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Abstract

In this thesis we study the time dependent heat equation in R2 ×R− subject to an inho-
mogeneous Neumann boundary condition, for the use in process control in Electron Beam
Melting. We derive a solution formula that is valid for certain boundedness assumptions
on the boundary condition. The solution formula is then applied in the specific case where
the boundary condition describes a Gaussian distributed heat source with a centre moving
along the boundary R2 × {0}. By discretising the solution, using an adaptive quadrature
method, we derive a numerical solution scheme. Using Newton’s method, characteristics of
the discretised solution, such as maximum temperature, are found. Numerical procedures
are tested in one particular case with positive results. By an application of Banach’s fixed
point theorem, we indicate the possibility of finding and approximating a solution if radiative
heat transfer by the Stefan-Boltzmann law is included in the boundary condition.
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1 Introduction
Arcam is a company that develops and manufactures machines that utilise Electron Beam Melting
(EBM) to produce metal parts from metal powder. In the EBM process, parts of a thin layer
of metal powder is melted by an electron beam, and cooled to form a solid structure. Then a
new layer of powder is added on top of the previous one and is in turn melted together with
its underlying regions. This procedure is repeated until a complete three dimensional metal
structure is formed. This allows a production of components of highly complex geometries and
high mechanical and chemical quality.

In order to control the melting process, the movement, focus and power of the electron beam
(herein referred to as ‘beam parameters’) must be adjusted so that only the desired regions of
each layer of powder is melted. It is not possible to measure the temperature of the material
during the melting process and so a model for predicting the correct choice of beam parameters
for a given melting pattern is required.

Arcam has developed such a model, but, as the optimisation problem of choosing the correct
beam parameters requires repeated solution of the heat equation for the temperature distribution
in the material, the model cannot be used to control the electron beam in real time. Instead, the
optimisation problem is solved in advance for a large number of standard situations. For each
situation, the correct choice of beam parameters and the resulting temperature profile are stored
in a database for use in real time beam control.

When optimising the beam parameters, the temperature distribution in the material is found
by solving the heat equation for an initial guess of parameters. On the basis of the results, a new
set of parameters is found and the heat equation is solved again for the new set. The process
is repeated until a choice of parameters that produces the desired temperature profile is found.
The desired temperature distribution is characterised by two main criteria:

1. the maximum width of the region along the path of the electron beam that has attained a
temperature at least as high as the melting temperature, herein referred to as ‘maximum
melted width’, should have a prescribed value at a given depth, and

2. the global maximum temperature should not exceed a given highest acceptable tempera-
ture.

The general differential equation for the temperature distribution is

ρcpDtT − λ∆T = 0 in Ω× R+,

λDnT = F + kr(T 4 − T 4
s ) on Γ1 × R+,

B (T, DnT ) = 0 on Γ2 × R+,

T = T0 in Ω× {0},

(1.1)

where F = F (x, t) is the heat flux from the electron beam, which depends on the beam param-
eters, Ω is the geometry of the bulk of the material, Γ1 is the part of the boundary of Ω where
the beam is operating, Γ2 is the rest of the boundary of Ω. T = T (x, t) = T (x, y, z, t), λ, ρ, cp
are temperature, heat conductivity, density and heat capacity of the metal. kr is the coefficient
of radiative heat transfer at the boundary Γ1, Ts is the temperature of the surrounding of the
boundary Γ1. B (T, DnT, x, t), with DnT representing the directional derivative in the direction
of the outward normal of the boundary, describes some boundary condition on Γ2. T0(x) is a
given initial temperature.

For Arcam’s purposes the problem (1.1) has been simplified by only considering the case
where the material occupies the lower half space, z ≤ 0, and the electron beam is operating on
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the surface z = 0, that is, Ω = R2×R−, Γ1 = R2×{0}, Γ2 = ∅. The power of the electron beam
is assumed to have a Gaussian distribution with centre at a moving point at Γ1. This leads to

ρcpDtT (x, t)− λ∆T (x, t) = 0, x ∈ R2 × R−, t ∈ R+,

λDzT (x, t) = Π(x, y, t) + kr(T 4(x, t)− T 4
s ), x ∈ R2 × {0}, t ∈ R+,

T (x, 0) = T0(x), x ∈ R2 × R−,

T (x, t)→ T∞, |x| → ∞, z < 0, t ∈ R+,

(1.2)

where Π(x, y, t) = (Pin(t)/2πσ(t)2) exp(−((x− xc(t))2 + (y − yc(t))2)/2σ(t)2), Pin(t) is the total
power, σ(t) describes the focus and xc(t) and yc(t) are the coordinates of the centre of the beam.
This model is further simplified by neglecting the non-linear radiative heat transfer term, that
is, assuming kr = 0. In addition, the beam parameters Pin and σ are assumed to be constant,
while xc(t) = vxt for some constant speed vx, and yc(t) = 0. This yields

ρcpDtT (x, t)− λ∆T (x, t) = 0, x ∈ R2 × R−, t ∈ R+,

λDzT (x, t) = Pin

2πσ2 e− (x−vxt)2+y2

2σ2 , x ∈ R2 × {0}, t ∈ R+,

T (x, 0) = T0(x), x ∈ R2 × R−,

T (x, t)→ T∞, |x| → ∞, z < 0, t ∈ R+,

(1.3)

The assumptions on the beam parameters are justified by the fact that if a solution T to (1.3) is
found, it may be introduced as a new initial condition T0(x) = T (x, t0) by the change of variables
t→ t− t0. (1.3) can then be solved with this new initial condition and new values of the beam
parameters.

Arcam’s current solution procedure involves a quasi-stationary assumption where the tem-
perature distribution remains constant around the moving centre. That is, after the change of
variables x→ x− vxt, the assumption DtT = 0 is used to get

− ρcpvxDxT (x)− λ∆T (x) = 0, x ∈ R2 × R−,

λDzT (x) = Pin

2πσ2 e− x2+y2

2σ2 , x ∈ R2 × {0},

T (x)→ T∞, |x| → ∞, z < 0,

(1.4)

which is solved with a finite element method. The width of the melted zone is determined by
an interpolation procedure based on the finite element mesh. Once optimal beam parameters
are found the solution is projected onto a set of special basis functions by the method of least
squares.

In order to be able to control the electron beam for any melting pattern, a large number
of optimisations of beam parameters needs to be carried out. Because of this, the process of
creating the database of optimal parameter values and corresponding temperature profiles is
very time consuming. Moreover, the quasi-stationary assumption used in (1.4) and the neglect
of radiative heat transfer can not be expected to be valid in general.

In this thesis we seek to solve these problems by deriving a solution formula to an initial-
boundary value problem of the same type as (1.2) and (1.3). We then use this formula together
with a simple adaptive quadrature algorithm to generate approximations to the solution to (1.3)
at any given time. For approximations of this type we develop a scheme based on Newton’s
method for finding the maximum temperature and the maximum melted width. This procedure
is tested for a typical set of parameter values.

By using the solution formula together with Banach’s fixed point theorem we explore the
possibility of similarly generating approximate solutions to (1.2).
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2 Solution formula for the heat equation
In this section we derive a solution formula to the heat equation in the half-space R2 × R−,
subject to a general boundary condition of the Neumann type. We then use the result to derive
an explicit solution to the problem (1.3) and a method to solve (1.2) by means of a fixed point
iteration.

2.1 Solution with general boundary condition
We consider the problem

aDtu(x, t)− b∆u(x, t) = 0, x ∈ R2 × R−, t ∈ [0, τ ],
bDzu(x, t) = f(x, y, t), x ∈ R2 × {0}, t ∈ [0, τ ],
u(x, 0) = u0(x), x ∈ R2 × R−.

(2.1)

We assume that a and b are positive constants and that u0 and f are bounded continuous
functions, f satisfying

|f(x, y, t)| ≤M1, (x, y) ∈ R2, t ∈ [0, τ ],(2.2)
|Dtf(x, y, t)| ≤M2, (x, y) ∈ R2, t ∈ [0, τ ],(2.3)

for some positive constants M1 and M2. Intuitively (2.1), as interpreted in a sense of heat
distribution, seems to be equivalent to the problem where twice as much heat is added at z = 0
in the whole space R3, that is,

aDtu(x, t)− b∆u(x, t) = 2f(x, y, t)δ(z), x ∈ R3, t ∈ [0, τ ],
u(x, 0) = u0(x), x ∈ R3,

(2.4)

where δ is the Dirac delta and u0(x, y, z) = u0(x, y,−|z|). Applying the Fourier transform to
(2.4) yields

aDtû(ξ, t) + b|ξ|2û(ξ, t) = 2(f̂(·, t) ∗ δ̂)(ξ), ξ ∈ R3, t ∈ [0, τ ],
û(ξ, 0) = û(ξ), ξ ∈ R3.

(2.5)

(2.5) has the solution [11, p. 200]

û(ξ, t) = a−1û0(ξ)e− b
a |ξ|2t + 2a−1

∫ t

0
e− b

a |ξ|2(t−s)(f̂(·, s) ∗ δ̂)(ξ) ds,(2.6)

With the Gauss kernel U(x, t) :=
√

a(4πbt)−3/2e−a|x|2/4bt, applying the inverse Fourier transform
to (2.6) yields

u(x, t) = (U(·, t) ∗ u0)(x) + 2
∫ t

0
(U(·, t− s) ∗ (f(·, s)δ))(x) ds =: ui(x, t) + us(x, t),(2.7)

It can be shown that ui satisfies the differential equation and the initial condition in (2.1) [9,
pp.109-111]. Moreover, it satisfies a homogenous Neumann boundary condition at z = 0 because

Dzui(x, t)|z=0 =
∫
R3

DzU(x− x̄, y − ȳ,−z̄, t)u0(x̄) dx̄ dȳ dz̄

=
∫
R3

az̄

2bt
U(x− x̄, y − ȳ,−z̄, t)u0(x̄) dx̄ dȳ dz̄ = 0,
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and U and u0 are even functions of z̄ while z̄ is odd. For us we note

us(x, t) = 2
∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s)f(x̄, ȳ, s) dx̄ dȳ ds.(2.8)

Differentiating us with respect to t by the chain rule yields

Dtus(x, t) = 2
∫
R2

U(x− x̄, y − ȳ, z, 0)f(x̄, ȳ, t) dx̄ dȳ(2.9)

+ 2
∫ t

0

∫
R2

DtU(x− x̄, y − ȳ, z, t− s)f(x̄, ȳ, s) ds.

Here the first term vanishes as for fixed z ̸= 0

lim
s→t

∣∣∣∣∫
R2

U(x− x̄, y − ȳ, z, t− s)f(x̄, ȳ, s) dx̄ dȳ

∣∣∣∣
≤ lim

s→t

∫
R2

U(x− x̄, y − ȳ, z, t− s)|f(x̄, ȳ, s)| dx̄ dȳ

≤
√

aM1

(4πb)3/2 lim
s→t

(t− s)−3/2
∫
R2

e−a((x−x̄)2+(y−ȳ)2+z2)/4b(t−s) dx̄ dȳ

= M1√
4πab

lim
s→t

(t− s)−1/2e−az2/4b(t−s) = M1√
4πab

lim
p→∞

√
pe−az2p/4b = 0.

Applying the Laplace operator to us, differentiating under the time integral and using the dif-
ferentiation property D(v ∗ w) = (Dv) ∗ w of the convolution we get

∆us(x, t) = 2
∫ t

0

∫
R2

∆U(x− x̄, y − ȳ, z, t− s)f(x̄, ȳ, s) dx̄ dȳ ds.(2.10)

It is easily verified that U satisfies the differential equation in (2.1), and so by combining the
results (2.9) and (2.10) we see that us satisfies the equation provided that the derivatives exist.
But this is so as, for z ̸= 0 and using the notation C = 2a5/2/π3/2(4b)7/2 + 2a3/2/π3/2(4b)5/2

∫ t

0

∫ ∞

−∞

∣∣D2
xU(x, s)

∣∣ dx ds ≤ C

∫ t

0

∫ ∞

−∞

(
x2

s7/2 + 1
s5/2

)
e−a(x2+z2)/4bs dx ds

= C

√
4πb

a

∫ t

0
s−2e−az2/4bs ds = C

z2

(
4πb

a

)3/2

e−az2/4bt <∞,

and the same is true for y. This, together with the boundedness of f implies the existence of the
derivatives whenever z ̸= 0. Furthermore we have

lim
t→0

∣∣∣∣∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s)f(x̄, ȳ, s) dx̄ dȳ ds

∣∣∣∣
≤ lim

t→0

√
aM1

(4πb)3/2

∫ t

0
(t− s)−3/2

∫
R2

e−a((x−x̄)2+(y−ȳ)2+z2)/4b(t−s) dx̄ dȳ ds

≤ lim
t→0

M1√
4πab

∫ t

0
(t− s)−1/2e−az2/4b(t−s) ds ≤M1 lim

t→0

√
t

πab
= 0,
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that is, us(x, t)→ 0 as t→ 0. Finally, differentiating under the integral, we have

bDzus(x, t) = −
∫ t

0

∫
R2

a3/2zf(x̄, ȳ, s)
(4πb)3/2(t− s)5/2 e−a

(x−x̄)2+(y−ȳ)2+z2
4b(t−s) dx̄ dȳ ds(2.11)

= −
∫ t

0

∫
R2

af(x̄, ȳ, s)
4πb(t− s)

e−a
(x−x̄)2+(y−ȳ)2

4b(t−s) Dserf
(

z

√
a

4b(t− s)

)
dx̄ dȳ ds,

where erf is the error function [1]. Changing the order of integration in (2.11) and integrating
by parts gives

bDzus(x, t) =−
∫
R2

{[
af(x̄, ȳ, s)
4πb(t− s)

e−a
(x−x̄)2+(y−ȳ)2

4b(t−s) erf
(

z

√
a

4b(t− s)

)]t

s=0
(2.12)

−
∫ t

0
Ds

(
af(x̄, ȳ, s)
4πb(t− s)

e−a
(x−x̄)2+(y−ȳ)2

4b(t−s)

)
erf
(

z

√
a

4b(t− s)

)
ds

}
dx̄ dȳ.

Let ϵ =
√

4b(t− s)/a and note that limϵ→0(ϵ
√

π)−1e−β2/ϵ2 = δ(β) in the sense of distributions
[6, pp. 34-37] and limϵ→0 erf(β/ϵ) = sgn(β) and so

lim
s→t

∫
R2

af(x̄, ȳ, s)
4πb(t− s)

e−a
(x−x̄)2+(y−ȳ)2

4b(t−s) erf
(

z

√
a

4b(t− s)

)
dx̄ dȳ =(2.13)

=
∫
R2

lim
ϵ→0

f(x̄, ȳ, t− aϵ2/4b)e−(x−x̄)2/ϵ2

√
πϵ

e−(y−ȳ)2/ϵ2

√
πϵ

erf(z/ϵ) dx̄ dȳ

=
∫
R2

f(x̄, ȳ, t)δ(x− x̄)δ(y − ȳ)sgn(z) dx̄ dȳ = sgn(z)f(x, y, t).

We also have

∣∣∣∣∫
R2

af(x̄, ȳ, 0)
4πbt

e−a
(x−x̄)2+(y−ȳ)2

4bt erf
(

z

√
a

4bt

)
dx̄ dȳ

∣∣∣∣(2.14)

≤ a

4πbt
M1erf

(
z

√
a

4bt

)∫
R2

e− a((x−x̄)2+(y−ȳ)2)
4bt dx̄ dȳ

= M1erf
(

z

√
a

4bt

)
→ 0, z → 0.

Changing the orders of integration and differentiation in the remaining term of (2.12) gives, with
the notation Z := z

√
a/4b
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∣∣∣∣∫
R2

∫ t

0
Ds

(
af(x̄, ȳ, s)
4πb(t− s)

e−a
(x−x̄)2+(y−ȳ)2

4b(t−s)

)
erf
(

Z√
t− s

)
ds dx̄ dȳ

∣∣∣∣(2.15)

=
∣∣∣∣∫ t

0

∫
R2

Ds

(
af(x̄, ȳ, s)
4πb(t− s)

e−a
(x−x̄)2+(y−ȳ)2

4b(t−s)

)
dx̄ dȳ erf

(
Z√
t− s

)
ds

∣∣∣∣
≤
∫ t

0

∫
R2

(4b(t− s) + 1)M1 + 4(t− s)2M2

16πa−1b(t− s)3 e−a
(x−x̄)2+(y−ȳ)2

4b(t−s) dx̄ dȳ erf
(
|Z|√
t− s

)
ds

=
∫ t

0

(
M1

t− s
+ aM1

4b(t− s)2 + M2

)
erf
(
|Z|√
t− s

)
ds

≤
(

M1 + M2 + aM1

4b

)
lim
l→t

∫ t

0
(1 + (t− s)−1 + (t− s)−2)erf

(
|Z|√
t− s

)
ds

≤
(

M1 + M2 + aM1

4b

)
lim
l→t

l(1 + (t− l)−1 + (t− l)−2)erf
(
|Z|√
t− l

)
≤
(

M1 + M2 + aM1

4b

)
t lim

q→0
(1 + q−1 + q−2)erf

(
|Z|
√

q

)
,

where the last expression tends to zero when z, and hence |Z|, tends to zero and we let q =
|Z|1/3 → 0. In the calculations above (from (2.11) and on), finiteness of the results justifies the
changes of order of integration. Combining the results from (2.12), (2.13), (2.14) and (2.15) we
get

lim
z→0−

bDzus(x, t) = lim
z→0−

−sgn(z)f(x, y, t) = f(x, y, t).(2.16)

The results above may be summarised in the following proposition:

Proposition 1. For positive constants a, b, continuous and bounded u0 and f satisfying (2.2)
and (2.3) the formula (2.7) is a solution to (2.1) in the sense that

• it satisfies the differential equation for fixed z < 0 and t > 0,

• it tends to the initial data u0 as t tends to zero for fixed z < 0, and

• its directional derivative in the z-direction tends to the boundary data f as z tends to zero
from below for fixed t > 0.

2.2 Solution in the case of negligible radiative heat transfer
Having developed a solution formula to the general Neumann problem, we now seek to employ
it for solving (1.3). Let T = u + T∞ and T0 = u0 + T∞, yielding

ρcpDtu(x, t)− λ∆u(x, t) = 0, x ∈ R2 × R−, t ∈ R+,

λDzu(x, t) = Π(x, y, t), x ∈ R2 × {0}, t ∈ R+,

u(x, 0) = u0(x), x ∈ R2 × R−.

(2.17)

Noting that

|Π(x, y, t)| =
∣∣∣∣ Pin

2πσ2 e− (x−vxt)2+y2

2σ2

∣∣∣∣ ≤ Pin

2πσ2 ,

|DtΠ(x, y, t)| = Pin|x− vxt|
2πσ4 e− (x−vxt)2+y2

2σ2 ≤ Pin√
2eπσ2

,
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we may use Proposition 1 to get a solution where

us(x, t) = 2
∫ t

0

( √
ρcp

(4πλ(t− s))3/2 e
− |x|2

4κ2(t−s) ∗ (δ(z) Pin

2πσ2 e− (x−vxs)2+y2

2σ2

)
(x) ds(2.18)

= 2
∫ t

0

√
ρcp

(4πλ(t− s))3/2
Pin

2πσ2

∫
R2

e
− (x−x̄)2+(y−ȳ)2+z2

4κ2(t−s) e− (x̄−vxs)2+ȳ2

2σ2 dx̄ dȳ ds

=
∫ t

0

Pin

2π3/2κρcp(t− s)1/2(σ2 + 2κ2(t− s))
e

− (x−vxs)2+y2

2σ2+4κ2(t−s)
− z2

4κ2(t−s) ds,

by using (2.7). Typically for Arcam’s purposes u0 is constant, whence ui(x, t) = u0.
With

κ2 = λ/ρcp,

T ∗ = Pin/
√

2π3/2λσ,

V = vxσ/2
√

2κ2,

we make the substitutions

s→ 2κ2s2/σ2,

x→ (x− vxt)/
√

2σ,

y → y/
√

2σ,

z → z/
√

2σ,

t→
√

2tκ/σ.

These new variables will be referred to as dimensionless. We get

us(x, t) = T ∗
∫ t

0

1
1 + s2 e

− (x+V s2)2+y2

1+s2 − z2
s2 ds,(2.19)

which we will approximate in Subsection 4.1.

2.3 Solution in the case with radiative heat transfer
Given v : R3×[0, τ ]→ R let in the formula (2.7) f(x, y, t) = Π(x, y, t)−kr((v(x, y, 0, t)+Ts)4−T 4

s ).
We then define

u(x, t) = (U(·, t) ∗ u0)(x) +
∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s)Π(x̄, ȳ, 0, s) dx̄ dȳ ds(2.20)

− kr

∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s)((v(x̄, ȳ, 0, s) + Ts)4 − T 4
s ) dx̄ dȳ ds

=: ui(x, t) + ūs(x, t)−A v(x, t) =: S v(x, t).

Define ∥v∥ := max(x,t)∈R3×[0,τ ] |v(x, t)| and let CB := {v ∈ C(R3 × [0, τ ]) : ∥v∥ ≤ B} be a closed
subset of C(R3×[0, τ ]), which is a Banach space with respect to ∥·∥ by a generalisation of Example
1.4.7 of [3]. Choose B = 2∥ui∥ + 2∥ūs∥. Then for sufficiently small τ we have S : CB → CB as
by the triangle inequality

∥S v(x, t)∥ = ∥ui(x, t) + ūs(x, t)−A v(x, t)∥ ≤ ∥ui∥+ ∥ūs∥+ ∥A v∥,
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where the last expression is no greater than B if ∥A v∥ ≤ 1
2 B. For v ∈ CB we have

|A v(x, t)| =
∣∣∣∣kr

∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s)((v(x̄, ȳ, 0, s) + Ts)4 − T 4
s ) dx̄ dȳ ds

∣∣∣∣
≤ kr∥(v + Ts)4 − T 4

s ∥
∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s) dx̄ dȳ ds

≤ kr((B + Ts)4 − T 4
s )
√

τ√
πab

≤ B

2
⇐⇒ τ ≤ πabB2

4k2
r ((B + Ts)4 − T 4

s )2 .

Let v1, v2 ∈ CB . Then with Vi = vi +Ts for i = 1, 2 and using p4−q4 = (p−q)(p3 +p2q+pq2 +q3)

|S v1(x, t)−S v2(x, t)| = |A v1(x, t)−A v2(x, t)|(2.21)

=
∣∣∣∣kr

∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s)(V1(x̄, ȳ, 0, s)4 − V2(x̄, ȳ, 0, s)4) dx̄ dȳ ds

∣∣∣∣
≤ 4kr∥v1 − v2∥|B + Ts|3

∫ t

0

∫
R2

U(x− x̄, y − ȳ, z, t− s) dx̄ dȳ ds

≤ 4kr(B + Ts)3√τ√
πab

∥v1 − v2∥,

from which we see that whenever

τ < min

{
πab

16k2
r (B + Ts)6 ,

πabB2

4k2
r ((B + Ts)4 − T 4

s )2

}
,(2.22)

S : CB → CB and there exists a constant α = 4kr(B + Ts)3√τ/
√

πab < 1 such that ∥S v1 −
S v2∥ ≤ α∥v1−v2∥ for any v1, v2 in CB . Thus, assuming that (2.22) holds, we can apply Banach’s
fixed point theorem [3, Theorem 1.6.4] to find u = limn→∞ S nv0, for any v0 ∈ CB , such that
u = S u, being in this sense a solution to the problem with radiative heat transfer.
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3 Basic adaptive quadrature
The integral in (2.19) cannot, to the authors’ knowledge, be computed analytically. Thus, in
order to use (2.19) the integral must be approximated. In this section we present an outline of
the basic concepts of adaptive quadrature for that purpose.

An adaptive quadrature method for approximating an integral I[a,b](f) =
∫ b

a
f(s) ds in its

simplest form consists of a quadrature rule Q[a,b](f) approximating the integral over a given
(sub-) interval, a method for estimating the error E[a,b](f) = |I[a,b](f)−Q[a,b](f)| or the relative
error Erel

[a,b](f) = |I[a,b](f) − Q[a,b](f)|/|I[a,b](f)|, a method of dividing the integration interval
into subintervals and an termination criterion. The termination criterion typically states that
if the sum of error estimates over all subintervals is small enough, then the approximation is
accepted [5], [7].

An algorithm employing this kind of adaptive quadrature typically starts out with some
initial partition of the interval of integration (possibly the whole interval). It then applies the
quadrature rule Q to each subinterval and estimates the error over each such interval, and goes
on by further subdivision of the intervals until the termination criterion is met [5].

3.1 Quadrature rules
Many quadrature rules approximate an integral by a sum of weighted evaluations of the integrand
and may be written as

I[a,b](f) ≈ Q[a,b](f) =
N∑

k=1

wkf(sk).(3.1)

The choice of N , the weights {wk}N
k=1 and evaluation points {sk}N

k=1 ⊂ [a, b] characterises the
rule.

One of the simplest quadrature rules is the midpoint rule, where N = 1, w1 = b − a and
s1 = (a + b)/2. Several more advanced rules exists, some of which involve reformulations of the
integrand. Examples of other rules are Simpson’s rule where N = 3, w1 = w3 = (b − a)/6,
w2 = 2(b − a)/3, s1 = a, s2 = (a + b)/2 and s3 = b and the Gauss quadrature formula which
uses N points and where sk = ((b− a)rk + b + a)/2, wk = (b− a)/((1− r2

k)(P ′
N (rk))2) and rk is

the k:th root of the N :th Legendre polynomial PN [11, pp. 404-407].

3.2 Error estimates
The quadrature rules are, for sufficiently smooth integrands, associated to some local a priori
error estimate in terms of derivatives of the integrand. Usually on the form

E[a,b](f) ≤ C(b− a)n+1 sup
s∈[a,b]

|Dn
s f(s)|.(3.2)

Estimates of this type are

E[a,b](f) ≤ (b− a)3

24
sup

s∈[a,b]
|D2

sf(s)|,

for the midpoint rule,

E[a,b](f) ≤ (b− a)5

2880
sup

s∈[a,b]
|D4

sf(s)|,
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for Simpson’s rule and

E[a,b](f) ≤ (N !)4(b− a)2N+1

(2N + 1)((2N)!)3 sup
s∈[a,b]

|D2N
s f(s)|,

for the Gauss quadrature formula [11, pp. 404-407].
These estimates, while important for theoretical results concerning rates of convergence, are

usually of little practical importance as higher order derivatives seldom are available and difficult
to estimate [12, p. 159]. Many adaptive quadrature schemes use instead one or several more
accurate approximations (for example using a greater number of evaluation points) [5], [7] or
special rules based on such approximations [4] for estimating the error. However, if explicit
numerical evaluations of the integrand are unavailable, such as when the integrand depends
on some undetermined parameter p ∈ P (where P is the set of parameter values), that is,
f(s) = f(s, p), then theoretical error estimates based on (3.2) makes a ‘semi-numerical’ treatment
of the integral possible. We would then have an estimate of the type

E[a,b](f) ≤ C(b− a)n+1 sup
s∈[a,b],p∈P

|Dn
s f(s, p)|.(3.3)

3.3 Interval subdivision
The simplest and quickest method of dividing the integration intervals is bisection of the interval
where the error is the greatest. That is, if the interval of integration, [A, B] is partitioned
into subintervals {[ak, bk]}M

k=1 and k∗ ∈ arg max1≤k≤M E[ak,bk](f), then [ak∗ , bk∗ ] is replaced by
[ak∗ , c] and [c, bk∗ ] where c = (ak∗ + bk∗)/2. This method has got the benefit of refining the
integration grid very quickly but does not in general yield an optimal integration grid in a sense
of using a minimum number of evaluation points for given error tolerances.

3.4 Termination criteria
Assuming that the integrand is ‘well-behaved’ enough for the quadrature algorithm to converge,
we need to define conditions where the result should be accepted as a sufficiently good approx-
imation of the integral. Often such conditions are described by tolerances of the errors, such
as

M∑
k=1

E[ak,bk](f) < TOL,(3.4)

where the sum in the left-hand side gives a bound of the global quadrature error E[A,B](f) and
TOL is some decided tolerance.

In general we can not guarantee convergence of the quadrature algorithm to any given error
tolerance, and so conditions for termination due to failure of the quadrature should also be in-
cluded. These conditions can involve a maximum number of integrand evaluations or a minimum
interval length [5].
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4 Implementation
The results of Subsections 2.2 and 2.3 give solutions to the temperature distribution problems
of Section 1. To use these results in the optimisation of beam parameters we need to develop
numerical approximations of these solutions. Here, we start by employing the concepts of Section
3 to create an algorithm for the quadrature of the integral in (2.19). We then investigate the
possibility of discretising the solution operator from Subsection 2.3, and show a convergence
result for this operator, under the assumption that sufficiently good quadrature rules can be
found.

4.1 Quadrature of the solution formula without radiative heat transfer
We now turn to approximating the integral in (2.19) using the principles of Section 3, where
we consider the spatial coordinates as parameters. In order to control the error we need to use
error estimates of the type (3.3). We note that differentiation of the integrand with respect to
s yields increasingly complicated expressions (ee Appendix B). Moreover, due to terms of the
form z2/sn, where n ∈ Z+, appearing in the derivatives these are singular at s = 0. Thus, in
order to get a manageable error analysis we will employ the midpoint rule with error estimates
in terms of the integral itself and its first derivative as well as the standard error estimate for
the midpoint rule as given in Subsection 3.2. For each integration interval we use the estimate
that give the lowest bound on the error.

In the case where t =∞ we also need an estimate of the error derived from integration over
only a finite interval [0, b] ⊂ [0,∞]. The error estimates used are shown in Appendix A.

For speed we use bisection of the interval with the largest error when refining the integration
grid. The termination criterion should describe a bound of the maximum error and so we use a
criterion of the type (3.4). The procedure of the integration is outlined in Algorithm 1. With

Algorithm 1 Adaptive quadrature
1: V ← dimensionless speed {See Subsection 2.2}
2: s← s0 {Vector with initial endpoints of integration intervals}
3: TOL← absolute error tolerance
4: e← error_estimate(s0, V ) {Gives av vector of local error estimates}
5: while sum(e) > TOL do
6: k ← index of greatest element of e
7: if sk+1 =∞ then
8: s← [s1:k−1| tan(π/2− TOL/#elements in s)|∞] {Add interval}
9: else

10: s← [s1:k|(sk + sk+1)/2|sk+1:end] {Bisect interval}
11: end if
12: e← [e1:k−1|error_estimate(sk:k+2, V )|ek+1:end] {Update error}
13: end while
14: return s

this method the numerical approximation of (2.19) will be written as

us,h(x, t) = T ∗
N−1∑
i=1

ki

1 + m2
i

e
−

(x+V m2
i

)2+y2

1+m2
i

− z2
m2

i ,(4.1)

where ki = si+1− si, mi = (si + si+1)/2, i = 1, . . . , N − 1 and N is the number of elements in s.
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4.2 Discretisation of the solution operator with radiative heat transfer
We have the solution operator S v = ui + ūs − A v as defined in (2.20). We define the corre-
sponding discrete operator Shv = ui,h + ūs,h−Ahv for some (small) discretisation parameter h,
where ui,h, ūs,h are discrete approximations of ui and ūs, and

Ahv(x, t) = krQh,[0,t]

∫
R2

U(x− x̄, y − ȳ, z, t− s)((v(x̄, ȳ, 0, s) + Ts)4 − T 4
s ) dx̄ dȳ,

where Qh,[0,t] denotes some quadrature rule in the variable s over the interval [0, t], characterised
by h.

We consider u = limn→∞ S nv0 for appropriate v0 ∈ CB to be a solution to the heat distribu-
tion problem with radiative heat transfer and seek an estimate of how well u can be approximated
by a finite number of applications of the discrete operator Sh to v0. In particular we seek condi-
tions such that there is a convergence ∥S N

h v0 − u∥ → 0 as h→ 0 and N →∞. First, note that
the error can be split into one part corresponding to discretisation and one part corresponding
to finite application of the solution operator as by the triangle inequality

∥S N
h v0 − u∥ = ∥S N

h v0 −S N v0 + S N v0 − u∥(4.2)
≤ ∥S N

h v0 −S N v0∥+ ∥S N v0 − u∥.

By the same argument as in the proof of Theorem 4.34 (a) of [2] but in the context of the Banach
space (C(R3 × [0, τ ]), ∥ · ∥) rather than (RN , | · |) and as v0, u ∈ CB we have

∥S N v0 − u∥ ≤ αN∥v0 − u∥ ≤ 2BαN ,(4.3)

with α < 1 for sufficiently small τ (cf. Section 2.3). Let E m
h v0 = S m

h v0−S mv0 for m = 0, 1, 2, ...
with S 0

h = S 0 = I , the identity operator. Further, let R(p, q) = (p + q)4 − p4 and

Rh(v, w)(x, t) = Qh,[0,t]

∫
R2

U(x− x̄, y − ȳ, z, t− s)R(v(x̄, ȳ, 0, s), w(x̄, ȳ, 0, s)) dx̄ dȳ.

Then by the triangle inequality

∥E N
h v0∥ ≤ ∥ui − ui,h∥+ ∥ūs − ūs,h∥+ ∥AhS N−1

h v0 −A S N−1v0∥(4.4)
= ∥ui − ui,h∥+ ∥ūs − ūs,h∥+ ∥Ah(S N−1v0 + E N−1

h v0)−A S N−1v0∥
≤ ∥ui − ui,h∥+ ∥ūs − ūs,h∥+ ∥AhS N−1v0 −A S N−1v0∥

+ ∥Rh(S N−1v0 + Ts, E
N−1
h v0)∥.

We have demonstrated (see Appendix C) that it is possible to find an approximation ūs,h of
ūs that can be made arbitrarily accurate with respect to the maximum norm, by appropriate
application of the midpoint rule. In other words, there exists ϵs = ϵs(h) tending to zero as h tends
to zero and such that ∥ūs,h − ūs∥ ≤ ϵs(h) holds. We assume that there exists a similar bound
ϵi(h) for ∥ui − ui,h∥, that the quadrature rule Qh can be constructed so that there exists ϵq(h)
so that∥AhS mv0 − A S mv0∥ ≤ ϵq(h) for appropriate choice of v0 ∈ CB and for any m ∈ Z+
and that Qh integrates (t− s)−1/2 over the interval [0, t] ⊆ [0, τ ] with a finite maximum error d.
Then because S mv0 ∈ CB

|Rh(S mv0 + Ts, w)(x, t)| ≤ R(B + Ts, ∥w∥)
(√

τ

πab
+ d

)
,
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indicating that there exists a constant K such that

∥Rh(S mv0 + Ts, w)∥ ≤ K(∥w∥+ ∥w∥2 + ∥w∥3 + ∥w∥4).(4.5)

Under these assumptions, using (4.4) and (4.5) we get

∥E N
h v0∥ ≤ ϵi(h) + ϵs(h) + ϵq(h) + K

4∑
p=1
∥E N−1

h v0∥p =: EN (h).

This gives rise to a sequence of error estimates {En(h)}N
n=0 by

En+1(h) = ϵ(h) + K
4∑

p=1
En(h)p, n = 0, 1, . . . ,

E0(h) = ∥S 0
h v0 −S 0v0∥ = 0,

where we have used the notation ϵ(h) = ϵi(h) + ϵs(h) + ϵq(h). Define the sequence {an}∞
n=0 by

an+1 = 4Kan + 1, a0 = 0. We then have

E0(h) = 0,

E1(h) = ϵ(h),

E2(h) = ϵ(h) + K

4∑
p=1

ϵ(h)p ≤ (4K + 1)ϵ(h) if ϵ(h) ≤ 1,

E3(h) ≤ ϵ(h) + K
4∑

p=1
(4K + 1)pϵ(h)p ≤ (4K(4K + 1) + 1)ϵ(h) if (4K + 1)ϵ(h) ≤ 1,

. . .

EN (h) ≤ aN ϵ(h) if aN−1ϵ(h) ≤ 1.

By assumption ϵ(h) can be made arbitrarily small by choosing small enough h. Thus, if we
pick h(N) so that ϵ(h(N)) ≤ (NaN )−1 ≤ a−1

N−1 and use the sequence of error estimates above
together with (4.2) and (4.3) we arrive at the following result

∥S N
h v0 − u∥ ≤ EN (h(N)) + 2BαN ≤ N−1 + 2BαN → 0, N →∞,(4.6)

and so we may conclude that under the assumption that sufficiently good quadrature rules may
be found for appropriate choice of v0, the result from N applications of the discrete operator Sh

tends to u as N tends to infinity, provided that the discretisation parameter h tends to zero fast
enough.

13



5 Characterising the melted zone
In the optimisation of beam parameters there are two important characteristics of the melted
zone, maximum temperature and maximum width at given depth, as stated in Section 1. For a
temperature profile T (x, y, z, t) being a solution to (1.2) or (1.3) with constant initial temperature
T0 the maximum temperature Tmax and maximum width yz at depth z are formally defined as

Tmax(t) := sup
x∈R2×R−

T (x, t),(5.1)

and

yz(t) := sup{y ∈ R : ∃x ∈ R : T (x, y, z, t) = Tm},(5.2)

where Tm is the melting temperature of the material. In order to determine for which values of
z yz is defined, we also need to find the maximum depth zmax defined as

zmax(t) := inf{z ∈ R− : ∃(x, y) ∈ R2 : T (x, y, z, t) = Tm}.(5.3)

In this section we develop a scheme for finding Tmax and yz at any given time t for an approximate
solution T (x, t) ≈ T0 + us,h(x, t) with us,h as in (4.1).

5.1 Approximate maximum temperature
Denoting the approximate maximum temperature Tmax,h and using the approximate solution
into the definition (5.1) we get

Tmax,h(t) = T0 + sup
x∈R2×R−

us,h(x, t).(5.4)

By continuity and boundedness of us,h, we have that if T0 + us,h(x∗, t) = Tmax,h(t) then
∇us,h(x∗, t) = 0. It is easily verified that derivatives of us,h in the y- and z-directions take
the value zero if and only if y and z take the value zero, thus if we define X(t) := {x ∈ R :
Dxus,h(x, 0, 0, t) = 0} ≠ ∅ then

Tmax,h(t) = T0 + max
x∈X(t)

us,h(x, 0, 0, t).(5.5)

For fixed t, we can find an approximation of x ∈ X(t) by Newton’s method, Algorithm 2, using
f(x) = Dxus,h(x, 0, 0, t). We note that, from (4.1), exact expressions for the spatial derivatives
of us,h can be found, and thus equation vectors and inverse Jacobi matrices can be given by exact
formulae.

Let Xh(t) = {−V mi}N
i=1 with V , {mi}N

i=1 and N as in Subsection 4.1. Then we get a starting
approximation by choosing x ∈ Xh(t) maximising us,h(x, 0, 0, t) over Xh(t).

It is possible that the set X(t) contains more than one element, and so, once an approximate
x is found it must be checked for global optimality. Assume that we have a candidate for an
optimal point, x̃, we then try to solve the equation

us,h(x, 0, 0, t) = us,h(x̃, 0, 0, t) + Td,(5.6)

for some (small) temperature step Td, by Newtons method. If no new solution is found, x̃
is accepted as an approximation the globally optimal point, otherwise, the solution x is used
as a starting approximation for a new Newton iteration, and procedure is repeated until no
further new solutions are found. This process ensures that, for the accepted x, |Tmax,h(t)− T0−
us,h(x, 0, 0, t)| ≤ Td.
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Algorithm 2 Newton’s method for the system of equations f(x) = 0

1: f(x)← N -vector of equations in the variable x ∈ RN

2: Jinv(x)← inverse of Jacobi matrix of f
3: TOL← relative error tolerance
4: MaxItr ← maximum number of iterations
5: n←0 {Number of performed iterations}
6: xn+1 ← starting approximation
7: xn ← xn+1(2 + TOL) {To enter the loop}
8: while ∥xn+1 − xn∥2 > TOL · ∥xn∥2 & n < MaxItr do
9: xn ← xn+1 {Old approximation}

10: xn+1 ← xn+1 − Jinv(xn+1)f(xn+1) {Update approximation}
11: n← n + 1 {Update number of performed iterations}
12: end while
13: return xn+1 {Accepted approximation}

5.2 Approximate depth and width
Assuming that Tmax,h ≥ Tm ≥ T0, by the continuity of us,h and decrease of us,h in the negative
z-direction1 we are assured that there exists an approximate maximum depth zmax,h, defined by

zmax,h(t) := inf{z ∈ R− : ∃(x, y) ∈ R2 : T0 + us,h(x, y, z, t) = Tm},(5.7)

and that for any z ∈ [zmax,h(t), 0] there exists an approximate maximum width yz,h defined by

yz,h(t) := sup{y ∈ R : ∃x ∈ R : T0 + us,h(x, y, z, t) = Tm}.(5.8)

For the maximum depth, we note that, by the same continuity arguments as for the maximum
temperature, with fixed t, for some x ∈ R, zmax,h(t) satisfies

Dxus,h(x, 0, zmax,h(t), t) = 0,(5.9)

and, by definition,

T0 + us,h(x, 0, zmax,h(t), t) = Tm.(5.10)

The two equations above form a system that can be solved by Newton’s method, starting, for
instance, at a point (x, z) ∈ R×R− with T0 +us,h(x, 0, 0, t) = Tmax,h and T0 +us,h(x, 0, z, t) ≈ Tm
that may be found by a simple line-search once Tmax,h is located.

Again, it may be possible to find a point where this system is satisfied while not being at
the maximum depth. Similarly to the procedure used for the maximum temperature, given one
solution (x̃, z̃) to the system of equations, we seek a solution x ∈ R to

T0 + us,h(x, 0, z̃ − zd, t) = Tm,(5.11)

for some (small) step zd. The procedure is repeated in the same manner as for the maximum
temperature, until no further solutions are found, whence the last approximation is accepted.

For given z ∈ [zmax,h(t), 0], yz,h(t) can be found in the same manner as zmax,h(t), by instead
noting that for some x ∈ R, yz,h(t) satisfies the equations

Dxus,h(x, yz,h(t), z, t) = 0,(5.12)
1As Dzus,h(x, y, z, t) > 0 whenever z < 0.
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and

T0 + us,h(x, yz,h(t), z, t) = Tm,(5.13)

and for the global optimality check attempt to solve

T0 + us,h(x, ỹ + yd, z, t) = Tm,(5.14)

with a current approximation ỹ and some (small) step yd.

5.3 The depth-width curve
It has been observed by Arcam that for fixed t, the graph of (yz(t), z) for z ∈ [zmax(t), 0] appears
to be ‘roughly’ parabolic. Therefore, after calculating zmax,h(t) and yz,h(t) at a number N ≥ 2
of points {zi}N

i=1 ⊂ [zmax,h(t), 0] we use the method of linear least squares to fit a curve on the
form

z = β1 + β2yz,h(t)2,(5.15)

with β1, β2 ∈ R, to the data points {(yzi,h(t), zi)}N
i=1.
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6 Testing of the algorithms for the problem with no radia-
tive heat transfer

In this section we present the results from temperature simulations using the principles of Subsec-
tion 4.1 and Section 5, implemented in Matlab. The results are for a ‘typical’ set of parameters
as presented to us by Arcam:

Pin=120 W, Tm=1873 K,
vx=0.2337 m/s, λ=7 W/m K,
σ = 3.8263 · 10−4 m, ρ=4430 kg/m3,
T0=973 K, cp=526 J/kg K.

With these parameters and for times t = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1 and
∞, in seconds, we use Algorithm 1, with absolute error tolerance 10 K, to describe the temperature
profiles, and the procedures in Section 5, with relative tolerance 0.01 in Algorithm 2 and using
10 data points uniformly distributed in the z-direction between zmax and 0, to find Tmax,h, β1
and β2 for each time. In the optimality checks we use Td = 10 K, while yd and zd are taken
as one percent of the current candidate. When running Algorithm 1 we notice that the error
estimate (A.2) is never used, while (A.1) is used only in the interval including zero.

To study the error in Algorithm 2 and we create a reference lattice V with dimensionless
spatial coordinates (cf. Subsection 2.2) x, y and z uniformly distributed in [−6, 2], [0, 3] and
[−0.5, 0] with 100 points respectively. At each point x in the lattice we compute a reference
temperature Tref(x) using Matlab’s quadgk on (2.19), with an absolute error tolerance of 10−15

as termination criterion. For our purposes we consider Tref(x) to be exact in every point x ∈ V.
The reference temperatures are compared to those given by (4.1). We see from Figures 1 and 2
that the errors as well as the approximation quickly decays outside the reference lattice except
in the case t = ∞ where the error is small everywhere. The largest error over the lattice,
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Figure 1: Temperature [K] (left), error [K] in the xy-plane with z = 0 (centre), and error in the
xz-plane with y = 0 (right) for t = 0.005 s.

d(t) = maxx∈V |Tref(x)− T0 − us,h(x, t)| is shown for each time t in Table 1 along with the num-
ber of points, N , used to approximate the integral (2.19) with Algorithm 1, the approximate
maximum temperature Tmax,h and parameters β1 and β2.
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Figure 2: Temperature [K] (left) and error [K] (right) in the xy-plane with z = 0 for t =∞

For each value of z in the lattice, we find (if possible) the lattice point with the largest value
of y at which Tref ≥ Tm. Assuming that yi has this property for some z, then the true value of
yz ∈ [yi, yi+1], thus we get an upper and lower bound for the true width. The results are shown
in Appendix D.

t [s] N Tmax,h [K] β1 β2 d [K]
0.001 24 2093 -0.0241 0.1080 1.2111
0.002 29 2468 -0.0761 0.1442 1.5839
0.005 41 2799 -0.1615 0.2152 1.7333
0.01 58 2814 -0.1807 0.2404 0.5978
0.02 84 2814 -0.1806 0.2404 0.4018
0.05 150 2814 -0.1806 0.2404 0.2579
0.1 249 2814 -0.1807 0.2405 0.3439
0.2 379 2814 -0.1806 0.2404 0.1588
0.5 595 2814 -0.1806 0.2404 0.0898
1 808 2814 -0.1806 0.2404 0.0792
∞ 45845 2814 -0.1806 0.2404 0.0060

Table 1: Results
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7 Discussion
Here we discuss the performance of the methods of Sections 4 and 5. In the case of negligible
radiation we base our discussion on the results presented in Section 6.

7.1 Performance of the procedure in the case of negligible radiative
heat transfer

We see from Table 1 that the number of points produced by Algorithm 1 increases, as expected,
with increasing time, while the largest detected error d remains small compared to the used
tolerance. In particular, we note that for t = ∞, the number of points used is very large, while
the detected maximum error is less than one thousandth of the used tolerance. We can see
three main reasons for this. Firstly, it is possible that our error estimates (cf. Appendix A), in
particular the one used for truncating the integration interval in the case of t = ∞, are overly
pessimistic. Secondly, the routine of bisection of the interval with the largest estimated local
error used in Algorithm 1 is likely to produce a non-optimal distribution of points, thus requiring
a larger number of points to meet the required tolerance. Thirdly, we note that, although
the temperature far back along the path of the electron beam (that is, for large negative x in
dimensionless coordinates) is of less interest when considering maximum temperature and melted
width, we still demand that it is calculated as accurately as the temperature close to the current
position of the electron beam, thus requiring more points.

For the error estimates, as noted in Section 6, only the second order estimate is used, except
for the interval including zero, where the derivatives of the integrand are singular. This could
indicate that higher order quadrature rules, such as the Gauss quadrature rules, with associated
error estimates, might meet the error tolerance with fewer interval subdivisions than the midpoint
rule, provided that the higher order derivatives of the integrand in (2.19) can be estimated in an
efficient manner.

Optimising the positions of points, as opposed to interval bisection, in Algorithm 1 is likely
to make the algorithm very slow, as the optimisation problem would involve a combination of
integer programming, in the description of the number of points used, and continuous non-linear
programming, for the positioning of the points, in a large number of variables.

Introducing error tolerances varying in space would involve finding error estimates depending
on the spatial coordinates. It is possible that this, while involving a larger number of error
estimations to be carried out, nevertheless could improve the overall performance of Algorithm 1
by focusing only on the regions of interest. This would be especially useful for large values of t.
On the other hand, we see from Table 1 that, for purposes of calculating maximum temperature
and widths, small values of t are, at least for the used values of the parameters, sufficient, as
Tmax,h, β1 and β2 have reached equilibrium values after 0.01 seconds.

The data of Appendix D suggests that the depth-width curve on the form (5.15) describes
the maximum melted width well, if slightly less so before equilibrium is reached. This can be
accepted as an empirical result in itself, but as such it would require further validation than the
test performed for this thesis. Otherwise it would be useful to find a mathematical justification
for this observation.

7.2 Considerations with radiative heat transfer
In Subsection 2.3 we state that u = limn→∞ S nv0 for v0 ∈ CB is a solution to (1.2) in the sense
that it is a fixed point to the solution operator S . This does not in itself imply that u is a
solution in the sense of Proposition 1. To satisfy the hypothesis of Proposition 1, we must show
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that Π(x, y, t) − kr((u(x, y, 0, t) + Ts)4 − T 4
s ) satisfies (2.2) and (2.3). As u ∈ CB it is easy to

show that the first statement holds, while the second requires that there is a constant C such
that |Dtu(x, y, 0, t)| ≤ C whenever (x, y) ∈ R2 and t ∈ [0, τ ], and this is yet to be shown.

When we show that S is a contraction on CB we assume that the stopping time τ is small
enough. If we, for instance, use the parameter values from Section 6, the Stefan-Boltzmann
constant [10, pp. 14, 344] for kr (which underestimates τ) and Ts = 400 K we would get τ ≈ 1
second, about 100 times as long as the time to reach equilibrium, if radiative heat transfer
is neglected. This implies that the requirement on τ is not necessarily a severe limitation.
Moreover, once the solution is found at t = τ it can be introduced as a new initial condition in
(1.2) whereupon the solution procedure can be repeated with a new stopping time τ1. Proceeding
inductively in this manner gives a sequence of stopping times {τi}∞

i=1. If this sequence does not
converge to zero then the solution to (1.2) could be calculated in this manner for any time t > 0.
From (2.22) we see that τ > 0 as long as B <∞ which in turn implies that the sequence {τi}∞

i=1
does not converge to zero if the solution to (1.2) is bounded for any time t > 0. From a physical
point of view and comparing to the case of negligible radiation, we would expect this to be true,
but mathematical proof of this remains to be done.

In Subsection 4.2 we assume that converging quadrature methods can be found for the use
in the discretised solution operator Sh and we show in Appendix C that such a rule exists for
part of the operator. Continuity of the integrands, except possibly at a finite set of points in
[0, τ ] would suggest that satisfactory quadrature rules may indeed be constructed.

In the definition of Sh we have assumed that the spatial convolution involved in Ah may
be calculated analytically. Thus an appropriate choice of v0 should ensure that this is fulfilled.
If such a v0 is not used, then the convolution operation must be discretised as well as the time
integral,using some convergent scheme.

7.3 Suggested topics for further study
On the basis of the discussion above we here suggest some topics for further study. In the case
of negligible radiation we propose:

• further empirical testing of the same type as in Section 6 using a wider range of parameter
values,

• investigation of efficiency of higher order quadrature rules in Algorithm 1,

• finding an analytical justification or further empirical evidence for (5.15), or a reason to
reject it, such as an example where it is not a valid approximation.

In the case of radiative heat transfer we suggest:

• investigation of whether the fixed point to the solution operator is a solution to (1.2) in
the sense of Proposition 1,

• finding a mathematical proof that the solution to (1.2) is bounded for any positive time,

• finding, if possible, convergent quadrature rules for the use in Sh.
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A Error estimates for the midpoint rule

Apart from the standard error estimate for the midpoint rule we use the following additional
estimates

E[a,b](f) ≤ max

{∫ b

a

|f(s)| ds, (b− a)
∣∣∣∣f (a + b

2

)∣∣∣∣
}

,(A.1)

and

E[a,b](f) ≤ (b− a)2

2
sup

s∈[a,b]
|Dsf(s)|.(A.2)

(A.1) follows directly from the definition of the error for an integrand of constant sign. To show
(A.2) we write the integrand as the integral of its derivative to get

E[a,b](f) =

∣∣∣∣∣
∫ b

a

f(x) dx− (b− a)f
(

a + b

2

)∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(
f

(
a + b

2

)
+
∫ s

(a+b)/2
Dtf(t) dt

)
ds− (b− a)f

(
a + b

2

)∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

∫ s

(a+b)/2
Dtf(t) dt ds

∣∣∣∣∣ ≤
∫ b

a

∫ s

(a+b)/2
|Dtf(t)| dt ds

≤
∫ b

a

∣∣∣∣∣
∫ s

(a+b)/2
dt

∣∣∣∣∣ ds sup
s∈[a,b]

|Dsf(s)|.

Noting that |s− (a + b)/2| ≤ (b− a)/2 gives the desired result.
In the case of t =∞ we estimate the remaining integral by∫ ∞

b

1
1 + s2 e

− (x+V s2)2+y2

1+s2 − z2
s2 ds ≤ π

2
− arctan(b).(A.3)

We continue by giving estimates of supx∈R3 |Dkh(x, s)| for the integrand h in (2.19) for k = 1, 2.
Let

f = 1
1 + s2 ,

g = (x + V s2)2 + y2

1 + s2 + z2

s2 ,

h(s) = f · exp(−g),

and h′(s) = Dsh(s). If we in the following omit the time variable, that is f = f(s), then the
derivatives can be written as
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f ′ = −2s

(1 + s2)2 = −2sf2

f ′′ = −2f2 − 2s(2f ′f) = −2f2 + 8s2f3

g′ = 4V s(x + V s2)
1 + s2 − 2s((x + V s2)2 + y2)

(1 + s2)2 − 2z2

s3

= 4V s(x + V s2)f − 2s((x + V s2)2 + y2)f2 − 2z2s−3

g′′ = 4V (x + V s2)f + 8V 2s2f + 4V s(x + V s2)f ′ − 2((x + V s2)2 + y2)f2 − 2s(4V s(x + V s2))f2

− 2s((x + V s2)2 + y2) · 2ff ′ + 6z2s−4

= 4V (x + V s2)f + 8V 2s2f + 4V s(x + V s2)(−2sf2)− 2((x + V s2)2 + y2)f2

− 2s(4V s(x + V s2))f2 − 4s((x + V s2)2 + y2)f(−2sf2) + 6z2s−4

= 4V (x + V s2)f + 8V 2s2f − 8V s2(x + V s2)f2 − 2((x + V s2)2 + y2)f2

− 8V s2(x + V s2)f2 + 8s2((x + V s2)2 + y2)f3 + 6z2s−4

= 4V (x + V s2)f + 8V 2s2f − 16V s2(x + V s2)f2 − 2((x + V s2)2 + y2)f2

+ 8s2((x + V s2)2 + y2)f3 + 6z2s−4

(g′)2 = (4V s(x + V s2)f − 2s((x + V s2)2 + y2)f2 − 2z2s−3)2

= 16V 2s2f2(x + V s2)2 + 4s2f4((x + V s2)2 + y2)2 + 4z4s−6 − 16V s2f3(x + V s2)((x + V s2)2 + y2)
− 16V f(x + V s2)z2s−2 + 8f2((x + V s2)2 + y2)z2s−2

h′ = (f ′ − fg′) exp(−g)
= (−2sf2 − f(4V s(x + V s2)f − 2s((x + V s2)2 + y2)f2 − 2z2s−3)) exp(−g)
= (− 2sf2︸︷︷︸

φn,1

+ 2s((x + V s2)2 + y2)f3 + 2z2s−3f︸ ︷︷ ︸
φp,1

− 4V s(x + V s2)f2︸ ︷︷ ︸
φu,1

) exp(−g),

where φn,1, φp,1, φu,1 represent the negative and positive terms and terms of undetermined sign
of h′ respectively. Continuing with

h′′ = (f ′′ − f ′g′ − fg′′ − g′(f ′ − fg′)) exp(−g)
= (f ′′ − 2f ′g′ − fg′′ + fg′g′) exp(−g)
= exp(−g)

[
−2f2 + 8s2f3 − 2(−2sf2)(4V s(x + V s2)f − 2s((x + V s2)2 + y2)f2 − 2z2s−3)

−f{4V (x + V s2)f + 8V 2s2f − 16V s2(x + V s2)f2 − 2((x + V s2)2 + y2)f2

+8s2((x + V s2)2 + y2)f3 + 6z2s−4}+ f{16V 2s2f2(x + V s2)2 + 4s2f4((x + V s2)2 + y2)2

+4z4s−6 − 16V s2f3(x + V s2)((x + V s2)2 + y2)− 16V f(x + V s2)z2s−2

+8f2((x + V s2)2 + y2)z2s−2}
]

= exp(−g)
[
−2f2 + 8s2f3 + 16V s2(x + V s2)f3 − 8s2((x + V s2)2 + y2)f4 − 8f2z2s−2

−4V (x + V s2)f2 − 8V 2s2f2 + 16V s2(x + V s2)f3 + 2((x + V s2)2 + y2)f3

−8s2((x + V s2)2 + y2)f4 − 6fz2s−4 + 16V 2s2f3(x + V s2)2 + 4s2f5((x + V s2)2 + y2)2

+4fz4s−6 − 16V s2f4(x + V s2)((x + V s2)2 + y2)− 16V f2(x + V s2)z2s−2

+8f3((x + V s2)2 + y2)z2s−2]
= exp(−g)[φn,2 + φp,2 + φu,2,V + φu,2,V 2 ]
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where φn,2, φp,2 are the negative and positive parts of the second derivative of h, while φu,2,V

and φu,2,V 2 represent the terms of undecided sign having V and V 2 dependency respectively.

φn,2 = −2f2 − 8s2((x + V s2)2 + y2)f4 − 8f2z2s−2 − 8s2((x + V s2)2 + y2)f4 − 6fz2s−4

= −2f2 − 16s2((x + V s2)2 + y2)f4 − 8f2z2s−2 − 6fz2s−4

φp,2 = 8s2f3 + 2((x + V s2)2 + y2)f3 + 4s2f5((x + V s2)2 + y2)2 + 8f3((x + V s2)2 + y2)z2s−2

+ 4fz4s−6

φu,2,V = 16V s2(x + V s2)f3 − 4V (x + V s2)f2 + 16V s2(x + V s2)f3

− 16V s2f4(x + V s2)((x + V s2)2 + y2)− 16V f2(x + V s2)z2s−2

= 32V s2(x + V s2)f3 − 4V (x + V s2)f2

− 16V s2f4(x + V s2)((x + V s2)2 + y2)− 16V f2(x + V s2)z2s−2

= (x + V s2)
[
32V s2f3 − 4V f2 − 16V s2f4((x + V s2)2 + y2)− 16V f2z2s−2]

φu,2,V 2 = 16V 2s2f3(x + V s2)2 − 8V 2s2f2

Below we will frequently use the estimate |α|ne−α2 ≤
(

n
2e

)n/2 ∀α ∈ R when we establish the
bounds of the derivatives.

|φn,1| = 2sf2 exp(−g) ≤ 2sf2

|φp,1| = 2sf3((x + V s2)2 + y2) exp(−g) + 2z2s−3f exp(−g)
≤ 2sf2 ((x + V s2)2 + y2)f exp(−((x + V s2)2 + y2)f)︸ ︷︷ ︸

≤e−1

+2s−1f (z2s−2) exp(−z2s−2)︸ ︷︷ ︸
≤e−1

≤ 2sf2e−1 + 2s−1fe−1

|φu,1| = 4V |s(x + V s2)f2| exp(−g)
≤ 4V sf3/2 |(x + V s2)f1/2| exp(−(x + V s2)2f)︸ ︷︷ ︸

≤(2e)−1/2

≤
√

8V sf3/2e−1/2

|φn,2| = exp(−g)
[
2f2 + 16s2((x + V s2)2 + y2)f4 + 8f2z2s−2 + 6fz2s−4]

≤ 2f2 + 16s2f3((x + V s2)2 + y2)f exp(−((x + V s2)2 + y2)f) + 8f2z2s−2 exp(−z2s−2)
+ 6fs−2z2s−2 exp(−z2s−2)
≤ 2f2 + 16s2f3e−1 + 8f2e−1 + 6fs−2e−1

|φp,2| = exp(−g)
[
8s2f3 + 2((x + V s2)2 + y2)f3 + 4s2f5((x + V s2)2 + y2)2

+8f3((x + V s2)2 + y2)z2s−2 + 4fz4s−6]
≤ 8s2f3 + 2f2((x + V s2)2 + y2)f exp(−((x + V s2)2 + y2)f)

+ 4s2f3((x + V s2)2 + y2)2f2 exp(−((x + V s2)2 + y2)f)
+ 8f2((x + V s2)2 + y2)f exp(−((x + V s2)2 + y2)f)z2s−2 exp(−z2s−2)
+ 4s−2fz4s−4 exp(−z2s−2)
≤ 8s2f3 + 2f2e−1 + 4s2f3 · 4e−2 + 8f2e−1e−1 + 4s−2f · 4e−2

= 8s2f3 + 2e−1f2 + 16e−2s2f3 + 8e−2f2 + 16e−2s−2f

Since the difference of the positive and negative terms is no greater than the maximum of their
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respective absolute values we get by the triangle inequality

|φu,2,V | = V · exp(−g)
∣∣(x + V s2)

[
32s2f3 − 4f2 − 16s2f4((x + V s2)2 + y2)− 16f2z2s−2]∣∣

≤ V · exp(−g)
∣∣(x + V s2) max

{
32s2f3, 4f2 + 16s2f4((x + V s2)2 + y2) + 16f2z2s−2}∣∣

≤ V ·max
{

32s2f3|(x + V s2)| exp(−g),
(4f2 + 16s2f4((x + V s2)2 + y2) + 16f2z2s−2)|(x + V s2)| exp(−g)

}
≤ V ·max

{
32s2f5/2|(x + V s2)|f1/2 exp(−(x + V s2)2f),

4f3/2|(x + V s2)|f1/2 exp(−(x + V s2)2f)+

+16s2f5/2√8((x + V s2)2 + y2)f
2

|(x + V s2)|f1/2
√

2
exp

(
−1

2
((x + V s2)2 + y2)f

−1
2

(x + V s2)2f

)
+ 16f3/2z2s−2|(x + V s2)|f1/2 exp(−(x + V s2)2f − z2s−2)

}
≤ V ·max

{
32s2f5/2(2e)−1/2,

4f3/2(2e)−1/2 + 16s2f5/2√8e−1(2e)−1/2 + 16f3/2e−1(2e)−1/2
}

≤ V (2e)−1/2f3/2 ·

{
4 + 32

√
2s2fe−1 + 16e−1, s < 1.34491

32s2f, s > 1.34491

|φu,2,V 2 | = exp(−g)|16V 2s2f3(x + V s2)2 − 8V 2s2f2|
≤ max{16V 2s2f3(x + V s2)2 exp(−g), 8V 2s2f2 exp(−g)}
≤ max{16V 2s2f2(x + V s2)2f exp(−(x + V s2)2f), 8V 2s2f2 exp(−g)}
≤ max{16V 2s2f2e−1, 8V 2s2f2}
≤ 8V 2s2f2 max{2e−1, 1}
≤ 8V 2s2f2

|h′′(s)| =
∣∣exp(−g)[φp,2 + φn,2 + φu,2,V + φu,2,V 2 ]

∣∣(A.4)
≤ exp(−g)

[
max{φp,2, |φn,2|}+ |φu,2,V |+ |φu,2,V 2 |

]
≤ max{8s2f3 + 2e−1f2 + 16e−2s2f3 + 8e−2f2 + 16e−2s−2f,

2f2 + 16s2f3e−1 + 8f2e−1 + 6fs−2e−1}

+ V (2e)−1/2f3/2 ·max
{

32s2f, 4 + 32
√

2s2fe−1 + 16e−1
}

+ 8V 2s2f2

≤ 2f

{
4s2f2 + e−1f + 8e−2s2f2 + 4e−2f + 8e−2s−2 if s > 1.7018321
f + 8s2f2e−1 + 4fe−1 + 3s−2e−1 if s ≤ 1.7018321

+ V (2e)−1/2f3/2 ·

32s2f if s >
√

4+e
7e−4−8

√
2

4 + 32
√

2s2fe−1 + 16e−1 if s ≤
√

4+e
7e−4−8

√
2

+ 8V 2s2f2
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|h′(s)| ≤
√

8V sf3/2e−1/2 + max{2sf2, 2sf2e−1 + 2s−1fe−1}(A.5)

≤
√

8V sf3/2e−1/2 + f

{
2sf if s > 1√

e−2
2sfe−1 + 2s−1e−1 if s ≤ 1√

e−2

Now we have established bounds for the first derivative of the integrand (2.19) expressed in (A.5)
and for the second derivative in (A.4).
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B Higher order derivatives of the integrand in (2.19)
For the possible use in error analysis for higher order quadrature methods we here derive a
formula for the n:th derivative of the integrand in (2.19). Following the notation in Appendix A
we write h(x, s) = f(s)e−g(x,s). By Leibniz’s formula [11, p. 305] we have

Dn
s h(x, s) = Dn

s

(
f(s)e−g(x,s)

)
=

n∑
k=0

(
n

k

)
Dn−k

s f(s)Dk
s e−g(x,s).(B.1)

For derivatives of f , using Leibniz’s formula again and the formula for the sum of a geometric
progression, we have

Dn
s f(s) = Dn

s

1
1 + s2 = Dn

s

(
1

1 + is

1
1− is

)
=

n∑
k=0

(
n

k

)
(−1)kikk!

(1 + is)k+1
in−k(n− k!)
(1− is)n−k+1(B.2)

= inn!
(1 + s2)(1− is)n

n∑
k=0

(
−1− is

1 + is

)k

= inn!
(1 + s2)(1− is)n

(
−1−is

1+is

)n

− 1

− 1−is
1+is − 1

= inn!
2(1 + s2)n+1 ((−1)n(1− is)n+1 + (1 + is)n+1)

= n!
2(1 + s2)n+1

n+1∑
k=0

(
n + 1

k

)
(1 + (−1)n+k)in+ksk.

By an application of Faa di Bruno’s formula for derivatives of compositions [8, Example 2] we
can express the derivatives of the exponential terms in (B.1) as

Dn
s e−g(x,s) = Yn(−Dsg(x, s),−D2

sg(x, s), . . . ,−Dn
s g(x, s))e−g(x,s),(B.3)

where Yn(χ1, χ2, . . . , χn) is defined as the determinant of the matrix M = (mij(χj−i+1)) with

mij(χj−i+1) =


(

n−i
j−i

)
χj−i+1, j ≥ i

−1, j = i− 1,

0, otherwise.

We apply Leibniz’s formula one last time in order to compute the derivatives of g

Dn
s g(x, s) = Dn[((x + vs2)2 + y2)f(s)] + Dn

s

z2

s2(B.4)

=
min{n,4}∑

k=0

(
n

k

)
Dk

s [((x + V s2)2 + y2)]Dn−k
s f(s) + (−1)n(n + 1)!z2

sn+2 .

Combining (B.1), (B.2), (B.3) and (B.4) gives the formula for the n:th derivative of the integrand
in (2.19).
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C Convergence of the midpoint rule
Here we show that the integral (2.19) can by approximated arbitrarily well by adaptive applica-
tion of the midpoint rule.

By applying the 0:th and 1:st order error bounds from appendix A we get

E[0,t](h(x)) ≤ max
{

arctan(s1), 4s1

4 + s2
1

}
+

N∑
i=2

k2
i

2
sup

x∈R2×R−

sup
s∈[si,si+1]

|Dsh(x, s)|

≤ arctan(s1) + 4s1

4 + s2
1

+ t

2
k sup

x∈R2×R−

sup
s∈[s1,t]

|Dsh(x, s)|

≤ arctan(s1) + 4s1

4 + s2
1

+ t

2
k(C1 + C2s−1

1 ),

where k = max2≤i≤N ki and C1, C2 are constants. Let now N → ∞ in such a manner that
k → 0 and s1 = C3kp for C3 constant and some p such that there exists constants α, β > 0 so
that 0 < α ≤ p ≤ β < 1. Then

E[0,t](h(x)) ≤ arctan(C3kp) + 4C3kp

4 + C2
3 k2p

+ t

2
(C1k + C2

C3
k1−p)→ 0,

as k → 0, which show the desired result.
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D Depth-width curves
Below we show the plots of the depth-width curves from Section 6. In the plots the solid line
represents the result of (5.15) and stars represent upper and lower bounds on the widths as
estimated from the reference lattice.
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