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Quantum Models for Word-Sense Disambiguation
Investigating the application of Compositional Distributional Models of Meaning to
a word-sense disambiguation task on predicate-argument relations.
THOMAS HOFFMANN
Department of Physics
Chalmers University of Technology

Abstract
In recent years, developments in machine learning had a tremendous impact on Nat-
ural Language Processing (NLP). However, state-of-the-art language models contain
billions of parameters that require vast computational resources for optimization and
capture syntactic rules only from data, which does not allow an extensive analysis
of the underlying logic of language. Hence, to reduce the parameter space of NLP
models and close the gap between logic-based language models and statistical vector
space models, Coecke, Sadrzadeh, and Clark [11] introduce a compound framework
called Compositional Distributional Model of Meaning, based on Lambeks Pregroup
grammar and Quantum Theory.
This thesis investigates applying the Compositional Distributional Model of Mean-
ing on the word-sense disambiguation task by Kartsaklis, Sadrzadeh, and Pulman
[18]. Different quantum embeddings are evaluated in terms of disambiguation power,
given a matching context. One focus lies on the description of ambiguous words as
mixed states. Mixed states are probabilistic quantum states expressed as density
matrices which entail a lack of knowledge about the underlying system. Empirical
data was gathered from experiments using quantum circuits and classical computa-
tions. We evaluate the performance and discuss the challenges and limitations of the
current quantum computing models. The results confirm the comprehensiveness of
the Compositional Distributional Model of Meaning and show statistical indications
for a richer representation of words by density matrices.

Keywords: Quantum Natural Language Processing (QNLP), Compositional Distri-
butional Model of Meaning, Word-Sense Disambiguation, Quantum Computing.
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1
Introduction

This chapter introduces the main concepts of Compositional Linguistics, Quantum
Computing, and Quantum Natural Language Processing.

1.1 Introduction to Computational Linguistics
The field of computational linguistics (CL) focuses on machine-to-human interaction
through natural language. As a subdomain of artificial intelligence, applications of
CL range from question answering, text comprehension, automatic translation, to
text generation and speech synthesis, among others. In recent years, many of those
domains underwent a shift from statistical models to models purely based on neural
networks. However, most approaches that deal with the analysis of semantics un-
derlie the assumption that words can be embedded into vector spaces and those of
similar meaning remain geometrically in close proximity [7]. As an example, such a
vector space representation of meaning can be built from a text corpus where sen-
tences are treated as bag of words, and meaning is derived from word co-occurrences.
Establishing word vectors lets us use geometric operations like vector addition, or
the inner product to reason about semantic relationships of words. One famous
example is the Queen-King Equation:

−−→king−−−→man +−−−−→woman ≈ −−−→queen. (1.1)

Word-similarities are then usually calculated through the cosine similarity [7], which
is defined as

Sim(−→w1,
−→w2) =

−→w1 · −→w2

‖−→w1‖‖−→w2‖
. (1.2)

Models based on the bag-of-words assumption are mainly of interest for search en-
gines or spam filters, however, only with limited applicability for more sophisticated
tasks. Due to the neglected grammatical structure, sentences like “dog bites man.”
and “man bites dog” are seen as equal, while the real-life implications of both sen-
tences differ drastically.
Nowadays, the mainstream NLP focuses on inferring meaning through large neural
networks. Those models are trained on vast data sets, enabling them to learn syntax
and semantics from a pool of almost endless example sentences. As proven by state-
of-the-art models like BERT [12] or GPT-3 [6], this works very well for a broad
domain of NLP tasks (question and answering, text generation, translation, etc.).
However, one major drawback of those models is that the parameter space increased

1



1. Introduction

tremendously to improve the accuracy (approx. 175 billion learnable parameters for
GPT-3). Therefore, the training and inference of modern NLP models require a vast
amount of computational resources, eventually limiting their scalability. To solve
the problem, scientists seek to find more efficient and more powerful algorithms that
may be realizable through Quantum Computers in the future. By nature, Quantum
Computers can handle very large vector spaces, which leads to the assumption that
the entire area of machine learning could benefit from quantum algorithms.

1.2 Introduction to Quantum Computing
While classical computers use bits that can be either in state 0 or 1, quantum
computers use qubits, which carry physical properties that allow more powerful
computational models. In most cases, qubits are physical systems that allow two
distinct and measurable quantum states. A simple example would be a spin-1/2

system of an electron. Such a system has two eigenstates, namely, spin up |↑〉
and spin down |↓〉, which form the basis of the system’s state vector. Encoding
the classical bit values of 0 and 1 into the spin states of the system allows us to
have a single computational entity that can be present in an infinite number of
superposition of the computational basis states, defined by a state vector in a 2D
complex Hilbert space.

|ψ〉 = α |0〉+ β |1〉 =
(
α
β

)
(1.3)

with α, β ∈ C and |α|2 + |β|2 = 1. Measuring the state of the system yields a 0
with probability |α|2 and a 1 with probability |β|. Quantum states are manipulated
by quantum gates, which are unitary operators. Two examples are the NOT gate,
denoted by X, which acts like a bit-flip operation, and the Hadamard-gate H,
which maps the computational basis states to superpositions of equal measurement
probabilities:

X |ψ〉 =
[
0 1
1 0

](
α
β

)
=
(
β
α

)
= β |0〉+ α |1〉 (1.4)

H |0〉 = 1√
2

[
1 1
1 −1

](
1
0

)
= 1√

2
(|0〉+ |1〉) (1.5)

H |1〉 = 1√
2

(|0〉 − |1〉) (1.6)

To analyze the state of a 1-qubit system, we can transform the amplitudes into the
form of a Bloch vector

|ψ〉 = cos θ2 |0〉+ eiφ sin θ2 |1〉 . (1.7)

Visualizing the angles in a 3D coordinate system yields the Bloch sphere:

2



1. Introduction

Figure 1.1: Bloch sphere used to visualize 1-qubit states1.

Another property of quantum systems, which we leverage for quantum computing
is the concept of entanglement. Two physical systems that are entangled cannot
be described by two separate state vectors but one vector that lives in a compound
Hilbert space. Entanglement is invoked by multi-qubit gates, like the CNOT gate:

CNOT = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.8)

Applying the CNOT gate on two qubits defined by two unknown states |ψ〉 ⊗ |φ〉
results in

CNOT |ψ〉 ⊗ |φ〉 = CNOT ((α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉))

= CNOT (αγ |00〉+ αδ |01〉 βγ |10〉+ βδ |11〉)

= αγ |00〉+ αδ |01〉 βδ |10〉+ βγ |11〉 .

(1.9)

Such a state is not separable, and a basis of the compound Hilbert space is spanned
by the four vectors |00〉, |01〉, |10〉, and |11〉. Consequently, an entangled 3-qubit
system lives in a space spanned by eight basis vectors. Hence, adding and entangling
qubits to our system allows an exponential growth of the underlying Hilbert-space,
which allows us to encode information into quantum state vectors that could the-
oretically represent the world’s estimated storage capacity of approximately 2500
exabytes2 in as few as 71 qubits (271 memory slots).

1Graphic taken from https://de.wikipedia.org/wiki/Bloch-Kugel#/media/Datei:
Bloch_Sphere.svg under CC BY-SA 3.0 licence - author: Glosser.ca.

2See statistic from 2021 here
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1. Introduction

1.3 A brief overview of Quantum NLP (QNLP)
Parallel to the field of Natural Language Processing, a second, vastly different
approach of Computational Linguistics emerged within the scientific community:
Quantum Natural Language Processing. Using the mathematics from categorical
quantum mechanics (see [2], [9]), it was Coecke, Sadrzadeh, and Clark [11] who first
introduced a unified notation of a vector spaces model of meaning and an algebraic
model of language grammar based on the work of Lambek [22]. The Categorical
Compositional Distributional Model of Meaning (CDM) enables the representation
of sentence meanings within a vector space model without neglecting its grammati-
cal structure. Identifying the similarity between the newly introduced mathematical
model for language and the standard formalisms of quantum mechanics, implement-
ing such a model on a Quantum Computer appeared to be well-suited. Hence, ten
years after introducing the formalism, Meichanetzidis et al. [24] could implement
the first instance of a QNLP problem on a NISQ device.

1.3.1 Language model using Pregroup grammar
Before focusing on implementing a QNLP model on a NISQ device, we have to clar-
ify some mathematical concepts of natural language grammar rules developed by
Lambek [22], [21]. The basic idea is to classify words according to their grammat-
ical meaninig into types of mathematical categories wich undergo transformations
through morphisms (see [3] for more details about category theory). According to
[11], we define some building blocks of very simple English sentences as the following
categories:
n = subject/noun (e.g “Mary”, “John”, . . . ),
j = infinitive of a verb (e.g. “likes”),
s = declarative sentence (e.g. “John likes Mary”).
Coecke, Sadrzadeh, and Clark [11] take on the definitions of Lambek [22] and state
a partially ordered monoid (P,≤, ·, 1) as a category, where P is a partially ordered
set of objects p that are equipped with a (non-commutative) monoid multiplication
(− · −) with unit 1. Theoretically, we could model word types with standalone
meaning, as for example nouns, in such a category. However, other word types,
like verbs, need non-commutative connectors to give meaning to a sentence. Take,
for example, the transitive verb “like”. To give meaning to a sentence including
“like”, we must state two adjoint nouns to eventually define who likes who. Thus,
[11] summarize word types in so-called Pregroups

(
P,≤, ·, 1, (−)l, (−)r

)
, where each

p ∈ P has a left adjoint pl and a right adjoint pr, which act as the right and left
inverse of p. To distinguish between the left and the right adjoint, we modify the
inverse such that plp ≤ 1 and ppr ≤ 1, which makes the operation non-commutative.
Otherwise, pl and pr would be indistinguishable (see [22]) as

pl = pl1 = plppr = 1pr = pr (1.10)
and we could not encode word orders into the framework. In other words, the equal-
ity of Equation 1.10 would mean that we could not model any difference between
sentences like “her favorite new restaurant” and “her new favorite restaurant”.

4



1. Introduction

Taking the example sentence from [11], we denote the word categories as

John likes Mary
n (nrsnl) n

As we see, the grammar reduces to a sentence type object, verifying the grammatical
validity of the word combination:

n
(
nrsnl

)
n→ 1snln→ 1s1→ s.

Note that the last equation does not show strict equality, rather we read x → y as
x is also of type y [22]. Furthermore, the operations can be carried out step-wise,
which allows us to parse the sentence into a binary tree that represents the syntactic
structure of a sentence.
More complex examples can be considered by defining other word types like the
adjective type a [21] or the glueing type σ [11], and also considering negations (“John
does not like Mary”). However, we omit more complex examples and reference a
more detailed description of English Pregroup grammar rules by Lambek [21].

1.3.2 Of monoidal categories and diagrams
As previously stated, Pregroups are monoidal categories that are non-commutative
and compact closed. A Compact closed category CF requires some properties that
are described in detail by Coecke, Sadrzadeh, and Clark [11] shall be quickly sum-
marized here:

• Between each ordered pair of objects A,B of a Pregroup, a morphisms f ∈
CF(A,B) is denoted as f : A→ B.

• Two morphisms f : A→ B and g : B → C are concatenated by g ◦f : A→ C.
Furthermore, morphisms are associative, i.e.

(h ◦ g) ◦ f = h ◦ (g ◦ f).

• For a pair (A,B) of ordered objects a composite object A ⊗ B exists. The
operator ⊗ denotes a tensor product and is also associative.

• For each ordered pair of morphisms (f : A → C, g : B → D) there exists a
parallel composite f ⊗ g : A⊗B → C ⊗D that also fulfills

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2) .

Hence, the duality of Pregroups and compact closed monoidal categories allows us
to determine a vector space representation of Lambeks Pregroup grammar. From a
more physical perspective, one can say that objects A,B,C, . . . of a Pregroup have
the same properties as (physical) systems and morphisms act like processes. With
these analogies in mind, [11] denote that these formalisms share a large overlay with
systems and processes in quantum mechanics and can thus be visualized similarly.
By using the diagrammatic language introduced by Coecke and Kissinger [9], we
refine the operations mentioned above as

5
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1A f g ◦ f 1A ⊗ 1B

A A

B

f

A

B

C

f

g

A B

f ⊗ 1C f ⊗ g (f ⊗ g) ◦ h

A C

B

f

A C

B D

f g

A C

B D

E

f g

h

Graphics inspired from [11].

Furthermore, we define sources and sinks of our systems, which correspond to ini-
tialization and measurements of states. Sources can be expressed as elements of a
system A and are essentially morphisms that produce the desired state from the
trivial system I: ψ : I → A. Correspondingly, a sink takes a system A and returns
the trivial system I: π : A→ I [11]. We depict both morphisms as

Source ψ Sink π

ψ

A
π

A

In the bra-ket notation a source is denoted as a ket |ψ〉 and a sink is denoted as a
bra 〈φ|.

1.3.3 Graphical representation of Pregroup grammar
With the symbols mentioned above, we can represent types of words as symbols
consistent with the Pregroup grammar. However, we still cannot represent the
connectivity of the words and how they are glued together. Thus, we make use of
four morphisms of a compact closed category, which are

ηl : I→ A⊗ Al εl : Al ⊗ A→ I ηr : I→ Ar ⊗ A εr : A⊗ Ar → I. (1.11)

These morphisms define the connection between an object A and its right and left
adjoints Ar and Al. Visually these operations are represented by cups ( ) and
caps ( ) [9]:

6
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ηl εl ηr εr

A Al
Al A

Ar A

A Ar

Without going much more into detail here, these caps and cups can be stacked and
yield the triangle identity shown in Figure 1.2:

A

Ar

A

=

A

=

A

A

Al

Figure 1.2: Triangle identity as described in [11], also called yanking equation.

The identity shown in Figure 1.2 can also be expressed as

(1A ⊗ εr) ◦ (ηr ⊗ 1A) = 1A = (1a ⊗ ηl) ◦ (ηl ⊗ 1A). (1.12)

1.3.4 From Pregroups to natural language
Using the previously defined concepts of Pregroups as compact closed categories,
Coecke, Sadrzadeh, and Clark [11] argue that it is possible to combine word meanings
and grammar into one unified framework describing natural language. They first
state, that word meanings can be embeded into the compact-closed vector space
category FVect [5], where morphisms are linear maps and a tensor product between
different vector spaces exists. Secondly, they denote the Pregroup grammar category
introduced by Lambek [22] [21] as P . A connected product category FVect × P
then combines both word meanings and grammar rules in one single object. More
specifically, they call an object (W, q) of FVect×P a meaning space [11], containing
a vector space W of word meanings, and p, the grammatical type of the word (n:
noun, nrsnl: transitive verb, . . . ). A sentence is then the tensor product of vectors
−→wi ∈ W , whose meaning is then defined by the following linear map [11]:

−−−−−→w1 · · ·wn := f (−→w1 ⊗ · · · ⊗ −→wn) (1.13)

We can then use the axioms of the Pregroup grammer as described in Section 1.3.1
and the mappings described in Section 1.3.2 to restore a sentence type object
(S, s) within the category FVect × P , encoding the sentence meaning of a ran-
dom grammatically valid string of words.

Example from [11] The previous sentence “John likes Mary” is an example of
a positive transitive sentence with a transitive verb of Pregroup type nrsnl. The
nouns are objects of the FVect×P , thus, we can visualize the flow of tensors within
the sentence according to the schematics presented in Section 1.3.2 and 1.3.3 as in
Figure 1.3.
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1. Introduction

n

John
nr s nl
likes

n

Mary

s

Figure 1.3: Visualization of the flow of tensors of the transitive sentence “John
likes Mary”.

1.3.4.1 Implementation on a quantum device

With the pregroup formalisation of language, Zeng and Coecke [37] argue that lan-
guage is quantum-native, i.e. inherently well-suited for implementations on quantum
devices. They base their assumption on the argument that the tensor product re-
quired to compute the sentence space equals simply juxtaposing qubit registers.
However, the mapping of a graph as shown in Figure 1.3 to a quantum circuit is not
entirely trivial. Nevertheless, in 2020, Meichanetzidis et al. [24] could implement
the first QNLP model on a NISQ device. Thus, the steps to take the Pregroup
grammar of a sentence and compile a quantum circuit as described in [24] shall be
summarized here briefly.

General workflow First, we start with a text corpus K and classify each word
within a sentence according to their Pregoup type. This procedure is based on a so-
called Part-of-Speech-Tagging (PoS-Tagging), where we determine the word types,
like transitive verbs, and assign a Pregroup type to each PoS label. This can be
automated by modern neural networks, for example [4], [17]. Meichanetzidis et al.
[24] then propose the following workflow:

σ ∈ K parser7−−−→ D ∈ G simplify7−−−−→ D′
ansatz7−−−→ QCirc compiler7−−−−→ (NIS)QDev (1.14)

Essentially, each sentence σ ∈ K is parsed into a diagram based on the pregroup
grammar. After that, the diagram is simplified to reduce overlapping "wires" and
facilitate the computation. Furthermore, each word must be translated into a quan-
tum system, which is achieved by mapping each word type to a distinct parametrized
quantum variational circuit. Last but not least, the circuit has to be compiled to
run on a NISQ device. Since we have already covered parsing a sentence into a
graph in the last sections, we continue with simplifying the graph.

Simplification Meichanetzidis et al. [24] introduce two different approaches to
simplify the underlying graph networks. First, they elaborate on the idea introduced
by Zeng and Coecke [37] which morphs a grammatical sentence diagram to a bipartite
graph. Taking the example sentence from [24], we transform the diagram shown in
Figure 1.4 into the bipartite graph shown in Figure 1.5.
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1. Introduction

Figure 1.4: Graph parsing of the example sentence “colourless green ideas haunt
Chomsky”. Graphic taken from [24] under CC BY 3.0 licence.

Figure 1.5: Bipartite graph of the example sentence “colourless green ideas haunt
Chomsky”. Graphic taken from [24] under CC BY 3.0 licence. Note that by trans-
forming some sources into sinks, we reduce the number of quantum systems within
the graph and therefore simplify the quantum circuit.

Note that in the graphics of this section, the symbols for sources and sinks introduced
in Section 1.3.2 are depicted by pentagons ( ) instead of triangles.
The underlying operation for a mapping of words (upwards pentagons ) to effects
(downwards pentagons ) is the transpose operation on the word ansätze. Although
this approach reduces the required computational resources (number of qubits and
operations), [24] argue that there are also two major drawbacks

• Bipartite graphs often contain wire crossings that result in noisy swap opera-
tions in quantum circuits if we model each wire as a qubit system.

• The transpose of a word ansatz must be computed efficiently.

The first problem can be addressed by simply reordering the words. However, Me-
ichanetzidis et al. [24] state that finding the corresponding bipartite graph with
minimum wire crossings is an NP-complete problem [13]. The second problem can
be resolved by requiring the word ansätze to be easily transposable.
The second proposed method is the so-called snake removal method. It relies on
simplification properties of snakes and boxes, as for example the triangle identity
shown in Figure 1.2. Referencing [24], it can be shown that the diagram of the
sentence “code that runs returns results” (Figure 1.6) can be transformed into the
circuit shown in Figure 1.7.

Figure 1.6: Graphic taken from [24] under CC BY 3.0 licence.
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1. Introduction

Figure 1.7: Computational graph using the representation of ZX-Calculus.
Graphic taken from [24] under CC BY 3.0 licence.

Parsing To convert the simplified graphs into circuits, a suitable representation
of boxes, snakes, cups, and caps has to be established. Meichanetzidis et al. [24]
distinguish between the graphs from the bigraph (see Figure 1.5) and graphs from
the snake removal method (Figure 1.7). To represent graphs from the bigraph
method in quantum circuits, the following mappings are used:

• Word states ( ) are initialzed as quantum states on a qubit register that is
prepared in the |0〉⊗n state and undergoes a unitary (parameterized) transfor-
mation.

• Word effects ( ) are set to be the transpose of word states.
• Wire crossings are swap operations.
• Caps ( ) are denoted as preparations of a Bell state.
• Cups ( ) are mapped to post-selection on the Bell effect [24]

Important to mention is that variational quantum circuits are used as word ansätze.
Given examples are the CNOT+U(3) circuit or a strongly entangling circuit by
Schuld et al. [28], which both contain learnable parameters and are easily transpos-
able [24]. Furthermore, one chooses the same ansatz for different words of the same
grammar type.

Training In order to make use of the proposed model, the parameters of the word
ansätze have to be trained on a given text corpus. Hence, Meichanetzidis et al. [24]
define a toy corpus of 4 words, including two nouns. Given the word types, it is
then possible to generate all sentences that are grammatically correct, i.e., whose
compound word types reduce to the sentence type s. These sentences are then
labeled as True or False and split into a training and validation set. Now we run
the pipeline proposed in 1.14 multiple times, where the proportion of the fulfilled
post-selections correspond to the True/False meaning. Defining a mean squared
loss and using an optimization method suited for noisy functions, it is possible to
find the parameters θ for the word ansätze to represent proper word meanings. A
notebook of the experiment is provided by the DisCoPy package on Github and can
be found at [16].
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2
Quantum Disambiguation

In contrast to the current mainstream Transformer-based language models, Coecke,
Sadrzadeh, and Clark [11] model the grammar of language as interactions of different
quantum systems. Using axioms of Category Theory, they combine the mathematics
of natural language grammar and the vector space model for word meanings into
one compound framework. This so-called Compositional Distributional Model of
Meaning marks a whole new approach to model sentence meanings efficiently. First
realizations of QNLP problems are implemented within the DisCoPy framework
[16], [24], [23] and show a proof of work of the theory. Another possible application,
the disambiguation of verbs with multiple meanings, is presented in the following
sections.

2.1 Verb ambiguity

In most languages, there are many words that have different meanings depending
on the context where they appear in. One of many examples within the English
language is the verb to file. Consider the example expressions

“file application” and “file nail”.

In the first example, the verb takes on the meaning of to register, and in the second
example, it has a similar meaning as to smoothen or to polish. The associated noun
within the phrase disambiguates the verb and lets it collapse into the desired unique
meaning. According to Clark [7], it is possible to learn a matrix representation for
each verb (V ) and noun (N) such that the product of a verb and a noun yields the
sentence meaning (S):

V N = S (2.1)

However, this approach treats the verbs to file, to register and to polish as three
different entities, whereas it may be difficult to determine the connection between
file and its two senses. This problem becomes more apparent if the vector represen-
tations of the two senses are far apart. The ambiguous verb would then still share
some similarity to its senses, however, it may be low and the similarities to other
random words could be higher. To tackle this problem, we assume that a quantum
representation of ambiguous verbs may be beneficial.
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2. Quantum Disambiguation

2.2 Ambiguity modelled by superposition

One way of encoding ambiguous verbs into quantum states is to exploit superposi-
tion. If one encodes the unambiguous meanings of a verb into the eigenstates of a
quantum system, one can define the quantum state of the verb as a superposition
of those states. Using the example of to file, we get

|file〉 = α |register〉+ β |smooth〉 (2.2)

with

|α|2 + |β|2 = 1.

A quantum representation of a noun could then serve as a disambiguation entity
that forces the verb to collapse into its unique meaning and yield a plausibility score
for the verb-noun combination. A plausible combination would be the sentence “file
nail.”:

〈file|nail〉 = 1 (2.3)

while “file person.” is implausible

〈file|person〉 = 0. (2.4)

Using the diagrammatic approach from Section 1.3.4, we can parse each verb-noun-
pair into a graph as shown in Figure 2.1.

file nail
n.l ns

Figure 2.1: Graph parsing for “file nail”.

Given a dataset of four ambiguous verbs, their single unambiguous meanings (two
for each verb), and 35 nouns, Kartsaklis, Sadrzadeh, and Pulman [18] generate a
corpus of 108 phrases. An extract of the dataset is shown in Table 2.1, while the
full dataset is presented in Appendix A.1.
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2. Quantum Disambiguation

Verb Meaning Example Phrase
File Register file account

file application
file complaint

. . .
File Smooth file nail

file teeth
. . .

Dribble Drip dribble wine
dribble blood

. . .
Dribble Carry dribble ball

. . .
Tap Knock tap table

. . .
Tap Intercept tap phone

. . .
Charge Bill charge rate

charge price
charge rent

. . .
Charge Accuse charge defendant

charge demonstrator
. . .

Table 2.1: Disambiguation dataset overview, example sentences, originally sug-
gested by Kartsaklis, Sadrzadeh, and Pulman [18].

Since the dataset is composed of 4 ambiguous verbs which span a meaning space of
8 dimensions, we encode each verb-meaning (second column of Table 2.1) into the
eigenstate of a quantum system:

|file〉 = α |register〉+ β |smooth〉+ (2.5)
γ |drip〉+ δ |carry〉+
ε |knock〉+ ζ |intercept〉+
η |bill〉+ θ |accuse〉

where

|α|2 + |β|2 + |γ|2 + |δ|2 + |ε|2 + |ζ|2 + |η|2 + |θ|2 = 1.

Note that we have to know the senses of the ambiguous verbs here. Using three
qubits, we can encode the meaning space into the computational basis states:

13



2. Quantum Disambiguation

|knock〉 = |000〉
|carry〉 = |001〉

. . .
|bill〉 = |111〉

(2.6)

We then investigate if it is possible to learn a quantum representation for the verbs
and nouns, such that the amplitudes of each verb state correspond to the correct
senses.

2.2.1 Word ansätze and circuit parsing

To map the ambiguous verbs and the set of nouns to quantum states, we have to
define parameterized circuits, so-called ansätze [24]. For simplicity, we start with
only one qubit and encode the ambiguous verb “file”. In our Example, “file” can
have two meanings: “register” and “smooth”. We then define the meaning space of
“to file” as

|register〉 := |0〉 and |smooth〉 := |1〉.

Consequentially, the quantum state |file〉 is modelled as the following superposition:

|file〉 = α |0〉+ β |1〉 . (2.7)

where α, β ∈ C and |α|2 + |β|2 = 1. Since we don’t know the parameters α and
β, we seek to define a parameterized ansatz for “file”, such that every possible
superposition can be reached. One such possibility is to initialize a qubit in the |0〉
state and apply two parameterized rotations on it, one around the x-axis and one
around the y-axis:

“file”
n.l =

|0〉

Rx(θ1)

Rz(θ2)

Figure 2.2: Verb ansatz for 1-qubit example.

Furthermore, we define a noun ansatz by initializing a qubit in the |0〉 state and
applying a single rotation around the x-axis as shown in Figure 2.3
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2. Quantum Disambiguation

“nail”
n =

|0〉

Rx(θ3)

Figure 2.3: Noun ansatz for 1-qubit example.

Modeling the connection between the two words (i.e. the cup) as post-selections on
the Bell effect, we get the circuit shown in Figure 2.4.

|0〉

Rx(θ1)

⊕

Rz(θ2)

|0〉

Rx(θ3)

CX

H
√

2

〈0, 0|

(i)

Figure 2.4: Quantum circuit for phrase “file nail.”. The circuit framed by the
dashed line (i) represents a cup and performs the post-selection on the bell-effect.

We run the circuit multiple times for each sentence and record the proportion of
fulfilled post-selection conditions, which is set to be the predicted plausibility score
for the given phrase. Clearly, the prediction is defined by the parameters θ, which
we seek to optimize in order to model the dataset with high accuracy.

2.2.2 Parameter search

All plausible sentences are defined in the dataset given in the Appendix A.1. Ex-
tracting the entries associated with the ambiguous verb “to file”, we are left with
ten nouns, i. e. 30 verb-noun pairs. Each noun disambiguates the meaning of “file”
into either “register” or “smooth”, which is indicated by the plausibility score (see
Table 2.2).
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Phrase Plausibility
file account. 1
register application. 1
smooth complaint. 0

file nail. 1
register nail. 0
smooth nail. 1

. . . . . .

Table 2.2: Extract of the disambiguation dataset for the verb “to file”.

Parsing each sentence into a quantum circuit as shown in Figure 2.4 makes it possible
to calculate the plausibility scores. To compare the computed plausibilities pi to the
corresponding true values, we consider the mean squared error (MSE):

MSE(θ1, . . . , θm) = 1
N

N∑
i=1

(pi(θi)− pi,true)2 (2.8)

Minimizing the loss function then yields a parameter set θ that stores the properties
of the dataset and enables us to examine the quantum state produced by the verb
ansatz for “to file”. Alternatively, due to the binary scores present in the dataset,
one could also experiment with a cross-entropy loss. However, in more realistic
scenarios, disambiguation follows rather the regression paradigm instead of binary
classification; hence, the MSE seems to be the optimal choice.

2.2.3 Multi-qubit word ansätze

So far, we have only covered one-qubit ansätze, which is sufficient to represent one
ambiguous verb with two distinct meanings. However, to encode the meaning space
of the whole dataset from Table 2.1, we need at least three qubits. The dataset
consists of 4 ambiguous verbs with 2 senses each. Thus, the meaning space is 8-
dimensional, which can be encoded in the computational basis states of a 3-qubit
system (23 = 8). As described in Equation 2.6, we then encode the meanings as
follows:

|knock〉 = |000〉 |accuse〉 = |100〉
|carry〉 = |001〉 |intercept〉 = |101〉
|drip〉 = |010〉 |register〉 = |110〉
|smooth〉 = |011〉 |bill〉 = |111〉

(2.9)

Consequentially, the ansätze for the nouns and the ambiguous verbs must also consist
of 3-qubit systems. Hence, we depict the graph representation of a random verb-
noun phrase as shown in Figure 2.5.
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“dribble” “ball”

Figure 2.5: 3-qubit graph for phrase “dribble ball”.

Compiling the graph shown in Figure 2.5 as is into a quantum circuit would require 3
cups, i.e. the post-selection on 6 qubits. This is a rather resource-consuming process,
therefore, we use the diagrammatic simplification [9] [24] shown in Figure 2.6.

ansatz

= ansatz†

Figure 2.6: Effect ansatz (left-hand side) equals the complex conjugate of the
original word ansatz (right-hand side).

Hence, the diagram shown in Figure 2.5 reduces to the simpler version in Figure 2.7
which only uses 3 qubits and projects the verb on the effect of the noun.

“dribble”

“ball”

Figure 2.7: Simplified 3-qubit graph for phrase “dribble ball”.

2.2.3.1 3-qubit ansätze

To translate the graphs into quantum circuits, we have to define type-specific an-
sätze. We can initialize unambiguous verbs simply by applying Pauli-X gates on
the |000〉 state. For nouns, we decide to apply parameterized X rotations to each
qubit (see Figure 2.8a). We further see that the complex conjugate of this ansatz
can be achieved by reversing the rotations and post-selecting on the 〈000| effect (see
Figure 2.8b).
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|0〉

Rx(θ2)

|0〉

Rx(θ3)

|0〉

Rx(θ1)

(a) Noun ansatz for 3-qubit model.

|0〉

Rx(−θ2)

|0〉

Rx(−θ1)

|0〉

Rx(−θ3)

(b) Complex conjugate of the noun ansatz for 3-qubit model.

Figure 2.8: Noun ansatz for 3-qubit model and its complex conjugate.

To model the ansatz for ambiguous verbs, we have to propose a more complex
circuit. It becomes clear when looking at the verb “tap”, which consists of the single
meanings “intercept” and “knock”. Thus, we model the quantum representation as

|tap〉 = α |knock〉+ β |intercept〉 = α |000〉+ β |101〉 . (2.10)
For the non-trivial case of 0 < α2, β2 < 1 we have an entangled state that cannot
be initialized only by using single-qubit rotations. The state preparation requires
at least one entangling unit, like the CNOT-gate. Hence, Meichanetzidis et al. [24]
suggest a family of parameterized and versatile state preparation circuits called the
CNOT+U(3) ansätze, which are depicted in Figure 2.9 in ZX-calculus style [8].

Figure 2.9: CNOT+U(3) ansätze for 1 to 3 qubits. White dots are Pauli-Z-
rotations and black dots are Pauli-X-rotations. Cross-connections represent CNOT
operations (white dot = control). Graphic taken from [24] under CC BY 3.0 licence.
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Hence, we depict the state and effect ansatz for the 3-qubit representation of an
ambiguous verb as shown in Figure 2.10.

Figure 2.10: CNOT+U(3) Ansatz for ambiguous verbs. Graphic taken from [24]
under CC BY 3.0 licence.

Another class of ansätze worth investigating are strongly entangling layers [35].
Originally introduced by Schuld et al. [28], they consist of 1-qubit rotations around
all axes for each qubit and CNOT gates between all adjacent qubits. The total
amount of parameters to train is then the number of qubits used times 3. An
example is depicted in Figure 2.11.

|0〉 R (α1, β1, γ1) •

|0〉 R (α2, β2, γ2) •

|0〉 R (α3, β3, γ3) •

|0〉 R (α4, β4, γ4) •

Figure 2.11: Example of strongly entangling layer using four qubits. Using three
qubits, we are left with nine parameters per word to optimize, which is significantly
less than the 14 used for the 3-qubit CNOT+U(3) ansatz.

Given all the ansätze for the nouns, ambiguous and unambiguous verbs, we then
continue to compose the quantum circuits for each phrase and use a suitable opti-
mizer to tune the parameters to reduce the MSE loss. The further procedure of the
experiments is described in Chapter 3.

2.3 Modelling abiguity in density matrices
So far, we have shown that it is possible to encode the meaning of ambiguous verbs
as superpositions of their single meanings. Although it is evident that this approach
has benefits over classical NLP word embeddings (exponential growth of the meaning
space by leveraging superposition and entanglement of quantum systems), there are
also some drawbacks to mention. To scale the above-introduced toy model to a
realistic size, one would need to have a meaning space large enough to encode all
possible single meanings of words. Twenty qubits already span a complex Hilbert
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space whose dimension surpasses the number of words used in the English language
easily. However, it is highly questionable if it is possible to learn any meaningful
word representation within such a large vector space. As a side note, one of the
currently largest classical NLP models, GPT-3, uses an embedding size of 12.888
[30], while 20 qubits span a complex vector space with dimensionality 1.048.576. To
overcome the problem of increasingly large vector spaces Piedeleu et al. [27] and
Kartsaklis [19] propose a language model that encodes ambiguous verbs into mixed
states described by density matrices.

2.3.1 Densitiy matrices
A density matrix ρ describes the statistical state of a quantum system. A quantum
system containing various quantum entities can either be of a pure state or a mixed
state. A pure state is characterized by quantum entities that are all in the same
state |ψ〉. Contrarily, a system in a mixed state contains a statistical ensemble of
quantum entities in different states |pi〉. Each one of these states occurs with a
classical probability pi in the ensemble. The density matrix ρ that characterizes a
mixed state is then calculated to be

ρ =
N∑
i

pi |pi〉 〈pi| (2.11)

with Tr(ρ) = 1. Different mixtures of pure states can lead to the same density
matrix, hence, they are not distinguishable. Thus, they are physically equivalent.
We calculate the expectation value of a measurement according to Born’s rule and
get

〈A〉 = tr(ρA). (2.12)

Using density matrices to model ambiguous verbs has the benefit of using a much
smaller vector space to encode word meanings into superpositions and still benefit
from other quantum concepts by encoding the meanings of ambiguous verbs into
mixed states. Take for example a toy vocabulary of {file, register, smooth}. Using
a quantum language model, we can learn a meaningful vector representation of the
abstract senses in a complex Hilbert space, i.e. determine |register〉 and |smooth〉.
Now, instead of learning a non-related vector representation of “file”, we encode the
meaning into a density matrix of

ρ(file) = pr |register〉 〈register|+ ps |smooth〉 〈smooth| (2.13)

where pr and ps are the probabilities of the word “file” to occur in a context where it
refers to “register” or correspondingly to “smooth” (within a given text corpus). We
then let the density matrix interact with another noun to disambiguate the verb.

2.3.2 Expand the CDM model with density operators
In this section we modify the Compositional Distributional Model of Meaning (CDM)
to allow computations using mixed quantum states. So far, we have only used pure
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states to represent word meanings. To incorporate density matrices of mixed states
into the CDM model, Piedeleu et al. [27] take over the CPM(C) category by Selinger
[29] which is dagger compact closed and makes use of morphisms that are completely
positive maps (thus, the name CPM). The latter is necessary to ensure that mor-
phisms preserve the positive semi-definite nature of density matrices.

2.3.2.1 From states to operators

As previously seen in Section 1.3.2, the CDM model relies on a compact closed
category where states are seen as morphisms of type ψ : I → A. However, to allow
the system to be described by a density operator, Piedeleu et al. [27] modify the
underlying category such that mixed states are described by morphisms ρ : A→ A,
i.e. linear maps on elements of A. Therefore, they introduce a category D(C)
that inherits all objects from a compact closed category C and produces completely
positive morphisms which are suitable choices for density operators. Speaking in
loose terms, the category D(C) doubles the wires of C:

• Morphisms between objects A and B of D(C) are morphisms A⊗A∗ → B⊗B∗
of C.

• An embedding E : D(C) ↪→ C, which maps objects and the morphisms from
D(C) to C):

E :
{
A 7→ A⊗ A∗ on objects;
f 7→ f on morphisms.

• D(C) is equipped with the same tensor product as C: ⊗D = ⊗.
To differentiate between D(C) and C, they depict diagrams in D(C) with thick lines.
Given the above described axioms about D(C), they depict a morphism as

In general, word meanings live here in the space of density matrices, which are
morphisms that act on objects in C. Hence, we depict the word source in D(C) as

Furthermore, [27] prove that juxtapose two morphisms in D(C) (thick lines), corre-
sponds the following operation in C:
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According to Selinger [29], just juxtaposing the morphisms in C would not neces-
sarily lead to a completely positive morphism in D(C), which is necessary because
only morphisms that are completely positive operatiors take density matrices as ar-
guments and return valid density matrices in the same manner. Finally, Piedeleu
et al. [27] define a strictly monoidal functor M that maps the category C to D(C)
where

M :


f1 ⊗ f2 7→M (f1)⊗D M (f2) ;
A 7→ A on objects;
f 7→ f ⊗ f∗ on morphisms.

(2.14)

By defining f∗ =
(
f †
)∗

Selinger [29] proves that D(C) inherits a †-compact closed
structure from C. Piedeleu et al. [27] then continue to adapt the definition of Selinger
[29] of a completley positive map, to quote:

A morphism f : A → B of D(C) is completely positive if there exists an
object C and a morphism k : A → C ⊗ B, in C, such that f embeds in C as
(k ⊗ k∗) ◦ (1A ⊗ ηC∗ ⊗ 1A∗) or, pictorially,

Denote, that the diagrams from [27] have been adapted to the top-to-bottom flow,
established in Section 1.3.21, which is also consistent with the more detailed disser-
tation by Kartsaklis [19].

2.3.3 Putting it all together
Now Piedeleu et al. [27] define the category CPM(C) as a subcategory of D(C),
which inherits the objects and tensor product (⊗CPM = ⊗D), but allows only
completely positive morphisms. Reducing the functor M , such that the category
CPM(C) only consists of completely positive maps, allows us to write M̃ : C →
CPM(C). Furthermore, we define a strong monoidal functor Q that maps the pre-
group category CF (introduced in Section 1.3.2) to a semantic meaning space C, i.e.
giving meaning to a sentence: Q : CF → C. Thus, the compound model of meaning
is achieved by the composition:

M̃Q : CF → C → CPM(C) (2.15)

Piedeleu et al. [27] leave it open what kind of category C could be. Any com-
pact closed category could be to define the semantic space. In terms of quantum
computation, the most likely choice is the finite-dimensional Hilbert space category
FHilb.

1Permission to use the graphics has been granted by the authors of [27].
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2.3.3.1 From diagrams in CPM(C) to diagrams in CF

Denoting that the atomic types and their duals are mapped from CF to CPM(C)
through identity, we are able to use the same diagrammatic notations as described
in Section 1.3.4 for sentences that live in CPM(C). However, the key difference is
that single word meanings now live in the space of density matrices instead of a
Hilbert space. Hence, Piedeleu et al. [27] constitute the following definition:

Let ρ(wi) be a meaning state I → M̃Q(pi) corresponding to word wi with type
pi in a sentence w1 . . . wn. Given a type-reduction α : p1 · . . . · pn → s, the
meaning of the sentence is defined as:

ρ (w1 . . . wn) := M̃Q(α) (ρ (w1)⊗CPM . . .⊗CPM ρ (wn))

If we now return to our examples from the dataset described in Table 2.1, we can
translate the general intransitive verb - noun structure in CPM(C) to a process
diagram in CF:

verb noun
nr ns →

Interestingly, we see that the partial trace of the system describes the composition
of two words, which becomes evident after examining the trace in diagrammatic
calculus:

2.3.3.2 The trace of a process

Following the diagrammatic reasoning of Coecke and Kissinger [9], we depict the
trace of a process as

Tr(f) := f (2.16)

This becomes clear if one inserts the completeness relation:

f =
f

i

i∑
i

= f

i

i

∑
i = ∑

i 〈i| f |i〉 = Tr(f) (2.17)
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2.3.3.3 The partial trace of a process

Additionally, we can define a partial trace of an operator that lives in a compound
Hilbert space Ha ⊗Hb. Let f be a morphism f : A ⊗ C → B ⊗ C, then we define
the partial trace with respect to the subsystem C as:

TrC(f) := f

A

B
C

C

C (2.18)

This corresponds to a summation of processes [9], and the output is a matrix whose
size depends on the subsystems A and B.

2.3.3.4 Estimating word abiguity

In the CPM model all the words live in the realm of density matrices. Therefore,
Kartsaklis [19] suggests to measure the knowledge about an open quantum system
by calculating the von Neumann entropy of the density matrix:

S(ρ) = −Tr(ρ ln ρ) (2.19)
The value of S(ρ) drops to zero if ρ represents a pure state and increases for mixed
states up to a value of ln(D), which is the dimension of the underlying Hilbert
space. Therefore, the von Neumann entropy is a suitable measurement to eval-
uate the ambiguity of a word and how context disambiguates it. We, therefore,
continue to present a workflow to evaluate the proposed CPM model for the given
disambiguation task.

2.3.4 Proposed disambiguation workflow
We will further work with a hybrid model. The benefit of such a hybrid model is
that, for low-dimensional Hilbert spaces, we can analyze quantum states and density
matrices classically and demonstrate the general possibilities of the CPMmodel. The
dataset introduced by Kartsaklis, Sadrzadeh, and Pulman [18] contains 4 ambiguous
verbs of two distinct meanings each, and 35 context words, i.e. nouns (see Table 2.1).
We are given the vector representation of the context words as four-dimensional
vectors. These vectors are mined from the English Wikipedia through the project
Wikipedia2Vec [36] and underwent a dimensionality reduction through PCA (for the
full list of vectors, see Appendix A.2). We then use the Compositional Distributional
Model of Meaning (CDM) to learn the vector representation of the unambiguous
verbs (register, smooth, . . . ) such that the dataset is well-approximated. Due to
the four-dimensional vector representation, it is sufficient to use only two qubits for
our model (the Hilbert space of two qubits has 22 = 4 dimensions). This procedure
follows closely the methods described in Section 2.2.1.
So far, the usage of quantum computers is justified by the exponentially growing
vector space in which the words are embedded. However, after fitting the model, we
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can construct the density matrices for each ambiguous verb (file, dribble, . . . ) and
investigate their interaction with the context words according to the CPM model to
explore the potential of word meanings based on mixed states.
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Methods

This chapter will present the methods used to translate the proposed language mod-
els into quantum circuits and describe the procedure to fit the models. The justifi-
cations for the used methods are laid out accordingly.

3.1 Disambiguation based on Superpositions
First, we will cover the implementation of the ambiguity model presented in Sec-
tion 2.2. For this task, we exploit the rich features of the DisCoPy python package
[15] which is tailored to simplify the handling of monoidal categories and interacts
smoothly with the t|ket〉 quantum circuit compiler [31].

3.1.1 1-qubit Model
As described in Section 2.2.1, we map each word type to a variational ansatz. There-
fore, we build a functor that maps the monoidal category diagram into a circuit as
in Figure 2.4, which yields a QCirc python object. However, to compute the result
of the circuit, we need to compile the sentence-specific instance of QCirc into code
that a Quantum device can process. This is easily done by using the t|ket〉 compiler,
which returns the circuit shown in Figure 3.1

|0〉

Rx(θ1)

Rz(θ2)

|0〉

Rx(θ3)

CX ⊕

H
√

2

〈0, 0|

→

RX
2.6

RX
2

RZ
3.35

1

H

0

q0

q1

2c

Figure 3.1: Using t|ket〉 to compile a QCirc instance to a Qiskit [1] model.
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It is essential to mention that the 〈0, 0| effect results in a post-selection measurement.
The number of fulfilled post-selections divided by the number of circuit-shots then
equals the “truthness” of the sentence. The cup ansatz (highlighted in Figure 3.1 by
the dashed box) checks for parity of the two qubits. However, in the case of parity,
the probability that the code returns |0, 0〉 is only 1/2. Hence, we need to scale the
amplitude by

√
2, which is indicated by the

√
2 box in the QCirc diagram. t|ket〉

interprets this as scaling the post-selection result by 2.

3.1.1.1 Optimization

Parsing all sentences from the dataset associated with the ambiguous verb “file” into
diagrams and eventually into quantum circuits leaves us with nine parameters for the
nouns and two parameters for the ambiguous verb itself. Running the model for all
27 sentences and computing the MSE gives a metric for optimization. In a classical
setting, one could use gradient-based methods to reduce the MSE. However, there
is no known way to perform backpropagation on a quantum device (so far). Hence,
computing gradients by the parameter shift rule is expensive. We, therefore, decide
to use a simple genetic algorithm to find a first estimate of the optimal parameter
set. Genetic algorithms use concepts from biological evolution, like natural selection,
mutation, and crossover, to find the solution to a problem. Detailed information
about the algorithm and the actual python implementation can be found in [32].

Finetuning After using the genetic algorithm to find a good approximation of the
parameters, we use a noisy optimization method to finetune the result. In general,
a noisy optimization method seeks to solve a problem that is formulated as

min
x
f(x) = min

x
Eξ[F (x, ξ)]. (3.1)

Running an algorithm f(x) on a (Noisy intermediate-scale) quantum computer cur-
rently does not allow us to access the result directly. Due to a high level of noise,
the only option is to compute the expectation value of the noisy function F (x, ξ),
where ξ indicates the noise term. To solve this problem, we use the Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithm developed by Spall [33].
The SPSA algorithm estimates the gradients through a probabilistic gradient shift
method and updates the parameters through a decreasing learning rate. It is de-
signed to optimize noisy functions, where we only have access to the expectation
value of the underlying function. The details and pseudocode of the SPSA imple-
mentation are found in [33]. The validity of this method for quantum circuits has
been proven by Meichanetzidis et al. [24], as they could fit a small QNLP model on
an actual NISQ device, using SPSA.

3.1.1.2 Quantum Simulation Backend

One benefit of the t|ket〉 is that code produced by the compiler is hardware-agnostic,
i.e., runs on many different devices, as well as through the quantum simulators
provided by the Qiskit software [1]. Theoretically, a validation of the introduced
models through actual quantum computers can be achieved. However, we limit

28



3. Methods

ourselves to simulations to avoid complications due to erroneous computations of
NISQ devices.

3.1.2 3-qubit Model
After validating the approach by running the 1-qubit model to encode the ambiguous
verb “file”, we expand the model to encode all 4 ambiguous verbs of the dataset at
once (“file”, “dribble”, “tap”, “charge”). As previously described, these words entail
eight abstract senses. Hence, we use the computational basis states of 3 qubits to
encode the single meanings as described in Section 2.2.3. Fitting the model works
the same as for the 1-qubit model. However, due to the larger dataset, we skip the
pre-fitting with the genetic algorithm and feed the SPSA algorithm with batches of
4 sentences. Using the CNOT+U(3) ansatz for the ambiguous verbs (see Figure 2.9)
and the noun ansatz depicted in Figure 2.8a leaves us with 4 × 14 + 35 × 3 = 161
parameters to optimize.
An example circuit is shown in Figure 3.2.

RZ
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RX
5.61

RX
4.54

RX
4.89

RZ
0.565

RZ
2.6

RX
2.06

RZ
2.99

RZ
4.46

RX
3.22

RX
11.7

0

RX
1.92

RZ
4.1

RZ
3.76

RX
3.19

RX
11.9

RX
11.2

1 2

q0

q1

q2

3c

Figure 3.2: Qiskit circuit for “file nail” using 3 qubits and the CNOT+U(3)
ansatz. Post-selecting on the 〈0, 0, 0| effect yields the result of the circuit calcula-
tion. A higher percentage of fulfilling the post-selection condition equals a higher
plausability score for the sentence.

3.1.3 Evaluation
To evaluate the proposed models, we adapt the metrics from Grefenstette and
Sadrzadeh [14] and Piedeleu et al. [27]. They divide the dataset into sentences
of low plausibility (e.g. “register nail”, score 0) and high plausibility (e.g. “smooth
nail”, score 1) and calculate the cosine similarity of the model’s outcome and the
expected result. While Grefenstette and Sadrzadeh [14] compute a 2-dimensional
similarity array, our proposed quantum model calculates only a 1-dimensional score.
Therefore, in our case, the cosine similarity equals the calculated score from the
model after recentering the ground truth to one. Furthermore, they calculate the
correlation between the ground truth and the predictions using Spearman’s rank
correlation coefficient ρ. Spearman’s ρ is a nonparametric measure that indicates
that a monotonous function exists that maps a variable to another. The benefit of
using Spearman’s ρ is that it does not assume any underlying distribution of the
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data, which makes it versatile but also ruthless. The test result is within a range of
[−1, 1], where a value around zero indicates a low correlation.

3.2 Disambiguation based on density matrices
In order to implement the disambiguation method described in Section 2.3.2, we
first have to propose a quantum representation of the abstract senses in the dataset,
i.e., the senses of the ambiguous verbs and the nouns. To resemble a real-world
application, we first determine vector representations of the nouns from a large text
corpus. These vectors (if not too large) can be initialized on a quantum circuit
using a QRAM method. Note that, in general, QRAM becomes unfeasible for large
vectors. Afterward, we fit the verb states using QNLP methods, i.e., we define
variational quantum ansätze, implement a loss function, and optimize the circuits
using the SPSA optimizer. We close this chapter by briefly discussing the quantum
circuit for the compositional CPM model of our verb-noun phrases and evaluate the
proposed model using classical counter-parts of the quantum model.

3.2.1 Determining the noun representations
To resemble a real-world scenario, we seek to determine vector representations for
each context word (i.e., nouns) from a large text corpus. The most common word
vector techniques come from the word2vec algorithm family [25]. Most word2vec al-
gorithms use either continuous bag-of-words (CBOW) or skip-grams combined with
neural networks to embed word meanings into a high-dimensional vector space. By
defining a fixed sliding window that passes the whole text corpus, the neural network
takes a target word and predicts the context words (skip-gram) or takes the con-
text words and predicts the target word (CBOW). The neural network used for this
task is commonly an encoder-decoder network, and after successfully training the
algorithm, we can cut off the decoder. The encoder then produces vectors (embed-
dings) for each unique word. Training such a model requires a lot of computational
resources. Hence we help ourselves by using pre-trained word embeddings based on
the English Wikipedia from 2018 provided by Yamada et al. [36].

3.2.1.1 Dimensionality reduction

The lowest-dimensional word embeddings from [36] are of size d = 100. We use prin-
cipal component analysis (PCA) to reduce the dimension to d = 4. PCA computes
the eigenvectors of the covariance matrix of the data and spans a new orthonor-
mal basis using those that correspond to the largest eigenvectors. Discarding all
eigenvectors with small eigenvalues lets us reduce the dimensionality while ideally
retaining the main characteristics of the data distribution. The reduced vectors for
all nouns in the dataset are found in the Appendix A.2. Some examples are

account [-0.915559 -0.290692 -0.023149 0.276973]
application [-0.628319 -0.341554 -0.677950 -0.170117]
ball [ 0.744622 0.504402 0.344781 -0.268779]
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3.2.1.2 Initialize the noun states using QRAM

After mining the noun vectors from a large text corpus and applying dimensionality
reduction, we seek to initialize the nouns as quantum states. Theoretically, we can
encode an n-dimensional vector in log2(n) qubits, which means that in our case two
qubits suffice. Given a normalized data array a, we seek a quantum circuits that
initializes the following state:

|a〉 = 1
‖a‖

n∑
i=1

ai |i〉 . (3.2)

A method to initialize such a state is presented by Kerenidis and Prakash [20].
Having a 4-dimensional data array a = [a1, a2, a3, a4], with ‖a‖2 = 1, we first apply
a rotation on the first qubit:

|0〉 |0〉 →
(√
‖[a1, a2]‖ |0〉+

√
‖[a3, a4]‖ |1〉

)
|0〉 (3.3)

Consequently, we apply another rotation conditioned on the first qubit. Hence, we
generate

(√
‖[a1, a2]‖ |0〉+

√
‖[a3, a4]‖ |1〉

)
|0〉 →√

‖[a1, a2]‖ |0〉
1√

‖[a1, a2]‖
(a1 |0〉+ a2 |1〉) +

√
‖[a3, a4]‖ |1〉

1√
‖[a3, a4]‖

|1〉 (a3 |0〉+ a4 |1〉)

= a1 |00〉+ a2 |01〉+ a3 |10〉+ a4 |11〉 .

(3.4)

The rotation we use is the parametrized Ry(θ) gate:

Ry(θ) =
 cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)  . (3.5)

The Ry(θ) gate takes the |0〉 state to the following superposition:

Ry(θ) : |0〉 → cos
(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉 . (3.6)

To find the right angle θ for the rotations in Equation 3.4 and Equation 3.5 we can
use the inverse of the cosine using the data array a.

3.2.2 Verb ansatz and Training
As we intend to learn to represent the phrases from the dataset within the DisCoPy
framework, we need to use a suitable parametrized ansatz for the verbs. Therefore, a
suitable choice is a strongly entangling layer presented in Figure 2.11 for two qubits.
Following Section 3.1, we translate the compositional model into a quantum circuit,
evaluate it for each phrase in the dataset and compute the mean squared error as
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a loss function. To reduce the loss, we use the SPSA algorithm, which we covered
in Section 3.1.1.1. In contrast to the previously described models, we only learn
the quantum states of the verbs that define the abstract senses of the ambiguous
verbs (i.e., “register”, “smooth”, “carry”, . . . ). That allows us later to construct the
ambiguous verbs as mixed states of the quantum states of their senses.

3.2.3 Comparison to the baseline
Since we previously generated the noun vectors from a text corpus using classi-
cal NLP methods, it is viable to determine the vector representation of the verbs
classically too. This comes in handy as we can use the classical result as a bench-
mark for the quantum model. In an ideal world, the nouns would also be mined
using QNLP methods, including many qubits, which eventually makes a classical
evaluation unfeasible.
Like quantum mechanics in general, the Compositional Distributional Model of
Meaning is a purely linear model. Hence, we can combine the noun vectors into
a matrix N and solve a linear system to determine the verb matrix V according to

V N = S, (3.7)

where S bundles the sentence vectors of the noun-verb-pairs. The noun matrix N
combines all noun-vectors as column vectors [−→n 1,

−→n 2, . . . ], while the verb matrix
V consists of the verbs as row-vectors [−→v T

1 ,
−→v T

2 , . . . ]. Reducing the dataset to the
ambiguous verb “file” and the two nouns “account” and “smooth” yields the following
minimal example:

V N =
 −−−−→registerT
−−−−→smoothT

 [−−−−−→account,−−→nail] =
[

1 0
0 1

]
= S. (3.8)

This system of equations can generally not be solved exactly, which is why we
calculate the least-squares solution by using the Moore–Penrose inverse N+ of the
noun matrix:

V = SN+. (3.9)

This procedure can be repeated for each of the ambiguous verbs and all of their
associated nouns. Hence, we solve four least-squares systems to retrieve the vectors
of the eight sense verbs. Note that we have to normalize the calculated vectors to
make them comparable to the quantum states retrieved by the QNLP model. The
final MSE provides a benchmark for evaluation.

3.2.4 Sentence composition within the CPM model
Investigating the composition words initialized as a mixed state on a circuit model
is out-of-scope for this thesis. Possible methods are given by Coecke and Meichanet-
zidis [10], namely the “fuzz” and the “phaser” operation. A model to initialize mixed
states on a circuit model is given in the Appendi A.4. To simplify the analysis, we
continue with a hybrid approach, where we extract the state vectors of the sense
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verbs from the DisCoPy quantum simulation and calculate the density matrices of
the ambiguous verbs classically. The following workflow is based on the work of
Kartsaklis [19] and is quantum-inspired, i.e., provides an intuition for the power of
the CPM model.

3.2.5 Classical composition of words as density matrices
As previously seen, we can represent (ambiguous) words as mixtures of their sense
vectors, which are described by density matrices:

ρ(word) =
n∑
i=1

pi |sensei〉 〈sensei| . (3.10)

Kartsaklis [19] then proposes a model of composition by applying the Hadamard
product (point-wise multiplication) between two words represented as density ma-
trices. Hence,

ρ̃comp = ρverb � ρnoun. (3.11)

Kartsaklis [19] derives this model from the axioms of the Compositional Distribu-
tional model of meaning, including terms of a Frobenius algebra. For further details,
we reference Chapter 7.2 of [19]. Importantly, we have to remark that the Hadamard
product of two density matrices is not trace-preserving. Hence, we have to normalize
the resulting matrix, such that it has trace one:

ρ = ρ̃

Tr(ρ̃) . (3.12)

To estimate the ambiguity of the verb-noun phrase, we calculate the von Neumann
entropy S of the compound density matrix (see Section 2.3.3.4). Ideally, composing
an ambiguous verb with a context word (noun) would lower the entropy to zero,
which represents an unambiguous statement. Therefore, we construct the density
matrix of the ambiguous verbs as

ρamb = 1
2 |sense1〉 〈sense1|+

1
2 |sense2〉 〈sense2| , (3.13)

while the density matrix of the context word is simply

ρnoun = |noun〉 〈noun| . (3.14)

We can then record the disambiguation power P of a noun by

P = S(ρamb)− S(ρcomp)
S(ρamb)

. (3.15)

To validate the model, we also need to check the disambiguation power of random
context words, i.e., randomly initialized noun vectors. We can then place the out-
come of the proposed model next to the randomized baseline group and determine if
the proposed model disambiguates the verbs with statistical significance. A suitable
method to compare the difference in distribution is Wilcoxon’s rank-sum test.
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3.2.5.1 Similarity measure of disambiguated verbs

Besides evaluating the disambiguation power of nouns, we can compute the similarity
between the disambiguated verb and the according sense verb. According to Piedeleu
et al. [27], the similarity between two words represented as density matrices ρ1 and
ρ2 can be computed by the following:

→ Tr(ρ†2ρ1). (3.16)

Hence, we can compute the similarity between word senses and disambiguated verbs
and test for statistical significance. Take the example “dribble ball”: Constructing
the density matrix for dribble yields

ρdribble = 1
2 |drip〉 〈drip|+

1
2 |carry〉 〈carry| , (3.17)

while the unambiguous context word is simply

ρball = |ball〉 〈ball| . (3.18)

Further, we calculate the composition of ρdribble and ρball according to Equation 3.11
and 3.12, denoted as ρcomp. To test the success of the disambiguation, we now
calculate the similarity between ρcomp and the density matrices of the possible verb
senses ρcarry and ρdrip. In this example, ideally, the similarity of ρcomp to ρcarry is
larger than the similarity to ρdrip. Evidently, we need to compare the similarities of
proper disambiguated verbs to its target sense compard to a randomized baseline and
perform Wilcoxon’s rank-sum test for each ambiguous verb to prove a statistically
significant disambiguation. We refere to Section 4.2.2 for more details.
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In this chapter, we present the results of the experiments described in Chapter 3.
We start by describing the outcome of the minimal 1-qubit model (Section 3.1.1),
where we have reduced the dataset only to contain one ambiguous verb. We then
continue with the analysis of the experiment using the whole dataset, i.e., the 3-
qubit model (Section 3.1.2). Last but not least, we present the results of the CPM
model of disambiguation based on density matrices.

4.1 Superposition model

In this section, we describe the results of the superposition model from Section 3.1.

4.1.1 1-qubit Model
The following paragraphs describe the model fit and the statistical results of the
1-qubit minimal example presented in Section 3.1.1.

Fitting the model To estimate a first good fit of the model’s 19 parameters, we
first use a genetic algorithm (GA) with a population size of 5, 20 generations, and a
mutation probability of 0.1. In Figure 4.1 we record the mean-squared error (MSE)
over the GA generations.

Figure 4.1: GA fit of the 1-qubit model. We observe a rapid decline of the loss
function during the first few iterations.
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We observe that after a few initial steps, the MSE decreases to a value of 0.076,
which is a suitable initial value for the SPSA algorithm. Investigations using a
genetic algorithm with more generations and larger population sizes have shown
that the fitting process becomes increasingly unpractical after a few iterations. The
probability of reducing the loss through random mutations and cross-overs shrinks
over time. Hence, it is preferable to continue using a gradient-based method for
finetuning, like the SPSA algorithm. The result of the fit is shown in Figure 4.2.
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Figure 4.2: SPSA fit of the 1-qubit model. We observe the noisy nature of the loss
function. The loss appears to level out at a value of around 0.03.

The SPSA algorithm has two hyper-parameters: The initial learning rate A and
the initial gradient-shift step size B. Without thoroughly investigating the optimal
parameters, the values A = 0.2 and B = 0.1 achieved good results. The final loss is
0.0307.

4.1.1.1 Results

A benefit of having a 1-qubit minimal example is that we can visualize the state
vectors on a Bloch sphere (see Figure 4.3). The two verbs smooth and register,
which mark the senses of the ambiguous word file, denote the poles of the Bloch
sphere (|smooth〉 = |0〉 and |register〉 = |1〉). The noun states are visualized as dots
on the bloch sphere. As expected, we see that the nouns align according to their
usage in the text corpus; nouns that occure with smooth (nail, steel, . . . ) are drawn
towards the |0〉 pole, and those who occure with register (account, application, . . . )
align close to the |1〉 pole. That confirms the underlying distributional assumption
of language, i.e., words with similar meaning remain close within the vector space.
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(a) Initial state (after GA). (b) 100 SPSA iterations.
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(c) 200 SPSA iterations. (d) 400 SPSA iterations.

Figure 4.3: Evolution of the word states during the SPSA fit. Verb states are
depicted as vectors and noun states as points. Red dots indicate nouns that occur
in the context of smooth and blue dots indicate nouns that occur in the context of
register. The green arrow indicates the quantum state of the word file.

To further investigate the results, we split the dataset in three parts: Sentences with
low co-occurrence score (register nail, 0), sentences with high co-occurrence score
(smooth nail, 1), and sentences containing the ambiguous verb (file nail, 1). We
then compare the similarity of the annotated score (binary) to the prediction of the
model (see Figure 4.4). We see that the model performs fairly well for sentences
containing abstract senses register and smooth. Visually this is explained by the
position of the noun states on the Bloch sphere (see Figure 4.3 (d)). All nouns are
in close vicinity to the poles; thus, they compose well with the states of the abstract
senses |0〉 and |1〉.
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Figure 4.4: Similarity scores of the ground truth and the predicted score for the
1-qubit model. The dataset is split into three parts (low/ high co-occurrence of
words and sentences containing the ambiguous verb). A score of 1 equals a per-
fect prediction. Scores above 1 are due to probabilistic artifacts of the quantum
simulator.

However, looking at the predicted scores of the model on sentences containing the
ambiguous verb, we see a clear drop in performance. We find that the quantum
state of file is

|file〉 = −0.714 |smooth〉 − 0.700i |register〉 (4.1)

which confirms the initial assumption that |file〉 is a superposition of the abstract
senses, where the modulus squared of the amplitudes is approximately 0.5. However,
that also means that we can not achieve a perfect score with this model, as a noun
state that composes perfectly with |register〉 would only return a score of 0.5 if
composed with |file〉. A solution to this problem would be to scale the quantum
state of |file〉 such that the modulus squared of the amplitudes is approximately
1, or to introduce a non-linear activation function applied to the outcome of the
quantum model. For the following 3-qubit model on the full dataset we decide to
scale the quantum states of the ambiguous verbs accordingly.
Finally, we record a Spearman’s rank correlation coefficient ρ between the predictions
and the human annotations of ρ = 0.8171 (p < 0.01), indicating a high correlation
between the model’s predictions and the true values.
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4.1.2 3-qubit Model
Here we examine the results of the 3-qubit model used on the whole dataset. The
theory is laid out in Section 3.1.2. Note that the process differs slightly from the 1-
qubit model. Due to the size of the dataset, we feed the SPSA algorithm with batches
of size 4, where we separate the fitting process of the nouns and the ambiguous
verbs. Furthermore, we investigate two different ansätze for the ambiguous verbs
(see Figure 2.10 and 2.11). Note that we scale the amplitude of the ambiguous verbs
by a factor of

√
2 to guarantee an optimal fit of the model.

Fitting the model To facilitate the fitting process, we first fit the parameters of
the noun ansätze. The dataset contains 35 nouns, and three parametrized rotations
define each noun. Hence, there are 105 parameters to optimize. Fitting a larger
amount of parameters is optimally done by feeding the SPSA algorithm with batches.
The MSE loss over the epochs is presented in Figure 4.5.
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Figure 4.5: SPSA fit of the 3-qubit model - nouns only. The process is seemingly
less affected by noise, which is due to the recording of the data after each epoch.
Each epoch consits of many SPSA iterations, which compensates for the original
noise.

As we can see, the nouns can be represented perfectly within the model. This is
due to the simple composition of the model and the fact that each noun only shares
high similarity with one verb sense. Consider the example of the sense verb accuse:
In our model, accuse is represented by the basis state |100〉. Hence, all nouns that
compose with accuse (e.g. offender, defendant) are optimally represented by the
〈100| effect, which is just a π-rotation (bit-flip) on the first qubit, and is a rather
simple scenario to learn.
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As previously mentioned, we seek to compare the performance of the two ansätze
used for the ambiguous verbs, which is why we have separated the learning process
of the nouns and the verbs. The MSE loss curve of the verb process is shown in
Figure 4.6.
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Figure 4.6: SPSA fit of the 3-qubit model - ambiguous verbs only.

We can see that using the Strongly Entangling Layer as verb ansatz yields a far better
fit than using the CNOT+U(3) ansatz. Within a few SPSA steps, we see that the loss
for the Strongly Entangling Layer experiment drops to zero, while it appears that
the CNOT+U(3) layer cannot generalize correctly. When using the CNOT+U(3)
layer, the loss levels out at a value around 0.1, which is not satisfying, given that
the model should fit the data perfectly. One possible reason for the performance
discrepancy of both ansätze is that the Strongly Entangling Layer only uses nine
parameters instead of the 14, which the CNOT+U(3) ansatz uses. Additionally, it
may be impossible to reach all superpositions using the CNOT+U3 ansatz. However,
the last assertion is not validated and would require a thorough analysis.

4.1.2.1 Results

Following the analysis of the 1-qubit model, we record the similarities values of the
model’s predictions compared to the ground truth. Recall that a value of 1 is the
optimal score, and values that are slightly above one occur due to statistical artifacts
from the quantum model in combination with the amplitude scaling factor of

√
2.

The results for the 3-qubits model using the Strongly Entangling Layer are displayed
in Figure 4.7

40



4. Results

High Low Amb
Type

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Si
m

ila
rit

y

Figure 4.7: Similarity scores for the 3-qubit model using the Strongly Entangling
Layer as ambiguous verb ansatz. The results are separated into sentences with high
word co-occurrence (“register account”), low word co-occurrence (“register nail”),
and sentences containing ambiguous verbs (“file nail”).

As already indicated by the fitting curves in Figure 4.5 and Figure 4.6, the model
captures the data excluding the ambiguous verbs quite perfectly. Interestingly, we
observe a small error bar for sentences with high degree of truth, while sentences
with low degree of thrut are captured perfectly. That may be caused by sentences
with high word co-occurrences, where the noun and verb ansätze have to match
perfectly (for example |verb〉 = |noun〉 = |000〉), while for sentences with low word
co-occurrences any non-equal combination of basis states would return a measure-
ment result of zero.

Comparison of CNOT+U(3) and Strongly Entangling ansätze Plotting
the results for sentences containing the ambiguous verbs for both different ansätze
confirms that the Strongly Entangling ansatz is more versatile and captures the data
better.
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Figure 4.8: Comparison of CNOT+U(3) and Strongly Entangling ansätze for am-
biguous verbs.
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Using the strongly entangling ansatz, we achieve a median similarity score of 0.99,
while the CNOT+U(3) ansatz only yields a median score of 0.87. Considering
the fitting process in Figure 4.6, we conclude that the data indicate substantial
advantages of the strongly entangling ansatz over the CNOT+U(3) ansatz. Thus,
for all further experiments, we use only the strongly entangling ansatz.

4.1.2.2 Comparing the verb state amplitudes

We have encoded the unambiguous verb-sense into the basis states of the 3-qubit
system. Hence, we analyse the state vectors of the fitted ambiguous verbs and
verify that the superpositions contain the correct verb sense (see Equation 2.6).
Each ambiguous verb is described by a 8-dimensional complex vector that lives in a
Hilbert space:

|amb-verb〉 =



·
·
·
·
·
·
·
·



knock

carry

drip

smooth

accuse

intercept

register

bill

(4.2)

After fitting the model, we record

|file〉 =



0.− 0.02i
0.01 + 0.i
−0.+ 0.i
−0.64 + 0.31i
−0.01 + 0.01i
−0.01 + 0.01i
0.65 + 0.28i

0.− 0.i



_ knock

_ carry

_ drip

� smooth

_ accuse

_ intercept

� register

_ bill

|charge〉 =



0.+ 0.01i
0.+ 0.i
0.− 0.i
−0.01 + 0.i
−0.15 + 0.69i

0.+ 0.i
−0.+ 0.i

0.66− 0.26i



_ knock

_ carry

_ drip

_ smooth

� accuse

_ intercept

_ register

� bill

|dribble〉 =



0.+ 0.i
0.22− 0.67i
0.11− 0.7i

0.+ 0.i
−0.+ 0.i
−0.02 + 0.01i
−0.02 + 0.i
−0.+ 0.i



_ knock

� carry

� drip

_ smooth

_ accuse

_ intercept

_ register

_ bill

|tap〉 =



−0.05 + 0.71i
0.+ 0.j
−0.− 0.02i
−0.− 0.i
−0.+ 0.i

0.65 + 0.27i
−0.+ 0.i

0.02− 0.01i



� knock

_ carry

_ drip

_ smooth

_ accuse

� intercept

_ register

_ bill

We see that the amplitudes of the basis states that correspond to the correct word
senses are high, while all other values are zero, neglecting small fluctuations from
the imperfect fitting process. In conclusion, we denote that the word-sense disam-
biguation based on the superposition model works as intended, and experiments
with larger datasets may be conducted on this basis.
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4.2 Disambiguation based on density matrices

In this section we cover the results of the model presented in Section 3.2.

4.2.1 Fitting the model
Recall that we load the vector representation of the nouns through a QRAMmethod.
Hence, the only quantum word representations we have to learn are those of the
unambiguous sense verbs. The ambiguous verbs are later modeled as mixed states
of their senses. The loss curve for the fitting process is given in Figure 4.9
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Figure 4.9: Loss curve for the fit of the unambiguous sense verbs. The blue
curve depicts the MSE loss over the SPSA epochs, the red dashed line indicates the
baseline determined by the linear model from Section 3.2.3.

The noun vectors are 4-dimensional data arrays. Thus, the model consists of two
qubits. We use the 2-qubit strongly entangling layer as verb ansatz. The baseline
analysis reveals a minimum possible mean-squared error of 0.0723. However, the
model levels out at a loss of 0.119. The discrepancy between the quantum model
and the baseline could be caused by the SPSA algorithm getting stuck in a local
minimum or due to an unsuitable verb ansatz. However, testing the CNOT+U(3)
ansatz did not improve the results. Although the fit is not perfect, we assume that
it is sufficient for further analysis.

4.2.2 Constructing the density matrices
Extracting the state vectors of the verb ansätze lets us calculate the density matrices
of the ambiguous verbs. In the example of “file”, this is
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ρfile = 1
2 |register〉 〈register|+

1
2 |smooth〉 〈smooth| (4.3)

=


0.439 0.052 + 0.112i 0.024− 0.034i −0.152− 0.079i

0.052− 0.112i 0.446 −0.128− 0.059i −0.019 + 0.048i
0.024 + 0.034i −0.128 + 0.059i 0.046 −0.01− 0.019i
−0.152 + 0.079i −0.019− 0.048i −0.01 + 0.019i 0.069


The resulting density matrices are listed in Appendix A.3. To determine the level
of uncertainty of the system described by the density matrix, we calculate the von
Neumann entropy S for each ambiguous verb:

S(ρfile) = 0.6554 S(ρdribble) = 0.6695
S(ρtap) = 0.6849 S(ρcharge) = 0.6456.

Given that for a system living in a 4-D Hilbert space, the von-Neumann entropy is
maximal ln(4) = 1.39. Hence, we denote that the lexical ambiguity of the four verbs
is fairly high. Composing the ambiguous verbs with their context words according
to Equation 3.11, let us compute the disambiguation power. Furthermore, we com-
pare the disambiguation power of the valid context words to those of random word
vectors that have little similarity to the context words. The results are depicted in
Figure 4.10.
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Figure 4.10: Disambiguation power of context words vs. random vectors. Context
words are nouns that co-occur with the ambiguous word (e.g. “application” with
“file”), whilst the control group consits of random vectors that share little similarity
with all context words.

We record data from ncontext = 35 real verb-context pairs and a random sample group
of size nrand = 350. The median disambiguation power of the context words is 0.31,
while we record a value of 0.18 using random noun vectors. Testing the difference in
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distribution using Wilcoxon rank-sum test yields a p value of p = 0.298. Hence, there
is no proven effect of the disambiguation on the von Neuman entropy. Looking at
the whiskers of the box plot, we denote that the disambiguation power, both for the
context word group and the randomized control group, ranges within the complete
spectrum of [0, 1]. We conclude that the measure of the disambiguation power using
the von-Neumann entropy is not sufficient to show a successful disambiguation.
Therefore, we continue to record the word similarities of the disambiguated verbs
with their intended sense meaning according to Equation 3.16. Take the example of
“file”. We disambiguate ρfile by composing it with the density matrix of the context
verb “account”:

ρfile, account = ρfile � |account〉 〈account| . (4.4)
Now we calulate the similarity between the disambiguated densisty matrix ρfile, account
and the abstract senses ρregister and ρsmooth through Equation 3.16. We then record
the difference of the calculated similaries to the recentered ground truth values, such
that a higher score eqals a better model:

Low Similarity: s1 = Tr(ρ†smooth ρfile, account) Recorded value: |1− s1|
High Similarity: s2 = Tr(ρ†register ρfile, account) Recorded value: |s2|

Furthermore, we calculate the similarity of randomly disambiguated words to the
original senses. In other words, we calculate the composition

ρfile, random = ρfile � |random〉 〈random| (4.5)
and calculate also the similarity to the abstract senses ρregister and ρsmooth. In an
ideal model, those similaries should be low. The results are shown in Figure 4.11.
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Figure 4.11: Similaries of the disambiguated verbs to their sense verbs in com-
parison to those disambiguated by randomly initialized density matrices and the
supposed senses.
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We test the difference in distribution for the similarities of the proper disambiguated
verbs and those disambiguated through random density matrices by usingWilcoxon’s
rank-sum test. For the ambiguous verbs “dribble” and “tap” we record a p-value
below 0.05 (see Table 4.1).

Verb Wilcoxon p-value
file 0.217
dribble < 0.01
tap < 0.01
charge 0.942

Table 4.1: Wilcoxon’s rank-sum test results after verb disambiguation.

Although failing for the verbs “charge” and “file”, we see light evidence for successful
disambiguation of ambiguous verbs by composing them with context nouns through
the Hadamard multiplication. This result indicates a possible benefit of representing
words as density matrices and performing a prior disambiguation. However, more
sophisticated models for the prior word disambiguation have to be evaluated to
confirm the validity of the density matrix formalism.
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5
Conclusion

In this work, we examined the theory and practical application of the Composi-
tional Distributional Model of Meaning applied to a word disambiguation task. We
introduced the mathematical background of the model and discussed possible appli-
cations using quantum computers. Furthermore, we gave an overview of the CPM
model, developed by Piedeleu et al. [27] and Kartsaklis [19], based on mixed quan-
tum states. All calculations were carried out using a simulator for quantum circuits.
The code is published on Github1.

5.1 Discussion

For both the disambiguation models based on superposition (Section 3.1) and on
density matrices (Section 3.2), we showed that encoding the meaning of ambiguous
verbs into the proposed word embeddings yields meaningful results. We have seen a
method of composing the ambiguous verb with a context noun to disambiguate it for
both models. Statistically, we denote that encoding the ambiguous verb based on the
superposition model yields more stable results. However, in a real-world scenario,
encoding all possible verb senses of ambiguous words into a superposition of qubit
states would require such a high-dimensional vector space that it is questionable
whether learning a valid word representation is feasible. Therefore, the CPM model
proposes a more natural way of encoding ambiguous word meanings. Here, we
encode the standalone meanings of words (i.e., their senses) as vectors in a sufficiently
large vector space. Words with multiple meanings are then encoded into density
matrices of mixed quantum states, which carry more information than, for example,
just a linear combination of vectors. However, one disadvantage of the CPM model
is that the composition of words on a quantum circuit has not been carried out
yet. Thus, we investigated a compositional model proposed by Kartsaklis [19],
which uses the Hadamard product to compose density matrices of word meanings.
Unfortunately, by conducting the experiment using classical operations, we lose
the quantum advantage of the model. Although we see some statistical evidence
for successful disambiguation (see Figure 4.11) using density matrices, the results
have to be taken with a grain of salt. We can only show significant results for
two of four ambiguous verbs, namely the verbs dribble and tap. Additionally, the
underlying dataset has been developed exclusively for the task, and further real-
world evaluations need to be conducted to verify or falsify the approach.

1https://github.com/Thommy257/Quantum-Models-for-Word-Sense-Disambiguation
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5.2 Feasibility analysis
In general, it is not an easy task to prove the superiority of a quantum algorithm
over its classical counterpart. However, because the Compositional Distributional
Model of Meaning relies on the tensor product of vector spaces, we know that the
memory usage on a classical computer would increase exponentially with the sen-
tence length. At the same time, the quantum version only grows linearly in the
number of qubits. Therefore, we know that, on a large scale, the model can only
be computed efficiently on quantum devices. Nevertheless, criticisms of a purely
quantum model are that quantum states are always l2-normalized, i.e., even for a
very high-dimensional Hilbert space, the state-space is highly limited. Hence, em-
bedding word meanings into quantum states could be challenging. Furthermore, the
error rate of the quantum operations can destroy any quantum advantage the model
has over classical NLP approaches. With current NISQ-devices, only comparably
small CDM models can be implemented ([24], [23]), and it is still unclear when
fault-tolerant and scalable quantum computers will be available.
Another issue that might occur is related to the compositional structure of the
model: Grammar rules are directly encoded into the model. However, before we
implement them, we have to know them. For many decades, researchers have tried
to identify a comprehensive set of rules for different languages [22], [21], [26], which
happens to be unsolved, even for grammatically simple languages like English [34].
Moreover, we require a text parser that determines the word types in a sentence
correctly. Such a parser may need additional resources for training and inference,
which could undermine a quantum advantage even further.
Last but not least, the Compositional Distributional Model of Meaning appears
to be well-studied for the English language; applying it to other languages is, on
the other hand, not an easy task. Although some languages share some linguistic
concepts in common, many rely on vastly different sets of grammatical rules. Hence,
the model lacks the flexibility of state-of-the-art language models based on neural
networks. Those networks infer the grammatical structure of a language from large
corpora, making them versatile for different languages and a wide variety of NLP
tasks.

5.3 Outlook and open questions
Further investigation is needed to implement a circuit model for the CPM model
based on density matrices. The composition of words as mixed states through quan-
tum operations like the “fuzz” and “phaser” operations introduced by Coecke and
Meichanetzidis [10] shall be implemented and analyzed thoroughly. Furthermore,
larger and more complex datasets (i.e., datasets with more cross-occurrences of
senses and nouns) shall be used to fit the model to resemble real-life applications.
Applying the Compositional Distributional Model of Meaning on tasks like docu-
ment retrieval could mark a significant leap forward for web searches. By embed-
ding web pages into quantum states, we could benefit from the speed-up provided
by Grover’s algorithm to find matching pages for a given query.
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A
Appendix

A.1 Full dataset

sentence score

file account 1
register account 1
smooth account 0
file nail 1
register nail 0
smooth nail 1
file charge_n 1
register charge_n 1
smooth charge_n 0
file tooth 1
register tooth 0
smooth tooth 1
file application 1
register application 1
smooth application 0
file steel 1
register steel 0
smooth steel 1
file lawsuit 1
register lawsuit 1
smooth lawsuit 0
file shank 1
register shank 0
smooth shank 1
file declaration 1
register declaration 1
smooth declaration 0
charge rate 1
bill rate 1
accuse rate 0
charge person 1
bill person 0
accuse person 1
charge price 1
bill price 1
accuse price 0

sentence score

charge demonstrator 1
bill demonstrator 0
accuse demonstrator 1
charge rent 1
bill rent 1
accuse rent 0
charge defendant 1
bill defendant 0
accuse defendant 1
charge interest 1
bill interest 1
accuse interest 0
charge fee 1
bill fee 1
accuse fee 0
charge offender 1
bill offender 0
accuse offender 1
charge commission 1
bill commission 1
accuse commission 0
tap table 1
intercept table 0
knock table 1
tap telephone 1
intercept telephone 1
knock telephone 0
tap tree 1
intercept tree 0
knock tree 1
tap conversation 1
intercept conversation 1
knock conversation 0
tap resource 1
intercept resource 1
knock resource 0

sentence score

tap pencil 1
intercept pencil 0
knock pencil 1
tap door 1
intercept door 0
knock door 1
tap network 1
intercept network 1
knock network 0
tap market 1
intercept market 1
knock market 0
tap floor 1
intercept floor 0
knock floor 1
dribble ball 1
carry ball 1
drip ball 0
dribble wine 1
carry wine 0
drip wine 1
dribble blood 1
carry blood 0
drip blood 1
dribble melon 1
carry melon 0
drip melon 1
dribble tea 1
carry tea 0
drip tea 1
dribble sphere 1
carry sphere 1
drip sphere 0

I
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A.2 Noun vectors

account [-0.915559 -0.290692 -0.023149 0.276973]
application [-0.628319 -0.341554 -0.677950 -0.170117]
ball [ 0.744622 0.504402 0.344781 -0.268779]
blood [ 0.639304 0.621144 0.240529 0.384209]
charge_n [-0.892284 0.298885 0.137742 -0.309069]
commission [-0.653919 -0.378497 -0.639725 0.141004]
conversation [-0.399987 0.007231 -0.828033 0.392835]
declaration [-0.388970 -0.280224 -0.709476 0.516547]
defendant [-0.662875 0.646758 0.059432 0.372516]
demonstrator [-0.111074 0.260220 -0.460983 -0.841096]
door [ 0.728066 0.090073 -0.097129 -0.672587]
fee [-0.675151 0.039193 0.736544 0.011742]
floor [ 0.531391 -0.188479 -0.093965 -0.820530]
interest [-0.842534 -0.473995 0.255117 0.019525]
lawsuit [-0.766359 0.395978 -0.059764 0.502318]
market [-0.073115 -0.933648 0.315943 -0.152103]
melon [ 0.884770 -0.233734 0.059027 0.398831]
nail [ 0.697880 0.702173 -0.113680 0.083622]
network [-0.334869 -0.585165 -0.640153 -0.368305]
offender [-0.690536 0.686349 0.221559 0.054736]
pencil [ 0.764767 0.381652 -0.516504 -0.051939]
person [-0.724748 0.649681 -0.228809 0.017373]
price [-0.114293 -0.098936 0.985751 -0.073780]
rate [-0.399495 -0.419783 0.625650 -0.522253]
rent [-0.358408 -0.089284 0.926873 -0.066926]
resource [-0.544162 -0.759249 -0.347160 -0.083120]
shank [ 0.674325 0.710080 0.135126 -0.151040]
sphere [ 0.059612 -0.374176 -0.766280 -0.518897]
steel [ 0.820411 0.510913 -0.256681 -0.002872]
table [ 0.707534 -0.700584 0.054560 0.074840]
tea [ 0.635152 -0.542467 0.230359 0.499245]
telephone [-0.407338 -0.815928 -0.410218 0.007694]
tooth [ 0.669310 0.721324 -0.039959 -0.173547]
tree [ 0.954451 -0.223417 -0.121512 -0.156021]
wine [ 0.529559 -0.294460 0.329419 0.724115]
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A.3 Density matrices

ρfile =
0.4387 + 0.i 0.0521− 0.1117i 0.0244 + 0.0339i −0.1524 + 0.0791i

0.0521 + 0.1117i 0.4463 + 0.i −0.1279 + 0.0594i −0.0189− 0.0476i
0.0244− 0.0339i −0.1279− 0.0594i 0.0461 + 0.i −0.0103 + 0.0193i
−0.1524− 0.0791i −0.0189 + 0.0476i −0.0103− 0.0193i 0.0689 + 0.i



ρdribble =
0.4357 + 0.i 0.0673 + 0.0108i −0.1232− 0.0402i 0.1323− 0.0738i

0.0673− 0.0108i 0.0894 + 0.i −0.0756− 0.0733i −0.0839− 0.1228i
−0.1232 + 0.0402i −0.0756 + 0.0733i 0.1403 + 0.i 0.1381 + 0.0182i
0.1323 + 0.0738i −0.0839 + 0.1228i 0.1381− 0.0182i 0.3346 + 0.i



ρtap =
0.4555 + 0.i 0.0599 + 0.0134i 0.0984− 0.0269i −0.1325 + 0.0775i

0.0599− 0.0134i 0.3297 + 0.i 0.1851− 0.015i 0.1045− 0.0129i
0.0984 + 0.0269i 0.1851 + 0.015i 0.1161 + 0.i 0.0319− 0.0024i
−0.1325− 0.0775i 0.1045 + 0.0129i 0.0319 + 0.0024i 0.0986 + 0.i



ρcharge =
0.2162 + 0.i −0.2205− 0.0354i 0.0012− 0.0824i 0.0042 + 0.0756i

−0.2205 + 0.0354i 0.2318 + 0.i 0.0325 + 0.0791i −0.0229− 0.071i
0.0012 + 0.0824i 0.0325− 0.0791i 0.4591 + 0.i −0.1784 + 0.0793i
0.0042− 0.0756i −0.0229 + 0.071i −0.1784− 0.0793i 0.0929 + 0.i


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A.4 Initializing mixed states on a quantum circuit
A mixed quantum state is fundamentally different from a pure quantum state. How-
ever, in terms of quantum circuits, we are usually dealing with well-defined pure
quantum states. To represent mixed states, we need to apply some tricks. One
possibility is to represent the statistical ensemble of pure states by initializing each
state probabilistically. However, this requires us to run the algorithm many times
and sample the results. Another possibility is to entangle the states of the ensemble
to ancilla qubits and discarding them afterward.

Procedure Consider two words |word1〉 and |word2〉, which are represented as
states of a multi-qubit system. Suppose that these words encode the senses of an
ambiguous word with equal probabilities, we can write the density matrix of such a
word as

ρ = 1
2 |word1〉 〈word1|+

1
2 |word2〉 〈word2| (A.1)

To represent the mixed state in a circuit, we first initialize the state

|ψ〉W⊗A = 1√
2

(|word1〉W |0〉A + |word2〉W |1〉A) (A.2)

where the words live in a qubit register denoted by W and the ancilla qubit(s) in
register A. Such a state can be initialized by the circuit shown in Figure A.1.

A : |0〉 H • X • X

|0〉

U2 U1. . .

|0〉

W :

Figure A.1: Quantum circuit to initialize the state shown in Equation A.2. U1
and U2 act as state preparation unitaries s.t. Ui : |0〉⊗|W | → |wordi〉.

Evidently, the density matrix of the purified state |ψ〉W⊗A follows:

ρWA = |ψ〉 〈ψ|W⊗A = 1
2 (|word1〉W |0〉A + |word2〉W |1〉A)

· (〈word1|W 〈0|A + 〈word2|W 〈1|A)

= 1
2((|word1〉 〈word1|W ⊗ |0〉 〈0|A)

+ (|word1〉 〈word2|W ⊗ |0〉 〈1|A)
+ (|word2〉 〈word1|W ⊗ |1〉 〈0|A)
+ (|word2〉 〈word2|W ⊗ |1〉 〈1|A)).
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Tracing out (i.e. discarding) the ancilla A then leaves register W in the mixed state
ρ as defined in Equation A.1:

TrA(ρWA) = 1
2(TrA (|word1〉 〈word1|W ⊗ |0〉 〈0|A)

+ TrA (|word1〉 〈word2|W ⊗ |0〉 〈1|A)
+ TrA (|word2〉 〈word1|W ⊗ |1〉 〈0|A)
+ TrA (|word2〉 〈word2|W ⊗ |1〉 〈1|A))

= 1
2 |word1〉 〈word1|W + 1

2 |word2〉 〈word2|W .

To initialize other mixtures, one could increase the number of ancilla qubits and
replace the Hadamard gate in Figure A.1 with a parametrized Ry rotation.
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