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Abstract 

With a large increase in electric vehicles, a subsequent increase in the retirement of Li-ion 

batteries (LIBs) will follow. The environmental performance of second-life LIBs in Swedish 

context has so far only been assessed in a LCA by Janssen et al. (2019), which this study 

intends to build upon. Energy system modelling is used as a mean to further understand the 

second-life use case of LIBs in Swedish context. Hence, what flows are needed for energy 

systems analysis to be successfully integrated with LCA and how it can enrich the assessment 

on the environmental performance of second-life LIBs is also explored. Using energy systems 

modeling, more than 2000 Swedish households with energy storages are modeled for 

economic efficiency for the homeowners maximizing the value of PV self-consumption. How 

the utilization of the storage differs between households, installation sizes and relative 

remaining storage capacities of the LIBs (as they initiate the second life) is also investigated. 

The results include estimated degradation, which is used to estimate the duration of the LIB’s 

second life and consequently the second lifetime performance. The environmental burden 

from manufacturing, can be allocated between the LIB’s first and second life by their respective 

energy throughput. Hence, the utilization of the storage in the second-life use case will directly 

effect this allocation. Furthermore, this study investigates if there is any environmental benefit 

in extending a LIB’s lifetime in Sweden from a marginal and average perspective and will 

identify the main processes contributing to the impact.  

 

The specific utilization of the storages was found to be similar between households and the 

different installation sizes modeled, resulting in similar environmental performances. This is 

likely because the utilization of the storages are mostly limited by storage volume rather than 

availability of PV. The environmental performance of a second-life LIB was found mainly to 

depend on the energy throughput during the second life, which is directly linked to the 

allocated burden of manufacturing, emissions from charging and avoided electricity 

consumption. With similar utilization between storages, and thus degradation rates, the state 

of health (SoH) of the LIB as it enters the second life was determining for the second-life 

duration and total energy throughput. 

A residential second-life LIB was found to charge 0.5 to 1 MWhel/kWhNSC (nominal storage 

capacity) over a second lifetime of 4 to 9 years, depending on the initial SoH. Thus, a second 

life was estimated to relieve the first life from 15 to 29% of the burden of manufacturing by 

energy allocation. Under the assumption that the LIBs give rise to 250kg CO2eq/kWh battery 

storage (Janssen et al., 2019),  then 17 to 31g CO2eq/kWhel supplied from the second-life LIB 

will originate from allocated burden of manufacturing. A high energy throughput results in less 

impact per kWh electricity supplied. It is considered that emissions are related to charging PV 

electricity to the storage. For the chosen average perspective, the emission intensity of the PV 

electricity charged was assumed to be an attributional LCA value of 41g CO2eq/kWhel 

(Schlömer et al., 2014). From the marginal perspective a consequential LCA value was 

assumed of 76.7g CO2eq/kWhel (Jones & Gilbert, 2018). By allocated manufacturing impacts 

and emissions related to charging the storage, the second-life LIB investigated in this thesis 

was found to be able to supply electricity at 62 to 76g CO2eq/kWhel from the average 

perspective and 102 to 116g CO2eq/kWhel from the marginal. By both perspectives, emissions 

related to charging the storage with PV electricity was the main contribution to the 

environmental impact while impacts allocated from processes prior to the second-life were 

mainly constituted by battery pack manufacturing. 



2 
 

As a storage is introduced to the system, some electricity and its related emissions were 

considered avoided by the storage. by average accounting, the avoided emissions were 

considered to come from the energy mix while by marginal accounting, from the marginal 

technology (waste incineration). With positive and negative impacts, a net impact of the 

storage can be calculated. From the average perspective, extending the performing lifetime of 

a LIB with a second-life in Sweden resulted in an environmental burden with a net impact of 

22 to 37kg CO2eq/kWh storage. From the marginal perspective, an environmental benefit was 

found at net impact -88 to -33kg CO2eq/kWh storage. The environmental burden is caused by 

the storage replacing grid electricity with lower emission intensity than it is able to supply 

electricity at. Similarly, the environmental benefit comes from replacing electricity, on the 

margin, with higher emission intensity than that supplied by the storage. 

 

In a static system, typically depicted in LCA, avoided emissions would have been calculated 

with the total electricity consumption avoided and the average emission intensity of this 

electricity. By using average accounting for avoided emissions and hourly resolution in the 

energy systems model, the resulting emissions were 7 to 8% lower than when calculated for 

a static system, using the same data. This indicates that incorporating energy systems 

modeling into the LCA added value to the assessment.  
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Abbreviations 

ENTSO-E European Network of Transmission System Operators 

EV   Electric vehicle 

HEV Hybrid electric vehicle 

IPCC  Intergovernmental panel on climate change 

LIB  Lithium-ion battery 

NMC Ni, Mn and Co 

NSC Nominal storage capacity 

PHEV Plug-in hybrid electric vehicle 

PV   Photovoltaic 

SoC State of charge 

SoH State of health 

VRES  Variable renewable energy sources 
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1 Introduction 

Electro-mobility is developing rapidly and chargeable vehicles are taking an increasing share 

in the market (IEA, 2019a). The European Union has set a goal of reaching carbon neutrality 

by 2050. Sweden has committed to reach this goal by 2045 (Government Sweden, 2017). In 

order to reach the 2050 goals of the European union, Berggren and Kågesson (2017) conclude 

that a large share of the car fleet will need to be fossil-free. With respect to current and 

announced policies, the International Energy Agency (IEA) estimates that 130 million electric 

vehicles (EVs) globally (excluding two- and three wheelers) will be on the market by 2030 

(IEA, 2019a). In a scenario that includes policies set to reach climate goals and sustainability 

targets as in the Clean Energy Ministerial’s (a global forum for promoting policies, programs 

and best practices towards clean energy) EV30@30 campaign, a 30% market share for EVs 

by 2030 is targeted (Clean Energy Ministerial, 2019), and the estimations exceed 250 million 

vehicles (IEA, 2019a).  

Car manufacturers also see electric propulsion as the future. More than half of the 

manufacturers selling cars in Sweden have communicated a complete transition to electric 

models (Andersson & Kulin, 2018). By the end of 2019 there were in Sweden 214464 

registered EVs, HEVs and PHEVs of which 73825 were newly registered during 2019 

(Statistics Sweden, 2020). These numbers are also predicted to be increasing throughout the 

coming years (Andersson & Kulin, 2018). PHEVs and EVs are predicted to dominate the 

Swedish market around 2030, and by then there could be 2,5 million chargeable vehicles on 

Swedish roads, based on sales forecasts (Andersson & Kulin, 2018). 

 

As a result of a significant increase in EVs on the roads there will be a subsequent increase 

in the retirement of lithium-ion batteries (LIBs). Tadaros (2019) estimates that the sales of EVs 

in Sweden between 2010-2018 will accumulate around 16 thousand tons of LIBs. 

Furthermore, Tadaros (2019) estimates that until 2030 Sweden will have accumulated 

between 207 and 727 thousand tons of LIBs in demand for recycling, based on actual and 

predicted sales numbers. As large quantities of batteries are predicted to be retired from their 

first automotive life throughout the coming years, it is important to manage these.  

 

LIBs contribute to a large share of total cost and initial material and energy investment for EVs 

(Bobba, 2018; Madlener & Kirmas, 2017). When retired from their first-life automotive use, the 

LIBs still retain around 70-80% of their original capacity (Wood, Alexander & Bradley, 2011; 

Jiao & Evans, 2016; Madlener & Kirmas, 2017; Bobba, 2018; Casals, Barbero & Corchero, 

2019), whereas a definitive point of retirement can be considered to be at 60% of original 

capacity (Casals et al., 2015; Lacey et al., 2013; Oliveira, 2017). After automotive retirement, 

the LIBs can be used in a less demanding second-life application, like a stationary energy 

storage system. Extending the life of the battery has potential to increase its total lifetime 

value. Furthermore, second use of EV LIBs could reduce the demand for new batteries 

intended for other energy storage applications, potentially reducing manufacturing related 

emissions through avoided production.  

 

The technical viability of a second-use battery depends on its aging history and the 

requirements of the intended application (Swierczynski, 2016). Thus, when retired from their 

first life, the LIBs should be tested to identify their state of health (SoH) and remaining capacity 

so that a suitable second-life application can be chosen (Ahmadi, 2014b). However, due to 
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both economic and technical reasons, dismantling of the cells or the battery pack is not a 

preferable option (Ahmadi, 2014a). For economic and technical feasibility, keeping the battery 

pack intact is advised for the intent of re-use (Ahmadi, 2014b; Mudgal, 2014). If the batteries 

prove unfit for any further use, they are retired and recycled to recover materials they are 

made of.  

Energy storages can mitigate the variability of renewable energy sources (Beaudin, 2010) and 

batteries are often combined with solar photovoltaic (solar PV) due to their synergistic 

properties (Göransson & Johnsson, 2018). If paired with solar PV, a battery energy storage 

can be used to increase a household’s PV self-consumption and self-sufficiency. By increasing 

the self-consumption of PV electricity in a household, less electricity needs to be bought from 

the grid to supply the household’s load. Hence, any related emissions and costs of the grid 

electricity that is replaced by the PV are avoided. Sweden, has a very clean energy mix 

(Swedish energy agency, 2018; OECD, 2013; IEA, 2019b) priced slightly below European-28 

average for households (including taxes) (Eurostat, 2019). Thus, the potential economic and 

environmental gains of avoiding electricity supplied by the Swedish grid should be relatively 

low compared to other national systems. 

Appropriate sizing of an energy storage using batteries is crucial for maximizing revenue 

(DEA, 2018). In a study investigating the optimal storage size for dwellings with solar panels, 

Mulder et al. (2010) found the optimal storage size would be in the range of 0.4-1.5 kWh per 

annually produced MWh PV electricity. In a techno-economic study, Madlener and Kirmas 

(2017) investigated a dwelling with 5 kWp of installed PV capacity and found maximum net 

present value of the storage to be reached at 5.5 kWh of installed storage capacity, rising to 

7 kWh as battery prices decrease from 117 €/kWh to 34 €/kWh installed storage capacity 

(Madlener & Kirmas, 2017). The average price of a new LIB pack for EVs in 2020 was reported 

by Bloomberg New Energy Finance (2020) to be 135 $/kWh. Like Naumann et al. (2015), 

Madlener and Kirmas (2017) estimate that the optimal PV and storage dimensions are roughly 

1 kWh storage per kWp of solar PV. However, to compensate for the initial capacity loss of 

the batteries, 1.2 kWh/kWp is suggested (Madlener & Kirmas, 2017). It is stated that each 

kWp of PV capacity produces 980 kWh of electricity annually (Madlener & Kirmas, 2017). The 

1.2 kWh/kWp provided in Madlener & Kirmas study (2017) can be recalculated to 1.22 kWh 

storage capacity per annually produced MWh PV electricity, which is in line with Mulder’s 

(2010) assessment.  

Nyholm et al. (2016a) also states that the initial capacity loss of the batteries should be 

compensated for. However, due to lack of consistent values for battery degradation, Nyholm 

et al. (2016a) neglect it and are instead using effective energy storage volume as the basis for 

calculation. The approach to dimensioning of the PV and storage used by Nyholm et al. 

(2016a), and in this study, includes the consumption of the house at which the storage system 

is installed. The dimensioning is based on the array-to-load ratio (ALR), which describes the 

relation between installed PV capacity and average annual load, and the relative battery 

capacity (RBC), which describes the battery storage capacity relative to the installed PV 

capacity (see section 3.1). Nyholm et al. (2016a) found the additionally gained degree of self-

sufficiency and self-consumption of the house to decline gradually at higher RBCs. As benefits 

gained from adding storage capacity gradually declines it is deemed unlikely that RBCs over 

2-3 would be employed for PV related purposes, in terms of both economic efficiency and 

increasing self-sufficiency (Nyholm, 2016b). As a reference, a RBC of 1 and the household 
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load data used by Nyholm (2016b) produces roughly 1.1kWh/kWp. The same load data is 

used for this study. 

 

Previously, second-life LIBs have been investigated for places like Germany (Madlener & 

Kirmas, 2017), Spain (Casals, 2019) and the Netherlands (Bobba, 2018), providing results 

regarding the utilization of the residential storage and economic performance. Studies that 

investigate the performance of PV and storage in the Swedish electricity system have also 

been conducted (Nyholm et al., 2016a; Thygesen & Karlsson, 2014; Widén & Munkhammar, 

2013). These studies provide results mainly on the utilization of storages, e.g. by the terms of 

degree of self-consumption and self-sufficiency. Furthermore, a difference in potential for 

these parameters depending on geographic location has been identified (Nyholm, 2016b). The 

supply- and value chain has also been explored in Swedish studies (Tadaros, 2019; Olsson 

et al., 2018). However, the environmental performance and degradation of batteries in a 

Swedish use case remains relatively unexplored. The environmental performance of second-

life LIBs in Swedish context has so far only been assessed in a LCA by Janssen et al. (2019). 

Battery degradation was not included in studies, due to a lack of information regarding aging 

and degradation for second-life LIBs (Bobba, 2018; Nyholm et al., 2016a; Martinez-Laserna, 

2018). Although LIBs aging performance is still in need of further understanding and available 

information may be inadequate for estimating the performance beyond its measurement 

timeframe (Neubauer, 2015), degradation remains important to the viability of second-life LIBs 

(Martinez-Laserna, 2018).  

 

There is room for further investigation of the environmental performance of second-life LIBs 

used in Sweden. LCA is a good method of investigating environmental performance, but it 

typically describes a static system. As a consequence, information about activities in the 

energy system are lost in average values, which could lead to an inaccurate result. For 

example, using a yearly average emission intensity of the electricity system may not be 

representative when investigating avoided emissions by using solar PV, which mainly 

produces electricity during summer in Sweden and only during the day. Knowing the electricity 

mix and its emission intensity when the PV produces would be better for investigating avoided 

emissions than assuming the emission intensity of the yearly average mix, if such a method 

is chosen. Time dependencies like this and other interactions between units in an electricity 

system can be investigated with energy systems modeling. Thus, incorporating an energy 

systems analysis into a LCA could be a way of including valuable information otherwise lost 

in an assessment of environmental performance. In the case of LIBs, energy systems 

modelling can be used to further understand a second-life use case in Sweden through results 

describing its utilization, like energy throughput and interaction with PV and household load. 

By applying degradation values to the utilization, an estimate on the duration of the LIB’s 

second life would be possible. As a result, the second lifetime performance of the LIBs could 

also be estimated. Adding degradation values to the utilization, and thus connecting use case 

and life duration, should be beneficial when learning about a specific use case. However, as 

LIB degradation is still in need of further understanding, the accuracy and quality of a life 

duration estimate based on it will be uncertain. Here benefits are set against uncertainties. 

 

There are previous LCAs on LIBs which can vary in scope and goal but mostly have some 

common ground in cradle-to-gate impacts. This impact can for NMC (Ni, Mn & Co) LIBs range 

73 to 250 kg CO2eq/kWh storage capacity for varying cathode chemistries, cell and module 

count as well as total storage capacity (Ellingsen, 2014; Dai et al., 2019; Janssen et al., 2019; 
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Accardo et al., 2021). The impact of LIB production depends heavily on the supply chain as 

well as the bill of materials (BOM), which can vary with battery size, configuration and desired 

performance characteristics (Dai et al., 2019). For the production of a LIB, Ellingsen (2014) 

found the cell manufacture, positive electrode paste and negative current collector to be the 

main contributors to all impact categories. Towards the CO2eq impact found by Dai et al. 

(2019), the cathode material, aluminum and energy for cell production were the largest 

contributors. Ellingsen (2014) identifies a broad range of reported energy requirements for 

battery cell production. Furthermore, performed sensitivity analysis showed that the most 

effective means of reducing cradle-to-gate emissions was to use a cleaner energy mix for 

battery cell production (Ellingsen, 2014). Studies that assess the environmental performance 

of batteries for their performing lifetime can reach very different conclusions depending on 

which assumptions are made regarding cycle numbers (Ellingsen, 2014). Casals et al. (2017) 

found that the environmental impact per unit of storage capacity decreases with increased 

utilization. Thus, a battery chemistry that has a longer lifetime as a result of less degradation, 

than what the common graphite and manganese-based batteries can offer, is favorable 

(Casals et al, 2017). A longer lifetime would benefit the second life LIB as well. Wilson et al. 

(2021) showed that a repurposed LIB can achieve carbon reductions if the second lifetime 

exceeds 4.25 years in an Australian home energy system. 

1.1 Aim 

This thesis will make an interdisciplinary analysis, by integrating energy systems analysis with 

life-cycle assessment, to investigate the related emissions and utilization of second-life LIBs 

from EVs used as residential energy storage in Sweden.  

 

Research questions for the thesis are as follows: 

1. What flows and parameters are needed to be exchanged between an LCA and an 

energy system model used to define and understand the second-life use case of a 

LIB? 

 

2. If a 2nd life LIB is used as a residential energy storage paired with solar PV and operated 

for economic efficiency for a Swedish homeowner: 

● Will the LIB provide any environmental benefit in terms of CO2eq emissions?  

● What are the main processes contributing to the environmental impact? 

● To which degree is the environmental impact affected by the size of the 

installation and relative remaining storage capacity of the LIB (SoH)? 
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2 Theory and Background 

2.1 The Lithium-ion Battery 

The Lithium-ion battery (LIB) technology is commonly used for EVs. It has characteristics like 

high specific energy and capacity, low internal resistance and self-discharge rate as well as 

good coulombic efficiency (Buchmann, 2018). In addition, it also has a long cycle- and shelf-

life (Buchmann, 2018). Limitations of the LIB include lithium being inherently instable in 

metallic form, potential of degradation during certain conditions and requirements of protection 

to ensure safety (Buchmann, 2018). 

The main components of a LIB cell are the negative and positive electrodes, i.e. the anode 

and cathode, as well as the electrolyte and separator. The chemistries of these components 

can be altered to modify the desired performance of the battery. The anode in most 

commercial LIBs is graphite based (Li et al., 2018; Bruce, 2008). The cathode material is an 

alloy in which Li, Ni, Mn and Co are the most frequently used metals (Gopalakrishnan, 2016). 

A commonly used electrolyte is LiPF6 (Xu, 2012). 

Several connected battery cells along with a battery management system and an encasing 

constitutes a battery pack. A battery pack is sized and designed to meet the requirements of 

its intended application. 

2.2 Battery Degradation 

The degradation and lifespan of a LIB is hard to predict but depends on the state of health 

(SoH), load levels, calendar aging, charge and discharge rates and operating temperature 

(Tadaros, 2019; Buchmann, 2020a; DEA, 2018). Furthermore, it also depends on the quality 

of the battery i.e., chemistry and manufacturing (DEA, 2018). Generally, a battery’s aging 

process leads to an increase in internal resistance and self-discharge rate and reduced 

capacity (Broussley, 2001; Barré, 2013). However, under specific circumstances the condition 

and performance of a battery can be caused great harm in complex ways that are hard to 

account for and measure. If deeply discharged, graphite exfoliation of the anode and 

electrolyte degradation can occur which heavily degrades the battery performance (DEA, 

2018). High state of charge (SoC) at low temperatures can cause capacity loss through lithium 

plating on the anode (Gopalakrishnan, 2016; Buchmann, 2020a). Cycling at high SoC and 

temperature can cause capacity loss and increased internal resistance as a result of a solid 

electrolyte interface forming on the anode (Andersson, 2003; Vetter, 2005; Buchmann, 2014; 

Gopalakrishnan, 2016). High cell voltage and temperature can result in lost capacity caused 

by electrolyte oxidation on the cathode (Buchmann, 2014). Fast charging at low temperatures 

can impose safety issues as it promotes dendrite growth on the anode, being a solid formation 

that can penetrate the separator and cause a short circuit (Buchmann, 2018; Buchmann, 

2020b).  Post automotive retirement, an accelerated degradation can come into effect, called 

the aging knee, which requires immediate retirement (Spotnitz, 2003; Bobba, 2018; Martinez-

Laserna, 2018). 

In general terms, SoC above 80% hastens cathode degradation while discharging below 20% 

increases internal resistance (Buchmann, 2020a). Operating the battery in a manner that 

avoids circumstances where impactful degradation mechanisms are present will effectively 

extend the life length and cycle count. Hence, approaching the upper and lower limits of SoC, 

maintaining high voltage, operating under high or low temperatures as well as using fast 

charge and discharge rates, should be avoided. 
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Several studies identify the lack of data regarding degradation and aging performance of 

second-life LIBs (Bobba, 2018; Nyholm et al., 2016a; Martinez-Laserna, 2018). These 

parameters were identified by Martinez-Laserna (2018) as pivotal to the economic and 

technical viability of the second-life batteries. Neubauer (2015) states that predicting the 

relative remaining performance of a battery requires understanding of the degradation, which 

still needs further research. Models that attempt to estimate the lifetime and remaining relative 

performance often require extensive amounts of data, which is usually inadequate for 

extrapolating beyond its timeframe (Neubauer, 2015). Neubauer (2015) also identifies 

physics-based degradation models present in the literature, although these are limited by 

complexity, narrow scope and operating conditions. 
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3 Method 

In this study, a use case for second-life LIBs is investigated, focusing on its life from the cradle 

to the end of performing life, meaning end-of-life management such as battery material 

recycling is not accounted for. To investigate the environmental performance of a LIB from the 

cradle to the point where the battery is ready to initiate a second performing lifetime, LCA is 

applied. The LCA of this study is based on a comparative attributional LCA by Janssen et al. 

(2019) which investigates the environmental performance of the battery pack from a Mitsubishi 

Outlander PHEV. The manufacturing process for these batteries was modeled (Janssen et al., 

2019) based on the inventories provided by Bobba (2018) and Ellingsen (2014). Similarly, the 

refurbishment process preparing the batteries for a second performing lifetime were based on 

the inventory by Bobba (2018). In this study, the assessment Janssen et al. (2019) made on 

the production and refurbishment process is used and the same first life is also assumed. 

However, for the purposes of this study, the assessment on the second life is replaced with 

information gathered from applying energy systems analysis. The refurbishment process 

would take place in a facility in Halmstad, after which the LIBs would be transported by truck 

to the households to serve a second life. 

The tool used for the LCA is the open source LCA software OpenLCA 1.10.2 (OpenLCA, 2019) 

with the ecoinvent 3.4 database (Wernet, 2016; ecoinvent, 2017). The impact assessment 

method used to calculate the climate impact of the product system is the IPCC 2013 GWP 

100a method (Stocker et al., 2014). 

 

To investigate the second-life stage of a LIB, a linear programming model of a residential 

energy system with PV and energy storage was created that minimizes the cost of electricity 

for the homeowner. The connection layout for the residential energy systems modeled can be 

seen in figure 1. A battery and PV installation operate with DC while a household’s load is AC. 

This is not physically represented in the model, only an inverter is added to separate the two 

sides. The tool used for linear programming in this study is GAMS release 30.3 (GAMS, 2020) 

and perfect foresight was assumed during optimization.  

 

 

 
Figure 1:  The connection layout for the household used in the energy systems model.  
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For the energy systems analysis to be successfully integrated with the LCA, the flows and 

processes of the two models need to be understood, as well as their intended purpose. The 

goal of using the energy systems analysis is to learn more about the second-life use case in 

Sweden. The goal of incorporating it into the LCA is to capture important information, which 

might have been lost if only LCA would have been used. A visualization of how the flows are 

exchanged between the methods can be seen in figure 2. 

The energy systems model enables investigating the utilization of the LIB storage over time. 

In this case calculated once per hour over one year. Modeling the storage is done through 

optimizing its use for economic efficiency. For this to be optimized, data on the overtime 

change in electricity price, PV production and household load is needed. If the storage is 

assumed to only be charging PV produced electricity and the utilization is known, the 

emissions related to charging the storage can be calculated and added to the LCA.  

As illustrated in figure 2, adding battery degradation to the modeled utilization of the storage 

allows the duration of the second lifetime to be estimated. As a result, the second lifetime 

performance of the LIBs can also be estimated. Furthermore, it connects the second-life 

duration with the modeled use case. 

A battery’s performance is measured by parameters such as available capacity and power, 

energy density, charge acceptance, self-discharge and cycle life. The degree to which a 

battery has retained its original performance parameters describes the general condition of 

the battery and is referred to as its state of health (SoH). In this study, the aging and 

degradation of the LIBs is measured by its SoH only. The degradation of the batteries limits 

the remaining available capacity. Hence, it also limits the utilization of the storage, which is 

being optimized. In the context of energy modeling, adding degradation as a constraint in the 

optimization process would make the model non-linear, which means the model may not 

produce an optimal solution. To this end, the degradation of the batteries is calculated post-

optimization, maintaining a linear model and ensuring an optimal solution.  

By discharging an energy storage to supply electricity to the load, less electricity needs to be 

bought from the grid. The electricity that does not need to be bought from the grid can then be 

considered avoided consumption. Any related emissions and costs of this electricity are then 

also avoided. Which plants actively generate electricity in the system depend on their cost and 

availability. Preferably, the cheapest available electricity is used until the load of the system is 

supplied. Since both the availability of electricity generation and the load changes over the 

day and over seasons, the electricity mix does too. Furthermore, the different technologies 

present in the mix supply electricity at different emission intensities. Thus, related emissions 

of the grid electricity depends on the hourly mix. If data on how the emission intensity of grid 

electricity changes over time is fed into the energy systems model, the avoided emissions 

could be calculated for every hour modeled. Moving calculations on environmental impact for 

the second life from the LCA to the energy systems analysis should then be beneficial since 

these changes over time can be captured into the assessment. The results can then be fed 

into the LCA for the overall assessment.  
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Figure 2: Mapping of the main functions of the methods used and the flows exchanged 

between them. The LCA model by Janssen et al. (2019) investigates the manufacturing and 

first life of the LIB. The energy systems model is used to find the LIB’s second-life utilization 

and avoided emissions. The results can then be compiled into the LIB’s second-life 

performance. Specific emissions refer to the emission intensity of supplied electricity.  

 

 

When a new unit like a LIB energy storage enters the energy system, the load of the system 

is affected. In this case, the total load would decrease since the household needs to buy less 

grid electricity. When less electricity is needed, the most expensive active unit in the grid i.e. 

the marginal technology will need to reduce its output. By marginal accounting, the storage 

will be considered responsible for the reduced output of the marginal technology since this is 

the immediate effect on the system when the storage is added. The emissions associated with 

the electricity avoided are then also avoided by the storage. By average accounting, avoided 

electricity and its related emissions will be considered to come from the energy mix rather than 

the marginal technology alone. The accounting methods are applied to the second life only 

while the LCA on the first life is kept attributional. However, these accounting methods will be 

considered to affect the emissions related to PV production as well, and as a result the 

emissions related to charging the battery storage during its second life. For average 

accounting, PV emisisons from attributional LCA approach will be used while for marginal 

accounting results from a consequential approach, seeking to capture the changes in a system 

from an activity, will be used. 

 

The system boundary chosen for the electricity system surrounding the PV and storage 

installations is in this study drawn at the Swedish border while Imported and exported 

electricity to surrounding electricity systems is not included. Therefore, electricity supplied to 

the houses by the grid is limited to Swedish production. 

 

To keep simplicity in the model, it is chosen to limit the storage to charging PV generated 

electricity. This means that arbitrage trade and charging low-cost grid electricity for later use 

are not included functions. Since perfect foresight is assumed for optimization, utilization of 
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the storage related to these functions would likely be overestimated. With known electricity 

prices and abundancy of PV, the model may utilize the storage for gains toward economic 

efficiency that are very small. When the utilization is not directly connected to lost storage 

capacity, the gains from increased utilization may not make up for the lost capacity.  
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3.1 Energy Systems Analysis - Model Description 

The energy systems model created seeks to minimize the total electricity costs for the 
homeowner, which is defined as: 
 
Total cost = ∑ ∑ v_Grid to Loadt,h × (Spot pricet + Add𝑏𝑜𝑢𝑔ℎ𝑡) − v_PV to Gridt,h × (Spot pricet + Add𝑠𝑜𝑙𝑑) th   (1) 

 
Where the variable v_Grid to Loadt,h is the energy bought from the grid to supply the 

household’s load and the variable v_PV to Gridt,h is the excess PV electricity which is sold to 

the grid. Spot pricet is the spot price of electricity in the Swedish electricity system while 

Add𝑏𝑜𝑢𝑔ℎ𝑡 and Add𝑠𝑜𝑙𝑑 are additions to the spot price set to represent the cost of bought and 
sold electricity. The denotations t and h are indexes representing time and household number. 
 
The dimensioning of PV and storage for the home installations are set by the array-to-load 
ratio (ALR), as defined by Widén & Wäckelgård (2009):  
 

ALR =  
kWp PVh

Average annual loadh
         (2) 

 

and the relative battery capacity (RBC), as defined by Nyholm et al. (2016a): 
 

RBC =
kWh storageh×1000

∑  kWp PVh× PV profilet,ht
         (3) 

 

where kWp PVh is the peak power production capacity of the solar panels and kWh storageh is 
the nominal storage capacity (NSC) of the battery. PV profilet,h is the production profile of the 

solar panels, declaring how much of the installed capacity can be produced for each time step. 
These PV profiles were created from typical meteorological year data for their respective 
household by Nyholm et al. (2016a) based on the model framework by Norwood et al. (2014). 
 
The PV electricity generation is limited by the installed capacity and the PV profile: 
  
kWp PVh × PV profilet,h ≥ v_Charget,h + v_PV to loadt,h + v_PV to Gridt,h   (4) 

 
Where the variable v_Charget,h is the energy volume used to charge the battery storage, the 

variable v_PV to loadt,h is the PV power used to supply the load directly and the variable 

v_PV to Gridt,h is the excess energy which is sold to the grid. 

 
The maximum amount of energy that can be stored in the batteries is limited by the installed 
storage capacity, the state of health of the batteries and the state of charge range:  
 

v_SoCt,h ≤ kWh storageh × SoHt=1 × (SoC limit𝑢𝑝𝑝𝑒𝑟 − SoC limit𝑙𝑜𝑤𝑒𝑟)    (5) 

 
Here, the variable v_SoCt,h is the state of charge of the storage in kWh, SoHt=1 is the initial SoH 

of the LIB when it starts its second life. The parameters SoC limit𝑢𝑝𝑝𝑒𝑟  and SoC limit𝑙𝑜𝑤𝑒𝑟 are 
the upper and lower state of charge limits in percent. 
 
The following equation, defines the amount of energy present in the storage:  
 

v_SoCt,h = v_SoCt−1,h × (1 − Self discharge) + v_Charge
t,h

× η
Charge

−
v_Discharget,h

ηDischarge

   (6) 
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Where v_SoCt−1,h is the state of charge of the storage at the previous time step in kWh and Self 

discharge is the rate at which the storage self-discharges stores energy. The variable 

v_Discharget,h is the amount of energy discharged from the battery. η
Charge

 and η
Discharge

 are 

the charge and discharge efficiencies of the battery. 
 
A household’s load is supplied by the grid and PV and storage system and must always be 
satisfied:  
 
Loadt,h ≤ v_Grid to loadt,h + (v_Discharget,h + v_PV to Loadt,h) × ηInverter   (7) 

 
Where ηInverter is the inverter efficiency. 
 
 
The following equations 8 to 12 are not constraints and are calculated post model optimization. 
The equations including variables for energy flows use the output values of the already 
optimized model. 
 
The battery’s SoH degradation is calculated according to: 
 

SoHt,h = SoHt−1,h − Calendar aging − Cycling aging ×
v_Discharget,h

kWh storageh× SoHt−1,h
              (8) 

 

Where SoHt−1,h is the battery’s SoH for the previous time step. The Calendar aging defines 

how much the battery ages over time while Cycling aging defines how much the battery 

degrades on a full cycle. 

 
The LIB’s second lifetime is linearly estimated according to: 
 

Linear estimation of second lifetimeℎ  =  
SoHt=1,h − SoH𝑟𝑒𝑡𝑖𝑟𝑒

SoHt=1,h − SoHt=n,h
               (9) 

 

Where SoH𝑟𝑒𝑡𝑖𝑟𝑒 is the SoH value for which the LIB has reached a point of definitive retirement 

and SoHt=n,h is the SoH of the battery at the last time step of the year modeled.  

 
 
The CO2eq intensity of grid electricity by average accounting is calculated by weighted 
average: 

Grid CO2 t
Average

=
∑  Generationt,plantplant ×LCA emissionsplant

∑ Generationt,plantplant 
               (10) 

 
where  Generationt,plant is the energy output per energy technology and LCA emissionsplant is 

the specific lifecycle emissions per energy technology. The index plant represents the type of 
energy technology. Assumptions on which technologies are present in the energy 
systemmodeled and their specific emissions can be found in section 3.2. 
 
The emissions avoided through avoided consumption of grid electricity which can be attributed 
to the battery alone is calculated according to: 
 

Avoided Grid CO2
Accounting

=
∑  v_Disharget,h×ηinverter×Grid CO2 t

Accounting
t

kWh storageh
               (11) 
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Where the index Accounting represents which accounting method is chosen for avoided 

emissions, average or marginal. 

 

The PV emissions related to charging the battery are calculated as follows:  

 

PV emissionsℎ
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

=
∑ v_Charget,h× LCA emissionsPV

Accounting
t 

kWh storageh
              (12) 

 

Here LCA emissionsPV
Accounting

 is the emissions from PV production that is allocated to the PV 

electricity produced per accounting type. 
 

3.2 Inputs, Assumptions and Allocation 

The energy systems model of this study uses historic and generated data. The time resolution 

of the data used is hourly over one year, i.e. 8760 hours/time steps. For the data types to be 

compatible and the degradation of the storage to be simplified, some assumptions were also 

necessary. These are described below. The complete list of inputs to the energy systems 

model are compiled in table 1. A similar compilation for the LCA can be found in in table 2.  

 

The model only accounts for degradation and aging by SoH. However, the battery storages 

are modeled to operate between 80% and 20% SoC to simulate realistic conditions and avoid 

impactful degradation mechanisms. This way, something other than the general SoH is less 

likely to be the cause for retirement of the batteries. Furthermore, it is assumed that all 

batteries in a pack have the same initial SoH and age at an equal pace in their second lives. 

The degradation of the batteries is not added as a constraint but is instead calculated post 

model to maintain a linear model and ensure a reliable optimal solution is found. However, 

this means that the initial SoH of the batteries determines the available storage capacity 

throughout the whole year modeled. As a result of this, the SoC limits are also constant 

throughout the modeled year since they are relative to the maximum storage volume, affected 

by the SoH. No specific constraints for charge and discharge rates are added to the model. 

This assumes that the battery level can be fully charged or discharged in one timestep (one 

hour). 

 

The demand data used in this study are load profiles with an hourly resolution for 2221 

Swedish households from 2012 measured in a campaign by E.ON (2013). These households 

do not originally have solar PV or battery storages installed. It is possible that homeowners 

become more conscious about their electricity consumption after they have installed solar 

panels and shift their load slightly towards PV production hours. If these households would 

install a PV and storage system, the measured load data and the actual load might not be 

identical. However, for this study it is assumed that the load remains unchanged after a PV 

and storage system is installed. This assumption makes it easy to investigate how much 

consumption of grid electricity is avoided by the addition of PV and energy storage system. 

 

The percentage of the installed solar PV capacity that is produced for each hour is represented 

in PV profiles for each household. These profiles were created for their respective household 

from typical meteorological year data by Nyholm et al. (2016a) based on the modeling 

framework by Norwood et al. (2014). For the model, it is assumed that the excess electricity 

produced by the installed solar panels can be sold to the grid at any point in time and that the 
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sold electricity does not affect the production of other units in the system. It is also assumed 

that the residential PV and storage installations of the households modeled do not affect each 

other. 

 

The historic data for spot price of electricity used in the model is retrieved from Nord Pool 

(2012). Apart from spot price, additions to bought and sold electricity are used. These 

additions are based on Borg’s (2015) assessment for customers in the Gothenburg area and 

include grid fee/revenue (Göteborg Energi, 2015), energy tax and VAT (Ekonomifakta, 2015), 

renewable energy certificate (Swedish Energy Agency Cesar, 2015) and an assumed 

surcharge (Borg, 2015). The additions can be found in table 1. Since arbitrage trade and 

charging of grid electricity is not modeled in this study, the values are deemed unlikely to have 

a large effect on the utilization of the storage. The utilization of the storage should mainly be 

governed by the availability of PV, spot price and household loads. Hence, the values used 

are considered acceptable for the purposes of this study.  

 

To account for emissions of grid electricity in the Swedish electricity system, generation per 

production type data from the European Network of Transmission System Operators (ENTSO-

E, 2018) are used to represent the power mix. This information can be combined with the 

specific emissions (emissions per unit of energy produced) of each generation type to estimate 

the specific emissions of Swedish grid electricity.  

The ENTSO-E transparency platform launched in 2014, and furthermore, no complete 

production data is provided for Sweden before 2016. Since electricity production follows the 

load, using production data for another year would create a mismatch between the data sets 

and as a result inaccurate amounts of avoided emissions by the PV and energy storage. In 

the absence of 2012 power mix data to match the load data, an average production year data 

set was created using production data from 2016, 2017 and 2018 (ENTSO-E, 2018). The data 

from these years were scaled and moved to fit the weekday and weekend pattern of 2012. 

However, holidays were not adjusted for. A datapoint in the average production year set is 

then constituted by the average value of corresponding datapoints from 2016, 2017 and 2018. 

The created average production year dataset is shown in figure 3 below. 
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Figure 3: Average electricity production year created with production data from 2016, 2017 

and 2018 (ENTSO-E, 2018). 

 

 

The specific emission values used for most generation technologies are median lifecycle 

emissions provided in the IPCCs climate change report (Schlömer et al., 2014) and can be 

found in table 1. By marginal accounting the immediate effect of adding a storage to the system 

is considered. This approach is considered to also extend to the PV manufacturing. Thus, to 

account for PV emissions from the marginal perspective, results from a consequential LCA on 

PV by Jones and Gilbert (2018) is used. This value on specific emission intensity can also 

found in table 1. In the Swedish energy system, waste incineration plants supply electricity. A 

process from the Ecoinvent database (2017) based on the inventory by Doka (2013) was 

chosen to represent the specific emissions of these plants. The process chosen is named 

“treatment of municipal solid waste, incineration | electricity, for re-use in municipal waste 

incineration only | APOS, U” which emits 604.93g CO2/kWhel. In the chosen process, the 

biogenic share of carbon in the waste is 61.1%, which is in line with the results of a study 

performed by Avfall Sverige, who found the fossil share in solid waste to be around one third 

in Sweden (Blomqvist, 2012). It is also stated that the products of the incinerating one kg of 

waste is 1.39MJ/kg electric energy and 2.85MJ/kg thermal energy. From the raw output of the 

process it is chosen to distribute the impact between the products by their energy value. Thus, 

32.8% of the emissions are allocated to the electricity, resulting in the specific emission value 

198.31g CO2eq/kWhel . It is stated that in the process chosen 0.24 kg of slag and residue per 

kg of waste are generated. However, as the slag can be considered an unusable resource, no 

emissions are allocated to it. From waste incineration, the waste reduction service and the 

products of incineration, heat and electricity, can be considered the source of the impact rather 

than the waste itself. Thus, all emissions are allocated to the products of incineration and none 

to the fuel. Furthermore, there is no commonly acceptable way of making the allocation 

between the waste and the products of incineration (Harmelink & Bosselaar, 2013).  

The emissions of electricity produced by the energy technologies seen in table 1 is combined 

with the average production year data set created from figure 3. By weighted average of 
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production volume the emissions of grid electricity with hourly resolution is calculated, which 

can be seen in figure 4 

 

 
Figure 4: Emissions of Swedish grid electricity with hourly resolution, limited to national 

production (excluding imports and exports). The yearly average emission intensity is 

29.6𝑔 𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ𝑒𝑙 . 

 

 

By average accounting, the introduction of a residential PV and storage systems is considered 

not to cause a specific change in the system but rather impact it as a whole. The avoided 

electricity and emissions is then assumed to come from the electricity mix, in this case the 

created data set shown in figure 4.  

By marginal accounting, the immediate effect on the system from the addition of a battery 

storage is considered to be less required output of the most expensive active unit i.e. the 

marginal technology, which will then constitute the avoided emissions. The merit order of 

production technologies in the system is assumed to be: Wind<Hydro<Nuclear<Waste 

(Energy Markets Inspectorate, 2006). Waste incineration plants reduce waste, and get paid to 

do so, but can also produce electricity for revenue. As the Swedish energy system develops 

to have higher shares of renewable energy, it is assumed that electricity produced beyond the 

waste reduction service will increase to manage variability. As the products of the incineration 

are considered responsible for the impact in this study, generated electricity and heat will carry 

the cost and environmental impact. Electricity from waste incineration is present at all hours 

in the load data used and the introduced storage creates a small load reduction. Furthermore, 

it is assumed that the load reduction does not impair the required waste reduction service. So, 

the addition of the storage will not imply an accumulation of waste since the development of 

the energy system will provide opportunity for waste incineration. Thus, waste incineration for 

revenue constitutes the marginal technology throughout the whole time period modeled.  
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Table 1: Inputs to energy systems model 

Input Value Source 

Swedish household loads Data set E.ON, 2013 

PV production profiles for 
the households 

Data set 
By Nyholm et al., 2016a 
based on Norwood et al., 
2014 

Swedish electricity spot 
price 

Data set Nord pool, 2012 

Addtion to spot price to 
represent bought grid 
electricity 

+0.61SEK/kWhel 

Borg, 2015; Ekonomifakta, 
2015; Swedish Energy 
Agency, 2015; Göteborg 
Energi, 2015 

Addition to spot price to 
represent sold PV electricity 

+0.23SEK/kWhel 

Borg, 2015; Ekonomifakta, 
2015; Swedish Energy 
Agency, 2015; Göteborg 
Energi, 2015 

Swedish electricity 
generation per production 
type 

Data set ENTSO-E, 2018 

Specific lifecycle emissions - 
Nuclear 

3.7g CO2eq/kWhel Schlömer et al., 2014 

Specific lifecycle emissions 
– Hydro 

24g CO2eq/kWhel Schlömer et al., 2014 

Specific lifecycle emissions 
– Onshore wind 

11g CO2eq/kWhel Schlömer et al., 2014 

Specific lifecycle emissions 
– Rooftop solar PV 

41g CO2eq/kWhel Schlömer et al., 2014 

Specific consequential 
lifecycle emissions – 
Rooftop solar PV 

76.7g CO2eq/kWhel Jones & Gilbert, 2018 

Specific Lifecycle emissions 
– Waste incineration 

198.31g CO2eq/kWhel 
(modified from 604.93) 

Doka, 2013 

Array-to-load ratio 2-4 Assumed values 

Relative battery capacity 1 Assumed value 

Initial SoH for second-life 
LIBs 

70-80% SoH 

Wood, Alexander & Bradley, 
2011; Jiao & Evans, 2016; 
Madlener & Kirmas, 2017; 
Bobba, 2018; Casals, 
Barbero & Corchero, 2019 
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LIB - Point of retirement 60% SoH 
Casals et al., 2015; Lacey et 
al., 2013; Oliveira, 2017 

Cycling aging 0,0125 %/cycle Faria et al.,2014 

Calendar aging 0,00114 %/day Bobba, 2018 

Self-discharge rate 0,1 %/day DEA, 2018 

Upper state of charge limit 80% SoC Assumed value 

Lower state of charge limit 20% SoC Assumed value 

Charge efficiency 95% 
Battke et al., 2013; Faria et 
al., 2013 

Discharge efficiency 95% 
Battke et al., 2013; Faria et 
al., 2013 

Inverter efficiency 95% 
Notton et al., 2010; Faria et 
al., 2013 

 

 

For the first performing lifetime, investigated with LCA, the emissions related to the 

manufacturing of the battery pack are partitioned between the battery pack and the vehicle by 

mass allocation. So, 9.2% of the emissions of the battery manufacturing process is allocated 

to the battery pack itself while the remaining 90.8% is allocated to all other parts of the vehicle 

(Janssen et al., 2019). During the battery’s first life, no emissions from the electricity consumed 

propelling the vehicle are allocated to the battery, all is allocated to the vehicle (Janssen et al., 

2019). 

When extending the performing lifetime of the battery, the allocation issue arises for the 

burden of manufacturing between the first and second life. The emissions from the 

manufacturing process may be distributed over the whole performing lifetime of the batteries, 

not just the first life. Thus, the burden of manufacturing is allocated between the first and 

second life by their respective energy throughputs. During the first lifetime of the batteries, it 

was assumed that the batteries had an energy throughput corresponding to 1 performed cycle 

per day with 75% Depth of discharge over a period of 10 years (Janssen et al., 2019). Value 

can be seen in table 2. The energy throughput of the second life is investigated in the energy 

systems analysis. Its results will then determine the allocation factor for burden of 

manufacturing. The emissions of the PV electricity charged to the battery and the emissions 

of the avoided electricity are calculated with the energy systems model but is fed into the LCA 

for the complete assessment of second-life LIBs. It is assumed that all grid emissions avoided 

by using electricity supplied to the load by the storage can be attributed to the battery since 

the storage is responsible for the change in the system. 

The refurbishment of the batteries takes place in a facility in Halmstad. Once refurbished, the 

batteries are assumed to be transported to the household where they will serve their second 

performing life. The average distance to the household where the LIBs are installed is 

assumed to be 456km, which is the distance from Halmstad to Södertälje (most households 

are located south of Uppsala). Once transported to the household, the LIBs initiate their 

second performing life.  
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Table 2: Inputs to LCA 

Input Value Source 

Burden of battery 
manufacturing allocated to 
vehicle 

90.8% Janssen et al., 2019 

Burden of battery 
manufacturing allocated to 
battery 

9.2% Janssen et al., 2019 

First-life energy throughput 2737.5kWhel/kWhNSC Janssen et al., 2019 

Emissions of electricity 
charged in automotive life 
allocated to vehicle 

100% Janssen et al., 2019 

Transport distance – 
Refurbishment to usecase 
location 

456km 
Assumed value – Halmstad 
to Södertälje 

Second-life energy 
throughput 

Model output Energy systems model 

Related emissions of 
charged PV electricity 

Model output Energy systems model 

Hourly emissions avoided by 
avoiding consumption of grid 
electricity 

Model output Energy systems model 

LIB second-life duration Model output Energy systems model 
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3.3 Scenarios 

To investigate the impact that the initial SoH and the size of the residential PV and storage 

system have on the energy flows and lifetime, different scenarios were employed. A 

description of these is given in table 3 below. Scenario 2 can be considered the base scenario 

of this study while the other scenarios can be seen as sensitivity analyses on installation size 

and relative remaining storage capacity. Since the RBC is relative to the annual production of 

PV electricity, see equation 3, a change in PV peak capacity will also change the storage 

capacity. For the load data used, RBC of 1 is roughly equal to 1.1kWhNSC/kWp. 

 

 

Table 3: Scenario configurations used in the energy systems model. Impact of the initial state 

of the batteries are investigated in scenarios 1, 2 and 3 while relative system size is 

investigated in scenarios 2, 4 and 5. 

 ALR RBC Initial SoH 

Scenario 1 3 1 70% 

Scenario 2 3 1 75% 

Scenario 3 3 1 80% 

Scenario 4 2 1 75% 

Scenario 5 4 1 75% 
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4 Results 

The second-life emissions found with the energy systems analysis are added to the life-cycle 

assessment, that was used to find the impacts from the first life, to receive the total emissions 

of a second-life LIB. These results as well as the net-impact for the different scenarios and 

emission accounting methods modeled are compiled in figure 5 below.  

 

The allocated emissions between scenarios 2, 4 and 5 where ALR was changed are very 

similar. The minor increase in utilization of the storage seen for increasing ALR results in 

slightly larger contributions from the charging and avoided electricity. The difference between 

scenarios 1, 2 and 3 where initial SoH was altered is considerably larger. This could be 

expected since the contributions are all related to the energy throughput of the second life, 

which was found to be mostly dependent on its duration. By average accounting the PV 

electricity charged has higher emission intensity than the avoided grid electricity. With longer 

lifetime and higher total charge, this creates a positive trend on the net impact. By marginal 

accounting, the opposite is true and the high emission intensity of avoided electricity from the 

marginal technology creates a negatively trending net impact with increasing total charge. 

These effects can be seen clearly in scenarios 1 to 3. In base scenario 2, the processes prior 

to second life constitute 30% of positive contributions allocated to a second-life LIB by average 

accounting and 18.7% by marginal. 

 

 
Figure 5: Allocated emissions and net contributions of a second-life LIB for the different 

scenarios and emission accounting methods employed. The different scenarios are labeled 

with “S” and their respective number. In scenarios 1, 2 & 3 the initial SoH was altered while in 

scenarios 2, 4 & 5 the ALR was altered. 

 

 

After finding the total emissions allocated to the second-life LIB, they can be distributed over 

the total energy supplied to see which emission intensity the battery storage can supply 

electricity at. The specific emission intensity which the LIB storage supplies electricity at is the 
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sum of the positive contributions seen in figure 6 below. While charging PV electricity at 

41g CO2eq/kWhel, a second-life LIB storage is found to supply electricity at 62.2-

76.2g CO2eq/kWhel by average accounting, depending on the scenario. Respectively, by 

marginal accounting a second-life LIB storage charging PV electricity at 76.7g CO2eq/kWhel is 

found to supply electricity at 101.8-115.8 g CO2eq/kWhel. From these intensities 16.8-

30.8g CO2eq/kWhel originates from manufacturing of the LIB which is allocated towards the 

second life as well as refurbishment and transport. The allocated manufacturing emissions are 

the same for both accounting methods since it depends on the energy throughput. In figure 5, 

the total allocated emissions of the second-life LIB are largest for scenarios with a long 

second-life duration. But as total emissions of the second-life LIB are distributed over its 

supplied electricity, the emission intensity of supplied electricity is reduced by longer lifetimes. 

 

 
Figure 6: Allocated emissions and net contributions of supplied electricity by a second-life LIB 

for the different scenarios and emission accounting methods employed. The different 

scenarios are labeled with “S” and their respective number. In scenarios 1, 2 & 3 the initial 

SoH was altered while in scenarios 2, 4 & 5 the ALR was altered. 

 

 

The performance of a second-life LIB storage was found to be largely dependent on the 

lifetime of the battery. This was in turn mostly dependent on the initial SoH of the LIB as it 

begins its second performing life and less so on the size of the PV and storage installation it 

is part of. In figure 7, the second-life total charge is plotted against the duration of the second 

lifetime. Here, the performance and lifetime dependency can be seen clearly.  
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Figure 7: Total charge per 𝑘𝑊ℎ𝑁𝑆𝐶 in the second lifetime plotted against the duration of the 

second lifetime. The different scenarios are labeled with “S” and their respective number. 

 

 

The energy systems analysis was applied in attempt to gather information about the second 

life use case which may have been lost if only LCA was applied. The utilization of the storage 

was therefore investigated hourly in the model. By accounting for avoided emissions on an 

hourly basis, the total was 6.9 to 8.4% lower than if assuming the yearly average emission 

intensity of the grid for the charged electricity. In figure 8, the PV production, enabling  charging 

of the storage, can be seen to be higher in the summer while the emission intensity of the grid 

is at its lowest. In winter, the emission intensity of the grid is high while the PV production is 

low. A majority of the annually stored electricity would then be discharged when the emission 

intensity of the grid is below its yearly average, causing the difference. 

 

 
Figure 8: The hourly emission intensity of the Swedish grid (𝑘𝑔 𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ𝑒𝑙) shown with the 

PV production profile of household 1 (in %) over one year. 
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4.1 Results - Energy Systems Model 

The calculated results from the energy systems analysis are presented in boxplots showing 

the differences between the 2221 households modeled for the scenarios employed.  

 

To identify the full second-life performance of the LIBs, the second-life duration is needed. 

These were obtained by modeling the aging and degradation of the LIBs. In figure 9, the LIB’s 

degradation of SoH in the first year modeled can be seen. The degradation can be seen to 

vary between 1.98-2.60%p/year, depending on which scenario is employed. The annual 

degradation can in figure 9 be seen to increase with lower initial SoH. This is because the SoH 

limits the maximum available storage. Thus, a full cycle will occur more frequently at lower 

SoH leading to more prominent cycling degradation, which can be seen in the increased 

degradation rising from about 2.25%p/year in Scenario 3 in Figure 9 to 2.35%p/year in 

Scenario 1. Between scenarios 2, 4 and 5 where installation size was changed, the annual 

degradation can in figure 9 generally be seen to increase with ALR while the spread 

decreases. Meaning, as installation size is increased the storages are utilized more frequently, 

which causes more cycling degradation, and the operation pattern becomes more similar 

between households. PV production increases with ALR, producing more surplus of PV 

electricity available for charging the storage. Since the load is fixed, a lesser share of what is 

produced needs to supply the load when ALR is increased. Therefore, the share of surplus 

PV electricity increases with ALR. This leads to higher utilization of the storage even though 

the storage capacity also increases with ALR.  Furthermore, PV production surplus increases, 

the storage approaches its maximum possible utilization where the amount charged is 

increasingly limited by the storage capacity rather than the available PV production. This would 

then lead to similar operation patterns for the storages between the households which would 

explain the decrease in spread with larger installation size seen from scenario 4 to 5 in figure 

9. The degradation can for some households be seen to decrease with larger ALR. A possible 

explanation for this could be that the consumption pattern of these households to a large 

extent occurs where there is no PV production. So, the surplus of PV electricity would be 

relatively high compared to the storage capacity at lower ALR. This would cause a smaller 

storage to go through a high amount of cycles in a year, causing high cycling degradation 

effects. When increasing the installation size for the households which have a very high share 

of surplus PV at lower ALR, the relative increase in storage capacity is larger than the relative 

increase in surplus PV electricity. As a result, the storage goes through less cycles per year 

at a larger installation size and suffers from less degradation. 

From the annual degradation in figure 9, the second lifetimes could be estimated linearly. 

These can be seen in figure 10. 
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Figure 9: The degradation of nominal capacity during the first year modeled. The different 

scenarios are labeled with “S” and their respective number. 

 

 

 
Figure 10: The expected length of a LIB’s second performing lifetime. The different scenarios 

are labeled with “S” and their respective number. 

 

 

For the scenarios employed, the total specific charge during the second life is found to change 

mostly with SoH and less with installation size. This is evident in figure 11 where a large 

increase in  total specific charge can be seen from scenario 1 to 3 as initial SoH increases 

from 70% to 80%. Between scenarios 2, 4 and 5 where installation size was changed, the 

resulting total charge over the second life is more similar and around 800 kWh/kWhNSC at 

75% initial SoH. As could be expected, batteries with higher initial SoH have a significantly 

higher total charge during their second lifetime. This is mainly because of longer second 

lifetimes, allowing them to perform more cycles. Although, higher available storage volumes 

also have an impact. For the scenarios where the ALR is changed, the total charge increases 

slightly with ALR. It can also be seen to flatten out and decrease in spread as the installation 
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size increases. This, again, is because the storages approach their maximum utilization when 

ALR increases. A similar trend was seen in the annual degradation for these scenarios. 

With the results on total charge during the second lifetime, the energy allocation method 

chosen to distribute the burden of battery manufacturing between first and second life can be 

made in the LCA. For this allocation, more second-life energy throughput means 

manufacturing impacts are distributed over more energy and the share allocated to the second 

life increases. A high initial SoH will then have significant impact on the allocation factor. The 

effects of ALR on allocation will be smaller, but a higher ALR will lead to a slightly larger 

allocation to the second life. For the methods chosen, these results indicate that the allocation 

of burden of manufacturing between first and second life is more determined by the battery’s 

longevity than its second-life use case. The total charge value is also combined with the 

specific emissions for the solar PV to find the total emissions related to charging the batteries. 

 

 

 
Figure 11: Total amount of electricity charged per kWh of NSC during the second performing 

lifetime. The different scenarios are labeled with “S” and their respective number. 

 

 

To assess environmental performance of the second-life LIBs, emissions avoided by marginal 

and average accounting were investigated hourly in the model. These results were then added 

to the LCA. The avoided emissions attributed to the battery by average accounting can be 

seen in figure 12 and by marginal accounting in figure 13. Because the avoided emissions 

attributed to the battery are calculated by its energy supplied, very similar trends can be seen 

for avoided emissions by both average and marginal accounting as to what was seen for total 

charge in figure 11, a high dependency on the second-life durations. Similarly to the total 

charge, the avoided emissions by both accounting methods trend to flatten out with higher 

ALR due to the storage approaching its maximum utilization while surplus PV increases. For 

some household’s storages, the avoided emissions by marginal accounting decrease with 

ALR, whereas this is not the case by average accounting. This trend can be explained by the 

same reasoning as for the degradation and second lifetime of these households. Consumption 

hours for these households are mainly in the evening causing higher cycle count for smaller 

storages. The effect this has on degradation can be seen clearly in figure 9 between scenarios 

4 and 5. Because the specific emission intensity is constant by marginal accounting in this 
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study, the reduced utilization per unit of storage capacity seen for these few households when 

ALR increases causes the avoided emissions decrease with ALR too. The same trend not 

being seen for average accounting can be explained by the fact that most of the PV production 

and avoided consumption of electricity occurs in the summer when the emissions of the grid 

are the lowest in Sweden. So, most of the avoided electricity has relatively little related 

emissions as opposed to a fixed value as used for marginal accounting. The abundancy of PV 

and the emission intensity of the grid affecting this result can be seen in figure 8. The reduced 

emission intensity of the grid during summer is due to less demand, partly because there is 

no need for electrical heating, and low specific emissions of the cheaper production units.  

 

 

  
Figure 12: Avoided emissions attributed to the battery alone by average accounting. The 

different scenarios are labeled with “S” and their respective number. 

 

 

 
Figure 13: Avoided emissions attributed to the battery alone by marginal accounting. The 

different scenarios are labeled with “S” and their respective number. 
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4.2 Results - LCA 

After performing the energy systems analysis, the energy throughput of the second life was 

extracted, enabling energy allocation of the burden of manufacturing between the first and 

second life. The second-life energy throughput for the storage depends on the initial SoH 

assumed, installation size, habits of electricity consumption and PV production. The average 

energy throughput of the storages in the base scenario 2 is 785.3kWhel/kWhNSC which can 

then be compared to the throughput 2737.5kWhel/kWhNSC assumed for the first life (Janssen 

et al., 2019). Using energy allocation, the resulting share of the burden of manufacturing that 

should be attributed to the second life can then be calculated to 22.3% for base scenario 2. 

For all scenarios this value ranges 15-29%, which can also be seen as the share which a 

second life can relieve the first life from burden of manufacturing. Apart from burden of 

manufacturing some additional inputs were needed for the LIB to initiate its second performing 

life. These constitute the second-life LIB’s impacts which comes from the production and 

management of the battery itself and could for base scenario 2 be calculated to 

14.54kg CO2eq/kWhNSC. Since the storage operates differently for each scenario, the 

allocation factor for the burden of manufacturing is also different for each scenario. So, the 

average total charge of each scenario is used to find the different resulting allocation factors. 

The contributions for the different scenarios can be seen in figure 14 below.  

Tracing the upstream processes beyond surface level, it is estimated that roughly 17.6% of 

emissions coming from the battery itself are related to electricity consumption and 12.5% to 

transportation in base scenario 2. 

 

 
Figure 14: Allocated emissions for a LIB ready to initiate a second performing lifetime in a 

Swedish household with solar PV. In scenarios 1, 2 & 3 the initial SoH was altered while in 

scenarios 2, 4 & 5 the ALR was altered. 
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5 Discussion 

The LCA of this study builds upon the LCA performed by Janssen et al. (2019). The same 

throughput is used for the first life, however, the allocation factors used differ significantly even 

though results and assumptions on second life are largely similar (52.0% compared to 22.3% 

for base scenario 2). This is because Janssen et al. (2019) bases the allocation on the energy 

throughput of the second-life application, which uses 5 batteries with a lifetime of 4 years. In 

this study, only the second-life energy throughput of the battery determines the allocation. 

However, Janssen et al. (2019) uses second-life energy throughput for these LIBs as provided 

by Bobba (2018), which is comparable to the results of this study.  

Compared to Bobba (2018), the second-life LIBs modeled in this study stored 24 to 31% less 

energy per year, resulting in less cycling degradation. A part of the difference can possibly be 

explained by the latitude difference between Netherlands and Sweden, where these studies 

were conducted. Nyholm (2016b) identified considerable differences in the potential for PV 

self-consumption and self-sufficiency for different geographical locations and climates and 

considers further research regarding this as warranted.  

Furthermore, different cultures and climate will also cause different utilization of the storage 

due to different heating/cooling needs and consumption patterns. The load of household 

modeled in Bobba’s study (2018) is in the range of the modeled households of this study. 

However, the installation is considerably larger and would by the terms used in this study 

translate to ALR=11.36 and RBC=0.75. The difference in storage performance between the 

installation sizes modeled, spanning between ALR 2 to 4, was small. However, since there 

are considerable differences in results between the studies there is no guarantee that the 

minor dependence on installation size is true beyond the range modeled.  

By the degradation model of this study, the expected second lifetime of Bobba’s LIB would 

have been 4.74 years as opposed to the provided 3.6 years (Bobba, 2018). Hence, there is 

also a possibility that the second life durations are overestimated in this study. One reason for 

this could be that the operating conditions chosen for the model does not actually prevent 

other performance characteristics, like cell-to-cell heterogeneity and internal resistance, from 

determining the point of end-of-life. 

In this study the median value 41g CO2eq/kWhel (Schlömer et al., 2014) was used for PV by 

average accounting and 76.7g CO2eq/kWhel (Jones & Gilbert, 2018) by marginal. The 

emissions related to c-Si PV manufacture is highly dependent on the emission intensity of the 

utility used (Alsemma, 2000). This is later reflected in the PV’s specific emissions since 

production emissions are then carried by the total electricity produced. As a result of different 

assumptions on these parameters, the specific emissions of PV can be seen to vary anywhere 

from 10 to 100+g CO2/kWhel (Schlömer et al., 2014; Alsemma, 2000; Malmström & Olsson 

Tedin, 2016). Similar effect can be seen for the LIB in figure 6 where the emission intensity of 

the electricity supplied is reduced from scenario 1 to 3 as the energy throughput increases. 

PV production in Sweden is very seasonal dependent compared to an EU average, which also 

means less total production. Hence, the PV values used may be low for a Swedish use case. 

However, as electricity systems develop, it should be possible to produce PV without fossil 

resources. In a longer perspective, the PV value used could then be considered high. The 

same would apply for LIB production. Roughly 18% of pre second-life emissions came from 

electricity consumption and 13% from transportation. Both having good potential of becoming 

cleaner with the development of electricity systems and increased electrification. Considering 

this, the performance of second-life LIBs has good potential of improving in the long-term. 
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The energy system modeled uses measured historical data which represents the electricity 

system of 2012. Thus, the development of the electricity system, electricity price, 

meteorological differences between years and the progress of climate change, affecting the 

production of VRES, is not accounted for. Sweden has since 2012 been putting efforts into 

installing more wind power and phasing out nuclear power. An effort which has been 

increasing in intensity in the recent past.  Therefore, these technologies are likely 

misrepresented in the model. Although the emission intensity used for these technologies are 

very similar, the change in production mix may have a significant impact. As more wind power 

is installed, the variability of this technology becomes more apparent in the energy system, 

which may lead to increased use of the marginal technology or increased need for imported 

electricity. If the system limitations of the model in this study were expanded beyond the 

Swedish electricity system and allowed cross border trade of electricity, the marginal 

emissions could change drastically due to the change of marginal technology. Kristinsdóttir et 

al. (2013) assessed the emission intensity for consumption of electricity in the Swedish system 

2010 and found the average 39g CO2/kWhel. This was compared to the reported production 

average 25g CO2/kWhel from the same year. It is stated that the difference comes from values 

used for imported electricity and scope (Kristinsdóttir et al., 2013).  

The marginal technology for the model of this study is waste incineration. The main function 

of these plants is usually the waste reduction service it provides. The products of this service 

are heat and electricity which can be sold. However, the plants may increase their output for 

revenue. It is not unlikely that this will occur more frequently in the future since as the share 

of VRES increases in the grid while nuclear is being phased out. Furthermore, the annual 

output of hydropower is limited by precipitation. So, the alternative to increased waste output 

during shortage of renewable energy in Sweden and in Europe could be imported coal energy, 

which has a larger environmental impact (820g CO2eq/kWhel (Schlömer et al., 2014)). Thus, 

the assumption could be made that electricity from waste incineration produced beyond the 

waste reduction service is likely to increase in the future. This could then also be assumed to 

be the first technology to reduce its output when the net load is reduced i.e. the marginal 

technology.  

Nuclear power has frequency stabilizing effects on the grid. As this is currently being phased 

out, the need for this service may come to increase. Thien et al. (2017) means that frequency 

regulating services are of high interest to the TSO and could potentially provide high revenue 

for a battery storage owner. As the shares of VRES, providing electricity at low cost, grow in 

the energy system, the economic performance of a LIB storage could become more reliant on 

grid services in the future. However, it is uncertain to what degree the LIB storages can act as 

relief to the energy system unless a strategy regarding this is employed. Nyholm et al. (2016a) 

found energy storages to show diminishing returns for increasing storage capacity. Therefore, 

homeowners are as of now deemed unlikely to invest in storages which exceeds their own 

needs. However, the utilization of the modeled storages is very low during winter, which could 

mean there is potential for additional functions like grid services and arbitrage trading. If the 

events where any considerable revenue can be gained through arbitrage trading is defined as 

when the price of sold electricity is larger than average spot price+1SEK/kWhel, this is true for 

only 69 hours in the modeled year. So, a small potential for arbitrage trading exists. Although, 

since these are all winter hours, where PV production is low, arbitrage trade would likely not 

interfere much with PV self-consumption.  
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6 Conclusions 

The environmental performance of a second-life LIB operated for economic efficiency for a 

Swedish homeowner was in this study found to depend largely on its energy throughput, 

mainly effected by the duration of the second life and less by the installation size.  

The emissions from LIB production which were allocated to the second life was done so by 

energy allocation. A higher cycle count during the second life resulted in a lower emission 

intensity at which a LIB could supply electricity due to manufacturing impacts being distributed 

over more energy. By this allocation, a second life was estimated to be able to relieve the first 

life from 15 to 29% of the burden of manufacturing, which was considered 250kg CO2eq/kWh 

nominal storage capacity (Janssen et al., 2019). The difference in storage performance 

between households were found to be very small. Even though PV production was seen to 

vary considerably between households the performance of the storages, charging PV 

electricity, remained relatively indifferent. Thus, the annual performance of LIB storages 

installed in Sweden can likely be predicted.  

By Average accounting the emission intensity of electricity supplied by a second-life LIB 

storage was calculated to 62 to 76g CO2eq/kWhel. Out of this impact, 17 to 31g CO2eq/kWhel 

are allocated manufacturing emissions while remaining emissions comes from charging PV 

electricity at 41g CO2eq/kWhel. By marginal accounting the LIB could supply electricity at 102-

116g CO2eq/kWhel. Out of this impact, PV electricity was assumed to be charged at 

76.7g CO2eq/kWhel. With similar energy throughputs, the same amount of manufacturing 

emissions are allocated towards the second life by this method.  

As the storage enters the system, some electricity and its related emissions were considered 

avoided by the storage. From an average perspective, the avoided emissions were considered 

to come from the energy mix while from a marginal perspective, from the marginal technology. 

In this study, waste incineration was considered to be on the margin.  

The avoided emissions gave rise to a net impact of the storage. From the average perspective, 

the introduction of a second-life LIB produced an environmental burden with net impact 22 to 

37kg CO2eq/kWhNSC. From the marginal perspective, an environmental benefit was found with 

net impact -88 to -33kg CO2eq/kWhNSC. The emission intensity the storage is able to supply 

electricity at is higher than that of the Swedish grid electricity it replaces, causing the net 

environmental burden. Similarly, replacing electricity on the margin with higher emission 

intensity causes the net environmental benefit. 

In conclusion, the addition of a second-life LIB created an environmental burden from an 

average perspective while an environmental benefit from a marginal perspective. The 

environmental burden of a second-life LIB were by both accounting methods mainly 

constituted by the emissions of electricity charged to the storage. The impacts allocated from 

processes prior to the second-life were mainly constituted by battery pack manufacturing. 

 

In attempt to better understand the second-life use case of LIBs in Sweden and to capture 

time dependencies in the energy system, storages were modeled with an hourly resolution 

using energy systems modeling. Furthermore, grid emissions avoided by the storage were 

also calculated hourly in the model. By accounting for avoided emissions with average 

accounting on an hourly basis, the resulting emissions were 6.9 to 8.4% lower than when 

calculated with total energy throughput and average emission intensity of the grid electricity. 

This indicates that incorporating energy systems modeling into the LCA added value to the 

assessment. 
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The residential storages modeled were utilized relatively little during the winter due to the 

seasonal dependency of PV production in Sweden. This leaves potential for the storage to 

have additional functions, like grid services, to provide revenue for the homeowner and relief 

to the grid, even if this is not the primary intended use and storages are sized only for the 

energy needs of the homeowner. Thus, models which consider interaction between grid and 

battery through arbitrage trade and grid services is suggested as further research. So is the 

interaction between different home energy systems and the value and requirements of 

supplying grid services  
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Appendix 

 

 
Figure 15: The installed solar PV capacities for the different scenarios.  

 

 

 
Figure 16: The installed battery storage capacities for the different Scenarios. All households 

have RBC=1. 

 

 
For a reference of the installation's effect on the homeowner consumption, the terms self-
consumption and self-sufficiency is used. Self-consumption and self-sufficiency are as defined 
by Luthander et al. (2015). Self-consumption is the share of total PV produced electricity which 
is used to supply the load of the house and self-sufficiency is the share of the household’s 
total load which is supplied by PV produced electricity. These definitions are visualised in 
figure 17. Adding batteries to complement the solar panels allows excess PV electricity 
(produced in region C of figure 17) to be shifted forward in time where it can be used to supply 
the load. This can effectively increase the self-consumption and self-sufficiency since the 
consumption of grid electricity can be reduced. 
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Figure 17: Definitions of self-consumption (SC) and self-sufficiency (SS) as defined by 
Luthander et al. (2015), illustration by Nyholm (2016b). 
 
 
The self-sufficiencies and self-consumptions generated in the model can be seen in the 
following figures 18 and 19 respectively. At smaller installation sizes, a relatively small amount 
of electricity can be supplied by the PV and storage. So, most of it is used to supply the load 
and little is sold to the grid, causing the self-consumption to be high and the self-sufficiency 
low for smaller installation sizes. The opposite can be seen for larger installation sizes. As 
ALR is increased, the amount of electricity from the PV and storage that can be used to satisfy 
the load increases, which can be seen as an increase in self-sufficiency. However, as the size 
of the PV and storage system increases, more electricity needs to be sold to the grid due to 
higher amounts of surplus production of PV electricity and limited storage capacity. This 
causes the self-consumption to decrease with higher ALR.  
 

 

 
Figure 18: The degree of self-sufficiency of the households. The different scenarios are 

labeled with “S” and their respective number. 
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Figure 19: The degree of self-consumption of the households. The different scenarios are 

labeled with “S” and their respective number. 

 

 

To investigate the quality of the linear estimations of the second lifetimes, ten households 

were modeled for several consecutive years. After a model run, each household's final SoH 

value could be used as its input value for the next model run, starting at the different initial 

SoH values used in scenarios 1,2 and 3 (70%, 75% & 80%). After the consecutive runs, the 

point where the batteries reach their end of performing life, i.e. 60% SoH, could be found and 

compared to what was generated by the linear estimations. The degradation profiles 

generated for ten households using an initial SoH of 80% (scenario 3) can be seen in figure 

20. The model uses the same available storage volume throughout the whole year modeled 

to keep the model linear and ensure an optimal solution. Since the SoH has an impact on the 

available storage volume, the cycling degradation is relative to a constant storage volume for 

the whole year modeled. The degradation profile of household 4, seen in figure 20, deviates 

slightly from the other profiles with a steeper degradation profile. All households have a similar 

installation size, defined by the ALR and RBC, relative to their annual consumption.  So, 

household 4 likely has an electricity consumption pattern which causes the storage to be used 

very frequently, inducing cycling degradation. A possible scenario would be that the 

consumption to a large extent occurs at hours where there is no PV production, causing large 

amounts of surplus energy to be stored in the batteries for later use. As a result, the battery 

works through a large amount of cycles per year.  

In the degradation profiles, the increase in spread over time can be seen clearly. This effect 

was also seen in the linear estimations of the lifetimes, in figure 10. 
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Figure 20: Degradation profiles for the battery storages of 10 households in scenario 3. 60% 

SoH marks the end of life and is a shown as a red horizontal line at this value. 

 

 

In figure 21, the offset of the linear estimation of the second lifetime, compared to the results 

of the consecutive runs, can be seen. The cycling degradation is more prominent at lower SoH 

due to a larger number of cycles performed as a result of lower available storage volume. This 

is not accounted for in the model when making the linear estimation. Therefore, the offset can 

be seen to be larger for higher initial SoH used. Furthermore, it is also the higher frequency of 

performed cycles which causes the spread to increase for lower initial SoH. The difference in 

operation of the storages between the households become more evident as the effects of 

cycling degradation increases, causing larger variation in the quality of the linear estimation. 

The offset of the linear estimation was found to be 0-3.3% depending on initial SoH. Since a 

fixed available storage volume is used for each year modeled rather than for each hour, it is 

not unlikely that these results are slightly overestimated. However, the benefits of accounting 

for degradation and available storage volume on an hourly basis would likely make a relatively 

small difference. Furthermore, changing the accounting of SoH to an hourly basis would make 

the model non-linear. The benefit of making the model non-linear for this purpose is not 

considered to outweigh the uncertainty of an optimal solution. So, the model is kept linear. 

However, it should be noted that the found offset is not accounted for in the results of the 

energy systems analysis. The consecutive runs investigating the offset of the linear 

estimations were made for validation purposes only. 
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Figure 21: Offset of the linear estimation of the second lifetime compared to their respective 

degradation profiles derived from the consecutive model runs. Results shown have different 

assumed initial states of health and represent 10 modeled households.  


