} CHALMERS | (@}}) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

=machine..
\\ o® Detecti
sedur rity ific rgou
bl
jrammg WOork "~ QZ esripes
S within O Zeotecive
.75 .Q‘b 'K detect\p Event
f&Y
:2\ § o) hour: section
te%’N overall 5 Ca,
log
lengthy\(o @ \ :Oo
discusse ‘.”a‘”\ hour r e /
' b(,)b\ﬁ\? (A LI ’”
,,,,,,,,, x 5 @ B H [;
@E\ OAQ&\\QS{“ a‘» thide a PIOLS @areaey ‘\\S_Q f/on(ext
S & -9 Note ‘autoencoderioss g .If
T l Results 3 A similar
Va ue ccccc cases @ Theory contrOIChapter
InSta nce o] facross gt ereforecatehgo ry
Ui ElUSteR o5
analysis ,(P% K \)
example

Anomalg .recons Ces“a OulE’lpc!ﬂtEnt

C 1O Nelevant Systhemfunct\on

Security Log Analysis with
Explainable Machine Learning

Master’s thesis in Computer Science and Engineering

Linus Aronsson
Aron Bengtsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2021

MASTER’S THESIS 2021

Security Log Analysis with
Explainable Machine Learning

Linus Aronsson

Aron Bengtsson

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Security Log Analysis with Explainable Machine Learning
Linus Aronsson
Aron Bengtsson

© Linus Aronsson, Aron Bengtsson, 2021.

Supervisor: Magnus Almgren, Department of Computer Science and Engineering
Advisor: Rikard Bodforss, Bodforss Consulting AB
Examiner: Tomas Olovsson, Department of Computer Science and Engineering

Master’s Thesis 2021

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: A word cloud in the shape of a lock of the most used words in this thesis.

Typeset in KTEX
Gothenburg, Sweden 2021

v

Security Log Analysis with Explainable Machine Learning

Linus Aronsson
Aron Bengtsson

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG

Abstract

Physical access control systems are implemented to restrict access in order to prevent
attacks from happening in the physical space. These systems usually produce access
logs that contain information to track accesses made by users. The access logs can
however end up becoming large and difficult to interpret, making security assessment
impractical for administrators and as a consequence, the logs are rarely inspected.
The current method of detecting anomalies by manual inspection is often not a
feasible approach in preventing attacks. For this reason, anomaly detection using
machine learning is a method that can aid administrators in detecting attacks and
being able to proactively prevent them from happening again. In this thesis, we first
analyze users from a dataset of physical access logs and cluster them into groups
with similar behavior based on their access pattern. Next, we train two LSTM
autoencoder models for each cluster in order to detect anomalies of two different
access sequence lengths. Finally, we evaluate the model with the help of a security
expert from the industry by reviewing explanations produced using SHAP values.
The results in this thesis show that our method was able to reduce the number of
log events that need to be manually inspected by 95.6% in the given dataset. The
results also show that the explanations provided by SHAP values was able to help
in understanding what caused an anomaly. In conclusion, our proposed method is
advantageous compared to manual inspection as it greatly reduces the amount of
work required to detect anomalies, and the SHAP values are able to help security
administrators to work in a more proactive manner.

Keywords: security, physical access control, anomaly detection, machine learning,
deep learning, LSTM autoencoder, explainability, SHAP.

Acknowledgements

We would like to acknowledge everyone who has helped and supported us during this
project. We would like to thank our advisor Rikard Bodforss at Bodforss Consulting
AB for allowing us to work on this project and for his assistance throughout the
project. His expertise in the security domain was very useful in discussions on how
to evaluate the project. We would also like to thank our supervisor Magnus Almgren
at Chalmers for his thorough feedback on writing our thesis and for his guidance
during discussions on the project.

Linus Aronsson, Aron Bengtsson, Gothenburg, June 2021

vii

Contents

List of Figures xiii
List of Tables xvii
List of Listings Xix
1 Introduction 1
1.1 Background and Motivation L. 1
1.2 Problem Description 2
1.3 Goalsand Scope 2
1.4 Delimitations 3
1.5 Thesis Outline 3

2 Related Work 5
3 Theory 7
3.1 Access Control 7
3.1.1 Role-Based Access Control 7

3.1.2 Physical Access Control 7

3.1.3 Physical Security Threats 8

3.2 Anomaly Detection 8
3.2.1 Types of Anomalies 9

3.3 Machine Learning oo 10
3.3.1 Supervised Learning 10

3.3.2 Unsupervised Learning 11

3.3.3 Overfitting and Underfitting 12

3.3.4 Dataset Shift 12

3.3.5 Feature Engineering 13

3.3.6 Data Preprocessing L. 14

3.3.7 Explainability and Interpretability 15

3.3.8 Loss Functions 16

3.4 Machine Learning Models 17
3.4.1 Agglomerative Hierarchical Clustering 18

3.4.2 Principal Component Analysis 18

3.4.3 t-Distributed Stochastic Neighbor Embedding 19

3.4.4 Recurrent Neural Network 19

3.4.5 Autoencoder 20

ix

Contents

4 Analysis of Access Logs

4.1 Introduction
4.2 Log Format
4.3 Events L
4.4 Door Analysis
4.5 User Analysis

4.5.1 User Movement

4.5.2 Access Category

4.5.3 Categorization of User Behavior
4.6 Log Analysis Conclusions

5 Method

5.1 Clustering of Users
5.1.1 Clustering

5.1.2 Visualization of Clusters
5.2 LSTM Autoencoder Architecture
5.3 Anomaly Detection Framework
5.3.1 Offline Learning
5.3.2 Online Anomaly Detection
5.3.3 Discussion of Anomaly Detection
5.4 Model Explainabilityo oo
5.5 Evaluation
6 Results
6.1 Training Processo
6.2 Anomaly Thresholds,
6.3 Global Evaluation o0
6.3.1 Point Anomalies
6.3.2 Collective Anomalies
6.4 Local Evaluation,
6.4.1 Point Anomalies
6.4.2 Collective Anomalies

7 Discussion and Conclusion

7.1 Training Process

7.2 Training Thresholds
7.3 Global Evaluation
7.3.1 Point Anomalies
7.3.2 Collective Anomalies
7.4 Local Evaluation
7.4.1 Point Anomalies
7.4.2 Collective Anomalies
7.5 Ethical Considerations and Sustainability
7.6 Conclusions and Future Work

7.7 Final Conclusion

References

23
23
24
25
26
27
27
31
36
37

41
41
42
43
45
46
47
52
95
26
o8

59
29
59
29
29
64
64
64
64

75
5
75
76
76
7
7
7
80
83
83
86

89

Contents

A Appendix 1 I
Al Events I

X1

Contents

xii

3.1
3.2

3.3
3.4

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

0.1

List of Figures

Transformation from original data to one-hot encoded data. 14
SHAP values illustrating the contribution of each feature to the output.

From [4]. 16
Dendrogram of a hierarchical clustering. 18
Basic RNN architecture. Left: Rolled RNN. Right: Unfolded RNN

over time.o 20
The door access frequency for the four dominant events. 28

Visualization of the distribution of the average number of events per
day for each user. The average number of events in a day across all
users is 2.8. 73 out of 671 users have an outlying average. 29
Most common door access sequences of any length from the same day.
The 20 most common sequences are shown. There are 7,417 unique
sequences taken in one day across all users in total. 30
Most common door access sequences of length two regardless of the
day. The 20 most common sequences are shown. There are 149 such
unique sequences across all usersin total. 31
Most common door access subsequences of length two from the same
day. The 25 most common subsequences are shown. There are 148
subsequences of length two in total. 32
Most common door access subsequences of length three from the same
day. The 25 most common subsequences are shown. There are 532
subsequences of length three in total. 32
Most common door access subsequences of length four from the same
day. The 25 most common subsequences are shown. There are 1,272
subsequences of length four in total. 33
An approximate layout of the building only based on analysis of the log
data. The numbers correspond to how many times two door accesses
have occurred in sequence. 34
The two most significant components plotted for PCA (a) and t-SNE
(b). The dimensionality reduction is based on 45 original user features.
Additionally, the access category of each user is visualized in the plots. 38

t-SNE based clusters of data with access categories AClor AC2 are
shown in (a). Similarly, t-SNE based clusters of data with access
categories AC3or AC4are shownin (b). 44

xiii

List of Figures

Xiv

5.2

2.3

5.4

2.5

2.6
2.7
2.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9
6.10
6.11

6.12

6.13

Distribution of door accesses for each cluster. The y-axis correspond
to the mean across all users in the corresponding cluster. 44
Distribution of weekday accesses for each cluster. The y-axis corre-
spond to the mean across all users in the corresponding cluster. . . . 45
Distribution of accesses at all hours of the day for each cluster. The
y-axis correspond to the mean across all users in the corresponding
cluster. 46
A visualization of the autoencoder architecture used to train each of
the models. Numbers in parantheses correspond to the number of

units in the hidden states of the different networks. 47
A flowchart describing the anomaly detection framework. 48
Real-time anomaly detection workflow. 53

Visualization of the addition of a new output layer (i.e., the recon-
struction error) such that SHAP values can be computed. 57

Training and validation loss vs epoch plotted for each cluster and

sequence length. 60
Reconstruction error distributions for the training and test sets for
n=1. . . 61
Reconstruction error distributions for the training and test sets for
N=2. . e 62
Distribution of door accesses for each cluster for normal (a) and
anomalous (b) instances. This is based on predictions forn =1. . . . 63

Distribution of weekday accesses for each cluster for normal (a) and
anomalous (b) instances. This is based on predictions forn =1. . . . 63
Distribution of accesses at all hours of the day for each cluster for
normal (a) and anomalous (b) instances. This is based on predictions
form=1. 63
Distribution of SHAP values for all normal (a) and anomalous (b)
instances for each feature in each cluster. This is based on predictions
for n = 1. Each point corresponds to the average of 100 retrievals of
the SHAP value for a particular instance. 65
SHAP values plotted against the reconstruction error for each feature
in each cluster. The SHAP value for each instance corresponds to the
average of 100 retrievals.o L 66
The 15 most common sequences in each cluster for anomalous instances. 67
The 15 most common sequences in each cluster for normal instances. 68
Distribution of SHAP values for all normal (a) and anomalous (b)
instances for each feature in each cluster. This is based on predictions
for n = 1. Each point corresponds to the average of 100 retrievals of

the SHAP value for a particular instance. 69
Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances forc=1andn=1. 70
Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances forc=2andn=1. 70

List of Figures

6.14 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances for ¢ =3 and n = 1. ..

6.15 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances for ¢ = 4 and n = 1. ..

6.16 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous instances for all clusters forn=2.

72

73

XV

List of Figures

Xvi

4.1
4.2
4.3

4.4

4.5
4.6

4.7

5.1
5.2
5.3

5.4

2.9

5.6

6.1
6.2

Al

List of Tables

Specific anomalies defined in this project.
General statistics regarding the physical access logs.
Event distribution. There are 50 types of events in total. Only the
relevant events are shown. The user events have been labeled for easier
reference.
Door reference distribution across all user related events. There are
14 doorsin total.
Description of features extracted from the user related events.
Distribution of access categories across all user related events. Note
that the number of users in each cluster does not sum to the total
of unique users in the system (which is 671). The reason for this is
because some users have events from more than one access category
(i.e., they have had their access category changed at some point).
Door access distribution of user related events for each access category.

General information regarding the training and test set.
General information regarding each of the four clusters.
Description of features extracted from the original features shown in
Table 4.5.
Construction of sequences of events using the sliding-window method
on the datasets X 9. Note that Myen = Ny, —n+1 corresponds to
the number of sequences constructed for user u in cluster ¢ of length n.
Summarization of the hyperparameters used. The hyperparameters
for each of the eight models only differed across the value of n, but
not for the cluster c. 7 is the learning rate. 6 is the weight decay
parameter. h is the number of units in the hidden states of the LSTM
autoencoders.
Anomaly thresholds 7., Yee C, Vne {1,2}.

Two anomalous and two normal instances for each cluster for n = 1. .
Two anomalous and two normal instances for each cluster for n = 2.
Note that in this case an instance corresponds to a sequence of two
events. L e e e e

Event distribution. The total number of events is 1,073,284. There
are 50 types of events in total.o

52
95

66

xXvil

List of Tables

xviii

1

List of Listings

Example of a door access event using an access card.
Example of a door access event using an exit button.

Xix

List of Listings

XX

1

Introduction

This chapter introduces the thesis with some background on physical access control
and anomaly detection. The motivation behind the project is also explained. Addi-
tionally, the problem description and the goals of the project is described. Finally, the
limitations of the thesis are detailed and the structure of the thesis is outlined.

1.1 Background and Motivation

According to Verizon’s data breach investigations report of 2020, 30% of breaches
involves internal actors, 8% were caused by authorized users intentionally misusing
privilege and 4% were caused by physical actions [1]. A survey from 2018 showed
that 53% of organizations encountered insider attacks in the previous 12 months
and 27% said insider attacks have become more frequent [2]. This type of threat
often consist of espionage, sabotage and theft caused by malicious insiders having
access to critical parts of an organization’s assets. It is therefore important to have
access control enforced, especially physical access control, in order to protect the
organization’s assets.

Many security systems implemented for physical access control produce log en-
tries that contain data to track door accesses to rooms and facilities. While a single
log entry can be small, a collection of them often become large and difficult to
interpret, thus defeating the purpose of logging and making security assessment
ineffective. Arguably for that reason, these log entries are rarely examined other than
when an incident has already occurred. From a security standpoint, it is important
for businesses and organizations to work in both a reactive and a proactive manner.
For the purpose of working more proactively, there is a need for anomaly detection
in physical access control. With the use of anomaly detection, it would be possible
to alert the system of potential breaches as they occur instead of finding out later by
manually inspecting the logs.

With the use of machine learning, anomaly detection has become possible when
managing large amounts of data. When specifically using unlabeled data, anomaly
detection is accomplished in an unsupervised manner. Autoencoders are therefore
relevant for this purpose [3]. While machine learning techniques may be very effective
at detecting anomalies, the output can be hard to explain. A framework to solve
this problem exists called SHapley Additive exPlanations [4]. This framework can
be applied to autoencoders [5].

1. Introduction

1.2 Problem Description

Physical security measures are used to ensure the restriction of access to a physical
space such as a property, building, room or other physical asset to authorized users [6].
Systems used by businesses and organizations are typically implemented with access
card readers. These types of systems function in that each user possesses a personal
access card with corresponding permissions for that user. When using an access
card at a card reader, the permissions of the card is compared to the access level
of the physical space. If the card matches the access level, the user has permission
to enter and gains access to the physical space. Every action performed at a card
reader is stored as a log entry. If a user accesses a physical space, information about
the user together with a timestamp and information about the location is stored.
In a perfect world, this would work without flaws, but this is unfortunately not the
case. The system could be misconfigured and an access card could potentially be
stolen and misused. Considering that these security logs are rarely inspected, but
also that anomalies can be hard to discover by manual inspection, security breaches
can easily develop and may even go unnoticed. A short summary of the different
challenges in this project is listed below.

e Access log analysis. The logs need to be analyzed properly in order to
provide an understanding of the different events, doors and user behavior in
the data.

o Data-driven model. The model is purely data-driven as there is no addi-
tional information about the physical layout or user behavior beyond the used
dataset. The idea is that a data-driven system is easy to build without requiring
expensive experts to configure the system. The limitations of this approach
will be further explored in this thesis.

o Unlabeled dataset. The dataset that is used in this project is unlabeled. As
a result, there is no specific information that reveals if a data point is actually
normal or anomalous. This is often the case in real-world settings since labeling
is costly. The aim is therefore to consider a method that can be used by industry.

o Model explainability. Not only should the model detect anomalies, it should
also provide an explanation of what possibly caused the anomalies. This should
aid an administrator in preventing the anomaly from happening again.

1.3 (Goals and Scope

This project primarily aims to create a working prototype of anomaly detection
for physical access control logs using machine learning. An important aspect of
this project is that the prototype should be explainable. This means that the
model should not only output that an anomaly has been detected, but also output
what sort of anomaly it is. The goal with this prototype is to improve existing

1. Introduction

physical access control systems to have a richer analysis model other than manual
inspection of access logs. The aim with this thesis is to answer the following questions:

1. What type of anomalies in the context of physical access control can a machine
learning model detect?

2. How can explainability be achieved in a deep learning model?

3. How can explainable machine learning be used to proactively prevent security
breaches?

1.4 Delimitations

Although it would be possible to develop a model that is generally applicable, as in
being usable for anomaly detection in domains other than physical access control,
this is not the focus of the project. This project will not involve any collection of
data, as this will be provided by Bodforss Consulting AB that this project is done in
collaboration with.

1.5 Thesis Outline

Chapter 1 provided a brief introduction to the topic of the thesis, along with the
goals, scope and delimitations of the project.

Chapter 2 presents previous work and research related to this thesis. Further-
more, this chapter describes how this thesis is different from the previous research.

Chapter 3 introduces the different concepts and techniques that are used in this
thesis. This chapter is intended to help the reader understand what is presented in
subsequent chapters.

Chapter 4 presents the analysis performed on the physical access control logs. The
main pieces of information from the logs are summarized in figures and tables. Finally,
some conclusions are drawn about the main findings from the analysis.

Chapter 5 describes the architecture and development of the anomaly detection
framework. This chapter also presents how the explainability aspect of the machine
learning models were achieved. The chapter concludes with a description of how the
framework is evaluated.

Chapter 6 presents the results of the thesis.

Chapter 7 discusses the results of the thesis and concludes with insight on the
topic and future work.

1. Introduction

2

Related Work

Anomaly detection in data is a research area that has been studied as early as the
19" century in statistics [7]. Denning [8] proposed anomaly detection in security
for intrusion detection systems in 1987. In more recent years, anomaly detection
has been researched with regard to the application of machine learning. Sommer
and Paxson [9] discusses the application of machine learning for network intrusion
detection in terms of anomaly detection. In the paper they point out that, despite
extensive research on applying machine learning to anomaly detection, the deploy-
ment of such systems are limited in operational settings. They mention one reason
for the limited deployment being that there is a clear difference in the objective
of traditional machine learning tasks compared to anomaly detection. Machine
learning is traditionally about finding similarities between data samples rather than
dissimilarities, which is the case in anomaly detection. Particularly, attempting to
find dissimilarities involves finding outliers, which may be a rare occurrence in the
data. Achieving acceptable results are thus significantly harder considering that
a common principle in machine learning is that the number of data samples of
each class to be identified must generally be large in order to achieve anything of
interest. Another reason is that evaluation of anomaly detection systems are crucial
but difficult to perform. The authors refer to the evaluation as being more difficult
than developing the system itself. The lack of publicly available labeled datasets
for research purposes regarding anomaly detection further contributes to the difficulty.

There are several papers involving anomaly detection specifically for log file analysis.
Frei and Rennhard [10] proposed a system that uses a combination of graphical and
statistical techniques to visualize the content of a log file in order to aid security
administrators in identifying anomalies. Juvonen et al. [11] proposed a framework
using dimensionality reduction techniques, as log files may consist of high-dimensional
data, in order to find anomalies in HTTP logs. There are different techniques applied
to detecting anomalies in the context of physical access. Davis et al. [12] used a
graph model for anomaly detection and applied it to physical access logs from an
office building. They present an algorithm that searches labeled graphs for both
structural anomalies, described as unusual paths through the building, and numer-
ical anomalies, described as unusual timing data. Cheh et al. [13] used a Markov
model to detect malicious insiders using physical access logs in a railway station
together with knowledge about the physical layout of the station. Similar to our
model, users are distinguished based on their past behavior. The reason being that
access control systems assign roles to users by the doors they have permission to
access, which does not necessarily reflect the user behavior. Poh et al. [14] used a

5

2. Related Work

clustering model to identify anomalous user behavior by characterizing users based on
physical movement from access logs in an office building together with their job profile.

Our model is different from these papers in that we do not have explicit knowledge
about the physical layout nor do we have accurately defined job profiles apart from
access roles. Additionally, we apply Deep Learning [15] in the form of an artificial
neural network called an autoencoder to detect anomalies. We also use SHapley
Additive exPlanations to achieve explainability for the output. This is important
for our model since someone who is not necessarily an expert in machine learning
should be able to understand why an event was considered an anomaly. Another
important aspect of our model is that it is purely data-driven, meaning that it can
be applied to many systems that lacks further information about the physical layout
and user behavior aside from what can be found in the access logs.

3

Theory

This chapter presents the theory behind the different concepts and techniques used
in this project. Section 3.1 introduces the concept of access control, including the
different security threats in a physical environment. Section 3.2 then describes the
concept of anomaly detection and defines the different types of anomalies. This
project primarily uses different machine learning techniques. Section 3.3 therefore
introduces the topic of machine learning and describes some of the relevant concepts
within the subject. Finally, Section 3.4 presents the specific machine learning models
that are utilized.

3.1 Access Control

Access control is the security process of restricting access to a specific resource, where
requests to access the given resource can be granted or denied [16]. The restriction is
normally policy-driven and accessing resources is resolved using identity. The policies
in access control systems are usually user-specific, meaning that authentication
is performed by users. Authorization is achieved in a number of different ways
depending on the access control model. The model that is of interest in this project
is role-based access control, especially for physical access.

3.1.1 Role-Based Access Control

In role-based access control (RBAC), permission to access resources are based on a
user’s role, which is usually established from the responsibilities that the user has
within an organization [17]. This model is beneficial in business as roles are easy
to organize based on the business structure and the work duties of the employees.
RBAC also aligns with the principle of least privilege since each role can be assigned
the minimum level of permission required for the user to carry out their duty. A
problem with RBAC is that the roles must be maintained and documented. If the
responsibilities of a user changes, the role of the user needs to be updated in order
to ensure that the user does not have more privilege than necessary.

3.1.2 Physical Access Control

Physical access control (PAC) refers to restricting access to a physical space. On
a basic level, this can be seen as requiring a key to open a door with a lock. PAC
systems that are controlled by software using electronic locks and access cards to

7

3. Theory

grant access can be considered as logical access control [18]. PAC systems are thus
able to be controlled centrally, which allows permissions of a user’s physical access
to be modified or revoked. Users are granted access to a physical space by using a
valid access card at an electronic lock equipped with a card reader. The credentials
of the card, such as an identification number or an access role, are checked against a
database to see if the user has permission to enter.

3.1.3 Physical Security Threats

There are different types of physical security threats, such as environmental threats
and human-caused threats. In this project, only the physical threats caused by
humans are relevant. Human-caused threats can be hard to predict and the potential
damage of an attack can be severe. This type of threat can be grouped into a few
categories [19]:

e Unauthorized physical access. Any individual that has entered a physical
space without permission is to be considered a threat that can potentially
lead to theft, vandalism or misuse. One way for an unauthorized individual
to access a restricted area is by following an authorized user, known as tail-
gating [20]. This can be very hard to detect unless the area is equipped with
video surveillance, since this access does not appear in security logs from the
PAC system.

o Theft. This threat includes any theft of equipment and theft of data. This
can be perpetrated by an authorized insider or by an unauthorized outsider.
Theft also includes eavesdropping, where a user obtains sensitive information
without permission.

o Vandalism. This threat involves any destruction of property, destruction of
equipment and destruction of data.

o Misuse. This threat includes incorrect use of resources, such as performing a
malicious action against a system. This can be performed by users who are
authorized to use the resources, as well as individuals who are not authorized
to use the resources at all.

3.2 Anomaly Detection

Anomaly detection is the task of identifying patterns in data that is different from
the expected behavior [21]. These patterns are normally referred to as anomalies
or outliers. The anomaly usually corresponds to some kind of problem. In physical
access control, this could could correspond to one of the threats mentioned in
Section 3.1.3. Many different anomaly detection techniques have been proposed
across several research communities. Some of these techniques are domain specific,
while others work in a more general sense. The details on how anomaly detection
was performed in this project is specifically described in Chapter 5.

8

3. Theory

3.2.1 Types of Anomalies

Anomalies can be arranged into three different categories: point anomalies, collective
anomalies and contextual anomalies [21].

Point Anomalies

An event is considered a point anomaly if the event is anomalous with respect
to other events in the data. The event is therefore an anomaly since it is different
from normal events. For example, in physical access control, a door where the number
of accesses for a specific user is unusually high compared to the number of accesses
of peers is considered a point anomaly and could potentially be a threat.

Collective Anomalies

A collection of related events is considered a collective anomaly if the collection is
anomalous with respect to the rest of the data. One event in a collective anomaly
might not be an anomaly by itself, but its occurrence in conjunction with other
events is anomalous. For example, one door access might not be an anomaly on its
own, but a sequence of door accesses could be anomalous.

Contextual Anomalies

An event is considered a contextual anomaly if the event is anomalous in a specific
context but not otherwise. The definition of a context depends on the data and has
to be specified before being able to detect contextual anomalies. The data can be
described using two sets of attributes:

o Contextual attributes. These attributes specify the context of the events
in the data. For example, this could be the physical location of an event in
spatial data or the time in time-series data.

o Behavioral attributes. These attributes specify the non-contextual fea-
tures of the events in the data. For example, this could be the weather at
a location in spatial data or the temperature at a given time in time-series data.

An anomaly is determined using the values of the behavioral attributes within a
specific contextual attribute. An event might be considered an anomaly in one
context, but could be normal in a different context. For example, a door access
during the day might be normal, but during the night this would be considered an
anomaly. Important to note is that a point anomaly or a collective anomaly can also
be deemed a contextual anomaly if context is taken into consideration.

3. Theory

3.3 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (Al) and refers to the
study of algorithms that are able to learn from data and improve their performance
through experience of a given task. To understand what learning means in this
context, a definition is provided by Mitchell [22]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

The tasks in T refers to what the algorithm is intended to accomplish and are
usually described in terms of how the algorithm should process an example [15].
An example is a set of features measured from an object or event. Typically, an
example is represented as a vector & € R" called a feature vector that consists of a
number of numerical features. The performance measure P is used to evaluate how
effective the algorithm is at learning a specific task 1. The accuracy of the machine
learning model is often used as a performance measure. Accuracy is measured as
the percentage of examples where the model produces the correct output. Another
similar performance measure that is often used is the error rate of the model, which
is the percentage of examples where the model produces the incorrect output. The
experience F is the data that is available during the learning process of the algorithm.
Machine learning algorithms can generally be categorized as supervised learning or
unsupervised learning, depending on the allowed experience. The algorithms are
usually allowed to experience a complete dataset consisting of many examples.

3.3.1 Supervised Learning

In supervised learning, algorithms receive datasets where each example is a pair
of an input object (x) and an output value (y) called a label or target [15]. The
structure of a dataset with n pairs is shown in (3.1).

{(wla yl)v (wQ’ y2)> SRR (wm yn)} € (X X Y)n (3'1)

With X being the input space and Y being the output space, the goal of supervised
learning is to infer a function f : X — Y such that each input x; is mapped to the
correct output y;. The function f is then applied to predict the output for unseen
data [23]. Supervised learning can be divided into two types of problems, regression
and classification.

Regression

For regression problems, the learning algorithm infers a function f : R* — R
to predict numerical values based on the input.

10

3. Theory

Classification

For classification problems, the learning algorithm infers a function f : R® —
{1,...,k} to determine which one of k discrete classes the input belongs to. A deter-
ministic approach to classification only outputs the most likely discrete class, whereas
a probabilistic approach outputs a probability distribution over the classes. The prob-
abilistic approach is usually done by estimating the posterior probability P(y | x)
of each class y € Y given an input € X [15]. Some probabilistic classifiers use
a joint probability distribution model P(x,y) to estimate the posterior probabil-
ity. Other probabilistic classifiers use a conditional probability model P(y |) to
determine the posterior probability directly. Classifiers based on joint probability
distribution are called generative and classifiers based on conditional probability
are called discriminative [24]. A probabilistic classifier can seem deterministic by
returning the class y with the highest probability score.

3.3.2 Unsupervised Learning

In unsupervised learning, algorithms receive datasets where each example is simply
an input object (x) without an associated target output. The goal of unsupervised
learning is to find patterns in the data outside of what might otherwise be considered
unstructured noise. Two essential parts of unsupervised learning are cluster analysis
and dimensionality reduction [25].

Cluster Analysis

Cluster analysis, also known as clustering, is the task of grouping a set of ex-
amples into groups called clusters, where the examples within a cluster are more
similar to each other than to examples in other clusters. The similarity between
examples is measured using various distortion or distance measures, depending on the
clustering algorithm used [26]. There is no precise definition of a cluster, and as such,
the notion of a cluster is, largely, in the eye of the beholder [27]. As a consequence,
the notion of a cluster depends on the clustering algorithm and its properties. There
are many different clustering algorithms which can be categorized based on their type
of model. The clustering method used in this project is agglomerative hierarchical
clustering (see Section 3.4.1).

Dimensionality Reduction

Dimensionality reduction is the task of mapping an n-dimensional point into a
lower k-dimensional space, where the n-dimensional point is a representation of an
example with n features in an n-dimensional space [28]. The goal of dimensionality
reduction is to generate the £ dimensions while retaining the important properties
of the original example. When performing dimensionality reduction on an entire
dataset, the relationship between the examples in the original n-dimensional space
must also be preserved. The reason behind using this technique is because working
with high-dimensional is usually intractable. Dimensionality reduction can be useful

11

3. Theory

in a number of different cases, such as cluster analysis, data visualization, especially
when mapping data onto two or three dimensions, and removing noise from data.
Dimensionality reduction is usually divided into feature selection and feature extrac-
tion depending on the approach [29], with models being either linear or nonlinear [30].

o Feature Selection. This approach is based on only retaining the most impor-
tant features, meaning that redundant and irrelevant features are omitted.

e Feature Extraction. This approach considers all features and transforms the
data into a lower dimensional space where the dataset structure is retained as
best as possible.

In this project however, only feature extraction will be utilized. An example of a
linear feature extraction model is principal component analysis (see Section 3.4.2)
and an example of a nonlinear feature extraction model is t-distributed stochastic
neighbor embedding (see Section 3.4.3).

3.3.3 Overfitting and Underfitting

A machine learning model is said to overfit if the model performs well on the training
data but does not generalize well to new data, meaning that the model learns noisy
or irrelevant features rather than the underlying structure of the data [31]. The aim
of a model is being able to perform well on test data that was not experienced during
training. However, due to overfitting, which leads to a loss of accuracy on unseen
data, the model will not be able to perform well on the test data. If the training
data is noisy or too small, the model is likely to detect patterns in the noise which
might not exist in new data. Overfitting generally occurs when the model is too
complex relative to the noise in the training data. There are some approaches to
counteract overfitting, such as simplifying the model, using a larger dataset during
training and reducing noise in the training data by removing outliers. Simplifying a
model by constraining it is called regularization and various machine learning models
use different techniques to achieve this.

Underfitting is the opposite of overfitting: instead of the model being too com-
plex, it is too simple to learn the underlying structure of the data [31]. In the case
of underfitting, the model will not be able to perform well on the test data nor the
training data. Underfitting can be counteracted by selecting a more complex model,
reducing the regularization of the model and using more appropriate features for the
algorithm.

3.3.4 Dataset Shift

Dataset shift is a problem that appears when the joint distribution differs between the
training data and the test data [32], such that Piein(y,) # Piest(y,). A common
assumption is that the training data and the test data follow the same distribution.
This is not always the case however, especially in real-world settings. As a result, this

12

3. Theory

problem leads to a decline in model performance. For example, in physical access
control, this problem could appear if some users disappear over time or if an overall
change of behavior occurs. The model would then train on data that is no longer
similar in the test data. Dataset shift can be categorized into different types. Three
of these types will be described as they are the most commonly present in real-world
settings: covariate shift, prior probability shift and concept shift [33].

Covariate Shift

Covariate shift occurs when the distribution of the input variables P(x) changes
between the training data and the test data. Formally, this can be defined as the
case where:

b Pt'rain(y | l‘) — Ptest(y | [L‘) and Ptrain(x) 7é Ptest(x)-
Prior Probability Shift

Prior probability shift can be thought of as the opposite of covariate shift. This type
of dataset shift occurs when the distribution of the target variables P(y) changes
between the training data and the test data. Formally, this can be defined as the
case where:

® Ptrain(x | y) = Ptest(x | y) and Pt'rain(y) 7é Ptest(y)~
Concept Shift

Concept shift, also referred to as concept drift, occurs when the relationship between
the input and the target variables changes over time. Formally, this can be defined
as two different cases:

® Ptrain(y | x) % Ptest(y | x) and Ptrain(x) = Ptest(x)-
o Ptrain(x | y) 7é Ptest(x | ?/) and Ptrain(y) = Ptest(y)-

3.3.5 Feature Engineering

Feature engineering is the process of using domain knowledge to define the most
appropriate features given the data, the task and the model used [34]. Generally,
this is an iterative process that includes the following steps:

1. Brainstorm what features to use.

2. Create the features.

3. Evaluate how the features work with the model.
4. Repeat the process if necessary.

Creating relevant features is important in order for the model to produce desired result
and to avoid overfitting and underfitting. Feature engineering typically consumes a

13

3. Theory

lot of time, but if carried out adequately, other parts of the machine learning process
may become easier. There are techniques that uses Deep Feature Synthesis [35] to
automate feature engineering, but this will not be explained in further detail as this
has not been utilized in this project.

3.3.6 Data Preprocessing

In order to analyze data and use it as input to machine learning models, the data must
first be prepared and organized into a suitable form. This process is known as data
preprocessing and is a critical part of machine learning as results would otherwise
be misleading or incorrect [36]. The type of data preprocessing varies considerably
depending on the raw data and the specific models that are applied. This section
will therefore be limited to describing one-hot encoding and data normalization.

One-Hot Encoding

One-hot encoding is a technique used to deal with categorical data [37]. Trans-
forming data from categorical to numerical is an important step in preprocessing
since machine learning models often require their input to be numerical values.
Consider a categorical variable & with n distinct values z1, xs, ..., z,. The one-hot
encoding of a specific value z; is a vector v where each element has a value of 0
except for the ith element that has a value of 1. For example, assume that the
categorical variable @ is color with possible values from the set S = {red, green,
blue}. If x; = red, x9 = green and x3 = blue, then the one-hot encoding of x is (1,
0, 0), (0, 1, 0) and (0, 0, 1) (see Figure 3.1).

id color id | red | green| blue
1 red E 1 1 0 0

2 green 2 0 1 0

3 blue 3 0 0 1

Figure 3.1: Transformation from original data to one-hot encoded data.

Data Normalization

Raw numerical data is often not in a suitable form to be processed properly by
machine learning techniques as the range of values varies between different features.
Data normalization is used to transform raw numerical data to a suitable form while
retaining differences in the values of each feature [36]. Normalization is an important
part of preprocessing since features with different range of values otherwise will
influence the result of machine learning algorithms disproportionately. A common
method to achieve normalization in the interval [0, 1] or [—1, 1] is min-max normal-
ization. This method projects the original range of values onto the new range. The
min-max normalization in the interval [0, 1] is given by (3.2), where « is the original

14

3. Theory

feature and x,,,,, 1S the normalized feature.

_ x — min(x)
Tnorm = max(x) — min(x) (3:2)

3.3.7 Explainability and Interpretability

Explainability and interpretability are often used interchangeably in literature [38],
arguably because a collective understanding of explainability as a concept still
needs to develop [39]. Some papers however, point out the importance of making
a distinction between the two terms [40]. This thesis uses the definition of an
explanation from [41]:

An explanation is the collection of features of the interpretable domain, that
have contributed for a given example to produce a decision (e.g. classification
or regression).

As such, explainability can be defined as providing an understanding of what features

contributed to the output of a machine learning model. An interpretation on the
other hand can be defined as [41]:

An interpretation is the mapping of an abstract concept (e.g. a predicted
class) into a domain that the human can make sense of.

Interpretability can therefore be defined as presenting the properties of a machine
learning model in a way that is understandable to humans. Both explainability
and interpretability are essential concepts in order to achieve explainable machine
learning. It is important to understand what features contributed to the output, and
at the same time, this needs to be presented in a way that a human can comprehend
it. One framework that achieves explainability is SHapley Additive exPlanations,
which is used in this project.

SHapley Additive exPlanations

SHapley Additive exPlanations (SHAP) is a model-agnostic framework for explaining
the output of machine learning models [4]. Being model-agnostic means that the
framework is not concerned by what goes on inside of the model, therefore being
agnostic to the internals of the model. Explaining the output is achieved by comput-
ing the contribution of each feature to the output, thus assigning each feature an
importance value. SHAP is based on the classic Shapley values from game theory and
represents the Shapley value explanation as a linear model called an additive feature
attribution method. This explanation is given by (3.3), where g is the explanation
model, 2’ € {0,1}M is the simplified input vector, M is the number of simplified
input features and ¢; € R is the feature attribution for a specific feature 7, the

15

3. Theory

Shapley values.
M
9(2") = o+ ¢ (3.3)
i=1

The goal of the explanation model is to explain the output f(z) given an input x to
the original model f. Explanation models generally use simplified inputs x’ that are
mapped to the original input x using a mapping function x = h,(2’). In the input
vector, a value of 1 corresponds to a present feature and a value of 0 corresponds to
a missing feature. For z, the input vector 2’ corresponds to all present features. The
explanation for x can then be simplified as (3.4).

g(@) = o+ Z ¢ (3.4)

The unique solution that defines the Shapley values is given by (3.5), where |Z/| is
the number of present features in 2z’ and 2z’ C 2’ represents all 2z’ vectors where the
present features are a subset of the present features in 2.

tte) = 3 FEEEm L () = 2\) (35

2/ Ca!

SHAP solves this equation in order to compute its values, where f,(z') = f(h.(Z")) =
E[f(z) | zs]. Here, S is the set of present features in z’. A simplified input mapping
function h,(z') = zg is used, where zg has missing values for features not in S.
E[f(z) | zs] is an approximation of f(zg) since most models are not able to manage
arbitrary patterns of missing input values. SHAP values explain how to get from
a base value E[f(2)] to the original output value f(z) (see Figure 3.2). The base
value is the output when no features are known.

0 Elf(2)] Elf(2) | 21 = 1] f(z) E[f(2) | 212 = z1,2] E[f(2) | 212,38 = 71,2,3]
1 l l 1 l l
- 5 e 3
%o ot " >

Figure 3.2: SHAP values illustrating the contribution of each feature to the output.
From [4].

3.3.8 Loss Functions

A loss function, also known as a cost function, is a function that measures the
performance of a machine learning model for given data by determining the loss [42].
The loss is an error value between a predicted output value ¢ and the correct output
value y. In this project, a loss function called Smooth L1 loss is used. In order to

16

3. Theory

put this loss function into context, L1 loss will first be described.
L1 Loss

L1 loss is a loss function based on minimizing mean absolute error (MAE) [43].
MAE computes the sum of absolute differences between the predicted output values
and the correct output values. In other words, it measures the average magnitude
of errors across the predicted output values. MAE is given by (3.6), where n is the
number of data points in the dataset, g; is the predicted output value for instance i
and y; is the correct output value.

1 .
MAE = n Z |y — il (3.6)
i=1

L1 loss is robust to outliers, but it suffers from not being differentiable. Specifically,
the derivative of the absolute value f(z) = |z| is not defined at each point in its
domain (see Equation 3.7). As can be seen, the derivative is undefined for z = 0.
d -1, itz <O
= { 1, ifz>0 (3.7)

For that reason, the problem with L1 loss is that its gradient is constant. As such,
even when the loss value is small, the gradient will be large, causing the loss function
to be unstable. This makes it difficult to converge effectively.

Smooth L1 Loss

Smooth L1 loss, introduced by [44], is a loss function with the same advantage
as L1 loss of being robust to outliers. Smooth L1 loss is given by (3.8), where z is the
difference between the predicted output value and the correct output value.

0.5, if |z] <1
|z| — 0.5, otherwise

smoothy, (z) = { (3.8)

The difference between the original L.1 loss and Smooth L1 loss is that the latter is
stable due to being differentiable (see Equation 3.9).

{ xz, if|z] <1 (3.9)

d—smoothLl(ﬁ) = +1, otherwise

X

3.4 Machine Learning Models

This section describes the different models that are used in this project. First, a
clustering method called agglomerative hierarchical clustering is described. Next,
two dimensionality reduction techniques called principal component analysis and
t-distributed stochastic neighbor embedding are detailed. Subsequently, a type of

17

3. Theory

artificial neural network called a recurrent neural network is specified. Finally, a
neural network architecture called an autoencoder is described.

3.4.1 Agglomerative Hierarchical Clustering

The agglomerative hierarchical clustering algorithm constructs clusters by recursively
partitioning data points in a bottom-up approach [45]. Each data point starts as
its own cluster. The algorithm then proceeds to successively merge the clusters into
larger ones. Which clusters to merge is decided based on some similarity measure
that is chosen to optimize some linkage criterion. In this project, Ward’s method [46]
was used. At each step, Ward’s method minimizes the sum of squared differences
within all clusters. The pair of clusters that yield the smallest increase in variance
during the step will then be merged. This process continues until all data points end
up in a single cluster or until a condition is fulfilled, such as reaching a set number of
clusters. The hierarchy of the clusters can be visualized as a dendrogram (see Figure

3.3).

abcdef ‘

cdef

def

de

ab

a b c d e f

Figure 3.3: Dendrogram of a hierarchical clustering.

3.4.2 Principal Component Analysis

Principal component analysis (PCA) is used to reduce the dimensionality of a dataset,
while retaining as much of the variation in the data as possible. This is achieved by
transforming the data to a new set of variables, called the principal components (PCs),
that are linear functions of those in the original dataset, that maximize variance
and are uncorrelated [47]. The context for PCA involves a dataset with p numerical
variables for each of n features, defining an n x p data matrix X. The ith column of
X is the vector x; of observations on the ith variable. Given a vector , PCA starts
by computing a linear function alx of the variables of & having maximum variance,
where o is a vector of p constants a1, a9, ..., a1, and T' denotes transpose. The

18

3. Theory

linear function is given by (3.10).

p
T
| T = (171 + a9 + ...+ Q1pTp = Z a1;T; (310)
=1

PCA then computes @l z having maximum variance, uncorrelated with afx and
so on. At the kth computation, the kth PC a]x having maximum variance is
uncorrelated with the previous @l z,alz, ..., al ;& PCs. Tt is possible to find p
PCs, but the goal is generally to find m PCs, where m < p and the variation in is
accounted for [48].

3.4.3 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality
reduction technique well-suited for visualizing high-dimensional data by mapping
each datapoint to a location in a two or three-dimensional space [49]. The technique
is based on Stochastic Neighbor Embedding (SNE) originally presented by Hinton
and Roweis [50]. The loss function of t-SNE is a symmetrized version of the loss
function used by SNE with simpler gradients. It also uses a ¢-distribution to compute
the similarity between two points in the low-dimensional space, instead of a Gaussian
distribution like SNE. The t-SNE algorithm starts by converting the similarities
between datapoints to joint probabilities where similar datapoints are assigned
a higher probability and dissimilar datapoints are assigned a lower probability.
The algorithm then minimizes the Kullback-Leibler divergence between the joint
probabilities of the low-dimensional space and the high-dimensional data.

3.4.4 Recurrent Neural Network

A recurrent neural network (RNN) is a type of artificial neural network that intro-
duces a notion of time to the model [51]. Unlike traditional neural networks, RNNs
are able to use information from previous states to influence the current output.
This functions as a sort of memory as it can remember things learnt from prior input.
RNNSs can use their memory to process sequential data. This can be visualized by un-
folding the network (see Figure 3.4), which can be trained using backpropagation. The
specific algorithm used by RNNs is called backpropagation through time (BPTT) [52].

In the unfolded network, each individual layer represents a time step. At time
step t, the hidden node h; receives input from the current data point x; and from the
hidden node h;_; in the previous state. The output g, is then calculated using the
hidden node value h;. The hidden node value h; is given by (3.11) and the output
value g, is given by (3.12). Here, a; and a, are activation functions. The matrices
Wiz, Wiy and Wy, are shared weight parameters between layers. The vectors by,
and by are bias parameters that allow nodes to learn an offset.

hy = ay (Wiexi + Winhi—1 + by) (3.11)
9, = ay (Wynh: + by) (3.12)

19

3. Theory

A problem with RNNs is that they can encounter the vanishing gradient problem
during training [53]. The reason why this occurs is because it is difficult to capture
long-term dependencies. In short, when introducing many time steps, a small
gradient will exponentially decrease. The weight parameters will eventually become
insignificant (i.e. 0) when updated. At this point, the network is no longer learning,.
A solution to this problem was presented by Hochreiter and Schmidhuber called
Long Short-Term Memory (LSTM) [54]. LSTM is the type of network that will be
utilized in this project.

Figure 3.4: Basic RNN architecture. Left: Rolled RNN. Right: Unfolded RNN over

time.

3.4.5 Autoencoder

An autoencoder is a neural network that consists of two parts: an encoder that maps
an input to a hidden layer h = f(x) called the code, and a decoder that produces a
reconstruction r = g(h) of the input from the hidden layer [15]. The two parts are
trained jointly in an unsupervised manner with the aim of learning an approximate
representation of the original input. The autoencoder is trained to minimize the
reconstruction error L(x,), which measures the dissimilarity between the input and
the reconstruction.

LSTM Autoencoder

An LSTM autoencoder is a type of autoencoder that uses an encoder-decoder
LSTM architecture to process sequential data. The encoder maps an input sequence
to a fixed-length vector and the decoder maps the vector representation to a target
sequence. This architecture was developed for natural language processing prob-
lems [55]. In this project however, the architecture will be applied to anomaly

20

3. Theory

detection.
Autoencoders for Anomaly Detection

If an autoencoder always succeeds in reconstructing the input without error, such that
g(f(x)) = @, simply by memorizing the input and passing it along the network, then
it would not be particularly useful. Autoencoders are therefore usually restricted to
reconstruct the input only approximately, essentially forcing the network to prioritize
the most frequent properties of the data. This is what makes autoencoders relevant
for anomaly detection. When encountering an anomaly, the autoencoder will not be
able to reconstruct it accurately since outliers are not prioritized during the learning
process. As a result, the reconstruction error will be low for normal data and high
for anomalous data. By defining a threshold 7', any data with a reconstruction error
below the threshold L < T can be considered normal, whereas any data with a
reconstruction error above the threshold L > T' can be considered anomalous.

21

3. Theory

22

4

Analysis of Access Logs

As already mentioned, this project is purely data driven. In other words, no prior
information, including the layout of the building or common user behavior, is avail-
able. All information will be retrieved based on analysis of the access logs. This
chapter presents how this analysis was executed, and summarizes the main pieces of
information in various plots and tables.

Section 4.1 begins by briefly describing what information will be presented, and
motivates why this information is extracted in the context of this project. Section 4.2
describes the original data format of the physical access logs. Section 4.3 describes
the different events that appear in the logs. Section 4.4 presents the different doors
that exist in the system. Section 4.5 outlines how different user behavior can be
extracted from the original access logs, and presents some analysis of such behavior.
Finally, Section 4.6 summarizes the findings of the chapter.

4.1 Introduction

The collaborating company Bodforss Consulting AB has provided a dataset of physi-
cal access logs. These logs contain all recorded events from a physical access control
system deployed in a company building. The available logs stretch from 2018-02-14 to
2020-08-26, which is a total of 924 days. Table 4.2 presents a few statistics regarding
the logs, which are discussed in more detail throughout the chapter. This section
describes the most relevant information in these access logs for the purposes of this
project. The information extracted and motivations for their extraction is listed
below.

o Log events. An understanding of the original format of the physical access
logs must first be established. This allows for further extraction of the most
relevant parts for this project. The original log format is briefly explained in
Section 4.2. The access logs consist of a number of distinct events, which are
presented in Section 4.3 in order to understand which of them are relevant for
further analysis in this project.

e Doors in the building. A detailed understanding of which doors that exist
in the building is important as all the other analysis steps are heavily depen-
dent on this. Section 4.4 will therefore present the doors and their relative
frequencies in the log data.

23

4. Analysis of Access Logs

Anomalies

Type Description
Contextual Door access at an unusual time

Point First time accessing a door

Point Denied door access

Point Unusual number of door accesses
Collective Unusual sequences of door accesses
Collective | Short time interval between accesses of different doors
Collective Repeated door accesses

Table 4.1: Specific anomalies defined in this project.

No. Entries | No. Events | No. Users Start End No. Days
1,073,284 50 671 2018-02-14 | 2020-08-26 924

Table 4.2: General statistics regarding the physical access logs.

e Overall user behavior. The purpose of the project is to detect unusual
behavior in these access logs. What constitutes unusual is highly context
dependent. After discussions with domain experts from Bodforss Consulting
AB, there are a number of anomalies that they consider relevant in this par-
ticular case. These anomalies are summarized in Table 4.1. Before detecting
unusual behavior, one must first establish what is normal. Section 4.5 therefore
presents analysis of common user behavior in the access control system. Ad-
ditionally, an approximate layout of the building is shown based on the analysis.

o Categorization of user behavior. Eventually, a number of machine learning
models will be used to detect anomalies in the log data, as is described in
Chapter 5. A natural approach to this is to apply one machine learning model
per subgroup of users that tend to behave similarly (Chapter 5 will describe
the reason for this in detail). In order to categorize the behavior of different
users, three different user criteria are considered. These include which doors
the user tend to open, which weekdays they open them on and what time
during the day they open them. The reason for these criteria is that they are
necessary in order to capture behavior that in turn reflect the anomalies listed
in Table 4.1. Section 4.5.3 presents some initial analysis of how clusters of
users can be found based on these criteria.

4.2 Log Format

All logs from the physical access control system are stored as XML files, where each
file is separated by date consisting of events that occurred during that specific date.
A file has a root node called <events> that consists of a number of <batch> elements
where each batch element contains an <event> element with some <argument> ele-
ments. An event includes a couple of attributes, the interesting attributes being name

24

4. Analysis of Access Logs

<batch>
<event name="access.card.valid.standard" timestamp="1615649437000">
<argument value="door_name" type="door" id="1"/>
<argument value="user_name" type="person" id="1"/>
<argument value="access_category_name" type="access_category"/>
</event>
</batch>

Listing 1: Example of a door access event using an access card.

<batch>
<event name="door.requestToExit" timestamp="1615649437000">
<argument value="door_name" type="door" id="1"/>
</event>
</batch>

Listing 2: Example of a door access event using an exit button.

and timestamp. The name attribute is a string that describes the type of event that
has occurred and the timestamp attribute is the time of when the event occurred.
An argument includes the attributes type, value and id. The type attribute is a
string describing the type of the argument, the value attribute specifies a readable
representation of the object related to the event and the id attribute is the primary
key for the object.

Some of the interesting events related to door accesses include door.requestToExit
that occurs whenever a user unlocks a door using an exit button and access.card.
valid.standard that occurs whenever a user unlocks a door using an access card.
These two events are in some cases followed by door.opened and door.closed to
register that the door has opened and closed.

Listing 1 shows an event where a door is unlocked using an access card, including
three of the most relevant arguments. Namely, the door being accessed, the user
accessing it and the access category that the user currently belongs to. The access
category correspond to a grouping of users with different door access permissions in
the building. This is further discussed in Section 4.5.2.

Listing 2 shows an event where a door is unlocked using an exit button. This type
of event does not have an argument containing information about the user since this
information is only available from using an access card.

4.3 Events

There are 50 different events in total, all of which are listed in Table A.1 in the
Appendix. Table 4.3 displays the relative frequencies of the most relevant events. The
relevancy is based on whether they are very common or utilized in upcoming analysis
in this chapter. From this table one can see that approximately 97% of the events are

25

4. Analysis of Access Logs

Event Label Event name Relative frequency (%)
UE1 access.card.valid.standard 27.95
- door.requestToExit 26.24
- door.opened 21.58
- door.closed 21.58
UE2 access.card.invalid.door 0.126
UE3 access.card.invalid.standard 0.063
UE4 access.card.invalid.inhibited 0.011
- Remaining 43 events 2.52

Table 4.3: Event distribution. There are 50 types of events in total. Only the relevant
events are shown. The user events have been labeled for easier reference.

represented by only four events. Note that these four events correspond to doors being
opened or closed in the PAC system. The majority of the remaining events are admin-
istrative in one way or another, such as registering new users and doors in the system.

Furthermore, the four events starting with access.card involve using an access card
which consequently means that there is a user associated with it. These events have
been labeled for easier reference later in the thesis. The most common user related
event is access.card.valid.standard and corresponds to the access card being
valid for the given door, and the door should subsequently open. The other three
corresponds to the access card being invalid for the given door, and will not result in
the door opening. These user related events will be used when finding subgroups of
users that behave similarly.

4.4 Door Analysis

Table 4.4 shows all the door names and a corresponding acronym for easier reference
later in the thesis. It also shows the total references from any user related event
in the log data for each door. From this, it is clear that about six of the doors
correspond to a great majority of the log activity.

Figure 4.1 shows the door access distribution for each of the 4 dominant events from
Table 4.3. From this one can see that the events door.opened and door.closed are
only logged for the office door (0D) and the staff entrance (SE). However, the summed
frequency of the events access.card.valid.standard and door.requestToExit
do not correspond to the frequency of door.opened and door.closed. The reason
for this is unknown but may be due to the doors being opened and closed in ways
other than as a consequence of the events access.card.valid.standard or door.
requestToExit occurring. Additionally, the table reveals that the fire door (FD) has
a large number of events corresponding to access.card.valid.standard, but no
events corresponding to door.requestToExit. This may indicate that it is only
possible to open this door from one direction, or that unlocking the door with an
access card is required in both directions.

26

4. Analysis of Access Logs

User Events

Door Acronym Door Name References
PD Production Door 103,757
SE Staff Entrance 83,000
FD Fire Door 42,822
0))) Office Door 34,918
MG Main Gate 20,770
ME Main Entrance 10,123
HR HR Office 1,780
POA Payroll Office A 1,244
KC Key Cabinet 1,129
POB Payroll Office B 1,018
FO Finance Office 921
G Gate 529
PA Payroll Archive 73
SG Sliding Gate 58

Table 4.4: Door reference distribution across all user related events. There are 14 doors
in total.

It should be noted that only knowing which user is responsible for about 28% of the
events is a potential limitation. The reason is that the full movement of each user
can not be tracked since the access card is only required in one direction for most of
the doors.

4.5 User Analysis

As mentioned in Section 4.2, each of the four user related events listed in Table 4.3
(UE1, UE2, UE3 and UE4) have a number of features associated with them in the
original access logs. In order to make the user analysis more manageable, the user
events were filtered out from the access logs. Additionally, only a subset of the
available features were kept for further analysis. These features are summarized
in Tabl 4.5. The filtered data is then saved in a file following a CSV format. The
resulting dataset has 302,144 rows in total, where the rows correspond to all the
events sorted in a chronological order. The data matrix is denoted X and has
dimensions 302, 144 x 6.

4.5.1 User Movement

Figure 4.2 visualizes the distribution of the average number of events per day for
each user. There are 671 different users recorded in the access log data. One can
see that most users have about 2-4 events per day on average. The average number
of events in a day across all users is 2.8. However, 73 of the users have an outlying
average according to the box plot.

27

4. Analysis of Access Logs

160000 7 mmm access.card.valid.standard
mmm door.requestToExit

140000 4 mm door.opened

mmm door.closed

120000 4

100000 4

80000

Frequency

60000 -

40000 4

20000 -

0- - - - T T T T T
PD SE FD oD MG ME HR POA KC POB FO G PA SG
Door

Figure 4.1: The door access frequency for the four dominant events.

Feature Data type Feature description
Timestamp String Timestamp of the event.
User ID Integer Unique identifier of the user.
Door ID Integer Unique identifier of the door being accessed.
Door String A descriptive name of the door being accessed.

A unique identifier indicating which access

Access category ID Integer category the user belongs to.

Access category String A descriptive name of the access category.

Table 4.5: Description of features extracted from the user related events.

28

4. Analysis of Access Logs

L aa L +

Users

0 5 10 15 20 25
Average number of events per day

Figure 4.2: Visualization of the distribution of the average number of events per day
for each user. The average number of events in a day across all users is 2.8. 73 out of 671
users have an outlying average.

Figure 4.3 shows the frequencies of the 20 most common door access sequences taken
in a single day. The purpose of this plot is to illustrate what sort of sequences are
common across an entire day for the users. The sequence {SE - PD} is the most
common sequence by far. This makes sense since these are also the two most accessed
doors individually, as seen in Table 4.4. Entering the staff entrance and subsequently
opening the production door is therefore the most common movement in a day. This
also shows that most users have no other events apart from those initial events at the
start of their shift. There are no events when they leave since they can open doors
from the inside by the press of a button, which triggers the door.requestToExit
event, which has no user associated with it. The second most common sequence is to
just open the staff entrance. However, it is unlikely that a user only walks through
the staff entrance in one day which means that subsequent door accesses were simply
not recorded in the log data. This can occur if, for example, another user opens the
door using their card and simply lets other users walk through without using their
own access cards. This ultimately illustrates one of many limitations with this sort
of data. The reason why it is a limitation is because the whole idea is to learn about
common user behavior, and if this behavior is distorted by such events then the data
can never be fully trusted. However, one can see that the occurrence of the proper
full sequences are more common than the broken sequences which means that useful
patterns can still likely be identified.

The seventh most common sequence is {ME - 0D}. This indicates that people working
in the office enter the building from the main entrance, whereas the people that use
the production door enter the building through the staff entrance.

Figure 4.4 shows frequencies of the 20 most common door access sequences of length
two regardless of the day. This means that sequences that include events from two
different days are counted. As already mentioned, {SE - PD} is the most common

29

4. Analysis of Access Logs

Common door sequences in a day

40000 A

30000 A

Count

20000 A

10000 A

PD
MG
FD
ME

oo ow

o v
'

Ll

w

ME - OD
oD
FD - OD

MG - SE - PD
MG - SE
SE- PD - PD
FD - PD
SE-PD-PD-PD
SE-PD-SE-PD
MG - ME - OD
PD - PD

ME - OD - FD - PD
PD - PD - PD
SE-PD-FD-0OD

Door sequence

Figure 4.3: Most common door access sequences of any length from the same day. The
20 most common sequences are shown. There are 7,417 unique sequences taken in one day
across all users in total.

sequence in one day. The sequences {SE - PD} and {PD - SE} being the two most
common sequences regardless of the day therefore makes sense. The main reason for
including this figure is because these are the sequences that will be learned by the
machine learning models. The reason for this and exact details of how this will work
is explained in Chapter 5.

It is likely common for people to walk the same subsequences across a day multiple
times. This can occur since employees may leave the company building and come
back later for various reasons. The 25 most common subsequences of lengths 2, 3
and 4 across a day are therefore shown in Figures 4.5-4.7. In order to visualize some
of the sequences that include doors with low frequencies, the subsequence counts are
normalized by the least common door in the sequence. Sequences of lengths longer
than 4 are not shown because these sequences generally consist of subsequences of
length 4 or shorter. In other words, from manual inspection it seems that sequences
of lengths 4 and below show all interesting sequences that users take.

Figures 4.5-4.7 provide a number of insights regarding the overall movements in the
building. One of the various gates (MG, G and SG) are often accessed prior to one of
the entrances (ME, SE). As already mentioned, ME is generally followed by 0D, whereas
SE is generally followed by PD. In most cases, after accessing PD the user does nothing
more in that day. Users accessing 0D, however, also tend to subsequently access one
of the other office related doors (i.e., HR, POA, POB, FO or PA). Finally, one can note
that the fire door (FD) is used to move between PD and OD. This proves the earlier
theory that the fire door can indeed be opened from both directions using an access
card (i.e., no request to exit button).

30

4. Analysis of Access Logs

Common door sequences

35000

30000 A

25000 A

20000 A

Count

15000 4

10000 4

5000 A

(]
o
'
18]
w

FD - OD
PD - MG
ME - OD
SE - MG
PD - OD

PD - SE
PD - PD
FD - PD
PD - FD
MG - SE
oD - FD
FD - FD
SE - SE
OD - ME
MG - ME
oD - MG
MG - MG
0D - SE

[=]
o
[m]
o

Door sequence

Figure 4.4: Most common door access sequences of length two regardless of the day.
The 20 most common sequences are shown. There are 149 such unique sequences across all
users in total.

Given all of this information, Figure 4.8 displays an approximate layout of the
building. The numbers correspond to how many times two door accesses have
occurred in sequence. Note that only the most important paths are included in this
figure. There are other paths recorded in the log data that are not visualized. The
main reasons for not including them is that these paths do not make sense (e.g.
walking through 0D before ME) or that they are very uncommon.

4.5.2 Access Category

The main purpose of the data analysis is to discover subgroups of users that tend
to behave similarly (as will become clear in Chapter 5). The access category is a
natural place to start since this is a predefined categorization of user privileges inside
of the company building. Table 4.6 lists all access categories, their corresponding
frequency in the log data and introduces acronyms for easier reference later in the
report. Table 4.7 shows the door access distribution of user related events for each
access category. As a reminder, the event UE1 corresponds to a user trying to access
a valid door. The events UE2, UE3 and UE4, on the other hand, correspond to a user
trying to access an invalid door.

The category FA has a very low frequency and manual inspection revealed that it
was only used for administrative purposes during the initial setup phase of the PAC
system. Because of this, the remaining analysis of access categories will not include FA.

For the remaining access categories one can draw a number of conclusions regarding

which doors are accessible for each category. Let D denote the set of all doors from
Table 4.4. Furthermore, let D; denote the accessible doors for access category i.

31

4. Analysis of Access Logs

Normalized subsequences of length two in a day

Normalized door sequence count

SE-PD

MG - SE
G-SE

0D - HR
FD - PD
FD - OD
HR - HR
KC - 0D
POB - POB

w
=
U]

ME - OD
OD - POA
MG - ME
OD-FD
0D - POB
FD - KC
FD-FD
0D - KC
PA - POB
PA - PA
PD-FD

OD - FO
POA - POA

KC - KC
POB - POA

Door sequence

Figure 4.5: Most common door access subsequences of length two from the same day.
The 25 most common subsequences are shown. There are 148 subsequences of length two
in total.

Normalized subsequences of length three in a day

0.40 A

0.35 A

0.30 A

0.25 A

0.20 A

0.15 A

0.10 A

MNormalized door sequence count

0.05 A

0.00 -

MG - SE - PD
G-SE-PD

MG - ME - OD
ME - OD - FD
G -ME-OD
OD - HR - HR
ME - OD - POB
FD - PD - FO
FD - PD - FD
OD - FD - PD
OD -FO - 0D
OD - POA - POB
FD - 0D -FD
OD-POA-FO
MG - 5G - MG
SG-SE-PD
5G - 5G - MG
SE-PD-PD
POA - POA - POA
HR. - HR - HR
PD -FD - OD
ME - OD - OD
OD-FO-FD
POB - POB - POB
SE-PD-FD

Door sequence

Figure 4.6: Most common door access subsequences of length three from the same day.
The 25 most common subsequences are shown. There are 532 subsequences of length three
in total.

32

4. Analysis of Access Logs

Normalized subsequences of length four in a day

0.10

o

=

=

=]

w

© 0.08

o

c

[

=

(=2

@ 0.06

e

=]

[=]

o

T 0.04 1

X

£

5 0.02

=

0.00 -
O < 0o <y W oo oo <L L0000 e Q
TQrgusScogeIr gL EoEEES
A '0 OO enn aro< SO0 0O0Q0aA@Aa00
foomo2288g8Frtggoeo0al29o3843¢®
0wl a bl ad w0l owoQn ey W
cwus £338R2u¥FoRgggrzrdgEE ™
! S S R T - T T - S Y
w oo Yo oOnp ! [\ 6] =]
2oz rERro00g20=254584°920v,06¢%
= = = =0~ o o

Door sequence

Figure 4.7: Most common door access subsequences of length four from the same day.
The 25 most common subsequences are shown. There are 1,272 subsequences of length
four in total.

Access Category Acronym | Access Category | Frequency | No. Users
AC3 Access category 3 152,116 257
AC1 Access category 1 125,270 455
AcC4 Access category 4 21,671 27
AC2 Access category 2 3,051 15
FA Full access 36 3

Table 4.6: Distribution of access categories across all user related events. Note that the
number of users in each cluster does not sum to the total of unique users in the system
(which is 671). The reason for this is because some users have events from more than one
access category (i.e., they have had their access category changed at some point).

33

4. Analysis of Access Logs

POA | |PoB | | HR [| oea | | Fo
T3 14 325 3 232
L J J J J
S062—m Q305 —m
oD FD PD
[7 1389—— [e——50 16—
| J
651— 56060
324 108
|
I 197 KC
k~—55a.n::u—w-—ran::u—j‘
ME SE

MG 5G

Fy

G
Figure 4.8: An approximate layout of the building only based on analysis of the log data.
The numbers correspond to how many times two door accesses have occurred in sequence.

34

4. Analysis of Access Logs

Given this, the sets of accessible doors for each access category can be defined as
shown in Eq. 4.1.

D, = {PD, SE, MG, G, SG}

D, = D, \ SG)
D,=D '
D; = D4\ SG

From the above one can conclude that AC1 and AC2 access the same doors, except
that AC2 also have access to SG. Similarly, AC3 and AC4 access the same doors, except
that AC4 also have access to SG.

There are two additional important things to note regarding Table 4.7. The first
is that the same access category have accesses from multiple user events for the
same door. For example, AC1 has 55,856 accesses with event UE1 and 11 accesses
with event UE4 for the door PD. This seems contradicting considering the opposite
meaning of UE1 and UE4. One theory for why this occurs could be that AC1 has
restrictions that are not limited to the accessible doors, but also to the hour and
weekday. However, from manual inspection, there is no indication that the access
categories are limited to certain hours or weekdays. The reason for this is because
all access categories have events of type UE1 on all hours and weekdays. Instead,
it seems that UE4 corresponds to a door being temporarily invalid for a particular
access category. This means that administrators can temporarily restrict access of
particular doors that are normally allowed for each respective access category. For
cases when certain doors of a particular access category have events of types UE1
and UE2 or UE3 the reasons must be different. In most of these cases the occurrence
of UE2 or UE3 are very low compared to UE1l. From inspection it seems that these
occurrences came before correct permissions had been given to each respective access
category. This is one suggested reason but note that there is no way to guarantee
that this is the true reason based only on the access logs. Additionally, there may be
other reasons that were not discovered in the analysis made in this project.

The second thing to note is that the door G was assigned to Dy despite AC2 having
no valid accesses for this door. The reason for this is because it also had no invalid
accesses, indicating that no one from AC2 has ever tried opening G. This means
that one can impossibly know whether this door is allowed or not purely based on
analysis of the access logs. This is not a serious issue for the remainder of this
project, considering that it is only affecting one uncommonly accessed door for one
access category. Dy can simply be updated accordingly whenever new access logs
are available. A similar thing can be noted for some of the office related doors for
both AC1 and AC2. However, since 0D is clearly invalid for these access categories,
the other office related doors should consequently be invalid too.

35

4. Analysis of Access Logs

Door
AC | Event PD SE FD 0D MG ME HR POA KC | POB | FO G | PA | SG
UEL 0 0 12 0 1 0 0 0 0 0 0 4 0 0
FA UE2 0 0 0 0 0 0 0 0 0 0 12 1 0 5
UE3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UE4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UE1 55,856 | 56,498 0 0 11,042 0 0 0 0 0 0 [243] 0 0
AC1 UE2 0 0 887 0 13 75 0 0 0 0 0 1 0 1
UE3 0 0 0 542 0 0 0 0 13 0 0 0 0 0
UE4 11 54 0 0 28 0 0 0 0 0 0 6 0 0
UE1 1,335 1,446 0 0 207 0 0 0 0 0 0 0 0 9
AC2 UE2 0 0 48 0 0 0 0 0 0 0 0 0 0 0
UE3 0 0 0 5 0 0 0 0 1 0 0 0 0 0
UE4 0 0 0 0 0 0 0 0 0 0 0 0
UE1 42,293 | 23,904 | 34,833 | 28,813 | 8,281 | 8,205 | 1,638 | 1,219 | 809 | 992 | 517 | 249 | 57 | 0
AC3 UE2 0 0 107 137 0 0 12 1 0 2 0 3|34
UE3 0 0 0 7 0 0 92 0 0 4 0 0 0 0
UE4 2 1 0 0 2 0 0 0 0 0 0 0 0 0
UE1 4,259 1,097 | 6,931 5,406 1,196 | 1,843 | 122 19 306 | 16 | 400 | 14 | 9 9
AC4 UE2 0 0 0 0 0 0 1 5 0 3 2 0 4 0
UE3 0 0 0 0 0 0 15 0 0 1 0 0 0 0
UE4 1 0 4 8 0 0 0 0 0 0 0 0 0 0

Table 4.7: Door access distribution of user related events for each access category.

4.5.3 Categorization of User Behavior

A number of statistics that capture the user behavior criteria mentioned at the start
of this chapter was extracted for each of the 671 users. These statistics include
the number of accesses of all 14 doors, the number of accesses on each of the 7
weekdays and the number of accesses during each of the 24 hours in a day. This
means that each user has 1447424 = 45 features that describe their overall behavior.
Furthermore, certain users will naturally have more events in the logs due to them
being employed for a longer period. The raw frequency of events is therefore not
sufficient in terms of categorizing similar user behavior across employees that have
worked for different lengths. The frequencies of each user are therefore normalized
by the total events for the given user. After all data preparation, a user data matrix
U can be described as shown in Eq. 4.2.

U € [0,1]07x4 (4.2)

Furthermore, the user matrices for each individual feature is also constructed, as
shown in Eq. 4.3.

Udoor c [0, 1}671><14
[]wwekday € [07]J671X7 (4’3)
Uh c [O 1}671><24

Each of the 671 rows (users) should now be categorized into different groups (clusters)
that behave similarly. In order to visualize potential clusters, two dimensionality
reduction techniques were applied to each of the user matrices above, namely PCA
and t-SNE. Figure 4.9 plots two components of PCA and t-SNE for each of the four

36

4. Analysis of Access Logs

cases. The clusters from U goor; U weekday and Upeyr are presented to ensure that each
feature has some impact on the grouping of user behavior. Additionally, the access
category of each user is highlighted in the plots with different colors and shapes.
Note that 73 of the users have had their access category changed at some point,
resulting in them having events with different access categories. For these users, a
new category named Combination is shown in the plots. Effectively all of those 73
cases correspond to the user having their access category changed from AC1 to AC3.
This means that they are granted more permissions within the building.

From these plots it is clear that t-SNE is finding more well defined clusters, in-
dicating the nonlinear structure of the patterns in higher dimensional space. For
this reason, the discussion will mostly be with regards to the t-SNE plots. The
clearest separation of access categories can be seen in plot 4.9 (d), which is based
on U goor. This is logical considering that the access categories are by definition a
categorization of accessible doors. Furthermore, the users belonging to AC1 and AC2
tend to cluster together and users belonging to AC3 and AC4 tend to cluster together.
This of course makes sense since their door access permissions are practically the
same. One can also note that there are additional clusters within the access cate-
gories, indicating that there are different behavior within each access category as well.

Additionally, the weekdays and doors also seem to have an impact as clusters can
indeed be identified in the plots 4.9 (f) and 4.9 (h) as well. For these cases, especially
the weekdays, the separation of access categories are expectedly not as clear. The
clusters based on U are shown in plot 4.9 (b), and are quite clear as well. It is of
course these clusters that are the most interesting as they correspond to users that
behave similarly with respect to all criteria.

The users that have had their access category changed are in certain cases placed
in their own cluster somewhere in between the other main clusters. The reason for
this is likely because these users have access logs that correspond to two different
behaviors. The conclusion from this is that when separating the access logs into
different behavior, that separation should not be done based on all events from each
user, but a separation of events based on their access category for each user may
instead be appropriate. This is further discussed in the next chapter. A further
analysis of what behavior is common in each of the clusters shown in Figure 4.9 is
purposely left out, as such analysis will be presented in the next chapter.

4.6 Log Analysis Conclusions

This section concludes a few important findings from this chapter. Each finding is
listed and discussed in the list below.

o Limited knowledge of user behavior. As already mentioned, only 28% of
the events track which user caused them. These are the events when a user
need their access card to enter a room. From a security perspective this makes
sense since entering a new room is generally more sensitive than leaving a room

37

4. Analysis of Access Logs

10

. % Full access
e Category 1 .
o - m Category 2
0.8 L]
20 o a + category 3
g‘h‘ ® . Categorys 2 .
o o Combination ®
0.6 [] ° & * ° # o
L4 o
. .
o 10 o
PP Epth wned,’ 2% o ST
04 & * oo o o K & e
g Y ’g ¢ g, o3, N e ¥4 ﬁ”' o
. o, ™
§oz P S R4 ., 2 (' 0 P L e
3
> N 10 o‘ PO .-‘.-.‘:o o o
0.0 o %’ o° ¢ é"b. ‘0‘{,;. * >
° v < 0 & ofud o % Fullaccess ®, ’: R » 3
:“PPQ’;“’& LR 209 o categoryl 4 s "‘?. *
02 \3". o ¢ oY% m Category 2 & -
. 4o ¢ Catesoy3 : 4 ¢
** - A Category 4 ¥, Y
04 " ¢ Combination ”0 *
*0‘.5 *0‘.4 *0‘.2 0.‘0 0.‘2 0.‘4 0.‘6 0.‘5 -30 -20 -10] 10 20
PCA1 TSNE1
(b) All features (t-SNE)
Full access » . % Full access
Category 1 °; L0 ;. o Category 1
Category 2 o o m“ - W Category 2
Category 3 * A 4 Category 3
Category 4 0y & kS :“ A Category 4
Combination . Combination
0 S o .
10 N S %
. pe™ e
b4 $iow . .
* o & * o &
E
°. 2 £ S

°
°

. .
0 N @f}:ﬁ&

-0.6 *
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 —-20 -10] 10 20
PCA1 TSNE1
(c) Doors (PCA) (d) Doors (t-SNE)
08 * * Full access 30 P
e Category 1
W Category 2 ”“h‘.
X 4 Category 3 20 *
o L category 4 P N SR
Combination »? fl S0 PN L b 06 o P
. PR Bl L R A
N sq B0 X' I 4
| NG IEREIARIA
3 ‘i” o Yoo s, N oo »
2 o ¢ % .1 .: *
* -10 . 3 ﬁ .
- WS
o ok
=201 % Full access + %,
@ Category 1 : .
m Category 2 o°)
-301 ¢ Ccategory3 - b t'
4 Category 4
Combination ®eo%e o
—40
0.6 -30 —-20 -10] 10 20 30
TSNE1
(f) Weekdays (t-SNE)
0.6 * Full access
. 27, category1 o8
, m Category 2 ()
o 4 Category 3 ®
0.4 . o 201 4 Category4 . '3 };
g Combination g o® S
N ‘ﬂ '&(
. 3030 dpiee o . Y A
0.2 L) J 3 Ta®
. o "." ¢ * @ oSt ?.R
Spue o S g 3¢
§ ..’ * o0 ° Y
0.0 \0? o." ’(L
ARl Y %
e
‘:f" -10 ’0& A
0279 4 Full access] ﬁ] 580
3‘ * * *
o Category1 R *2-
m Category 2 } 20
o4l @ categorys (£ .3 ’sﬁ"'
A Category 4 *
Combinaten . «
—-0.4 -0.2 0.0 0.2 0.4 0.6 -30 -20 -10] 10 20 30
PCA1 TSNE1

(g) Hours (PCA) (h) Hours (t-SNE)

Figure 4.9: The two most significant components plotted for PCA (a) and t-SNE (b).
The dimensionality reduction is based on 45 original user features. Additionally, the access
category of each user is visualized in the plots.

38

4. Analysis of Access Logs

that you were already in. However, being aware of the exact movement of every
user (including when they leave doors) can likely help when trying to detect
unusual behavior. This is especially true for more complex building layouts.
The building layout in this project, however, is quite simple which means that
sequences only corresponding to new rooms being entered is sufficient.

Broken sequences. The previous issue is inherent to the PAC system itself.
Another problem mentioned briefly in Section 4.5.1 is when parts of sequences
are missing. For example, if a user walks the sequence {SE - PD}, but only the
access to SE was logged. This problem is instead caused by misuse of the PAC
system. In other words, one user may open a door using their access card and
then allow other people to walk in behind them without using their own access
cards. According to Bodforss Consulting AB, it may even happen that a door
is remained unlocked for an unknown period of time, consequently allowing
anyone to enter it without an access card. This allows for unauthorized users to
enter disallowed rooms. For example, someone from AC1 may enter 0D without
it being logged. If it is not logged then the anomaly detection system (see
Chapter 5) can never detect it. Furthermore, these distorted sequences may be
seen as noise in the data that do not represent the true sequences that should be
learnt by the anomaly detection system. This may consequently make it more
difficult for the anomaly detection system to report proper anomalies. From
a security perspective this is an obvious issue. The solution to this problem
is not very straight forward, however. The obvious approach is to enforce
stricter rules to make sure that the users use the PAC system as intended by,
for instance, making them aware of why the PAC system is there in the first
place.

Access categories. The access categories are user privileges defined within
the PAC system. Four such access categories were presented, namely AC1, AC2,
AC3 and AC4. From closer inspection it was revealed that AC1 is very similar to
AC2 and AC3 is very similar to AC4. In fact, as will be explained in more detail
in the next chapter, the categories that are similar will be merged into one
category, leaving only two categories to consider.

Clustering of user behavior. Section 4.5.3 showed that there are groups
of users that behave similarly with respect to which doors they access and
when they access them (i.e., the hour of the day and day of the week). How-
ever, it also showed that certain users have events corresponding to different
access categories, meaning that their door access permissions changed in the
span of the logs. This also means that the behavior of these users (which
is defined by their events in the logs) changed over time. A proper way of
finding clusters is therefore to first split the data by access category, and
then separately cluster these datasets by user. The reason for doing this is
because it ensures that each cluster will contain events that follow a consistent
behavior throughout the full time period. This makes it easier for the anomaly
detection system to understand what is normal and what is not. This will

39

4. Analysis of Access Logs

40

be utilized in Chapter 5 when splitting the users into clusters. Note that
this was only necessary because of the fact that certain users have had their
access categories changed. Additionally, in another PAC system where ac-
cess categories may not be present, the clustering would be done normally,
by following the approach in Section 4.5.3 without any split on access categories.

O

Method

The previous chapter presented the analysis of the physical access logs. This chapter
describes how an anomaly detection framework was developed partly based on the
conclusions from the previous chapter. Section 5.1 begins by motivating a split of the
users into subgroups that behave similarly. Subsequently, the same section presents
how the subgroups were found and finally visualizes their differences in behavior.
Section 5.2 describes the architecture used for detecting anomalies in the physical
access log data, namely LSTM autoencoders. Based on the subgroups of users found
and the chosen anomaly detection architecture, Section 5.3 presents the framework
developed for detecting anomalies in real-time. The framework involves appropriate
data preparation, an offline learning phase, a real-time online anomaly detection
phase and finally analysis of detected anomalies. Another aspect of the project is
to provide explanations for why the machine learning models consider a particular
sequence of events to be anomalous. Section 5.4 therefore explains how this was
achieved for the chosen machine learning architecture. Finally, Section 5.5 describes
how the anomaly detection capability of the framework is evaluated.

5.1 Clustering of Users

Eventually a machine learning model will be trained to learn the different user
behavior in order to detect abnormal activity. There are three possible approaches
to achieve this, all of which are listed below.

o Training one model for all events. The drawback of this method is that
the model will have to learn too many different patterns. Moreover, it will be
heavily biased by the most common types of behavior, i.e., users walking the
door access sequence {SE - PD}. This means that the model may start be-
lieving that this sequence is normal for all users, while in reality it might not be.

o Training one model per user. The drawback of this method is that certain
users have too little data to learn from. When the model is deployed for prac-
tical usage, there may even be entirely new employees entered into the system
that have no data at all. In this case there would be no model at all for them to
be assigned to. Additionally, this method will mean that each model will believe
that the behavior that is common for the given user is what is normal. This
approach is clearly wrong since the majority of behaviors from a single user may
or may not be malicious. Therefore, normal behavior should in general be de-

41

5. Method

Dataset No. events | Start date | End date
Training set 241,714 2018-02-14 | 2020-01-21
Test set 60,430 2020-01-21 | 2020-08-26

Table 5.1: General information regarding the training and test set.

cided based on common overall behavior, and not the behavior from single users.

o Training one model per cluster of users. This approach, which is taken
in this project, finds a middle ground that tries to minimize the problems
with the two first approaches. The data will be separated into k parts that
correspond to events that follow similar patterns. Using this approach the bias
of overly common patterns are reduced, and there will still be sufficient data
to train one model per cluster. Additionally, new users entered in the system
can be assigned to a cluster based on pre-existing knowledge of the user, such
as their access category. Note that the choice of k is important as this is used
to balance between the previously mentioned drawbacks. One model per user
corresponds to k = 671, since there are 671 users and k = 1 corresponds to
one model for all the data.

5.1.1 Clustering

The original full dataset X is split into a training set (80%) and a test set (20%).
There are therefore two new datasets X i;a;n and Xiet. Some general information
regarding these datasets are summarized in Table 5.1. All the clusters presented
in this section are only based on X .in- Xiest can then be accurately used for test-
ing the anomaly detection capabilities of the architecture described in the next section.

It should be noted that even for k = 671 the bias would not be completely eliminated.
The reason for this is because the behavior of the same user might change over time,
effectively causing a dataset shift which was explained in Section 3.3.4. This can be
mitigated by only training the models on the most recent data. Section 7 further
discusses this issue. For the data in this project, the access categories assigned to
each event can be utilized to mitigate this issue to some extent, as was hinted in the
previous section. A change of access category signifies a change of permissions for
the user in the building, which will likely correspond to new doors being accessed.
Because of this, the 241,714 events in the dataset X,.;n will be split up into two
parts. The first part X; will contain all events corresponding to access catgegories
AC1 and AC2. The second part X, will contain all events corresponding to access
catgegories AC3 and AC4. This means that the users that have had their access
category changed at some point will have their events split up into both of these
datasets. X; and X, contain 430 and 267 users, respectively. Note that these do
not sum to the total number of unique users, which is 671.

The next step is to construct the user data matrices for X; and X,. This will
be done in an identical fashion to how the user matrix U was constructed in the

42

5. Method

Cluster | No. events | AC1 | AC2 | AC3 | AC4 | No. Users
1 67,227 65,933 | 1,294 0 0 311
2 40,297 39,016 | 1,281 0 0 119
3 103,768 0 0 86,661 | 17,107 215
4 28,683 0 0 28.397 | 286 52

Table 5.2: General information regarding each of the four clusters.

previous chapter. The user matrix for the events in X is described in Equation 5.1.

U, € [0, 1] (5.1)

The user matrix for the events in X is described in Equation 5.2.

U, € [0, 1]2674 (5.2)

Both PCA and t-SNE was performed on these user matrices. Only the t-SNE plots
are presented in the next section, as they gave the best visualizations.

5.1.2 Visualization of Clusters

Figure 5.1 (a) and (b) show the t-SNE clusters for U; and Uy, repsectively. The
clusters shown were identified using agglomerative hierchical clustering (see Sec-
tion 3.4.1). In both cases you can see two clear separations with one larger and
one smaller cluster of users. In (b) the smaller cluster is split up into another two
clusters. However, for simplicity the value of k£ (number of clusters) is kept relatively
low and the two smaller clusters are therefore put into one cluster. This means that
there are four different clusters of users that have been identified and will be further
analyzed. Table 5.2 summarizes a few statistics regarding the clusters, including
the total number of events, the number of events from each access category and the
number of unique users.

Figure 5.2 visualizes the door access distribution for each of the four clusters. The
Y-axis corresponds to the mean number of accesses across all users in the correspond-
ing cluster. The plot reveals that the main difference between cluster 1 and 2 is that
cluster 2 uses the main gate (MG) a lot more. The difference between cluster 3 and 4
is that the users from cluster 3 tend do use the office door (0D) and the other doors
within the office more frequently. Cluster 4 seems to utilize SE and PD, which is
similar to cluster 1 and 2, but simultaneously uses ME and 0D on occasion like cluster 3.

Figure 5.3 visualizes the weekday access distribution for each of the four clusters.
The Y-axis corresponds to the mean number of accesses across all users in the
corresponding cluster. From this plot it is clear that the users in clusters 1 and 3
have most of their accesses on normal weekdays. On the other hand, the users in
clusters 2 and 4 seem to work on all days of the week including the weekend.

43

5. Method

30 4
40 4 ® Clusterl » % Cluster 3
A Cluster 2 **** o # Cluster 4
20 % T
30 1 * iy * *:)&
* 5}?" XX
20 o) X x)ﬁ
x K %
X7 XA
o 10 - o~ x X
w ww 01)a'“ X X 5 i‘ﬁ“
7 7 B xR
0 N 10 X »* X x X Tl
A U XX
m %%xg&&x%xgg%{m
-10 + #‘ 0 X ,«x‘%x %X X
M &1 « x Xy %X %
—20 3 XKyg Xy x S
WX X
_30 -
x
_30 _ T T T T T T T
30 40 -30 -20 -10 0 10 20
TSNE1L

(a) (b)

Figure 5.1: t-SNE based clusters of data with access categories AC1 or AC2 are shown
in (a). Similarly, t-SNE based clusters of data with access categories AC3 or AC4 are shown

in (b).

cluster 1
cluster 2
cluster 3
cluster 4

200 -

175

150 -

125 A

100 -

Mean frequency

~
w
L

50 1

251

PD SE FD oD MG ME