
Security Log Analysis with
Explainable Machine Learning

Master’s thesis in Computer Science and Engineering

Linus Aronsson
Aron Bengtsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Security Log Analysis with
Explainable Machine Learning

Linus Aronsson
Aron Bengtsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Security Log Analysis with Explainable Machine Learning
Linus Aronsson
Aron Bengtsson

© Linus Aronsson, Aron Bengtsson, 2021.

Supervisor: Magnus Almgren, Department of Computer Science and Engineering
Advisor: Rikard Bodforss, Bodforss Consulting AB
Examiner: Tomas Olovsson, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A word cloud in the shape of a lock of the most used words in this thesis.

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Security Log Analysis with Explainable Machine Learning

Linus Aronsson
Aron Bengtsson

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Physical access control systems are implemented to restrict access in order to prevent
attacks from happening in the physical space. These systems usually produce access
logs that contain information to track accesses made by users. The access logs can
however end up becoming large and difficult to interpret, making security assessment
impractical for administrators and as a consequence, the logs are rarely inspected.
The current method of detecting anomalies by manual inspection is often not a
feasible approach in preventing attacks. For this reason, anomaly detection using
machine learning is a method that can aid administrators in detecting attacks and
being able to proactively prevent them from happening again. In this thesis, we first
analyze users from a dataset of physical access logs and cluster them into groups
with similar behavior based on their access pattern. Next, we train two LSTM
autoencoder models for each cluster in order to detect anomalies of two different
access sequence lengths. Finally, we evaluate the model with the help of a security
expert from the industry by reviewing explanations produced using SHAP values.
The results in this thesis show that our method was able to reduce the number of
log events that need to be manually inspected by 95.6% in the given dataset. The
results also show that the explanations provided by SHAP values was able to help
in understanding what caused an anomaly. In conclusion, our proposed method is
advantageous compared to manual inspection as it greatly reduces the amount of
work required to detect anomalies, and the SHAP values are able to help security
administrators to work in a more proactive manner.

Keywords: security, physical access control, anomaly detection, machine learning,
deep learning, LSTM autoencoder, explainability, SHAP.

v

Acknowledgements
We would like to acknowledge everyone who has helped and supported us during this
project. We would like to thank our advisor Rikard Bodforss at Bodforss Consulting
AB for allowing us to work on this project and for his assistance throughout the
project. His expertise in the security domain was very useful in discussions on how
to evaluate the project. We would also like to thank our supervisor Magnus Almgren
at Chalmers for his thorough feedback on writing our thesis and for his guidance
during discussions on the project.

Linus Aronsson, Aron Bengtsson, Gothenburg, June 2021

vii

Contents

List of Figures xiii

List of Tables xvii

List of Listings xix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Description . 2
1.3 Goals and Scope . 2
1.4 Delimitations . 3
1.5 Thesis Outline . 3

2 Related Work 5

3 Theory 7
3.1 Access Control . 7

3.1.1 Role-Based Access Control . 7
3.1.2 Physical Access Control . 7
3.1.3 Physical Security Threats . 8

3.2 Anomaly Detection . 8
3.2.1 Types of Anomalies . 9

3.3 Machine Learning . 10
3.3.1 Supervised Learning . 10
3.3.2 Unsupervised Learning . 11
3.3.3 Overfitting and Underfitting 12
3.3.4 Dataset Shift . 12
3.3.5 Feature Engineering . 13
3.3.6 Data Preprocessing . 14
3.3.7 Explainability and Interpretability 15
3.3.8 Loss Functions . 16

3.4 Machine Learning Models . 17
3.4.1 Agglomerative Hierarchical Clustering 18
3.4.2 Principal Component Analysis 18
3.4.3 t-Distributed Stochastic Neighbor Embedding 19
3.4.4 Recurrent Neural Network . 19
3.4.5 Autoencoder . 20

ix

Contents

4 Analysis of Access Logs 23
4.1 Introduction . 23
4.2 Log Format . 24
4.3 Events . 25
4.4 Door Analysis . 26
4.5 User Analysis . 27

4.5.1 User Movement . 27
4.5.2 Access Category . 31
4.5.3 Categorization of User Behavior 36

4.6 Log Analysis Conclusions . 37

5 Method 41
5.1 Clustering of Users . 41

5.1.1 Clustering . 42
5.1.2 Visualization of Clusters . 43

5.2 LSTM Autoencoder Architecture . 45
5.3 Anomaly Detection Framework . 46

5.3.1 Offline Learning . 47
5.3.2 Online Anomaly Detection . 52
5.3.3 Discussion of Anomaly Detection 55

5.4 Model Explainability . 56
5.5 Evaluation . 58

6 Results 59
6.1 Training Process . 59
6.2 Anomaly Thresholds . 59
6.3 Global Evaluation . 59

6.3.1 Point Anomalies . 59
6.3.2 Collective Anomalies . 64

6.4 Local Evaluation . 64
6.4.1 Point Anomalies . 64
6.4.2 Collective Anomalies . 64

7 Discussion and Conclusion 75
7.1 Training Process . 75
7.2 Training Thresholds . 75
7.3 Global Evaluation . 76

7.3.1 Point Anomalies . 76
7.3.2 Collective Anomalies . 77

7.4 Local Evaluation . 77
7.4.1 Point Anomalies . 77
7.4.2 Collective Anomalies . 80

7.5 Ethical Considerations and Sustainability 83
7.6 Conclusions and Future Work . 83
7.7 Final Conclusion . 86

References 89

x

Contents

A Appendix 1 I
A.1 Events . I

xi

Contents

xii

List of Figures

3.1 Transformation from original data to one-hot encoded data. 14
3.2 SHAP values illustrating the contribution of each feature to the output.

From [4]. 16
3.3 Dendrogram of a hierarchical clustering. 18
3.4 Basic RNN architecture. Left: Rolled RNN. Right: Unfolded RNN

over time. 20

4.1 The door access frequency for the four dominant events. 28
4.2 Visualization of the distribution of the average number of events per

day for each user. The average number of events in a day across all
users is 2.8. 73 out of 671 users have an outlying average. 29

4.3 Most common door access sequences of any length from the same day.
The 20 most common sequences are shown. There are 7,417 unique
sequences taken in one day across all users in total. 30

4.4 Most common door access sequences of length two regardless of the
day. The 20 most common sequences are shown. There are 149 such
unique sequences across all users in total. 31

4.5 Most common door access subsequences of length two from the same
day. The 25 most common subsequences are shown. There are 148
subsequences of length two in total. 32

4.6 Most common door access subsequences of length three from the same
day. The 25 most common subsequences are shown. There are 532
subsequences of length three in total. 32

4.7 Most common door access subsequences of length four from the same
day. The 25 most common subsequences are shown. There are 1,272
subsequences of length four in total. 33

4.8 An approximate layout of the building only based on analysis of the log
data. The numbers correspond to how many times two door accesses
have occurred in sequence. 34

4.9 The two most significant components plotted for PCA (a) and t-SNE
(b). The dimensionality reduction is based on 45 original user features.
Additionally, the access category of each user is visualized in the plots. 38

5.1 t-SNE based clusters of data with access categories AC1or AC2 are
shown in (a). Similarly, t-SNE based clusters of data with access
categories AC3or AC4are shown in (b). 44

xiii

List of Figures

5.2 Distribution of door accesses for each cluster. The y-axis correspond
to the mean across all users in the corresponding cluster. 44

5.3 Distribution of weekday accesses for each cluster. The y-axis corre-
spond to the mean across all users in the corresponding cluster. . . . 45

5.4 Distribution of accesses at all hours of the day for each cluster. The
y-axis correspond to the mean across all users in the corresponding
cluster. 46

5.5 A visualization of the autoencoder architecture used to train each of
the models. Numbers in parantheses correspond to the number of
units in the hidden states of the different networks. 47

5.6 A flowchart describing the anomaly detection framework. 48
5.7 Real-time anomaly detection workflow. 53
5.8 Visualization of the addition of a new output layer (i.e., the recon-

struction error) such that SHAP values can be computed. 57

6.1 Training and validation loss vs epoch plotted for each cluster and
sequence length. 60

6.2 Reconstruction error distributions for the training and test sets for
n = 1. 61

6.3 Reconstruction error distributions for the training and test sets for
n = 2. 62

6.4 Distribution of door accesses for each cluster for normal (a) and
anomalous (b) instances. This is based on predictions for n = 1. . . . 63

6.5 Distribution of weekday accesses for each cluster for normal (a) and
anomalous (b) instances. This is based on predictions for n = 1. . . . 63

6.6 Distribution of accesses at all hours of the day for each cluster for
normal (a) and anomalous (b) instances. This is based on predictions
for n = 1. 63

6.7 Distribution of SHAP values for all normal (a) and anomalous (b)
instances for each feature in each cluster. This is based on predictions
for n = 1. Each point corresponds to the average of 100 retrievals of
the SHAP value for a particular instance. 65

6.8 SHAP values plotted against the reconstruction error for each feature
in each cluster. The SHAP value for each instance corresponds to the
average of 100 retrievals. 66

6.9 The 15 most common sequences in each cluster for anomalous instances. 67
6.10 The 15 most common sequences in each cluster for normal instances. 68
6.11 Distribution of SHAP values for all normal (a) and anomalous (b)

instances for each feature in each cluster. This is based on predictions
for n = 1. Each point corresponds to the average of 100 retrievals of
the SHAP value for a particular instance. 69

6.12 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances for c = 1 and n = 1. 70

6.13 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances for c = 2 and n = 1. 70

xiv

List of Figures

6.14 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances for c = 3 and n = 1. 72

6.15 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous and two normal instances for c = 4 and n = 1. 73

6.16 Distribution of 500 retrievals of the SHAP values of each feature for
two anomalous instances for all clusters for n = 2. 74

xv

List of Figures

xvi

List of Tables

4.1 Specific anomalies defined in this project. 24
4.2 General statistics regarding the physical access logs. 24
4.3 Event distribution. There are 50 types of events in total. Only the

relevant events are shown. The user events have been labeled for easier
reference. 26

4.4 Door reference distribution across all user related events. There are
14 doors in total. 27

4.5 Description of features extracted from the user related events. 28
4.6 Distribution of access categories across all user related events. Note

that the number of users in each cluster does not sum to the total
of unique users in the system (which is 671). The reason for this is
because some users have events from more than one access category
(i.e., they have had their access category changed at some point). . . 33

4.7 Door access distribution of user related events for each access category. 36

5.1 General information regarding the training and test set. 42
5.2 General information regarding each of the four clusters. 43
5.3 Description of features extracted from the original features shown in

Table 4.5. 49
5.4 Construction of sequences of events using the sliding-window method

on the datasets X(u, c). Note that mu,c,n = Nu,c−n+1 corresponds to
the number of sequences constructed for user u in cluster c of length n. 51

5.5 Summarization of the hyperparameters used. The hyperparameters
for each of the eight models only differed across the value of n, but
not for the cluster c. η is the learning rate. θ is the weight decay
parameter. h is the number of units in the hidden states of the LSTM
autoencoders. 52

5.6 Anomaly thresholds Tc,n, ∀c ∈ C, ∀n ∈ {1, 2}. 55

6.1 Two anomalous and two normal instances for each cluster for n = 1. . 66
6.2 Two anomalous and two normal instances for each cluster for n = 2.

Note that in this case an instance corresponds to a sequence of two
events. 71

A.1 Event distribution. The total number of events is 1,073,284. There
are 50 types of events in total. II

xvii

List of Tables

xviii

List of Listings

1 Example of a door access event using an access card. 25
2 Example of a door access event using an exit button. 25

xix

List of Listings

xx

1
Introduction

This chapter introduces the thesis with some background on physical access control
and anomaly detection. The motivation behind the project is also explained. Addi-
tionally, the problem description and the goals of the project is described. Finally, the
limitations of the thesis are detailed and the structure of the thesis is outlined.

1.1 Background and Motivation

According to Verizon’s data breach investigations report of 2020, 30% of breaches
involves internal actors, 8% were caused by authorized users intentionally misusing
privilege and 4% were caused by physical actions [1]. A survey from 2018 showed
that 53% of organizations encountered insider attacks in the previous 12 months
and 27% said insider attacks have become more frequent [2]. This type of threat
often consist of espionage, sabotage and theft caused by malicious insiders having
access to critical parts of an organization’s assets. It is therefore important to have
access control enforced, especially physical access control, in order to protect the
organization’s assets.

Many security systems implemented for physical access control produce log en-
tries that contain data to track door accesses to rooms and facilities. While a single
log entry can be small, a collection of them often become large and difficult to
interpret, thus defeating the purpose of logging and making security assessment
ineffective. Arguably for that reason, these log entries are rarely examined other than
when an incident has already occurred. From a security standpoint, it is important
for businesses and organizations to work in both a reactive and a proactive manner.
For the purpose of working more proactively, there is a need for anomaly detection
in physical access control. With the use of anomaly detection, it would be possible
to alert the system of potential breaches as they occur instead of finding out later by
manually inspecting the logs.

With the use of machine learning, anomaly detection has become possible when
managing large amounts of data. When specifically using unlabeled data, anomaly
detection is accomplished in an unsupervised manner. Autoencoders are therefore
relevant for this purpose [3]. While machine learning techniques may be very effective
at detecting anomalies, the output can be hard to explain. A framework to solve
this problem exists called SHapley Additive exPlanations [4]. This framework can
be applied to autoencoders [5].

1

1. Introduction

1.2 Problem Description
Physical security measures are used to ensure the restriction of access to a physical
space such as a property, building, room or other physical asset to authorized users [6].
Systems used by businesses and organizations are typically implemented with access
card readers. These types of systems function in that each user possesses a personal
access card with corresponding permissions for that user. When using an access
card at a card reader, the permissions of the card is compared to the access level
of the physical space. If the card matches the access level, the user has permission
to enter and gains access to the physical space. Every action performed at a card
reader is stored as a log entry. If a user accesses a physical space, information about
the user together with a timestamp and information about the location is stored.
In a perfect world, this would work without flaws, but this is unfortunately not the
case. The system could be misconfigured and an access card could potentially be
stolen and misused. Considering that these security logs are rarely inspected, but
also that anomalies can be hard to discover by manual inspection, security breaches
can easily develop and may even go unnoticed. A short summary of the different
challenges in this project is listed below.

• Access log analysis. The logs need to be analyzed properly in order to
provide an understanding of the different events, doors and user behavior in
the data.

• Data-driven model. The model is purely data-driven as there is no addi-
tional information about the physical layout or user behavior beyond the used
dataset. The idea is that a data-driven system is easy to build without requiring
expensive experts to configure the system. The limitations of this approach
will be further explored in this thesis.

• Unlabeled dataset. The dataset that is used in this project is unlabeled. As
a result, there is no specific information that reveals if a data point is actually
normal or anomalous. This is often the case in real-world settings since labeling
is costly. The aim is therefore to consider a method that can be used by industry.

• Model explainability. Not only should the model detect anomalies, it should
also provide an explanation of what possibly caused the anomalies. This should
aid an administrator in preventing the anomaly from happening again.

1.3 Goals and Scope
This project primarily aims to create a working prototype of anomaly detection
for physical access control logs using machine learning. An important aspect of
this project is that the prototype should be explainable. This means that the
model should not only output that an anomaly has been detected, but also output
what sort of anomaly it is. The goal with this prototype is to improve existing

2

1. Introduction

physical access control systems to have a richer analysis model other than manual
inspection of access logs. The aim with this thesis is to answer the following questions:

1. What type of anomalies in the context of physical access control can a machine
learning model detect?

2. How can explainability be achieved in a deep learning model?

3. How can explainable machine learning be used to proactively prevent security
breaches?

1.4 Delimitations
Although it would be possible to develop a model that is generally applicable, as in
being usable for anomaly detection in domains other than physical access control,
this is not the focus of the project. This project will not involve any collection of
data, as this will be provided by Bodforss Consulting AB that this project is done in
collaboration with.

1.5 Thesis Outline
Chapter 1 provided a brief introduction to the topic of the thesis, along with the
goals, scope and delimitations of the project.

Chapter 2 presents previous work and research related to this thesis. Further-
more, this chapter describes how this thesis is different from the previous research.

Chapter 3 introduces the different concepts and techniques that are used in this
thesis. This chapter is intended to help the reader understand what is presented in
subsequent chapters.

Chapter 4 presents the analysis performed on the physical access control logs. The
main pieces of information from the logs are summarized in figures and tables. Finally,
some conclusions are drawn about the main findings from the analysis.

Chapter 5 describes the architecture and development of the anomaly detection
framework. This chapter also presents how the explainability aspect of the machine
learning models were achieved. The chapter concludes with a description of how the
framework is evaluated.

Chapter 6 presents the results of the thesis.

Chapter 7 discusses the results of the thesis and concludes with insight on the
topic and future work.

3

1. Introduction

4

2
Related Work

Anomaly detection in data is a research area that has been studied as early as the
19th century in statistics [7]. Denning [8] proposed anomaly detection in security
for intrusion detection systems in 1987. In more recent years, anomaly detection
has been researched with regard to the application of machine learning. Sommer
and Paxson [9] discusses the application of machine learning for network intrusion
detection in terms of anomaly detection. In the paper they point out that, despite
extensive research on applying machine learning to anomaly detection, the deploy-
ment of such systems are limited in operational settings. They mention one reason
for the limited deployment being that there is a clear difference in the objective
of traditional machine learning tasks compared to anomaly detection. Machine
learning is traditionally about finding similarities between data samples rather than
dissimilarities, which is the case in anomaly detection. Particularly, attempting to
find dissimilarities involves finding outliers, which may be a rare occurrence in the
data. Achieving acceptable results are thus significantly harder considering that
a common principle in machine learning is that the number of data samples of
each class to be identified must generally be large in order to achieve anything of
interest. Another reason is that evaluation of anomaly detection systems are crucial
but difficult to perform. The authors refer to the evaluation as being more difficult
than developing the system itself. The lack of publicly available labeled datasets
for research purposes regarding anomaly detection further contributes to the difficulty.

There are several papers involving anomaly detection specifically for log file analysis.
Frei and Rennhard [10] proposed a system that uses a combination of graphical and
statistical techniques to visualize the content of a log file in order to aid security
administrators in identifying anomalies. Juvonen et al. [11] proposed a framework
using dimensionality reduction techniques, as log files may consist of high-dimensional
data, in order to find anomalies in HTTP logs. There are different techniques applied
to detecting anomalies in the context of physical access. Davis et al. [12] used a
graph model for anomaly detection and applied it to physical access logs from an
office building. They present an algorithm that searches labeled graphs for both
structural anomalies, described as unusual paths through the building, and numer-
ical anomalies, described as unusual timing data. Cheh et al. [13] used a Markov
model to detect malicious insiders using physical access logs in a railway station
together with knowledge about the physical layout of the station. Similar to our
model, users are distinguished based on their past behavior. The reason being that
access control systems assign roles to users by the doors they have permission to
access, which does not necessarily reflect the user behavior. Poh et al. [14] used a

5

2. Related Work

clustering model to identify anomalous user behavior by characterizing users based on
physical movement from access logs in an office building together with their job profile.

Our model is different from these papers in that we do not have explicit knowledge
about the physical layout nor do we have accurately defined job profiles apart from
access roles. Additionally, we apply Deep Learning [15] in the form of an artificial
neural network called an autoencoder to detect anomalies. We also use SHapley
Additive exPlanations to achieve explainability for the output. This is important
for our model since someone who is not necessarily an expert in machine learning
should be able to understand why an event was considered an anomaly. Another
important aspect of our model is that it is purely data-driven, meaning that it can
be applied to many systems that lacks further information about the physical layout
and user behavior aside from what can be found in the access logs.

6

3
Theory

This chapter presents the theory behind the different concepts and techniques used
in this project. Section 3.1 introduces the concept of access control, including the
different security threats in a physical environment. Section 3.2 then describes the
concept of anomaly detection and defines the different types of anomalies. This
project primarily uses different machine learning techniques. Section 3.3 therefore
introduces the topic of machine learning and describes some of the relevant concepts
within the subject. Finally, Section 3.4 presents the specific machine learning models
that are utilized.

3.1 Access Control
Access control is the security process of restricting access to a specific resource, where
requests to access the given resource can be granted or denied [16]. The restriction is
normally policy-driven and accessing resources is resolved using identity. The policies
in access control systems are usually user-specific, meaning that authentication
is performed by users. Authorization is achieved in a number of different ways
depending on the access control model. The model that is of interest in this project
is role-based access control, especially for physical access.

3.1.1 Role-Based Access Control
In role-based access control (RBAC), permission to access resources are based on a
user’s role, which is usually established from the responsibilities that the user has
within an organization [17]. This model is beneficial in business as roles are easy
to organize based on the business structure and the work duties of the employees.
RBAC also aligns with the principle of least privilege since each role can be assigned
the minimum level of permission required for the user to carry out their duty. A
problem with RBAC is that the roles must be maintained and documented. If the
responsibilities of a user changes, the role of the user needs to be updated in order
to ensure that the user does not have more privilege than necessary.

3.1.2 Physical Access Control
Physical access control (PAC) refers to restricting access to a physical space. On
a basic level, this can be seen as requiring a key to open a door with a lock. PAC
systems that are controlled by software using electronic locks and access cards to

7

3. Theory

grant access can be considered as logical access control [18]. PAC systems are thus
able to be controlled centrally, which allows permissions of a user’s physical access
to be modified or revoked. Users are granted access to a physical space by using a
valid access card at an electronic lock equipped with a card reader. The credentials
of the card, such as an identification number or an access role, are checked against a
database to see if the user has permission to enter.

3.1.3 Physical Security Threats
There are different types of physical security threats, such as environmental threats
and human-caused threats. In this project, only the physical threats caused by
humans are relevant. Human-caused threats can be hard to predict and the potential
damage of an attack can be severe. This type of threat can be grouped into a few
categories [19]:

• Unauthorized physical access. Any individual that has entered a physical
space without permission is to be considered a threat that can potentially
lead to theft, vandalism or misuse. One way for an unauthorized individual
to access a restricted area is by following an authorized user, known as tail-
gating [20]. This can be very hard to detect unless the area is equipped with
video surveillance, since this access does not appear in security logs from the
PAC system.

• Theft. This threat includes any theft of equipment and theft of data. This
can be perpetrated by an authorized insider or by an unauthorized outsider.
Theft also includes eavesdropping, where a user obtains sensitive information
without permission.

• Vandalism. This threat involves any destruction of property, destruction of
equipment and destruction of data.

• Misuse. This threat includes incorrect use of resources, such as performing a
malicious action against a system. This can be performed by users who are
authorized to use the resources, as well as individuals who are not authorized
to use the resources at all.

3.2 Anomaly Detection
Anomaly detection is the task of identifying patterns in data that is different from
the expected behavior [21]. These patterns are normally referred to as anomalies
or outliers. The anomaly usually corresponds to some kind of problem. In physical
access control, this could could correspond to one of the threats mentioned in
Section 3.1.3. Many different anomaly detection techniques have been proposed
across several research communities. Some of these techniques are domain specific,
while others work in a more general sense. The details on how anomaly detection
was performed in this project is specifically described in Chapter 5.

8

3. Theory

3.2.1 Types of Anomalies

Anomalies can be arranged into three different categories: point anomalies, collective
anomalies and contextual anomalies [21].

Point Anomalies

An event is considered a point anomaly if the event is anomalous with respect
to other events in the data. The event is therefore an anomaly since it is different
from normal events. For example, in physical access control, a door where the number
of accesses for a specific user is unusually high compared to the number of accesses
of peers is considered a point anomaly and could potentially be a threat.

Collective Anomalies

A collection of related events is considered a collective anomaly if the collection is
anomalous with respect to the rest of the data. One event in a collective anomaly
might not be an anomaly by itself, but its occurrence in conjunction with other
events is anomalous. For example, one door access might not be an anomaly on its
own, but a sequence of door accesses could be anomalous.

Contextual Anomalies

An event is considered a contextual anomaly if the event is anomalous in a specific
context but not otherwise. The definition of a context depends on the data and has
to be specified before being able to detect contextual anomalies. The data can be
described using two sets of attributes:

• Contextual attributes. These attributes specify the context of the events
in the data. For example, this could be the physical location of an event in
spatial data or the time in time-series data.

• Behavioral attributes. These attributes specify the non-contextual fea-
tures of the events in the data. For example, this could be the weather at
a location in spatial data or the temperature at a given time in time-series data.

An anomaly is determined using the values of the behavioral attributes within a
specific contextual attribute. An event might be considered an anomaly in one
context, but could be normal in a different context. For example, a door access
during the day might be normal, but during the night this would be considered an
anomaly. Important to note is that a point anomaly or a collective anomaly can also
be deemed a contextual anomaly if context is taken into consideration.

9

3. Theory

3.3 Machine Learning
Machine learning (ML) is a branch of artificial intelligence (AI) and refers to the
study of algorithms that are able to learn from data and improve their performance
through experience of a given task. To understand what learning means in this
context, a definition is provided by Mitchell [22]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

The tasks in T refers to what the algorithm is intended to accomplish and are
usually described in terms of how the algorithm should process an example [15].
An example is a set of features measured from an object or event. Typically, an
example is represented as a vector x ∈ Rn called a feature vector that consists of a
number of numerical features. The performance measure P is used to evaluate how
effective the algorithm is at learning a specific task T . The accuracy of the machine
learning model is often used as a performance measure. Accuracy is measured as
the percentage of examples where the model produces the correct output. Another
similar performance measure that is often used is the error rate of the model, which
is the percentage of examples where the model produces the incorrect output. The
experience E is the data that is available during the learning process of the algorithm.
Machine learning algorithms can generally be categorized as supervised learning or
unsupervised learning, depending on the allowed experience. The algorithms are
usually allowed to experience a complete dataset consisting of many examples.

3.3.1 Supervised Learning
In supervised learning, algorithms receive datasets where each example is a pair
of an input object (x) and an output value (y) called a label or target [15]. The
structure of a dataset with n pairs is shown in (3.1).

{(x1, y1), (x2, y2), . . . , (xn, yn)} ∈ (X × Y)n (3.1)

With X being the input space and Y being the output space, the goal of supervised
learning is to infer a function f : X → Y such that each input xi is mapped to the
correct output yi. The function f is then applied to predict the output for unseen
data [23]. Supervised learning can be divided into two types of problems, regression
and classification.

Regression

For regression problems, the learning algorithm infers a function f : Rn → R
to predict numerical values based on the input.

10

3. Theory

Classification

For classification problems, the learning algorithm infers a function f : Rn →
{1, . . . , k} to determine which one of k discrete classes the input belongs to. A deter-
ministic approach to classification only outputs the most likely discrete class, whereas
a probabilistic approach outputs a probability distribution over the classes. The prob-
abilistic approach is usually done by estimating the posterior probability P (y | x)
of each class y ∈ Y given an input x ∈ X [15]. Some probabilistic classifiers use
a joint probability distribution model P (x, y) to estimate the posterior probabil-
ity. Other probabilistic classifiers use a conditional probability model P (y | x) to
determine the posterior probability directly. Classifiers based on joint probability
distribution are called generative and classifiers based on conditional probability
are called discriminative [24]. A probabilistic classifier can seem deterministic by
returning the class y with the highest probability score.

3.3.2 Unsupervised Learning
In unsupervised learning, algorithms receive datasets where each example is simply
an input object (x) without an associated target output. The goal of unsupervised
learning is to find patterns in the data outside of what might otherwise be considered
unstructured noise. Two essential parts of unsupervised learning are cluster analysis
and dimensionality reduction [25].

Cluster Analysis

Cluster analysis, also known as clustering, is the task of grouping a set of ex-
amples into groups called clusters, where the examples within a cluster are more
similar to each other than to examples in other clusters. The similarity between
examples is measured using various distortion or distance measures, depending on the
clustering algorithm used [26]. There is no precise definition of a cluster, and as such,
the notion of a cluster is, largely, in the eye of the beholder [27]. As a consequence,
the notion of a cluster depends on the clustering algorithm and its properties. There
are many different clustering algorithms which can be categorized based on their type
of model. The clustering method used in this project is agglomerative hierarchical
clustering (see Section 3.4.1).

Dimensionality Reduction

Dimensionality reduction is the task of mapping an n-dimensional point into a
lower k-dimensional space, where the n-dimensional point is a representation of an
example with n features in an n-dimensional space [28]. The goal of dimensionality
reduction is to generate the k dimensions while retaining the important properties
of the original example. When performing dimensionality reduction on an entire
dataset, the relationship between the examples in the original n-dimensional space
must also be preserved. The reason behind using this technique is because working
with high-dimensional is usually intractable. Dimensionality reduction can be useful

11

3. Theory

in a number of different cases, such as cluster analysis, data visualization, especially
when mapping data onto two or three dimensions, and removing noise from data.
Dimensionality reduction is usually divided into feature selection and feature extrac-
tion depending on the approach [29], with models being either linear or nonlinear [30].

• Feature Selection. This approach is based on only retaining the most impor-
tant features, meaning that redundant and irrelevant features are omitted.

• Feature Extraction. This approach considers all features and transforms the
data into a lower dimensional space where the dataset structure is retained as
best as possible.

In this project however, only feature extraction will be utilized. An example of a
linear feature extraction model is principal component analysis (see Section 3.4.2)
and an example of a nonlinear feature extraction model is t-distributed stochastic
neighbor embedding (see Section 3.4.3).

3.3.3 Overfitting and Underfitting
A machine learning model is said to overfit if the model performs well on the training
data but does not generalize well to new data, meaning that the model learns noisy
or irrelevant features rather than the underlying structure of the data [31]. The aim
of a model is being able to perform well on test data that was not experienced during
training. However, due to overfitting, which leads to a loss of accuracy on unseen
data, the model will not be able to perform well on the test data. If the training
data is noisy or too small, the model is likely to detect patterns in the noise which
might not exist in new data. Overfitting generally occurs when the model is too
complex relative to the noise in the training data. There are some approaches to
counteract overfitting, such as simplifying the model, using a larger dataset during
training and reducing noise in the training data by removing outliers. Simplifying a
model by constraining it is called regularization and various machine learning models
use different techniques to achieve this.

Underfitting is the opposite of overfitting: instead of the model being too com-
plex, it is too simple to learn the underlying structure of the data [31]. In the case
of underfitting, the model will not be able to perform well on the test data nor the
training data. Underfitting can be counteracted by selecting a more complex model,
reducing the regularization of the model and using more appropriate features for the
algorithm.

3.3.4 Dataset Shift
Dataset shift is a problem that appears when the joint distribution differs between the
training data and the test data [32], such that Ptrain(y, x) 6= Ptest(y, x). A common
assumption is that the training data and the test data follow the same distribution.
This is not always the case however, especially in real-world settings. As a result, this

12

3. Theory

problem leads to a decline in model performance. For example, in physical access
control, this problem could appear if some users disappear over time or if an overall
change of behavior occurs. The model would then train on data that is no longer
similar in the test data. Dataset shift can be categorized into different types. Three
of these types will be described as they are the most commonly present in real-world
settings: covariate shift, prior probability shift and concept shift [33].

Covariate Shift

Covariate shift occurs when the distribution of the input variables P (x) changes
between the training data and the test data. Formally, this can be defined as the
case where:

• Ptrain(y | x) = Ptest(y | x) and Ptrain(x) 6= Ptest(x).

Prior Probability Shift

Prior probability shift can be thought of as the opposite of covariate shift. This type
of dataset shift occurs when the distribution of the target variables P (y) changes
between the training data and the test data. Formally, this can be defined as the
case where:

• Ptrain(x | y) = Ptest(x | y) and Ptrain(y) 6= Ptest(y).

Concept Shift

Concept shift, also referred to as concept drift, occurs when the relationship between
the input and the target variables changes over time. Formally, this can be defined
as two different cases:

• Ptrain(y | x) 6= Ptest(y | x) and Ptrain(x) = Ptest(x).
• Ptrain(x | y) 6= Ptest(x | y) and Ptrain(y) = Ptest(y).

3.3.5 Feature Engineering
Feature engineering is the process of using domain knowledge to define the most
appropriate features given the data, the task and the model used [34]. Generally,
this is an iterative process that includes the following steps:

1. Brainstorm what features to use.
2. Create the features.
3. Evaluate how the features work with the model.
4. Repeat the process if necessary.

Creating relevant features is important in order for the model to produce desired result
and to avoid overfitting and underfitting. Feature engineering typically consumes a

13

3. Theory

lot of time, but if carried out adequately, other parts of the machine learning process
may become easier. There are techniques that uses Deep Feature Synthesis [35] to
automate feature engineering, but this will not be explained in further detail as this
has not been utilized in this project.

3.3.6 Data Preprocessing

In order to analyze data and use it as input to machine learning models, the data must
first be prepared and organized into a suitable form. This process is known as data
preprocessing and is a critical part of machine learning as results would otherwise
be misleading or incorrect [36]. The type of data preprocessing varies considerably
depending on the raw data and the specific models that are applied. This section
will therefore be limited to describing one-hot encoding and data normalization.

One-Hot Encoding

One-hot encoding is a technique used to deal with categorical data [37]. Trans-
forming data from categorical to numerical is an important step in preprocessing
since machine learning models often require their input to be numerical values.
Consider a categorical variable x with n distinct values x1, x2, . . . , xn. The one-hot
encoding of a specific value xi is a vector v where each element has a value of 0
except for the ith element that has a value of 1. For example, assume that the
categorical variable x is color with possible values from the set S = {red, green,
blue}. If x1 = red, x2 = green and x3 = blue, then the one-hot encoding of x is (1,
0, 0), (0, 1, 0) and (0, 0, 1) (see Figure 3.1).

Figure 3.1: Transformation from original data to one-hot encoded data.

Data Normalization

Raw numerical data is often not in a suitable form to be processed properly by
machine learning techniques as the range of values varies between different features.
Data normalization is used to transform raw numerical data to a suitable form while
retaining differences in the values of each feature [36]. Normalization is an important
part of preprocessing since features with different range of values otherwise will
influence the result of machine learning algorithms disproportionately. A common
method to achieve normalization in the interval [0, 1] or [−1, 1] is min-max normal-
ization. This method projects the original range of values onto the new range. The
min-max normalization in the interval [0, 1] is given by (3.2), where x is the original

14

3. Theory

feature and xnorm is the normalized feature.

xnorm = x−min(x)
max(x)−min(x) (3.2)

3.3.7 Explainability and Interpretability
Explainability and interpretability are often used interchangeably in literature [38],
arguably because a collective understanding of explainability as a concept still
needs to develop [39]. Some papers however, point out the importance of making
a distinction between the two terms [40]. This thesis uses the definition of an
explanation from [41]:

An explanation is the collection of features of the interpretable domain, that
have contributed for a given example to produce a decision (e.g. classification
or regression).

As such, explainability can be defined as providing an understanding of what features
contributed to the output of a machine learning model. An interpretation on the
other hand can be defined as [41]:

An interpretation is the mapping of an abstract concept (e.g. a predicted
class) into a domain that the human can make sense of.

Interpretability can therefore be defined as presenting the properties of a machine
learning model in a way that is understandable to humans. Both explainability
and interpretability are essential concepts in order to achieve explainable machine
learning. It is important to understand what features contributed to the output, and
at the same time, this needs to be presented in a way that a human can comprehend
it. One framework that achieves explainability is SHapley Additive exPlanations,
which is used in this project.

SHapley Additive exPlanations

SHapley Additive exPlanations (SHAP) is a model-agnostic framework for explaining
the output of machine learning models [4]. Being model-agnostic means that the
framework is not concerned by what goes on inside of the model, therefore being
agnostic to the internals of the model. Explaining the output is achieved by comput-
ing the contribution of each feature to the output, thus assigning each feature an
importance value. SHAP is based on the classic Shapley values from game theory and
represents the Shapley value explanation as a linear model called an additive feature
attribution method. This explanation is given by (3.3), where g is the explanation
model, z′ ∈ {0, 1}M is the simplified input vector, M is the number of simplified
input features and φi ∈ R is the feature attribution for a specific feature i, the

15

3. Theory

Shapley values.

g (z′) = φ0 +
M∑

i=1
φiz
′
i (3.3)

The goal of the explanation model is to explain the output f(x) given an input x to
the original model f . Explanation models generally use simplified inputs x′ that are
mapped to the original input x using a mapping function x = hx(x′). In the input
vector, a value of 1 corresponds to a present feature and a value of 0 corresponds to
a missing feature. For x, the input vector x′ corresponds to all present features. The
explanation for x can then be simplified as (3.4).

g (x′) = φ0 +
M∑

i=1
φi (3.4)

The unique solution that defines the Shapley values is given by (3.5), where |z′| is
the number of present features in z′ and z′ ⊆ x′ represents all z′ vectors where the
present features are a subset of the present features in x′.

φi(f, x) =
∑

z′⊆x′

|z′|! (M − |z′| − 1)!
M ! [fx (z′)− fx (z′ \ i)] (3.5)

SHAP solves this equation in order to compute its values, where fx(z′) = f(hx(z′)) =
E [f(z) | zS]. Here, S is the set of present features in z′. A simplified input mapping
function hx(z′) = zS is used, where zS has missing values for features not in S.
E [f(z) | zS] is an approximation of f(zS) since most models are not able to manage
arbitrary patterns of missing input values. SHAP values explain how to get from
a base value E [f(z)] to the original output value f(x) (see Figure 3.2). The base
value is the output when no features are known.

Figure 3.2: SHAP values illustrating the contribution of each feature to the output.
From [4].

3.3.8 Loss Functions
A loss function, also known as a cost function, is a function that measures the
performance of a machine learning model for given data by determining the loss [42].
The loss is an error value between a predicted output value ŷ and the correct output
value y. In this project, a loss function called Smooth L1 loss is used. In order to

16

3. Theory

put this loss function into context, L1 loss will first be described.

L1 Loss

L1 loss is a loss function based on minimizing mean absolute error (MAE) [43].
MAE computes the sum of absolute differences between the predicted output values
and the correct output values. In other words, it measures the average magnitude
of errors across the predicted output values. MAE is given by (3.6), where n is the
number of data points in the dataset, ŷi is the predicted output value for instance i
and yi is the correct output value.

MAE = 1
n

n∑
i=1
|yi − ŷi| (3.6)

L1 loss is robust to outliers, but it suffers from not being differentiable. Specifically,
the derivative of the absolute value f(x) = |x| is not defined at each point in its
domain (see Equation 3.7). As can be seen, the derivative is undefined for x = 0.

d

dx
|x| =

{
−1, if x < 0
1, if x > 0 (3.7)

For that reason, the problem with L1 loss is that its gradient is constant. As such,
even when the loss value is small, the gradient will be large, causing the loss function
to be unstable. This makes it difficult to converge effectively.

Smooth L1 Loss

Smooth L1 loss, introduced by [44], is a loss function with the same advantage
as L1 loss of being robust to outliers. Smooth L1 loss is given by (3.8), where x is the
difference between the predicted output value and the correct output value.

smoothL1(x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise (3.8)

The difference between the original L1 loss and Smooth L1 loss is that the latter is
stable due to being differentiable (see Equation 3.9).

d

dx
smoothL1(x) =

{
x, if |x| < 1
±1, otherwise (3.9)

3.4 Machine Learning Models
This section describes the different models that are used in this project. First, a
clustering method called agglomerative hierarchical clustering is described. Next,
two dimensionality reduction techniques called principal component analysis and
t-distributed stochastic neighbor embedding are detailed. Subsequently, a type of

17

3. Theory

artificial neural network called a recurrent neural network is specified. Finally, a
neural network architecture called an autoencoder is described.

3.4.1 Agglomerative Hierarchical Clustering
The agglomerative hierarchical clustering algorithm constructs clusters by recursively
partitioning data points in a bottom-up approach [45]. Each data point starts as
its own cluster. The algorithm then proceeds to successively merge the clusters into
larger ones. Which clusters to merge is decided based on some similarity measure
that is chosen to optimize some linkage criterion. In this project, Ward’s method [46]
was used. At each step, Ward’s method minimizes the sum of squared differences
within all clusters. The pair of clusters that yield the smallest increase in variance
during the step will then be merged. This process continues until all data points end
up in a single cluster or until a condition is fulfilled, such as reaching a set number of
clusters. The hierarchy of the clusters can be visualized as a dendrogram (see Figure
3.3).

Figure 3.3: Dendrogram of a hierarchical clustering.

3.4.2 Principal Component Analysis
Principal component analysis (PCA) is used to reduce the dimensionality of a dataset,
while retaining as much of the variation in the data as possible. This is achieved by
transforming the data to a new set of variables, called the principal components (PCs),
that are linear functions of those in the original dataset, that maximize variance
and are uncorrelated [47]. The context for PCA involves a dataset with p numerical
variables for each of n features, defining an n× p data matrix X. The ith column of
X is the vector xi of observations on the ith variable. Given a vector x, PCA starts
by computing a linear function αT

1 x of the variables of x having maximum variance,
where α1 is a vector of p constants α11, α12, . . . , α1p and T denotes transpose. The

18

3. Theory

linear function is given by (3.10).

αT
1 x = α11x1 + α12x2 + . . .+ α1pxp =

p∑
i=1

α1ixi (3.10)

PCA then computes αT
2 x having maximum variance, uncorrelated with αT

1 x and
so on. At the kth computation, the kth PC αT

kx having maximum variance is
uncorrelated with the previous αT

1 x,α
T
2 x, . . . ,α

T
k−1x PCs. It is possible to find p

PCs, but the goal is generally to find m PCs, where m� p and the variation in x is
accounted for [48].

3.4.3 t-Distributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality
reduction technique well-suited for visualizing high-dimensional data by mapping
each datapoint to a location in a two or three-dimensional space [49]. The technique
is based on Stochastic Neighbor Embedding (SNE) originally presented by Hinton
and Roweis [50]. The loss function of t-SNE is a symmetrized version of the loss
function used by SNE with simpler gradients. It also uses a t-distribution to compute
the similarity between two points in the low-dimensional space, instead of a Gaussian
distribution like SNE. The t-SNE algorithm starts by converting the similarities
between datapoints to joint probabilities where similar datapoints are assigned
a higher probability and dissimilar datapoints are assigned a lower probability.
The algorithm then minimizes the Kullback-Leibler divergence between the joint
probabilities of the low-dimensional space and the high-dimensional data.

3.4.4 Recurrent Neural Network
A recurrent neural network (RNN) is a type of artificial neural network that intro-
duces a notion of time to the model [51]. Unlike traditional neural networks, RNNs
are able to use information from previous states to influence the current output.
This functions as a sort of memory as it can remember things learnt from prior input.
RNNs can use their memory to process sequential data. This can be visualized by un-
folding the network (see Figure 3.4), which can be trained using backpropagation. The
specific algorithm used by RNNs is called backpropagation through time (BPTT) [52].

In the unfolded network, each individual layer represents a time step. At time
step t, the hidden node ht receives input from the current data point xt and from the
hidden node ht−1 in the previous state. The output ŷt is then calculated using the
hidden node value ht. The hidden node value ht is given by (3.11) and the output
value ŷt is given by (3.12). Here, a1 and a2 are activation functions. The matrices
Whx, Whh and Wŷh are shared weight parameters between layers. The vectors bh

and bŷ are bias parameters that allow nodes to learn an offset.

ht = a1 (Whxxt +Whhht−1 + bh) (3.11)

ŷt = a2 (Wŷhht + bŷ) (3.12)

19

3. Theory

A problem with RNNs is that they can encounter the vanishing gradient problem
during training [53]. The reason why this occurs is because it is difficult to capture
long-term dependencies. In short, when introducing many time steps, a small
gradient will exponentially decrease. The weight parameters will eventually become
insignificant (i.e. 0) when updated. At this point, the network is no longer learning.
A solution to this problem was presented by Hochreiter and Schmidhuber called
Long Short-Term Memory (LSTM) [54]. LSTM is the type of network that will be
utilized in this project.

Figure 3.4: Basic RNN architecture. Left: Rolled RNN. Right: Unfolded RNN over
time.

3.4.5 Autoencoder
An autoencoder is a neural network that consists of two parts: an encoder that maps
an input to a hidden layer h = f(x) called the code, and a decoder that produces a
reconstruction r = g(h) of the input from the hidden layer [15]. The two parts are
trained jointly in an unsupervised manner with the aim of learning an approximate
representation of the original input. The autoencoder is trained to minimize the
reconstruction error L(x, r), which measures the dissimilarity between the input and
the reconstruction.

LSTM Autoencoder

An LSTM autoencoder is a type of autoencoder that uses an encoder-decoder
LSTM architecture to process sequential data. The encoder maps an input sequence
to a fixed-length vector and the decoder maps the vector representation to a target
sequence. This architecture was developed for natural language processing prob-
lems [55]. In this project however, the architecture will be applied to anomaly

20

3. Theory

detection.

Autoencoders for Anomaly Detection

If an autoencoder always succeeds in reconstructing the input without error, such that
g(f(x)) = x, simply by memorizing the input and passing it along the network, then
it would not be particularly useful. Autoencoders are therefore usually restricted to
reconstruct the input only approximately, essentially forcing the network to prioritize
the most frequent properties of the data. This is what makes autoencoders relevant
for anomaly detection. When encountering an anomaly, the autoencoder will not be
able to reconstruct it accurately since outliers are not prioritized during the learning
process. As a result, the reconstruction error will be low for normal data and high
for anomalous data. By defining a threshold T , any data with a reconstruction error
below the threshold L < T can be considered normal, whereas any data with a
reconstruction error above the threshold L > T can be considered anomalous.

21

3. Theory

22

4
Analysis of Access Logs

As already mentioned, this project is purely data driven. In other words, no prior
information, including the layout of the building or common user behavior, is avail-
able. All information will be retrieved based on analysis of the access logs. This
chapter presents how this analysis was executed, and summarizes the main pieces of
information in various plots and tables.

Section 4.1 begins by briefly describing what information will be presented, and
motivates why this information is extracted in the context of this project. Section 4.2
describes the original data format of the physical access logs. Section 4.3 describes
the different events that appear in the logs. Section 4.4 presents the different doors
that exist in the system. Section 4.5 outlines how different user behavior can be
extracted from the original access logs, and presents some analysis of such behavior.
Finally, Section 4.6 summarizes the findings of the chapter.

4.1 Introduction
The collaborating company Bodforss Consulting AB has provided a dataset of physi-
cal access logs. These logs contain all recorded events from a physical access control
system deployed in a company building. The available logs stretch from 2018-02-14 to
2020-08-26, which is a total of 924 days. Table 4.2 presents a few statistics regarding
the logs, which are discussed in more detail throughout the chapter. This section
describes the most relevant information in these access logs for the purposes of this
project. The information extracted and motivations for their extraction is listed
below.

• Log events. An understanding of the original format of the physical access
logs must first be established. This allows for further extraction of the most
relevant parts for this project. The original log format is briefly explained in
Section 4.2. The access logs consist of a number of distinct events, which are
presented in Section 4.3 in order to understand which of them are relevant for
further analysis in this project.

• Doors in the building. A detailed understanding of which doors that exist
in the building is important as all the other analysis steps are heavily depen-
dent on this. Section 4.4 will therefore present the doors and their relative
frequencies in the log data.

23

4. Analysis of Access Logs

Anomalies
Type Description

Contextual Door access at an unusual time
Point First time accessing a door
Point Denied door access
Point Unusual number of door accesses

Collective Unusual sequences of door accesses
Collective Short time interval between accesses of different doors
Collective Repeated door accesses

Table 4.1: Specific anomalies defined in this project.

No. Entries No. Events No. Users Start End No. Days
1,073,284 50 671 2018-02-14 2020-08-26 924

Table 4.2: General statistics regarding the physical access logs.

• Overall user behavior. The purpose of the project is to detect unusual
behavior in these access logs. What constitutes unusual is highly context
dependent. After discussions with domain experts from Bodforss Consulting
AB, there are a number of anomalies that they consider relevant in this par-
ticular case. These anomalies are summarized in Table 4.1. Before detecting
unusual behavior, one must first establish what is normal. Section 4.5 therefore
presents analysis of common user behavior in the access control system. Ad-
ditionally, an approximate layout of the building is shown based on the analysis.

• Categorization of user behavior. Eventually, a number of machine learning
models will be used to detect anomalies in the log data, as is described in
Chapter 5. A natural approach to this is to apply one machine learning model
per subgroup of users that tend to behave similarly (Chapter 5 will describe
the reason for this in detail). In order to categorize the behavior of different
users, three different user criteria are considered. These include which doors
the user tend to open, which weekdays they open them on and what time
during the day they open them. The reason for these criteria is that they are
necessary in order to capture behavior that in turn reflect the anomalies listed
in Table 4.1. Section 4.5.3 presents some initial analysis of how clusters of
users can be found based on these criteria.

4.2 Log Format
All logs from the physical access control system are stored as XML files, where each
file is separated by date consisting of events that occurred during that specific date.
A file has a root node called <events> that consists of a number of <batch> elements
where each batch element contains an <event> element with some <argument> ele-
ments. An event includes a couple of attributes, the interesting attributes being name

24

4. Analysis of Access Logs

<batch>
<event name="access.card.valid.standard" timestamp="1615649437000">

<argument value="door_name" type="door" id="1"/>
<argument value="user_name" type="person" id="1"/>
<argument value="access_category_name" type="access_category"/>

</event>
</batch>

Listing 1: Example of a door access event using an access card.

<batch>
<event name="door.requestToExit" timestamp="1615649437000">

<argument value="door_name" type="door" id="1"/>
</event>

</batch>

Listing 2: Example of a door access event using an exit button.

and timestamp. The name attribute is a string that describes the type of event that
has occurred and the timestamp attribute is the time of when the event occurred.
An argument includes the attributes type, value and id. The type attribute is a
string describing the type of the argument, the value attribute specifies a readable
representation of the object related to the event and the id attribute is the primary
key for the object.

Some of the interesting events related to door accesses include door.requestToExit
that occurs whenever a user unlocks a door using an exit button and access.card.
valid.standard that occurs whenever a user unlocks a door using an access card.
These two events are in some cases followed by door.opened and door.closed to
register that the door has opened and closed.

Listing 1 shows an event where a door is unlocked using an access card, including
three of the most relevant arguments. Namely, the door being accessed, the user
accessing it and the access category that the user currently belongs to. The access
category correspond to a grouping of users with different door access permissions in
the building. This is further discussed in Section 4.5.2.

Listing 2 shows an event where a door is unlocked using an exit button. This type
of event does not have an argument containing information about the user since this
information is only available from using an access card.

4.3 Events
There are 50 different events in total, all of which are listed in Table A.1 in the
Appendix. Table 4.3 displays the relative frequencies of the most relevant events. The
relevancy is based on whether they are very common or utilized in upcoming analysis
in this chapter. From this table one can see that approximately 97% of the events are

25

4. Analysis of Access Logs

Event Label Event name Relative frequency (%)
UE1 access.card.valid.standard 27.95
- door.requestToExit 26.24
- door.opened 21.58
- door.closed 21.58

UE2 access.card.invalid.door 0.126
UE3 access.card.invalid.standard 0.063
UE4 access.card.invalid.inhibited 0.011
- Remaining 43 events 2.52

Table 4.3: Event distribution. There are 50 types of events in total. Only the relevant
events are shown. The user events have been labeled for easier reference.

represented by only four events. Note that these four events correspond to doors being
opened or closed in the PAC system. The majority of the remaining events are admin-
istrative in one way or another, such as registering new users and doors in the system.

Furthermore, the four events starting with access.card involve using an access card
which consequently means that there is a user associated with it. These events have
been labeled for easier reference later in the thesis. The most common user related
event is access.card.valid.standard and corresponds to the access card being
valid for the given door, and the door should subsequently open. The other three
corresponds to the access card being invalid for the given door, and will not result in
the door opening. These user related events will be used when finding subgroups of
users that behave similarly.

4.4 Door Analysis
Table 4.4 shows all the door names and a corresponding acronym for easier reference
later in the thesis. It also shows the total references from any user related event
in the log data for each door. From this, it is clear that about six of the doors
correspond to a great majority of the log activity.

Figure 4.1 shows the door access distribution for each of the 4 dominant events from
Table 4.3. From this one can see that the events door.opened and door.closed are
only logged for the office door (OD) and the staff entrance (SE). However, the summed
frequency of the events access.card.valid.standard and door.requestToExit
do not correspond to the frequency of door.opened and door.closed. The reason
for this is unknown but may be due to the doors being opened and closed in ways
other than as a consequence of the events access.card.valid.standard or door.
requestToExit occurring. Additionally, the table reveals that the fire door (FD) has
a large number of events corresponding to access.card.valid.standard, but no
events corresponding to door.requestToExit. This may indicate that it is only
possible to open this door from one direction, or that unlocking the door with an
access card is required in both directions.

26

4. Analysis of Access Logs

User Events
Door Acronym Door Name References

PD Production Door 103,757
SE Staff Entrance 83,000
FD Fire Door 42,822
OD Office Door 34,918
MG Main Gate 20,770
ME Main Entrance 10,123
HR HR Office 1,780
POA Payroll Office A 1,244
KC Key Cabinet 1,129
POB Payroll Office B 1,018
FO Finance Office 921
G Gate 529
PA Payroll Archive 73
SG Sliding Gate 58

Table 4.4: Door reference distribution across all user related events. There are 14 doors
in total.

It should be noted that only knowing which user is responsible for about 28% of the
events is a potential limitation. The reason is that the full movement of each user
can not be tracked since the access card is only required in one direction for most of
the doors.

4.5 User Analysis
As mentioned in Section 4.2, each of the four user related events listed in Table 4.3
(UE1, UE2, UE3 and UE4) have a number of features associated with them in the
original access logs. In order to make the user analysis more manageable, the user
events were filtered out from the access logs. Additionally, only a subset of the
available features were kept for further analysis. These features are summarized
in Tabl 4.5. The filtered data is then saved in a file following a CSV format. The
resulting dataset has 302,144 rows in total, where the rows correspond to all the
events sorted in a chronological order. The data matrix is denoted X and has
dimensions 302, 144× 6.

4.5.1 User Movement
Figure 4.2 visualizes the distribution of the average number of events per day for
each user. There are 671 different users recorded in the access log data. One can
see that most users have about 2-4 events per day on average. The average number
of events in a day across all users is 2.8. However, 73 of the users have an outlying
average according to the box plot.

27

4. Analysis of Access Logs

Figure 4.1: The door access frequency for the four dominant events.

Feature Data type Feature description
Timestamp String Timestamp of the event.
User ID Integer Unique identifier of the user.
Door ID Integer Unique identifier of the door being accessed.
Door String A descriptive name of the door being accessed.

Access category ID Integer A unique identifier indicating which access
category the user belongs to.

Access category String A descriptive name of the access category.

Table 4.5: Description of features extracted from the user related events.

28

4. Analysis of Access Logs

Figure 4.2: Visualization of the distribution of the average number of events per day
for each user. The average number of events in a day across all users is 2.8. 73 out of 671
users have an outlying average.

Figure 4.3 shows the frequencies of the 20 most common door access sequences taken
in a single day. The purpose of this plot is to illustrate what sort of sequences are
common across an entire day for the users. The sequence {SE - PD} is the most
common sequence by far. This makes sense since these are also the two most accessed
doors individually, as seen in Table 4.4. Entering the staff entrance and subsequently
opening the production door is therefore the most common movement in a day. This
also shows that most users have no other events apart from those initial events at the
start of their shift. There are no events when they leave since they can open doors
from the inside by the press of a button, which triggers the door.requestToExit
event, which has no user associated with it. The second most common sequence is to
just open the staff entrance. However, it is unlikely that a user only walks through
the staff entrance in one day which means that subsequent door accesses were simply
not recorded in the log data. This can occur if, for example, another user opens the
door using their card and simply lets other users walk through without using their
own access cards. This ultimately illustrates one of many limitations with this sort
of data. The reason why it is a limitation is because the whole idea is to learn about
common user behavior, and if this behavior is distorted by such events then the data
can never be fully trusted. However, one can see that the occurrence of the proper
full sequences are more common than the broken sequences which means that useful
patterns can still likely be identified.

The seventh most common sequence is {ME - OD}. This indicates that people working
in the office enter the building from the main entrance, whereas the people that use
the production door enter the building through the staff entrance.

Figure 4.4 shows frequencies of the 20 most common door access sequences of length
two regardless of the day. This means that sequences that include events from two
different days are counted. As already mentioned, {SE - PD} is the most common

29

4. Analysis of Access Logs

Figure 4.3: Most common door access sequences of any length from the same day. The
20 most common sequences are shown. There are 7,417 unique sequences taken in one day
across all users in total.

sequence in one day. The sequences {SE - PD} and {PD - SE} being the two most
common sequences regardless of the day therefore makes sense. The main reason for
including this figure is because these are the sequences that will be learned by the
machine learning models. The reason for this and exact details of how this will work
is explained in Chapter 5.

It is likely common for people to walk the same subsequences across a day multiple
times. This can occur since employees may leave the company building and come
back later for various reasons. The 25 most common subsequences of lengths 2, 3
and 4 across a day are therefore shown in Figures 4.5-4.7. In order to visualize some
of the sequences that include doors with low frequencies, the subsequence counts are
normalized by the least common door in the sequence. Sequences of lengths longer
than 4 are not shown because these sequences generally consist of subsequences of
length 4 or shorter. In other words, from manual inspection it seems that sequences
of lengths 4 and below show all interesting sequences that users take.

Figures 4.5-4.7 provide a number of insights regarding the overall movements in the
building. One of the various gates (MG, G and SG) are often accessed prior to one of
the entrances (ME, SE). As already mentioned, ME is generally followed by OD, whereas
SE is generally followed by PD. In most cases, after accessing PD the user does nothing
more in that day. Users accessing OD, however, also tend to subsequently access one
of the other office related doors (i.e., HR, POA, POB, FO or PA). Finally, one can note
that the fire door (FD) is used to move between PD and OD. This proves the earlier
theory that the fire door can indeed be opened from both directions using an access
card (i.e., no request to exit button).

30

4. Analysis of Access Logs

Figure 4.4: Most common door access sequences of length two regardless of the day.
The 20 most common sequences are shown. There are 149 such unique sequences across all
users in total.

Given all of this information, Figure 4.8 displays an approximate layout of the
building. The numbers correspond to how many times two door accesses have
occurred in sequence. Note that only the most important paths are included in this
figure. There are other paths recorded in the log data that are not visualized. The
main reasons for not including them is that these paths do not make sense (e.g.
walking through OD before ME) or that they are very uncommon.

4.5.2 Access Category
The main purpose of the data analysis is to discover subgroups of users that tend
to behave similarly (as will become clear in Chapter 5). The access category is a
natural place to start since this is a predefined categorization of user privileges inside
of the company building. Table 4.6 lists all access categories, their corresponding
frequency in the log data and introduces acronyms for easier reference later in the
report. Table 4.7 shows the door access distribution of user related events for each
access category. As a reminder, the event UE1 corresponds to a user trying to access
a valid door. The events UE2, UE3 and UE4, on the other hand, correspond to a user
trying to access an invalid door.

The category FA has a very low frequency and manual inspection revealed that it
was only used for administrative purposes during the initial setup phase of the PAC
system. Because of this, the remaining analysis of access categories will not include FA.

For the remaining access categories one can draw a number of conclusions regarding
which doors are accessible for each category. Let D denote the set of all doors from
Table 4.4. Furthermore, let Di denote the accessible doors for access category i.

31

4. Analysis of Access Logs

Figure 4.5: Most common door access subsequences of length two from the same day.
The 25 most common subsequences are shown. There are 148 subsequences of length two
in total.

Figure 4.6: Most common door access subsequences of length three from the same day.
The 25 most common subsequences are shown. There are 532 subsequences of length three
in total.

32

4. Analysis of Access Logs

Figure 4.7: Most common door access subsequences of length four from the same day.
The 25 most common subsequences are shown. There are 1,272 subsequences of length
four in total.

Access Category Acronym Access Category Frequency No. Users
AC3 Access category 3 152,116 257
AC1 Access category 1 125,270 455
AC4 Access category 4 21,671 27
AC2 Access category 2 3,051 15
FA Full access 36 3

Table 4.6: Distribution of access categories across all user related events. Note that the
number of users in each cluster does not sum to the total of unique users in the system
(which is 671). The reason for this is because some users have events from more than one
access category (i.e., they have had their access category changed at some point).

33

4. Analysis of Access Logs

Figure 4.8: An approximate layout of the building only based on analysis of the log data.
The numbers correspond to how many times two door accesses have occurred in sequence.

34

4. Analysis of Access Logs

Given this, the sets of accessible doors for each access category can be defined as
shown in Eq. 4.1.

D2 = {PD, SE, MG, G, SG}
D1 = D2 \ SG
D4 = D

D3 = D4 \ SG

(4.1)

From the above one can conclude that AC1 and AC2 access the same doors, except
that AC2 also have access to SG. Similarly, AC3 and AC4 access the same doors, except
that AC4 also have access to SG.

There are two additional important things to note regarding Table 4.7. The first
is that the same access category have accesses from multiple user events for the
same door. For example, AC1 has 55,856 accesses with event UE1 and 11 accesses
with event UE4 for the door PD. This seems contradicting considering the opposite
meaning of UE1 and UE4. One theory for why this occurs could be that AC1 has
restrictions that are not limited to the accessible doors, but also to the hour and
weekday. However, from manual inspection, there is no indication that the access
categories are limited to certain hours or weekdays. The reason for this is because
all access categories have events of type UE1 on all hours and weekdays. Instead,
it seems that UE4 corresponds to a door being temporarily invalid for a particular
access category. This means that administrators can temporarily restrict access of
particular doors that are normally allowed for each respective access category. For
cases when certain doors of a particular access category have events of types UE1
and UE2 or UE3 the reasons must be different. In most of these cases the occurrence
of UE2 or UE3 are very low compared to UE1. From inspection it seems that these
occurrences came before correct permissions had been given to each respective access
category. This is one suggested reason but note that there is no way to guarantee
that this is the true reason based only on the access logs. Additionally, there may be
other reasons that were not discovered in the analysis made in this project.

The second thing to note is that the door G was assigned to D2 despite AC2 having
no valid accesses for this door. The reason for this is because it also had no invalid
accesses, indicating that no one from AC2 has ever tried opening G. This means
that one can impossibly know whether this door is allowed or not purely based on
analysis of the access logs. This is not a serious issue for the remainder of this
project, considering that it is only affecting one uncommonly accessed door for one
access category. D2 can simply be updated accordingly whenever new access logs
are available. A similar thing can be noted for some of the office related doors for
both AC1 and AC2. However, since OD is clearly invalid for these access categories,
the other office related doors should consequently be invalid too.

35

4. Analysis of Access Logs

Door
AC Event PD SE FD OD MG ME HR POA KC POB FO G PA SG

FA

UE1 0 0 12 0 1 0 0 0 0 0 0 4 0 0
UE2 0 0 0 0 0 0 0 0 0 0 0 12 0 5
UE3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UE4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AC1

UE1 55,856 56,498 0 0 11,042 0 0 0 0 0 0 243 0 0
UE2 0 0 887 0 13 75 0 0 0 0 0 1 0 1
UE3 0 0 0 542 0 0 0 0 13 0 0 0 0 0
UE4 11 54 0 0 28 0 0 0 0 0 0 6 0 0

AC2

UE1 1,335 1,446 0 0 207 0 0 0 0 0 0 0 0 9
UE2 0 0 48 0 0 0 0 0 0 0 0 0 0 0
UE3 0 0 0 5 0 0 0 0 1 0 0 0 0 0
UE4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AC3

UE1 42,293 23,904 34,833 28,813 8,281 8,205 1,538 1,219 809 992 517 249 57 0
UE2 0 0 107 137 0 0 12 1 0 2 2 0 3 34
UE3 0 0 0 7 0 0 92 0 0 4 0 0 0 0
UE4 2 1 0 0 2 0 0 0 0 0 0 0 0 0

AC4

UE1 4,259 1,097 6,931 5,406 1,196 1,843 122 19 306 16 400 14 9 9
UE2 0 0 0 0 0 0 1 5 0 3 2 0 4 0
UE3 0 0 0 0 0 0 15 0 0 1 0 0 0 0
UE4 1 0 4 8 0 0 0 0 0 0 0 0 0 0

Table 4.7: Door access distribution of user related events for each access category.

4.5.3 Categorization of User Behavior
A number of statistics that capture the user behavior criteria mentioned at the start
of this chapter was extracted for each of the 671 users. These statistics include
the number of accesses of all 14 doors, the number of accesses on each of the 7
weekdays and the number of accesses during each of the 24 hours in a day. This
means that each user has 14+7+24 = 45 features that describe their overall behavior.
Furthermore, certain users will naturally have more events in the logs due to them
being employed for a longer period. The raw frequency of events is therefore not
sufficient in terms of categorizing similar user behavior across employees that have
worked for different lengths. The frequencies of each user are therefore normalized
by the total events for the given user. After all data preparation, a user data matrix
U can be described as shown in Eq. 4.2.

U ∈ [0, 1]671×45 (4.2)

Furthermore, the user matrices for each individual feature is also constructed, as
shown in Eq. 4.3.

Udoor ∈ [0, 1]671×14

Uweekday ∈ [0, 1]671×7

Uhour ∈ [0, 1]671×24
(4.3)

Each of the 671 rows (users) should now be categorized into different groups (clusters)
that behave similarly. In order to visualize potential clusters, two dimensionality
reduction techniques were applied to each of the user matrices above, namely PCA
and t-SNE. Figure 4.9 plots two components of PCA and t-SNE for each of the four

36

4. Analysis of Access Logs

cases. The clusters from Udoor, Uweekday and Uhour are presented to ensure that each
feature has some impact on the grouping of user behavior. Additionally, the access
category of each user is highlighted in the plots with different colors and shapes.
Note that 73 of the users have had their access category changed at some point,
resulting in them having events with different access categories. For these users, a
new category named Combination is shown in the plots. Effectively all of those 73
cases correspond to the user having their access category changed from AC1 to AC3.
This means that they are granted more permissions within the building.

From these plots it is clear that t-SNE is finding more well defined clusters, in-
dicating the nonlinear structure of the patterns in higher dimensional space. For
this reason, the discussion will mostly be with regards to the t-SNE plots. The
clearest separation of access categories can be seen in plot 4.9 (d), which is based
on Udoor. This is logical considering that the access categories are by definition a
categorization of accessible doors. Furthermore, the users belonging to AC1 and AC2
tend to cluster together and users belonging to AC3 and AC4 tend to cluster together.
This of course makes sense since their door access permissions are practically the
same. One can also note that there are additional clusters within the access cate-
gories, indicating that there are different behavior within each access category as well.

Additionally, the weekdays and doors also seem to have an impact as clusters can
indeed be identified in the plots 4.9 (f) and 4.9 (h) as well. For these cases, especially
the weekdays, the separation of access categories are expectedly not as clear. The
clusters based on U are shown in plot 4.9 (b), and are quite clear as well. It is of
course these clusters that are the most interesting as they correspond to users that
behave similarly with respect to all criteria.

The users that have had their access category changed are in certain cases placed
in their own cluster somewhere in between the other main clusters. The reason for
this is likely because these users have access logs that correspond to two different
behaviors. The conclusion from this is that when separating the access logs into
different behavior, that separation should not be done based on all events from each
user, but a separation of events based on their access category for each user may
instead be appropriate. This is further discussed in the next chapter. A further
analysis of what behavior is common in each of the clusters shown in Figure 4.9 is
purposely left out, as such analysis will be presented in the next chapter.

4.6 Log Analysis Conclusions
This section concludes a few important findings from this chapter. Each finding is
listed and discussed in the list below.

• Limited knowledge of user behavior. As already mentioned, only 28% of
the events track which user caused them. These are the events when a user
need their access card to enter a room. From a security perspective this makes
sense since entering a new room is generally more sensitive than leaving a room

37

4. Analysis of Access Logs

(a) All features (PCA) (b) All features (t-SNE)

(c) Doors (PCA) (d) Doors (t-SNE)

(e) Weekdays (PCA) (f) Weekdays (t-SNE)

(g) Hours (PCA) (h) Hours (t-SNE)

Figure 4.9: The two most significant components plotted for PCA (a) and t-SNE (b).
The dimensionality reduction is based on 45 original user features. Additionally, the access
category of each user is visualized in the plots.

38

4. Analysis of Access Logs

that you were already in. However, being aware of the exact movement of every
user (including when they leave doors) can likely help when trying to detect
unusual behavior. This is especially true for more complex building layouts.
The building layout in this project, however, is quite simple which means that
sequences only corresponding to new rooms being entered is sufficient.

• Broken sequences. The previous issue is inherent to the PAC system itself.
Another problem mentioned briefly in Section 4.5.1 is when parts of sequences
are missing. For example, if a user walks the sequence {SE - PD}, but only the
access to SE was logged. This problem is instead caused by misuse of the PAC
system. In other words, one user may open a door using their access card and
then allow other people to walk in behind them without using their own access
cards. According to Bodforss Consulting AB, it may even happen that a door
is remained unlocked for an unknown period of time, consequently allowing
anyone to enter it without an access card. This allows for unauthorized users to
enter disallowed rooms. For example, someone from AC1 may enter OD without
it being logged. If it is not logged then the anomaly detection system (see
Chapter 5) can never detect it. Furthermore, these distorted sequences may be
seen as noise in the data that do not represent the true sequences that should be
learnt by the anomaly detection system. This may consequently make it more
difficult for the anomaly detection system to report proper anomalies. From
a security perspective this is an obvious issue. The solution to this problem
is not very straight forward, however. The obvious approach is to enforce
stricter rules to make sure that the users use the PAC system as intended by,
for instance, making them aware of why the PAC system is there in the first
place.

• Access categories. The access categories are user privileges defined within
the PAC system. Four such access categories were presented, namely AC1, AC2,
AC3 and AC4. From closer inspection it was revealed that AC1 is very similar to
AC2 and AC3 is very similar to AC4. In fact, as will be explained in more detail
in the next chapter, the categories that are similar will be merged into one
category, leaving only two categories to consider.

• Clustering of user behavior. Section 4.5.3 showed that there are groups
of users that behave similarly with respect to which doors they access and
when they access them (i.e., the hour of the day and day of the week). How-
ever, it also showed that certain users have events corresponding to different
access categories, meaning that their door access permissions changed in the
span of the logs. This also means that the behavior of these users (which
is defined by their events in the logs) changed over time. A proper way of
finding clusters is therefore to first split the data by access category, and
then separately cluster these datasets by user. The reason for doing this is
because it ensures that each cluster will contain events that follow a consistent
behavior throughout the full time period. This makes it easier for the anomaly
detection system to understand what is normal and what is not. This will

39

4. Analysis of Access Logs

be utilized in Chapter 5 when splitting the users into clusters. Note that
this was only necessary because of the fact that certain users have had their
access categories changed. Additionally, in another PAC system where ac-
cess categories may not be present, the clustering would be done normally,
by following the approach in Section 4.5.3 without any split on access categories.

40

5
Method

The previous chapter presented the analysis of the physical access logs. This chapter
describes how an anomaly detection framework was developed partly based on the
conclusions from the previous chapter. Section 5.1 begins by motivating a split of the
users into subgroups that behave similarly. Subsequently, the same section presents
how the subgroups were found and finally visualizes their differences in behavior.
Section 5.2 describes the architecture used for detecting anomalies in the physical
access log data, namely LSTM autoencoders. Based on the subgroups of users found
and the chosen anomaly detection architecture, Section 5.3 presents the framework
developed for detecting anomalies in real-time. The framework involves appropriate
data preparation, an offline learning phase, a real-time online anomaly detection
phase and finally analysis of detected anomalies. Another aspect of the project is
to provide explanations for why the machine learning models consider a particular
sequence of events to be anomalous. Section 5.4 therefore explains how this was
achieved for the chosen machine learning architecture. Finally, Section 5.5 describes
how the anomaly detection capability of the framework is evaluated.

5.1 Clustering of Users
Eventually a machine learning model will be trained to learn the different user
behavior in order to detect abnormal activity. There are three possible approaches
to achieve this, all of which are listed below.

• Training one model for all events. The drawback of this method is that
the model will have to learn too many different patterns. Moreover, it will be
heavily biased by the most common types of behavior, i.e., users walking the
door access sequence {SE - PD}. This means that the model may start be-
lieving that this sequence is normal for all users, while in reality it might not be.

• Training one model per user. The drawback of this method is that certain
users have too little data to learn from. When the model is deployed for prac-
tical usage, there may even be entirely new employees entered into the system
that have no data at all. In this case there would be no model at all for them to
be assigned to. Additionally, this method will mean that each model will believe
that the behavior that is common for the given user is what is normal. This
approach is clearly wrong since the majority of behaviors from a single user may
or may not be malicious. Therefore, normal behavior should in general be de-

41

5. Method

Dataset No. events Start date End date
Training set 241,714 2018-02-14 2020-01-21
Test set 60,430 2020-01-21 2020-08-26

Table 5.1: General information regarding the training and test set.

cided based on common overall behavior, and not the behavior from single users.

• Training one model per cluster of users. This approach, which is taken
in this project, finds a middle ground that tries to minimize the problems
with the two first approaches. The data will be separated into k parts that
correspond to events that follow similar patterns. Using this approach the bias
of overly common patterns are reduced, and there will still be sufficient data
to train one model per cluster. Additionally, new users entered in the system
can be assigned to a cluster based on pre-existing knowledge of the user, such
as their access category. Note that the choice of k is important as this is used
to balance between the previously mentioned drawbacks. One model per user
corresponds to k = 671, since there are 671 users and k = 1 corresponds to
one model for all the data.

5.1.1 Clustering
The original full dataset X is split into a training set (80%) and a test set (20%).
There are therefore two new datasets Xtrain and Xtest. Some general information
regarding these datasets are summarized in Table 5.1. All the clusters presented
in this section are only based on Xtrain. Xtest can then be accurately used for test-
ing the anomaly detection capabilities of the architecture described in the next section.

It should be noted that even for k = 671 the bias would not be completely eliminated.
The reason for this is because the behavior of the same user might change over time,
effectively causing a dataset shift which was explained in Section 3.3.4. This can be
mitigated by only training the models on the most recent data. Section 7 further
discusses this issue. For the data in this project, the access categories assigned to
each event can be utilized to mitigate this issue to some extent, as was hinted in the
previous section. A change of access category signifies a change of permissions for
the user in the building, which will likely correspond to new doors being accessed.
Because of this, the 241,714 events in the dataset Xtrain will be split up into two
parts. The first part X1 will contain all events corresponding to access catgegories
AC1 and AC2. The second part X2 will contain all events corresponding to access
catgegories AC3 and AC4. This means that the users that have had their access
category changed at some point will have their events split up into both of these
datasets. X1 and X2 contain 430 and 267 users, respectively. Note that these do
not sum to the total number of unique users, which is 671.

The next step is to construct the user data matrices for X1 and X2. This will
be done in an identical fashion to how the user matrix U was constructed in the

42

5. Method

Cluster No. events AC1 AC2 AC3 AC4 No. Users
1 67,227 65,933 1,294 0 0 311
2 40,297 39,016 1,281 0 0 119
3 103,768 0 0 86,661 17,107 215
4 28,683 0 0 28,397 286 52

Table 5.2: General information regarding each of the four clusters.

previous chapter. The user matrix for the events in X1 is described in Equation 5.1.

U 1 ∈ [0, 1]430×45 (5.1)

The user matrix for the events in X2 is described in Equation 5.2.

U 2 ∈ [0, 1]267×45 (5.2)

Both PCA and t-SNE was performed on these user matrices. Only the t-SNE plots
are presented in the next section, as they gave the best visualizations.

5.1.2 Visualization of Clusters
Figure 5.1 (a) and (b) show the t-SNE clusters for U 1 and U 2, repsectively. The
clusters shown were identified using agglomerative hierchical clustering (see Sec-
tion 3.4.1). In both cases you can see two clear separations with one larger and
one smaller cluster of users. In (b) the smaller cluster is split up into another two
clusters. However, for simplicity the value of k (number of clusters) is kept relatively
low and the two smaller clusters are therefore put into one cluster. This means that
there are four different clusters of users that have been identified and will be further
analyzed. Table 5.2 summarizes a few statistics regarding the clusters, including
the total number of events, the number of events from each access category and the
number of unique users.

Figure 5.2 visualizes the door access distribution for each of the four clusters. The
Y-axis corresponds to the mean number of accesses across all users in the correspond-
ing cluster. The plot reveals that the main difference between cluster 1 and 2 is that
cluster 2 uses the main gate (MG) a lot more. The difference between cluster 3 and 4
is that the users from cluster 3 tend do use the office door (OD) and the other doors
within the office more frequently. Cluster 4 seems to utilize SE and PD, which is
similar to cluster 1 and 2, but simultaneously uses ME and OD on occasion like cluster 3.

Figure 5.3 visualizes the weekday access distribution for each of the four clusters.
The Y-axis corresponds to the mean number of accesses across all users in the
corresponding cluster. From this plot it is clear that the users in clusters 1 and 3
have most of their accesses on normal weekdays. On the other hand, the users in
clusters 2 and 4 seem to work on all days of the week including the weekend.

43

5. Method

(a) (b)

Figure 5.1: t-SNE based clusters of data with access categories AC1 or AC2 are shown
in (a). Similarly, t-SNE based clusters of data with access categories AC3 or AC4 are shown
in (b).

Figure 5.2: Distribution of door accesses for each cluster. The y-axis correspond to the
mean across all users in the corresponding cluster.

44

5. Method

Figure 5.3: Distribution of weekday accesses for each cluster. The y-axis correspond to
the mean across all users in the corresponding cluster.

Figure 5.4 visualizes the hourly access distribution for each of the four clusters.
The Y-axis corresponds to the mean number of accesses across all users in the
corresponding cluster. As was mentioned in Section 4.5.1, most users expectedly
have most of their events at the beginning of their shift. The taller bars in the plot
are therefore likely to correspond to the starting hours. In this plot it is clear that
clusters 2 and 4 contain users that work the night shifts while the users from clusters
1 and 3 dominate the day shifts. However, cluster 4 also has some activity during
the day.

Bringing all of these plots together it seems that clusters 2 and 4 work the night
shifts and more on the weekend, which seems to have a connection with using the
main gate (MG) more frequently. Cluster 1 and 3 on the other hand tend to work
more normal hours and not so much on the weekend, and perhaps as a consequence
uses the main gate less.

5.2 LSTM Autoencoder Architecture
As was explained in Section 3.4.5, autoencoders is an unsupervised machine learning
technique with anomaly detection capabilities. The purpose of this project is to find
anomalies in an unlabeled dataset which therefore make autoencoders a suitable
technique. Furthermore, a number of the anomalies listed in Table 4.1 consist of
abnormalities in sequences of events (collective anomaly), and not necessarily from
a single event (point anomaly). As explained in Section 3.4.4, LSTM networks are
suitable for dealing with data consisting of sequence based features. Because of this,
a LSTM autoencoder architecture will be utilized as it fits well for the purposes of
this project.

45

5. Method

Figure 5.4: Distribution of accesses at all hours of the day for each cluster. The y-axis
correspond to the mean across all users in the corresponding cluster.

Figure 5.5 visualizes the details of the architecture used for all trained models. The
encoder accepts a sequence of n events {x1,x2, ...,xn} as input and consists of an
LSTM network of two stacked layers. The hidden states of the top layer has a lower
dimension than the intial layer such that the original inputs are compressed into
a lower dimensional representation. The hidden state of the last cell in the top
LSTM layer is used as the compressed representation of the original input sequence.
The goal of the decoder is to reconstruct the original input sequence based on this
compressed representation. It does this by repeating the compressed representation
that was output by the encoder n times. This sequence is then fed into another
LSTM network. This network consists of two stacked LSTM networks, where the
hidden states of the cells in the top network are twice as large as the bottom network.
The hidden state from each of the LSTM cells in the top network are then output
into a feedforward neural network (FFNN) that in turn outputs the reconstructed
sequence {x̂1, x̂2, ..., x̂n}. Exact details of how this is applied to anomaly detection
in the context of this project is further discussed in the next section.

As can be seen from the figure, there are a number of hyperparameters to choose
such as the sequence length n and the number of units in each of the hidden states
h. The choice of these hyperparameters is also discussed in the next section.

5.3 Anomaly Detection Framework
Figure 5.6 visualizes the anomaly detection framework developed in this project.
The first step was to identify clusters of different user behavior. This step was
presented in Section 5.1, where four different clusters were identified. The next step
is the offline learning for each of the four clusters. This step is further explained in

46

5. Method

Figure 5.5: A visualization of the autoencoder architecture used to train each of the
models. Numbers in parantheses correspond to the number of units in the hidden states of
the different networks.

Section 5.3.1. The next steps are to apply the learned models for the purpose of
detecting unusual behavior (anomaly detection) and to subsequently analyze the
detected anomalies. This is further explained in Section 5.3.2.

5.3.1 Offline Learning
The offline learning phase corresponds to training various LSTM autoencoder models
on the data from each of the four clusters. As already mentioned, some of the
anomalies listed in Table 4.1 are point anomalies while others are collective anoma-
lies. This means that utilizing a single LSTM autoencoder per cluster will not be
sufficient. Instead, there will be one autoencoder for two different sequence lengths.
The sequence lengths used are based on the sequences analyzed in Section 4.5.1,
where sequences of lengths 1 and 2 seemed the most interesting. Because of this there
will be two LSTM autoencoders trained for n = 1, 2 for each of the four clusters. This
means that there will be 2× 4 = 8 autoencoders in total. This approach makes it
possible to recognize normal behavior in individual events (n = 1) and for sequences
of events (n = 2). Additional models for n = 3, 4 is likely interesting as well but was
not investigated in this thesis.

Feature Extraction

The original full dataset X has dimensions 302, 144× 6. This means that there are
302, 144 events, where each event has 6 features as shown in Table 4.5. In general,
artificial neural networks require their inputs to be numerical and lie in the range

47

5. Method

Figure 5.6: A flowchart describing the anomaly detection framework.

48

5. Method

Feature Type No. categories Feature description
Time since
last event
(TSLE)

Numerical -
Time since the last event occurred.
Extracted from the original
timestamp feature.

Weekday Categorical 7
The weekday that the event occurred
on. Extracted from the original
timestamp feature.

Hour Categorical 24
The hour of the day that the event
occurred on. Extracted from the
original timestamp feature.

Door Categorical 14 The name of the door that was
accessed in the event.

Event Categorical 4 The type of event that was triggered.

Table 5.3: Description of features extracted from the original features shown in Table
4.5.

[0, 1] [15]. A number of numerical features have been extracted from these original 6
features that captures information about the user behavior. These features are meant
to be useful when detecting the various anomalies listed in Table 4.1. Table 5.3
lists the extracted features. Note that the feature Event is included here because
this allows the detection of access card events that lead to a door not opening (see
Table 4.3). The training data will only include events of type access.card.valid.
standard such that the LSTM autoencoder immediately classifies any of the other
user events as an anomaly upon employment. This makes sense considering their
low frequency compared to access.card.valid.standard.

All of the categorical features will be one-hot encoded as described in Section 3.3.6.
In short, this means that each category within each of the categorical features will
become a feature of their own, and therefore correspond to a column in the data
matrix. This means that there will be 1 + 7 + 24 + 14 + 4 = 50 features in the
resulting data matrix. After one-hot encoding the categorical features, they will now
lie in the range [0, 1] as desired. The numerical feature TSLE, however, is still not in
this range. This feature is therefore scaled using a min-max scaler, as described in
Section 3.3.6, such that it lies range [0, 1] as well. Note that the scaling was initially
done to Xtrain. The same scaler is then used to scale Xtest. The resulting data
matrices is described in Equation 5.3,

Xtrain ∈ [0, 1]241,714×50

Xtest ∈ [0, 1]60,430×50 (5.3)

The various data preparation steps taken will now be described below. These steps
were taken individually for both Xtrain and Xtest. In order to simplify the notation,
X ∈ [0, 1]N×50 will be used to describe both Xtrain and Xtest.

49

5. Method

Data Preparation

The LSTM network of the encoder is what accepts the initial input. In general,
LSTM networks accept inputs of dimension n × p, where n is the event sequence
length, and p is the number of features used for each event. The dataset X must
therefore be split up into sequences of length n. X currently consists of N feature
vectors of dimension 50 as shown in Equation 5.4.

X = {x1,x2, . . . ,xN}, xi ∈ [0, 1]50 (5.4)
This sequence of feature vectors will be further split up into sequences of length n.
Note that only sequences of events taken by the same user are considered. The reason
is that sequences including events from different users are very unlikely to follow any
interesting patterns since different users generally walk around the building in an
uncorrelated fashion. This means that X is further filtered by events by a certain
user belonging to one of the four clusters found in Section 5.1. This is described by
Equation 5.5,

X(u, c) = {x(u, c)
1 ,x

(u, c)
2 , . . . ,x

(u, c)
Nu,c
}

x
(u, c)
i ∈ [0, 1]50

Nu,c = Number of events for user u in cluster c
c ∈ C
u ∈ U c

(5.5)

where C is the set of clusters {1, 2, 3, 4} and U c is the set of users in cluster c.
Splitting X(u, c) into sequences can be done in a number of ways. There are three
main ways that are worth mentioning. The first is to construct sequences in a
sliding-window fashion throughout the entire dataset. A problem with this is that
it will include sequences across two different days. For example, the sequence {PD -
SE} will become common (as was illustrated in Figure 4.4 from Chapter 4) since it
is common for PD to be the last door access of the day, and SE to be the first. The
second is to use the sliding-window method, but only on events filtered by day. This
eliminates the potential issue just mentioned. However, some users work night shifts
which means that their events may be split up such that some occur before midnight,
while some occur after midnight. A third solution is therefore to construct sequences
of events that are at most eight hours from each other. This ensures that sequences
only consists of accesses that are made within the same working shift. Despite this,
the first method was still utilized in this project. The main reason for this is that
despite a sequence like {PD - SE} not technically being a sequence taken inside of the
building, as they are taken on two separate days, are still common occurences in the
data. Therefore, it could be seen as another type of user behavior within the data
that the autoencoders should pick up on. Table 5.4 describes how these sequences
are constructed.

X(u, c) is now transformed into X̃(u, c, n) with dimensionsmu,c,n×n×p, which consists
of these sequences and is described in Equation 5.6.

50

5. Method

Seq. number Sequence
1 {x(u, c)

1 , x
(u, c)
2 , ... , x(u, c)

n }
2 {x(u, c)

2 , x
(u, c)
3 , ... , x

(u, c)
n+1 }

3 {x(u, c)
3 , x

(u, c)
4 , ... , x

(u, c)
n+2 }

... ...
mu,c,n {x(u, ,c)

Nu,c−n+1, x
(u, c)
Nu,c−n+2, ... , x

(u, c)
Nu,c
}

Table 5.4: Construction of sequences of events using the sliding-window method on the
datasets X(u, c). Note that mu,c,n = Nu,c − n+ 1 corresponds to the number of sequences
constructed for user u in cluster c of length n.

X̃
(u, c, n) =

x
(u, c)
1 x

(u, c)
2 . . . x(u, c)

n

x
(u, c)
2 x

(u, c)
3 . . . x

(u, c)
n+1

x
(u, c)
3 x

(u, c)
4 . . . x

(u, c)
n+2

...
x

(u, c)
Nu,c−n+1 x

(u, c)
Nu,c−n+2 . . . x

(u, c)
Nu,c

(5.6)

All the sequences for all users in each cluster is now concatenated into one matrix
per cluster per value of n, giving X̃(c, n) with dimensions mc,n × n× p, where mc,n is
the number of sequences of length n in cluster c. These dimensions are appropriate
for the LSTM autoencoder input layer. Given that there are four different values
of c (four clusters) and 2 different values of n (2 different sequence lengths) means
that there are in total 4 × 2 = 8 datasets. For each of these datasets, one LSTM
autoencoder will be trained.

Learning Process

The parameters of the LSTM autoencoders were optimized using the Adam optimiza-
tion algorithm. 10% of the training set was used as validation data for the purpose of
optimizing various hyperparameters. Table 5.5 presents the chosen hyperparameters.
The hyperparameters for each of the 8 models only differed across the value of n,
but not for the value of c. The loss value of the validation set was used as metric
for deciding these parameters, except for h. The reason why the loss value can not
be used as a metric when optimizing h is because the loss value of two different
neural networks with a different number of units is not comparable. h was simply
chosen such that enough of the patterns could be picked up by respective model.
A too low value of h means that a model will underfit the data and a too high
value of h means that it will find all possible patterns very easily, including noise
(i.e., anomalies) which needs to be avoided. h is higher for n = 2 since the data
containing sequences naturally contain more patterns. When training an autoen-
coder for anomaly detection purposes, one would ideally want the training data
to not consist of any anomalies. This will naturally make it easier for the model

51

5. Method

n η θ Loss function h
1 0.001 0.00001 Smooth L1 16
2 0.001 0.00001 Smooth L1 32

Table 5.5: Summarization of the hyperparameters used. The hyperparameters for each
of the eight models only differed across the value of n, but not for the cluster c. η is the
learning rate. θ is the weight decay parameter. h is the number of units in the hidden
states of the LSTM autoencoders.

to distinguish between what is normal and what is abnormal when tested on the
test data. However, considering that the dataset used in this project is completely
unlabeled, such information is not available. Therefore, the training set may or may
not include anomalies. This is further discussed in the following sections.

The loss function used was a smooth version of the L1 absolute loss. Details of this
loss function was presented in Section 3.3.8. The reason for using this loss function is
mainly because it is robust to outliers (anomalies) in the data similar to the regular
L1 absolute loss. Additionally, the smooth version allows the optimization algorithm
to converge more effectively. Being robust to outliers is important for this project
considering that potential anomalies in the training data should be ignored as much
as possible.

The total training time for all eight models was roughly eight hours. All models were
trained on a NVIDIA GeForce GTX 3080 GPU.

5.3.2 Online Anomaly Detection
As already discussed, the purpose of the project is to reduce the amount of manual
labor needed by administrators to analyze the very large number of physical access
logs. This is done by having the LSTM autoencoders automatically filter out events
that correspond to normal behavior. Events that an LSTM autoencoder inteprets
as anomalous, on the other hand, will be notified to the administrators for further
analysis. The remaining necessity for some manual inspection is important to note
since something being anomalous according to an LSTM autoencoder, does not
imply harmful behavior. The LSTM autoencoders are simply reporting behavior
in new incoming events that are considered unusual based on the behavior learnt
from the training data. The decision of whether a reported anomaly is harmful is a
far too subjective decision for a machine learning model to make. The flowchart in
Figure 5.7 shows the overall workflow of detecting anomalies in the access logs in
real-time. The steps of the flowchart are explained further in the numbered list below.

1. Extract relevant features from a new incoming event and prepare it like de-
scribed earlier in this section in order to retrieve x(u, c)

n ∈ [0, 1]50.
2. Extract the n− 1 most recent events for the particular user u for n = 1, 2. Now

the sequence x(u, c) = {x(u, c)
1 , x

(u, c)
2 , ... , x(u, c)

n } is constructed for each value
of n.

52

5. Method

Figure 5.7: Real-time anomaly detection workflow.

53

5. Method

3. Retrieve the correct LSTM autoencoder for the corresponding value of n and
cluster c that user u belongs to. This retrieval is not always completely straight
forward. If the user u has sufficient pre-existing data, then the cluster c will
be known and everything works out. However, if the user u is completely new
in the system (i.e., no events from the training data), then the cluster for user
u must be heuristically decided. One can look at the access category that
user u is a member of to narrow it down to two of the four clusters. When
deciding between the remaining two clusters additional information about the
user’s behavior is required, such as whether the user is a night shift worker
or not. Another approach is to assign user u randomly to one of the two
possible clusters given its access category. After more data has been gathered
for this user, one may discover whether this random assignment was correct
or not. If it was not, then reassign it to the other cluster for all future checks.
Given that correct LSTM autoencoders are chosen, the input sequences are
fed into corresponding autoencoder. In turn, the reconstructed sequences
x̂(u, c) = {x̂(u, c)

1 , x̂
(u, c)
2 , ... , x̂(u, c)

n } are output.
4. The reconstruction error L is now computed according to Loss(x(u, c), x̂(u, c)),

where Loss is the L1 absolute loss function.
5. L corresponds to the metric used when deciding whether a particular sequence

is anomalous or not. A sequence being anomalous corresponds to L being
larger than a predefined threshold Tc,n. The threshold is subscripted by c and n
because each of the 8 datasets naturally require separate thresholds. If L < Tc,n

then the reconstruction error was low enough to consider the sequence normal.
In this case, the sequence is filtered out.

6. If L > Tc,n then the sequence can be considered anomalous. In this case,
administrators of the system may be notified for further analysis. This analysis
could include manual inspection of the sequences in order to understand what
caused the anomaly and whether it is harmful or not. In addition to manual
inspection one may apply various machine learning explainability techniques
in order to understand why the model thought it was anomalous. Section 5.4
will further explain how this was achieved in this project.

Let Φc,n denote the set of loss values for all sequences in X̃(c, n)
train . The choice of the

thresholds Tc,n is made based on this set. This choice can be done in many ways.
If one is convinced that the training set consists of only normal instances, then all
the loss values in Φc,n correspond to a normal reconstruction error. In this case
one could assign Tc,n = max(Φc,n). Thus, anything larger than the maximum loss
value of the training set will be considered anomalous. However, in the case of this
project, the training set is unlikely to be free of anomalies. Therefore, one can not
assume that the largest value of Φc,n is a suitable threshold. Instead, the thresholds
are chosen based on Φc,n with outliers filtered out. This was done according to
Equation 5.7.

Tc,n = E[Φc,n] + λ ∗ std[Φc,n] (5.7)

Thus, a reconstruction error larger than λ standard deviations above the mean of
Φc,n is considered anomalous. The factor λ multiplied with the standard deviation

54

5. Method

was decided empirically. λ is set to 3 for n = 1 and 4 for n = 2 (across all
clusters). The values of the various thresholds Tc,n, ∀c ∈ C, ∀n ∈ {1, 2} are shown
in Table 5.6.

n

c 1 2
1 0.1249 0.2666
2 0.2406 0.4108
3 0.7641 0.3163
4 0.9151 0.4860

Table 5.6: Anomaly thresholds Tc,n, ∀c ∈ C, ∀n ∈ {1, 2}.

5.3.3 Discussion of Anomaly Detection
This section will briefly discuss which of the anomalies from Table 4.1 are detectable,
and to which degree they are detectable, by the anomaly detection framework. Each
anomaly and their detectability is listed below.

• Door access at an unusual time. The features hour and weekday make
sure that this anomaly will be identified. Any event that occurs at an unusual
time for the given cluster should lead to a larger reconstruction error than usual.

• First time accessing a door. The anomaly detection framework only detect
unusual behavior with respect to the overall behavior in respective clusters.
This means that a particular user accessing a door for the first time will not nec-
essarily be detected. However, if the door being accessed is rare overall for the
cluster, then it will be detected. This is not a huge problem since this anomaly
can easily be detected from manual checks that do not require machine learning.

• Denied door access. A door access being denied will result in any of the
events UE2, UE3 or UE4 occurring. Considering that these events were com-
pletely removed from the training set, any occurrence of these in the test set
will naturally lead to a high construction error, consequently leading them to
be interpreted as anomalies. However, it should be noted that this anomaly
does technically not require machine learning as one could simply just track
these events.

• Unusual number of door accesses. This is the only anomaly that is not
detectable by the LSTM autoencoder, but may still optionally be solved with
improved accuracy using machine learning. One can get more specific regarding
this anomaly by specifying a time interval. For example, an unusual number
of door accesses in a day or in a week and so on. A natural approach to this
would be to gather the number of door accesses within the given time interval
for each user, and then finding statistical outliers. In other words, this anomaly
is about outliers in a global statistic of the access logs. The anomalies caught

55

5. Method

by the LSTM autoencoder are local to one event or shorter sequences of events.

• Unusual sequences of door accesses. This is naturally captured by the
chosen LSTM autoencoder architecture. It should be noted again that this
thesis only investigated sequences of lengths 1 and 2. Longer sequences may
also be useful to detect. Additionally, the model finds unusual sequences only
based on the features from Table 5.3.

• Short time interval between accesses of different doors. The feature
TSLE was added specifically to detect this anomaly. This feature ensures that
the time between two door accesses is logical.

• Repeated door accesses. This can be detected by the LSTM autoencoder
for n > 1, with the assumption that it is unusual behavior in the training set.
However, this anomaly can be detected without machine learning if the inten-
tion is simply to detect multiple accesses of the same door without checking
that it is unusual behavior.

Conclusively, most anomalies can be detected with the chosen framework. It should
be noted that the framework simply detects unusual behavior based on the features
from Table 5.3. Since anomalies are by definition about unusual behavior, the
framework should theoretically work well. It is of course capable of finding additional
anomalies that are not explicitly mentioned above.

5.4 Model Explainability
Deep learning models are known to be difficult to interpret [56]. Since this project
utilizes deep learning, the explainability aspect of the project was not completely
straight forward. Section 3.3.7 introduced a model-agnostic method for achieving
interpretability, namely SHAP (SHapley Additive exPlanations). Model-agnostic
methods essentially work by analyzing the impact on the output of a model when
changing the input features in different ways. Since deep learning models have
complex internals, this approach is appropriate for this project. SHAP is able to
give explanations for individual predictions made by a model. In other words, it can
explain which features were important when predicting why a sequence of events
was anomalous. This is precisely what is needed in this project.

Again, SHAP depends on the model outputting a value, due to SHAP being model-
agnostic. This is problematic considering the usage of autoencoders in this project,
since autoencoders output a reconstructed sequence. This is not something that
SHAP can naturally work with. A solution to this was suggested by Antwarg et al.
[5]. Their suggestion involves adding an additional layer to the original autoencoder
that outputs the reconstruction error directly. This is visualized in Figure 5.8. Note
that this layer is only included when retrieving explanations using SHAP, and not
while training the original models. Furthermore, outputting the reconstruction error
is appropriate as this is a logical metric for deciding which features are important.

56

5. Method

Figure 5.8: Visualization of the addition of a new output layer (i.e., the reconstruction
error) such that SHAP values can be computed.

For example, a feature contributing to a higher reconstruction error means that it is
likely to have caused the anomaly.

The original paper that introduces SHAP values [4] has provided a Python library
with different ways of retrieving SHAP values [57]. The two most relevant methods
are called GradientExplainer and DeepExplainer as they work well for neural network
based models. In this project, the GradientExplainer was arbitrarily chosen between
the two.

Finally, the SHAP values may be both positive and negative, depending on whether
it is contributing to an increase or decrease of the reconstruction error. The minimum
and optimal value of the reconstruction error is 0. This means that a feature contribut-
ing to a decrease of the reconstruction error is always pushing the instance away from
being an anomaly, and vice versa for a feature contributing to an increase. This is
because instances with higher reconstruction errors are by definition anomalous. The
takeaway is that a feature with a positive SHAP value is contributing to the anomaly,
while a feature with a negative SHAP value is offsetting the anomaly [5].

57

5. Method

5.5 Evaluation
In many cases an anomaly detection problem in machine learning consist of a labeled
dataset, where it is known which instances are normal and which are anomalous.
This makes it a typical binary classification task, where the performance can be
objectively evaluated using various classification metrics. The dataset used in this
project, however, is unlabeled. This means that it is unknown whether a particular
data instance is anomalous or not. Furthermore, it is possible that the dataset
consists of only normal behavior. One solution to this could be to perform manual
labeling of the dataset. However, this requires a huge amount of effort for a few
reasons. First, the dataset is quite large. Second, it is relatively unknown what an
anomaly would actually look like.

This project instead resorted to a more subjective type of evaluation. This was done
by allowing each of the eight LSTM autoencoders make predictions for their assigned
test dataset X̃(c, n)

test . This means that there will be a number of normal and abnormal
instances. The evaluation will essentially consist of comparing these two types of
instances for all the models. This will be done both on a global and a local scale.
These two cases are listed and further discussed below.

• Global evaluation. This corresponds to presenting the overall difference
between normal and abnormal instances for each model. For example, which
values for each of the five features (i.e., event, door, hour, weekday and TSLE)
were typical for normal compared to abnormal instances. Furthermore, by
summing the SHAP values across all instances one can get an overall idea
of which of the features were the most impactful on the reconstruction error.
In other words, which features were the most likely to cause instances to be
anomalous.

• Local evaluation. This corresponds to analyzing individual instance predic-
tions. This was done by randomly retrieving two normal and two abnormal
instances for each of the eight models and then analyzing them. The analysis
will be done through manual inspection as well as generating the SHAP value
of each feature for the given prediction. The SHAP values will indicate which
feature(s) were the most impactful when deciding whether a particular instance
was anomalous or not.

The above points are essentially about presenting what each of the eight models
are capable of. The actual evaluation will come down to the domain experts from
Bodforss Consulting AB carefully inspecting these results and then reporting how
practically useful it is.

58

6
Results

This chapter presents the results. The results are based on evaluations of the found
anomalies for each model, as described in Section 5.5. Section 6.1 shows how well
each of the 8 models learnt the patterns of respective dataset. Section 6.2 visualizes
the various thresholds Tc,n relative to the reconstruction error of all instances in
respective dataset. Section 6.3 presents the global evaluation. Section 6.4 presents
the local evaluation. Discussions of the results presented in the various plots and
tables of this chapter is presented in Chapter 7.

6.1 Training Process
Figure 6.1 shows the average loss value across all instances at each epoch for the
training and validation set.

6.2 Anomaly Thresholds
The reconstruction errors (loss values) for both the test and training sets for all
values of c and n are shown in Figures 6.2 and 6.3. The red vertical line in each
plot corresponds to the threshold chosen (according to Eq. 5.7). Note again that the
thresholds were only chosen based on the training sets.

6.3 Global Evaluation
Section 6.3.1 begins by showing the global evaluation of point anomalies (n = 1).
Section 6.3.2 shows the global evaluation of collective anomalies (n = 2).

6.3.1 Point Anomalies
Figure 6.4 shows the difference in door accesses between normal (a) and anomalous (b)
instances. Figure 6.5 shows the difference in weekdays accesses between normal (a)
and anomalous (b) instances. Figure 6.6 shows the difference in accesses at all hours
of the day between normal (a) and anomalous (b) instances.

Figure 6.7 shows the distribution of SHAP values for all normal (a) and anomolous
(b) instances for each feature in each cluster. Note that there is some variation in the
provided methods for computing SHAP values. Because of this, the SHAP values

59

6. Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.1: Training and validation loss vs epoch plotted for each cluster and sequence
length.

60

6. Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Reconstruction error distributions for the training and test sets for n = 1.

61

6. Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: Reconstruction error distributions for the training and test sets for n = 2.

62

6. Results

(a) (b)

Figure 6.4: Distribution of door accesses for each cluster for normal (a) and anomalous
(b) instances. This is based on predictions for n = 1.

(a) (b)

Figure 6.5: Distribution of weekday accesses for each cluster for normal (a) and anoma-
lous (b) instances. This is based on predictions for n = 1.

(a) (b)

Figure 6.6: Distribution of accesses at all hours of the day for each cluster for normal
(a) and anomalous (b) instances. This is based on predictions for n = 1.

63

6. Results

shown in this plot correspond to the average of 100 runs.

Figure 6.8 plots the SHAP values together with the reconstruction error for each
anomalous instance for each cluster. Note that a corresponding plot for normal
instance was purposely left out as these only showed lines around zero. The reason
for this is because normal instances have a reconstruction error equal to or very close
to zero, which means that the SHAP values will be close to zero as well.

6.3.2 Collective Anomalies
As mentioned in the previous chapter, only collective anomalies corresponding to
event sequences of length 2 were considered. Figure 6.9 shows the 15 most common
sequences in each cluster for anomalous instances. Figure 6.10 shows the 15 most
common sequences in each cluster for normal instances.

Figure 6.11 shows the distribution of SHAP values for all anomalous (a) and normal
(b) instances for each feature in each cluster. Again, the SHAP values shown in this
plot correspond to the average of 100 runs.

6.4 Local Evaluation
Section 6.4.1 begins by showing the local evaluation of point anomalies (n = 1).
Section 6.4.2 shows the local evaluation of collective anomalies (n = 2).

6.4.1 Point Anomalies
Table 6.1 summarizes the chosen instances that were used for local evaluation for
n = 1. Two anomalous and two normal instances were chosen for each cluster.
Figures 6.12-6.15 show the distribution of 500 retrievals of the SHAP values of each
feature for all anomalous and normal instances for each cluster.

6.4.2 Collective Anomalies
Table 6.2 summarizes the chosen instances that were used for local evaluation for
n = 2. Two anomalous and two normal instances were chosen for each cluster.

Figure 6.16 shows the distribution of 500 retrievals of the SHAP values of each
feature for all anomalous instances for each cluster.

64

6. Results

(a)

(b)

Figure 6.7: Distribution of SHAP values for all normal (a) and anomalous (b) instances
for each feature in each cluster. This is based on predictions for n = 1. Each point
corresponds to the average of 100 retrievals of the SHAP value for a particular instance.

65

6. Results

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure 6.8: SHAP values plotted against the reconstruction error for each feature in each
cluster. The SHAP value for each instance corresponds to the average of 100 retrievals.

Cluster Label Event Door Hour TSLE Weekday Timestamp

1

A1 UE2 FD 14 36,399 Tue 2020-03-03 14:50:13
A2 UE4 SE 7 2,949,308 Thu 2020-04-23 07:55:04
N1 UE1 SE 12 363,276 Mon 2020-03-23 12:45:36
N2 UE1 MG 3 229,596 Mon 2020-07-06 03:35:44

2

A3 UE1 MG 1 166,895 Fri 2020-05-22 01:58:19
A4 UE1 SE 23 67 Fri 2020-02-07 23:28:23
N3 UE1 SE 21 180,125 Sun 2020-06-28 21:29:09
N4 UE1 PD 11 11 Tue 2020-02-04 11:35:08

3

A5 UE1 OD 10 48,181,026 Thu 2020-01-23 10:48:21
A6 UE1 ME 2 95 Fri 2020-06-26 02:57:57
N5 UE1 FD 9 17,454 Wed 2020-02-12 09:57:25
N6 UE1 ME 3 56,186 Wed 2020-05-27 03:36:49

4

A7 UE1 KC 4 14 Wed 2020-06-10 04:14:48
A8 UE1 MG 4 71,833 Sun 2020-02-09 04:13:06
N7 UE1 PD 22 9 Sun 2020-03-15 22:50:14
N8 UE1 SE 4 144,444 Tue 2020-02-04 04:27:57

Table 6.1: Two anomalous and two normal instances for each cluster for n = 1.

66

6. Results

(a) 33 unique sequences. (b) 27 unique sequences.

(c) 108 unique sequences. (d) 48 unique sequences.

Figure 6.9: The 15 most common sequences in each cluster for anomalous instances.

67

6. Results

(a) 14 unique sequences. (b) 9 unique sequences.

(c) 97 unique sequences. (d) 37 unique sequences.

Figure 6.10: The 15 most common sequences in each cluster for normal instances.

68

6. Results

(a)

(b)

Figure 6.11: Distribution of SHAP values for all normal (a) and anomalous (b) instances
for each feature in each cluster. This is based on predictions for n = 1. Each point
corresponds to the average of 100 retrievals of the SHAP value for a particular instance.

69

6. Results

(a) (b)

(c) (d)

Figure 6.12: Distribution of 500 retrievals of the SHAP values of each feature for two
anomalous and two normal instances for c = 1 and n = 1.

(a) (b)

(c) (d)

Figure 6.13: Distribution of 500 retrievals of the SHAP values of each feature for two
anomalous and two normal instances for c = 2 and n = 1.

70

6. Results

Cluster Label Event Door Hour TSLE Weekday Timestamp

1

A9 UE1 SE 11 374,654 Tue 2020-06-09 11:45:55
UE1 SE 3 2,130,850 Sat 2020-07-04 03:40:05

A10 UE1 SE 7 1,624,343 Tue 2020-03-31 07:59:37
UE1 MG 8 1,996 Tue 2020-03-31 08:32:53

N9 UE1 SE 12 89,583 Fri 2020-01-31 12:52:07
UE1 PD 12 19 Fri 2020-01-31 12:52:26

N10 UE1 PD 12 14 Mon 2020-02-24 12:46:16
UE1 SE 12 85,015 Tue 2020-02-25 12:23:11

2

A11 UE1 PD 22 12 Fri 2020-02-21 22:44:04
UE1 MG 8 122,102 Sun 2020-02-23 08:39:06

A12 UE1 MG 11 172,646 Thu 2020-05-28 11:42:05
UE1 MG 21 293,911 Sun 2020-05-31 21:20:36

N11 UE1 SE 19 114 Wed 2020-04-15 19:42:16
UE1 PD 19 14 Wed 2020-04-15 19:42:30

N12 UE1 PD 20 21 Wed 2020-01-22 20:12:44
UE1 MG 20 86648 Thu 2020-01-23 20:16:52

3

A13 UE1 SE 10 8,776 Fri 2020-08-21 10:49:23
UE1 HR 11 1,382 Fri 2020-08-21 11:12:25

A14 UE1 MG 11 75,161 Wed 2020-08-12 11:41:35
UE1 OD 20 30,760 Wed 2020-08-12 20:14:15

N13 UE1 MG 5 434,263 Mon 2020-04-27 05:08:14
UE1 ME 5 127 Mon 2020-04-27 05:10:21

N14 UE1 OD 6 17 Thu 2020-05-14 06:08:20
UE1 POA 6 18 Thu 2020-05-14 06:08:38

4

A15 UE1 SE 4 87,162 Tue 2020-05-05 04:05:37
UE1 OD 8 17,453 Tue 2020-05-05 08:56:30

A16 UE1 MG 1 259,941 Thu 2020-07-09 01:22:15
UE1 MG 0 81,696 Fri 2020-07-10 00:03:51

N15 UE1 OD 19 12 Sun 2020-04-19 19:33:19
UE1 FD 19 188 Sun 2020-04-19 19:36:27

N16 UE1 FD 10 73 Wed 2020-01-29 10:58:50
UE1 PD 10 13 Wed 2020-01-29 10:59:03

Table 6.2: Two anomalous and two normal instances for each cluster for n = 2. Note
that in this case an instance corresponds to a sequence of two events.

71

6. Results

(a) (b)

(c) (d)

Figure 6.14: Distribution of 500 retrievals of the SHAP values of each feature for two
anomalous and two normal instances for c = 3 and n = 1.

72

6. Results

(a) (b)

(c) (d)

Figure 6.15: Distribution of 500 retrievals of the SHAP values of each feature for two
anomalous and two normal instances for c = 4 and n = 1.

73

6. Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.16: Distribution of 500 retrievals of the SHAP values of each feature for two
anomalous instances for all clusters for n = 2.

74

7
Discussion and Conclusion

This chapter will conclude the thesis by discussing the results. Sections 7.1-7.4 follow
the same structure as the results presented in the previous chapter and discusses
each of these. Section 7.5 describes a few ethical considerations. Section 7.6 lists
various conclusions made based on the results and suggests possible future work that
can further improve the results. Finally, Section 7.7 describes the final conclusion of
the thesis.

7.1 Training Process
From the plots in Figure 6.1 it is clear that all eight datasets contain common
patterns that each of the eight models are able to learn. Furthermore, the validation
set (last 10% of the training set) seem to follow somewhat similar patterns since the
loss is monotonically decreasing at each epoch for the validation sets in all cases. In
short, no overfitting or underfitting occurred during the training phase.

7.2 Training Thresholds
From the plots in Figures 6.2 and 6.3 one can see that most instances are grouped
below the red line (Tc,n), which shows that most events are considered normal. The
anomalous instances, on the other hand, are much fewer and are scattered above the
red line. Deciding the threshold is a balance between minimizing false positives and
false negatives. In certain cases it could be argued that the threshold is perhaps a
bit too low (e.g. plot (a) from Figure 6.2).

Furthermore, it should be noted that for the plots (e) and (g) from Figure 6.2, one
can see that there is a cluster of instances formed above the threshold line. These
instances may correspond to events that are rare compared to remaining instances,
but could still correspond to somewhat normal behavior. A solution to this could be
to decide the thresholds Tc,n by using multipliers in Equation 5.7 that are specifically
suited for the specific cluster and value of n. For practical usage, this method should
likely be applied. The method used in this project only leads to more false positives
(i.e., anomalies that are in reality not anomalous), which does not largely impact the
rest of the evaluation process. The reason is that the false negatives should not be
impacted, and the true anomalies are most important.

75

7. Discussion and Conclusion

7.3 Global Evaluation

This section presents the global evaluation of the point anomalies (n = 1) and
collective anomalies (n = 2).

7.3.1 Point Anomalies
The plots in Figure 6.4 should be compared to the overall door access behavior shown
in Figure 5.2. Given this, it is clear that the anomalous door accesses shown in plot (b)
deviate much more from the most common behavior. For example, users from cluster
1 and 2 are accessing the office related doors, which they do not have permission
to use. This is again because the test data includes user events of type (U2, U3 and
U4). Furthermore, some of the really uncommon doors like FO and G are essentially
only considered anomalous whenever they appear. Whether this makes sense or not
depends on the context. Since it is a door that is sometimes used, it is likely not an
anomaly corresponding to harmful behavior. However, since it is so uncommon that
the models believe that it is anomalous, perhaps it may as well be reported to admin-
istrators. In other words, it is uncommon enough to not lead to a lot of unnecessary
manual work. Alternatively, increasing the threshold slightly would likely cause
these instances to become normal as well, with the risk of getting more false negatives.

The plots in Figure 6.5 and 6.6 should be compared to the overall access behavior
shown in Figures 5.3 and Figures 5.4, respectively. For both of these cases one can
draw similar conclusions as for the door accesses. In other words, the anomalous
instances show a very different access pattern compared to the overall access behavior.

Next, from Figure 6.7 it becomes clear that the SHAP values of anomalous instances
are generally larger. In fact, the mean SHAP value across all instances is above zero
for most features for the anomalous instances. For normal instances the mean is
around zero. Furthermore, it is clear that the features Event, Door and Hour have
the largest impact on the anomalies.

Similar conclusions can be drawn for Figure 6.8. However, this figure also reveals that
the features Event and Door seem to be responsible for the largest reconstruction
errors. This is especially true for clusters 1 and 2. In both of the plots (a) and (b)
there is an initial jump in the reconstruction error, credited to the feature Event.
Then there is another jump slightly after, which corresponds with an increase of
the feature Door. This occurs because Event can be anomalous by itself if a user
attempts to open a common door within the cluster, but the door not opening. When
both Event and Door have high SHAP values, it corresponds to a user attempting to
open a disallowed door, that is also uncommon in general within the cluster. There
will be examples of this in Section 7.4.

From the same figure one can also identify the feature Hour having a large impact,
as well as Weekday and TSLE occasionally increasing. Finally, the figure reveals that
the chosen threshold for cluster 1 (and potentially cluster 2) should have been higher.

76

7. Discussion and Conclusion

The reason being that the reconstruction error is quite low for the first 80 or so
instances.

7.3.2 Collective Anomalies
From Figures 6.9 and 6.10 one can see that the sequences that correspond to anoma-
lous instances generally involve doors that are uncommonly accessed. This includes
sequences involving MG for all clusters or some of the office related doors for c = 3.
However, it is also clear that certain common sequences such as {SE - PD} and {ME
- OD}, indicating that there are sequential anomalies caused by features other than
the doors being accessed in individual time steps.

From Figure 6.11 one can again see that the SHAP values for anomalies are generally
larger and more spread, compared to normal instances. The SHAP values for
normal instances again average around zero, similar to the overall SHAP values
for point anomalies. The one thing that differs for the collective anomalies is that
there are not as many individual instances that deviate significantly. However, the
reconstruction errors are around the same as for the point anomalies (see Figure 6.3).
Furthermore, the SHAP values for all features for a given instance should sum to the
reconstruction error of the same instance [4]. This indicates that the SHAP values
are more frequently spread among multiple features for collective anomalies. The
SHAP values for point anomalies are instead be higher for single features. This will
be further confirmed in the next section. This does make sense considering that
the sequential instances have twice as many features that impact the reconstruction
error.

7.4 Local Evaluation

This section discusses the eight chosen instances for point anomalies (n = 1) and
collective anomalies (n = 2).

7.4.1 Point Anomalies
Each instances is listed and discussed below. Details of each instance can be found
in Table 6.1. Also, the SHAP value for each feature and instance is shown in Fig-
ures 6.12-6.15. Note that box plots were used to visualize the spread of the SHAP
values. However, the mean SHAP value, which is indicated in each box plot, is used
when deciding the significance of a particular feature.

• Cluster 1.

– A1. This anomaly corresponds to the event UE2, which means a user
attempted to open an invalid door for the given access category. The
SHAP value for the feature Event is consequently high for this anomaly.
Additionally, the SHAP value for the door FD is high. This means that a

77

7. Discussion and Conclusion

user attempted to open the door FD which is invalid, and therefore un-
common within cluster 1. The hour (14) seems to have a slight impact as
well, which makes sense since accesses at this hour is relatively uncommon
for cluster 1 (see Figure 5.4).

– A2. This anomaly is similar to A1 in that the event (UE4) corresponds to
a high SHAP value. However, in this case the door has a low SHAP value.
This is because UE4 corresponds to a door being temporarily inhibited.
This shows that doors that are very common within a cluster (e.g. door
SE for cluster 1 in this case), can still be temporarily disallowed. Thus,
the SHAP values correctly indicate that it is anomalous only because of
the event and not also the door in this case.

– N1. This instance shows an example of when the door SE being accessed
is considered normal. The box plots indicate that the mean SHAP values
are around zero, indicating that none of them are contributing to it being
anomalous. Opening SE at noon on a Monday is therefore considered
normal for users in cluster 1, as expected.

– N2. This instance shows that opening the main gate MG on a Monday at
roughly 3 am is normal behavior for users in cluster 1. Again, the SHAP
values average around zero for all features. This will become a common
theme for instances that correspond to normal behavior.

• Cluster 2.

– A3. This anomaly indicates that accessing MG at 1 am on a Friday is
abnormal. Furthermore, the SHAP values indicate that it is mainly due
to the time (1 am), and slightly because of the weekday. This is logical
considering the overall behavior within cluster 2. Note that there are
many similar instances where MG is accessed during the night shift. This
indicates that the main gate is likely remained open during the day, such
that users do not have to open it manually using their access cards.

– A4. This anomaly is similar to A3, except that it is accessing the door
SE. In this case, despite the weekday being the same and the hour being
equally uncommon, the SHAP value for the hour is quite a bit lower.
While still being an anomaly, it is closer to being normal which is likely
due to the door SE being more common than MG.

– N3. This instance indicates that accessing SE on a Sunday at 9 pm is
common behavior. The SHAP values show that the weekday (Sunday)
does contribute slightly to it being an anomaly. However, the hour (9 pm)
has a negative SHAP value which offsets the instance enough to not be con-
sidered anomalous. In other words, this shows that if the hour would have
been something more uncommon then it would likely have been anomalous.

78

7. Discussion and Conclusion

– N4. Finally, accessing PD on a Tuesday at 11 am is expectedly common
behavior for cluster 2. This is also indicated by the SHAP values.

• Cluster 3.

– A5. The SHAP values for this instance indicate that accessing OD on
a Thursday at 10 am is normal for cluster 3. However, the instance is
classified as anomalous due to the feature TSLE, which is further indicated
by the SHAP value. The value of TSLE for this instance is 481,810,26
seconds, which corresponds to 557 days. In other words, this is the first
event recorded from this user ID in 557 days.

– A6. This instance shows that accessing the main entrance (ME) is con-
sidered common based on the SHAP values. However, accessing ME on
a Friday at 2 am is uncommon for cluster 3, thus making this instance
anomalous.

– N5. Opening FD on a Wednesday at 9 am is expectedly common behavior
for cluster 3.

– N6. Opening ME on a Wednesday at 3 am is expectedly common behavior
for cluster 3.

• Cluster 4.

– A7. As indicated by Figure 5.2, the key cabinet (KC) is very uncommon
for cluster 4. Instance A7 is therefore anomalous mainly because of this,
as is also indicated by the SHAP values.

– A8. The SHAP values for this instance show that it is mostly anomalous
due to the weekday. However, Figure 6.5 showed that this cluster does not
consider all instances on Sundays to be anomalous. Instead, it is the fact
that it is opening MG at 4 am on a Sunday that makes it anomalous. Note
that neither MG or the hour 4 is that uncommon for cluster 4. This indi-
cates that it is an unusual combination of three relatively usual features
that caused the anomaly. Note further that this conclusion could not be
made by simply inspecting the SHAP values. In other words, comparing
the SHAP values to common behavior within the clusters is important in
order to retrieve the full picture.

– N7. Here is an example of an instance that corresponds to normal be-
havior with an access on a Sunday. In this case it is accessing PD at 10
pm which means that this combination of features is more common than
what was shown in anomaly A8.

79

7. Discussion and Conclusion

– N8. Finally, accessing SE on a Tuesday at 4 am is normal behavior for
cluster 4.

7.4.2 Collective Anomalies
All instances are listed and discussed below. Details of each instance can be found
in Table 6.2. Also, the SHAP values for all the anomalous instances are shown in
Figure 6.16. The SHAP values for normal instances are purposely left out in this
case as they all tend to average around zero, meaning that similar conclusions will
be drawn as for the normal point instances.

All instances presented in this section correspond to sequences of events, where each
event in each sequence is considered normal by the models for n = 1. This means
that none of the anomalous sequences below are considered anomalous because of
one of the events in the sequence being anomalous. Instead, they are anomalous only
because the particular sequence itself is abnormal. This was done to ensure that this
section provides something new compared to the previous section where the point
anomalies were presented.

• Cluster 1.

– A9. This instance is anomalous because of the time between the two
events. The SHAP value of TSLE for t = 2 slightly indicates this. This
feature shows that there was 2,130,850 seconds (or roughly 24 days) be-
tween the two events. This of course means that there will be no relation
between the two events, thus making it anomalous. An interesting note
here is that the sequence is considered anomalous both because of the
fact that there is no relation between the events (due to the time between
them), as well as because of the time between them (due to the feature
TSLE being included).

– A10. This instance consists of the door access sequence {SE - MG}. This
sequence was the most common sequence among the anomalous instances
for cluster 1, which indicates that it should be anomalous due to the doors.
The SHAP values confirm that this is the case. The SHAP value of Door
at t = 1 is negative, showing that the door SE being accessed at t = 1 is
common, and not the cause of the anomaly. However, the SHAP value of
Door at t = 2 is the highest, showing that MG being accessed after SE is
uncommon, which makes sense since the main gate is generally accessed
before the staff entrance.

– N9. This sequence corresponds to {SE - PD}, which is the most common
sequence for this cluster (see Figure 6.10). Furthermore, the remaining
features correspond to normal values, thus logically making it a normal
sequence.

80

7. Discussion and Conclusion

– N10. This sequence corresponds to {PD - SE}, which is the second most
common sequence (see Figure 6.10) for this cluster. This shows that the
model has found patterns for sequences that do not take place in the same
day. In this case, it corresponds to the last event of the day, followed by
the first event the next day. The time between these two events (indicated
by TSLE at t = 2) is 85,015 seconds which is roughly 24 hours.

• Cluster 2.

– A11. This instance corresponds to {PD - MG}, which is another example
of a sequence of door accesses that take place on different days. The
instance N12 (see discussion below) shows the same door sequence but
instead when the model considered it normal. In this case it seems that it
was considered anomalous due to the weekdays at both time steps ({Fri
- Sun}, as well as the time of the second time step (8 am).

– A12. This anomaly shows two consecutive accesses of MG, on two sepa-
rate days. What is interesting about this anomaly is that the individual
accesses of MG are completely normal for cluster 2, while them appearing
in sequence is not normal. In other words, a user seems to only be ac-
cessing the main gate and nothing else on two separate days. It is not
clear whether this implies harmful behavior, but it is nonetheless worth
investigating and it would not have been possible to detect if only point
anomalies were being considered.

– N11. Again, the sequence {SE - PD} is also very common for cluster 2.

– N12. As already mentioned, this instance corresponds to {PD - MG}.
Unlike A11, this instance is considered normal since remaining features
are more common compared to A11.

• Cluster 3.

– A13. This instance corresponds to the door sequence {SE - HR}. Note
again that both of the individual events in this sequence is considered
normal by the point anomaly model for cluster 3. In other words, despite
the door HR being uncommon, it is not anomalous by itself (i.e., not a
point anomaly). However, this instance makes it clear that HR being
accessed after SE is uncommon. The SHAP values further indicates that
it is mostly due to HR appearing at t = 2. The anomaly makes sense
considering that HR is an office related door, and is generally accessed
after OD or one of the other office doors.

– A14. This instance corresponds to the door sequence {MG - OD}. This is
a very unusual sequence of door accesses. Generally, one of the building

81

7. Discussion and Conclusion

entrances are accessed after MG (i.e., SE or ME). The SHAP values indicate
slightly that it is due to OD appearing at t = 2. Furthermore, the time
of the access at t = 2 (8 pm) is contributing to the anomaly as well.
This anomaly is a potential example of a broken sequence, which is an
already mentioned issue (see Chapter 4) with the access logs. In this case
it is likely that the true sequence taken by the user was {MG - ME - OD}.
However, for some reason the access to ME was no logged, leaving only {MG
- OD}, and is therefore falsely assumed to be anomalous. This is further
discussed later in this chapter.

– N13. This instance corresponds to the door sequence {MG - ME}. This is
one of the seventh most common sequence among normal sequences for
cluster 3 (see Figure 6.10 (c)).

– N14. This instance corresponds to the door sequence {OD - POA}. This
sequence expectedly shows how accessing the office door OD followed by
one of the office related doors (POA) is considered normal.

• Cluster 4.

– A15. This instance corresponds to the door sequence {SE - OD}. This is
another example of a broken sequence that is interpreted as an anomalous
instance. The reason is that there is no path directly from SE to OD. As
indicated by Figure 4.7 in Chapter 4, there is a common sequence of
length four that achieves this path, which is {SE - PD - FD - OD}. In
other words, the subsequence {PD - FD} seems to be missing.

– A16. This instance corresponds to the door sequence {MG - MG}. Ac-
cording to TSLE for t = 2 there are roughly 24 hours between the two
accesses. This indicates that the user only accessed MG on the first day
in the sequence (Thursday). This means that it may again be a case
of a broken sequence. As was shown in Figure 6.9, this sequence is the
most common among the anomalous sequences for cluster 4. However,
Figure 6.10 also showed that there are cases when this sequence is consid-
ered normal, which shows that these broken sequences may be common
enough to be considered normal. From the SHAP values one can see that
it is positive for the door at t = 1, but negative for the door at t = 2.
This may indicate that the door MG is generally more common at t = 2,
compared to t = 1 for this particular sequence of features.

– N15. This instance corresponds to the door sequence {OD - FD}. This
sequence together with the next instance N16 illustrates that the sequence
{OD - FD - PD} is a common sequence that allows movement between
the production area and the office.

– N16. This instance corresponds to the door sequence {FD - PD}. See

82

7. Discussion and Conclusion

note for N15 above for the discussion.

7.5 Ethical Considerations and Sustainability
There are some ethical considerations concerning this project. The most important
aspect is in regard to machine learning. If the anomaly detection system identifies
that a specific user caused an anomaly, the trustworthiness of this assessment must
be further evaluated. Training a machine learning model to be perfect at detecting
anomalies is very difficult, if not impossible, and should therefore not be blindly
trusted. Any action taken must not be based purely on trusting the output as this
could potentially be a false positive. Specifically, if the model incorrectly considers a
normal instance to be anomalous, this must not result in inappropriate actions being
taken. The developed framework should therefore be seen as a tool to aid security
administrators in making assessments easier.

Training and using a machine learning model for the purpose of anomaly detection
has an energy cost that is substantially higher than simply inspecting access logs
manually. However, as mentioned before, manually inspecting access logs is not a
feasible method in preventing attacks. As such, using a machine learning approach
is preferable despite the energy cost. Being able to prevent attacks from happening
is of course more sustainable than, for instance, having to replace equipment and
material due to theft and vandalism.

7.6 Conclusions and Future Work
This section presents the conclusions and possible future work. A number of points
are discussed separately in the list below.

• Reconstruction error thresholds. Deciding the thresholds Tc,n is a balance
between minimizing false negatives and false positives. False negatives (i.e.,
predicting an instance to be normal when it is in fact anomalous) is much more
severe in this case. The reason is that more false negatives mean that harmful
behavior may go unnoticed. The amount of false negatives is minimized by
having a lower threshold. A threshold that is too low, however, will lead to
a larger number of false positives which increases the amount of unnecessary
manual labor required by administrators.

The current way of analyzing the access logs would be to have administrators
check every single event manually. Due to the size of the logs this instead
ends up not happening at all, which means that the maximum number of
false negatives is achieved. The system proposed in this thesis attempts to
minimize the amount of false negatives to ensure that most malicious behaviour
is correctly identified. Furthermore, the reconstruction error defines the level of
rarity of a particular event in the access logs which can be used as a subjective

83

7. Discussion and Conclusion

ranking of the level of harm that they may cause. While this assumes that
rarity implies harmful behaviour, one can at least use this as a way to prioritize
which events to investigate further.

• SHAP values. For n = 1 the SHAP values seem to make sense for all the
16 instances shown. In other words, the SHAP values have been large for
features with values that correspond to uncommon behavior for respective
cluster, for every anomalous instance. For n = 2 the SHAP values are in
certain cases not very large for one or two features. Instead, the SHAP values
are smaller and spread among multiple features. This indicates that multiple
features contributed to the anomalous reconstruction error. This makes sense
considering that each instance at each time step is considered normal by the
point anomaly models. Because of this, the anomalies for n = 2 are generally
caused by an unusual combination of features, and not due to any individual
features being the only contributors to the anomaly.

As explained in Section 5.4, SHAP values were possible to calculate because of
an additional layer added to the original LSTM autoencoder models. This extra
layer outputs the reconstruction error directly. A different approach, which
attempts to calculate SHAP values in a more thorough fashion, was outlined
by Antwarg et al. [5]. This approach instead outputs a vector containing the
reconstruction errors for each individual feature. This makes it possible to
analyze the effects that each input feature has on the reconstruction error for
each individual feature. The approach used in this project, only looks at the
overall impact of each input feature on the full reconstruction error. Note that
the full reconstruction error is essentially the sum of the reconstruction errors
of each individual feature. Investigating this alternative method of retrieving
SHAP values could be interesting as future work.

• Usefulness of features. The features used for the machine learning models
was TSLE, Weekday, Hour, Door and Event. Out of these, Weekday, Hour and
Door were used to find subgroups of users with similar behavior. This was of
course an arbitrary choice which can likely be improved. For example, one
could cluster groups of users based on common combinations of these features
and not just looking at each feature separately. For example, within cluster 3
there may be additional subgroups of users that tend to open similar doors at
similar hours, with users from each subgroup still having similar overall access
counts. That sort of relationship is not captured in this project since only the
raw access counts were considered. The clustering may also be done based on
similar sequences taken, and not just individual doors.

For the machine learning models it seems that all features have an impact
on which instances are considered anomalous. The only questionable feature
would be TSLE, partly because of instances like A5 above. This instance is
anomalous because it was the first event for this particular user ID in 557 days.
First of all, the reason for such events is worth speculating on. One theory is

84

7. Discussion and Conclusion

that the user stopped working and then came back after a year and a half. A
different theory is that a new person was employed but assigned the same user
ID as the old user in the PAC system. This may be one of the causes for why
the access category of certain user ID’s changed at some point in the access
logs. For these cases it is not an issue, but if this occurs without a change of
access category it is completely unknown based purely on the access logs. This
means that a change of behavior from one user ID may go unnoticed. The
problem is naturally avoided by assigning unique user ID’s to every new user,
and excluding user ID’s of previously employed users in the pool of available
ID’s.

Now, the intended idea of TSLE was originally to detect unusual times between
accesses in the order of seconds, minutes or at most hours. This would, for
example, allow catching anomalies where a user accesses two doors that are
far apart in an abnormally short time interval. However, the extremely large
values of TSLE, as observed for instance A5, make it useless when detecting
abnormalities in the order of seconds, minutes or hours. The reason being
that a hundred seconds will have no impact on the reconstruction error when
abnormal values of TSLE is in the order of many millions of seconds. The
reason for why such large values of TSLE show up is because of how the value
of this feature was assigned to each event. It was assigned by simply taking
the time since the last event, individually for all events of each user. An
alternative approach could be to assign a special value (perhaps zero) whenever
the previous event is from a different working shift. This means that the
extremely large values will be eliminated. This could be interesting to try as
future work. However, doing this means that anomalies such as A5 would no
longer be detected, which may or may not be negative depending on the context.

• Broken sequences. The issue of broken sequences was already discussed in
Chapter 4. When looking at anomalous sequences in Section 7.4.2, it became
clear that some of them were anomalous due to broken sequences. This further
strengthens the potential issue caused by these broken sequences. Some broken
sequences may be common, in which case the machine learning models will
assume that it is normal behavior. This means that the model would not catch
this sequence as an anomaly even in cases where it might be caused by potential
harmful behavior. On the other hand, when certain broken sequences are not
common, they will be assumed to be anomalous by the models. This will not
lead to false negatives, but instead cause a lot of extra unnecessary manual
work by administrators. However, the broken sequences that are reported
by the models as being anomalous could (whether it is harmful or not) give
clues to administrators that an access path into a section of the building needs
to be fixed (if security in this part of the building is especially important).
Additionally, it may also be used to identify users that tend to frequently
tailgate. Furthermore, one could assume that harmful behavior occurs when
the user is alone, requiring access to all doors using their own access card.
This implies that there would not be a broken sequence whenever an anomaly

85

7. Discussion and Conclusion

corresponds to harmful behavior.

The above discussion of broken sequences is not so concrete mainly because it
is not so clear how big of an issue it is. Figuring this out in a more concrete
fashion would take a lot more analysis work. Both analysis of existing data
as well as evaluations of the anomaly detection system after deployment by
domain experts.

• Dataset shift. A clear limitation to the approach used is that user behavior
can change over time. This means that a particular user is assigned to cluster
c based on their training data activity, but then follows completely different
behavior upon employment for various reasons. Furthermore, the behavior
of a user could change drastically during the span of the training data. This
could lead to a not so robust division of users based on their behavior. It
may therefore be of interest to find clusters as well as train the LSTM autoen-
coders only on the latest data, such as the past six months. This approach
maximizes the chances that the anomaly detection is done based only on the
most relevant patterns in the data. However, doing this means that a great
majority of the data must be dropped which means that certain (older) patterns
will be missed by the models. Whether this is problematic depends entirely
on how relevant the older patterns are and requires further evaluation to decide.

• Machine learning benefits. There are several benefits to using machine
learning for the purposes of this project. One benefit is that the machine
learning models are able to learn what is normal with respect to each of the
features. The only feature where this is perhaps not so relevant is Event. The
reason being that one could easily track when any of the events UE2, UE3 or UE3
occurs in the access logs, without machine learning. Furthermore, the models
are capable of learning unusual combinations of features where the individual
value of each feature is normal. Additionally, the use of LSTM autoencoders
is a very suitable and powerful technique for the given data as explained in
Section 5.2.

• Practical usefulness. The results presented in Chapter 6 were discussed
with a domain expert from Bodforss Consulting AB. The conclusion from these
discussions is that the suggested anomaly detection framework could be useful
in practice since it is clearly reducing the amount of manual labor needed. To
which degree it is useful is hard to speculate on before it has been deployed
and tested for some time.

7.7 Final Conclusion
Physical access control systems are used to restrict access to various parts of a
company building for security reasons. These systems tend to store access logs that
contain a history of all accesses made by users in the system using their access

86

7. Discussion and Conclusion

card. These access logs can however end up becoming large and hard to interpret.
As such, security assessment becomes impractical, leading to the access logs rarely
being examined. This thesis showed how analysis of these access logs can be used to
detect subgroups of users that follow similar behavior. Furthermore, a significantly
smaller subset of the original access logs that correspond to unusual behavior (with
respect to overall behavior) could be identified using LSTM autoencoders. To be
precise, the test set contains 60,430 events where 1,169 point anomalies and 1,496
collective anomalies were identified across all subgroups (based on the chosen thresh-
olds Tc,n). This corresponds to a 95.6% decrease in the number of events that need
to be manually inspected. Also, explanations for why the model considered each
anomaly to be anomalous was generated using SHAP values. This means that a
better understanding of what sort of anomalies exist in the system can be established.
Understanding what typical anomalies look like can be used by administrators to
proactively prevent them from occurring in the future. Additionally, it could be used
to further improve the anomaly detection system itself (e.g. by being the basis of
the labeling process for future training data).

There were two main issues that complicated the development of the system. The
first is due to the inconsistency of the logs. The second is about the subjective
evaluation caused by not knowing what an anomaly should look like in practice. The
reason for the inconsistency is mainly caused by misusage (whether it is intentional
or not) of the PAC system by the users. Full consistency is achieved if every single
access made by every user is properly logged and if the state of the PAC system is the
same throughout the span of the logs. The state refers to what behavior is possible
within the building (defined by existing doors and so on). Furthermore, logging
accesses in both directions of every door (and not just upon entry) would further
improve the anomaly detection capabilities as this allows the models to properly
understand when a user leaves the building. Ensuring that all (or most) accesses
are logged is achieved by convincing users to always use their access card (i.e. avoid
tailgating). Ensuring that the state of the PAC system is the same corresponds to
mitigating a shift of the dataset, which could be solved by only utilizing the most
recent part of the logs. Finally, solving the issue of subjective evaluation comes
down to understanding beforehand which threats are possible such that one can
manually label the access logs. This would require more domain specific analysis
of the particular building where the anomaly detection system is to be deployed.
However, it is clear that solving one (or both) of these issues is likely impractical in
most cases. It should therefore be noted that the system developed in this thesis is
still a useful start despite the mentioned issues not being minimized or fully solved.

87

7. Discussion and Conclusion

88

References

[1] Verizon. 2020 Data Breach Investigations Report. 2020. [Online]. url: https:
//enterprise.verizon.com/resources/reports/2020- data- breach-
investigations-report.pdf. Accessed: 2021-03-01.

[2] Veriato. Insider Threat Report 2018. 2018. [Online]. url: https : / / www .
veriato . com / resources / whitepapers / insider - threat - report - 2018.
Accessed: 2021-04-24.

[3] Jinwon An and Sungzoon Cho. “Variational Autoencoder based Anomaly
Detection using Reconstruction Probability”. In: Special Lecture on IE 2.1
(2015), pp. 1–18.

[4] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems. Ed. by
I. Guyon et al. Vol. 30. Red Hook, NY, USA: Curran Associates, Inc., 2017,
pp. 4765–4774. url: https://proceedings.neurips.cc/paper/2017/file/
8a20a8621978632d76c43dfd28b67767-Paper.pdf.

[5] Liat Antwarg, Ronnie Mindlin Miller, Bracha Shapira, and Lior Rokach.
“Explaining Anomalies Detected by Autoencoders Using SHAP”. In: CoRR
abs/1903.02407 (2020). arXiv: 1903.02407v2. url: http://arxiv.org/abs/
1903.02407v2.

[6] Gerald L. Kovacich and Edward P. Halibozek. “Chapter 21 - Physical Security”.
In: Effective Physical Security (Fourth Edition). Ed. by Lawrence J. Fennelly.
Butterworth-Heinemann, 2013, pp. 339–353. doi: 10 . 1016 / B978 - 0 - 12 -
415892-4.00021-3.

[7] Francis Y. Edgeworth. “XLI. On discordant observations”. In: The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 23.143
(1887), pp. 364–375. doi: 10.1080/14786448708628471.

[8] Dorothy E. Denning. “An Intrusion-Detection Model”. In: IEEE Transactions
on Software Engineering SE-13.2 (1987), pp. 222–232. doi: 10.1109/TSE.1987.
232894.

[9] Robin Sommer and Vern Paxson. “Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection”. In: 2010 IEEE Symposium on
Security and Privacy. 2010, pp. 305–316. doi: 10.1109/SP.2010.25.

[10] Adrian Frei and Marc Rennhard. “Histogram Matrix: Log File Visualization for
Anomaly Detection”. In: 2008 Third International Conference on Availability,
Reliability and Security. 2008, pp. 610–617. doi: 10.1109/ARES.2008.148.

89

https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://www.veriato.com/resources/whitepapers/insider-threat-report-2018
https://www.veriato.com/resources/whitepapers/insider-threat-report-2018
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://arxiv.org/abs/1903.02407v2
http://arxiv.org/abs/1903.02407v2
http://arxiv.org/abs/1903.02407v2
https://doi.org/10.1016/B978-0-12-415892-4.00021-3
https://doi.org/10.1016/B978-0-12-415892-4.00021-3
https://doi.org/10.1080/14786448708628471
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.1109/ARES.2008.148

References

[11] Antti Juvonen, Tuomo Sipola, and Timo Hämäläinen. “Online anomaly de-
tection using dimensionality reduction techniques for HTTP log analysis”. In:
Computer Networks 91 (2015), pp. 46–56. doi: https://doi.org/10.1016/j.
comnet.2015.07.019.

[12] Michael Davis, Weiru Liu, Paul Miller, and George Redpath. “Detecting Anoma-
lies in Graphs with Numeric Labels”. In: Proceedings of the 20th ACM Interna-
tional Conference on Information and Knowledge Management. CIKM ’11. New
York, NY, USA: Association for Computing Machinery, 2011, pp. 1197–1202.
doi: 10.1145/2063576.2063749.

[13] Carmen Cheh et al. “Data-Driven Model-Based Detection of Malicious Insiders
via Physical Access Logs”. In: ACM Transactions on Modeling and Computer
Simulation 29.4 (Nov. 2019). doi: 10.1145/3309540.

[14] Ju Peng Poh, Jun Yu Charles Lee, Kah Xuan Tan, and Eric Tan. “Physical
Access Log Analysis: An Unsupervised Clustering Approach for Anomaly
Detection”. In: Proceedings of the 3rd International Conference on Data Science
and Information Technology. DSIT 2020. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 12–18. doi: 10.1145/3414274.3414285.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. url: http://www.deeplearningbook.
org.

[16] OWASP Foundation. Access Control. 2020. [Online]. url: https://owasp.
org/www-community/Access_Control. Accessed: 2021-03-22.

[17] OWASP CheatSheets Series Team. Access Control Cheat Sheet. 2020. [On-
line]. url: https://cheatsheetseries.owasp.org/cheatsheets/Access_
Control_Cheat_Sheet.html. Accessed: 2021-03-22.

[18] Lauren Collins. “Chapter 11 - Access Controls”. In: Cyber Security and IT
Infrastructure Protection. Ed. by John R. Vacca. Syngress, 2014, pp. 269–280.
doi: 10.1016/B978-0-12-416681-3.00011-2.

[19] William Stallings. “Chapter 4 - Physical Security Essentials”. In: Cyber Security
and IT Infrastructure Protection. Ed. by John R. Vacca. Syngress, 2014, pp. 109–
134. doi: 10.1016/B978-0-12-416681-3.00004-5.

[20] Salvatore Aurigemma and Thomas Mattson. “Privilege or procedure: Evaluating
the effect of employee status on intent to comply with socially interactive
information security threats and controls”. In: Computers & Security 66 (2017),
pp. 218–234. doi: 10.1016/j.cose.2017.02.006.

[21] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A
Survey”. In: ACM Computing Surveys 41 (July 2009). doi: 10.1145/1541880.
1541882.

[22] Thomas M. Mitchell. Machine Learning. New York, NY, USA: McGraw-Hill,
1997. isbn: 9780070428072.

[23] Pádraig Cunningham, Matthieu Cord, and Sarah Delany. “Supervised Learn-
ing”. In: Machine Learning Techniques for Multimedia: Case Studies on Orga-
nization and Retrieval. Ed. by Matthieu Cord and Pádraig Cunningham. Berlin,

90

https://doi.org/https://doi.org/10.1016/j.comnet.2015.07.019
https://doi.org/https://doi.org/10.1016/j.comnet.2015.07.019
https://doi.org/10.1145/2063576.2063749
https://doi.org/10.1145/3309540
https://doi.org/10.1145/3414274.3414285
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://owasp.org/www-community/Access_Control
https://owasp.org/www-community/Access_Control
https://cheatsheetseries.owasp.org/cheatsheets/Access_Control_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Access_Control_Cheat_Sheet.html
https://doi.org/10.1016/B978-0-12-416681-3.00011-2
https://doi.org/10.1016/B978-0-12-416681-3.00004-5
https://doi.org/10.1016/j.cose.2017.02.006
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882

References

Heidelberg, Germany: Springer, Jan. 2008, pp. 21–49. doi: 10.1007/978-3-
540-75171-7_2.

[24] Andrew Y. Ng and Michael I. Jordan. “On Discriminative vs. Generative
Classifiers: A Comparison of Logistic Regression and Naive Bayes”. In: Advances
in Neural Information Processing Systems. Vol. 14. Cambridge, MA, USA: MIT
Press, 2001, pp. 841–848. url: https://proceedings.neurips.cc/paper/
2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf.

[25] Zoubin Ghahramani. “Unsupervised Learning”. In: Advanced Lectures on
Machine Learning. Ed. by Olivier Bousquet, Ulrike von Luxburg, and Gun-
nar Rätsch. Berlin, Heidelberg, Germany: Springer, 2004, pp. 72–112. doi:
10.1007/978-3-540-28650-9_5.

[26] “Clustering”. In: Encyclopedia of Machine Learning and Data Mining. Ed. by
Claude Sammut and Geoffrey I. Webb. Boston, MA, USA: Springer, 2017,
pp. 226–226. doi: 10.1007/978-1-4899-7687-1_943.

[27] Vladimir Estivill-Castro. “Why so many clustering algorithms: A Position
Paper”. In: SIGKDD Exploration Newsletter 4.1 (June 2002), pp. 65–75. doi:
10.1145/568574.568575.

[28] Michail Vlachos. “Dimensionality Reduction”. In: Encyclopedia of Machine
Learning and Data Mining. Ed. by Claude Sammut and Geoffrey I. Webb.
Boston, MA, USA: Springer, 2017, pp. 354–361. doi: 10.1007/978-1-4899-
7687-1_71.

[29] Anke Meyer-Baese and Volker Schmid. “Chapter 2 - Feature Selection and
Extraction”. In: Pattern Recognition and Signal Analysis in Medical Imaging
(Second Edition). Ed. by Anke Meyer-Baese and Volker Schmid. Academic
Press, 2014, pp. 21–69. doi: https://doi.org/10.1016/B978-0-12-409545-
8.00002-9.

[30] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. “Dimen-
sionality Reduction: A Comparative Review”. In: Journal of Machine Learn-
ing Research 10 (2009), pp. 66–71. url: https://lvdmaaten.github.io/
publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf.

[31] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd. Se-
bastopol, CA, USA: O’Reilly Media, Inc., 2019. isbn: 9781492032649.

[32] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D. Lawrence. Dataset Shift in Machine Learning. The MIT Press, Dec.
2008. doi: 10.7551/mitpress/9780262170055.001.0001.

[33] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla,
and Francisco Herrera. “A unifying view on dataset shift in classification”. In:
Pattern Recognition 45.1 (2012), pp. 521–530. doi: 10.1016/j.patcog.2011.
06.019.

[34] Alice Zheng and Amanda Casari. Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2018. isbn: 9781491953242.

91

https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1007/978-3-540-75171-7_2
https://proceedings.neurips.cc/paper/2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/7b7a53e239400a13bd6be6c91c4f6c4e-Paper.pdf
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1007/978-1-4899-7687-1_943
https://doi.org/10.1145/568574.568575
https://doi.org/10.1007/978-1-4899-7687-1_71
https://doi.org/10.1007/978-1-4899-7687-1_71
https://doi.org/https://doi.org/10.1016/B978-0-12-409545-8.00002-9
https://doi.org/https://doi.org/10.1016/B978-0-12-409545-8.00002-9
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
https://doi.org/10.7551/mitpress/9780262170055.001.0001
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019

References

[35] James Max Kanter and Kalyan Veeramachaneni. “Deep feature synthesis:
Towards automating data science endeavors”. In: 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA). 2015, pp. 1–10.
doi: 10.1109/DSAA.2015.7344858.

[36] Zahraa S. Abdallah, Lan Du, and Geoffrey I. Webb. “Data Preparation”. In:
Encyclopedia of Machine Learning and Data Mining. Ed. by Claude Sammut
and Geoffrey I. Webb. Boston, MA, USA: Springer, 2017, pp. 318–327. doi:
10.1007/978-1-4899-7687-1_62.

[37] John T. Hancock and Taghi M. Khoshgoftaar. “Survey on categorical data
for neural networks”. In: Journal of Big Data 7.1 (Apr. 2020), p. 28. doi:
10.1186/s40537-020-00305-w.

[38] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. “Explainable Artificial
Intelligence: A Survey”. In: 2018 41st International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO).
2018, pp. 0210–0215. doi: 10.23919/MIPRO.2018.8400040.

[39] Ribana Roscher, Bastian Bohn, Marco F. Duarte, and Jochen Garcke. “Ex-
plainable Machine Learning for Scientific Insights and Discoveries”. In: IEEE
Access 8 (2020), pp. 42200–42216. doi: 10.1109/ACCESS.2020.2976199.

[40] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI):
Concepts, Taxonomies, Opportunities and Challenges toward Responsible
AI”. In: CoRR abs/1910.10045 (2019). arXiv: 1910.10045v2. url: http:
//arxiv.org/abs/1910.10045v2.

[41] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods for
Interpreting and Understanding Deep Neural Networks”. In: Digital Signal
Processing 73 (2018), pp. 1–15. doi: 10.1016/j.dsp.2017.10.011.

[42] “Loss”. In: Encyclopedia of Machine Learning and Data Mining. Ed. by Claude
Sammut and Geoffrey I. Webb. Boston, MA, USA: Springer, 2017, pp. 781–781.
doi: 10.1007/978-1-4899-7687-1_499.

[43] PyTorch. L1Loss. 2019. [Online]. url: https://pytorch.org/docs/master/
generated/torch.nn.L1Loss.html. Accessed: 2021-05-23.

[44] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv:
1504.08083v2. url: http://arxiv.org/abs/1504.08083v2.

[45] Lior Rokach and Oded Maimon. “Clustering Methods”. In: Data Mining and
Knowledge Discovery Handbook. Boston, MA, USA: Springer, 2005, pp. 321–352.
doi: 10.1007/0-387-25465-X_15.

[46] Joe H. Ward Jr. “Hierarchical Grouping to Optimize an Objective Function”.
In: Journal of the American Statistical Association 58.301 (1963), pp. 236–244.
doi: 10.1080/01621459.1963.10500845.

[47] Ian T. Jolliffe and Jorge Cadima. “Principal component analysis: a review and
recent developments”. In: Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 374.2065 (2016), p. 20150202.
doi: 10.1098/rsta.2015.0202.

92

https://doi.org/10.1109/DSAA.2015.7344858
https://doi.org/10.1007/978-1-4899-7687-1_62
https://doi.org/10.1186/s40537-020-00305-w
https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.1109/ACCESS.2020.2976199
https://arxiv.org/abs/1910.10045v2
http://arxiv.org/abs/1910.10045v2
http://arxiv.org/abs/1910.10045v2
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1007/978-1-4899-7687-1_499
https://pytorch.org/docs/master/generated/torch.nn.L1Loss.html
https://pytorch.org/docs/master/generated/torch.nn.L1Loss.html
https://arxiv.org/abs/1504.08083v2
http://arxiv.org/abs/1504.08083v2
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1098/rsta.2015.0202

References

[48] Ian T. Jolliffe. Principal Component Analysis. 2nd ed. New York, NY, USA:
Springer, 2002, pp. 1–2. doi: 10.1007/b98835.

[49] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”.
In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605. url:
http://jmlr.org/papers/v9/vandermaaten08a.html.

[50] Geoffrey Hinton and Sam Roweis. “Stochastic Neighbor Embedding”. In: Ad-
vances in Neural Information Processing Systems. Vol. 15. Cambridge, MA,
USA: MIT Press, 2002, pp. 857–864. url: https://proceedings.neurips.
cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf.

[51] Zachary Chase Lipton. “A Critical Review of Recurrent Neural Networks for
Sequence Learning”. In: CoRR abs/1506.00019 (2015). arXiv: 1506.00019v4.
url: http://arxiv.org/abs/1506.00019v4.

[52] P. J. Werbos. “Backpropagation Through Time: What It Does and How
to Do It”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560. doi:
10.1109/5.58337.

[53] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6.02 (1998), pp. 107–116. doi: 10.
1142/S0218488598000094.

[54] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. doi: 10.1162/neco.1997.
9.8.1735.

[55] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014).
arXiv: 1406.1078v3. url: http://arxiv.org/abs/1406.1078v3.

[56] Zachary Chase Lipton. “The Mythos of Model Interpretability”. In: CoRR
abs/1606.03490 (2016). arXiv: 1606.03490. url: http://arxiv.org/abs/
1606.03490.

[57] SHAP. SHAP values. 2021. [Online]. url: https://github.com/slundberg/
shap. Accessed: 2021-05-24.

93

https://doi.org/10.1007/b98835
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://arxiv.org/abs/1506.00019v4
http://arxiv.org/abs/1506.00019v4
https://doi.org/10.1109/5.58337
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078v3
http://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://github.com/slundberg/shap
https://github.com/slundberg/shap

References

94

A
Appendix 1

A.1 Events

Event name Frequency
controller.access.card.valid.standard 300,030

controller.door.requestToExit 281,668
controller.door.opened 231,696
controller.door.closed 231,631

controller.reader.validCommonCode 3,473
controller.dac.reader.tamper.restored 2,840
controller.dac.reader.tamper.active 2,818

controller.dac.communicationFailure.restored 2,745
controller.door.forcedOpen 2,304

controller.dac.communicationFailure.active 2,229
controller.door.mode.locked 2,177

controller.door.mode.unlocked 2,173
controller.door.notClosed 2,016

controller.access.card.invalid.door 1,357
controller.access.card.invalid.standard 768
system.invalidCardInLcuThatShouldBeValid 680

controller.dac.tamper.active 422
controller.hio_node.communicationRestored 402

controller.door.mode.buzzerEnabled 327
controller.door.mode.exit.pinCardNumber 238

controller.door.mode.exit.modePinRequired 159
controller.door.mode.access.pinOnlyAllowed 134
controller.access.card.invalid.inhibited 117

acs.door.update 115
acs.doormodetemplate.update 113

controller.dac.tamper.restored 109
controller.door.mode.access.modePinRequired 79

controller.door.unlock 60
controller.door.mode.maintainedUnlock 54

controller.door.forcedUnlock 52
controller.dac.powerOn 50

I

A. Appendix 1

controller.door.mode.exit.buyAlarmtime 49
controller.dac.digitalOutputChanged 42

controller.hio_node.communicationFailure 41
controller.door.pulseOpen 35
acs.authorization.create 14

controller.access.card.invalid.format 13
acs.doormodetemplate.create 12
controller.dac.inputChanged 7

controller.door.mode.exit.pinOnlyAllowed 6
controller.door.mode.maintainedLock 6

acs.door.delete 6
acs.authorization.delete 3

controller.HubRestartedAfterReset 3
controller.door.mode.motorlockLowSecurity 3
controller.door.mode.rteMaintainedUnlock 2

controller.door.mode.rteEnabled 2
acs.doormodetemplate.delete 2

acs.accessarea.update 1
acs.accessarea.delete 1

Table A.1: Event distribution. The total number of events is 1,073,284. There are 50
types of events in total.

II

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background and Motivation
	Problem Description
	Goals and Scope
	Delimitations
	Thesis Outline

	Related Work
	Theory
	Access Control
	Role-Based Access Control
	Physical Access Control
	Physical Security Threats

	Anomaly Detection
	Types of Anomalies

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Overfitting and Underfitting
	Dataset Shift
	Feature Engineering
	Data Preprocessing
	Explainability and Interpretability
	Loss Functions

	Machine Learning Models
	Agglomerative Hierarchical Clustering
	Principal Component Analysis
	t-Distributed Stochastic Neighbor Embedding
	Recurrent Neural Network
	Autoencoder

	Analysis of Access Logs
	Introduction
	Log Format
	Events
	Door Analysis
	User Analysis
	User Movement
	Access Category
	Categorization of User Behavior

	Log Analysis Conclusions

	Method
	Clustering of Users
	Clustering
	Visualization of Clusters

	LSTM Autoencoder Architecture
	Anomaly Detection Framework
	Offline Learning
	Online Anomaly Detection
	Discussion of Anomaly Detection

	Model Explainability
	Evaluation

	Results
	Training Process
	Anomaly Thresholds
	Global Evaluation
	Point Anomalies
	Collective Anomalies

	Local Evaluation
	Point Anomalies
	Collective Anomalies

	Discussion and Conclusion
	Training Process
	Training Thresholds
	Global Evaluation
	Point Anomalies
	Collective Anomalies

	Local Evaluation
	Point Anomalies
	Collective Anomalies

	Ethical Considerations and Sustainability
	Conclusions and Future Work
	Final Conclusion

	References
	Appendix 1
	Events

