
Improving landfill monitoring programs
with the aid of geoelectrical - imaging techniques
and geographical information systems
Master’s Thesis in the Master Degree Programme, Civil Engineering

KEVIN HINE

Department of Civil and Environmental Engineering
Division of GeoEngineering
Engineering Geology Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Master’s Thesis 2005:22

Evaluation of LDPC Decoder with
Standardized Codes
Master’s Thesis in Communication Engineering

ZHAO JUN

Department of Signals and Systems
Division of Communication Engineering
Chalmers University of Technology
Gothenburg, Sweden 2012
Master’s Thesis 2012

Abstract

Low density parity check (LDPC) codes are one of the most popular channel codes.
Based on traditional sum-product and max-product algorithms, various modified algo-
rithms are tried to improve the performance of LDPC codes in terms of error rate,
complexity and latency. Uniformly rweighted belief propagation (URW-BP) algorithm
can offer better performance than traditional algorithm especially for regular LDPC
codes. linear programming (LP) decoder is also competitive to traditional message pass-
ing algorithm. We describe two traditional message passing decoders, four reweighted
message passing decoders based on URW-BP and LP decoder in this paper. Reweighted
decoders can outperform traditional decoders especially when iteration number is lim-
ited. Considering complexity and latency, reweighted max product decoder of version 2
(R-MPD-II) is the most promising decoder.

Acknowledgements

First and foremost, I would like to show my deepest gratitude to my supervisor, Henk
Wymeersch, who has provided me with valuable support and guidance throughout the
whole thesis project. I shall extend my thanks to Federico Penna and Vladimir Savic for
their previous work on this project.

The simulations were performed on resources provided by the Swedish National In-
frastructure for Computing (SNIC) at C3SE. Tomas Svedberg at C3SE is acknowledged
for assistance concerning technical aspects in making the code run on the C3SE resources.

Zhao Jun, Gothenburg 22/8/2012

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goal of this thesis . 2
1.3 Structure . 3

2 LDPC Decoding 5
2.1 LDPC codes . 5

2.1.1 Basics of linear block codes . 5
2.1.2 Low density parity check codes . 6
2.1.3 Regular and irregular LDPC codes 6
2.1.4 Graphical representation . 7
2.1.5 Hard decision decoding of LDPC codes 9

2.2 Decoding strategy . 10

3 Decoding algorithms 13
3.1 Message passing decoder . 13

3.1.1 Sum-product decoder (SPD) . 13
3.1.2 Max-product decoder (MPD) . 16
3.1.3 Reweighted sum-product decoder (R-SPD) 16
3.1.4 Reweighted max-product decoder (R-MPD) 17
3.1.5 Reweighted sum-product decoder II (R-SPD-II) 18
3.1.6 Reweighted max-product decoder II (R-MPD-II) 18

3.2 Complexity . 18
3.3 Linear programming . 20

3.3.1 LP decoder . 20
3.3.2 Alternating direction method of multipliers 23

4 Simulation results 25
4.1 Description of simulations . 25
4.2 Regular LDPC codes . 25

i

CONTENTS

4.3 Short regular LDPC codes . 34
4.4 Irregular LDPC codes . 35

5 Conclusion 41

Bibliography 44

ii

1
Introduction

I
n communication systems, the goal is to transmit information bits through the
medium to the receiver correctly. A channel with noise will introduce error bits
to the information symbols. Channel code is a method encoding the information
symbol by adding redundancy and decoding the codeword to reduce the error bits

by error correction.

1.1 Background

Low density parity check (LDPC) code is one of the most popular channel codes. LDPC
codes were first introduced in 1960 by R. Gallager [1]. However, due to the computa-
tional effort in implementing the decoder, the full power of LDPC codes were not realized
until mid-1990’s last century. Based on the developed understanding to graphical repre-
sentation and iterative decoding, LDPC codes were rediscovered after the breakthrough
invention of turbo codes. Because of different researches in different areas, the decoding
algorithm has several names which were proved to be the same thing. The two main
message passing algorithms conclude sum-product algorithm (or belief propagation al-
gorithm or probability propagation algorithm) and max-product algorithm (or min-sum
algorithm). In this thesis, sum-product algorithm and max-product algorithm are used.
Sum-product algorithm was invented by Gallager [1] and max-product algorithm was
introduced by Tanner [2].

Nowadays, turbo codes and LDPC codes are two major channel coding schemes
adopted by mainstream wireless network systems. Turbo codes have good performance
for intermediate block length while LDPC codes perform well for long block length.
LDPC codes can reach a high performance close to the channel capacity. Fig. 1.1 shows
the evolution of channel codes. Compared to the turbo codes, LDPC codes could have a
lower bit error rate (BER) than turbo codes especially for long block length codes. On
the other side, turbo codes have a fixed number of iterations which means they have a

1

1.2. GOAL OF THIS THESIS CHAPTER 1. INTRODUCTION

fixed decoding latency while LDPC codes have a longer latency. However, LDPC codes
have more potential in getting a better performance. More and more standards are using
LDPC codes as their channel code in recent years like DVB-S2, WiMax.

Figure 1.1: Evolution of Coding [3]

However, the disadvantage of LDPC codes is still the complexity both in the en-
coding and decoding module. The goal of our research is to reduce the complexity
for certain BER. Based on the traditional message passing algorithm, tree-reweighted
sum-product (TRW-SP) algorithm [4] is an improved algorithm to decrease the BER by
using reweighted method. From tree-reweighted algorithm, uniformly reweighted belief
propagation (URW-BP) algorithm [5] is first invented for the purpose of reducing the
complexity of tree-reweighted algorithm.

1.2 Goal of this thesis

In this thesis, we will evaluate seven decoders:
1. Sum-product decoder (SPD),
2. Max-product decoder (MPD),
3. Reweighted sum-product decoder (R-SPD),
4. Reweighted max-product decoder (R-MPD),
5. Reweighted sum-product decoder version 2 (R-SPD-II),
6. Reweighted max-product decoder version 2 (R-MPD-II),
7. Linear programming decoder (LPD).

Details on six reweighted message passing decoders and the linear programming decoder

2

1.3. STRUCTURE CHAPTER 1. INTRODUCTION

will be demonstrated. All the decoders will be implemented in Matlab. Numerical
simulations are done with irregular LDPC codes from WiMax standard and regular
codes from standard 802.3. The performances are discussed depending on error rate,
computing complexity and latency.

1.3 Structure

Chapter 2 introduces the background of LDPC codes. It illustrates the basic knowledge
of LDPC codes, representations of factor graph and the idea of iterative decoding. If the
reader is familiar with LDPC codes, he/she can skip the background of LDPC codes.
At the end of chapter 2, decoding strategy is presented. Chapter 3 will demonstrate the
details of all message passing algorithms and also linear programming decoder. Chapter
4 describes the results in different forms. We will compare and discuss the performances
of all decoders. Chapter 5 concludes the whole work and states the future work.

3

1.3. STRUCTURE CHAPTER 1. INTRODUCTION

4

2
LDPC Decoding

T
o begin with the discussion, we will introduce the background of LDPC codes
first. LDPC codes are a class of linear block codes. There are two major
ways to represent LDPC codes. One is matrix representation like other linear
block codes and the other is graphical representation. Both representations are

equivalent. Transmission and decoding model will also be introduced in this chapter.

2.1 LDPC codes

2.1.1 Basics of linear block codes

We can generate a (N,K) linear block codes with a generator matrix G with N and K
corresponding to the size of codeword and information word. The generator matrix G
is a K by N binary matrix. Generating a codeword is a mapping function from the set
of information words b ∈ BK to the set of codeword c ∈ C ⊂ BN

c = fcode(b) = bG. (2.1)

For all the codewords in this set, we can find the matrix H called parity check matrix
which satisfy the formula,

HcT = 0. (2.2)

We should notice that the parity check matrix is not unique, however, only the codewords
can satisfy the formula. By doing row permutations of the generator matrix G, it can
be changed into the form

Gs = [IK P], (2.3)

where IK is identity matrix with the size K by K and P is a K by (N −K) matrix. The
matrix with this kind of form is called systematic generator matrix. With the systematic
generator matrix, it is easy to find a systematic parity check matrix

Hs = [PT IN−K], (2.4)

5

2.1. LDPC CODES CHAPTER 2. LDPC DECODING

Figure 2.1: Parity Check Matrix H

corresponding to the systematic generator matrix.

2.1.2 Low density parity check codes

From the name of low density parity check codes, LDPC parity matrix has few 1’s
compare to a large number of 0’s. We define dc for the number of 1’s in each row and dv
for the number of 1’s in each column. dc and dv is much smaller than the size of matrix.

H =

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

 (2.5)

Eq.(2.5) shows an example of parity check matrix for a (8,4) LDPC code. Fig. 2.1 shows
a parity check matrix of the LDPC code we used in the following simulation with the
size of (384,2048). The black points in the figure represent 1’s while the rest are 0’s.
From the figure, we can see the character of a sparse matrix. The placement of 1’s shows
the “randomness” of the matrix. Shannon’s theory tells us that random codes with large
block lengths by doing optimal decoding can reach the channel capacity. A completely
random code can have good performance, however the complexity is exponential in K.
LDPC codes using pseudo random and sparse parity check matrix helps to reduce the
complexity. Furthermore it was observed that iterative decoding algorithms of sparse
codes perform very close to the optimal maximum likelihood decoder [6]. As we can see
in the fig 1.1, LDPC codes are the most potential codes near the Shannon limit.

2.1.3 Regular and irregular LDPC codes

Regular LDPC codes have the parity check matrix H that dc and dv are constant for
each row and column. For instance, Eq.(2.5) shows an example of regular LDPC code.
There are 4 1’s in each row and 2 1’s in each column. On the contrary, if the numbers
are not a constant, then it is called irregular LDPC code. In general, irregular LDPC
codes perform better than regular LDPC codes.

6

2.1. LDPC CODES CHAPTER 2. LDPC DECODING

2.1.4 Graphical representation

Tanner explicitly introduced graphs to describe linear block codes. Large size of LDPC
codes leads large complexity in both encoding and decoding LDPC codes. This is why
LDPC codes was ignored for a long time. The graphical representation such as factor
graphs promotes the trend of iterative processing in signal processing [7]. Iterative
receiver decreases the complexity making the implementation of LDPC codes practical.

Tanner graph is bipartite graph, a graph with vertices separated into two sets and
edges connecting nodes from different sets

S = C ∪ V. (2.6)

There is no edge between nodes in the same set.
The Tanner graph of an LDPC code with parity check matrix H has two types of

nodes. Nodes in V for each row of H are called variable nodes and the others in C for
each column of H are called check nodes. There are edges between check node i and
variable node j when hij = 1. Fig 2.2 shows the Tanner graph corresponding to Eq.(2.5).

 Figure 2.2: Tanner graph

In the Fig 2.2, the bold edges form a cycle of length 4. A cycle of length l is a path
of l distinct edges which closes on itself. The shortest possible cycle in the graph has the
length of 4. In the case of bipartite graph, cycle length is necessarily an even number.
We call the minimum cycle length girth of the Tanner graph. Obviously the girth of Fig
2.2 is 4. Short cycles of Tanner graph have a negative influence on the performance of
iterative decoding. So short cycles should be avoided when designing good LDPC codes.
To avoid cycles of length 4, overlap number of 1’s between any two columns should be
at most 1. From the figure, it is also easy to find out the character of regular LDPC
codes. Every check nodes have 4 edges connecting to it and every variable nodes have
2. We can also call them the check node degree dc and variable node degree dv.

From Eq.(2.1) and Eq.(2.2), the LDPC codewords can be represented as

C =
{
x ∈ BN : HxT = 0

}
(2.7)

7

2.1. LDPC CODES CHAPTER 2. LDPC DECODING

and
C =

{
uG : u ∈ BK

}
, (2.8)

where H is the parity check matrix and G is the generator matrix. Eq.(2.2) can be
written as follows:

h1x
T = 0 (2.9)

h2x
T = 0 (2.10)

... (2.11)

hN−Kx
T = 0. (2.12)

hi is ith row of H, where every row means one check requirement. Then the membership
indicator function is

IC =

{
1, if x ∈ C
0, else

(2.13)

Now we take the example of H from Eq.(2.5). Eq.(2.13) can be rewritten as

IC(x1,...,xN) = δ(x2 ⊕ x4 ⊕ x5 ⊕ x8)
·δ(x1 ⊕ x2 ⊕ x3 ⊕ x6)
·δ(x3 ⊕ x6 ⊕ x7 ⊕ x8)
·δ(x1 ⊕ x4 ⊕ x5 ⊕ x7)

, (2.14)

where ⊕ denotes the binary addition. Each δ() functions correspond to each check.

Figure 2.3: Factor graph

The factor graph Fig 2.3 is a graphical representation of the Eq.(2.14) and is often
combined with message passing decoding algorithms [8]. As Fig 2.3 shows, check nodes
work as binary addition. x1,x2,...,x8 are the bits of the codeword with a codeword
length of 8. At the beginning, the original received codeword information will be sent.
Messages pass through the edges. x1,x2,...,x8 will get new updated message. If all
checks are satisfied, Eq.(2.14) equalling to 1, the codeword x = [x1,x2,...,x8] will be a
legal LDPC codeword. Otherwise, it will continue the iterations.

8

2.1. LDPC CODES CHAPTER 2. LDPC DECODING

2.1.5 Hard decision decoding of LDPC codes

To introduce LDPC decoding algorithm, we first introduce hard decision decoding to
have a basic understanding of the decoding process. We take Fig 2.3 as the example. Now
a codeword x = [1,1,0,1,0,1,0,1] is received and the decoder will decodes the codeword
iteratively until a legal codeword is got. LDPC decoder won’t guarantee the result is
the true codeword that was sent from the transmitter. But it will make sure it is a legal
codeword. The decoding iteration can be divided by a few steps.

Figure 2.4: Iteration steps

1. Step 1 message updating from V to C: Firstly, initialize the decoder. The
original codeword x = [x1,x2,...,x8] is assigned with [1,1,0,1,0,1,0,1]. All the variable
nodes send the bit message to the check nodes. For example, the variable node v1 will
send the message x1 = 1 along the edges connecting to the check nodes c2 and c4. The
check node c1 will receive the messages x2, x4, x5 and x8 from variable v2, v4, v5 and
v8, respectively.

2. Step 2 message updating from C to V: Secondly, the check nodes will do the
checks of LDPC codes. We already know that the check function is binary addition. If
the result is 0, the check node send back the message it received from the variable nodes.
If the result is 1 which means the check fails, the check node will send the opposite
message. For example, check node c1 receives x2 = 1, x4 = 1, x5 = 0 and x8 = 1.

x2 ⊕ x4 ⊕ x5 ⊕ x8 = 1 (2.15)

The check node will send x2 = 0, x4 = 0, x5 = 1 and x8 = 0 back to variable nodes v2,
v4, v5 and v8. In the theory of factor graph, the actual operation is sending the messages

x2 = x4 ⊕ x5 ⊕ x8 (2.16)

x4 = x2 ⊕ x5 ⊕ x8 (2.17)

x5 = x2 ⊕ x4 ⊕ x8 (2.18)

x8 = x2 ⊕ x4 ⊕ x5. (2.19)

9

2.2. DECODING STRATEGY CHAPTER 2. LDPC DECODING

In this hard decision decoding example, we simply say that it send the opposite message
if the check fails. If all the checks are fulfilled, it means a legal LDPC codeword x̂
appears and the decoder terminates the iterations.

Step 3 decisions updating: The variable nodes will decide the codeword bits with
the message responded by check nodes and the original message they sent to the check
nodes. A simple way to do this is a majority vote [6]. For example, variable node v2
receives messages x2 = 0 from both c1 and c2. The original bit sending to check nodes
is x2 = 1, however the decoder will set the value of x2 to be 0 because of the suggestions
from the check nodes. After the modification of the bits, the variable nodes will send
the messages back to the check nodes. The decoder will do step 2 again.

Step Item v1 v2 v3 v4 v5 v6 v7 v8

step 1 original messages 1 1 0 1 0 1 0 1

step 2 respond messages 0,1 0,0 1,0 0,1 1,0 0,1 0,0 1,1

step 3 modified messages 1 0 0 1 0 1 0 1

step 2 respond messages 1,1 0,0 0,0 1,1 0,0 1,1 0,0 1,1

Table 2.1: Decoding process

Fig 2.4 shows the flow chart of the decoding algorithm. Table 3.1 represents the stages
of the hard decision decoding example. When the decoder comes to the second step 2,
all four checks are fulfilled. So the decoder stops with the codeword x̂ = [1,0,0,1,0,1,0,1]
which is a legal LDPC codeword in this case.

2.2 Decoding strategy

With a LDPC parity check matrix H, we have a set of codewords x ∈ C ⊂ BN which
satisfy the checks Hx = 0. Assuming the symbols are transmitted over the additive
white Gaussian noise (AWGN) channel with modulation of binary phase shift keying
(BPSK), we have received symbols

y = 2x− 1 + n. (2.20)

where n is i.i.d Gaussian noise with variance σ2.
The previous sections describe the method to detect the estimated codeword x̂ from

a received word y. Avoiding or minimizing bit error and word error is the main task for
the decoder. For detection, maximum a posteriori (MAP) estimation and detection is
optimal,

x̂(y) = arg max
x

p(x|y). (2.21)

10

2.2. DECODING STRATEGY CHAPTER 2. LDPC DECODING

From Bayes’ rule,

p(x|y) =
p(x,y)

p(y)
(2.22)

=
p(y|x)p(x)

p(y)
. (2.23)

Because random codewords are used in practical, all symbols’ probabilities p(x) are
equally likely. p(y) is not needed because it will be removed as the same value for the
numerator and denominator in the form of log-likelihood described in the next chapter.
It also can be calculated from numerical stability. So we can discard p(x)p(y). Eq.(2.21)
can be transformed into

x̂W(y) = arg max
x

p(y|x) (2.24)

= arg max
x∈C

N∏
n=1

p(yn|xn). (2.25)

Considering minimization of bit error probability. Bitwise MAP decoder estimates
the codeword like

x̂B(y) = [x̂B,1(y),x̂B,2(y), . . . ,x̂B,N (y)]T , (2.26)

where
x̂B,n(y) = arg max

xn
p(xn|y). (2.27)

In the next chapter, we will describe a number of practical decoding methods that
aim to approximate MAP detection.

11

2.2. DECODING STRATEGY CHAPTER 2. LDPC DECODING

12

3
Decoding algorithms

A
fter introduction of the concept of the factor graph and the basic idea of pass-
ing message, seven distinct decoding algorithms are described in detail in this
chapter. Six message passing algorithms and linear programming are intro-
duced and compared in terms of the complexity and performance in theory.

3.1 Message passing decoder

In this section, sum-product algorithm, max-product algorithm and also reweighted ver-
sions will be introduced and compared.

3.1.1 Sum-product decoder (SPD)

We will first introduce the generic algorithm, the sum-product algorithm. Sum-product
algorithm aims to compute the marginals

p(xn|y) =
∑
∼{xn}

p(x|y), ∀n. (3.1)

The message update rule of the sum-product algorithm: The message sent from a
node s on an edge e is the product of the local function at s (or the unit function if s is
a variable node) with all messages received at s on edges other than e, summarized for
the variable associated with e [9].

The decoder will pass messages between variable nodes and check nodes iteratively.
Every time the message µVn→ψl(xn) from variable node Vn to check node ψl and the
message µψl→Vn(xn) transmitting in the opposite way are updated. After every itera-
tion, marginals bVn(xn) = µVn→ψl(xn)µψl→Vn(xn) are computed to decide whether the
termination operates [10].

13

3.1. MESSAGE PASSING DECODER CHAPTER 3. DECODING ALGORITHMS

Figure 3.1: Factor graph for a example LDPC codes

µVn→ψl(xn) = p(yn|xn)
∏

k∈N (Vn)\{l}

µψk→Vn(xn), (3.2)

µψl→Vn(xn) =
∑
∼{xn}

ψl(xl)
∏

m∈N (ψl)\{n}

µVm→ψl(xm), (3.3)

and
bVn(xn) = p(yn|xn)

∏
k∈N (Vn)

µψk→Vn(xn), (3.4)

where bVn the approximation of the marginals. Eq.(SPD2) shows where the name is
from.

In the message passing algorithms, messages are often computed in the logarithmic
domain. In this way, exponential terms disappear and multiplications become addition.
It helps in practical computing system. Eq.(3.2) and Eq.(3.4) in the logarithmic domain
becomes

logµVn→ψl(xn) = log p(yn|xn) +
∑

k∈N (Vn)\{l}

logµψk→Vn(xn), (3.5)

log bVn(xn) = log p(yn|xn) +
∑

k∈N (Vn)

logµψk→Vn(xn). (3.6)

In addition, sums can be approximated by maximization. It is found that sums in
Eq.(3.3) can be replaced by max∗ function [11]:

logµψl→Vn(xn) = max∗
∼{xn}

logψl(xl) +
∑

m∈N (ψl)\{n}

logµVm→ψl(xm)

 , (3.7)

where
max∗[L1,L2] = max[L1,L2] + log(1 + e−|L1−L2|). (3.8)

14

3.1. MESSAGE PASSING DECODER CHAPTER 3. DECODING ALGORITHMS

Like ordinary max function, The max∗-operation can be implemented recursively as

max∗[L1,L2, . . . ,LM] = max∗[max∗[L1,L2, . . . ,LM−1],LM]. (3.9)

Note that the messages sent on an edge contains the probabilities of 1 and 0, these
two probabilities can be conveniently expressed into log-likelihood ratio

λch,n = log
p(yn|xn = 1)

p(yn|xn = 0)
. (3.10)

As we will use BPSK modulation over AWGN channel, the result is Gaussian distribution
and two probabilities are

p(yn|xn = 1) =
1√
2πσ

e−
(yn−1)2

2σ2 , (3.11)

p(yn|xn = 0) =
1√
2πσ

e−
(yn+1)2

2σ2 . (3.12)

So the log-likelihood ratio can be simplified as

λch,n = log (e−
(yn−1)2−(yn+1)2

2σ2) (3.13)

=
2yn
σ2

. (3.14)

Furthermore, advantages are obvious to transform the Eq.(3.5)-(3.7) into the log-
likelihood ratio forms from the knowledge of

λA→B = logµA→B(1)− logµA→B(0). (3.15)

So the updated equations of Eq.(3.2)-(3.4) become

λVn→ψl = λch,n +
∑

k∈N (Vn)\{l}

λψk→Vn (3.16)

λψl→Vn = fmax∗

(
{λVm→ψl}m6=n

)
(3.17)

where since logµVm→ψl(xm)=(−1)(1−xm)λVm→ψl/2,

fmax∗

(
{λVm→ψl}m 6=n

)
=

max∗
xl:xn=1

logψl(xl) +
1

2

∑
m∈N (ψl)\{n}

(−1)1−xmλVm→ψl

− max∗

xl:xn=0

logψl(xl) +
1

2

∑
m∈N (ψl)\{n}

(−1)1−xmλVm→ψl

 (3.18)

15

3.1. MESSAGE PASSING DECODER CHAPTER 3. DECODING ALGORITHMS

Here, the definition of ψl is ψl = I
{
hTl x = 0

}
which refers to the l-th check. If x fulfils

the check, logψl = 0. Otherwise logψl → −∞.

λb,n = λch,n +
∑

k∈N (Vn)

λψk→Vn (3.19)

The decision of the bit is made from Eq.(SPA3)

x̂n =

{
1,λb,n ≥ 0

0,λb,n < 0
(3.20)

3.1.2 Max-product decoder (MPD)

Max-product algorithm aims to compute the max-marginals:

q(xn|y) = max
∼{xn}

p(x|y), ∀n. (3.21)

Assuming that p(x|y) has a unique maximum, then x̂n = arg maxxn q(xn|y) is equal to
the n-th component of x̂W(y), allowing us to approximately solve (2.21).

Updating rules for max-product algorithm is similar to sum-product algorithm. The
only difference locates in Eq.(3.3), where the sum function is replaced by max function

µψl→Vn(xn) = max
∼{xn}

ψl(xl)
∏

m∈N (ψl)\{n}

µVm→ψl(xm). (3.22)

So in the log-likelihood form, max∗ function is replaced by max function. The updating
rules in logarithmic domain are

λVn→ψl = λch,n +
∑

k∈N (Vn)\{l}

λψk→Vn , (3.23)

λψl→Vn = fmax

(
{λVm→ψl}m6=n

)
, (3.24)

and
λb,n = λch,n +

∑
k∈N (Vn)

λψk→Vn . (3.25)

The decision of the bit is the same with Eq.(3.20).

3.1.3 Reweighted sum-product decoder (R-SPD)

Message passing algorithm is a powerful way to compute the marginals in a graph. As we
mentioned in previous chapter, good LDPC codes should avoid short cycles because short
cycles will lead bad performance. When the factor graph is cycle-free, message passing
algorithm will guarantee to converge and offer an optimal result within the scope of its
ability. However, when the graph contains cycles, it may converge to a local optimum
or even fail to converge [5].

16

3.1. MESSAGE PASSING DECODER CHAPTER 3. DECODING ALGORITHMS

Tree-reweighted sum-product (TRW-SP) algorithm [4] is an improved sum-product
algorithm to compute marginals in graphs with cycles. Tree-reweighted sum-product
algorithm has been found to out perform ordinary message passing algorithm in general.
It introduced the factors called edge appearance probabilities which are the reweighted
factor for edges between variable nodes and check nodes to optimize the computation
and reduce the influence of cycles.

Tree-reweighted sum-product algorithm is complex to optimize the edge appearance
probabilities for every edge. Typical LDPC codes with large size shows a very regular
alike structure, hence a solution for the previous complexity problem is assign a con-
stant reweighted factor ρ to all edges instead of calculating the whole probabilities. This
algorithm is called uniformly reweighted belief propagation (URW-BP) algorithm [5].
Tree-reweighted sum-product algorithm was developed for graphs with pairwise interac-
tions. R-SPD uses the method to convert factor graphs to a Markov random field with
pairwise interactions.

The message updating rules are

λVn→ψl = λch,n + ρ
∑

k∈N (Vn)\{l}

λψk→Vn − (1− ρ)λψl→Vn , (3.26)

λψl→Vn = fmax∗

(
{ρλVm→ψl}m 6=n

)
− (1− ρ)λVn→ψl , (3.27)

and
λb,n = λch,n + ρ

∑
k∈N (Vn)

λψk→Vn . (3.28)

3.1.4 Reweighted max-product decoder (R-MPD)

Tree-reweighted max-product (TRW-MP) message passing algorithm is introduced based
on max-product algorithm which is reweighted max-product algorithm [12]. In the same

way, fmax∗

(
{ρλVm→ψl}m6=n

)
is replaced by fmax

(
{ρλVm→ψl}m6=n

)
.

The message updating rules are

λVn→ψl = λch,n + ρ
∑

k∈N (Vn)\{l}

λψk→Vn − (1− ρ)λψl→Vn , (3.29)

λψl→Vn = fmax

(
{ρλVm→ψl}m6=n

)
− (1− ρ)λVn→ψl , (3.30)

where
fmax

(
{ρλVm→ψl}m 6=n

)
= ρfmax

(
{λVm→ψl}m6=n

)
, (3.31)

and
λb,n = λch,n + ρ

∑
k∈N (Vn)

λψk→Vn . (3.32)

17

3.2. COMPLEXITY CHAPTER 3. DECODING ALGORITHMS

3.1.5 Reweighted sum-product decoder II (R-SPD-II)

The new version of uniformly reweighted sum-product algorithm is a little different from
the one described in previous section. Now it does not convert the factor graphs to
a graph with only pairwise interactions. This kind of decoder is named Reweighted
sum-product decoder-version 2 (R-SPD-II) [13].

The modified message passing rules are

λVn→ψl = λch,n + ρ
∑

k∈N (Vn)\{l}

λψk→Vn − (1− ρ)λψl→Vn , (3.33)

λψl→Vn = fmax∗

(
{λVm→ψl}m6=n

)
, (3.34)

and
λb,n = λch,n + ρ

∑
k∈N (Vn)

λψk→Vn . (3.35)

For R-SPD-II, the messages from check nodes to variable nodes do not relate to the
reweighted factor ρ.

3.1.6 Reweighted max-product decoder II (R-MPD-II)

From the modification experience of MPD and R-MPD, we can also modify R-SPD-II

in the same way by replacing fmax∗

(
{λVm→ψl}m 6=n

)
with fmax

(
{λVm→ψl}m 6=n

)
. These

max-product algorithms will always have a lower complexity than the corresponding sum-
product algorithms because of replacing the complex function max∗ with max function.

The message updating rules are

λVn→ψl = λch,n + ρ
∑

k∈N (Vn)\{l}

λψk→Vn − (1− ρ)λψl→Vn , (3.36)

λψl→Vn = fmax

(
{λVm→ψl}m6=n

)
, (3.37)

and
λb,n = λch,n + ρ

∑
k∈N (Vn)

λψk→Vn . (3.38)

3.2 Complexity

The complexity of message updating algorithm per iteration for SPD is O(Ndv) ad-
ditions, O((N − K)dc) max∗ functions and O(Ndv) additions corresponding to steps
Eq.(3.16), (3.17) and (3.19). For step 2 of updating messages from check nodes to variable
nodes, the complexity can be simply calculated as O((N−K)2dc) max∗ functions because
every edge between check nodes and variable nodes has two max∗ functions. However, if
serial implementation of check nodes update uses, which is also called forward-backward
algorithm, the complexity can be easily reduced to O((N −K)dc) max∗ functions. Fig.

18

3.2. COMPLEXITY CHAPTER 3. DECODING ALGORITHMS

Decoders Complexity

SPD Step 1: O(Ndv) additions

Step 2: O((N −K)dc) max∗ functions

Step 3: O(Ndv) additions

MPD Step 1: O(Ndv) additions

Step 2: O((N −K)dc) max functions

Step 3: O(Ndv) additions

R-SPD Step 1: O(Ndv) additions + O(N) multiplications

Step 2: O((N −K)dc) max∗ functions + O(N) multiplications

Step 3: O(Ndv) additions + O(N) multiplications

R-MPD Step 1: O(Ndv) additions + O(N) multiplications

Step 2: O((N −K)dc) max functions + O(N) multiplications

Step 3: O(Ndv) additions + O(N) multiplications

R-SPD-II Step 1: O(Ndv) additions + O(N) multiplications

Step 2: O((N −K)dc) max∗ functions

Step 3: O(Ndv) additions + O(N) multiplications

R-MPD-II Step 1: O(Ndv) additions + O(N) multiplications

Step 2: O((N −K)dc) max functions

Step 3: O(Ndv) additions + O(N) multiplications

Table 3.1: Decoding process

3.2 shows the example of serial implementation. Comparing the three equations, max∗

function is sure more complex than addition. It even contains a log function that takes a
lot of time. A lot of methods are tried to reduce the complexity of the log function while
maximize the accuracy like piecewise linear function approximation method, sign-min
approximation method [14]. On the other hand, dc is bigger than dv generally, so the
message update from check nodes to variable nodes dominate the decoding complexity.

For MPD, the complexity is smaller than SPD because the message update rules
replace max∗ function with max function. It is equivalent to discard the log function of
max∗ function. Like the approximation methods, it trades off accuracy for less complex-
ity. The complexities of R-SPD and R-SPD-II are similar to SPD. For R-SPD, there are
extra O(N) multiplications for all three steps. For R-SPD-II, step 1 and step 3 have
extra O(N) multiplications. R-MPD and R-MPD-II do the same thing based on the
complexity of MPD. When ρ comes to 1, R-SPD and R-SPD-II revert to SPD. Similarly,
R-MPD and R-MPD-II revert to MPD.

19

3.3. LINEAR PROGRAMMING CHAPTER 3. DECODING ALGORITHMS

Figure 3.2: Serial implementation

3.3 Linear programming

In this section, we will first introduce linear programming decoding. Then decomposition
method of linear programming decoding for large size LDPC codes will be demonstrated.
LDPC codes can be decoded by several methods. One of the most popular methods is
message passing algorithm and another method is linear programming decoding. It is
found that for binary codes used over symmetric channels, a relaxed version of maximum
likelihood decoding problem can be treated as a linear program (LP) [15].

3.3.1 LP decoder

From [16], the goal of linear programming decoder is to find the maximum likelihood
codeword

x̂W(y) = arg max
x

p(y|x) (3.39)

= arg max
x∈C

N∏
n=1

p(yn|xn) (3.40)

= arg max
x∈C

log

N∏
n=1

p(yn|xn) (3.41)

= arg max
x∈C

N∑
n=1

log p(yn|xn). (3.42)

20

3.3. LINEAR PROGRAMMING CHAPTER 3. DECODING ALGORITHMS

For Eq.(3.42), we have

log p(yn|xn) = log p(yn|xn = 0) + log
p(yn|xn)

p(yn|xn = 0)
(3.43)

= log p(yn|xn = 0) + xn log
p(yn|xn = 1)

p(yn|xn = 0)
(3.44)

= log p(yn|xn = 0) + λch,nxn. (3.45)

From Eq.(3.43) to Eq.(3.44), we use the fact that

when xn = 0, xn log
p(yn|xn)

p(yn|xn = 0)
= 0

when xn = 1, xn log
p(yn|xn)

p(yn|xn = 0)
= log

p(yn|xn)

p(yn|xn = 0)
.

Because p(yn|xn = 0) is independent of xn, so it could be considered as a constant value
[17]. So Eq.(3.42) can be convert to

x̂W(y) = arg max
x∈C

N∑
n=1

λch,nxn (3.46)

= arg max
x∈C

xTλch. (3.47)

Then the problem we need to solve is

minimize −λchx
T

subject to hTl x = 0,∀l
x ∈ {0,1}N .

Now what we have is a binary linear program. We would like to relax the constraints
to a real field. So the constraint x ∈ {0,1}N becomes x ∈ [0,1]N . In this way, the binary
linear program could be solved with a standard LP solver. Because of relaxation, the
result of LP decoder does not always give a binary codeword. If the result is a integer
solution, it is a maximum likelihood result. Considering Eq.(2.5) as the example parity
check matrix, we have

check a : x2 ⊕ x4 ⊕ x5 ⊕ x8 = 0

check b : x1 ⊕ x2 ⊕ x3 ⊕ x6 = 0

check c : x3 ⊕ x6 ⊕ x7 ⊕ x8 = 0

check d : x1 ⊕ x4 ⊕ x5 ⊕ x7 = 0

(3.48)

where we take check a as the example to demonstrate the transformation of the formulas.
Set xa to be the local codeword that contains the components of x that used in the
check a:

xa = (x2, x4, x5, x8)
T (3.49)

21

3.3. LINEAR PROGRAMMING CHAPTER 3. DECODING ALGORITHMS

Define a matrix Sa that picks the components out

Sa =

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

 . (3.50)

So Sax = xa. Define a matrix Ca as the combinations of all local codewords that satisfy
check a,

Ca =

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

 . (3.51)

Take one column from the matrix, you can see it is one possible codeword xa that
x2 ⊕ x4 ⊕ x5 ⊕ x8 = 0. Now we have a set

1Twa = 1 (3.52)

wa ∈ {0,1}2
dc−1

, (3.53)

in matrix forms,

wa ∈

1

0

0

0

0

0

0

,

0

1

0

0

0

0

0

,

0

0

1

0

0

0

0

,

0

0

0

1

0

0

0

,

0

0

0

0

1

0

0

,

0

0

0

0

0

1

0

,

0

0

0

0

0

0

1

. (3.54)

It can be seen xa = Cawa, where these xa satisfy check a. So the equation hTa x = 0 can
be transformed into Sax = Cawa.

After all, we have a new equivalent real linear program

minimize −λchx
T (3.55)

subject to Slx = Clwl,∀l
1Twl = 1, ∀l
wl ∈ {0,1}2

dc−1
,∀l

x ∈ {0,1}N .

where l represents l-th check.

22

3.3. LINEAR PROGRAMMING CHAPTER 3. DECODING ALGORITHMS

3.3.2 Alternating direction method of multipliers

LP decoder introduced in previous section can be implemented with standard LP solver.
However, the complexity grows exponentially when the degree of check nodes increases.
It is too high to implement for large size LDPC codes. Different kinds of methods are
tried to decompose the LP process. One useful decomposing method is an algorithm
based on the Alternating Directions Method of Multipliers (ADMM) [18]. It introduced
an iterative decoding way to work out the problem of linear program like message passing
algorithm does.

ADMM is a classic convex optimization technique. It attracts great attention on
solving problems of MAP in graphical models. We will apply LP problem with the tem-
plate of ADMM which is similar to the process of message passing algorithm. Variable
nodes update estimation of the codeword based on the information from check nodes
and original measurements.

Add auxiliary variable zl representing Clwl in previous section. We have the LP
problem:

minimize −λchx
T (3.56)

subject to Slx = zl,∀l
zl = Clwl, ∀l
1Twl = 1, ∀l
wl ∈ {0,1}2

dc−1
, ∀l

x ∈ {0,1}N .

To solve this problem, we could convert it into an augmented Lagrangian equation:

Lµ(x,z,σ) = −λchx
T +

∑
l

σTl (Slx− zl) +
µ

2

∑
l

‖ Slx− zl ‖22 . (3.57)

Here σl ∈ Rdc are the Lagrange multipliers and µ is a fixed penalty parameter. Then
we can get the iteration process of ADMM as

xk+1 = argminLµ(x,zk,σk), (3.58)

zk+1 = argminLµ(xk+1,z,σk), (3.59)

σk+1
l = σkl + µ

(
Slx

k+1 − zk+1
l

)
. (3.60)

The x update can be derived to

x =
∏

[0,1]N

(
S−1

(∑
l

STl

(
zl −

1

µ
σl

)
+

1

µ
λch

))
. (3.61)

where S =
∑

l S
T
l Sl and

∏
[0,1]N is the project function to the hypercube [0,1]N . STl Sl is

a diagonal matrix with (i,i) entry equal to |Nv(i)|. Nv(i) are check nodes’ indexes that

23

3.3. LINEAR PROGRAMMING CHAPTER 3. DECODING ALGORITHMS

connecting to the i-th variable node. Let zil be the ith component of STl zl and σil be the
ith component of STl σl. Eq.(3.61) becomes

xi =
∏

[0,1]

 1

|Nv(i)|

 ∑
l∈Nv(i)

(
zil −

1

µ
σil

)
+

1

µ
λich

 . (3.62)

From [18], ADMM decoding algorithm is showed as below. Given parity check matrix
H, matrices Sl, the log-likelihood ratio λch, ADMM algorithm does as following steps.

1. Initialize zl and σl as all zeros vector
2. do
3. Update xi =

∏
[0,1]

(
1

|Nv(i)|

(∑
l∈Nv(i)

(
zil −

1
µσ

i
l

)
+ 1

µλ
i
ch

))
4. for all l checks
5. Update vl = Slx + σl

µ
6. Update zl =

∏
PPd

(vl)
7. Update σl = σl + µ(Slx− zl)
8. end
9. while maxl ‖ Slx− zl ‖∞< ε

ε is the error tolerance. Signs
∏

[0,1] and
∏

PPd
are project functions. Details about

project functions are showed in [18].
The ADMM decoder works like message passing decoders. First, initialize the mes-

sage from variable nodes. For all l checks, it will update vl, zl and σl based on x which
can be regard as respond message from check nodes to variable nodes. Then update the
estimated codeword. The decoder will decode iteratively until it converges and fulfil the
requirement of maxl ‖ Slx − zl ‖∞< ε. If the error tolerance is small enough, we can
say the constraints of Slx = zl in Eq.(3.56) are satisfied. In this way, the LP problem is
solved.

24

4
Simulation results

4.1 Description of simulations

I
n this chapter, the simulations and results will be presented and interpreted. Seven
different decoders are constructed and different kinds of LDPC codes are used to
see the performances. The major aim we considered is bit error probability (BEP)
and word error probability (WEP). Also, complexity and computing latency are

cared about.
We will consider three distinct LDPC codes: (i) a long regular code from the 10Gb/s

Ethernet standard, (ii) a short regular LDPC code; (iii) a long irregular LDPC code
from Wimax standard.

4.2 Regular LDPC codes

In this section, we focus on the regular LDPC codes which are expected to have bet-
ter performance than irregular LDPC codes. The reason as we said before, the four
reweighted message passing algorithms are designed based on the fact that large size
LDPC codes have regular alike character. So regular LDPC codes would be more ap-
propriate to the reweighted algorithms than irregular codes.

In this section, regular sparse H with K = 1664 and N = 2048 is used. This LDPC
code is from IEEE standard 802.3 [19]. The LDPC code has following degree profile:

• variable node degree: 6

• check node degree: 32

The matrix is shown in Fig. 2.1. We will focus on the performance with a SNR of
6dB, corresponding to the noise variable σ2 = 0.2512. The results are similar for SNRs
around 6dB. For six message passing decoders, 1000 iterations is set to be the maximum

25

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

iteration number. If the decoders converge to a legal LDPC codeword, the decoders
will terminate the iteration. Otherwise the decoders will run up 1000 iterations until
they stop. For ADMM LP decoder, the performance depends weakly on the setting of
parameters when the parameters are large enough. From [18], we set penalty parameter
µ = 5 and error tolerance ε = 10−5. 10000 iterations is the maximum iteration number
if the decoder converges to find a codeword. Otherwise the maximum iteration number
extend to 11000 iterations. During the last 1000 iterations, the error tolerance is relaxed
to ε = 10−4. We transmitted all-zero codewords, where random codewords and all-zero
codewords are compared and proved to have almost the same performance. It means
that the decoders are not sensitive to some specific codewords like all-zero codeword.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-5

10
-4

10
-3

10
-2

10
-1

rho

B
E

P

R-SPD
R-MPD
R-SPD-2
R-MPD-2
LPD

Figure 4.1: BEP after 1000 iterations

Fig. 4.1 shows the BEP after 1000 iterations for R-SPD, R-MPD, R-SPD-II and R-
MPD-II. Since when ρ = 1 R-SPD and R-SPD-II convert to SPD, the two curves come
to the same end. Respectively, R-MPD and R-MPD-II converge at ρ = 1. In terms of
BEP, R-SPD-II offers the best performance when ρ ≥ 0.7 among all six decoder except
SPD. For R-MPD-II, the performance is quite close to LP decoder when 0.1 ≤ ρ ≤ 0.8.
R-MPD does the same thing when 0.1 ≤ ρ ≤ 0.3. Unfortunately, R-SPD does not
perform well until ρ gets close to 1. For R-SPD and R-MPD, their performances seem
bad when 0.4 ≤ ρ ≤ 0.9. Check the result, it is found that for this part of ρ the decoders
come to a bad cycle. They fail to converge that almost all bits of the codeword flip to
the opposite number. From the result, traditional SPD still has the best performance
excluding complexity. On the contrary, R-MPD and R-MPD-II have better performance
than MPD.

Fig. 4.2 shows the performance after 20 iterations which is more practical to im-
plement in the hardware. It looks like the performance after 1000 iterations mostly.

26

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-5

10
-4

10
-3

10
-2

10
-1

rho

B
E

P

R-SPD
R-MPD
R-SPD-2
R-MPD-2
LPD

Figure 4.2: BEP after 20 iterations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-3

10
-2

10
-1

10
0

rho

W
E

P

R-SPD
R-MPD
R-SPD-2
R-MPD-2
LPD

Figure 4.3: WEP after 1000 iterations

However, R-SPD and R-SPD-II have a better performance than SPD now comparing
to the one after 1000 iterations. The curves have an obvious valley bottom before ρ
comes to 1. We could find ρ ≈ 0.94 for R-SPD-II and ρ ≈ 0.995 for R-SPD that offer
the best performance. The BEP of R-SPD-II is close to the BEP after 1000 iterations
when ρ ≤ 0.9. It means R-SPD-II has a quick converging speed since it reaches the

27

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

same magnitude of BEP. Because of slow convergence of SPD, reweighted sum-product
algorithm could outperform SPD. R-MPD-II still has great result as it does after 1000
iterations and it is also close to the BEP after 1000 iterations. Unfortunately, R-MPD
does not have good performance as R-MPD-II does while it does well for 0.1 ≤ ρ ≤ 0.3.
LP decoder performs well comparing to the reweighted message passing decoders when
ρ ≤ 0.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-3

10
-2

10
-1

10
0

rho

W
E

P

R-SPD
R-MPD
R-SPD-2
R-MPD-2
LPD

Figure 4.4: WEP after 20 iterations

In terms of WEP, Fig. 4.3 and Fig. 4.4 show the WEP after 1000 iterations and 20
iterations. The curves are similar to the ones of BEP. R-MPD-II has the different shape
so that we can a better choice of ρ locates ρ ≈ 0.8. From Fig. 4.4, we can see a bigger
ρ got a lower WEP than small ρ. Comparing these decoders, it is easy to find out that
reweighted message passing algorithms version 2 has better performance than version 1.

Results are recorded after every iteration. So we could trace the best ρ that minimize
the BEP. Here we just consider BEP as the reference. The results are shown in Fig. 4.5.
At 20 iterations, the best ρ is 0.995 for R-SPD and 0.94 for R-SPD-II. These two curves
will return back to 1 when iteration number gets bigger. If more ρs are tried, the curves
would be smoother. Because the BEP of MPD at 6dB is not in the same magnitude as
SPD does. So we choose to find the best ρ for R-MPD and R-MPD-II at 6.5dB. The best
ρ of R-MPD moves from 0.32 at 20 iterations to 0.2 at 1000 iterations. For R-MPD-2,
the best ρ is always 0.7.

Fig. 4.6 shows the BEP as a function of iteration index at SNR=6dB. From this
figure we can see the BEP after every iteration. It is clear that different message passing
decoders have different convergence time. SPD, MPD, R-SPD, R-SPD-2 and R-MPD-2
can converge within 100 iterations while R-MPD needs about 200 iterations. Comparing

28

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

iteration

rh
o

best rho

R-SPD SNR=6dB
R-MPD SNR=6.5dB
R-MPD-2 SNR=6.5dB
R-SPD-2 SNR=6dB

Figure 4.5: Best ρ for different iterations

0 100 200 300 400 500 600 700 800 900 1000
10

-5

10
-4

10
-3

10
-2

10
-1

iteration

B
E

P

SPD
R-SPD rho=0.995
R-SPD-2 rho=0.94
MPD
r-mpd rho=0.2
r-mpd-2 rho=0.7

Figure 4.6: BEP vs iteration

R-MPD with ρ = 0.2 and R-MPD-2 with ρ = 0.7, R-MPD will win after fully converged.
However, R-MPD-2 offers better performance within 100 iterations. The same situation
happens for the serials of SPD. From Fig. 4.5 we know after 1000 iterations R-SPD and
R-SPD-2 can not find a best ρ that can defeat SPD in terms of BEP.

29

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

0 20 40 60 80 100 120 140 160

10
-4

10
-3

10
-2

iteration

B
E

P

SPD
R-SPD rho=0.995
R-SPD-2 rho=0.94
MPD
r-mpd rho=0.2
r-mpd-2 rho=0.7

Figure 4.7: BEP vs iteration(enlarged)

4 4.5 5 5.5 6 6.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR

B
E

P

BEP with iteration 1000

SPD
MPD
r-mpd rho=0.2
r-mpd-2 rho=0.7
LPD

Figure 4.8: BEP with best ρ after 1000 iterations

Fig. 4.7 is the partially enlarged figure. After 100 iterations, it is obvious that SPD
is the best. But because of slow convergence, SPD is the worst among the three decoders
when iteration number is around 20. Reweighted decoders version 2 offer the quickest
convergence. Both R-SPD-2 and R-MPD-2 just need about 20 to 30 iterations when
they converge to a magnitude of BEP close to the one after 1000 iterations.

30

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

4 4.5 5 5.5 6 6.5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

W
E

P

WEP with iteration 1000

SPD
MPD
r-mpd rho=0.2
r-mpd-2 rho=0.7
LPD

Figure 4.9: WEP with best ρ after 1000 iterations

4 4.5 5 5.5 6 6.5 7
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR

B
E

P

BEP with iteration 20

SPD
r-spd rho=0.995
r-spd-2 rho=0.94
MPD
r-mpd rho=0.32
r-mpd-2 rho=0.7
LPD

Figure 4.10: BEP with best ρ after 20 iterations

Fig. 4.8 shows the BEP curve of all decoders with the best ρ. Because R-SPD
and R-SPD-II perform the best when ρ = 1, so they would be the same curve of SPD.
Traditional MPD is about 0.5dB worse than SPD. The curves of R-MPD, R-MPD-II
and LPD locate between the curves of SPD and MPD. From the trend of the curves, R-
MPD-II performs better, followed by R-MPD and LPD. Fig. 4.9 shows the corresponding

31

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

4 4.5 5 5.5 6 6.5 7
10

-4

10
-3

10
-2

10
-1

10
0

SNR

W
E

P

WEP with iteration 20

SPD
r-spd rho=0.995
r-spd-2 rho=0.94
MPD
r-mpd rho=0.32
r-mpd-2 rho=0.7
LPD

Figure 4.11: WEP with best ρ after 20 iterations

WEP. It is found that R-MPD-II is still the best one among the three decoders. R-MPD
is even worse than traditional MPD.

Fig. 4.10 and Fig. 4.11 show the BEP and WEP after 20 iterations. Now R-SPD
and R-SPD-II is slightly better than SPD with their best ρ. Among all the decoders,
R-SPD-II is the best one if just BEP is considered. If complexity is considered which is
very important in practical, R-MPD-II is also a good alternate. It is 0.25dB worse than
the series of SPD. LPD is also good except that the compute latency is too large. If
the maximum iteration number of ADMM LPD is reduced, the curve of BEP is sure to
move right. The curves of WEP are similar except the one for R-MPD which is rather
bad.

Fig. 4.12 and Fig. 4.13 show the mean iteration number the decoders need. The
mean iteration number is also very important because the computing latency has a close
relation with the iteration number. Besides, another important factor is complexity
that we pay a lot of attention to. In general, the less mean iteration number used the
BEP and WEP are smaller. Because a small average iteration number means quick
convergence since the decoder will terminate the iteration when a codeword is detected.
In the figures, MPD need more iterations than SPD does. As we mentioned before,
max-product algorithm replaces the max∗ function with max function. It actually relax
the accuracy of the message updated from check nodes to variable nodes. So it will
slow down the convergence process which means it needs more iterations to converge.
Comparing MPD and R-MPD-II in Fig. 4.13, at SNR=6dB the average iteration number
of MPD is smaller than R-MPD-II but the BEP and WEP are bigger. It means MPD is
more likely to converge to a wrong codeword. From the performance of MPD, R-MPD
and R-MPD-II, it is clearly shown that R-MPD-II is the most accurate and powerful

32

4.2. REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

4 4.5 5 5.5 6 6.5
0

100

200

300

400

500

600

700

800

900

1000

SNR

ite
ra

tio
n

iteration

SPD
MPD
r-mpd rho=0.2
r-mpd-2 rho=0.7

Figure 4.12: Mean iteration number within 1000 iterations

4 4.5 5 5.5 6 6.5 7
2

4

6

8

10

12

14

16

18

20

SNR

Ite
ra

tio
n

Iteration(within 20)

SPD
r-spd rho=0.995
r-spd-2 rho=0.94
MPD
r-mpd rho=0.32
r-mpd-2 rho=0.7

Figure 4.13: Mean iteration number within 20 iterations

one among the series of max-product algorithms. It is also comparable with the series of
sum-product algorithms if complexity and latency are considered. The curves of SPD,
R-SPD and R-SPD-II are very close to each other.

33

4.3. SHORT REGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

4.3 Short regular LDPC codes

Although long LDPC codes have better performance than short codes, short LDPC
codes may win in complexity and latency. Short codes also have a certain application.
Here we used a parity check matrix H with the size of K = 128 and N = 256.

• variable node degree: 3 (3 out of 256 nodes have the degree of 4)

• check node degree: 6 (3 out of 128 nodes have the degree of 7)

Although there are a few nodes have one more degree, it is still regular alike LDPC
code. We will focus on the performance with a SNR of 4dB, corresponding to the noise
variable σ2 = 0.3981. The other settings are the same with the previous long regular
code.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

rho

B
E

P

R-SPD
R-MPD
R-SPD-2
R-MPD-2

Figure 4.14: BEP after 1000 iterations

BEP after 1000 iterations is shown in Fig. 4.14. The performance is similar to Fig.
4.1 except that the effect of reweighted method is more obvious. R-SPD does not have
good performance until ρ gets to 1. R-SPD-II will decrease the BEP gradually when ρ
increases from 0 to 0.8. It has the performance as good as SPD when ρ > 0.8. R-MPD
performs well for 0.1 ≤ ρ ≤ 0.6 and then it turns into a bad performance like the case of
long code. R-MPD-II again has the best performance as it works very good for almost
any ρ < 1. R-SPD and R-MPD are bad for big ρ like 0.8, unlike the situation of long
code that even worse than the BEP at ρ = 0, the decoders still succeed to converge.
Different from the performance of traditional MPD in long code, now it is as good as
SPD. It may because the codeword length is short and the code structure is simpler that
makes the influence of relaxation is not big that it can still converge quickly compared to

34

4.4. IRREGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

SPD. For a longer code, it is sure that more iterations are needed. However, considering
computing latency, it is not allowed to do so. Even 1000 iterations is very prohibitive in
practical. Although the codes are different, we can still see the common points between
these two codes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-5

10
-4

10
-3

10
-2

10
-1

rho

B
E

P

R-SPD
R-MPD
R-SPD-2
R-MPD-2

Figure 4.15: BEP after 20 iterations

Then we turn to the performance after 20 iterations shown in Fig. 4.15. Now SPD
and MPD no longer offer better performance than R-SPD, R-SPD-II, R-MPD and R-
MPD-II. The best ρ for R-SPD-II is ρ ≈ 0.8 and the best one for R-MPD-II is ρ ≈ 0.6.
R-MPD with 0.6 < ρ < 0.7 offers the best performance. Judging from the trend of the
curve, R-SPD will also have valley bottom between ρ = 0.9 and ρ = 1.

Fig. 4.16 and Fig. 4.17 show the WEP after 1000 iterations and 20 iterations. The
shape of the curves is almost the same except that the curves in Fig. 4.16 decline for
ρ > 0.8 compared to the curves of BEP in Fig. 4.14. It shows that there are more error
bits in the wrong codewords.

According to the performance of all decoders, R-MPD-II is the promising one fol-
lowed by R-SPD-II. Generally speaking, uniformly reweighted message passing algorithm
version 2 is better than version 1. Even the complexity is a little smaller.

4.4 Irregular LDPC codes

Regular LDPC codes can offer good performance, but more and more irregular LDPC
codes appear to show better performance. Some new standards use irregular LDPC
codes like WiMax. So it is significant to apply reweighted algorithms to irregular LDPC

35

4.4. IRREGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

rho

W
E

R

R-SPD
R-MPD
R-SPD-2
R-MPD-2

Figure 4.16: WEP after 1000 iterations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-4

10
-3

10
-2

10
-1

10
0

rho

W
E

R

R-SPD
R-MPD
R-SPD-2
R-MPD-2

Figure 4.17: WEP after 20 iterations

codes. Here we used the parity check matrix H from WiMax standard with the size of
K = 1152 and N = 2304.

• variable node degree: 2 (fraction 1056/2304), 3 (fraction 768/2304), 6 (fraction
480/2304)

36

4.4. IRREGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

• check node degree: 6 (fraction 768/2304), 7 (fraction 384/2304)

Fig. 4.18 shows the matrix. From the figure, we can see its character of irregularity. We
will focus on the performance with a SNR of 1.75dB, corresponding to the noise variable
σ2 = 0.6683. The other settings are the same with the previous codes.

Figure 4.18: Matrix of H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

rho

B
E

R

R-SPD
R-MPD
R-MPD-2
R-SPD-2

Figure 4.19: BEP after 1000 iterations

Fig. 4.19 and Fig. 4.20 show the BEP after 1000 iterations and 20 iterations.
Comparing to Fig. 4.1 and Fig. 4.2, we can find that the shape of the curves are similar
for ρ ≤ 0.8. The performance is a little worse as the BEP is larger. But for ρ > 0.8,
the curves decline quickly for all four reweighted method. Especially traditional SPD
and MPD offer the best performance. There is no ρ for R-MPD and R-MPD-II that can

37

4.4. IRREGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-4

10
-3

10
-2

10
-1

10
0

rho

B
E

R

R-SPD
R-MPD
R-MPD-2
R-SPD-2

Figure 4.20: BEP after 20 iterations

defeat MPD. The situation is the same in the case of 20 iterations. The convergence
time for SPD and MPD is quite short.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-4

10
-3

10
-2

10
-1

10
0

rho

W
E

R

R-SPD
R-MPD
R-MPD-2
R-SPD-2

Figure 4.21: WEP after 1000 iterations

38

4.4. IRREGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

rho

W
E

R

R-SPD
R-MPD
R-MPD-2
R-SPD-2

Figure 4.22: WEP after 20 iterations

Fig. 4.21 and Fig. 4.22 show the WEP after 1000 iterations and 20 iterations. The
performance is even more terrible for any ρ < 0.9.

The four reweighted message passing algorithms do not perform well for the case of
irregular LDPC codes. Because these four algorithms belong to uniformly reweighted
belief propagation algorithm which is primarily designed based on the premise of a regular
code structure. Actually, a regular LDPC code does not mean it has a perfect structure
that fits uniformly reweighted algorithms. However comparing to irregular LDPC codes,
regular codes are more closer to the structure that sets all reweighted factor to be the
fixed number. So the four reweighted decoders are more feasible for regular LDPC codes.
Despite the irregularity, looking at the right part of the parity check matrix H, we can
also feel that regular pattern of the code. The matrix H is constructed based on a base
matrix in a certain way [20]. Short cycles can be counted in order to set the value of
the reweighted factor ρ for every check node or even in more detail. There are methods
for counting short cycles in [21] and [22]. A more sophisticated reweighted decoder may
improve the performance of irregular LDPC codes [23].

39

4.4. IRREGULAR LDPC CODES CHAPTER 4. SIMULATION RESULTS

40

5
Conclusion

T
he ultimate goal of this thesis is to implement six reweighted message passing
algorithms and compare their performances based on different LDPC codes
especially long standard codes. Seven decoders are compared to find the best
decoder or a good scheme considering BEP, complexity and latency. Also three

different kinds of LDPC codes are tried with reweighted decoders and compare with each
other.

The four reweighted decoders are designed based on URW-BP which is suitable
for regular LDPC codes. The results of the simulations support this. We can find
reweighted decoders can outperform traditional SPD and MPD except that after large
enough iterations SPD is still better than R-SPD and R-SPD-II in terms of BEP and
WEP. Considering latency, the maximum iteration number will be limited to 20 iterations
probably in practical. Because of slow convergence of SPD and MPD, the performances
of R-SPD, R-SPD-II, R-MPD and R-MPD-II have more advantages. In general, the
serials of SPD perform better than the serials of MPD. The BEP and WEP are smaller
at the same SNR. Among MPD, R-MPD and R-MPD-II, R-MPD-II is the best choice.
R-MPD-II is about 0.25dB worse than SPD in Fig. 4.10. If SNR in real channel is good
enough, R-MPD-II is competitive with SPD. In addition, R-MPD-II has advantage in
complexity and latency. So R-MPD-II is a good choice to apply in regular codes. In the
results for R-SPD and R-MPD, it is found that for 0.4 < ρ < 0.9 they fail to converge.
It needs to be studied more in the future.

The performance of LP ADMM decoder is close to R-MPD-II. But according to the
trend, R-MPD-II will have lower BEP and WEP from Fig. 4.10. Standard LP decoder
is only feasible for codes with small size. When the size gets bigger, the complexity
of standard LP decoder is prohibitive. We used ADMM algorithm to decompose the
process so LP ADMM decoder can decodes the long code. However, the performance is
not so good since we set a huge maximum iteration number. The computing latency is
very large while the BEP and WEP are not as good as SPD.

41

CHAPTER 5. CONCLUSION

For short regular codes, the advantages of reweighted decoders are obvious. Again,
R-MPD-II is the best option. However, the reweighted decoders do not perform well
in the case of irregular LDPC codes. Irregular LDPC codes may also have improved
performance if the codes are close to a regular structure. In this thesis, we used the code
from Wimax as the example of irregular code. It is so irregular seeing from Fig. 4.18
that uniformly reweighted algorithms can hardly make achievements. The solution of
this problem is to set reweighted factor separately. But how to set the values stays to be
studied. Different irregular has different structures, so every time we can only design a
certain array of ρ for the specific matrix H. How to apply reweighted algorithm better
to irregular LDPC codes remains to be solved while setting values of ρ for large size
code is very complex. However, irregular codes have better performance than regular
codes and there will be more good irregular codes. So it is a good trend to study more
reweighted algorithm applied in irregular codes.

42

Bibliography

[1] R. Gallager, Low-density parity-check codes, IEEE Transactions on Information
Theory 8 (1) (1962) 21–28.

[2] R. Tanner, A recursive approach to low complexity codes, Information Theory,
IEEE Transactions on 27 (5) (1981) 533–547.

[3] M. Valenti, R. I. Seshadri, Turbo and ldpc codes: implementation, simulation, and
standardization.
URL http://wireless.vt.edu/symposium/tutorials/2006/Valenti.pdf

[4] M. Wainwright, T. Jaakkola, A. Willsky, A new class of upper bounds on the log
partition function, IEEE Transactions on Information Theory 51 (7) (2005) 2313–
2335.

[5] H. Wymeersch, F. Penna, V. Savic, Uniformly reweighted belief propagation for
estimation and detection in wireless networks, IEEE Transactions on Wireless Com-
munications 11 (4).

[6] B. M. Leiner, Ldpc codes - a brief tutorial.
URL http://bernh.net/media/download/papers/ldpc.pdf

[7] H. Loeliger, An Introduction to factor graphs, IEEE Signal Processing Magazine
21 (1) (2004) 28–41.

[8] F. Kschischang, B. Frey, H.-A. Loeliger, Factor graphs and the sum-product algo-
rithm, IEEE Trans. Inform. Theory 47 (2001) 498–519.

[9] Y. Mao, F. Kschischang, B. Li, S. Pasupathy, A factor graph approach to link loss
monitoring in wireless sensor networks, Selected Areas in Communications, IEEE
Journal on 23 (4) (2005) 820–829.

[10] H. Wymeersch, Iterative Receiver Design, Cambridge University Press, 2007.

43

http://wireless.vt.edu/symposium/tutorials/2006/Valenti.pdf
http://bernh.net/media/download/papers/ldpc.pdf

BIBLIOGRAPHY

[11] P. Robertson, E. Villebrun, P. Hoeher, A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain, Proc. IEEE International
Conference on Communications 2 (1995) 1009–1013.

[12] Y. Jian, H. Pfister, Convergence of weighted min-sum decoding via dynamic pro-
gramming on trees, Arxiv preprint arXiv:1107.3177.

[13] H. Wymeersch, F. Penna, V. Savic, Uniformly reweighted belief propagation: A
factor graph approach, in: IEEE International Symposium on Information Theory,
2011.

[14] X.-Y. Hu, E. Eleftheriou, D. M. Arnold, A. Dholakia, Efficient implementations of
the sum-product algorithm for decoding LDPC codes, Global Telecommunications
Conference, 2001. GLOBECOM ’01. IEEE 2 (2001) 1036–1036E vol.2.

[15] J. Feldman, Decoding error-correcting codes via linear programming, PhD thesis.

[16] J. Feldman, M. Wainwright, D. Karger, Using linear programming to decode binary
linear codes, IEEE Transactions on Information Theory 51 (3) (2005) 954–972.

[17] N. Traore, S. Kant, T. L. Jensen, Message passing alogrithm and linear program-
ming decoding for LDPC and linear block codes, Aalborg University.

[18] S. Barman, X. Liu, S. C. Draper, B. Recht, Decomposition methods for large scale
lp decoding.

[19] Part 3: Carrier sense multiple access with collision detection (csma/cd) access
method and physical layer specifications, IEEE 802.3 standard.

[20] Part 16: Air interface for fixed and mobile broadband wireless access systems, IEEE
802.16e standard.

[21] T. R. Halford, K. M. Chugg, An Algorithm for Counting Short Cycles in Bipartite
Graphs, Information Theory, IEEE Transactions on 52 (1) (2006) 287–292.

[22] M. Karimi, A. H. Banihashemi, A message-passing algorithm for counting short
cycles in a graph, Information Theory Workshop (Jan. 2010) 1–5.

[23] J. Liu, R. de Lamare, Low-latency reweighted belief propagation decoding for LDPC
codes, Communications Letters, IEEE PP (99) (2012) 1–4.

44

	Introduction
	Background
	Goal of this thesis
	Structure

	LDPC Decoding
	LDPC codes
	Basics of linear block codes
	Low density parity check codes
	Regular and irregular LDPC codes
	Graphical representation
	Hard decision decoding of LDPC codes

	Decoding strategy

	Decoding algorithms
	Message passing decoder
	Sum-product decoder (SPD)
	Max-product decoder (MPD)
	Reweighted sum-product decoder (R-SPD)
	Reweighted max-product decoder (R-MPD)
	Reweighted sum-product decoder II (R-SPD-II)
	Reweighted max-product decoder II (R-MPD-II)

	Complexity
	Linear programming
	LP decoder
	Alternating direction method of multipliers

	Simulation results
	Description of simulations
	Regular LDPC codes
	Short regular LDPC codes
	Irregular LDPC codes

	Conclusion
	 Bibliography

