
.

[[PCImm -24]]

[[Buf1 PC_ImmPC, RegRead2 R29, PCImm 18]]

[[PCImm 20, RegWrite R4 PC_ImmPC, ALUOp AO_ADDU Regbank_Out2 Buf1_Read]]

[[RegRead1 R31, ALUOp AO_ADD Alu_Rslt PC_ImmPC, PCJumpSA putInt, PCGetPC]]

[[RegWrite R29 Alu_Rslt, R16 Buf1_Read PCJumpSA $L2]]

[[RegWrite R31 Buf1_Read]]

[[RegRead2 R29, PCImm 20]]

[[RegRead2 R29, ALUOp AO_ADD Regbank_Out2 PC_ImmPC]]

[[PCImm 20, RegWrite R4 PC_ImmPC, ALUOp AO_ADDU Regbank_Out2 Buf1_Read]]

[[RegRead2 R29, RegRead1 R0, PCImm 24, ALUOp AO_ADD Regbank_Out2 PC_ImmPC]]

[[RegWrite R0 Alu_Rslt, PCJumpDA Ls_Read]]

[[RegWrite R31 Buf1_Read]]

main:

$L2:
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Microcode Optimization in FlexCore Compiler

Kashan Khurshid Ansari
Division of Computer Engineering, Chalmers University of Technology

ABSTRACT
The aim of this study was to investigate the microcode optimization in the compiler of an embedded

processor (FlexCore). The main motivation behind this study was that the compiler was only able to perform
front-end compiler optimization, failing to fully harness the processor’s potential. This was the problem that
was in focus in this study..

This study has lead to a working implementation of filling delay slots optimization in the FlexCore com-
piler. A framework was used to read the FlexCore machine instruction, provide all the necessary information
of each single instruction and then rewrite the optimized instructions. Filling delay slots optimization cre-
ated redundant instructions, therefore another optimization was done to eliminate redundant instructions after
the previous optimization. The optimizations lead to shorter processor execution time and, thus, a reduced
energy expenditure.

The simulator executes the FlexCore instructions and generates binary data codes which facilitate in an-
alyzing the processor’s performance. Some EEMBC benchmarks are used to evaluate the result of optimiza-
tion. All the benchmarks give positive results with respect to code size reduction, execution time reduction
and energy dissipation. After the optimization the overall performance of FlexCore processor is increased by
11.5%.

Keywords: Microcode, Optimization, FlexCore, Compiler, Embedded, Processor, Delay slots
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1
Introduction

Compiler optimization is the process of altering the code of a software program, without affecting the result
of the execution, in order to replace expensive instructions with less expensive instructions or rearrange the
instructions so that the resources are better utilized. One objective of compiler optimization is to reduce the
execution time of a program. This is because of intense use of embedded systems in today’s world, mainly
on mobile devices in which power consumption is the main issue. A very common example is smart phones
that face the problem of battery drain. By performing optimizations, the compiler can generate code that
yields the same result but at a lower power expenditure [1].

1.1 Background

Today’s life is surrounded by various types of embedded systems. From consumer electronics like mobile
phones, digital cameras, DVD players and printers to household appliances such as washing machinery and
microwave ovens are based on embedded systems. Also transportation systems from flight to automobiles use
embedded systems. In order to meet customer demands there is a trend nowadays towards higher performance
and lower power dissipation in the embedded systems which happens mainly in mobile devises where power
is the main issue. This also includes small area design with similar programming capabilities of General
Purpose Processors, GPPs.

1



2 CHAPTER 1. INTRODUCTION

FlexCore is an embedded processor, designed by the VLSI research group of Chalmers, which has all the
functionalities of conventional five-stage 32-bit GPP. Based on an evaluation using EEMBC benchmarks, the
FlexCore processor’s datapath was shown to be 40 percent more efficient as compare to MIPS when counting
execution cycles [2].

The machine instructions of FlexCore are represented in a Register Transfer Notation (RTN) format. RTN
instructions are very similar to MIPS assembly instructions or SPARC instructions. The only difference is
that RTN instruction line can have more than one effect (RTN instruction) per line, which is because of the
structure of FlexCore, where we can perform simultaneous operations. Therefore, more than one effect can
be possible in an RTN instruction line. Figure 1.1 depicts an example of a basic block of RTN instructions.

main:

1 rtn [[PCImm -24]]

2 rtn [[Buf1 PC_ImmPC, RegRead2 R29, PCImm 18]]

3 rtn [[PCImm 20, RegWrite R4 PC_ImmPC, ALUOp AO_ADDU Regbank_Out2 Buf1_Read]]

4 rtn [[RegRead1 R31, ALUOp AO_ADD Alu_Rslt PC_ImmPC, PCJumpSA putInt, PCGetPC]]

5 rtn [[RegWrite R29 Alu_Rslt, PCJumpDA Ls_Read]]

6 rtn [[RegWrite R31 Buf1_Read]]

Figure 1.1: Basic block of a FlexCore instructions.

After analyzing the code of a basic block, we see that the first line of instructions only contains a read
operation, while the second line contains two read operations. From the third line the system is fully exposed.
This means that on the first and second line we are not utilizing all resources. The same case occurs on the
fifth line, where we only have execute and write instructions. And on the sixth line we only have a write
instruction. So in general the first two lines and the last two lines of a basic block are not utilizing all the
datapath resources. In other words we can say that we have unused slots in the first two and last two lines of
a basic block.

1.2 Objective

The objective of the thesis is to perform FlexCore compiler optimization, so that the compiler can produce
the same output while having a fully exposed system. One way to achieve this goal is to perform optimization
on RTN instructions in such a way that we are able to reduce the number of unused slots (as discussed above)
as much as possible, to utilize all the resources. The current FlexCore compiler can only perform front-end
compiler optimization, so a back-end compiler optimization is needed to fill the unused slots.

The unused slot arises because of the structure of the FlexCore processor, as it can perform read, ALU
and write operations simultaneously. Think of the pipeline as if it just has been started directly before the
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basic block and that it finishes its execution directly after the basic block.
As the pipeline has just started there is no state in the pipeline and to get any data to work on we first

need to read that data into the pipeline. We start by reading it from the register file and/or inputting it through
the immediate. There is no point of doing any ALU operations or writing to the memory or register file, as
we don’t have any data to do any computations on or address (and data) to read (or write).

When finishing the basic block the computation is to finish. So the last useful thing that can be done is
to write data back to the register file or memory. There is no point in doing any ALU operations as the result
cannot be taken care of by storing it. The same thing with register reads as the values will not be used for
anything. The reason for all this is that the pipeline does not handle the transitions between basic blocks, so
the easiest way to schedule for the compiler is as described above.

Performing the optimization of filling unused slots will lead to a fully exposed system and also speed up
the processor, which as a consequence leads to more efficient processing.

1.3 Motivation

Before performing any optimizations, we not only need more information about blocks but each single in-
struction as well. We need a clear picture of the control flow graph, so that we know which block is going to
execute next or which block is the predecessor of the current block. When we have information about each
instruction, we can find out when a block is going to end on a jump instruction, branch instruction or the end
of function. Also we need to find the loops within the functions and which block is the loop header.

After gathering all this information we can perform optimization and try to move one or two lines of
RTN effects of current blocks to a predecessor block, when certain conditions are satisfied. The EEMBC
benchmark will be used to evaluate the efficiency of these optimizations.

1.4 Outline

In the next chapter we are going to discuss FlexCore, how the architecture of FlexCore differs from MIPS,
how scheduling takes place, and why FlexCore is more efficient than a MIPS. In chapter three we will present
an overview of FlexCore machine instructions that are represented by RTN instructions. We will also analyse
the difference between MIPS instructions and FlexCore instructions. In chapter four we will describe the
proposed solution and the methodology that we use to implement the optimization. Later, the fifth chapter
will conclude with the simulation results. For simulation we will use a previously implemented simulator
and the EEMBC benchmarks [10] that are used to evaluate the results of applying optimizations. The last
chapter will contain conclusion and future work.
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2
FlexCore

2.1 FlexCore

In this thesis we attempt to optimize code generated for the FlexCore processor that is based on Flexible
System on Chip (FlexSoC) architecture, which is an on-going research project of the VLSI research group
at Chalmers University of Technology. The first question which arises here is why do we need another
processor when there are already very high speed and efficient GPP processors? Embedded systems designs
such as digital consumer electronics, automotive, smart cards and mobile devices, require high performance
and more functionality in combination with stringent energy requirements, which makes general purpose
processors unsuitable for embedded systems [2].

The main objective of the Flexible System on Chip (FlexSoC) research is to merge the efficiency of
special-purpose hardware and the flexibility of programming a GPP. In other words, a processor whose
efficiency is like special-purpose hardware combined with the ability of programming similar to GPP, will
be efficient in both processing and energy consumption. This approach allows us to handle diverse processor
architecture requirements in a similar manner [3]

5
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2.2 Architecture

GPPs have a fixed instruction set architecture (ISA), that gives a hardware/software interface for all appli-
cations. Using this ISA with a single interface on various embedded processors may lead to a large number
of instructions, which may require high memory and instruction bandwidth. On the other hand a fixed ISA
does not suit well with heterogeneous processors, as it is only able to control some blocks directly, while the
remaining are controlled indirectly.

FlexSoC reduces these inefficiencies, by using a different hardware/software interface concept. This can
be achieved by placing integrated hardware that can speed up the processing with a datapath similar to a GPP.
The ISA’s that are present in traditional GPPs are not used in FlexCore, in that sense FlexCore has a native
ISA (N-ISA). This N-ISA can fully control all resources. M. Thuresson et al.

In Section 6, we analyze performance gains from

using an exposed datapath and a flexible interconnect

with the same datapath units as a conventional five-

stage pipeline.

3 Extensions to the Baseline FlexCore

An advantage of the FlexCore architecture is that it

can be extended with application-specific accelerator

units, simply by adding more ports to the flexible in-

terconnect and extending the N-ISA control word to

include control signals for the new units. Since different

units are treated equally, we hope to avoid complex ad-

hoc solutions usually found in irregular interconnects.

For instance, for each unit added to a conventional

pipeline, the forwarding network with control logic has

to be modified. A conventional fixed pipeline depth

also makes it cumbersome to add datapath units and

utilize them efficiently: either the new unit is put in the

execute stage and can thereby only be used if the ALU

is not used; or a new pipeline stage is added, which

changes the architecture considerably; or the unit can

be added as a co-processor, which causes communica-

tion overheads.

A fully connected crossbar guarantees that the inter-

connect will not restrict the scheduling of operations on

the datapath units. This motivates its use in the explo-

rative phase of the design. As seen in Section 6, the full

connectivity may not be needed for a given application

domain; this provides an opportunity to reduce the area

and power requirements, once a suitable collection of

datapath units has been determined.

3.1 Multiplier Extension

For this study, the baseline FlexCore has been extended

with a multiplier in order to be able to efficiently ex-

ecute embedded application benchmarks, such as the

fast Fourier transform (FFT). The 32-bit multiplier,

which is pipelined into two stages to balance its critical

path to the other datapath units, is connected to the

interconnect that has been extended with two input

and two output ports. The two output ports deliver

operands to the multiplier, while the result is divided

into two 32-bit values. Each value is connected to an

input port of the interconnect. One of the ports carries

the 32 least significant bits of the result, while the other

port carries the 32 most significant bits of the result, as

shown in Fig. 4.

An N-ISA instruction for the extended FlexCore

consists of 108 bits. The multiplier has no control sig-

nals, since it is only capable of executing one operation.
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Figure 4 Illustration of a baseline FlexCore extended with a
multiplier. Note that each DATA Reg has a stall signal, while
RegA, RegB, LSB, and MSB have an enable signal which is not
shown.

The extension to the N-ISA is due to extra bits for

addressing the added ports in the interconnect, as well

as two enable signals for the LSB and MSB register that

is holding the result after a multiplication.

4 Compiling for FlexCore

The flexibility of architectures based on the Flex-

Core concept enables numerous compilation strategies.

Given the ability of a FlexCore to emulate a conven-

tional GPP, we chose as our initial approach to translate

GPP-like assembly instructions into N-ISA code. As

this work will show, the FlexCore can indeed emulate

a conventional five-stage pipeline in real time.

The translation of single GPP instructions to N-ISA

code is straightforward. We use the same datapath

structure as a five-stage pipeline, but the instruction

fetch stage is implicitly handled by the FlexCore control

unit. In other words, each instruction spans four cycles.

The first cycle uses the immediate port and the read

ports of the Register File. The second cycle uses the

ALU and RegA. The third cycle uses the Load/Store

Unit and RegB. Finally, the fourth cycle uses the

write port of the Register File. Sequences of such in-

structions are merged using static optimization tech-

niques (see Section 4.1 below) to achieve pipelining and

forwarding.

Obviously, making the FlexCore operate as a GPP

is not the best way to exploit this architecture. How-

ever, we chose to execute GPP programs on the Flex-

Core to establish a performance baseline. Even though

the FlexCore interconnect allows for communication

between any two units, GPP instructions use only

the paths corresponding to those found in the GPP.

Therefore, we aim to compile high-level code down to

N-ISA along the lines of other compilation methods for

general datapaths [7]. This enables the pipeline length

and structure to be changed as often as needed, and

allows for programs to use the datapath units in any

Figure 2.1: Illustration of a Flexcore Processor.

The datapath units used in FlexCore to provide full GPP programmability consist of a program counter
(PC), a load/store (LS), a register file (RF), an arithmetic and logic unit (ALU) and a multiplier (MULT) (see
Figure 2.1) to perform multiplication operation in one cycle. Two buffers are available to store or load data
for datapath units rather than RF or Memory to provide more efficiency [2].

2.3 Scheduling

In traditional GPPs, a fixed ISA provides a hardware/software interface that is same for all applications,
where an instruction proceeds through a set of pipeline stages over several clock cycles. Moreover each
instruction is always executed in the same way, regardless of prior and subsequent instructions. Allowing
data to flow through a datapath along all possible routes would require excessive amounts of logic circuits,
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and lead to an extremely complex processor design. A modern conventional ISA therefore imposes strict
limitations on how resources of a datapath implementing the ISA can be utilized.

The FlexCore processor removes the conventional fixed ISA to offer a more fine grained and greater con-
trol of the datapath resources. An advantage of FlexCore processor is that the FlexCore instructions control
the entire FlexCore datapath and resources. All these control signals require very powerful scheduling, since
the interaction between different instructions must be handled by the compiler. Another advantage is that the
ISA is not fixed, therefore it is easy to add new datapath units. It is important in some embedded system to
have the ability to add new datapath units [4]
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3
FlexCore RTN Instructions

3.1 Register Transfer Notation

A FlexCore machine or assembly instruction can be divided down into small effects, which are normally
called microinstructions. These microinstructions can be represented using a register transfer notation (RTN).
From the name RTN instruction, one can understand that it is actually the representation of movement of
data from one datapath register to another. To enable movements, all the registers of the processor must be
connected. Figure 2.1 shows that all the datapath units and the registers are connected.

All FlexCore datapath units are connected through an interconnect and controlled by the N-ISA control
word, see Sec 2.2. The length of the N-ISA control word is 91 bits for the baseline FlexCore configuration
in Figure 3.1 and the distribution of bits is as follows: interconnect 24 bits, PC 37 bits (of which 32 bits are
immediate), data buffers 2 bits, load/store 5 bits, ALU 5 bits, and register file 18 bits [2].

Interconnect  PC  D  LS  A Register

Figure 3.1: FlexCore N-ISA control world

9
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The switchbox for the baseline FlexCore configuration in Figure 3.1 is connected to datapath units
through data input ports, so the units receive input from the switchbox and also the data is coming from
output ports to reuse the calculated results. Also each data output port is connected to the data register file
so that FlexCore can act as a general purpose processor (GPP), where the data register will play the role of
pipeline registers.

3.2 Datapath Unit Attributes

There are three types of ports namely, control in ports, data input ports and data output ports. Each type of
port can be viewed according to each datapath unit.

3.2.1 Control in ports

PC unit handles immediate value (PCImm) and signal selects (PC_ImmSel). PC operations (pc_Ops) with
the possible operations are JumpSA, JumpSR,JumpDA, BEQZR BNEZR, BEQZA, BNEZA.

LS consists of Load/Store width (ls_width) and load/Store operation (ls_Op). The four types of widths are
LSW_1, LSW_2, LSW_3, LSW_4 and ls_Op consists of WRITE, READ, READU.

RF consists of two registers, where one contains the address to write and the other is a flag to enable write.

ALU operations (ALU_Op) consist of Add operator (AO_ADD, AO_ADDU), Subtract operator(AO_SUB,
AO_SUBU), And operator(AO_AND), OR operator(AO_OR), Xor operator(AO_XOR), Shift left log-
ical(AO_SLL), Shift right logical (AO_SRL), Shift right arithmetic (AO_SHR) and Set on less than
(AO_SLT)

MULT has no control in port.

3.2.2 Data input port

PC has PC_FB

LS consists of the address (LS_Address) and the data to be written (LS_Write).

RF has no input port.

ALU unit has two inputs (ALU_OpA, ALU_OpB) to perform ALU operation.

MULT unit also has two inputs (ALU_OpA, ALU_OpB) to perform the multiplication operation.

Buffers two buffers receive input as well (Buf1, Buf2).
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3.2.3 Data output port

PC gives the next current Immediate value on the output ports, or points the address to the next instruction.

LS gives the data on the output port (LS_Read), that is available for being read.

RF gives two outputs in the form of two data register (RegBank_Out1, RegBank_Out2).

ALU gives the result after performing its operation. (ALU_Rslt).

MULT gives two outputs that are least significant bits and most significant bits (MULT_LSW,MULT_MSW).

Buffers two buffers are available to read (Buf1_Read,Buf2_Read).

The control in port and data input port will be part of the RTN instruction and normally data output ports will
be the arguments of RTN instructions. 32 registers (R0 - R31) may also be parameters of instructions. Table
3.1 illustrates all three types of ports.

Table 3.1: All the possible ports of a FlexCore processor

Input Ports Output Ports

PCImm pc_FB pc_ImmPC

pc_ImmSel

pc_Ops

ls_Op ls_Address ls_Read

ls_Width ls_Write

Reg_Add_1 regbank_Out1

Reg_Add_2 regbank_Out2

write_Add

Write_Enable

ALUOp alu_OpA alu_Rslt

alu_OpB

mult_OpA mult_LSW

mult_OpB mult_MSW

Buf1 buf1_Read

Buf2 buf2_Read

ALU

MULT

Units Control in Ports
Data  

PC

LS

RF
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3.3 RTN Instructions

All the possible RTN instructions and their arguments are first described. The arguments of an instruction
may contain registers (R), any ports that we discussed above (P), ALU operation (A) and Integers (I). Table
3.2 shows all RTN instructions. Jump and branch can be handled from the PC unit, ALUOp handles all the
operations that are going to be performed in the ALU unit. For example ALUOp takes three arguments i.e.
(A P P) where A is the identifier of which ALU operation needs to be performed and the two P’s can be any
values in the form of ports or registers.

Table 3.2: All the possible Machine Instructions of RTN

Sections Instructions Arguments

PCImm   I

PCImm2 I

PCGetPC  

PCJumpSA I

PCJumpSR I

PCJumpDA P

PCBEQZR I,P

PCBNEZR I,P

PCBEQZA I,P

PCBNEZA I,P

RegRead1 R

RegRead2 R

RegWrite R,P

ALUOp A,P,P

ALU2Op A,P,P

AGUOp P,P

LSWrite L,P,P

LSRead L,P

LSReadU L,P

Buf1 P

Buf2 P

Mult P,P

MultRegWrit  

StallReg1

StallReg2

StallReg3

StallReg4

StallALU

StallLS

Stalls

Program Counter

Register bank

Arithmetic Logic Unit

Load/ Store

Buffers

Multiplexer  



3.4. COMPARISON BETWEEN MIPS AND FLEXCORE INSTRUCTIONS 13

3.4 Comparison between MIPS and Flexcore Instructions

In this section a comparison of MIPS instructions will be done with RTN instructions (see Table 3.3). Some
ALU instructions have two FlexCore RTN instructions against one MIPS instruction, where one instruction
is for Register and the other is for Integer. Therefore one add instruction has two RTN instructions, ALUr
and ALUi, both performing the add operation but the arguments differ.

Table 3.3: The Comparison between the MIPS and RTN Instructions.

Mips 

add ALUr AO_ADD / ALUi AO_ADD

addu ALUr AO_ADDU / ALUi AO_ADDU

addiu ALUr AO_ADDU / ALUi AO_ADDU

and ALUr AO_AND

andi ALUi AO_AND

b J

beq BrALUr NZ AO_SEQ

beqz Br Z

bgez BrALUr NZ AO_SLE Reg 

bgtz BrALUr NZ AO_SLT Reg 0

blez BrALUr NZ AO_SLE

bltz BrALUr NZ AO_SLT

bnez Br NZ

bne BrALUr NZ AO_SNE

j J JR

jr JR

jal JAL Reg 31

jalr JALR Reg 31

la ALUi AO_ADD

li ALUi AO_OR

lb Load LSW_1 Signed

lbu Load LSW_1 Unsigned

lh Load LSW_2 Signed

lhu Load LSW_2 Unsigned

lui ALUi AO_ADD d Reg 0

lw Load LSW_4 Signed

mflo MFLo

move ALUr AO_ADD d s Reg 0

mul Mult3

mult MultMIPS

Instructions

rtn
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Mips 

sb Store LSW_1

sh Store LSW_2

seq ALUr AO_SEQ / ALUi AO_SEQ

sll ALUr AO_SLL / ALUi AO_SLL

sne ALUi AO_SNE / ALUr AO_SNE

sra ALUi AO_SHR / ALUr AO_SHR

srl ALUi AO_SRL / ALUr AO_SRL

slt ALUi AO_SLT / ALUr AO_SLT

sltu ALUi AO_SLT / ALUr AO_SLT

sub ALUi AO_SUB / ALUr AO_SUB

subu ALUi AO_SUBU / ALUr AO_SUBU

sw Store LSW_4

xor ALUr AO_XOR

xori ALUi AO_XOR

neg ALUr AO_SUB d Reg 0

nop UserNOP ""

nor ALUr AO_NOR

or ALUr AO_OR

ori ALUi AO_OR

Instructions

rtn

3.5 Example

This section demonstrates how scheduling is performed on a MIPS and on a FlexCore. For the example
shown in Figure 3.2 MIPS requires six cycles, but FlexCore requires only four cycles. The three instructions
(see Figure 3.2) can also be scheduled on FlexCore (see Figure 3.3b).

1. The latency of instructions is three cycles instead of four.

2. The add operations are performed in 2 cycles.

3. Register $1 is only going to be written once, and the write port is available for instructions

4. The effect of the load word instruction is zero, so there is no need to calculate a new address [2].
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instructions operate on the same register value, it is
clear that the second instruction will overwrite the
result of the first. If forwarding is used to pass the
value from the first to the second instructions the value
produced by the first instruction does not need to be
written to the register file. With the granularity of GPP
instructions, only dynamic hardware schemes can re-
move such redundant writes. With FlexSoC, each write
is exposed and we can statically decided whether to
write the result or not.

4.2.4 Instruction Parallelism

Even though the instruction stream in RISC code is
sequential, the execution of the operations does not
have to be linear as long as the result is as if the instruc-
tion were executed sequentially. The amount of instruc-
tion level parallelism (ILP) available in the program
as well as the hardware resources available both limit
the amount of parallelism that can be exploited. With
the finer control possible with FlexSoC, we are able to
find more opportunities to perform various operations
in parallel. Also, if there is a bottleneck, the flexible
interconnect will make it easy to add more resources
which the compiler can utilize.

4.2.5 Example Schedule

To illustrate the different scheduling optimizations that
can be done for the FlexCore datapaths we will con-
sider the three GPP assembly instructions shown in
Fig. 5.

In a conventional five-stage pipeline the instructions
could be scheduled as shown in Fig. 6a. The instructions
are scheduled one after the other, each with a latency of
four cycles. The load-word (LW) instruction is indepen-
dent of the other two instructions and could have been
scheduled earlier. However, the total number of cycles
to execute the three instructions would not be affected.

The schedule of the three instructions in Fig. 5 for
the FlexCore datapath is shown in Fig. 6b. One can
directly notice that the schedule for the FlexCore data-
path is only four cycles, instead of six as for the GPP
schedule. This is achieved by applying the scheduling
optimizations described above: (1) Each instruction has
a latency of three instead of the conventional four. (2)
Forwarding is not explicitly shown in the schedules but

Figure 5 Example of three
consecutive GPP assembly
instructions.

ADD $1, $3, 16
ADD $1, $5, $1
LW $3, 0($9)

1:  Read $3 & IM16
2: Read $1 & $5 ADD
3: Read $0 & $9 ADD NOP
4: ADD NOP Write $1
5: LW Write $1
6: Write $3

ID EX MEM WB

1: $3, IM16, & $9
2: Read $5 ADD LW
3: ADD Write $3
4: Write $1

ID EX MEM WB

a  GPP Schedule

b  FlexCore Schedule

Figure 6 Instruction scheduling on a GPP and FlexCore
datapath.

are performed statically to transfer the result of the
ADD in cycle 2 to the ADD in cycle 3. (3) Register $1
is only written once, thus the write-port of the register
file can be used by another instruction. (4) Since the
load-word instruction has an address-offset of zero, it
is unnecessary to compute a new address from which
to make the load from. This together with the available
write-port of the register file allows the load-word in-
struction to be scheduled in parallel with the first ADD
instruction.

5 Experimental Framework

To evaluate the performance of FlexCore, four dif-
ferent benchmarks from the Embedded Microproces-
sor Benchmark Consortium (EEMBC) were selected.
The four benchmarks are the Fast Fourier Transform
(FFT), Autocorrelation (Autocor) and Viterbi De-
coder (Viterbi) from the Telecom benchmark suite and
the High Pass Grey-Scale (RGBHPG) filter from the
Consumer benchmark suite. All selected benchmarks
were executed to completion and the result presented
excludes code belonging to the test-harness.

To distinguish between the performance gains
achieved by an exposed datapath and the flexible inter-
connect, a FlexCore with only the interconnects present
in a conventional GPP pipeline has also been simulated;
it is identified as “Exposed GPP” in the tables.

We chose MIPS as the ISA for the GPP pipeline,
since it is supported by mature free-ware tools and
cross-compilers. Each of the benchmarks was compiled
using a cross-compiler to MIPS assembly with the
default optimization flags for EEMBC (-O2). The

Figure 3.2: Example of three consecutive GPP assembly instructions

instructions operate on the same register value, it is

instructions, only dynamic hardware schemes can re-

Even though the instruction stream in RISC code is

sequential, the execution of the operations does not

instruc-

tion were executed sequentially. The amount of instruc-

1:  Read $3 & IM16

2: Read $1 & $5 ADD

3: Read $0 & $9 ADD NOP

4: ADD NOP Write $1

5: LW Write $1

6: Write $3

ID EX MEM WB

1: $3, IM16, & $9

2: Read $5 ADD LW

3: ADD Write $3

4: Write $1

ID EX MEM WB

a  GPP Schedule

b  FlexCore Schedule

Figure 3.3: Instruction scheduling on a GPP and FlexCore datapath
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4
Microcode Optimization

4.1 Problem Statement

Before going into the problem description, let’s make a quick review of the FlexCore machine instructions
which are also known as RTN instructions discussed in the previous chapter. Unlike MIPS and SPARC
instructions, RTN have multiple effects per line, due to the architecture of FlexCore, with multiple datapath
units. Therefore, FlexCore is capable of simultaneously executing these effects, as seen in Figure 4.1, which
shows a basic block of RTN instructions.

main:

1 rtn [[PCImm -24]]

2 rtn [[Buf1 PC_ImmPC, RegRead2 R29, PCImm 18]]

3 rtn [[PCImm 20, RegWrite R4 PC_ImmPC, ALUOp AO_ADDU Regbank_Out2 Buf1_Read]]

4 rtn [[RegRead1 R31, ALUOp AO_ADD Alu_Rslt PC_ImmPC, PCJumpSA putInt, PCGetPC]]

5 rtn [[RegWrite R29 Alu_Rslt, PCJumpDA Ls_Read]]

6 rtn [[RegWrite R31 Buf1_Read]]

Figure 4.1: Basic block of FlexCore instructions.

17
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In the first line of the basic block there is only a read instruction, while the second line has two read
instructions. The third line contains read, execute and write instructions and at this stage the system is fully
exposed. On the fourth line the system is still fully exposed, while the fifth line only contains execute and
write instructions. The sixth line only has a write instruction. For a better explanation we can arrange the
instructions according to their major types (see Figure 4.2).

main:

[[PCImm -24]]

[[Buf1 PC_ImmPC, RegRead2 R29, PCImm 18]]

[[PCImm 20, RegWrite R4 PC_ImmPC, ALUOp AO_ADDU Regbank_Out2 Buf1_Read]]

[[RegRead1 R31, ALUOp AO_ADD Alu_Rslt PC_ImmPC, PCJumpSA putInt, PCGetPC]]

[[RegWrite R29 Alu_Rslt, PCJumpDA Ls_Read]]

1

2

3

4

5

6 [[RegWrite R31 Buf1_Read]]

Figure 4.2: Basic block of FlexCore instructions.

After analysing this RTN basic block, one can notice that the first two lines and the last two lines of a
basic block of RTN are not fully exposed. If two consecutive basic blocks are executed one after another, the
situation illustrated in Figure 4.3 appears.

[[PCImm -24]]

[[Buf1 PC_ImmPC, RegRead2 R29, PCImm 18]]

[[PCImm 20, RegWrite R4 PC_ImmPC, ALUOp AO_ADDU Regbank_Out2 Buf1_Read]]

[[RegRead1 R31, ALUOp AO_ADD Alu_Rslt PC_ImmPC, PCJumpSA putInt, PCGetPC]]

[[RegWrite R29 Alu_Rslt, R16 Buf1_Read PCJumpSA $L2]]

[[RegWrite R31 Buf1_Read]]

[[RegRead2 R29, PCImm 20]]

[[RegRead2 R29, ALUOp AO_ADD Regbank_Out2 PC_ImmPC]]

[[PCImm 20, RegWrite R4 PC_ImmPC, ALUOp AO_ADDU Regbank_Out2 Buf1_Read]]

[[RegRead2 R29, RegRead1 R0, PCImm 24, ALUOp AO_ADD Regbank_Out2 PC_ImmPC]]

[[RegWrite R0 Alu_Rslt, PCJumpDA Ls_Read]]

[[RegWrite R31 Buf1_Read]]

main:

$L2:

VLSI Research Group 1

Figure 4.3: Two consecutive basic blocks
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By arranging the instructions according to their major types, one can notice that there is a delay of two
slots. This occurs every time when there is a transition from one basic block to another basic block. Therefore
an optimization must be performed in such a way that there is a minimum number of delay slots, so that the
system can be fully exposed as much as possible [5].

4.2 Proposed Solution

Whenever the control is transferred from one basic block to another, there are always two delay slots. A
possible solution could following: Assume there are two RTN basic block A and B, where one is executing
after another, or in other words the control is going to transfer from basic block A to basic block B (see
Figure 4.4). Then we can try to move the first two lines of block B to the end of block A. By performing this

Microcode Optimization in FlexCore Compiler 

Introduction 
Block A Block B 

Then we can try to move the 1st two lines  
of block B into the end of block A 

VLSI Research Group 1 

we have two blocks(A,B). B is executing after A 

Figure 4.4: Graphical representation of basic blocks

optimization, the system will be fully exposed at the end of block A as well as at the beginning of block B.
We also know that the sequence of occurrence of two basic blocks is not always the sequence of execution
between two basic blocks.

Consider Figure 4.5, where block 2 is also executing after block 3 and from block 2 we can go to block
4 as well. To perform the optimization we need extensive information about the control flow, such as which
block can execute after the current block, as well as the type of control transfer, which can be either a branch,
jump, or a simple fall through. We also need to discover loops, including which block is the header of the
loop and which one is a backedge within a function and also to notice if the function contains nested loops.
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Microcode Optimization in FlexCore Compiler 

Basic blocks 

VLSI Research Group 1 
Figure 4.5: Control flow of basic blocks

4.3 Framework

To be able to perform the optimization, we need to collect all the information from the control flow of basic
blocks to the information of individual instructions. This is done in order to be well informed about what
are the types of instructions, including which registers are used and which are set. An extensive analysis
is required for writing code to gain all this information. An alternative is that we can use available frame-
works that could help us to collect all the information, then we can spend our energy on formulating the
optimization.

In this study David Whalley’s framework is chosen to collect all the necessary information we need [6].
It is developed for SPARC assembly language, written in C and it has ability to read SPARC instruction files.
This framework gathers all the information, not only the control flow of basic blocks, meaning the sequence
of blocks, but also detailed information of each instruction, like what is the type of instruction and which
variables or registers are used or set in this instruction.

This framework provides flexibility within the instructions to parse any instruction. The framework can
change variable, register or constant values, and can even delete instruction(s) as well. It can also create
new instructions and insert an instruction at the desired position. In order for the framework to process RTN
instructions, we accomplished a number of transformation within the framework. Some major changes are:

1. The first challenge is to modify the framework to read RTN instructions. We modified the framework
so it can read RTN instructions line by line and can write them out after optimization.

2. We can identify the name of a function and also when a function/block starts and when it ends. Also,
we can identify the sequence of occurrence as well as the sequence of execution of blocks.

3. We read each instruction line and gather the control flow of basic blocks. Either a block ends with fall
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through or the block has a jump or a branch at the end (see Figure 4.6). This information is more
difficult to track, because RTN has multiple instructions per line.

4. We track instruction lines within the basic block. Doing this can give information on the next and
previous line and can also give the first and last line of a basic block in order to traverse within a
function.

5. We parse each effect within an instruction line. A single line can have multiple effects, and all the
effects differ from SPARC instructions.

6. We gather detail information on an effect, which includes the type of effect, which registers are set and
which registers are used.

7. We parse the effects and are able to create multiple effects per instruction line.

4.4 Control Flow Information

The framework provides the control flow graph of basic blocks of RTN instructions. We not only have
the information of the next and previous blocks from the current block, but we also have information on
predecessor and successor blocks. We are maintaining two flows of basic blocks at a same time.

One is the order of their occurrence and the other
is the order of their execution by predecessor and
successor blocks. The first order is used to dump
the blocks in a file according to their appearance.
The second order is actually used to set up the
control flow graph. A control flow graph exam-
ple is given in Figure 4.6 . In this example, block
1 has a branch to block 3 or has a fall through
to block 2, which has a fall through to block 3.
Block 3 has a jump to block 8, while block 8 has
a branch to block 4 or fall through to block 9.
Block 4 has a branch to block 6 or fall through to
block 5. Block 5 has a jump to block 7 and block
6 has a fall through to block 7. Block 7 has a fall
through to block 8. Here we detect a backedge
from block 7 to block 8, which means that we
have a loop and that block 8 is a loop header.
Now we have a clear picture of the control flow
of basic blocks.

Microcode Optimization in FlexCore Compiler

Control Flow 

Information

F

B

F

BFInformation

VLSI Research Group 10

J

B: Branch
F: Fall through
J: Jump

F

F

B
FJ

Figure 4.6: Detailed Control flow of basic blocks



22 CHAPTER 4. MICROCODE OPTIMIZATION

4.5 Instructions Information

Unlike the MIPS or SPARC machine instructions, RTN instructions have effects per line, which is because
of the FlexCore architecture, that can execute multiple effects per cycle. The framework parses the machine
instruction and sets up the flow of instruction lines, gathers information about which line is first and which
one is last, and saves the initialization point of traversing within a block. The framework also provides the
information on which line is predecessor and which one is successor from the current line, which helps to
traverse from one instruction line to another. Figure 4.7 depicts an example. Within a basic block, the

Microcode Optimization in FlexCore Compiler 

Instructions Info 

VLSI Research Group 1 

$L2: 

 

 rtn [[RegRead2 R16, RegRead1 R18]] 

 

 rtn [[Buf1 Regbank_Out2, RegRead2 R17, RegRead1 R19,  

      ALUOp AO_ADDU Regbank_Out2 Regbank_Out1]] 

 

 rtn [[Buf1 Alu_Rslt, RegWrite R18 Buf1_Read, ALUOp AO_SLT 

    Regbank_Out2 Regbank_Out1]] 

 

 rtn [[Buf2 Alu_Rslt, RegWrite R16 Buf1_Read, PCBNEZA $L3 

    Alu_Rslt]] 

 

 rtn [[RegWrite R3 Buf2_Read]] 

 

 rtn [[]] 

1st line 

Last line 

Cur line 

Next line 

Prev line 

Branch Inst 

1st Inst Last Inst 

Figure 4.7: Detailed information of Instruction lines and Instructions

framework can identify the label of a basic block, each instruction line, and within instruction can identify
each effect and can traverse within a line. The framework can also provide detailed information of each effect
like registers uses and sets and also the type of effect. In the above example we can see in the second line,
the last effect type is ALU and in the fourth line the type of the last effect is a branch.

4.6 Information That the Framework Provides

The framework provides extensive information to analyse basic blocks and helps performing the optimiza-
tion. This information doesn’t impact the output, because it is just an extra information in the form of
comments by using # sign. An example is given in Figure 4.8. The framework shows the loops within a
function, if they exist. It also shows the loop header and the blocks that comprise the loops. In the example
we have a loop, its header is block 3 and blocks comprising the loop are block 3 and 4. The framework
assigns a unique number to identify each block (for the block in the example, the framework assigns the
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Microcode Optimization in FlexCore Compiler 

Framework 
# loops in function 

#   loop: head = 3 

#         blocks = 3 4 

. 

. 

. 

# block 4 

# preds: 3 

# succs: 5 3 

#  doms: 1 2 3 4 

#   ins=R2:R3:R4:R31: 

#  outs=R2:R3:R4:R16:R17:R18:R19:R31:# 

 

$L2: 

 rtn [[RegRead2 R16, RegRead1 R18]] 

 rtn [[Buf1 Regbank_Out2, RegRead2 R17, RegRead1 R19, ALUOp AO_ADDU Regbank_Out2  

    Regbank_Out1]] 

 rtn [[Buf1 Alu_Rslt, RegWrite R18 Buf1_Read, ALUOp AO_SLT Regbank_Out2 Regbank_Out1]] 

 rtn [[Buf2 Alu_Rslt, RegWrite R16 Buf1_Read, PCBNEZA $L3 Alu_Rslt]] 

 rtn [[RegWrite R3 Buf2_Read]]   

 rtn [[]] 

 . 

 . 

 . 

Fibonacci 

VLSI Research Group 1 
Figure 4.8: The information of RTN Instructions that the Framework is providing.

number 4 ) also which block(s) are predecessor (preds: 3) and which block(s) are successors (succs: 5 3).
The framework provides information about dominating blocks, that is which blocks(s) are dominating the
current block (doms: 1 2 3 4), this information is used to detect loops and live registers and variables. A
number of live registers enter this block from its predecessor (ins = R2:R3:R4:R31) and a number of live
registers leave this block to its successors (outs = R2:R3:R4:R16:R17:R18:R19:R31).

4.7 Cases

A basic block other than the last block of a function will end with one of the following cases.

i. Fall through

ii. Jump Instruction

iii. Branch Instruction

To be able to implement optimization, a detailed analysis is required on all the cases. Let’s assess each
case with respect to the possibilities of optimization for each individual case.
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i. Fall through

The simplest case is fall through, which can be
described as if there are two consecutive basic
blocks and one executing after another. Figure
4.9 shows an example of fall through.
Here we have two consecutive basic blocks (1 &
2). Block 2 is executing after the execution of
block 1, so there is a fall through from block 1
to block 2. In this case we can try to move the
first two lines of block 2 to the end of block 1, so
that the system can be fully exposed at the end of
block 1 as well as at the beginning of block 2.

Microcode Optimization in FlexCore Compiler 

i.    Fall through 

 

   

     

VLSI Research Group 1 

We have Fall through from 1 

– to – 2  

 

We try to move 1st two lines 

of block 2 into block 1 

Figure 4.9: Fall through example.

ii. Jump Instruction

When a basic block ends with a jump instruc-
tion, then this block has an unconditional jump
to another block. For example see Figure 4.10.
Block 5 contains an unconditional jump and the
jump instruction is from block 5 to block 2. We
can move the first line of block 2 to the end of
block 5. But one can notice that block 2 has ac-
tually two entry points which are from block 1
and from block 5. To be able to delete the first
line of block 2 and move it to the end of block
5, we have to check if we can also move the first
line of block 2 to the end of block 1. If it’s feasi-
ble then we can try to move the first line of block
2 to the end of block 5 as well as block 1 and then
we can be able to delete the first line of block 2.
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ii. Jump Instruction 

 

   

     

VLSI Research Group 1 

We have Jump Instruction  

on 5 – to – 2  

 

 

   

     

We try to move 1st line 

of block 2 into block 1 & 

5 

Figure 4.10: Jump case example.
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iii. Branch Instruction

If a basic block contains a branch instruction then
we have a branch at the end of the current block
and we must have two successors of the current
block. One will be a fall through if the condition
is false and the other will be a target. An example
is given in Figure 4.11. Here we have a branch
instruction at the end of block 3 and block 4 is a
fall through and block 5 is the target. Branches
are the most difficult case to optimize [7]. For
this reason one tries to determine which succes-
sor block has more probability to be executed, so
that one can try to optimize that one. In the cur-
rent example, let’s say block 4 is within a loop.
This means that block 4 will probably execute
more often as compared to block 5. So we can
try to move the first line of block 4 to the end of
block 3 and then delete the first line of block 4
and leave the block 5 as it is.
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Figure 4.11: Loop case example.

iv. Loops

Like other machine instructions, RTN also has
loops within functions. So if there is a backedge
then there is a loop. An example of loop is given
in Figure 4.12 In this example block 4 has a
branch to block 3 and block 3 has a fall through
to block 4. So block 3 is a loop header and also
loop entry point. So we can try to move the first
line of block 3 to the end of block 4, but again
block 3 has two entry points, so we have to as-
sure that we can also be able to move the first
line of block 3 to the end of block 1. Using this
assumption, we can try to move the first line of
block 3 to the end of block 4 as well as block 1
and afterwards we are able to delete the first line
of block 3.
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Figure 4.12: Branch case example.
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4.8 Cases Priorities

We reviewed all four cases, now we see which
case has priority over another. Loops have the
most priority over all the other cases, as a loop
will be executed the most as compared to others.
So first we will perform optimization on loops
and then, after that, the remaining cases will be
optimized. As there is no contradiction between
the remaining cases all these have the same pri-
ority. Figure 4.13 illustrates an example.
In this situation, we have a loop comprising
block 4 and block 5, so first we try to optimize
this loop and after that we can optimize the re-
maining cases. We can see in the example that
the remaining cases have no conflicts with each
other and can be optimized normally.

Microcode Optimization in FlexCore Compiler 

Cases Priorities  
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Figure 4.13: Cases Priorities example.

4.9 Before and After Optimization

We examine a portion of a function to see how the code appears before and after the optimization. The au-
tocorrelation (autcor00) of EEMBC is used as example [10]. Figure 4.14 shows the code before performing
the optimization. Figure 4.15 shows the code after the optimization. Here block $_6 has a branch to block
$L7 and a fall through to block $_7. Block $L7 has a transfer of control instruction in the first line that is, a
jump instruction. Since no more than one transfer of control is allowed in a single block, so we cannot move
block $L7’s first line. But we can move the first line of block $_7 to the end of block $_6. Now, since block
$_7 has only one entry point, we can delete the first line of block $_7. since block $_7 has a fall through to
block $_21, we can move the first two lines of block $_21 to the end of block $_7, as the instructions of the
source lines are not conflicting with the instructions of the destination lines. We cannot move any lines to
the end of block $_21 because the successor (block $L7) is not satisfied by their entire predecessor (i.e block
$_6 and $_21).
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Implementation 

$_6: 

 rtn [[RegRead1 R18, PCImm 144]] 

 rtn [[ALUOp AO_ADD Regbank_Out1 PC_ImmPC]] 

 rtn [[RegRead2 R0, LSRead LSW_4 Alu_Rslt]] 

 rtn [[PCImm %toHi(%hi(input_buf)), ALUOp AO_SEQ Ls_Read Regbank_Out2]] 

 rtn [[Buf1 PC_ImmPC, PCBNEZA $L7 Alu_Rslt]] 

 rtn [[RegWrite R2 Buf1_Read]] 

$_7: 

 rtn [[PCImm 9]] 

 rtn [[PCImm input_buf, RegWrite R17 PC_ImmPC]] 

 rtn [[RegRead1 R0, RegWrite R20 PC_ImmPC]] 

 rtn [[PCImm input_buf, RegWrite R16 Regbank_Out1]] 

 rtn [[RegWrite R4 PC_ImmPC]] 

$_21: 

 rtn [[RegRead2 R19]] 

 rtn [[PCImm 500, RegWrite R7 Regbank_Out2]] 

 rtn [[RegRead2 R29, RegRead1 R21, PCImm 16, RegWrite R6 PC_ImmPC]] 

 rtn [[RegRead1 R17, RegWrite R5 Regbank_Out1, ALUOp AO_ADD Regbank_Out2 PC_ImmPC]] 

 rtn [[RegWrite R31 PC_ImmPC, LSWrite LSW_4 Alu_Rslt Regbank_Out1]] 

 rtn       [[]] 

$L7: 

 rtn [[PCJumpSA th_signal_finished, PCGetPC]] 

 rtn [[RegWrite R31 PC_ImmPC]] 

 rtn       [[]] 

Benchmark  eembc-autcor00,  Before optimization 
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Figure 4.14: A portion of autocor00 benchmark, Before optimization
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Implementation 

$_6: 

 rtn [[RegRead1 R18, PCImm 144]] 

 rtn [[ALUOp AO_ADD Regbank_Out1 PC_ImmPC]] 

 rtn [[RegRead2 R0, LSRead LSW_4 Alu_Rslt]] 

 rtn [[PCImm %toHi(%hi(input_buf)), ALUOp AO_SEQ Ls_Read Regbank_Out2]] 

 rtn [[Buf1 PC_ImmPC, PCBNEZA $L7 Alu_Rslt]] 

 rtn [[RegWrite R2 Buf1_Read, PCImm 9]] 

$_7: 

 rtn [[PCImm 9]] 

 rtn [[PCImm input_buf, RegWrite R17 PC_ImmPC]] 

 rtn [[RegRead1 R0, RegWrite R20 PC_ImmPC]] 

 rtn [[PCImm input_buf, RegWrite R16 Regbank_Out1, RegRead2 R19]] 

 rtn [[RegWrite R4 PC_ImmPC, PCImm 500, RegWrite R7 Regbank_Out2]] 

$_21: 

 rtn [[RegRead2 R19]] 

 rtn [[PCImm 500, RegWrite R7 Regbank_Out2]] 

 rtn [[RegRead2 R29, RegRead1 R21, PCImm 16, RegWrite R6 PC_ImmPC]] 

 rtn [[RegRead1 R17, RegWrite R5 Regbank_Out1, ALUOp AO_ADD Regbank_Out2 PC_ImmPC]] 

 rtn [[RegWrite R31 PC_ImmPC, LSWrite LSW_4 Alu_Rslt Regbank_Out1]] 

 rtn       [[]] 

$L7: 

 rtn [[PCJumpSA th_signal_finished, PCGetPC]] 

 rtn [[RegWrite R31 PC_ImmPC]] 

 rtn       [[]] 

Benchmark  eembc-autcor00,  After optimization 
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Figure 4.15: A portion of autocor00 benchmark, After optimization
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4.10 Redundant Instructions after Optimization

After performing the filling delay slots optimization, we noticed that some blocks now have redundant regis-
ter transfer instructions. This is because at the end of block we write the calculated value in a register to be
fetched later and in successor block we are reading that particular register. Moving such lines to the end of
predecessor block can actually create redundant register transfer instructions. So in one instruction line we
are writing a register and then reading the same register, see the example code in Figure 4.16.

Microcode Optimization in FlexCore Compiler 

$_1: 

 rtn [[RegRead1 R4]] 

 rtn [[RegRead1 R0, RegWrite R15 Regbank_Out1]] 

 rtn [[RegWrite R14 Regbank_Out1]] 

$L6: 

 rtn [[RegRead2 R14, RegRead1 R6]] 

 rtn [[RegRead1 R0, ALUOp AO_SUBU Regbank_Out1 Regbank_Out2]] 

 rtn [[RegWrite R12 Alu_Rslt, ALUOp AO_SLE Alu_Rslt Regbank_Out1]] 

 rtn [[RegRead1 R0, PCBNEZA $L11 Alu_Rslt]] 

 rtn [[RegWrite R11 Regbank_Out1]] 

 rtn [[]] 
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$_1: 

 rtn [[RegRead1 R4]] 

 rtn [[RegRead1 R0, RegWrite R15 Regbank_Out1]] 

 rtn [[RegWrite R14 Regbank_Out1, RegRead2 R14, RegRead1 R6]] 

$L6: 

 rtn [[RegRead1 R0, ALUOp AO_SUBU Regbank_Out1 Regbank_Out2]] 

 rtn [[RegWrite R12 Alu_Rslt, ALUOp AO_SLE Alu_Rslt Regbank_Out1]] 

 rtn [[RegRead1 R0, PCBNEZA $L11 Alu_Rslt]] 

 rtn [[RegWrite R11 Regbank_Out1]] 

 rtn [[]] 
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(a) Portion of Benchmark autcor00, before optimization   

(b) Portion of Benchmark autcor00, after optimization   

Figure 4.16: Before and after optimization of portion of benchmark autcor00.

Figure 4.16a shows a portion of code before optimization, while Figure 4.16b shows the code after
optimization. In the last line of block $_1, we are first writing to register R14 and then we are reading the
same register R14 which makes it redundant. A proposed solution is that we can delete the write and read
instruction of a register, if the register is completely dead in the block [8]. A heuristic search is required to
find out if the register is really dead or not. If so, then it’s allowed to delete both instructions. Otherwise
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we leave them as they are, because it will give wrong output if deleted, as the register will be used later and
reading that register will get wrong value.

Here is a demonstration of elimination of the register transfers instructions that are becoming redundant
after optimization. Figure 4.16b shows a portion of code which has redundant instructions that came into
being after the delay slot optimization. In the last line of block $_1,register R14 is reading and writing in
one instruction line. So we have to check if it is completely dead in the successor block. After analyzing the
successor block $L6, it is found that register is not used again in block $L6, which indicates that this register
is really dead. Deleting read and writes instruction of this register will not affect the output. Figure 4.18
shows the code after deleting these instructions.

Microcode Optimization in FlexCore Compiler 

$_1: 

 rtn [[RegRead1 R4]] 

 rtn [[RegRead1 R0, RegWrite R15 Regbank_Out1]] 

 rtn [[RegWrite R14 Regbank_Out1]] 

$L6: 

 rtn [[RegRead2 R14, RegRead1 R6]] 

 rtn [[RegRead1 R0, ALUOp AO_SUBU Regbank_Out1 Regbank_Out2]] 

 rtn [[RegWrite R12 Alu_Rslt, ALUOp AO_SLE Alu_Rslt Regbank_Out1]] 

 rtn [[RegRead1 R0, PCBNEZA $L11 Alu_Rslt]] 

 rtn [[RegWrite R11 Regbank_Out1]] 

 rtn [[]] 
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$_1: 

 rtn [[RegRead1 R4]] 

 rtn [[RegRead1 R0, RegWrite R15 Regbank_Out1]] 

 rtn [[RegRead1 R6]] 

$L6: 

 rtn [[RegRead1 R0, ALUOp AO_SUBU Regbank_Out1 Regbank_Out2]] 

 rtn [[RegWrite R12 Alu_Rslt, ALUOp AO_SLE Alu_Rslt Regbank_Out1]] 

 rtn [[RegRead1 R0, PCBNEZA $L11 Alu_Rslt]] 

 rtn [[RegWrite R11 Regbank_Out1]] 

 rtn [[]] 
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(a) Portion of Benchmark autcor00, before optimization   

(b) Portion of Benchmark autcor00, after optimization   Figure 4.17: Portion of code after elimination of redundant instructions.

4.11 Optimizers Output

The optimizer provide a detail information of a input file in the form of optimizers output that shows these
information:

• List of Functions in the file.

• Number of instructions in each function.

• Number of optimization performed by fill delay slots phase.

• Number of optimization is performed by redundant instructions elimination phase.

• Total number of optimization performed.

Figure 4.18 shows the output of the optimizer.
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-bash-3.2$ ./optkk <heap> heap.rtn 

function     level instructions memory refs 

------------ ----- ------------ ----------- 

heap_initize total           19           0 

heap_alloc   total          108           0 

                 0           97           0 

                 1           11           0 

heap_free    total          134           0 

mem_heap_ine total           14           0 

i_free       total            5           0 

th_free_x    total            5           0 

i_malloc     total           43           0 

th_malloc_x  total            4           0 

------------ ----- ------------ ----------- 

program      total          332           0 

                 0          321           0 

                 1           11           0 

 

 42 transformations applied by fill delay slots phase. 

  1 transformations applied by redundant instructions elimination 

phase. 

--- 

 43 transformations applied by all optimization phases. 

 
Figure 4.18: Optimizers output after optimization of a file heap.rtn



5
Simulation and Performance Results

5.1 FlexSoC Framework

In order to compile C code on the FlexCore processor, the FlexSoC framework is used. The FlexSoC frame-
work is very extensive and, for example, includes a compiler and a simulator for the FlexCore processor
shown in Figure 5.1.

• Compiler: To compile C code on FlexCore processor, C code is first converted into the MIPS instruc-
tion which is produced by a MIPS cross-compiler. Next, the compiler compiles the MIPS instructions
into FlexCore RTN instructions. The output of the compiler thus will be RTN instruction code. These
RTN format instructions are used to develop the necessary parallelism of the FlexCore processor.

• Simulation: The FlexCore simulator is implemented in Python. The simulator executes FlexCore
instructions and helps to trace bugs in the compiler and measure its performance. The simulator is
capable of giving simulation cycle count, profiling and simulation trace statistics, run time and average
time of execution of a cycle [9]. After executing FlexCore instructions the simulator generates binary
data codes, which are used to analyze processor’s performance. The simulator can also be configured
to a MIPS processor to imitate a GPP. An example of simulator output is shown in Figure 5.2, when
benchmark autcor00 is simulated.
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Figure 5.1: FlexSoC framework before and after the optimizer
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RUN 

Benchmark: eembc-autcor00 

Started @ 2012-06-16 12:08:32.852978 

Finished @ 2012-06-16 12:11:31.260984 

Total execution time: 0:02:58.408006 

Average ms/cyc: 1.341091 

 

PROFILING STATS 

+ Event: main end @ cycle #133032 

 

BENCHMARK OUTPUT 

>>------------------------------------------------------------ 

>> EEMBC Component          : EEMBC Portable Test Harness V4.000 

>> EEMBC Member Company     : EEMBC 

>> Target Processor         : PC-32bit-X86 

>> Target Platform          : PC-Win32 

>> Target Timer Available   : YES 

>> Target Timer Intrusive   : YES 

>> Target Timer Rate        : 0x000003e8 

>> Target Timer Granularity : 0x0000000a 

>> Recommended Iterations   : 0x00000001 

>> Bench Mark               : Autocorrelation Bench Mark V1.0E0 

--  Non-Intrusive CRC = 0x0000981bx 

--  Iterations        = 0x00000001u 

--  Target Duration   = 0x00000000u 

--  v1                = 0x00000000 

--  v2                = 0x00000000 

--  v3                = 0x00000000 

--  v4                = 0x00000000 

>> DONE! 

>> BM: Autocorrelation Bench Mark V1.0E0 

>> ID: TEL autcor00    

Figure 5.2: Simulator output after simulated benchmark autcor00

5.2 Benchmark

EEMBC [10] is used to observe the increased performance after performing the optimization. The bench-
mark is divided into 3 main suites. The automotive suite consists of finite and infinite impulse response (FIR,
IIR) and finite impulse response (FFT) filters. The consumer suite consists of JPEG compression and decom-
pression RGB to CMYK, and RGB to YIQ converter (RGBCMY, RGBHPG, RGBYIQ) while the telecom
suite consists of autocorrelation (AUTCOR, CONVEN) and Viterbi decoder (VITERB).

Because of the restrictions of the FlexCore processor we cannot use all the benchmarks, as the processor
only supports integers. Furthermore, no floating point support is available yet and also division is not yet
included in the FlexCore processor.
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5.3 Number of Optimizations Performed

After selecting the benchmarks that are appropriate for the FlexCore processor, we are able to perform more
than one hundred fifty number of optimizations on each benchmark see Table 5.1. The least number of
optimizations are 153 on rgbhpg & rgbyiq and most number of optimizations are 202 on fft.

Table 5.1: The number of optimization performed on each benchmark

Microcode Optimization in FlexCore Compiler

Benchmarks
# of Opt. 

Performed

1 autcor00 169

Simulation/Results

200

250

The Embedded Microprocessor Benchmark Consortium (EEMBC) is used

2 conven00 167

3 Fft00 202

4 rgbcmy01 178

5 rgbhpg01 153

6 rgbyiq01 153

7 viterb00 176
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5.4 Code Size Reduction

Table 5.2 describes the number of code lines after performing optimization on each benchmark. More than
one hundred code lines are reduced on each benchmark. The FFT is the benchmark that has the most number
of reduced code lines, that are 164 code lines and in general we reduced 135 code lines after performing the
optimization.

Table 5.2: The code size before and after optimization

Microcode Optimization in FlexCore Compiler

BenchMarks
Code

Before After

1 autcor00 1727 1593

2 conven00 1770 1636

Simulation/Results

1500

2000

2500

The Embedded Microprocessor Benchmark Consortium (EEMBC) is used

3 Fft00 2074 1910

4 rgbcmy01 1813 1691

5 rgbhpg01 1648 1528

6 rgbyiq01 1648 1529

7 viterb00 1934 1797

Average 1802 1669
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5.5 Execution Time Reduction

As Table 5.3 illustrates, the optimization significantly reduces the execution time of each benchmark. FFT

has the least number of reduced cycles. FFT has 9.82 % of reduced cycles i.e. around 14000 cycles and
conven has the most number of reduced cycles. conven has 14.22 % of reduced cycles i.e. more than 35000
cycles. And in average we are able to reduce around 11 % of cycles that are more than 22000 cycles.

Table 5.3: Number of Execution cycles before and after the optimization

Microcode Optimization in FlexCore Compiler

BenchMarks

Cycles

Before After

1 autcor00 150 284 133 032 

2 conven00 249 961 214 427 

Simulation/Results

200000

250000

300000

The Embedded Microprocessor Benchmark Consortium (EEMBC) is used

2 conven00 249 961 214 427 

3 Fft00 146 470 132 090 

4 rgbcmy01 236 848 202 864 

5 rgbhpg01 146 951 129 019 

6 rgbyiq01 146 951 129 019

7 viterb00 278 527 260 907 

Average 193 713 171 623

VLSI Research Group 24

0

50000

100000

150000

1 2 3 4 5 6 7
Before After

5.6 Energy Dissipation before and after Optimization

Table 5.4 presents the energy dissipation of each benchmark before and after the optimization. Energy
dissipation can be calculated with the help of clock period per cycle and the power consumed. We used 2.7
nanosecond (ns) clock period per cycle and the power consumed in each benchmark is given in a previous
evaluation [11].

Table 5.4: Energy dissipation before and after optimization

Microcode Optimization in FlexCore Compiler

Benchmarks
Energy Dissipation (µ J)

Before After Diff

1 autcor00 3.628 3.211 0.416

2 conven00 6.270 5.378 0.891

Simulation/Results

4

5

6

7

The Embedded Microprocessor Benchmark Consortium (EEMBC) is used

3 Fft00 4.208 3.795 0.413

4 rgbcmy01 5.736 4.913 0.823

5 rgbhpg01 3.543 3.111 0.432

6 rgbyiq01 3.626 3.184 0.443

7 viterb00 6.986 6.544 0.442

Average 4.857 4.305 0.552
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5.7 Performance Increase

After analysing the reduced cycle count, code size and energy dissipation, now we need to investigate increase
in the performance.

Table 5.5: Performance increased by FlexCore Processor after the optimization

Microcode Optimization in FlexCore Compiler

Simulation/Results 

Benchmarks

After Optimization
Performance 

Increased
cycles left (%) Code left (%)

1 autcor00 88.52 92.24 11.48

2 conven00 85.78 92.43 14.22

The Embedded Microprocessor Benchmark Consortium (EEMBC) is used

VLSI Research Group 27

2 conven00 85.78 92.43 14.22

3 Fft00 90.18 92.09 9.82

4 rgbcmy01 85.65 93.27 14.35

5 rgbhpg01 87.80 92.72 12.20

6 rgbyiq01 87.80 92.78 12.20

7 viterb00 93.67 92.92 6.33

Average 88.50 92.24 11.51

Table 5.5 presents the reduction in cycles and code lines after optimization. The benchmark rgbcmy

shows the largest number of reduction in cycles and code lines, where the optimization has reduced around
14% of cycles and 7% of code lines. In general the overall reduction in cycles is around 12% and code lines
is 8%. The overall increase in performance after optimization is 11.5%.



6
Conclusion and Future Work

6.1 Concluding Remarks

This study has shown it is possible to implement microcode optimization in the FlexCore compiler. As dis-
cussed in the problem statement in Sec 4.1, the optimization of filling delay slots on the FlexCore compiler
has been successfully implemented. During the study we noticed that the branches are more difficult to op-
timize correctly as compared to other cases, because at this stage it is hard to guess which block of branch
would be executed next. The EEMBC benchmark suite is used to evaluate the effectiveness of the opti-
mization on the FlexCore compiler. After implementing the optimization in FlexCore compiler the overall
performance of FlexCore processor is increased by 11.5 %.

6.2 Future Work

In future it is highly recommended to perform the optimization when the control is going to be transferred
from one function to another. Right now we are only performing the optimization when the control is going to
be transferred from one block to another other. This is because the framework only provides the information
of one function at a time. Including this might improve the optimization results in the case when the function
is in the loop.
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Profiling should also be included in the future work. By profiling one can get which block is executing
most of the time. This will help to get better optimization of branch. Currently we are selecting block of
branch by analyzing which block has the highest probability of execution.
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