying means that the client shares a value in the allowed set or range, but not
the truthful value.
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Conclusion

This paper has presented a definition of aggregated set membership proofs, including
the completeness, soundness, and zero-knowledge requirements that it should fulfil.

According to the definition of aggregated set membership proofs, signature-based
set membership proofs have been partly aggregated. Since a part of the proofs is
verified separately for each prover, the complexity for verification depends on the
number of provers. However, the computational complexity required per prover is
decreased, due to that, a part of the proofs is aggregated, such that it is checked
once to validate all provers.

It has been proved that an untrusted party must perform the aggregation ac-
cording to the protocol, for the verification to validate true. The assumptions made
to prove this are that: the provers do not collaborate with each other or the ag-
gregating party and that the aggregated proof Σa is such that Da 6= Cc. C is the
product of all provers Pedersen commitments and c is the product of all challenges.

The completeness, soundness and zero-knowledge requirements for aggregated
set membership proofs are proved to hold for the presented construction of aggre-
gated signature-based set membership proofs. This was proved under the assump-
tions that the aggregation was performed according to the algorithm Aggregate,
proves does not collaborate and that the signature-based set membership, [5], sat-
isfies the requirements in Definition 4.

The aggregated signature-based set membership proof has been implemented
in Golang. Considering 100 provers, each having constructed a signature-based
set membership proof, the verification was found to be approximately 13% faster
for verifying an aggregated proof, computed according to algorithm Agrgegate,
compared to verifying the proofs individually. The prototype analysis also showed
that splitting the aggregation between several parties decreased the runtime per
aggregating party almost exponentially. The verification time, in tandem, does not
increase exponentially.

The second part of this paper focused on the verification of clients in VAHSS
constructions and comparing different methods for verifying clients. The VAHSS
construction, presented in [19] has been modified to additionally verify the clients.
Clients are verified by publishing set membership proofs or range proofs. Then the
verifier, in addition to validating the servers computations, validates all clients set
membership proofs or range proofs. To reduce the computations required by the
verifier aggregated set membership proofs are considered for verification of clients.

Implementations in Golang have been provided for the client and server VAHSS,
considering Bulletproofs, aggregated and non-aggregated signature-based set mem-
bership proofs for verification of clients.

Future work

In this section some question that has raised during the work is mentioned and
discussed as possible future work.

• A complete aggregation of a set membership proofs. The presented aggregated
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signature-based set membership proof is partly aggregated and therefore the
computational complexity of verification dependent on the number of provers.
Providing a full aggregation of the signature-based set membership proof or
alternatively construct a complete aggregation of some other set membership
proofs would be two interesting results.

• Constructing a non-interactive aggregation of Bulletproofs. Bulletproofs are
state of the art range proofs aggregating them using a non-interactive construc-
tion would be useful in many applications. To the knowledge of the author no
such construction exists.

• Prio+, [1], constitutes the same purpose as client and server VAHSS. The
computations required by the clients in Prio+ is smaller compare to client
and server VAHSS, due to that they are not required to construct a ZKP.
However, the servers must communicate to verify the clients. An interesting
topic would be to investigate if Prio+ can be modified such that the verification
of clients can be obtained without communication between the servers and with
a computational complexity independent of the number of clients. This would
result in a construction highly efficient for both clients and servers.
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A
Correctness, Security and
Verifiability of VAHSS

Assume that a VAHSS construction consists of n clients and m servers, and that
the index set of clients and servers are N and M respectively. A construction
of VAHSS is a 7-tuple of PPT-algorithms (Setup, ShareSecret, PartialEval,
PartialProof, FinalEval, FinalProof, Verify). Assuming that the algorithms
are as defined in [19] they should satisfy the following correctness, verifiability and
security requirements [19]:

• Correctness It should always hold that Pr[Verify(pp, σ, y) = 1] = 1. pp are
the public parameters constructed by the algorithm Setup, σ is the output
of the algorithm FinalProof computed by the partial proofs σj, which are
outputs of the algorithm PartialProof for ∀j ∈M. The value y is the output
of the algorithm FinalEval.

• Verifiability For any set T of corrupted servers and any PPT adversary A
it should hold that Pr[ExpV erifyV HSS (x1, ..., xn, T,A) = 1] ≤ ε(λ) for some neg-
ligible ε(λ). The values x1, ..., xn ∈ F are secret values and the experiment
ExpV erifyV HSS (x1, ..., xn, T,A) is defined as:
1. For all i ∈ N run the algorithm ShareSecret in the input (1λ, i,xi) and

publish the output τi.
2. All servers sj ∈ T gives the shares (share1j, ..., sharemj) to the adversary.
3. For all corrupted server sj ∈ T the adversary outputs the modified values
y′j and σ′j. While for all servers sj /∈ T the values y′j and σ′j are computed
according to the algorithms PartialEval and PartialProof respectively.

4. The final value y′ is computed according to the algorithm FinalEval and
the final proof σ is computed according to the algorithm FinalProof.

5. If y 6= f(x1, ..., xn) and Verify(pp, σ′, y′) = 1 output 1 else 0. In this
thesis the function f is assumed to be the sum of the arguments.

The above can be interpreted as: any PPT adversary who controls the shares
of the secret inputs for the corrupted servers has a negligible probability of
having a wrong value of y being accepted.

• Security Denote the set of corrupted servers by T and assume that at least
one servers is honest, resulting in that |T | < m. A VAHSS scheme is t-secure
if Adv(1λ,A, T ) ≤ ε(λ), for a negligible ε(λ) and all T ⊂ {si, ..., sm} such that
|T | < t. Adv(1λ,A, T ) := Pr[b = b′] − 1/2 is the advantage of the adversary
A = {A1,D} in guessing b in the following experiment:
1. The adversary A1 gives (i, xi, x′i) to the challenger, where i ∈ N , xi 6= x′i

and |xi| = |x′i|.
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2. The challenger picks a bit b ∈R {0, 1}, if b = 0 then the challenger puts
x̂i = xi and if b = 1 the challenger puts x̂i = x′i. Then the challenger
runs the algorithm ShareSecret on the input (1λ, i, x̂i) and algorithm
outputs ( ˆsharei1, ..., ˆshareim, τ̂i).

3. Given the shares sent to the corrupted servers T and the hash τ̂i from the
challenger. The adversary distinguisher outputs a guess b′ = D

(
(shareij)j|sj∈T , τ̂i

)
.
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B
Multiple Aggregating Parties

Construction 5 : Aggregation of non interactive set membership proof
Goal: Given the Pedersen commitments Ci = gxihRi , for i ∈ S. The construction
proves that all secrets xi belongs to the set Φ, without revealing anything else about
the secrets.

• SetUp (1λ,Φ) −→ (sk, pp)
Let g be a generator of the group G and h an element in the group such that
logg(h) is unknown. Pick uniformly at random χ ∈R F and put sk = χ. Define
y = gχ and Ai = g

1
χ+i ∀i ∈ Φ, output pp = (g, h, y, {Ai}i∈Φ).

• Prove (pp, i, Ci, xi,Φ) −→ Σi

Pick uniformly at random τi ∈R F, choose from the set {Ai} the element Axi
and calculate Vi = Aτixi . Pick uniformly at random three values si, ti,mi ∈R F.
Put ai = e(Vi, g)−sie(g, g)ti , D = gsihmi ,c = Hash(Ci, Vi, ai, Di) and compute
zxi = si − xici, zRi = mi − Rici and zτi = ti − τici . Finally construct and
publish the proof Σi = (Vi, ai, Di, zxi , zτi , zRi).

• Aggregate (pp, k, {Σi}i∈Sk) −→ Σak

Given a set of proofs {Σi}i∈Sk . Aggregate the values
({Di}i∈Sk , {zxi}i∈Sk , {zri}i∈Sk) 7→ Dak , zxak , zRak according to equa-
tion (4.1). Construct and publish the aggregated proof Σak =
({Vi}i∈Sk , {ai}i∈Sk , Dak , {zxi}i∈Sk , zxak , {zτi}i∈Sk , zRak ).

• CalculateChallenges ({Ci}i∈S , {Σi}i∈S) −→ {ci}i∈S
For all i ∈ S parse the proof Σi, then compute the challenge ci =
Hash(Ci, Vi, ai, Di). Finally output the set of all challenges {ci}i∈S .

• Verify (pp, {Σak}k∈K, {Ci}i∈S , {ci}i∈S) −→ {0, 1}
For all k ∈ K compute the product of the challenges ck = ∏

i∈Sk ci.
Check if Dak

?=
(∏

i∈Sk Ci
)ck
hzRakgzxak Then for check if ai

?=
e(Vi, y)cie(Vi, g)−zxie(g, g)zτi for all i ∈ S. If the equalities holds return 1 oth-
erwise return 0.
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C
Naive Aggregation

Consider two set membership proofs Σ1 and Σ2, computed according to the algo-
rithmProve in Construction 2. The proofs are on the form Σi = (Vi, ai, Di, zxi , zτi , zRi)
for i = 1, 2. Denote the challenges used to construct the proofs ci for i = 1, 2 and
the related Pedersen commitments are denoted Ci for i = 1, 2.

The naive construction of the algorithm Aggregate is to define the aggregated
proof, Σa, as the element-wise product or addition of the two proof Σ1 and Σ2. This
yields that Σa = (Va, aa, Da, zxa , zτa , zRa), where Va, aa, Da, zxa , zτa , zRa are computed
as,

Va =V1V2 = g
τ1

χ+x1 g
τ2

χ+x2

aa =a1a2 =
(
e(g, g)

−s1τi
χ+x1 e(g, g)t1

)(
e(g, g)

−s2τ2
χ+x2 e(g, g)t2

)
Da =D1D2 = (gs1hm1)(gs2hm2) = gs1+s2hm1+m2

zxa =zx1 + zx2 = (s1 − c1x1) + (s2 − c2x2)
zRa =zR1 + zR2 = (m1 − c1R1) + (m2 − c2R2)
zτa =zx1 + zx2 = (t1 − c1τ1) + (t2 − c2τ2)

(C.1)

C = C1C2 = gx1+x2hR1+R2 is the product of the two Pedersen commitments and
c = c1c2 denotes the product of the challenges .

Investigated if the aggregated proof Σa satisfies the equations: Da = CchzRagzxa

and aa ?= e(Va, y)ce(Va, g)−zxae(g, g)zτa .
Considering the first equality it follows that.

Da = gs1+s2hm1+m2

CchzRagzxa = ... = gs1+s2hm1+m2gc(x1+x2)−c1x1−c2x2hc(R1+R2)−R1c1−R2c2

=⇒ Da 6= CchzRagzxa

Thereby the completeness property is not satisfied for the aggregated proof Σa.
The equality does not hold due to the c(x1 + x2) 6= x1c1 + x2c2. Note that if
c1 = c2 = c then the above is an equality.
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D
Complete Aggregation

To fully aggregate the signature-based set membership proofs the verification would
need to be independent of the number of provers.

Consider two set membership proofs Σ1 and Σ2 computed according to the
algorithm Prove in Construction 2. The proof Σi = (Vi, ai, Di, zxi , zτi , zRi) for
i = 1, 2. Denote the Pedersen commitments by Ci and the challenges ci, for i = 1, 2.
It will be assumed, although unrealistic for non interactive constructions of set
membership proof, that c = c1 = c2.

The aim is to investigate if the two proofs can be aggregated into the aggregated
proof, Σa = (Va, aa, Da, zxa , zτa , zRa) , such that aa ?= e(Va, y)ce(Va, g)−zxae(g, g)zτa
holds and that equality implies that xi ∈ Φ for i = 1, 2.

The aggregation is performed according equation (C.1), using c as the challenge.
This given that,

aa = e(g, g)
τ1s1
q+x1

τ2s2
q+x2

+t1+t2

e(Va, y)ce(Va, g)−zxae(g, g)zτa = ... = e(g, g)
s1τ1
q+x1

+t1e(g, g)
s2τ2
q+x2

+t2e(V1, g)−zx2e(V2, g)−zx1

=⇒ aa 6= e(Va, y)ce(Va, g)−zxae(g, g)zτa

Even under the assumption that c = c1 = c2, the terms e(V1, g)−zx2e(V2, g)−zx1

are not cancelled. Thereby, although the aggregation is performed such that the
challenges only appears as a product the completeness property does not hold.

VII


	List of Figures
	List of Tables
	Introduction
	Background
	Preliminaries
	Set Membership Proofs and Range Proofs

	Aggregated Set Membership Proofs
	Aggregated Signature-Based Set Membership Proofs
	Construction
	Soundness of Aggregation
	Completeness, Soundness and Zero-Knowledge

	Implementation and Evaluation
	Implementation
	Trade-off between Aggregation and Verification
	Comparison to Bulletproofs

	Application in VAHSS
	VAHSS
	Client and Server VAHSS
	Implementation
	Prototype analysis

	Discussion and Conclusion
	Bibliography
	Correctness, Security and Verifiability of VAHSS
	Multiple Aggregating Parties
	Naive Aggregation 
	Complete Aggregation 

