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Abstract

In order to measure a car’s total road load ancetheform the basis of the determination of
the car’s certified fuel consumption, Volvo Car @aration (VCC) performs coast-down
tests. Despite thorough checks, fine adjustmenthefcar and well documented weather
conditions there is a great inconsistency in tiseilts. Large differences in road load for the
same car model means that it is possible to olstdower load with a car with theoretically
higher road load, which in turn creates problemshm internal development. In a scenario
when a car is performing very well in a coast ddest and the cause is not known, it may
require very large and costly improvements for k&t model to reach the same low result,
although it in theory easily would perform bettban the old car. This is because it is not
known what factors influenced the first model icls@ way that it suddenly delivered a very
low road load.

The purpose of this master’s thesis is to find anderstand the parameters that affect the
coast-down result and predict the most accurate lmed at the given circumstances, so that
coast-down expeditions can be done with as few effettive test runs as possible and

thereby make the expedition quicker, cheaper artld more precise and reliable result. The

goal is to fulfil this with a stable, mathematicabdel that describes the true road load within
+/- 5% with 95% confidence.

The goal was achieved by collecting and compiliatadrom three coast-down expeditions
and performing multiple regressions analyses ondiaset with a model developed by
literature studies and expertise at VCC. The datasd model were analyzed and further
developed by residual analyses, F-tests, t-testselation analyses and VIF-tests. The final
regression model was used on three different ssibsietdata, one for each coast-down
expedition, in order to study the stability of flegression models.

With the final regression model

F = N [Cy [T + Cyppe (TIME + (C, +Cyp (3iN(B)) CAIR + Direc + D1+...+ D11

Dummies

Frr Fair
the goal of this master thesis was met by explgijust over 96% of the total variation in the
coast-down results and thus describing the truel load within less than +/- 4%. The
coefficients (Gemp Gime €tC.) were found significant and rather stablee Tiodel can be used
to normalize the boundary conditions at a coastrd@xpedition in order to investigate
whether the obtained results are representativeation to the circumstances or not.

Keywords: Coast-down expedition; Boundary conditions; Mukiptegression analysis;
Vehicle dynamics; Statistics
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1. Introduction

This chapter gives an introduction to this mashkesis by providing a description of the
problem’s background and what purpose and goal was set up in order to solve the
problem.

1.1. Background

In order to measure a car’s total road load, cdestn tests are performed. The result from
the coast-down tests form the basis of the detextoim of the car’s certified fuel
consumption. At Volvo Car Corporation (VCC) themsts are today performed at the
Arizona Proving Ground (APG) in the southern U.SKRg. 1 shows the long, straight road
and the black road with the hexagonal area weréestie are performed.

s

Fig. 1. The Arizona Proving Ground

Despite thorough checks, fine adjustment of theacar well documented weather conditions
there is a large inconsistency in the results. ¢atigferences in road load for the same car
model means that it is possible to obtain a lowadlwith a car with theoretically higher road

load, which in turn creates problems in the intedevelopment. In a scenario when a car is
performing very well in a coast down test and thase is not known, it may require very

large and costly improvements for the next modekth the same low result, although it in
theory easily would perform better than the old. ddris is because it is not known what

factors influenced the first model in such a wagtthh suddenly delivered a very low road

load.

Random checks are made by authorities in the U@dar to check if the test results stated
by the car manufactures correspond to the reatity taereby be able to determine whether
there has been unallowable actions or not. Knowhegparameters that affect the coast-down
result makes it easier for VCC to argue that tkereesults are really representative. That is, if
it can be proved that the certificated coast-doasult done by VCC was performed during

different circumstances than for the authoritiestt

Knowing what parameters that affects the coast-desnlt and the extent to which they do,

provide many benefits in additions to the abovetinerd. Today’s tests are carried out until
you believe the right result is achieved, but ih@t possible to be certain. By knowing how
the environment affects the result, the expeditiovas/ be finished earlier since it is then

possible to predict what result you can expectrduthe current circumstances. The coast-
down expeditions can then be made more efficietéims of both time and money. To fly

the prototype cars to the U.S for a four week ltegj period is not only very expensive, it



also keeps the prototypes away from other developrdepartments that need to do other
tests as well.

1.2. Purpose

The purpose is to find and understand the paramétet affect the coast-down result and

predict the most accurate road load at the givenugistances, so that coast-down expeditions
can be made with as few and effective test rurgoasible and thereby make the expedition

quicker, cheaper and with more precise and relisgsalt.

1.3. Aim and goal

The thesis shall result in a stable, mathematicadehthat describes the true road load within
+/- 5% with 95% confidence.

1.4. Delimitations

How well a car performs in a coast-down test depemdtwo main areas: Partly car specific
parameters such as aerodynamics, weight and pommar trag and partly boundary
conditions such as weather conditions and the cteraf the test track. Since the car specific
parameters are relatively well known and can besicened constant during a test with the
same car, only the boundary conditions impact erctrast-down result will be studied within
this master’s thesis.

1.4.1. Secrecy

Due to secrecy, some results, conclusions and shgms are removed, expresse>a@sX”
or mentioned in general terms in this thesis. Al@number of significant figures varies and
the real names of the dummy variables are hidden.



2. Coast-down and vehicle theory

This chapter covers the theory and regulationsoastdown tests and the vehicle dynamics
that were used as a base for the models presengsttion 5.

2.1. Relation between road load and fuel consumptio

The road load of a vehicle is defined as the foreeded to push the vehicle forward in
neutral gear in constant speeds on a flat road. ¥@@Cmany other car companies use a real
world test, a coast-down test, to determine thisdoThe basic principle behind the coast-
down test, illustrated in Fig. 2, is the followingccelerate the car to a predetermined speed,
let it decelerate in Neutral Gear down to anotlredptermined speed and measure the time
for the process. The road load is then calculateih Newton’s second law using the vehicle
mass and the difference in speed and time: (Hilsoer,s2010)

F=mY (2.1)
At

Speed x
v * A
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Fig. 2. Schematic view over the coast-down test procedditsnérsson, 2010).

By calculating a second order polynomial fit to thrag force as a function of vehicle speed,
the vehicle specific coefficientg f; andf, are produced:

FoonoolV) =f, + £, V+ f, V7 (2.2)
vehicle 0 1 2

The cars’ certified emission level and fuel constiomp is determined by performing

predefined driving cycles on a roller test benchkg.(B). This bench is equipped with a
dynamometer that simulates driving on a real rddte dynamometer load is acquired by
running a coast down test on the roller test bemthcalculates o

FonolV)=F, + F, W+ F, V2 (2.3)

dyno

Force N

Road load

Dyno load

Speed

Fig. 3. The difference in road load and dynamometer
load. (Hilmersson, 2010)



The coefficients in Eq. 2.3 are then adjusted sb fjyn,generates the same time-speed trace
as the real world coast down test represented yandf,in Eq. 2.2.

Important is that gnois not equal to f=hice The dynamometer load is equal to all forces that
are not acting on the car during the test, sucheagdynamic forces and difference in rolling
resistance between the dynamometer and asphalst@&e® that is already acting on the car
at roller test bench are taken away to not haveefiorces twice. (Hilmersson, 2010)

2.2. Laws and regulations

Since the coast-down result is directly relatedhi car’s certified fuel consumption, those
tests are governed by laws and regulations. Thes mehich are presented below, concerning
how the tests shall be performed and under whair@mental conditions the results are
valid, are taken from Regulations No. 83-05. (2009)

2.2.1. Environmental conditions

* The road shall be level and the slope shall betaahsvithin £ 0.1% and not exceed
1.5%.

* The wind speeds shall be measured 0.7 m above#desurface and the wind speeds
shall not exceed 3m/s in average and 5m/s in waadk gpeeds. The vector component
of the wind speed across the road shall be lessZhds.

e The road shall be dry

« The air density shall not deviate more than  7.85%m the reference conditions P =
100 kPaand T = 293.2 K.

2.2.2. Test procedure

« The vehicle shall be accelerated up to a speed ADkigher than the chosen test
speed v.

* The gearbox shall then be placed in Neutral

 The time taken,t;, for the vehicle to decelerate from speed=v+Avto
v, =v-Avshall be measured.

« The same procedure shall be performed again, dbeiopposite direction.

* The average time& of the two test runshall be calculated.

« The procedure must be repeated several times kathhe statistical accuragy, of
the average

T=1 DT (2.4)
n =
is no more than 2%p 2%)

2.2.3. Correction formula

Since the temperature and the air density are dered to influence the outcome of the test,
there is a correction factor defined in Regulatibios 83-05. (2009),

RR RAero ICO
=R+ K, Qt-t,) + 22 2.5
R, HRR M)+ R, [ pj (2:9)



whereRgis the rolling resistance at speedRaero iS the aerodynamic drag at speedRy is
total driving resistanceRg + Raerg), K: is the temperature correction factor of rolling
resistance, equal 864x107°/°C, t is the ambient temperature at the t&sis the ambient
reference temperature (2G), p is the air density at the test apglis the air density at the
reference conditions (see Section 2.2.1). Thiseotion factoK is multiplied by the powelP
determined on the track

_ mlv[Av
S50CLT

(2.6)

wherem is the vehicle reference massis the speed of the tegty is the speed deviation
from speeds (see section 2.2.1) adds the time. The corrected pow€%, is then calculated

by

=K[P 2.7)

2.3. Vehicle dynamics

In Eq. 2.1 the road loaH is defined by Newton’s second law. This total foesing on a
vehicle can also be described as the sum of thatgtianal force and the drag force. The
drag force can divided into following components:rasistance, side force resistance, rolling
resistance and losses in transmission and beafia$sson, Hammarstrom, Sérensen, &
Eriksson, 2011). The road load can therefore adsddfined as:

F:mﬂ:F +F, +FtFertFin (2.8)
At

side

The force components in Eq. 2.8 are described helow

2.3.1. Gravitation force
The gravitational force is defined as:

Foay =MLY [3IN0O) (2.9)

wherem s the vehicle masg, the gravitational acceleration afids the longitudinal slope of
the road (Karlsson et al, 2011). The gravitatiawleleration is not constant but varies across
the globe. Following formula can be used to deteenthe value of:

1+0,00193185186391%in2(A)
J1-0,00669437990133in’ ()

go =9,780326771 (2.10)
0

where is the geographic latitude (Ahern, 2004).

2.3.2. Aerodynamic drag

Aerodynamic drag occur as when the airflow aroumd through the vehicle is being moved.
When air flows over and past a solid form, vortiees created at the rear causing the flow to
deviate from the smooth streamline flow. The awflpressure in the front of the solid object



will be higher than the surrounding pressure white pressure behind will be lower,
therefore the vehicle will be dragged in the dietf air movement. This effect is created in
addition to the skin friction drag, which is theseus resistance generated within the
boundary layer when air flows over a solid surféideisler, 2002). The skin friction drag is
not studied in this thesis. The air resistancelbmawritten as

Fo = [PV, T, A ®

wherep is the density of the aike is the relative air velocity striking the surfa€g, is the
drag coefficient and\ is the cross section area (Heisler, 2002). Thdemsity is a function of
total air pressure, temperature and relative hugnigbhelquist, 2011) that can be seen in
Appendix A. The dimensionless drag coefficient defgeupon the shape of the body exposed
to the airstream (Heisler, 2002) and its value didferent vehicles is determined in wind
tunnels. TypicalCp-values for private cars are between 0.22-0.4 (Elei®002).Cp is
sensitive even for relatively small changes in shape of the vehicle; a general rule is that
one centimetre change of the car body height chémg€p-value with 0.01 steps and an
open window or sunroof can increaSgwith five to seven percent (Bauer, 1996). As can be
seen in Eq2.11and Fig.4, the drag force is strongly dependingherelative air velocity.

1600 T T T T T
L /|

| /

=
c 1200 | /
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Fig. 4. Comparison of aerodynamic drag forces with rolling
resistancgHeisler, 2002).

This air velocity is in favourable conditions eqt@althe vehicle speed as in Fig 4, but for real
world test such as a coast-down test the metedoalogiind affects the relative air velocity.
The relative air velocity can be expressed as:

Vg =4V2 + 2V [Wikos@) + W’ (2.12)

wherev is the speed of the vehiche,is the wind speed andis the wind direction relative to
the velocity vector of the vehicle. Thig, strikes the vehicle with an andglg(Karlsson et al.,
2011):



B =arccos({ +cos@) W) /v,,) (2.13)

The forceFp from Eq. 2.11 is then projected on an axis paratigh the vehicle’s direction of
travel, using th@-angle:

F.. =(C, +C_.... 3in(B)) [tos(B) [C, (A[p V3, /2 (2.14)

rel

The unknown coefficient€_andCjpeto Can be determined by regression.

2.3.3. Side force resistance
The side force resistance can be calculated as:

Fage = Coe iM{cosE) V" / R- g [$in(o) t0sP)))” (2.15)

whereo is the crossfall of the roadR is the radius of curvature of the road and;e@ a
constant. (Karlsson et al., 2011)

2.3.4. Rolling resistance

Rolling resistance is the force acting on a vehideised by the interaction between the
vehicle and the road surface (Karlsson et al., 2011s the tire deformation that causes the
rolling resistance and as illustrated in Fig.5 tesultant normal force is shifted forward
causing a torque around the wheel centre thattsesidling. The horizontal force that is

required to keep the wheel at constant speed amsl dhiercome this torque is called the
rolling resistance and is defined as (Nielsen &dkeng, 2002):

Frr = Cre [N (2.16)
whereN is the normal force an@gg is the rolling resistance coefficier@rg is depends on

many variables such as inflation pressure, tirgoenature, vehicle speed, road conditions and
wheel adjustments (Nielsen & Sandberg, 2002).

Driving speed

.‘—
Shift

Normal force

Fig. 5. lllustrates the horizontal shift of the resultargrmal
force during tire deformation (Nielsen & Sandberg, 2002)



In the report by Karlsson, et al. (2011) the foliogv equation for the rolling resistance is
suggested

Fre = N HCRR_OO *+ Crr_temp T + Cra_wpp IMPD +Crg g ORI +Crgg gy, V) (2.17)

whereT is the ambient temperatufdPD is a measure for the macrotexture of the réRtis

a measure of the unevenness of the read,the vehicle speed ar€kr oo, Crr temp€tC are
constants that can be determined by multiple regresAnother model suggested by Nielsen
& Sandberg (2002) is

Fer =C (T\V) IN (2.18)

whereT in this model is the tire temperature. This maslh a rolling resistance coefficient
depending only on the tire temperature and theclekpeed require a driving scenario with a
given tire and constant or slow varying externaidibons. It is established in the report that
the tire temperature is the dominant parametethferabove described driving scenario and
that the tire temperature is dependent on the arhbeéenperature, road surface temperature,
the vehicle speed and how long time the vehicldrigen at various speeds. The main reason
for the strong correlation between tire temperatame rolling resistance is that the tire
pressure raises when the inflated air gets warmeértlzereby reducing the rolling resistance.
Even if the tire pressure is held constant, thiengpresistance is known to depend also on the
velocity. The effect of the vehicle speed is howewather small, around 20-30% of the tire
pressure effect. (Nielsen & Sandberg, 2002)

2.3.5. Transmission drag

Due to the limitations of this thesis, the transias resistance and losses in bearings are not
discussed since they are considered to not varstaotilly for different boundary
conditions. The contribution to the road load thet transmission losses constitute is instead
covered by dummy variables, which is explainedect®n 3.7.

2.4. Weather station

The weather station measures the properties drtii@ent air, which are: pressure, humidity,
temperature, wind speed and wind direction. Thoepeasties are measured each 10 second,
which means that the weather-data obtained fronecdlst-down tests does not need to be
exactly what occurred during the test. The weaskeaion is located at the side of the test
track and hence, it could be some differences bwshat is measured and what is affecting
the car at the test track.



3. Regression theory

Regression analysis is a statistical tool for testigation of relationships between two or
more variables that are functionally linked (Petber, 2003), (Grandin, 2012). In this chapter
a review of the regression methods and statigiésa$ used in this thesis, are described.

3.1. Simple linear regression model

The basic principle in linear regression is thatraight line, a regression line, is adjusted to a
statistical material consisting afpairs of observationgs,y;) using the least square method.
This means determine the values of the variabksdb in the equation of a straight line

y=a+blx (3.1)
so that the sum of squares

2 (v —a-blk)* (3.2)
i=1
is as small as possible. The solution to this aawhtten as

a=y-bx (3.3)

Sy o -2V 2
b= n

(3.4)

wherea indicates where the straight line intersect witl y-axis and indicates the average
change iry for one unit change ix (Petterson, 2003)

It is very rare that this minimization problem ras exact solution, especially when the data
are from real world measurements or experimentse@idniversity, 2004). The deviation
from the dependent variable’s conditional expegtafor the levek is called the residuat,
The variation is described with this model:

y=a+blx+¢ (3.5)

The residual is a random variable with expectatiero and the value of the residual can be
interpreted as the total effect of other factorattinfluence the dependent variabje
(Wahlgren & Kdrner, 2006). More about residuals &ogv to analyse those can be found in
Section 3.6.

3.2. P-value

The p-value is the probability to obtain at leastlarge difference as between the sample
value and the value under the null hypothesis.régression, the null hypothesis is that there
is no linear relationship between the dependenabiar and explanatory variables (Kérner &
Wabhigren, 2006):



Ho:f3, =0 (3.6)

The alternative hypothesis is that each of theasgjon coefficients is different from zero:
H,:5,#0 (3.7)

The p-value for which the null hypothesis is regectis determined by the level of
significance. A common value for the level of sigrance ise = 5 %, which means that if the
p-value is larger than 0.05 the null hypothesisncabe rejected and the smaller the p-value,
the greater support for the null hypothesis. (Ké&&Vahlgren, 2006)

3.3. Analysis of Variance

With the above formulas it is possible to obtain eguation for the linear relationship
between the dependent variapland the independent variabl¢Grandin, 2012). To analyse
the strength of the relationship, i.e. how muchhef variation iny is due to the change 1y
the ANOVA (AnalysisOf Variance) table can be used. In Tablel an exampé GANOVA
table from MS Excel can be seen.

Table 1.ANOVA table from MS Excel

ANOVA

df SS MS F Significance F
Regression 15 7736627 7736627 20448,36 2,2167E-199
Residual 195 73778,17 378,3496
Total 196 7810406

The cell at the intersection of the second columh third row in Table 1 is called Total Sum
of Squares (SST); this is the total variatiorYand it is defined as

SST:Z(yi _9i)2 (3.8)

In Table 1 it is also possible to see the Sum afaBes for the residuals (SSE), which is the
variation around the adapted regression line thahdependent of the variation ®f This
unexplained variation is calculated as

SSE= Y (¥, - y)? (3.9)
where

n

y, =a+blX (3.10)

Eq. 3.9 is in other words the squared and summféerelice between the actual valgend
the expected valug calculated from the regression modekatThe difference between the
total variation,SST and the unexplained variatio8BSE is calledSSRand is the explained

10



variation (See Table 1 first row, second columie tariation that is described by the
regression model. (Kérner & Wahlgren, 2006). To suuap, the total variation can be written
as

SST= SSRr SSE (3.11)

and it is also illustrated below in Fig.6

- T * 1= sy
v 1 Unexplained y,=a+b-x

f veriato Toul

Vi

variation
} Explained variation
i :

X

Fig. 6. How the division of the total variation, SST, candeen. (lllustration
done after model by Karlsson et al., (2011)

3.3.1. Coefficient of determination

As a measure of how strong the linear correlatiriie coefficient of determinatioR?, is
used

2 - SSR_, _SSE

— (3.12)
SST SS1

The R-valuetells how much of the total variation of the depemuvariable is explained by
the linear relationship between the variables (I€6r& Wahlgren, 2006). When using more
than one explanatory variable in the model, thev&ue can be misleading since it increases
with the number of terms whether the terms areifsigmt or not (Grandin, 2012). Therefore
a R-value that is adjusted based on the residualedsgf freedom must be used in multiple
regression. The residual degrees of freedom ine@fas

v=n-m (3.13)

wheren is the number of response values anig the number of fitted coefficients estimated
from the response values. The adjustéddtue is defined as (UNSW, 2011)

SSHEn-1)

adj-R?=1-
SSTv)

(3.14)

3.3.2. F-value

The F-value can be found in the ANOVA table (Tablahd is a test function for the null
hypothesis that there is no linear relationshipveen the variables. F is calculated as
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_ MSR

MSE (3.15)
where MSRis the mean sum of squares for the regressionM®H is the mean sum of
squares for the residuals. The valuiMS8RandMSE can be found undéviSin the ANOVA
table. The F-distribution is skewed to the righd d@ine critical area, illustrated in Fig.7, in the
right tail depends on the degrees of freedonM&RandMSEand the level of significance.
The probability that F is in the accepted area thiednull hypothesis is accepted can be seen
in the ANOVA table undeiSignificance F If a significance level of 5% is selected, the
Significance Fmust be lower than 0.05 if the null hypothesis $thdae rejected. (Korner &
Wabhigren, 2006)

Probability p

P
Fig. 7. The shape of the F-distribution with the critical
area to the right.

3.4. Multiple regression analysis

The multiple regression is a natural extensiorhefgimple linear model described in Section
3.1. The main difference is that a multiple regrssnodel contains two or more explanatory
variables in order to better explain the variatodry. When using two x-variables, the model
can look like this:

y=a+b X +b, X, (3.16)
The interpretation db, andb;, is now as follows:

b, = The average change in the variapiex; increases one unit amgremain unchanged.
b, = The average change in the variablexs ihcreases one unit amgremain unchanged.

The value for those variables is determined inséwme way as for the simple regression in
Section 3.1 (Petterson, 2003).

Building a suitable multiple regression model canabbalancing act between using as many
interesting and essential variables as possiblettandisk for overdetermination. For a small
amount of data with many explanatory variablesehera risk that the regression model
indeed provides a good description of the variatinoy, but that only applies to that particular
sample and is not valid for the entire populatitverefore, the number of variables in the
model should be carefully considered. Only the negsential variables that together provides
as high coefficient of determinatiof®® (see Section 3.3.1ps possible should be used.
(Korner & Wabhlgren, 2006)
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3.5. Multicollinearity

Linear relations between the explanatory variable talled multicollinearity
(Nationalencyklopedin, 2012). A risk when using mamriables in a multiple regression
model is that some of them might be strongly catesl and thus provides almost the same
information (Grandin, 2012).The evaluation of tlegnession coefficients and its standard
errors is not independent and at multicollineattity standard errors therefore becomes larger
in the valuations. It is thus possible to obtairirdarior model with two explanatory variables
instead for only one, even though the coefficidndetermination slightly increases with two
variables. It is then better to only use one ofdbeelated variables, preferably that one that
provides the highesR’-value (Wahlgren & Kérner, 2006). To avoid stronglgrrelated
variables in the model, a correlation analysis véththe variables should be done before
performing the regression analysis. There is n@tstalue when the regression cannot be
made, but as a rule of thumb variables with cotietastronger than 0.8 should not be used
(Sundell, 2010). Since multicollinearity betweeroter more variables often indicates that
they provide about the same information to the mamtee way to get around the problem is
to drop one of the variables from the model ancgokbat one that provides the highest value
of R? (Kérner & Wahlgren, 2006). If all the correlatedriahles are considered important to
the model and cannot be taken away, another waglt@ multicollinearity is to combine the
correlated variables to a single variable with wahice regression is performed (UKY, 2010).

3.5.1. Variance Inflation Factor

Another way of detecting multicollinearity is toauthe Variance Inflation Factor (VIF).

The VIF quantifies how much the variance of thenested coefficients is inflated and thus
the severity of the multicollinearity (Simon, 2004#s for the correlation between variables
there is no strict VIF-value when the regressi@ultas considered unreliable but as a general
rule of thumb VIF higher than 4 warrant further @éstigations and over 10 is a sign of severe
multicollinearity that must be solved (Simon, 2008he Variance Inflation Factor is defined
as:

S’ (n-1)SE’,
v, =L - Si0-DSE,

J

(3.17)

whereS,; is the standard deviation for the regression véj&bh, is the standard error for
the slope coefficients is the mean squared residual and (n-1) is theedegf freedom
(ProfTDub, 2010).

3.6. Residual analysis

The residualg, is defined as the difference between the actbakiwed valuey and the
corresponding valug obtained from the regression model:

E=y-y (3.18)

There are three prerequisites regarding the residsal that the equations used in the
regression should give accurate values (Korner &Mtan, 2006):

* The residuals must be distributed independently
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* The residuals’ standard deviation is equal fotealels
* The residuals are normally distributed for all lsve

By using plots of the residuals, those prerequgsien be controlled quite easily. Fig. 8 shows
some examples of this.

500
1

1

a)

1000

Residuals
S00
L

0
1

-500

Fig. 8.a) residuals with standard deviation that is notiatfor all levels of x (UCLA, 2007). b)
residuals with a systeatic pattern, they are not independently distrill(Zejda, 2008)

The third prerequisite about normal distributiom e illustrated with a histogram. However,
this assumption not necessary for large data E&sér & Wahlgren, 2006), since the rules
for the Central Limit Theorem shows that for a degalarger than 20 observations, one can
assume approximately normal distribution (Granéi 2).

A lot of information can be obtained by analyzihg tresiduals, such as the suitability of the
model, the data set as a whole and as individusgrohations. The reason for large residuals is
often measuring fault, incorrect regression modethe actual individual variation. Large
deviations should be seen as warning signals tméething is not right (Kérner & Wahlgren,
2006). If the outliers should be removed from tlagadset must be carefully analyzed so that
the real cause is bad data and not part of theralaariation or an incorrect regression
model.

If the residuals look like those in Fig. 8, thatiglear sign of an incorrect regression model.
To solve the problem, the data may be transformedmanner such that linear regression can
be used. If that is not possible, other types grassion models, for example polynomial
regression or non-linear regression, must be u$&endin, 2012) In this thesis only linear
regression will be discussed.

3.7. Dummy variables

The use of dummy variables is a way to treat qatalié variables in a regression model, for
example if there is a difference in road load usingnanual or automatic gearbox. The
regression model is made to handle quantitativeables but can manage qualitative
variables if they are transformed into binary dumvayiables with values 0 or 1. (Kérner &

Wabhlgren, 2006) The estimated regression relatansor example now be written as:

y=a+b X +b, X, (3.19)
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where

X1 = an ordinary quantitative variable
X2 = gearbox (with values “manual” = 0 and “automatit)

The value of the regression coefficidntis equal to the difference jnwhen shifting between
manual and automatic gearbox. It is possible tehlagre dummy variables than just one, but
it is then necessary to have a reference vari@hbletlhe other variables can be compared with.
Each of the dummy variables uses one degree ofildreeson groups has-1 degrees of
freedom. What group or variable that is used asreete does not influence tRé-value
(UCLA, 2007).
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4. Methodology

This section covers the setup of the thesis and miethods that are used in order to achieve
a result that fulfils the aim and purpose.

4.1. Literature study

In order to achieve an understanding for the task t® increase the knowledge in areas
related to vehicle dynamics, coast-down testsistitet and data mining, a literature study was
done. The search for literature was primarily darseng the search engine at Chalmers
Library’'s homepage, in order to obtain reliableormhation and get access to articles and
reports that otherwise are unavailable. Informataiyout coast-down tests in terms of
implementation, measuring methods, accuracy and &wl regulations was captured both by
interviews with experts at the Fuel Economy deparirat VCC and internal information.
Also interviews with statistics experts at Chalmeeye made in order to verify and discuss
methods and results.

4.2. Data collection and preparation

Coast-down expeditions must be performed for eveayw car model and its variants; the
amount of data available for analysis is thus Varge. There is however some important
information that is not officially documented andly available in terms of personal notes
and what is remembered of the team that performedetst. Since such information becomes
weaker over time and no one in the team that choig tests earlier than 2010 are left in
today’s coast-down team, only data from tests peréal during 2010 and later are used in
order to compromise between minimize the risk fasimerpret the results and use as much
data as possible.

All data used in this thesis is derived from measents made for internal development at
VCC and is not required by the authorities. Theutloentation of these measurements is
therefore not as thoroughly as for the officialedat

During coast-down expeditions not only data abbet d¢ars, speeds and times are gathered,
but also information about weather and road coowiti The information about weather,
coast-down times and car specific data were meng@done large file and then matched
against the current time for the test. Accordingthte regulations of the coast-down tests
(Section 2.2) the coast-down must be performedoi llirections of the test track and the
average of the two runs is the time that count®sé&hlwo runs were treated as individual runs
in order to get as many runs as possible to analylmasurements of the road surface
roughness were not included in this file, both lseathey were considered not sufficient and
accurate enough, and for the lack of informatioaudtthe where on the test track the current
coast-down tests were made, which in turn madenfieasible to match the asphalt
measurements against the coast-down times.

In order to prepare the dataset for further ang)yabvious errors such as duplicates and tests
without weather measurements were removed. Arizohare APG is located, does not use
day light saving time (Prerau, 2006), but the measent equipment from Sweden does.
Therefore, data from the day when the time shituo@d were analysed and cleared from
results being registered twice with an hour diffexe
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4.3. Data analysis and model structure

To be able to describe the variation of the foraetsng on a car during a coast-down test,
some kind of mathematical model is needed. Fromlithture study, formulas describing
elementary correlations between environmental parars and forces acting on a car were
found and assembled into a first model. The desonp of these formulas are presented in
Section 2.3. With this model a first multiple regg®n on the dataset was done in order to be
able to analyse the quality of both coast-down detd regression model. Naturally, it is
important that the input data is correct and coistanly natural variation and no significant
measurement errors or other sporadic human ergir dannot be predicted in a model.
Therefore a residual analysis was done after thikiptauregression in order to detect such
inaccuracies in the coast-down data. The residualefined as the difference between the
actual observed value y and the corresponding alabtained from the regression model
(Koérner & Wabhlgren, 2006) and it is consequentlgoamd measure of whether something is
not right, either the regression model or the ingatia. The residuals of the variables in the
regression model were illustrated in diagrams suaiize possible outliers. Those residuals
that were considered as outliers were thorough@jyaed by tracking the coast-down results
which led to the error and go through the currestihg protocol together with the group in
charge of the expedition. Those tests that weresidered invalid for some reason were
removed from the dataset and for those where raysewere detected, the test results were
retained in order not to affect the natural vaoiatiBy this method both large groups of
invalid coast-down results and single measuremeotrscan be found much quicker and
more accurate than if all test protocols had beerméed one by one without knowing what
kind of error that is being sought. The residualgsis was used also as a quality control of
the regression model by investigate if the prergtes described in Section 3.6 were met.
More about residual analysis and regression mochtsbe found in Section 3.1 and 3.6,
respectively.

When the dataset is cleared from invalid coast-do@gults, the regression model can be
extended with more interesting parameters. Sintethiesis aims to determine the external
parameters’ impact on the test result, the caripg@arameters were treated with dummy-
variables. In that way the influence of for examgitferent gearboxes and FWD or AWD

were kept away from the more important variablegse Do the regulations, the coast-down
test must be performed in both direction of the tiesk; therefore also a dummy variable for
the direction of the test track was used in ordeddtermine a possible difference in road load
between the various directions. A description ahdwy-variables is presented in Section 3.7.

How well the model describes the variation of ferée the dataset was measured by the
adjusted coefficient of determinatiomdj-R?, which indicates the proportion explained
variation of the total variance, with respect te tumber of parameters in the model. The
definition of the ordinary coefficient of determtitn, R?, the adjusted coefficient of
determination and difference between them, is dised in Section 3.3.1.

To prove that there is a significant linear cortiela between the variables and hence reject
the null hypothesis that there is no linear refa&tlop between them, an F-test was made for
the regression model as a whole. The significaecel was set to 5%, in accordance with the
aim of the thesis. Also a t-test for each of thgressions coefficients was made in order to try
the null hypothesis that the regression coefficisnequal to zero. That is to say that the
variable has no effect on the regression equaBevalues lower than 0.05 were accepted for
the t-test due to the above mentioned significdacel at 5%. More about the F-test and p-
values can found in Section 3.2 and 3.3.2.
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The use of many variables in a regression mode¢ases the risk of multicollinearity, which
provides unstable estimates of the regression icaefts. Hence must multicollinearity be
detected and adjusted before any conclusions calrdven from the model. Both a VIF-test
and a correlation analysis were done in order tsuse of detecting variables that could make
the model unstable. If multicollinearity is detetitehe variable that provides the least
contribution to the coefficient of determinationrsmoved from the model. In that way a
model with better and more reliable estimates efrdgression coefficients is obtained, but at
the expense of being able to take account of maffgrent variables. The explanation for
multicollinearity, VIF-test and correlation analysian be found in Section 3.5.

To further determine the stability of the model aisdvariables, regression analyses with the
final model were made on the dataset for eacheotlitee coast-down expeditions separately.
If there is a good agreement between the regressiefficients for the analyses, then the
model can be considered as robust. If the coeffisiestrongly fluctuate between the
expeditions, they must be analyzed deeper in dodenderstand the deviation.

4 .3. Statistical software

All coast-down data were compiled using MS Excéliol is a program that is well suited for
processing large data volumes, is easy to useeaqdres very short learning time. Also the
statistical operations on the dataset were madeggudiS Excel. Due to secrecy concerning
the coast-down data and the calculations on timky, computers on VCC were permitted to
be used and they contained no more advanced isi@tisbftware, such as SPSS or MiniTab.
SPSS, Minitab or some other strict statistical psog provides more built-in statistical

functions and plots that could have speeded ugdhmuilations, since these functions, VIF-
tests for example, must be done "by hand" in MSeExc
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5. Results and analyses

This chapter covers the results obtained from teéhod in the previous section. The results
are continuously analysed and at the end of tliBogea thoroughly analysis and discussion
of the final regression model is presented.

5.1. Dataset

Information about the cars, coast-down times andter were merged into a single Excel
file. With all duplicates, weather errors and otledvious errors removed, 22570 unique
coast-down results were obtained. The tables bslaw the headlines of the input data and
fictional examples of those.

The weight in Table 2 is the total weight of the, dacluding driver and liquids. The total
weight was used since it is important to use theiahoweight of each test in order to
understand the variance of the road load. Duritesg the total weight will slightly decrease
due to the fuel consumption. The effect of this wassidered small and was not taken into
account in the calculations.

Table 2.Car related information

Test Car Transmission AWD/FWD Cd*A Weight
nr. model [ka]
31 D1 B6 FWD 0,8 1500
Table 3.Coast-down information
Coast-down time Speed [m/s] Date Direction
[s] (FWD/BWD)
14,2 30,55 2011-10-27 19:17:45 FWD
Table 4.Weather information
Wind Wind direction | Humidity [%] Air pressure Ambient
speed [rad] [kPa] temperature [°C]
[m/s]
4,6 2,78 17,7 96,1 27,2

5.2 Analysis of the dataset

5.2.1. First regression model

In order to analyse the data set and find erratate hard to find just by watching it, a first
basic model for the forces acting on a car duricgast-down test was constructed using
Eq.2.8 as a base

F= m% = I:grav + I:air + I:side + FRR + I:trm

19



whereFgr,y andFsige, EQ. 2.9 respective Eq. 2.15, were neglected sheéest road at APG
was considered very level. Al$@, was ignored, both since that is a car specificabée

which is not discussed in this thesis, and becthesgalues of the regression coefficients are
not important at this stage. For the air resistafige Eq. 2.14 was used. EQq.2.17 was used to
calculateFrg, but the variables for the road surface conditMRD andIRI, were excluded
since those variables are not sufficiently measatdtle coast-down expeditionBhe actual
road loadF, was calculated using Eqg. 2.1 and the informatiohable 2 and 3:

F= mﬂ =1500 0/36
At 9

The values for the mass and coast-down time at@jasnples. The speed differends,, is
always 10 km/h. It was converted into the Sl-unis tmy dividing by 3.6.

Thus, the first regression model looked like this:

MEY = N UCiumy T +Cop 00) + (€1 +Cria SIN(B) AR (5.1)
\_‘FfA_t“ Frr Far

where

AIR=cos(B) [T, [A[p V2, /2 (5.2)

rel

A multiple regression analysis with the above magsd on the unadjusted dataset, provided
a value ofadj-R at 84.32%. The values of the regression coefficientsaa this stage of no
interest, since the accuracy of the input datamsesvhat dubious.

5.2.2. Residual analysis and clearance of bad data

The associated residual plots for the regressiaraias were analysed with the aim of
finding outliers. Only outliers which could be teatto some sort of error during the test were
removed or adjusted, the others were retainedderanot to affect the natural variation. In
Fig.9 there is a well-defined group of outliersicgading some kind of error in the weight data.

Residual Plot for &V

Q‘ '
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N

500

Reslduals
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Fig. 9. Residual plot for N with a distinct group of oute
at N= 26(00.

By tracing those outliers back to the source it diasovered that a group of cars had a total
weight of 900 kg more than other similar cars, eausy a human error. For the air resistance
variables AIR andAIRIsin(8) , both groups and seemingly isolated outliers viesed. That

is illustrated in Fig.10. Tracing those outliersckathe current coast-down expedition
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protocols resulted in findings of driver mistak@svalid practice runs, problems with the
surveying equipment and other errors that madectiast-down result invalid. Such results
were deleted from the dataset. Some of the ouilefsg. 10 were due to problems that could
be adjusted, such as a coast-down test performie iapposite direction order and a number
of tests performed with the wind direction indicgatorned 180 degrees. Both of those errors
led to that the cars were believed to have head wimen they actually had tailwind, and vice
versa. The adjusted dataset used in the furtheulaesions now contains 21300 unique coast-
down results.

Residual Plot for AIR

Residuals
(=]
f—
(=]

AIR

Fig. 10.Residual plot for the air resistance with both
groups of outliers and sin¢ extreme values.

5.2.3. Adjusted dataset

With a new multiple regression analysis performethwhe same model as before, Eq. 5.1,
but on the new dataset, the proportion explainettian, ajd-R, was now 95.15%. Thus a
large increase was obtained only by clearing thmutirdata from erroneous values. The
residual plots for the independent variables carsd®n in figures below. With the outliers
corrected, the residual plots were used also dseekcfor the quality of the model with the
criteria specified in Sec.3.6. The residuals fa WariabledN and T [N in Fig.11a respective
Fig 11b, meet the criteria; they are independedityributed and the standard deviation is
equal for all levels. The groupings in Fig.11 a due to the difference in weights for the
various car models and the variation around eadghtvgroup is the difference in driver
weight and filling degree of the liquids. In bokig.11c and Fig.11d small amount of
negative forces can be seen which occurs at lovickeeBpeeds and high meteorological
tailwind speeds. The standard deviation seems toredse for increasing values
of AIR[sin(8) in fig.11d), but the number of observations doeso atrongly decrease for

increased values oAIRI[sin(8 and it is therefore not possible to determinend standard

deviation actually is equal for all levels or ndhe residuals in Fig 11c) indicate a departure
of linearity for high vehicle speeds of 110 km/ldanore. The reason for this behaviour is
further discussed in Section 5.5.3.
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Fig. 11.Residual plots for the variables in the regressioodel

The ANOVA-table and the values of the differentresgion coefficients and thervalues
are reported in the table below

Table 5.ANOVA table and statistics for the regression coiefiits.

ANOVA
df SS MS F Significance F

Regression 4 4,56E+08 1,14E+08 104542,9 0
Residual 21295 23224892 1090,627
Total 21299  4,79E+08

Coef SE Coef t Stat P-value Lower 95% Upper 95%
Intercept 38,0878 3,2598 11,6840 1,92E-31 31,6983 44,4773
CRR_00 0,0083 0,0002 37,5275 1,6E-298 0,0079 0,0088
C_temp XXX 0,0000 -37,1285  2E-292 XXX XXX
CL 1,0219 0,0018 575,6082 0 1,0184 1,0254
CL_beta 0,1669 0,0309 5,3986 6,79E-08 0,1063 0,2275

The Significance Fn the ANOVA table is equal to 0 and the null hypegis, that there is no
linear relationship between the variables, wasetioee rejected. The model as a whole can
therefore be considered as significant. pheluesof the t-tests for all regression coefficients
are also much lower than the level of significaat®.05 and the alternative hypothesis, that
the coefficient is different from zero, was accelpfiar all coefficients. That is, it is very likely
that all the coefficients have a linear relatiopsta the dependent variabfeln this thesiy is
equal to the road lodel.

5.3 Dummy variables

Dummy variables were created for each variant efdars in the data set. There are eight
different cars and some of them were tested witlergint gearboxes and number of driving
wheels. There are consequently eleven differenants and hence also eleven car-related
dummy variables used in the regression model. Tdheerth dummy variabld)11, was used

as reference and is therefore not included inahktof coefficients.
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A twelfth dummy was entered into the model to deiae if there are any differences in
which direction of the test track the coast-dowst e performed. Forward was set to 1 and
Backward as 0. The dummy variable was denDteelc.

The regression analysis with the model includinghdhy variables provides a slightly higher
adj-Re-value than the model without them. The adjustesffiment of determination was now
calculated to 96.11 %. As illustrated in Tableh&re is a substantial change in phealuefor

the Interceptand Crg 0o, COmpared to the values in Table 5 without dumragiables. But
also the estimation of the coefficients differ m anreasonably way. Since the weight of the
cars to a great extent depends on the car modethandariants of those, there is a high risk
for multicollinearity between the normal force \abieN and the dummy variables. The high
VIF-values, which are illustrated to the right imble 6 and the correlation analysis (See
Table B1 in Appendix B) foiCgrgr oo andthe car-related dummy variables confirms that
multicollinearity actually is present and that &sho be solved in order to obtain a regression
model with reliable estimates of the coefficienidie regression coefficientrg g0 Was
removed from the model to solve the problem. Wit removed, thadj-RP-value remains at
96.11 % and the VIF-values were well below 3 fdicakfficients. All coefficients, except for
the dummy variabld10, were also clearly significant (p-value<<0.05). eTtable for the
regression analysis performed with the model withogk oo can be found in Table C1 in
Appendix C.

Table 6.ANOVA table and statistics for the regression doieffits with dummy variables under the dotted line.

ANOVA
df SS MS F Significance F

Regression 15 4,61E+08 30711384 35099,35 0
Residual 21284 18623168 874,9844
Total 21299  4,79E+08

Coef SE Coef t Stat P-value Lower 95% Upper 95% VIF
Intercept 61,6722 23,2528  2,6522  0,008002 16,0949 107,2495
CRR_00 0,0061 0,0015 3,9422  8,10E-05 0,0031 0,0091 73,60
C_temp XXX 0,0000 -41,8557 0 XXX XXX 1,30
CL 1,0160 0,0016 630,5791 0 1,0128 1,0191 1,26
CL_beta 0,2686 0,0286 9,3803  7,22E-21 0,2124 0,3247 1,29
Direc 12,5905 0,4056 31,0436 5,65E-207 11,7956 13,3855 1,00
D1 50,6130 2,1566 23,4692 2,83E-120 46,3860 54,8401 2,68
D2 34,4623 1,5893 21,6841 3,79E-103 31,3472 37,5774 4,06
D3 -9,5033  1,2823 -7,4109  1,30E-13 -12,0168 -6,9898 3,22
D4 -5,6998 1,0711 -5,3217  1,04E-07 -7,7992 -3,6005 2,13
D5 24,6415  1,5058 16,3644  7,97E-60 21,6901 27,5930 5,45
D6 4,6442 2,6751 1,7361  0,082559 -0,5991 9,8876 22,67
D7 11,8388  3,0638 3,8641 0,000112 5,8335 17,8441 23,75
D8 5,4670 4,8344 1,1309 0,258129 -4,0088 14,9427 48,14
D9 0,5504 3,4423 0,1599 0,872972 -6,1969 7,2976 23,72
D10 2,2175 1,1457 1,9354 0,052951 -0,0282 4,4632 2,52
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Thus, removingCrr 00 Can be considered as a good way to solve the cullitiearity
problem without reducing thedj-R-value. The rolling resistance coefficient is cansantly
now only a function of the ambient temperature.

5.3. Extended regression model

In order to further increase tkelj-RP-value and to get a more comprehensive model, more
variables were added.

The rolling resistance for the tires used in thastalown tests is measured at VCC before
each coast-down expedition. Those values were ezhiarthe regression model as a part of
the rolling resistance coefficient. The variablealedTrr

According to Section 2.3.4 and Eq. 2.18, the rgllnesistance mainly depends on the tire
temperature, provided that variables such as roddce, wheel adjustments and tire type are
relatively constant. For coast-down tests, the Wwhdgpistments are carefully controlled and
can be considered as constant. The variationarnypes between the coast-down expeditions
are rather small and were in addition handled whiga variableTrg described above. The
influence from the road surface structure can becriged with Eq. 2.17, but such surface
texture measurements have only been done in a seall and also with no possibility to
connect those results with the other coast-dowa.désed on the few measurements that
have been made, it can be seen that there appdagsbme variations in the asphalt although
it is probably small. Assuming that the variatioms road surface are small, the tire
temperature is the main contribution to the rolliegistance coefficient.

In order to further describe the rolling resistaasgunction of temperature, a variable called
Timewas entered in the regression model. This variedgpeesents the time of day (1-24) at
which the test was performed.

After addition of dummy variables, variables foretirolling resistance and for time of day
and the deletion of thErg oo coefficient, the model looks like this:

F =N {Cpapp [T + Cye (TiMe+C o (Te) + (C +Cyy, [5in(B)) CAIR + Direc + D1+ ...+ D11 (5.3)

temp time

Dummies
Frr Far

A regression analysis with the model specified q3=3 generated the values illustrated in
Table 7. Theadj-RP-value was calculated to 96.16%.

According to the extremely high VIF-values in Talfldor Cy rrand the dummy variables,
the multicollinearity is very strong between thoswiables. This is partly because the car
weight is correlated to the dummy variables, agHerearlier model containing the coefficient
Crr 0o @and partly because the variationTrr is very small. The problem was solved by
removing the variabl@&rg.
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Table 7.Statistics for the regression coefficients in e§. 5

Coef SE Coef tStat P-value Lower 95% Upper 95%  VIF
Intercept -2,5450 23,0969 -0,1102 0,912260039 -47,8168 42,7267
C time 0,0000 0,0000 -17,4951  4,68E-68 -0,0001 0,0000 1,22
CT_RR 0,0018 0,0003 7,0047 2,55E-12 0,0013 0,0023 344,11
C temp XXX 0,0000 -37,7013 3,61E-301 XXX XXX 1,36
CL 1,0129 0,0016 629,4677 0 1,0098 1,0161 1,27
CL beta 10,2511 0,0284 8,8289 1,14E-18 0,1954 0,3069 1,29

Direc 12,5328 0,4027 31,1232  5,30E-208 11,7435 13,3221 1

D1 60,8990 1,5114 40,2942 0 57,9366 63,8614 1,33
D2 43,8829 11,1445 38,3412 0 41,6395 46,1263 2,14
D3 8,0040 2,8615 2,7971 0,005160939  2,3952 13,6129 16,26
D4 8,6658 2,1456 4,0389  5,39E-05 4,4603 12,8713 8,68
D5 34,5777 11,0815 31,9713 4,10E-219 32,4578 36,6975 2,85
D6 -7,0977 3,4638 -2,0491 0,040466289 -13,8871  -0,3083 38,56
D7 -3,2429 13,8853 -0,8347 0,403910831 -10,8584  4,3725 38,75
D8 38,0451 19,3746 -4,0583  4,96E-05  -56,4201 -19,6701 183,66
D9 39,1692 7,7376 -5,0622  4,18E-07  -54,3354  -24,0029 121,6
D10 4,5850 1,1417 4,0160  5,94E-05 2,3472 6,8228 2,54

The vehicle speedwas entered in the model as a part of the rolle@ggstance coefficient in
order to capture its contribution to tire temperatand rolling resistance. The vehicle speed
was however found to be very strongly correlateth&air resistance which causes problems
with multicollinearity between those variables. Téarelation, illustrated in Table 8, was
close to 96 % between the variablBis<vand AIR. The VIF-test provided values over 13
(See Table C2 in Appendix C). Also a test to reidtrce theTrgVvalues, this time as a
combined variable with the speed v, was done slagare known from earlier tests at VCC
to be slightly speed-dependent. But also this téiacaused multicollinearity problems.
Although the adj-R2-value was increased from 964d& 97.57% when the speed-variable
was entered into the model, it had to be removedrder to eliminate the multicollinearity
and thus improve the estimates of the regressioables.

Table 8.Correlation analysis for the variables includedtire model. The dummies are out of picture, thd tota
analysis can be found in Table B2 in Appendix B.

N*Time  N*v N*T  AIR AIR*sin(B)
N*Time 1,00

N*v -0,12 1,00
N*T 0,27 -0,04 1,00
AIR -0,13 0,96 -0,08 1,00

AIR*sin(8) -0,08 0,41 0,08 0,40 1,00
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5.4. Final regression model

The model that provides the highest valuadijtR without causing problems with
multicollinearity is described in Eq. 5.4.

F=NOC, T+C

Frr Far

(Time + (C, +C,, ., 3in(B)) CAIR+ Direc+ D1+...+ D11  (5.4)

Dummies

temp time

Theadj-R-value and ANOVA table from the regression analisilustrated in Table 9 and
the statistics for the regression coefficients lsarfiound in Table 10.

Table 9.Summary output and ANOVA-table
SUMMARY OUTPUT

Regression Statistics

R Square 0,961613
Adjusted R Square  0,961586
Standard Error 29,40146
Observations 21300
ANOVA
df SS MS F Significance F
Regression 15 4,61E+08 30726338 35544,56 0
Residual 21284 18398861 864,4457
Total 21299 4,79E+08

Table 10. Statistics for the regression coefficients

Coef SE Coef  tStat P-value Lower 95% Upper 95%  VIF
Intercept 159,0079 11,2462 127,5897 0 156,5652  161,4507
C _time -0,0001 0,0000 -16,5895 2,02E-61 -0,0001 0,0000 1,19
C_temp XXX 0,0000 -37,5534  6,70E-299 XXX XXX 1,36
cL 1,0130 0,0016 628,7740 0 1,0098 1,0161 1,27

CL beta  0,2463  0,0285 86536  534E:18 01906 03021 1,29

Direc 12,5329 10,4031 31,0884  1,49E-207 11,7427 13,3231 1
D1 59,9321 11,5067 39,7760 0 56,9788 62,8854 1,32
D2 40,7072 1,0521 38,6913 0 38,6450 42,7694 1,8
D3 -10,7814 10,9993 -10,7893 4,55E-27 -12,7401 -8,8228 1,98
D4 -4,5659 1,0187 -4,4822 7,43E-06 -6,5626 -2,5692 1,95
D5 31,1567 0,9661 32,2512  7,69E-223 29,2631 33,0503 2,27
D6 16,3041 0,9159 17,8012 2,24E-70 14,5088 18,0993 2,69
D7 23,1456 0,9516 24,3238  6,31E-129 21,2804 25,0107 2,32
D8 27,2177 11,0396 26,1820 9,62E-149 25,1801 29,2553 2,25
D9 14,5703 1,0074 14,4629 3,48E-47 12,5956 16,5449 2,06
D10 0,5802 0,9893 0,5864 0,557588865 -1,3590 2,5194 1,9

As can be seen in Table 9, the valué&dnificance Hs equal to zero which means that the
null hypothesis can be rejected and the model wbhae can be considered as significant.
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Also all regression coefficients in Table 10, excémr the dummy variableD10, are
significant with a p-value well below the limit &05. The VIF-values are low for all
coefficients and no high correlations were foundthe correlation analysis (Table B3 in
Appendix B).

5.5. Analysis and discussion of final regression rdel

An analysis of the regression coefficients andrégression model as a whole is presented
below.

5.5.1.Time-variable

The low p-value of th€;ine-coefficient tells that there is a significant tidependency in the
model. The negative sign of the coefficient medwad the road load decreases when the hour
of the day increase.

The residual plot for the variable in Fig. 12 shaWat the prerequisites from Section 3.6 are
met. The vertical bar of outliers to the left irgHi2 derives from one round of test with the
same car, which indicates that something may bengviwith that test. No errors could
however found in the test protocol and they wererdfore not removed in order to not
interfere with the natural variation.

Residual Plot for N*Time
200 '
= 100 - |
s 0+
2 100 A 00000 aun'rmn
200 s

N*Time

Fig. 12.The residual plot for the rolling resistance cosfnt
Time.

5.5.2. Ambient temperature

The coefficient related to the ambient temperatGgg,p, has been very stable for all different
models tested. It says that the rolling resistalem@ease when the temperature increase. That
agrees well with the theory that the tire pressanel thus the rolling resistance, is dependent
of the ambient temperature.

The prerequisites from Section 3.6 are met, acngrth the residual plot in Fig.13. Also in
this residual plot the outliers described in Settdb.1 can be seen.

Residual Plot for N*T
L 200
£ 100 1
2 0
gz 100 g 20000 0000 800000
2 200

N*T

Fig. 13.The residual plot for the ambient temperature times
the normal force.
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5.5.3. Air resistance

C_. has appeared relatively stable between the diffeneodels, but there was a slightly
difference when the dummy variables were introdugddch tells that it probably is
something more than just th€, [A-value that differentiates the cars in terms of air
resistance. This effect is even more evident whertomes to the cross-wind coefficient,
Ciloeta Which differ greatly between the model with dumnrgriables and the one without.
Based on that result, it can be assumed that ancéinenodel-specific variable is needed in

the equation, for example a ne®y, .. [A,-variable where the aré@andCp are measured
obliquely from the side.

In Fig.14 a slight departure of linearity can berséor values of AIR exceeding 400N, which
means vehicle speeds of 110 km/h and more. Thestefilay be due the lack of the vehicle

speed term in the rolling resistance coefficierdttivas removed in Section 5.3 due to
multicollinearity problems.

Residual Plot for AIR

Rexiduals

ATR
g. 14.Residual plot for the air resistance.

Fi

With the speed included in the rolling resistanoefficient, the residuals foAIR appeared
much better for high speeds but shows instead artlep of linearity for low speeds, which
is illustrated in Fig.15.

Residual Plot for AIR

Residuals

P

AlR

Fig. 15.Residual plot for the cross-wind effect with tle@icle
speed included in the rolling resistance coeffitien

The speed must however be removed in order to shlvesevere multicollinearity problem
that occurs otherwis@.herefore, the model should be used with some @aditir those high

speeds. For lower speeds the model fulfils the irements for linearity. The standard
deviation seems to decrease for high valuesAtR[sin(8) in Fig.16, but the number of

observations does also strongly decrease for isetkavalues oAIRIsIn(S )and it is
therefore not possible to determine if the standkndation actually is equal for all levels or
not.
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Residual Plot for 4IR *sin(ff)

Residnals

ATR*sin(fi)
Fig. 16.Residual plot for the cross-wind effect

5.5.4. Dummy variables

The value of the dummy variables for the differeat variants shows the average difference
in road load for the various variants relative tee treference vehicle, which in those
calculations is th®11. For example, a coast-down test witld& would in average yield a
road load 27N higher than for tiEL1 during the same boundary conditions. The values of
the coefficients are in good agreement with eartieasurements performed by VCC.
Interesting is that the coefficients for the twatgin wagonspP8 andD7 are quite similar and

so also the coefficients for the two seddd8,andD9. That strengthens the theory that a new
kind of aerodynamic variable is needed in ordeydtier calculate the cross-wind effects.

The dummy variabl®irec indicates that it is more preferable to drive leatds on the test
track than forwards. The road load is in averaghl hgher when driving forward. The
reason for this effect is far from obvious, espécisince earlier measurements show that the
test track is totally level. But the probable cafsethis is the fact that the cars were not
driven at the same part of the test track for the directions and that the asphalt structure
differs between those different parts. This is Hart discussed in Section 5.6.4. When
introducing this dummy variable in the model, thbep coefficients remained at the same
values which indicate that this dummy variable mmeasomething that is not cover earlier in
the model, such as the road surface influence @nalling resistance.

5.5.5 Total model

The final regression model providesauj-R-value at over 96% which means that it is less
than 4% of all road load variation that cannot kel@ned. Those 4% consists of both
measure errors and parameters that were not irctiadae model. Since the meteorological
measuring equipment is located at the side ofdabiettack, it could be as much as 1km
between the coasted car and the weather statioit isneence possible that the measured
wind is not the one that actually affects the taSection 5.3 it was shown that introducing
the vehicle speedin the rolling resistant coefficient increased #u-R-value to 97.6%.
Thus, there is potential of further improve the mldaly solving the multicollinearity in
another way than removing the correlated variable.

5.6. Stability of parameters with respect to subsetof data

The final regression model was used on three éiffiesubsets of data, one for each coast-
down expedition. The result is illustrated in ApgenD. The comparison is not entirely fair
since the various coast-down expeditions consistifferent numbers of test, but it gives an
indication of which parameters that appears stable.
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5-6-:|-C’(ime
The coefficient for theTime variable, Cine are negative for all expeditions, but varies

between-2[10°and-710".

5.6.2Ctemp

The ambient temperature coefficierfen, appears relatively stable for the different
expeditions.

5.6.3.C_

The C_ coefficient is very stable and varies just betw8e397 and 1.014. This is probably
due to that the AIR-variable mainly depends on wedicle speed, which is accurately
measured without much measuring faults.

5.6.3.Cbeta

This cross-wind parameter is rather stable fortthe coast-down expeditions performed in
2010; it varies between 0.278 and 0.243. But fer elpedition in 2011 th€ peirvalue is
only 0.124, about the half of the other two. Isignificant, but with a relatively small margin
compared to the two older expeditions; the p-vaduenly 0.04. That indicates a problem with
the wind direction data. It is known that the wigduge was turned 180 degrees at an
unknown date during the expedition in 2011 and dbhtaset was compensated for that by
adding 180 degrees to the wind direction for thidestes when the wind gauge most likely was
turned and that provided the highest valuadjtR.

It is also known that minor modification was dopettie weather station in the middle of the
expedition in 2011. By only using weather data betbat date, th€ pen iNStead increased to
0.49 and the p-value decreased significantly. Theoefficient was also slightly affected and
decreased to 1.006. Thus, this modification of weather station probably affected the
accuracy of the wind data.

5.6.4. Dummy variables

The direction dummy for the two expeditions in 2@b@h show that it is significantly
preferable to drive backwards on the test tracknef/the value is a bit unstable and vary
from 15,6N to 22,6N. The value for 2011 is instelghtly negative, -1.4N, and with a higher
p-value than for the other expeditions. Thoseltesgree well with the fact that at the
expeditions performed in 2010 the cars were noedrat the same part of the test track for
the different directions. When the cars were drigethe direction called forward, they pass a
larger section of the track with inferior asphalatity than when they are driven at the other
direction. The expedition in 2011 was performedwa different test tracks at APG and the
tests were performed at the same part of the tadke different directions. It is hence very
likely that the dummy variablBirec can be used as a measure for the road surfacerict

on the rolling resistance. In the report by Kangset al. (2011) it stated that differences in
road surface quality can influence the road loathi@ssame order as found by this dummy
variable.

The stability of the dummy variables for the cariaat is naturally hard to validate since they
are not generic for all expeditions.
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6. Conclusions
With a multiple regression analysis performed \tfith model

F =NXC,,, T +C,,. Tim& +(C, +C,,., 3in(B)) CAIR+ Direc+ D1+...+ D11

Dummies

temp

Frr Far

on a dataset containing coast-down results froreethindependent coast-down expeditions
with in total eleven different car-variants, ové&8 of the total variation of the road load was
explained. The values of the regression coeffisi@né presented in the table below.

Coef P-value Lower 95% Upper 95%
Intercept 159,0079 0 156,5652  161,4507
C_time -0,0001 2,02E-61 -0,0001 0,0000
C_temp XXX 6,70E-299 XXX XXX
CL 1,0130 0 1,0098 1,0161
L beta 02463  534E-18 01906 03021
Direc 12,5329 1,49E-207 11,7427 13,3231
D1 59,9321 0 56,9788 62,8854
D2 40,7072 0 38,6450 42,7694
D3 -10,7814 4,55E-27 -12,7401 -8,8228
D4 -4,5659 7,43E-06 -6,5626 -2,5692
D5 31,1567 7,69E-223 29,2631 33,0503
D6 16,3041 2,24E-70 14,5088 18,0993
D7 23,1456 6,31E-129 21,2804 25,0107
D8 27,2177  9,62E-149 25,1801 29,2553
D9 14,5703 3,48E-47 12,5956 16,5449
D10 0,5802 0,557588865 -1,3590 2,5194

From the above table it can be seen that all regnewvariables, except the dummy variable
D10, are significant for a confidence level at 95%e HEmalysis of the coefficients showed the
value ofCiine fluctuates between the different coast-down exjedi but that it is always
significantly negative. That means that the roaudl s lower when performing the coast-
down test later in the day, but exactly how muckdodiffer from various expeditions and

the actual cause for this cannot be establisheutivit present data. The coeffici€ym,, has
appeared stable for the different models and datasel the value can be seen as secured for
this model. The air resistance param€lehas also been stable around 1.01, but a small
departure of linearity for high vehicle speeds, kilh and more, can be seen in the residual
plot. This problem is probably due to the lacklw# tehicle speed term in the rolling
resistance coefficient that was removed due torsawmalticollinearity problems. Therefore,
the model should be used with some caution foretlmgh speeds. The other air resistance
parameter for the cross-wind effed@pen appears rather stable for two of the expeditions
with a value between 0.243 and 0.278, but for &isé éxpedition the value is about the half
and barely significant. The reason for this behawis probably those experiments that were
done with the wind gauge during the expedition thay have perturbed the wind direction
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data. It is hence not possible to determine alyosalre value o\ pets €ven if it most likely is
close to the value in the above table.

The value of the dummy variable coefficiéitec tells that it is in average 12N heavier to
drive in the direction called “Forward” on the téstck, compared to “Backward”. For the
expeditions performed in 2010 that value is evghéi, between 15,6N to 22,6N, but for the
last expedition in 2011 the coefficient is slightiggative and also barley significant. In 2010,
when the cars were driven at the direction calted/&rd, they pass a larger section of the
track with inferior asphalt quality than when theg driven at the other direction. The
expedition in 2011 was performed on two differesst tracks at APG and the tests were
performed at the same part of the track for thiebht directions. Thus, it can be considered
that the differences in road surface has a relgtiaege impact on the rolling resistance and
that it is important to run the coast-down test kehtbe asphalt quality is best.

The car specific dummies cover those differencésden the car variants that the model
does not handle, different gearboxes for exampies& are no absolute values but relative
values to the reference dumnB4.1. The differences between the variants are coresidas
reasonable according to the experience of prevests at VCC. When introducing those
dummy variables in the model, the air resistan@dfimients changed an@ peto I particular.
That indicates that another car specific aerodyonasiiable is needed in the model, probably
some kind of e&C, . [A,4.-variable where the area A and @re measured obliquely from

the side.

To sum up, the regression model meets the goaiohiaster thesis by explaining just over
96% of the total variation in the coast-down resaltd thus describing the true road load
within less than +/- 4%. The model can be usedtmalize the boundary conditions at a
coast-down expedition in order to investigate ifet¥iter the obtained results are representative
in relation to the circumstances or not. In thaywee number of test runs can be decreased
and the coast-down expedition may be made quickegper and with more precise and
reliable result, which also was the purpose of tiesis.

6.1. Future work

To make this model even better and more accutaeanulticollinearity problem must be
solved in another way. A vehicle speed variablterolling resistance parameter would
increase thadj-R>-value and probably also solve the problem in theeaistance variable for
high speeds.

To further understand the road surface impact erdtal road load, better and larger
numbers of measurements of the road surface ieedaadrder to analyze it in a regression
model, but most important is to make it possibledonect those results to the coast-down
results so the data can be used.

32



Bibliography

Ahern, J. L. (2004)nternational Gravity Formula(e).
http://geophysics.ou.edu/solid_earth/notes/potkigfidatm ( 12 March 2012).

Bauer, H. (1996 Automotive handbook Bosch, 4:th editi@tuttgart: Robert Bosch GmbH.

Ender, P. (1998%tatistical Tables.
http://www.philender.com/courses/tables/dist3.h{{@lApril 2012).

Grandin, U. (2012Dataanalys och hypotesprévning for statistikanvaedappsala:
Swedish Environmental Protection Agency.

Heisler, H. (2002Advanced vehicle technologyxford: Butterworth-Heinemann.
Hilmersson, M. (2010Loast down - Easy descriptidinternal Power Point at VCC]

Karlsson, R., Hammarstrom, U., Sérensen, H., Eoiks®.(2011Road surface influence on
rolling resistance Linkdping : VTI.

Kdrner, S.,Wahlgren, L. (200&tatistisk Dataanalyd.und: Studentlitteratur.

NationalencyklopedinMultikollinearitet
http://www.ne.se/multikollinearitet ( 24 April 20).2

Nielsen, L., Sandberg,T. (200&)new model for rolling resistance of pneumatiegir
Link6ping : Vehicular Systems, ISY.

Petterson, E. (2003)latematisk statistikGothenburg: Matematiklitteratur i Goteborg.
Prerau, D. (2006%eize the DaylightNew York: Basic Books.

ProfTDub.(2010)Calculating Variance Inflation Factors in Excel Z00Youtube]
http://www.youtube.com. (6 April 2012).

Regulations No, 83-05. (200B)missions - Light Duty VehiclesterRegs Ltd.

Shelquist, R. (2011An Introduction to Air Density and Density Altitu@alculations .
http://wahiduddin.net/calc/density_altitude.htm @abruary 2012).

Simon, L,J. (2004Petecting multicollinearity using variance inflatidactors.
http://online.stat.psu.edu/online/development/§tatb2multicollinearity/0O5multico_ vif.html
(14 April 2012).

Sundell, A. (2010%Guide: Regressionsdiagnostik — multikollinearitet.

http://spssakuten.wordpress.com/2010/10/16/guideessionsdiagnostik-%E2%80%93-
multikollinearitet/ (20 April 2012).

33



UCLA. (2007)UCLA: Academic Technology Services, Statisticalsotimg Group. .
http://www.ats.ucla.edu/stat (17 April 2012).

UKY. (2010)Multicollinearity in Logistic Regression.
http://www.uky.edu/ComputingCenter/SSTARS/MulticodarityinLogisticRegression.htm
(15 April 2012).

Umea University (2004Numeriska Metoder.
http://mwww8.cs.umu.se/kurser/TDBA68/HTO04/forelagkBtpdf (24 April 2012).

UNSW.(2011) Goodness Of Fit
http://web.maths.unsw.edu.au/~adelle/Garvan/As&minessOfFit.ntml ( 12 April 2012).

Zejda, M.(2008Astronomy & Astrophysics.

http://www.aanda.org/index.php?option=com_article@ess=standard&ltemid=129&url=/art
icles/aa/full/2008/37/aa8632-07/aa8632-07.rightl{&April 2012).

34



Appendix A - Calculation of air density

The air density can be written as:

pu = oo 278
R, T P

Where:

P = total air pressure [Pa]

R4 = specific gas constant for dry air = 287,05 [§f(K)]
T = temperature K]

py = pressure of water vapour (partial pressure) [Pa]

The vapour pressure,,can expressed as:

pv = prsat
Where:
¢ =relative humidity [%0]
Psat = Saturation vapour pressure [Pa]
To determinepss, a simplification of Herman Wobus polynontialan be used with good
accuracy, especially at higher air temperaturesreviibe saturation pressure becomes
significant for the density calculations. The satiom vapour pressure is then expressed as:

(Shelquist, 2011).

¢ ¥T¢
Pe.: = C, [10%"™ [mbar]

Where:
C0=6,1078
Cl=75
C2=237,3

1.Pset= 6.2078/(cO+T*(c1+T*(c2+T*(c3+T*(c4+T*(c5+T*(c6+Tc7+T*(c8+T*(c9))))))))))8



Appendix B — Correlation analyses

Table B1.Correlation analysis for the first regression modaluding dummy variables

N N*T  AIR ::;g) Direc D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
N 1,00
N*T | 0,41 1,00
AIR | 0,07 -0,08 1,00
:,17’;; ) 0,06 0,08 0,40 1,00
Direc | 0,00 0,00 -0,02 -0,03 1,00
D1 0,00 0,03 0,02 0,00 0,00 1,00
b2 |-0,06 -0,08 002 -0,04 0,00 -004 1,00
D3 |-0,42 -0,10 -0,03 -0,07 0,00 -0,05 -0,09 1,00
D4 |-0,33 -0,14 -0,02 -0,09 0,00 -0,05 -0,08 -0,09 1,00
D5 |-0,08 0,02 0,04 -0,07 0,00 -0,06 -0,10 -0,11 -0,11 1,00
D6 0,23 0,17 0,01 0,06 0,00 -0,07 -0,12 -0,13 -0,13 -0,15 1,00
D7 0,28 0,14 -0,02 0,03 0,00 -0,06 -0,10 -0,11 -0,11 -0,13 -0,16 1,00
D8 0,58 0,24 0,07 0,11 0,00 -0,05 -0,09 -0,10 -0,20 -0,21 -0,24 -0,12 1,00
D9 0,31 o004 0,00 -0,10 000 -0,05 -0,09 -0,10 -0,10 -0,11 -0,13 -0,12 -0,10 1,00
bio |-0,38 -0,23 -0,05 0,07 000 -0,05 -0,09 -0,10 -0,09 -0,11 -0,13 -0,21 -0,20 -0,20 1,00
pbi1 |-0,27 -0,17 -0,04 0,08 0,00 -0,05 -0,08 -0,09 -0,09 -0,10 -0,23 -0,21 -0,09 -0,09 -0,09 1,00
Table B2.Correlation analysis for the regression model vitib vehicle speed, v, included in the rolling
resistance coefficient.
N* AIR*
Time N*v N*T AIR sin(B) Direc D1 D2 D3 D4 D5 D6 D7 D8 D9 Di0 Dii
N*
Time | 1,00
N*v |-0,12 1,00
N*T | 0,27 -0,04 1,00
AIR |-0,13 0,96 -0,08 1,00
AIR*
sin(6) | -0,08 0,41 0,08 0,40 1,00
Direc | 0,00 0,00 0,00 -0,02 -0,03 1,00
D1 0,08 0,02 003 002 0,00 0,00 1,00
p2 |-0,01 -0,01 -008 0,02 -0,04 0,00 -004 1,00
p3 |o0,02 -007 -0,10 -0,03 -0,07 0,00 -0,05 -0,09 1,00
D4 0,06 -0,06 -0,14 -0,02 -0,09 0,00 -0,05 -0,08 -0,09 1,00
b5 |00 0,03 0,02 o004 -007 000 -0,06 -0,10 -0,11 -0,11 1,00
p6 |o0,07 003 0,17 o001 0,06 0,00 -0,07 -0,22 -0,23 -0,13 -0,15 1,00
b7 |-0,13 o,00 0,24 -002 0,03 0,00 -0,06 -0,10 -0,11 -0,11 -0,13 -0,16 1,00
ps8 |019 0,11 0,24 0,07 0,112 0,00 -0,05 -0,09 -0,20 -0,10 -0,11 -0,24 -0,12 1,00
p9 |-002 0,03 0,04 000 -0,20 0,00 -0,05 -0,09 -0,20 -0,10 -0,11 -0,13 -0,12 -0,10 1,00
pio |-0,12 -0,04 -0,23 -0,05 0,07 0,00 -0,05 -0,09 -0,10 -0,09 -0,11 -0,13 -0,11 -0,10 -0,10 1,00
pi1 |-0,16 -0,05 -0,17 -0,04 0,08 0,00 -0,05 -0,08 -0,09 -0,09 -0,10 -0,13 -0,11 -0,09 -0,09 -0,09 1,00




Table B3.Correlation analysis for the final regression model

AIR*

N*Time N*T AIR sin(8) Direc D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
N*Time 1,00
N*T 0,27 1,00
AIR -0,13 -0,08 1,00
AIR*
sin(8) -0,08 0,08 0,40 1,00
Direc 0,00 0,00 -0,02 -0,03 1,00
D1 0,08 0,03 0,02 0,00 0,00 1,00
D2 -0,01 -0,08 0,02 -0,04 0,00 -0,04 1,00
D3 0,02 -010 -0,03 -0,07 0,00 -0,05 -0,09 1,00
D4 0,06 -0,14 -0,02 -009 0,00 -0,05 -0,08 -0,09 1,00
D5 0,05 0,02 0,04 -0,07 0,00 -0,06 -0,10 -0,11 -0,11 1,00
D6 0,07 0,17 0,01 0,06 0,00 -0,07 -0,12 -0,13 -0,13 -0,15 1,00
D7 -0,13 0,14 -0,02 0,03 0,00 -0,06 -0,10 -0,11 -0,11 -0,13 -0,16 1,00
D8 0,19 0,24 0,07 0,11 o000 -0,05 -009 -0,10 -0,10 -0,11 -0,14 -0,12 1,00
D9 -0,02 0,04 0,00 -0,10 0,00 -0,05 -0,09 -0,10 -0,10 -0,11 -0,13 -0,12 -0,10 1,00
D10 -0,12 -0,23  -0,05 0,07 0,00 -0,05 -0,09 -0,10 -0,09 -0,11 -0,13 -0,11 -0,10 -0,10 1,00
D11 -0,16 -0,17 -0,04 0,08 0,00 -0,05 -0,08 -0,09 -0,09 -0,10 -0,13 -0,11 -0,09 -0,09 -0,09 1,00




Appendix C — Statistics for regression analyses

Table C1. Statistics for regression model without thg-Coefficient

Coef SE Coef t Stat P-value Lower 95% Upper 95% VIF

Intercept 153,2163 1,2040 127,2532 0 150,8563  155,5763

C_temp XXX 0,0000 -41,7044 0 XXX XXX 1,30
cL 1,0159 0,0016 630,3632 0 1,0127 1,0190 1,26
CL beta 0,2651 0,0286 9,2618  2,20E-20  0,2090 0,3213 1,29

‘Direc 12,5886 0,4057 31,0283 8,91E-207 11,7933 13,3838 1,00

D1 56,7089 1,5038 37,7115 2,51E-301 53,7614 59,6564 1,30
D2 39,1506 1,0546 37,1223 2,46E-292 37,0834 41,2178 1,79
D3 12,6739 0,9991 -12,6851 9,71E-37  -14,6322  -10,7155 1,95
D4 -7,0641 1,0139 -6,9669 3,33E-12  -9,0515  -5,0767 1,91
D5 29,1996 0,9650 30,2590 5,84E-197 27,3082 31,0911 2,24
D6 14,5534 0,9156 15,8942 1,47E-56 12,7587 16,3481 2,65
D7 23,3121 0,9576 24,3439 3,91E-129 21,4351 25,1891 2,32
D8 24,0887 1,0289 23,4128 1,03E-119 22,0720 26,1053 2,18
D9 13,5216 1,0119 13,3626 1,46E-40 11,5382 15,5050 2,05
D10 -0,0241 0,9950 -0,0242 0,980659  -1,9744 1,9262 1,90

Table C2.Statistics for regression model with the vehicleezbincluded in the rolling resistance coefficient

Coef  SE Coef tStat P-value Lower 95% Upper 95%  VIF
Intercept 104,5316 1,1055 94,5575 0 102,3647 106,6984
C_time 0,00005 0,0000 -20,6117 1,76293E-93 0,0000 0,0000 1,19
Cv 0,0005 0,0000 111,2299 0 0,0004 0,0005 13,10
C_temp XXX 0,0000 -50,7290 0 XXX XXX 1,35
CL 0,5784 0,0041 140,6794 0 0,5703 0,5865 13,01
CL_beta 0,0794 0,0227 3,5009 0,000464658 0,0350 0,1239 1,29
Direc 9,6131 0,3217 29,8853  2,839E-192 8,9826 10,2436 1,00
D1 60,3946 11,1982 50,4030 0 58,0460 62,7433 1,31
D2 44,5178 0,8374 53,1632 0 42,8765 46,1592 1,80
D3 -5,7242 0,7960 -7,1915 6,62048E-13 -7,2843 -4,1640 1,97
D4 3,0542 0,8130 3,7567 0,000172602 1,4607 4,6477 1,95
D5 30,7072 0,7683 39,9693 0 29,2013 32,2131 2,26
D6 11,1794 0,7298 15,3180 1,10851E-52 9,7488 12,6099 2,69
D7 18,3642 0,7579 24,2290 5,9445E-128 16,8786 19,8498 2,31
D8 18,0877 10,8308 21,7722 5,7995E-104 16,4593 19,7161 2,26
D9 6,8122 10,8042 8,4710 2,5886E-17 5,2360 8,3885 2,06
D10 -1,6993 0,7870 -2,1591 0,030852785  -3,2419 -0,1566 1,89




Appendix D — Regression analyses for each expeditio

Autumn 2011
Coef P-value Lower 95% Upper 95%
Intercept 198,6129 0 194,1488  203,0770
C_time -0,00007 9,73E-54 -0,00007 -0,00006
C_temp XXX 9,42E-82 XXX XXX
CL 1,0146 0 1,00930 1,0199
Cl_beta | 01233 004149376 00048  0,2430
Direc -1,4492  0,03231125  -2,7762 -0,1223
D1 29,4268 1,67E-85 26,5183 32,3352
D2 9,6115 2,66E-21 7,6287 11,5944
D3 -41,7326 0 -43,6071 -39,8580
D4 -35,2903 2,37E-264 -37,2077 -33,3730
Autumn 2010
Coef P-value Lower 95% Upper 95%
Intercept | 169,65588 0 166,38818 172,92358
C_time -0,00004 4,31E-17 -0,00004 -0,00003
C temp XXX 1,15E-171 XXX XXX
CL 0,9971 0 0,9930 1,0012
Clbeta | 02426 46512 01739 03113
Direc 22,6576 0 21,5904 23,7248
D6 1,6435 0,03533243 0,1129 3,1740
D7 8,7591 3,44E-26 7,1420 10,3762
D8 12,7037 1,23E-44 10,9361 14,4712
Spring 2010
Coef P-value Lower 95% Upper 95%
Intercept 146,2845 0 141,2321 151,3368
C_time -0,00002 2,32E-02  -0,00003 0,00000
C temp XXX 2,15E-72 XXX XXX
CL 1,0911 0 1,0821 1,1001
CL beta | 02781 178E-05 01512 ( 0,4049
Direc 15,5010 2,16E-55 13,6040 17,4160
D10 0,0703 0,94291 -1,8552 1,9959




