
A Case Study for Progressive Algorithms

An Investigation into Progressive Extraction of Intermediate
Solutions for The Weighted Interval Scheduling Problem

Master’s thesis in Computer Science and Engineering

Johannes Ringmark

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

A Case Study for Progressive Algorithms

An Investigation into Progressive Extraction of Intermediate
Solutions for The Weighted Interval Scheduling Problem

Johannes Ringmark

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

A Case Study for Progressive Algorithms
An Investigation into Progressive Extraction of Intermediate Solutions for The
Weighted Interval Scheduling Problem
Johannes Ringmark

© Johannes Ringmark, 2020.

Supervisor: Peter Damaschke
Examiner: Richard Johansson

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

A Case Study for Progressive Algorithms
An Investigation into Progressive Extraction of Intermediate Solutions for The
Weighted Interval Scheduling Problem
Johannes Ringmark
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

iv

Abstract
Asserted convergence characteristics shared by all serial algorithms have tradition-
ally not been as prominent a measure of quality as time complexity has been. In
instances relying on the exploration of large datasets, a convergence bound on inter-
actively guided exploration approaches could act complementary to traditional time
complexity, and constitute a alternative starting point for algorithm design. In an
attempt to further explore the plausibility of this conjecture, a theoretical framework
(Alewijnse, 2014) for convergence analysis through decomposition into consecutive
intermediate computations is adopted, and its resulting intermediate solutions are
used as a mean of empirical algorithm convergence analysis and categorization. Dif-
ferent scenarios related to the weighted interval scheduling problem are explored in
this light, which is chosen primarily based on its documented compatibility with dy-
namic programming approaches. The result is presented as asymptotic upper bound
functions on the convergence along with conjectures on upper bound hardness with
respect to two different error functions, one adapted for stochastically and one for
deterministically rooted algorithms.

Keywords: Weighted Interval Scheduling, Progressive Algorithms, Convergence Anal-
ysis, Worst-Case Analysis

v

Acknowledgements
First and foremost, more than two hundred emails later, I have without a doubt
profited greatly from the criticism and suggestions of my supervisor, Professor Pe-
ter Damaschke, without whom the completion of this thesis would not have been
possible. I would also like to thank my examiner, Richard Johansson, who, together
with Peter, showed great patience and repeatedly granted me more time. Finally,
I also want to thank all of the folks at the Department of Computer Science and
Engineering, who have allowed me to resume writing after months of inactivity.

Johannes Ringmark, Gothenburg, October 2020

vi

viii

Contents

List of Figures ix

1 Introduction 5
1.1 Purpose . 5
1.2 Objective . 6
1.3 Method . 7
1.4 Limitations . 7
1.5 Background . 7
1.6 Overview . 7

2 The Framework 9

3 The Weighted Interval Scheduling Problem 11
3.1 Definition . 11
3.2 Introducing the Base Algorithm . 11
3.3 Designing a Stochastic Algorithm . 14
3.4 Sorting and Representation . 15
3.5 Taking an Adversary’s View on the Problem 18
3.6 Designing a Deterministic Algorithm 22

4 Concluding Remarks 31

ix

Contents

x

List of Figures

2.1 The internal relations of the framework’s concept. The x-axis illus-
trates the error. The y-axis shows the n rounds denoted by r. The
line is an example of a possibly desired monotone convergence profile. 10

3.1 The convergence, obtained by an consideration of the heaviest inter-
val already during the first round. The solid line is a convergence
asymptote that is continuous up until the last round n. 21

xi

List of Figures

xii

List of Algorithms

1 WIS1 computes a non-overlapping interval set with the highest profit
from progressively bigger subsets of input interval. First, it sorts
the interval and fills a memoisation array, then it infers an optimal
solution through backtracking. 13

2 WIS2 computes a non-overlapping interval set with the highest profit
from progressively bigger subsets of input interval. It sorts the inter-
vals progressively by using a heap. 19

3 WIS3 computes a non-overlapping interval set with the highest profit
from progressively bigger subsets of input interval. It considers the
heaviest interval during its first round. 20

4 WIS4 computes a non-overlapping interval set with the highest profit.
The subroutine h decides the enumeration order. 23

xiii

List of Algorithms

xiv

Abbreviations

DP Dynamic Programming.

FPTAS Fully Polynomial-Time Approximation Schemes.

WIS Weighted Interval Scheduling.

1

Abbreviations

2

Glossary

dae largest integer not larger than a.
bac smallest integer not smaller than a.
o(P) optimal solution value of problem P .
|A| cardinality of set A.

3

Glossary

4

1
Introduction

Precisely at which shape or size large data sets are a computational challenge is
ambiguous, since it is in general highly dependent on which operations are to be
applied to the data set. Conventionally, the total time of an operation (the so-
called competitive complexity analysis1) has traditionally received the most attention
when determining the cumbersomeness of data sets. While this may be fair, it also
comes at the expense of other alternatives, such as the structure of the computation
process, which consequently have not been prioritised. It is, naturally, essential for
the algorithm to arrive at a desirable conclusion and to do so as fast as possible. Still,
if the problem instance is sufficiently large, a decision not to consider intermediate
results is a decision to postpone the extraction of some knowledge.

Designing for parallel execution causes its own problems. The design and implemen-
tation of concurrent algorithms, when practised, is widely viewed by the community
as an intrinsically difficult and intellectually demanding undertaking. Progressive
combinatorial optimisation algorithms can help bridge this gap in difficulty.

We will demonstrate that this issue is new and cannot be replaced with any fore-
bearer (i.e. neither with approximation algorithms, heuristics, nor with anytime
algorithms), and it can potentially give a clearer picture of how to transition be-
tween approximate solutions. We conjecture that more control of the execution can
be achieved through the extraction of intermediate results of progressively higher
quality.

1.1 Purpose
This thesis serves a dual purpose: as a more extensive overview of the subject of
progressive algorithms and as a source for discussion. Historically, as complexity
has come into focus, natural but abstract algorithm-related concepts like the error
of a solution have not been introduced to the operator in a systematic way during
execution, but rather after termination. The handful of contemporary techniques
wherein the run-time dynamics have been in focus, such as meta-heuristics, contract
algorithms, and anytime algorithms, all fail to guarantee the eventual output of an

1Through the entire thesis, italics will be used when introducing context-specific technical terms,
and occasionally to resolve any ambiguity. Terms not introduced in this way should consequently
henceforth be interpreted as general or more abstract.

5

1. Introduction

optimal solution. This can be seen as a direct result of the fact that they traditionally
have received the most attention as pragmatic ways to guarantee arbitrarily good
solutions, for particularly complex differentiable functions that may not have a global
maximum.

Through further analysis of this new area, we wish to advance this theoretical di-
rection and extend the present reach through the deduction of solid, relevant holds
from which provable results can be reached, thereby benefiting multiple disciplines.
We are interested in results which can be deduced through rigorous mathematical
reasoning. The problems wherein such results can be helpful presumably require
early access and particularly time-consuming solution methods. They are problems
such as the construction of large infrastructure, the exhaustive analysis of biological
material and organisms, or, given a large enough data set, any NP-hard problem. If
such an algorithm with several intermediate solutions were to exist, for example, for
the problem of designing infrastructure, the construction could start once the first
solution has been computed. Then depending on unpredictable outer parameters,
it could be steered towards the areas with the greatest prosperity. Such iterative
methodologies have been used, through interactive identification of desirable parts,
to steer indexing and to query [1] [2]. By allowing for quickly retrieval of information,
they can significantly increase the performance of applications within economics as
demonstrated in [3], and thus substantially increase profit [4].

While the previously-mentioned problems presuppose some foreknowledge and a
natural connection between the data at hand and some specific problem, in the
opposite case, when the problem is to interpret the data, the convergence profile
of an exploring heuristic can, by comparing it to a larger set, be used to make
estimates regarding properties. At present, the complexity class of a problem can
be looked up for hundreds of common algorithm problems [5], but inferring a
time-profit convergence classification of any of those problems requires considerably
more effort. Such a categorisation would be useful only if all problems were to
use similar definitions of error and profit. A categorisation could also interactively
guide heuristics or constitute a starting point for future algorithm design. It may
become apparent that no such conclusions can be drawn. The purpose of this thesis
is primarily to be exploratory.

1.2 Objective

The overall objective of this exploratory thesis is to improve understanding of how
the characteristics of intermediate solutions relate to and impact each other and
the final solution. This is done through the computation of provably tight bounds
for the convergence of over-time change of carefully defined error functions for a
textbook problem—the Weighted Interval Scheduling Problem—without exceeding
the best asymptotic time of its traditional counterparts.

6

1. Introduction

1.3 Method
Through the use of a framework, we apply rigorous mathematical argumentation to
analyse the convergence and time complexity of new progressive algorithms that we
design by providing alternative enumeration orders to a slightly modified traditional
non-progressive base algorithm. We will build the framework on the notations in-
troduced in [6] (intermediate and complete solutions, convergence function, error
function), and adopt the framework’s definition of progressive algorithms. We also
include a brief summary later for the reader’s convenience. Furthermore, decisions
and the resulting bounds are analysed to identify where further challenges may be
sought in the future, and whether any coherent results can be derived.

1.4 Limitations
The scope of this thesis is limited to the study of only one problem. We acknowl-
edge that this problem cannot be thought to represent more than a fraction of all
Dynamic Programming-compatible problems. The algorithm design focuses on
altering the enumeration order of pre-selected existing well-known algorithms which
are considered efficient with regards to time complexity. Another algorithm, which
might be slightly slower, could have a better convergence profile and dominate ours.
A limitation, connected to our definitions, is that our convergence bounds will de-
pend on our definition of profit, simply because profit, although clear in an informal
sense, can be defined in multiple ways.

1.5 Background
Recent works on progressive algorithms include the analysis and design of progres-
sive geometric algorithms [6] and of a progressive algorithm computing indexes [7].
The progressive geometric algorithms presented include the analysis of array sorting,
finding popular places in a set of trajectories, and the convex hull of a planar point
set. Presented works on graph-related progressive algorithms include an algorithm
for the Group Steiner Tree [8]. As shown in [6], progressive algorithms can be de-
rived from sequential repetitive use of approximation algorithms; especially suitable
are Fully Polynomial-Time Approximation Schemes, abbreviated FPTAS. Alewijnse
has further explored this relationship in [6] and with the result of a theoretical up-
per bound. Thus, similarities can also be found between progressive algorithms and
anytime algorithms, which become especially notable if a progressive algorithm is
designed in a stochastic context.

1.6 Overview
Initially, early sections 2-3.2 introduces the framework, notations and a traditional
algorithm. Section 2 further elaborates on the concept of convergence and error.

7

1. Introduction

Section 3.1 describes the problem, and section 3.2 outlines the base Dynamic Pro-
gramming algorithm that is a starting point for the later design.

Later chapters present a stochastic enumeration strategy 3.3 and a deterministic
enumeration order 3.6. Section 3.4 discusses different aspects of sorting in regards
to the combination DP and progressive algorithms, and section 3.5 presents a way
of viewing the challenges in the design process as the challenge of a competitor when
facing an adversary.

8

2
The Framework

The framework that will be used for our analysis of progressive algorithms is as
follows: we define a problem

P := (D, error, S(D)) (2.1)

to be the entity to which the following three concepts relate: the data set D =
{d1 . . . dn} that forms the problem input, the error function:

error : S ∈ [0, 1]

and the solution set S(D) which is the set of all valid solutions S ⊆ D. First and
foremost, a solution is a set of elements whereto the error function constitutes a
non-negative and problem-specific grading system, and wherein a valid solution is a
solution for which a error value exists. The value error(S) is referred to as the error
of the solution S. A complete solution is a solution without error: error(S) = 0,
and an intermediate solution is a solution which an algorithm outputs prior to its
complete solution.
An algorithm is a progressive algorithm if the following holds: its error is bounded
from above by a convergence function, fconv(r) ≥ error(Sr) where

fconv : r ∈ R+

is defined for rounds r ∈ {1, . . . , n}, and it has a set of n−1 consecutively numbered
intermediate solutions S1, . . . , Sn−1 and a complete solution Sn.

Intuitively, the relations can be summarised as follows: if an algorithm outputs
n − 1 valid intermediate solutions, all of which are bounded by its convergence
function, before finally producing a solution with zero error, then the algorithm is
progressive; the solutions without an error are called complete solutions, and the rest
intermediate solutions. Rounds constitute the intervals in between solution outputs.
While the rounds are allowed to differ in the amount of time they require, when we
discuss the round time of a progressive algorithm, we refer to the time of the round
requiring the longest time. For a convergence function to be valid in this context,
it must be monotone, namely of decreasing error; ergo,

fconv(r) ≥ fconv(r + 1)

9

2. The Framework

r

error(Sr)

1 2 3 4 n− 1 n. . .

1

0

fconv(r)

Figure 2.1: The internal relations of the framework’s concept. The x-axis illus-
trates the error. The y-axis shows the n rounds denoted by r. The line is an
example of a possibly desired monotone convergence profile.

for all rounds r ∈ {1, . . . , n}.

The time complexity of a progressive algorithm is conventionally computed asymp-
totically and represented by T (n) where n denotes the input size.

Approximation algorithms are algorithms that, instead of computing the optimal so-
lution, calculate an approximate solution. In this context, we define an α-approximation
algorithm as an algorithm which given a data set D computes a solution Sa to a
problem P such that Sa is compatible with an error function error such that

α ≥ error(Sa)

where α is a non-negative number.

10

3
The Weighted Interval Scheduling

Problem

With the framework defined, we turn our attention to the second part wherein
our problems are tested for progressive features. We achieve this by choosing an
algorithm as a starting point and then analysing its different enumeration strategies
by adopting a competitive view of convergence.

The WIS problem is a promising candidate for two reasons. It can arguably be
regarded as efficiently solved to optimality, and its total time requirement is naturally
strongly limited, as is the time that a heuristic can be spent on each round. This is
a clear limitation on creativity, because all techniques that require time approaching
that of the best-known traditional solution must also be partitionable into smaller
problems, each of which contributes to the convergence.

3.1 Definition
Weighted interval scheduling, the problem P at hand, can be loosely formulated
as the problem of picking the subset of non-overlapping weighted intervals S ⊆ D
from a predefined input set D = {I1 . . . In} of n intervals Ii = (si, fi, pi > 0) that
maximises ∑Ij∈D p(Ij) where 1 ≤ i ≤ n and p : Ii ∈ R+. By overlap-free we mean
that for any two intervals Ij := (sj, fj) and Ij+α := (sj+α, fj+α), such that fj ≤ fj+α
it holds that sj+α ≥ fj. We define, in accordance with definition (2.1), the problem
P by defining its remaining constituent, the error function, as follows,

errorWIS(S) := 1−
∑
Î∈S p(Î)∑

I∈WIS(D) p(I)

where WIS(D) is an arbitrary optimal solution from S(D) and where S must be
overlap-free. We have chosen the name "profit" over weight as affording a reoccurring
reminder that it is the profit that is maximised.

3.2 Introducing the Base Algorithm
The algorithm we will use when designing our own requires O(n log n) time and is
based on that in [9]. The algorithm consists of two steps: firstly, all intervals are

11

3. The Weighted Interval Scheduling Problem

sorted on increasing right endpoints, using O(n log n) time; secondly, an iterative
backtracking routine is used to compute the solution in O(n) time.

We previously defined our optimal solution to be the setWIS(D). We now continue
and let OPT (j) denote the optimal profit of the subset from D containing the j
first intervals enumerated on increasing right endpoints where 0 ≤ j ≤ n. Using
this definition of OPT (j) and a renowned DP recurrence [9], the definition of the
iterative routine OPT can be formulated as follows,

OPT (j) = max(OPT (j − 1), OPT (fnext(j − 1)) + p(ij)) (3.1)

OPT (0) = 0

where j ≥ 1, and fnext(j) is the index of Ij’s nearest preceding non-overlapping
interval.

By using the recurrences as a mean of decomposition, the problem can be viewed
recursively as sets of subproblems whereto DP can be applied to compute the op-
timum sum, the optimal set of intervals, or both–depending on one’s objective. In
general, in order for DP to be applicable, these subproblems must be such that they
build up to larger and larger subproblems and finally to the optimal solution. In
our case, this property follows directly from the recurrence (3.1).

The optimum sum can be computed by applying addition and the max function to
the recurrence accordingly; thus, the problem is compatible with the DP approach.
The correctness of the solution follows directly from the recurrence, but the effective-
ness and complexity remain dependent on the implementation and the computation
model.

The algorithm utilises two memoisation arrays, in order to prevent redundant com-
putations. After firstly sorting the intervals, it uses array M to store the solution
corresponding to each subproblem OPT (j) for j < n, and array N to store the
values of fnext such that when the arrays have been filled

OPT (j) := M [j]

and
fnext(j) := N [j]

for j ∈ {1, . . . , n−1}. Once the arrays are filled, the algorithm computes the optimal
solution WIS(D) by tracking the recursion’s choices backwards through array M
starting from M [n]. A rough implementation describing this is defined in pseudo-
code in Algorithm 1. Because the proposed algorithm already uses sorting and thus
O(n log n) time, we settle with binary search as the procedure for computing all
previous non-overlapping intervals inO(n log n), while allowing that there are better
and faster approaches.

12

3. The Weighted Interval Scheduling Problem

Algorithm 1 WIS1 computes a non-overlapping interval set with the highest profit
from progressively bigger subsets of input interval. First, it sorts the interval and
fills a memoisation array, then it infers an optimal solution through backtracking.
1: procedure WIS1(Array intervals)
2: int n = size(intervals)
3: int m = b n

log n
c

4: Array M = instantiateMemoisationArray()
5: intervals = sortOnIncEnd(intervals);
6: Array copiedIntervals = newArray();
7: for r := 1, 2, . . . , dlog(n)e do
8: for p := m(r − 1), . . . ,m(r − 1) +m do
9: copiedIntervals = addTo(intervals[p], copiedIntervals);
10: end for
11: for p := m(r − 1), . . . , size(copiedIntervals) do
12: Integer next = fnext(p, copiedIntervals);
13: Integer pick = profit(copiedIntervals[p]) +M [next]
14: Integer ignore = M [p]
15: M = addTo(max(pick, ignore),M)
16: end for
17: S = backtrack(copiedIntervals, M)
18: Output S
19: end for
20: end procedure
21:
22: function instantiateMemoisationArray
23: Array temp = newArray()
24: temp = addTo(0, temp)
25: return temp
26: end function
27:
28: function backtrack(Array copiedIntervals, Array M)
29: Integer sum = 0
30: Array solution = newArray()
31: Integer i = size(M)− 1
32: while i > 0 do
33: if m[i] > m[i− 1] then
34: sum = sum+ profit(copiedIntervals[i− 1])
35: solution = addTo(copiedIntervals[i− 1], solution)
36: i = fnext(i− 1, copiedIntervals) + 1;
37: else
38: i = i− 1
39: end if
40: end while
41: return solution
42: end function

13

3. The Weighted Interval Scheduling Problem

Compared to [9], our minor modifications alter the execution slightly, but they
do not alter the underlying approach. The differences in this algorithm’s execution
compared to [9] are in the way the elements are selected and how sets of elements
are processed. The algorithm that we propose selects a subset of elements (see
Algorithm 1, rows 8-10) in rounds (rows 7) and runs the DP procedure (rows 11-
16) and the backtracking (rows 17, 28-42) on these elements exclusively, before it
addresses the other elements. Instead of filling all the tables completely with all
the elements, executing the entire recurrence once as in [9], it computes the tables
by considering more and more intervals gradually in iterations. For each iteration,
a new subset of intervals is added to the working set, which is then sorted and
processed. If the considered subsets are externally sorted, the memoisation arrays
can be continuously extended, without any re-computations. Through a worst-case
analysis of enumeration strategies—ways to construct these interval subsets— we
determine if the convergence can be improved.

3.3 Designing a Stochastic Algorithm
By combining the previously-explained algorithm routine with a randomised enu-
meration strategy, we obtain a randomised algorithm that achieves an expected
linear growth of profit and thus also an expected linear decay of error. For this
stochastic approach, we choose to call an algorithm pseudo-progressive if it is a
progressive algorithm with respect to the error function (3.2)

errorPWIS(S) := 1− E[Zm]∑
i∈I p(i)

(3.2)

where Zm is a discrete random variable denoting the sum of profits from selecting
a number m = |S| of intervals from the interval population of size n using some
predefined strategy, and where E[Zm] denotes the expected profit-sum.

Theorem 1. There is a stochastic pseudo-progressive algorithm for the Weighted
Interval Scheduling Problem that runs in dn log ne rounds, denoted by indices r, in
O(n log n) time with a round time of O(n). This algorithm obtains an expected
linear decay in the error computed through errorPWIS.

Proof. We pickm intervals (0 ≤ m ≤ n) at random, uniformly, without replacement.
Let Cj ∈ {0, 1} be an indicator random variable that takes the value 1 if the interval
with index j was selected and 0 if that same interval was not selected. The random
variable we are investigating is

Y =
∑n
j=1 Cjxjp(Ij)∑n
j=1 xjp(Ij)

(3.3)

where xj ∈ {0, 1} is 1 if the interval is in some optimal solution S = WIS(D) and
0 otherwise. Here Y represents the ratio of the profit sum of the selected intervals
that are also in the optimal solution S, and all the intervals in the optimal solution

14

3. The Weighted Interval Scheduling Problem

S. The probability P [Ci = 1] is always m/n. Consequently, we have the relation in
(3.4).

E[Ci] = m

n
(3.4)

The expected value of Y can then be expressed as in (3.5) using the relation in (3.4).

E[Y] =
∑n
j=1 E[Cj]xjp(Ij)∑n

j=1 xjp(Ij)
=
(
m

n

) ∑m
j=1 xjp(Ij)∑m
j=1 xjp(Ij)

= m

n
(3.5)

Moreover, if m is set so that m := rdn/ log ne for r ∈ {1, . . . log n}, then we obtain
the convergence function in (3.6) which constitutes an upper bound on the error.

fconv(r) = 1− r
(
d n

log ne/n
)
≥ 1− r

log n (3.6)

This proves that for r ∈ {1, . . . , log n}, selecting a set of m intervals uniformly at
random and feeding them in progressively bigger sets repeatedly to Algorithm 1, one
achieves an linearly increasing ratio, and consequently also a linear decrease in the
error bound by (3.6).

In the rare case where the heaviest interval already constitutes a bigger portion
of the sum of intervals than m/n, then the expected linear convergence in (3.6)
might be marginally improved upon by incorporating a preprocessing search routine
that determines the heaviest interval. The error function, while giving an expected
convergence, does in the worst-case scenario not guarantee any profit; thus, without
such a routine, the expected numbers of selections before finding the heaviest interval
is n/2. The profit of the heaviest interval, which one could guarantee in the first
round, can then not be guaranteed until much later.

3.4 Sorting and Representation
Achieving a linear convergence is arguably straightforward if one is prepared to sacri-
fice parts of, or loosen, the definition and consider the error stochastically. However,
achieving a good convergence for a deterministic algorithm can be rather arduous.
In the previous sections on algorithm design, we attempted to target and analyse
very specific implementation parts. The following section takes a broader view. We
discuss the sorting and the representation intuitively, as if viewed from afar, this
time without focusing on implementation-related details. One major bottleneck,
sorting, was identified in the previous section. Here we continue that pursuit of
pinpointing bottlenecks.

Initially, we look for signs of bottlenecks by turning our attention to the weight-
free Interval Scheduling problem for which all weights can be regarded as equal
and therefore disregarded. This weight-free variant can be solved even by a greedy
algorithm; however, even then, though it appears simpler, the greedy approach is still

15

3. The Weighted Interval Scheduling Problem

as dependent on the intervals being sorted as the Dynamic Programming approach
with weights.

As mentioned, sorting specifically constitutes an obvious bottleneck and requires a
great deal of time. However, conceptually it is necessary to reify the representation
of the overlaps, without which no solution can be verified. Even without having
to consider weights, and consequently without having to perform any intermediate
re-sorting to satisfy different subroutines’ ordering criteria, one may conjecture that
building a full representation of such intervals’ overlaps requires O(n log n) time
in the worst-case scenario. In conclusion, by analysing the role sorting plays, we
conclude that the limitation lies in our ability to construct a better representation
of the overlaps, and in turn, in our ability to more quickly verify the lack of overlaps
in a potential solution. Therefore, this limitation applies to the weighted variant
as well. In light of these limitations, we proceed in the thesis with sorting-based
algorithms and disregard alternatives.

Through two lemmas, we demonstrate a new way in which progressive sorting can be
designed using log n rounds, such that for each elapsed round dn/ log ne additional
elements are sorted. This is achieved by utilising a well-known heap-sort algorithm,
iteratively in rounds. This sorting algorithm will guarantee that greater numbers
are sorted and presented before lesser. Another more general progressive sorting
algorithm that guarantees that all elements are sorted, regardless of which dn/ log ne
elements are selected in each round, is presented in [6].

Lemma 1. There is a well-known algorithm that, given a heap filled with n natural
numbers (that is, so that the number in every node is larger than the numbers of its
children) can extract the m greatest numbers (1 ≤ m ≤ n) in sorted order, using
O(m log n) time.

Proof. Given a balanced and filled heap, the greatest or, alternatively, the smallest
numbers can be iteratively retrieved in O(log n) time each [10]. Once the set has
been filled and ordered, this quality allows for the extraction of the m greatest
numbers in sorted order using only O(m log n) time.

16

3. The Weighted Interval Scheduling Problem

Lemma 2. There is a progressive sorting algorithm that, given a set of natural
numbers, can by sorting m := dn/ log ne numbers in each round using O(n) time,
guarantee two things: continuously, after the rth round it has sorted the mr largest
numbers, where 1 ≤ r ≤ log n. Then after the log nth round it has sorted all n
numbers using O(n log n) time.

Proof. It follows from Lemma 1 that once a balanced heap has been constructed, all
n items can be sorted iteratively by extracting m := dn/ log ne items at the time for
r ∈ {0, . . . , log n} rounds. For each round, the heap data structure by design enforces
a relationship between the items. This structure ensures that if elements are popped
from the heap one-by-one, then any number extracted earlier will be greater to any
number extracted later. Consequently, after log n rounds of repeatedly extracting
m numbers, then numbers are presented in sorted order. The construction of a heap
requires O(n) time [10], and the sorting, as demonstrated above, requires O(log n)
time, thus the total time of this sorting algorithm is O(n log n).

17

3. The Weighted Interval Scheduling Problem

3.5 Taking an Adversary’s View on the Problem
It is clear that a sorting routine exists that allows for intermediate extraction. How-
ever, while facilitating a round-based approach, as the routine currently does, it
neither impacts the convergence profile, nor provides a valid solution with regards
to the error function. Consequently, it is not much use in isolation. However, by
using the routine to sequentially provide the parent-algorithm with new internally
sorted interval groups whenever such are available, we have Algorithm 2 which,
unlike Algorithm 1 presented earlier, is a progressive algorithm.

The proposed Algorithm 2 shares the inner mechanism of Algorithm 1 with one ex-
ception: instead of sorting the entire interval set once, it utilises a heap to distribute
the sorting asymptotically-evenly among all rounds. Adopting the progressive sort-
ing from Lemma 2 now allows the algorithm for each round to sequentially extract
m new sorted intervals, compute the solution, and extend the memoisation and
backtrack table, all in asymptotically O(n) time.

To analyse more easily which limits are associated with the convergence, we can
imagine a game with two players, denoted as player and adversary, respectively.
In this game, the player starts by selecting a deterministic group-enumeration al-
gorithm. Then the adversary must provide as bad an input set as possible in an
attempt to force the worst possible convergence.

Assume the player chose either of Algorithm 1 or 2, then we assert that, consequently,
the adversary can design an effective intervals set A by letting it fulfil two criteria.
Firstly, A has to contain a subset of exactly m := dn/ log ne non-overlapping inter-
vals B with a sum that is γ times heavier than the sum of the complementing set
A−B, that is ∑

i∈B
p(i) = γ

∑
j∈A−B

p(j) (3.7)

Secondly, all the intervals in B have to have all the necessary characteristics needed
for them to be the last ones processed. For Algorithm 1 or 2, since they process
intervals on their decreasing right endpoint, the intervals in B can be guaranteed to
be evaluated last simply by letting fk < fl for 0 ≤ k < n−m and n−m ≤ l ≤ n.

Adopting such a strategy would prove effective for the adversary, who then can allow
γ to approach ∞ to reach the worst-case convergence. Then, no decrease in error is
achieved before the last round. In conclusion, the algorithm considered up to this
point has a significant weakness as a progressive algorithm. It does not consider
the profits of the intervals with regard to the convergence, and it relies on a fixed
deterministic enumeration order.

When examining methods for incorporating weight relations, we find that the player
can possibly improve the bound slightly by adding to Algorithm 2 an initial prepro-
cessing procedure wherein the heaviest interval is found automatically

18

3. The Weighted Interval Scheduling Problem

and included in the set of intervals that will be sorted in the first sorting round. A
lower bound on the profit sum after the first round is thus the profit of the heaviest
interval ah by itself.

Algorithm 2 WIS2 computes a non-overlapping interval set with the highest profit
from progressively bigger subsets of input interval. It sorts the intervals progressively
by using a heap.
1: procedure WIS2(Array intervals)
2: Integer n = size(intervals)
3: Integer m = b n

lognc
4: Array M = instantiateMemoisationArray()
5: Heap heap = instantiateHeap(intervals);
6: Array copiedIntervals = newArray();
7: for r := 1, 2, . . . , dlog ne do
8: for p := m(r − 1), . . . ,m(r − 1) +m do
9: copiedIntervals = addTo(pop(heap), copiedIntervals);

10: end for
11: for p := m(r − 1), . . . , size(copiedIntervals) do
12: Integer next = fnext(p, copiedIntervals);
13: Integer pick = profit(copiedIntervals[p]) +M [next]
14: Integer ignore = M [p]
15: M = addTo(max(pick, ignore),M)
16: end for
17: S = backtrack(copiedIntervals, M)
18: Output S
19: end for
20: end procedure

Moreover, the worst possible convergence can still be obtained by the adversary
using the same approach as in (3.7). The same convergence holds even if we design
the set of intervals to contain a subset B consisting of dn/ log ne non-overlapping
intervals with a combined profit of γ times the profit of its complement.

Notably, γ is now not only bounded from below but also from above (3.8).

∑
i∈B

p(i) = γ
∑

j∈A−B
p(j), 1/n < γ ≤ dn/ log ne (3.8)

We create Algorithm 3 by first extending Algorithm 2 with a preprocessing routine
(see Algorithm 3, rows 5-6) and then by moving the sorting step (see Algorithm 2,
row 14).

19

3. The Weighted Interval Scheduling Problem

Algorithm 3 WIS3 computes a non-overlapping interval set with the highest profit
from progressively bigger subsets of input interval. It considers the heaviest interval
during its first round.
1: procedure WIS3(Array intervals)
2: Integer n = size(intervals)
3: Integer m = b n

lognc
4: Array M = instantiateMemoisationArray()
5: Interval heaviestInterval = getHeaviestInterval(intervals)
6: intervals = removeFrom(heaviestInterval, intervals)
7: Heap heap = instantiateHeap(intervals);
8: Array copiedIntervals = newArray();
9: copiedIntervals = addTo(heaviestInterval, copiedIntervals);

10: for r := 1, 2, . . . , dlog ne do
11: for p := m(r − 1), . . . ,m(r − 1) +m do
12: copiedIntervals = addTo(pop(heap), copiedIntervals);
13: end for
14: copiedIntervals = sortOnIncEnd(intervals);
15: for p := m(r − 1), . . . , size(copiedIntevals) do
16: Integer next = fnext(p, copiedIntervals);
17: Integer pick = profit(copiedIntervals[p]) +M [next]
18: Integer ignore = M [p]
19: M = addTo(max(pick, ignore),M)
20: end for
21: S = backtrack(copiedIntervals, M)
22: Output S
23: end for
24: end procedure

Theorem 2. There is a progressive algorithm for the Weighted Interval Scheduling
Problem requiring log n rounds, denoted by indices r, in O(n log n) time with a
round time of O(n). This algorithm results in a convergence bounded by the function
fconv(r) := 1− logn

r
× logn

n+2 logn with respect to the error function errorWIS(Sr).

Proof. The recurrence and the backtracking (see, Algorithm 3, rows 16-21) of Algo-
rithm 3 remain identical to those of Algorithm 2. The correctness of the solutions
then follows.

The additional computational time added, apart from the O(n) needed for the pre-
processing, are O(log n) time to insert the heaviest interval into the sorted working
set (see Algorithm 3, row 9) and O(rn/log n) to recompute the memoisation array.
The asymptotic time will remain the same as for Algorithm 1.

20

3. The Weighted Interval Scheduling Problem

An upper bound for the error can be computed for Algorithm 3 through the following
series of algebraic manipulations:

errorWIS(Sr) = 1−
∑
i∈S p(i)∑

j∈o(D) p(j)

≤ 1− p(ah)
(1 + d n

logne)p(ah)

≤ 1− log n
n+ 2 log n

As fconv(r) must be greater than errorWIS(Sr) for all r ∈ {1, . . . , log n}, it follows
that (3.9) is a valid convergence function for this algorithm with regard to this error
function.

fconv(r) := 1− log n
r
· log n
n+ 2 log n (3.9)

This is illustrated in Figure 3.1 below.

r

error(Sr)

1 2 3 4 n− 1 n. . .

1

0

fconv(r)
1− logn

n+2 logn

Figure 3.1: The convergence, obtained by an consideration of the heaviest interval
already during the first round. The solid line is a convergence asymptote that is
continuous up until the last round n.

However, for a large n, the decrease in error obtained from finding p(ah) approaches
zero

lim
n→∞

log n
n+ 2 log n = 0

When the convergence is slightly improved, as we demonstrated by letting n→∞,
the adversary can still rather effortlessly construct an interval set whereby this
worst-case convergence can be achieved.

In this section, we have argued that if the traditional algorithm is provided with
the entire set of intervals, on the one hand, we have the upside that the algorithm
only needs to sort the intervals once. On the other hand, the downside is that the
knowledge of the convergence will then be limited. We have also argued that if the
heaviest interval is removed from the interval set before the sorting and the algorithm
is modified to output either it or the intermediate solution, we can guarantee the
convergence given by (3.9). As long as the heaviest interval can be kept separated
from intermediate solutions, the memoisation array can be extended and does not

21

3. The Weighted Interval Scheduling Problem

need to be recomputed for each round. However, after the interval eventually is
incorporated the memoisation must be recomputed for each round.

The conclusion is that providing the algorithm with subsets in any other order
than that described above likely comes with significant computational overhead.
This overhead arises from the associated necessary interval re-sorting and from the
associated recurrent need to entirely recompute the memoisation array.

While the previous section has focused on this drawback and argued for a group
enumeration approach, enumeration with the aim of improving the bound remains
unexplored. Therefore, in the following section, we turn our attention away from
the search for improvements through preprocessing and continue by weighing the
advantages of incorporating a set of selected enumeration strategies.

3.6 Designing a Deterministic Algorithm
In this section, we will present a second deterministic algorithm which relies on a
combination of sorting and partitioning strategies. The resulting algorithm’s con-
vergence function dominates fconv(r) ≤ f ∗(r) where f ∗(r) denotes the convergence
function

f ∗(r) := 1− (log n
r

) · (1 + d n

log ne)
−1

for 0 ≤ r < log n.

We let h denote a one-to-one mapping that maps an unordered set of intervals
labelled xi, . . . , xn to an ordered set consisting of the same intervals. We will refer
to the order of the sorted set as the enumeration order and the function h as the
enumeration strategy.

Moreover, we limited our set of strategies and considered only "compound-attribute"
strategies to be of interest. By the compound adjective "compound-attribute," in
contrast to "single-attribute," we mean orderings based on several attributes, and
not those that are based on a ratio of attributes or based on only one attribute, such
as left endpoint, right endpoint, weight (individually, or as a sum), or overlaps. For
example, a compound order could be an ordering in which for every even turn the
interval is chosen e.g. based on its left endpoint, and for every odd turn, the interval
is chosen e.g. based on its weight.

From Algorithm 3, we create Algorithm 4 by replacing the heap-pop set extrac-
tions with a new step which instead culls from a predefined enumeration mapping
(see Algorithm 4, row 8). When considering strategies, we ignore all enumerations
strategies that utilise only one attribute.

22

3. The Weighted Interval Scheduling Problem

Algorithm 4WIS4 computes a non-overlapping interval set with the highest profit.
The subroutine h decides the enumeration order.
1: procedure WIS4(Array intervals)
2: Integer n = size(intervals)
3: Integer m = b n

lognc
4: Array M = instantiateMemoisationArray()
5: Array copiedIntervals = newArray();
6: Array pivots = newArray();
7: for r := 1, 2, . . . , dlog ne do
8: for p := m(r − 1), . . . ,m(r − 1) +m do
9: copiedIntervals = addTo(h(copiedIntervals, pivots, n), copiedIntervals);

10: end for
11: copiedIntervals = sortOnIncEnd(copiedIntervals);
12: for p := 1, . . . , size(copiedIntevals) do
13: Integer next = fnext(p, copiedIntervals);
14: Integer pick = profit(copiedIntervals[p]) +M [next]
15: Integer ignore = M [p]
16: M = addTo(max(pick, ignore),M)
17: end for
18: S = backtrack(copiedIntervals, M)
19: Output S
20: end for
21: end procedure

In the remainder of this section, we investigate a partitioning approach. We will
compute the time complexity for a promising breadth-first heuristic h1 whereby sets
of intervals are iteratively extracted while being partitioned into dn log ne externally-
sorted subsets.

For the first round, the heuristic h1 starts with one set containing all intervals. We
refer to this set as its working set. The heuristic proceeds to use a median-of-means
algorithm to compute a pivot interval which it then uses as a divider to create two
new sets. Intervals with increasing right endpoints greater than that of the pivot
are channelled into the first set, and those that are smaller into the second set. For
proceeding iterations of the above steps, larger sets are divided before smaller and
ties are resolved randomly.

By continuing to find, divide, and channel the intervals in this manner, the heuristic
eventually ends up with at least n log n subsets that are externally sorted. There is,
however, no guarantee of them being internally sorted. This is when the dividing
part stops. From the first division iteration until it has reached its desired number
of subsets, the heuristic essentially does two things in each round: in the first step,
it performs as many division iterations as it can fit within the given time window; in
the second, it composes and outputs intermediate results by strategically selecting
without replacement elements based on multiple criteria. After it has the desired
number of subsets, later rounds will omit the division step. Finally, these repeated

23

3. The Weighted Interval Scheduling Problem

removals of intervals result in the heuristic having no more intervals to process. The
heuristic then terminates.

Through Lemma 3, we argue that one of the intervals that should be selected each
time from each set is the interval with the rightmost left endpoint. Through Lemma
4, we argue that another interval is the heaviest. Lemma 5 deals with the fact that
the subsets may differ in size. Selecting equally as many intervals from each set will
thus lead to some sets being depleted before others. These are then combined in
Theorem 3 to assess the limitations of h1 when used as the enumeration strategy of
Algorithm 4. During later rounds, this suggested approach will provide a relationship
between overlaps and the optimal sum.

1: procedure h1(List intervals, List pivots, Integer n)
2: Integer m = b n

lognc
3: if size(pivots) < m - 1 then
4: List newPivots = addTo(computeP ivots(intervals, pivots), newPivots);
5: intervals = addTo(partition(intervals, pivots, newPivots), intervals);
6: pivots = addTo(newPivots, pivots);
7: end if
8: List roundResult = popIntervals(intervals, pivots)
9: Output (pivots, roundResult)

10: end procedure

Definition 1. A series of m sets B1, . . . , Bm of intervals is externally sorted
on increasing right endpoints, if all intervals aj have in every later set Bj a right
endpoint faj that is left of or equal to the right endpoints in a later set Bk where
1 ≤ j < k ≤ m.

Lemma 3. Let B1, . . . , Bm be a series of m sets externally ordered by increasing
right endpoints and I = {i1, . . . , im} be a set containing exactly m non-overlapping
intervals, such that {ij} = I ∩ Bj for each set Bj where 1 ≤ j ≤ m. Then a
set R = {r1, . . . , rdm/2e} consisting of the intervals with the rightmost left endpoints
in sets with an odd index B2k−1, such that {rk} = R ∩ B2k−1 for 1 ≤ k ≤ m/2,
constitutes a set of mutually non-overlapping intervals with cardinality dm/2e.

Proof. Let rj and ij denote the interval in Bj with the rightmost left endpoint, and
the interval from I found in both sets ij ∈ I ∩ Bj, respectively. Because rj has the
rightmost left endpoint of the intervals in its set, it follows that the left endpoint of
rj is right of or equal to that of ij:

sij ≤ srj (3.10)

Because the intervals in I are mutually non-overlapping and the sets are externally
ordered by increasing right endpoint, the right endpoint of ij is left of the left
endpoint of ij+1, given that j < m:

fij < sij+1 , 1 ≤ j < m (3.11)

24

3. The Weighted Interval Scheduling Problem

The fact that the sets are externally ordered by increasing right endpoint provides
the following relationship, given that j < m:

frj ≤ fij+1 , 1 ≤ j < m (3.12)

Moreover, the inequalities (3.11, 3.12, 3.13) together form the following relationships:

frj ≤ fij+1 < sij+2 ≤ srj+2 , 1 ≤ j < m− 1

In conclusion, by unfolding the recurrence frj < srj+2 , it follows that the resulting
set consisting of all rk for odd indices k = 2l−1 ∈ {l ∈ Z : 1 ≤ l ≤ m/2} constitutes
a overlap-free set with cardinality dm/2e.

Lemma 4. Let Sr be independent sets containing dn/me weighted intervals con-
structed by collecting exactly one interval from each of m externally ordered sets
B1, . . . , Bm, in m rounds denoted by indices r, and let the heaviest interval a be
one of the intervals picked in the first round a ∈ S1. Then the ratio between the
sum of the interval weights from an overlap-free subsets denoted C where C ⊆ Sm,
and the sum of the interval weights from an overlap-free subsets denoted D, where
D ⊆ ⋃m−1

r=0 Sr, is bounded from above by |C|.

Proof. The intervals in C will have a weight sum within the range (3.13).

0 <
∑
i∈C

p(i) ≤ |C|p(a) (3.13)

The profit of the overlap-free set D is, consequently, at the last round greater or
equal to p(a) and less than r|C|p(a).

p(a) ≤
∑
i∈D

p(i) ≤ r|C|p(a) (3.14)

These relations (3.13, 3.14) give the following upper and lower bounds on the weight
ratio

0 <
∑
i∈C p(i)∑
j∈D p(j)

≤ |C| ≤ d n
m
e

Lemma 5. There is an interval partitioning algorithm that can in dlog(m)e rounds,
with round time O(n), partition n intervals into m sets B1, . . . , Bm externally or-
dered by increasing right endpoints, such that each set has cardinality |Bi| ≥ bn/mc
where 1 ≤ i ≤ m ≤ log(n).

Proof. There exist several selection algorithms that can find the k:th smallest in-
terval from an unsorted list in O(n) time [11] [12] [10]. Let Dr = {bj n2r c : 0 < j <
2r−1, j ∈ Z} be an ordered set of divider indices whereby n intervals are partitioned
recursively, such that after each round it holds for all divider indices dj ∈ Dr and
intervals a1 . . . an that

fadj−β ≤ fadj ≤ fadj+α (3.15)

25

3. The Weighted Interval Scheduling Problem

where 0 < α ≤ n − dj and 0 ≤ β < dj. For each round r, computing new divider
indices, finding the mean a selection algorithm, and enforcing (3.15) require a total
of O(n) time. The number of rounds r1 needed before all divisor distances dj − dj−1
are less or equal to bn/mc can be solved for from the following equation 2r ≥ m
which gives

r1 = dlog(m)e (3.16)
After r = dlog(m)e rounds requiring O(n logm) time, let E = {bj n

m
c : 0 < j <

m, j ∈ Z} ∩ {1, n} be a new ordered set of new divisor indices e1 . . . em. Let bj be
the intervals with ej:th rightmost endpoint computed by applying the k:th selection
algorithm individually on each interval set {adi . . . adi+1} constructed from the divisor
ranges (di, di+1), 1 ≤ i ≤ m − 1. Re-partition the intervals for each divisor e ∈ E
and direct enclosing divider indices (di, di+1) that fulfils di < e < di+1 such that

fbe−β ≤ fbe ≤ fbe+α

where 0 ≤ α ≤ dj+1−e and 0 ≤ β ≤ e−dj. Finally m sets B1 . . . Bm can be created
from the ranges constituted by the indices e ∈ E.

Lemma 6. Let B1, . . . , Bm be weighted interval sets externally ordered by increasing
right endpoints. Then there is a deterministic progressive algorithm that is using m
rounds, denoted by indices r, with round time O(n), and with a convergence function
fconv(r) < f ∗(r) with respect to the error function errorWIS(Sr).

Proof. Let Cd
j denote the set of intervals whose left endpoint sa is left of the right

endpoint fb of the interval b with the rightmost endpoint from the d:th preceding
set Bj such that sa ≤ fb where a ∈ Bj, b ∈ Bj−d, d+ 1 ≤ j ≤ m and 1 ≤ d < m− 1.
The upper bound u1 on the sum of interval profits of a non-overlapping interval set
from Bj is given by |Bj|p(a), where a is the heaviest intervals of all sets B1, . . . , Bm.
The upper bound u2 on the sum from Cd

j , however, is given by p(a) because each
interval a ∈ Cd

j , by definition overlaps with all other intervals in Cd
j at fb. The

upper bound u : S ∈ R+ on the union of all sets Bj is thus given by

u(
m⋃
i=1

Bi) = p(a)
m∑
i=1
|Bi| (3.17)

for 1 ≤ j ≤ m, whereas the following upper bound on the union of all sets Cd
j ,

u(
m⋃
i=1

Cd
i) = p(a)m

d
, 2 ≤ d ≤ m (3.18)

is significantly lower because each interval picked from a set Cd
j by definition overlaps

with all intervals in d− 1 preceding sets, and thus consequently cannot constitute a
non-overlapping set with any of these. It follows from Lemma 4 that, as long as the
heaviest interval is found during the first round, the worst possible convergence for
B1, ..., Bm at the penultimate round is bounded from above by

fconv(r) ≤ 1− p(a)
|Bj|p(a) = 1− 1

|Bj|

26

3. The Weighted Interval Scheduling Problem

The worst possible convergence for Cd
1 , ..., C

d
m, on the other side, is significantly

lower, as it is bounded from above by

fconv(r) ≤ 1− p(a)
p(a)m

d

= 1− d

m
, 2 ≤ d ≤ m

To define each round’s output set Sr, let α = dn/2m2e represent half of the number
of intervals that needs to be collected from each set B1, ..., Bm to collect a minimum
of dn/me intervals. Let g : X → Z compute the subset Z = {z : sy ≥ sc; {c, y} ⊆ Y }
containing the intervals whose left endpoint is right of or equal to α:th rightmost left
endpoint, denoted c, from Y = {l : p(e) ≤ p(x); {x, e} ⊆ X} the subset of intervals
from set X whose weight is larger than the α:th heaviest interval denoted e. Let Lr
and Rr denote two aggregated sets,

Lr = {l1 . . . lβ} ⊆
m⋃
i=1

g(Bi − Cr
i − ∪r−1

k=0(Lk ∪Rk))

Rr = {g1 . . . gγ} ⊆
m⋃
i=1

g(Cr
i − ∪r−1

k=0(Lk ∪Rk))

L0 = R0 = ∅

where, 0 < r < m, β ≤ α, γ = dn/me − β such that |Lr|+ |Rr| = dn/me. Using Lr
and Rr, let S1, . . . , Sm constitute the outputs of the rounds where each Sr is given
by equation (3.19).

Sr =

Lr ∪Rr, r < m⋃m
i=1 Bi − Lr ∪Rr, r = m

(3.19)

From here and onwards, note that for an interval aj ∈ Bj there are now only two
options to consider as to its profit contributions. If there is an interval ao from an
optimal solution O contained in Bj ∪O, then either (1) aj has a weight equal to ao
and is in Lr, or (2) aj has a weight less than ao and ao is in Rr. As case (1) directly
implies optimal weights p(aj) = p(ao) in Lr, it is implied from the definition and
Lemma 4 that the the heaviest interval with the leftmost left endpoint taken from
every d:th set constitutes non-overlapping set of cardinality bmax{b, 2}/2c. The
following convergence function, therefore, applies to Lr if case (1) applies to all sets
Bj

fconv(1)(r) ≤ 1− bmax(b, 2)/2c
min(b,m− r)|Bj|

, 0 ≤ b ≤ m (3.20)

where b denotes the number of sets containing at least one interval from the optimal
solution 1 ≤ b ≤ m. Furthermore, from the definition of Sr it follows that for
case (1) ao must always be in Cd=2

r , and for case (2) it must be in Bj − Cd=2
j . The

maximum number of intervals both in Bj−Cd=2
j and the optimal solution O is given

27

3. The Weighted Interval Scheduling Problem

by |Bj − Cd=2
j ∪ O| ≤ |Bj|, while the maximum number intervals in Cd=2

j and O
is given by |Cd=2

j ∪ O| ≤ 1. Case (2) can, therefore, be bounded by the following
convergence function

fconv(2)(r) = 1− bmax(b1, 2)/2c
min(b1,m− r)|Bj|+ (b− b1)

, 0 ≤ b1 ≤ b (3.21)

where b1 denotes the number of sets Bj − Cd=2
j containing an interval from the

optimal solution, and b−b1 consequently denotes the number of sets Cd=2
j containing

an interval from the optimal solution. Moreover, let bd represent the number of
intervals in Cd

j from the optimal solution and from (3.21) follows (3.22).

lim∑d−1
i=1 bi→0

b→ m

d
(3.22)

Because m/d ≤ |Bj|, (3.21) dominates both (3.20) and f ∗(r) for all value of r unless
b = 1. If the entire optimal solution is within one set or if b is small enough, the
following general bound dominates fconv(r)

fconv(g)(δ + ε) < 1− ε
d |Bj |
m
e

|Bj|
, b ≥ 1 (3.23)

for 1 ≤ ε ≤ log n−δ and δ = log(n)(b−1/b). In conclusion, the optimal independent
sets from each output S1, . . . , Sm has an error bounded by the following convergence
function

fconv(r) = min(fconv(2)(r), fconv(g)(r))
which dominates f ∗(r) such that fconv(r) < f ∗(r) for all 1 ≤ r < log n. The sets Lr
and Rr can be created in O(n) time, and thus, so can Sr.

Theorem 3. There is a progressive algorithm for the Weighted Interval Scheduling
Problem that runs in log n rounds, denoted by indices r, in O(n log n) time with a
round time of O(n), and that obtains a convergence fconv(r) ≤ f ∗(r) with respect to
the error function errorWIS(Sr).

Proof. Assuming that hr requires no more than O(n) time per round, Algorithm 4
with hr as enumeration strategy h (see Algorithm 4, row 9) will guarantee a correct
solution, a convergence of at least f ∗(r), a round time of O(n), and a total time of
O(n log n). Let algorithm hr use the partitioning algorithm described in Lemma 6
for each round 0 ≤ r < dlog(log n)e and let it internally keep Dr = {bj(n/2r)c : 0 <
j < 2r − 1, j ∈ Z} and E = {bj(n/m)c : 0 < j < m, j ∈ Z} ∩ {1, n} as ordered sets
of divider indices. Moreover, let Fr and G denote the intervals corresponding to the
indices of Dr and E, respectively, and let Ar denote the output set from the r:th
execution of hr, where Ar is defined as follows

Ar<dlog(logn)e = (Fr − ∪r−1
i=0Gi) ∩Hr, 2r < blog(n)c

28

3. The Weighted Interval Scheduling Problem

where Hr is a sorted set consisting of |Hr| = (bn/ log(n)c − |Fr − Fr−1|) intervals
constructed by selecting dn/2re intervals uniformly at random from each of the 2r
divider indices’ ranges constituted by indices 0, n and the divider indices in Dr.

Adopting heuristic hr will ensure two things: firstly, that after r = dlog(log n)e
rounds, with round time O(n), hr has partitioned the intervals into m externally
ordered sets; and secondly, the set of unevaluated intervals has by round r =
dlog(log n)e shrunk by |I − ⋃dlog(logn)e

r=1 Ar| intervals.

For later rounds r ≥ dlog(log n)e, let B1 . . . Bm denote the m externally ordered
interval subsets of cardinality dn/me constituted by the divider indices’ ranges from
the divider indices in E; the rest follows from Lemma (6).

29

3. The Weighted Interval Scheduling Problem

30

4
Concluding Remarks

The result of this thesis is two progressive algorithms for the Weighted Interval
Scheduling Problem, utilising two different enumeration strategies, one stochastic
and one deterministic.

Even though Dynamic Programming builds its solution from the solutions of its
partial subproblems, we did not find any natural way of utilising these subproblems
when designing our progressive algorithms. Instead, we abstracted the Dynamic
Programming to a mean of getting an optimal solution. The sorting, which is
necessary e.g. to build the memoisation table, proved to constitute the biggest
bottleneck timewise. The focus moved to the order in which groups of intervals was
fed to it, an order which we denoted the algorithm’s enumeration strategy.

The stochastic enumeration strategy enables an expected linear monotone decrease
in the error, as to the error function presented. The deterministic partitioning based
enumeration strategy tied the decrease in the error to two rounds, which we denoted
notable rounds.The round wherein the enumeration first considers the heaviest in-
terval constitutes our first notable round. The round wherein the enumeration has
internally partitioned the remaining intervals into equally sized externally ordered
subsets constitutes our second notable round.

Alterations to the traditional enumeration strategy resulted in a recurrent need for
re-sorting to fulfil the prerequisite of the Dynamic Programming routine adopted.
With this came the risk of the total time of the progressive algorithm approaching the
total time of consecutive re-runs of the traditional non-progressive algorithm. The
framework adopted does only consider the time complexity asymptotically. Conse-
quently, the actual time-constants of each rounds won’t be directly deducible, but
rather appear fluid. The framework, therefore, effectively hides the actual distribu-
tion of time-constants between rounds.

It would be interesting to conduct a more detailed time analysis on the time im-
pact the re-sorting has on each round. Further optimisation efforts could focus on
reducing the amount of re-sorting needed for these middle rounds. More research is
required to bridge the gap between our progressive algorithm and its conventional
non-progressive siblings as well as to smooth its convergence profiles.

31

4. Concluding Remarks

32

Bibliography

[1] J.-D. Fekete and R. Primet, “Progressive analytics: A computation paradigm
for exploratory data analysis,” 2016.

[2] J. Jo, J. Seo, and J. Fekete, “Panene: A progressive algorithm for indexing and
querying approximate k-nearest neighbors,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 26, pp. 1347–1360, Feb 2020.

[3] M. Kubina, M. Varmus, and I. Kubinova, “Use of big data for competitive
advantage of company,” Procedia Economics and Finance, vol. 26, pp. 561 –
565, 2015. 4th World Conference on Business, Economics and Management
(WCBEM-2015).

[4] L. Einav and J. Levin, “Economics in the age of big data,” Science, vol. 346,
no. 6210, p. 1243089, 2014.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1990.

[6] S. P. A. Alewijnse, T. M. Bagautdinov, M. de Berg, Q. W. Bouts, A. P. ten
Brink, K. Buchin, and M. A. Westenberg, “Progressive geometric algorithms,”
in Proceedings of the Thirtieth Annual Symposium on Computational Geometry,
SOCG’14, (New York, NY, USA), pp. 50:50–50:59, ACM, 2014.

[7] K. Zoumpatianos, S. Idreos, and T. Palpanas, “Indexing for interactive explo-
ration of big data series,” in Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’14, (New York, NY,
USA), pp. 1555–1566, ACM, 2014.

[8] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Efficient and progressive group steiner
tree search,” in Proceedings of the 2016 International Conference on Manage-
ment of Data, pp. 91–106, ACM, 2016.

[9] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2005.

[10] C. E. R. R. L. S. C. Cormen, Thomas H.; Leiserson, Introduction to Algorithms
(3rd ed.). MIT Press and McGraw-Hill, 2009.

33

Bibliography

[11] A. Alexandrescu, “Fast deterministic selection,” 06 2017.

[12] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time bounds
for selection,” Journal of Computer and System Sciences, vol. 7, no. 4, pp. 448
– 461, 1973.

34

	List of Figures
	Introduction
	Purpose
	Objective
	Method
	Limitations
	Background
	Overview

	The Framework
	The Weighted Interval Scheduling Problem
	Definition
	Introducing the Base Algorithm
	Designing a Stochastic Algorithm
	Sorting and Representation
	Taking an Adversary's View on the Problem
	Designing a Deterministic Algorithm

	Concluding Remarks

