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Abstract
Keywords: auditory advisory, traffic information, behavior modeling, process min-
ing, data mining.

Driver safety continues to be hugely important to car manufacturers, governments
and drivers. Statistics from the CARE European Road Accident Database (2012)
reveal that there were 1,190,448 accidents and 34,817 fatalities in Europe during
2009.
Recently, researchers have pointed out that Advanced Driver Assistance Systems
(ADAS) should focus more on design for situational awareness to provide the driver
with attention supports. The studies carried out by M. Wang have proved that pro-
viding continuous visual traffic information increased drivers’ safety during highway
scenarios. In addition, drivers perceived the information as non-obtrusive. Studies
found that early warnings or normal driving information presentation reduced the
number and severity of crashes. Recent studies on auditory modality in vehicle use
has also shown great potential that auditory information may be more effective than
visual modality. Results of studies have proven that auditory information improve
safety in driving, shorten response time, enhanced accuracy and increase drivers’
situation awareness.
To verify the effects of the auditory advisory system, data with respect to the drivers’
behavior collected from experiments need to be analyzed and evaluated. Process
mining, i.e., extracting valuable, process-related information from the event logs,
complements existing approaches to Business Process Management (BPM). BPM
primarily focuses on analysis of process management and the organization of the
work from process automation and process analysis, and aims to improve operational
business processes, possibly without the use of new technologies. On the other hand,
BPM is often associated with software to manage, control and support operational
processes. As BPM heavily relies on process models, process mining plays a very
important role in raw data analysing. Process mining which focuses on processes
but uses the real data is bridging the gap between classical process model analysis
and date oriented analyses like data mining and machine learning.
In this case, related to the driving behaviour, data like steering wheel angles, ve-
locities, accelerations, reaction times, longitudinal/lateral position and etc. will
contribute to build model to illustrate how drivers will behave with and without the
auditory advisory system in different scenarios.
The objective of this thesis work is to develop and verify a 3D auditory advisory
traffic information system (3DATIS) based on design requirements generated from
previous studies and investigate the conceptual design for its safety value and pos-
sible positive/negative adaptive behavior of the drivers to 3D sound information
presentation in a car simulator.
This report presents how we design the 3DATIS system and illustrates how it influ-
ences drivers’ behavior.
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1
Introduction

In this chapter, the background of the thesis goal and the related works will be
introduced.

1.1 Background
Road transportation by use of vehicles enables nations as well as individuals to reap
the benefits of the movement of goods and people. The benefits could for example
be the access to better jobs, markets, health care and education. However, with an
increasing number of automobiles on the road, the traffic situation is becoming more
and more challenging for the drivers. According to the World Health Organization
(WHO), road traffic accidents caused approximately 1.25 million worldwide death
in 2015[1]. That is to say, in every minute, 3 people were killed in traffic accidents.
Predicted by WHO, in 2030, the road traffic injures will go up to rank 5 in the
list of leading causes of death from 2.2% to 3.6% which will exceed lung cancers,
tuberculosis, HIV, and diarrhoeal diseases[2].

Figure 1.1: Worldwide number of road traffic deaths

As illustrated in figure ??, the worldwide number of road traffic deaths was increased
in the past decade. However, during the same period the world population increased
by 5% [1]. Furthermore, from 2010 to 2013 the number of registered automobiles
increased by 16% worldwide[1]. This demonstrates that in the past years, the road
safety efforts have saved lives. Hence, driver safety continues to be hugely important
to car manufacturers, governments and drivers.

Active and passive safety systems are two primary safety systems which are used in
vehicle industry nowadays for reducing the effects of collisions. For instance, seat

1



1. Introduction

belts and airbags are two well known examples of passive safety systems which pro-
tect passengers to avoid injures after the collision happens. Active safety systems
on the other hand are used help drivers to understand the state of the automobile
to both avoid and minimise the effects of a crash.

Active systems today fall under the general term of Advanced Driver Assistance
Systems (ADAS). Increasing demand for ADAS is seeing new generations of cars
equipped with numerous sensor technologies powering the aforementioned systems.
In the past decades, the early ADAS designs only focused on the warning zone which
means the warning voice would give to the drivers less than 2.5 seconds. Such a
time will give the drivers shortest time to react to the emergency events in order to
avoid the collision happen, according to T.J. Triggs et. al [3].

However, unnecessary information presented to the driver can lead to high visual at-
tention and mental workload. Furthermore, a lot of the traffic information presented
from ADAS are warning signals that are usually activated in potentially dangerous
near-crash and pre-crash situations. The playing of a warning voice only make sense
when a crash is going to happen immediately. Also, the frequency of warning should
be rare as well. Otherwise, it could cause ‘cry wolf’ effect which makes the drivers
neglect the warning for the real potential risk and fail to follow the designed reaction.

Hence, in the next step, the ADAS system shifts to a ‘higher’ level which pro-
vides advisory information rather than warnings. Those particular forms of ADAS
are called Advisory Traffic Information Systems (ATIS), and they support decision
making on a longer time scale, i.e. on the tactical and strategically levels, as opposed
to on the operational level.

1.2 Advisory Traffic Information System (ATIS)
According to Summala[5], the aim of drivers is to drive in their comfort zone. While
the border of the comfort zone is surpassed and thus the safety margin violated,
the drivers will feel uncomfortable and try to adapt their behaviors to corrective
actions. To maintain comfortable driving, drivers require more information from
the surrounding traffic environment which makes it possible for them to handle the
potential risks. How can the surrounding information be sent to the drivers effec-
tively to support them in some ways that they feel comfortable?

The studies carried out by[8] have shown that providing continuous visual traffic
information increased drivers’ safety during highway scenarios. In addition, drivers
perceived the information as non-obtrusive. Studies found that early warnings or
normal driving information presentation reduced the number and severity of crashes
[6].

M.Wang et al. [6] pointed out that the visual traffic advisory system can help
make the behaviors of drivers ‘safer’ in comparison to a reference group in some
specific traffic scenarios. The number of collisions can also be reduced significantly.

2



1. Introduction

1.3 Hypothesis
Recent studies on auditory modality in vehicle applications has shown great po-
tential and illustrated that auditory information may be more effective than visual
modality. Additionally, the results of other studies have shown that auditory in-
formation improves safety in driving, shortens response time, increased accuracy
and improve the situational awareness of drivers[3][4][8]. Hence, in this thesis we
would like to find a way how to express and research the auditory information in
order to improve the behavior of the driver of the vehicle with respect to safety and
reliability.

1.4 The main research questions
The objective of this thesis work is to design and verify the 3D auditory advisory
traffic information system (3DATIS).The performance of the system will be inves-
tigated based on the safety value and the possible positive or negative adaptive
behaviors of the drivers when subjected to the 3D sound information. The driving
tests will be carried out in a car simulator.

The master thesis shall answer the following questions:

• How to design the 3DATIS?
1. How to play the voice?
2. What kind of melody should be used?

• How do 3DATIS influence driver’s behaviors?
1. What kind of data need to be collected?
2. How does the data have to be processed to be able to build from it a model of
the driving process?
3. How then to from that data build process models of different scenarios?

• In which stages will 3DATIS have a noticeable effect, either positive or nega-
tive?
1. What kind effect took place (Was the reaction faster? Did the car deviate from
the expected path?)
2. Why did the effect happen?
3. What is the best that can happen?

1.5 Process mining
To verify the effects of the auditory advisory system, data representing the behavior
of the drivers during the experiments need to be analyzed and evaluated. Process
mining, i.e extracting valuable, process-related information from the event logs,
complements existing approaches to Business Process Management (BPM)[8]. BPM

3



1. Introduction

primarily focuses on the analysis to process management and the organization of the
work from process automation and process analysis, and aims to improve operational
business processes, possibly without the use of new technologies. BPM is often
associated with software to manage, control and support operational processes. As
BPM heavily relies on process models, process mining plays a very important role in
raw data analyzing. Process mining, which instead focuses on the process and uses
the actual data, is bridges the gap between classical process model analysis and data
oriented analysis like data mining and machine learning. In this case, relating to the
driving behavior, data like steering wheel angles, velocities, accelerations, reaction
times, longitudinal/lateral position and etc. will contribute to build a model to
illustrate how drivers will behave with and without the auditory advisory system in
different scenarios. In Chapter 4, data mining will be introduced in detail.

4



2
Methods

2.1 Overview

The whole process of the thesis work is illustrated in the Figure 2.1

Figure 2.1: The process of the thesis work

During the experimental design all the details of the experiments and the processes
need to be verified. Additionally, all desired data, i.e. the data useful for verifying
the performance of the 3DATIS, need to be specified. What type of information,
how to display the information and how to eliminate the bias also need to be taken
into consideration. In terms of data analysis, methods need to be found in order to
process the data and conclude results relating to the main research questions defined
in the Section 1.4.

2.2 Experiment design

2.2.1 Time to Collision (TTC)

In ADAS, time to collision is a very essential element in vehicles’ human machine
interface (HMI) design. Time to Collision (TTC) has been verified to be a very
effective way to eliminate the severity of the vehicle collision and recognize critical
or normal behavior. As illustrated [9] in Figure 2.2.

5



2. Methods

Figure 2.2: The definition of Time to Collision

The definition of TTC is
TTC = L0

V1,0

where L0 is the distance between the back of the front vehicle and the front of the
rear vehicle, and V1,0 is the difference of the velocities between the two vehicles.

Some studies directly use TTC in the designing of active safety. M.Wang designed
an in-vehicle visual advisory system to call attention to aware the other road users’
locations and distances.

Figure 2.3: The interface of the visual advisory system

In M.Wang’s study, the warning interface was divided into three levels, illustrated
in the Figure 2.3. Table 2.1 demonstrates the meaning of the interface.

In Figure 2.3, to the left, is shown the user interface when there are three other
road users in close vicinities to the ego vehicle, one to the front right, one to the

6



2. Methods

Level TTC Distance to Collision
Informative(white) >6s & <9s <4.5m
Advisory(orange) 3s to 6s <3.5m

Critical(red) <3s <2.5m

Table 2.1: The explanation of M.Wang’s ATIS interface design

rear right, and one to the back. The white color signifies that the TTC for all the
road users is between 6 and 9 seconds. To the right in Figure 2.3 is shown the user
interface when there are two pedestrians, in close vicinity to the ego vehicle, one in
front, and one to the rear right in the blind spot. In addition, a road user is very
close to the ego vehicle on the immediate right, the red color signifying a TTC of
less than 3 seconds.

2.2.2 Design principle
Unlike the visual advisory system, the drivers who use auditory advisory system
will get the information passively, rather than observing the interface at regular
intervals. That is to say, the drivers themselves cannot control the flow of the in-
formation. This behavior of the warning system might leave drivers irritated and
annoyed.

Hence, based on the pilot experiments, the informative information feels a bit re-
dundant. Figure 2.4 illustrates how the system will play the alarm to the drivers
with respect to TTC

Figure 2.4: The design of the 3DATIS system

As can be seen in Figure 2.4, the threshold of the advisory is shortened between 2
seconds to 4 seconds, according to the decision from the scenario that held before
the experiment started, to reduce the mandatory input to the drivers which will
cause a "annoy feeling". On the other hand, the warning zone of TTC is set less

7



2. Methods

than 2 second. That is to say, when the event happened, the system will play two
different tones with respect to the two situations.

2.2.3 Design of Advisory Traffic Information System (3DATIS)
The simulator room is in the SAFER, Vehicle and Traffic Safety Centre at Chalmers
which is located in Lindholmen Science Park. The hardware equipment is shown in
Figure 2.5

Figure 2.5: The hardware setting

In this experiment, one PC running the STISIM Drive® software which which ex-
ports the real-time geographic (coordinates of road users and etc.) and physical
(speed, steering wheel angle, acceleration and etc.) data was used driver simulator.
A Logitech G25 Racing Wheel, including pedals and a gearbox was installed on the
frame. Another PC running MATLAB was used to recieve and process the data ob-
tained from the simulation environment. A 5.1-channel surround-sound system was
used to emit the auditory information in the 3DATIS prototype. The arrangement
of the loudspeakers and the seating positions of the participants were calibrated
according to Dolby 5.1 home theatre speaker guidelines. The speaker system used
was a Logitech model Z-5500. Sound-absorbing curtains were installed on three
sides of the test area to ensure a good surround effect. A HD projector was used to
project the simulated drive scenarios on the front wall. Two webcams were installed
to record what the drivers saw on the road, as well as and their reactions to the
incidents, e.g. steering, braking. This video data was synchronized with simulation
data to better allocate the starting point of the driver reactions with respect to any
incident reactions to the incidents.

STISIM

8



2. Methods

STISIM Drive® is a programmable driving simulator developed by STISIM Drive
company in the United States. As the experiment required the driver to operate
the vehicle in different traffic situations, an open, programmable, and expandable
virtual reality driving simulation software engine is essential. STISIM Drive® pro-
vides such a platform and enables researchers to edit the traffic scenarios to fit the
requirements.

Pure Data
Pure Data (Pd) is a visual programming language developed by Miller Puckette in
the 1990s for creating interactive computer music and multimedia works[7]. In this
experiment, the program will play the corresponding pitch and tone. Figure 2.6
illustrates a user interface of PureData. The activation of the different information
levels is based on two parameters: safety margin (SM), and TTC.

Figure 2.6: The user interface of Pure Data

In this study, the prototype of 3DATIS have been developed with the goal to provide
auditory advisory regarding the surrounding environment. The information contains
directional risk levels in relation to the participant’s own vehicle. The objective is to
develop a system capable of letting the driver know where any surrounding object is,
and how urgent corrective action is. From the experience during building the system
in MATLAB, the expected TTC threshold was too small to handle the situations.
Hence, in order to give the participants enough time to react to an emergency situ-
ation, the threshold of the TTC was raised to 3 to 6 seconds, and 0 to 3 seconds for
the advisory and critical zone respectively. Table 2.1 illustrates the said properties.

9



2. Methods

Information
level

Sound effects Time to Colli-
sion

Distance to
Collision

Advisory Original sound
sample

3s to 6s <3m

Critical Increased pitch
and frequency of
looping

<3s <2m

Table 2.2: Thresholds for warnings in terms of time to collision (seconds) or dis-
tance to collision (meters).

As can be seen in the Table 2.2, distance to collision as another criteria is added.
That because if two cars were driving in parallel, the relative speed will be zero and
thus TTC can be infinite. In this situation, TTC could not capture the decrease of
the distance in lateral position which still might cause the collisions.

The sound effect is another essential part in the 3DATIS design. Hence, choosing
a satisfying and a high reliability sound is a critical work. From the beginning, the
Swedish automotive OEM’s sound sample databases provided several sound samples
which had been tested with their global potential customers who gave high accep-
tances. However, those sounds were initially designed without critical level which
is to say, they did not have multi-frequency sound. Hence, a professional acoustic
designer from the automotive OEM, designed a hitting-bamboo-like sound which
consist of a sharp transient and a short tail. The short transient has many over-
tones which contributes to it make a multi-frequency sound. The acoustic tail is to
decrease the annoyance and give the comfort into the signal similar to the plucking
of a string. Hence, this sound has two characteristics which help the drivers in some
particular situations: pleasantness and directivity. This sound sample had been
tested by several sound experts and research groups to guarantee it was appropriate
for the excepted advisory use instead of just alerting.

In this experiment, the 3DATIS prototype was developed in a combination of Pure
Data and MATLAB. The Pure Data patch was designed to express the sound effects
which related to the auditory information levels as shown in the Table 2.2.

2.2.4 The traffic incident scenarios design
To express the real traffic situation in a good way in the simulator, the research team
of M.Wang had observed over 100 naturalistic driving videos. Thus, the scenarios
used in this experiment covered common critical situations from those videos.

10



2. Methods

(a) Redcab (b) Cutin

(c) Pedestrian (d) Intersection

(e) Overtake

Figure 2.7: Scenarios in the experiment

To represent as many as possible of the situations drivers face every day, two scenar-
ios of the five included pedestrians. On the other hand, three other scenarios were
added in order to decrease the learning effects between test drives under different
conditions (with and without 3DATIS) and those eight scenarios were randomized
for the participants. Five scenarios were going to be studied as illustrated above.

Red cab
In the scenario of Redcab, as illustrated in the Figure 2.7(a), two slow driving vehi-
cles b and c drive in the front and rear position respectively in the left lane. When
the ego vehicle approaches car b in a certain distance, car b will suddenly cut into
the right lane in front of the participant. In this scenario, the excepted safe reac-
tion from the participants is decelerating to avoid the collision with the front vehicle.
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Cutin
Figure 2.7(b) shows car b initially parked at the road shoulder suddenly start mov-
ing and cut out to participant’s lane and then cut back to the road shoulder. As car
c limits participant’s driveable region, changing lane for the participants may not
be a good choice. The considered safe reaction is to brake or steer slightly to the left.

Pedestrian
In this event, the road is narrowed to include only two lanes. A pedestrian will
suddenly walk out from the front of a car parking on the right road shoulder. The
pedestrian will not show up until the participants drive really close to the pedes-
trian, thus, the reaction time will be very short in this scenario. The considered safe
reaction in this scenario is to turn the steering wheel quickly as fast as possible.

Intersection
When participants restart the car after stopping before the traffic light, two pedes-
trians standing oppositely will start to cross the street (they will run the red light)
from one side to the other. Furthermore, the pedestrian on the right hand side will
be hidden behind the A pillar of the vehicle. In this scenario, the considered safe
approach is to brake and wait for the pedestrians to pass by.

Overtaking The car driving in front of the participant will be driving with signifi-
cantly lower speed, forcing an overtake to occur. While the driver has the attention
on the front vehicle, another vehicle will suddenly appear from behind in a very
high speed and overtake the participant with a relatively close distance as shown in
Figure 2.7(e). The considered safe approach is to turn back to the right lane after
overtaking the car b as quick as possible.

2.3 The overall procedure
Before the formal test, the participants need to fill in personal information like age,
gender, occupation, the time having driving licence etc. Then, the simulator will be
introduced to participants including the steering wheel, the transmission mode, the
screen and the pedals. After that, the description of the goal and procedure will be
given to the participants, as well as how the 3DATIS works, and the participants
are suggested to keep the velocity at 60 kilometers per hour, follow the traffic signs,
try to keep themselves in the right lane if there is no need to change the lane and so
on. Then, the participants will have a training section on the simulator to be able
to adapt the simulator like feeling the feedback of the steering wheel, getting used
to the positions of the pedals, and more importantly, to make sure the participants
have a correct understanding of the 3DATIS system. When the participants feel
properly prepared, the experiment is taken to the next step. In the formal testing,
the participants tested twice: once with the advisory from 3DATIS system and
once without. To eliminate the bias, both the order of the two tests and all the
scenarios which were introduced in Section 2.2.3 are randomized. Furthermore,
each test would freeze twice with stopping the program and black screen. When the
system was frozen, the participants were required to fill out two situational awareness
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questionnaires based on situation awareness global assessment techniques (SAGAT)
and situation awareness rating techniques[18]. Also, the freeze is randomized.

2.4 Participants’ performance measurement
To research how the participants will react to the emergence, it is needed to extract
the data from stage to stage from the raw data set. As the researchers would like to
know how the 3DATIS influences the drivers’ action, there are five important time
points needed to be found in the data set, as shown in Figure 2.8 (the reaction point
and emergency event start can change the order as their position depends on their
time), so that driving behaviors hided in two groups of data for 30 participants (one
with advisory from the 3DATIS and one without) can be researched comparatively.
More specifically, for each participant, the behaviors data from advisory voice on to
reaction point and reaction point to over take the objective car need to be extracted
from the raw data.

Figure 2.8: Timeline of key points.

Figure 2.9 shows an example of the data set collected from one participant.

Figure 2.9: An example of raw data.

In Figure 2.9, each column has it own meaning. For example, column A holds the
absolute time starting from switching on the simulator to the end and the samples
taken approximately eight times per seconds. Some important variables that will
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be used in the data analysis, are shown in Table 2.3: The Column V holds the

Column A Relative time
Column C Lateral acceleration
Column E Velocity
Column F Absolute distance
Column H Steering angle
Column I Gas pedal
Column J Deceleration
Column K Times of collisions
Column O Advisory indicator (0=off; 1=on)
Column V Longitudinal distance to the road user
Column W Lateral position to the road user
Column X Forward speed of the road user

Table 2.3: Thresholds for warnings in Terms of time to collision (seconds) or
distance to collision (meters).

value 999 and Column X keeps an certain initial value until the road user appear
in the drivers’ sight and that point can be the an index of the point the objective
car show up, and Column W holds the a certain initial value until the road user
starts behaving which forces the participants to have to do something to avoid the
collisions. And the changing point of Column W is also an index that we divide the
process into two basic periods, before the emergency and after the emergency.

Finding the reaction point is the most essential and complex part in finding these five
points. The drivers’ behaviors are essentially given by changes in three quantities:
Steering wheel angle, acceleration (gas pedal) and deceleration (brake pedal). For
example, participant 2’s Cutin scenario behavior is illustrated in Figure 2.9. The red
curve is the acceleration (increase means hit the gas pedal). The blue curve shows
the steering wheel angle (decrease means turning left and increase means turning
right). The yellow curve is the brake pedal (negative value when braking). Finally,
the purple line as the lateral distance of the car parked in the road shoulder, which
starts to move at the time indicated by the green vertical line. We define the valley
value of each curve is the action-ending point then move backward to find the peak
value as the action-start point. After that, by comparing the three action-start
points, we can find the earliest one to be the reaction point. As can be seen in
Figure 2.9, since there is no braking (Column J holds only 0’s), only the steering
wheel and gas pedal need to be compared. Obviously, the action of releasing gas
pedal is earlier than the turning the steering wheel. Hence, the reaction point of
this scenario is on the point where the red vertical line is, in Figure 2.10.
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Figure 2.10: An example of the behaviors curves from the collected data.

The precise measurements for each stage of each scenario are as follows:
1.Number of collisions: A direct indicator giving the number of collisions during
the driving scenario. Clearly, the objective of the 3DATIS system is to reduce this
number.
2. Response time: the TTC at the reaction point
3. Steering performance (degree):
The Mean Steering wheel angel is the absolute mean value of turning the steering
wheel to deal with the event, between the action-start and action-end points. Max-
imum Steering wheel angle (SA): The relative value between the maximum steering
wheel angle and minimum one which shows the range of the steering wheel angle.
4. Gas pedal performance (feet/second2)
Mean acceleration is the absolute mean value of acceleration due to the throttle
during the stage.
Maximum acceleration is the difference between maximum and minimum accelera-
tion during the stage. It gives the amplitude of the acceleration.
5. Brake pedal performance (feet/second2)
Mean deceleration is the absolute mean value of deceleration due to the brake pedal.
Maximum deceleration is the difference between the maximum and minimum decel-
eration during the stage and gives the amplitude of the deceleration.
6. Video recording: The behavior of the participants during the experiment were
recorded by two cameras which is used to research drivers’ behaviors. The video
can be matched with the raw data set, used to have a double check with drivers’
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reactions point.

After the time when the advisory sound is activated, the additional following mea-
surements are collected:
1. Standard deviation of lateral position (SDLP): how the participants control the
car moving horizontally, in order to research the lane-keeping ability of the partici-
pants (feet).
2. Standard deviation of the speed (SDV): the dispersion of the speed indicates how
aggressively the participant controls their vehicle. (feet/second)
3. Mean and standard deviation of longitudinal and lateral acceleration. For each
measurement, the statistical significance will also be checked. If the statistical sig-
nificance (ρ) is less than 0.05 (5%), it means the compared two groups of data are
from the same population [19], as a matter of good scientific practice [20]. In any
experiment or observation that involves drawing a sample from a population, there
is always the possibility that an observed effect would have occurred due to sampling
error alone [21][22].
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Results

In this chapter, the result of the raw data statistics will be illustrated. In this
chapter, only statistically significant results will be discussed. As the data was col-
lected from two groups of experiments (with and without 3DATIS), their significant
differences needs to be taken into consideration. Only when two groups have the
significant differences, one can consider the data from two experiments are indepen-
dent and no influence to each other, and in another word, those data are usable for
analysing.

3.1 Situational awareness assessment

3.1.1 SAGAT accuracy rate

Figure 3.1: Result of the SAGAT accuracy rate.

Situational awareness refers how the drivers aware of the traffic situations before
making the decision and SAGAT is to evaluate this respect with a objective test.
The results of SAGAT accuracy rate are shown in the Figure 3.1. As SAGAT ac-
curacy rate of scenario Intersection did not have the significant difference, only the
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rest four out of five groups of result have been illustrated. In each scenario, the set
’SA P’ means the accuracy that participants know other vehicle’s position whereas
’SA U’ illustrates the accuracy that participants know how to handle ego vehicle in
this situation.

In the Cutin, Pedestrian and Overtake cases, the situational awareness had increased
with the helping of 3DATIS, epically for the Pedestrian and Overtake. Whereas in
Red cab the things became inverse. According to the interview with the participants,
they claimed that in Red cab, they could not figure out which road user the indicate
sound refereed to, as there were two road user in the almost same direction.

3.1.2 SART score
The situational awareness rate techniques (SART) scores indicates drivers’ subjec-
tive rating regarding situational awareness in each scenario[18]. The results can be
seen in the Table 3.1.

Here UI (user interface) means the tests with 3DATIS, BASE means the tests with-
out 3DATIS. The lower the point, the higher situational awareness the participants
thought they get. The questions can be found in the Appendix 1. Here, BASE
means without the 3DATIS and UI (user interface) means with the help of 3DATIS

Scenario SART Question BASE Mean(STD) UI Mean(STD)
Pedestrian 1 6.11(0.78) 4.77(1.42)

2 6.33(0.78) 5.15(1.14)
3 4(2.24) 4(1.35)

Table 3.1: The result of SART score.

In the Cutin, Intersection, Redcab and Overtake, no statistical significance can be
found between two groups of tests (the statistical significance indicator ρalllargerthan0.05).Ontheotherhand, inthePedestrian, theparticipantsgavealowvaluetothecasewhere3DATISwasusedincomparisontothecasewithout3DATIS.

3.2 Drive performance measurement

3.2.1 Number of collisions
The number of collision is a direct indicator to illustrate the benefit that we want to
get from 3DATIS system. As illustrated in Figure 3.2, the collision rate was greatly
reduced in most cases when driving with the 3DATIS system. Especially for the
Intersection and Pedestrian, the number of collision were halved with the help of
3DATIS. The reason behind this result was that compared to the other scenarios,
the pedestrians in Intersection and Pedestrian initially hidden by the A pillar of
the car and a car parking at the road shoulder respectively. As the objects in both
scenarios are hidden in some sneaky places, the drivers cannot be aware of the sur-
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rounding situation until the advisory voice is triggered or see the objects moving.
However, there will be too few seconds left to react when the participants see the
objects, and that is why there are big contrasts when it comes to Intersection and
Pedestrian.

Figure 3.2: The result of collision number.

3.2.2 Drivers’ vehicle control inputs in response to each
event

Generally speaking, the acceleration represents the participants’ reaction to the
event and the standard deviations of which express the intensity of the action. The
higher the value, the more intense the action. Hence, it reflects the maneuverability
of the drivers to the event.

Scenario Measurements BASE Mean(STD) UI Mean(STD)

Cutin Maximum acceleration
Mean(acceleration)

8.53(3.74)
0.42(0.15)

5.59(2.61)
0.33(0.11)

Redcab Maximum acceleration
Mean(acceleration)

5.14(2.30)
0.34(0.13)

7.02(2.29)
0.48(0.18)

Pedestrian
Maximum acceleration
Mean(acceleration)

Maximum steering wheel

10.67(7.54)
0.73(0.50)
24.81(17.07)

17.56(9.07)
1.11(0.57)
51.62(55.23)

Table 3.2: The result of drivers’ vehicle control inputs.
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As can be seen in Table 3.2, both the maximum values and the mean values decreased
in Cutin. On the other hand, in Pedestrian, the three values illustrated in Table
3.2 were increased. Considering that the number of collisions decreased for both
scenarios, the decrease for Cutin and the increase for Pedestrian were both the right
behavior. Because in Cutin scenario, the participants would have a preparation
when they saw the car parking on the road shoulder (the object), and they would
finely adjust the car before the object moves. That means the participants reaction
became more accurate and stable. However, in Pedestrian they know they need
bigger reaction to avoid collision under the help of 3DATIS as the situation was
more urgent.

3.2.3 TTC at the reaction point
TTC at the reaction point will decide when and how much time the drivers have
left to handle the emergency driving situation. The results are shown in Table 3.3.

Scenario BASE Mean BASE STD UI Mean UI STD
Cutin 2.27 0.74 3.32 1.75
Redcab 3.43 1.02 6.93 4.74

Intersection 4.01 1.73 6.67 3.29
Pedestrian 3.06 1.41 5.48 2.80
Overtake 0.57 0.56 2.80 1.14

Table 3.3: TTC at the reaction point.

Table 3.3 illustrated that with the help of 3DATIS, the TTC at reaction point of
all scenarios got improved approximately two to three second. That is to say, the
drivers brought their reaction forward so that they could have two or three seconds
more to deal with the emergency.

3.2.4 The result of P1 (from advisory voice on to reachtion
point)

As presented in Section 2.4, the measurements illustrated by scenarios as followed
and the significant difference only shown in P1 (from advisory voice on to reaction
point). The abbreviation:
STD: standard deviation
M: mean
Acc: acceleration
Longi:longitudinal
Pos: position
Ang: angle

In Cutin, all the three measurements decreased which fits the conclusion from Sec-
tion 3.2.2, participants’ behaviour became more accurate and stable with the help
of 3DATIS. However, the standard deviation of steering wheel angle increased. This
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Cutin Measurements BASE Mean BASE STD UI Mean UI STD
Lateral_Acc_STD 0.22 0.19 0.08 0.04
Longi_Acc_STD 0.10 0.12 0.05 0.05

Steering_Ang_STD 1.17 0.32 0.96 0.37

Table 3.4: P1 of Cutin.

means before the emergency event start, participants had already tried to adjust
their lateral positions by using steering wheel.

Redcab Measurements BASE Mean BASE STD UI Mean UI STD
Longi_Pos_M 7.39 0.39 7.08 0.45

Longi_Pos_STD 0.17 0.10 0.11 0.07

Table 3.5: P1 of Redcab.

Intersection Measurements BASE Mean BASE STD UI Mean UI STD
Lateral_Acc_M 0.01 0.02 0.03 0.05

Lateral_Acc_STD 0.05 0.04 0.10 0.08
Longi_Acc_M 1.51 1.53 0.72 1.53

Steering_Ang_STD 0.60 0.23 1.23 0.75

Table 3.6: P1 of Intersection

As can be seen in Table 3.6, the mean and standard deviation of lateral acceleration
increased as well as the standard deviation of steering wheel angle. This means the
participants were given the awareness when using 3DATIS and they controlled their
steering wheel in order to avoid the collisions. On the other hand, the decrease of
longitudinal acceleration also shows that they knew they should drive safer in this
situation.

3.3 Drivers’ subjective feedback to 3DATIS
To measure the overall acceptance and the two sub-measures, usefulness and satisfy-
ing, the mean values of nine items on the two acceptance subscales of all participants
were calculated. Considering the scale starts at -2, the usefulness ratings are high,
especially on item 1,7 and 9. The questionnaire is shown in the Appendix, Ques-
tionnaire Part3

Relatively, most scores are neutral or negative which indicate that the auditory
information might be irritating during the drive. All rates regarding the satisfaction
score are lower than the rating for usefulness. We performed a paired t-test to eval-
uate the participants’ perception on usefulness and satisfaction. The results showed
that the usefulness rate was significantly higher than satisfaction.
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As shown in Table 3.7, usefulness score was calculated from item 1,3,5,7 and 9,
meanwhile satisfying score was calculated from item 2,4,6 and 8.

Item Number Mean STD χ2

1. Useful 30 0.97 0.78 24.00
2. Pleasant 30 0.10 0.92 15.00
3. Good 30 0.37 0.93 18.00
4. Nice 30 -0.40 1.04 10.66

5. Effective 30 0.43 0.94 25.66
6. Likable 30 -0.40 0.89 20.00
7. Assisting 30 0.87 0.94 25.00
8. Desirable 30 0.23 1.04 12.33

9. Raising alertness 30 1.13 0.73 33.33
Usefulness 30 0.77 0.77 29.67
Satisfying 30 -0.18 0.91 20.67

Table 3.7: P1 of Intersection

3.4 Discussion
The results of SAGAT questionnaire shows that the 3DATIS system helps the
drivers gain awareness of the surrounding environment. Especially for the Pedestrian
and Overtake test cases, the environmental understanding is significantly increased.
These two scenarios have a commonality: both of them have a disadvantage to the
participant that the objects are all hidden in blind spots so that the participants
will not see them until in close range. So the fact is that the systems give the par-
ticipants understanding of the surrounding environment even though they cannot
see the objects. On the other hand, participants’ understanding to the Redcab de-
creased. The reason behind this was explained in the Section 3.1.1.

In Cutin, with the help of 3DATIS, participants’ mean and maximum accelera-
tion shows a decrease tendency which means the action became more accurate and
stable. It shows the participants had prepared for the event.

It is interesting to see that in Redcab, the participants’ performance was oppo-
site to other scenarios. The maximum and mean acceleration at the reaction point
mentioned in Section 3.2.2 are significantly increased, compared to the BASE. It
means the participants were not prepared and performed in a panic. The mecha-
nism behind this is probably that there are two objects in the scenario, and one
of them is the disturbance and used to interfere with participants’ judgment. It
resulted in that when the voice was triggered, the participants could not distinguish
which object is the voice referred to and thus causing the drop in driver performance.
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In Intersection, besides the TTC at the reaction point, there is no obvious differ-
ence can be detected from the measurements. That is to say, except that participant
would behave earlier, the reactions including turning the steering wheel, releasing
the gas pedal and brake performance were more or less the same. It is also in-
teresting to notice that although the object of Cutin and Intersection behave in a
similar way, i.e. both of them are suddenly moving from right side to the left side,
participants reacted differently for the two cases. Drivers were more prone to decel-
erate in the Intersection, whereas in the Cutin the participants more often bypassed
the obstacles. As Swedish drivers are used to stopping for pedestrians crossing the
road, the result might be different for drivers from other parts of the world, where
stopping for pedestrians is not so common.

In Pedestrian, the road narrowed down to a single lane and the object (a pedes-
trian) walks unexpectedly from behind a car parked at the right side of the road.
Hence, the participants cannot see the object beforehand, unlike the other scenarios.
Therefore, in this particular case, participants need to quickly release the gas pedal
and turn the steering wheel to avoid collision, which means that if the standard
deviations of these quantities is large, the indicates a "good" reaction. When double
checking the video recorded from the live experiments, it is also noticed that without
the aid of the 3DATIS, a significant proportion of the participants fully applies the
brakes when seeing the pedestrian[18], indicating that the drivers were uninformed
of the presence of the obstacle.

In Overtake, the obstacle approaches from the rear at a relatively high speed of
100 km/h[18]. Hence, the advisory sound would directly trigger at warning level (as
it is decided by TTC) and therefore there would be only approximately two seconds
left for the participant to take action to avoid the collision. From the observation of
the videos, we noticed that when the advisory voice was triggered, most participants
started to regulate the steering wheel or the gas pedal immediately.
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(a) Redcab (b) Cutin

(c) Pedestrian (d) Intersection

(e) Overtake

Figure 3.3: Scenarios in the experiment
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Process mining

When talking about the data, one can always ask four questions in any situations:

1. What happened? e.g. The ego vehicle deviate from the designed path.
2. Why did it happen?e.g. Why people deviate from the designed path?
3. What will happen? i.e. What can we learn from historic information to make
predictions about what is happening at this point.
4. What is the best that can happen? i.e. We want to use analytics to recom-
mend certain things that’ll improve the situation.

In Chapter 3, we explained "What happened?" and "Why did it happen?", but still,
we cannot directly answer the third and fourth question. Hence, we need to find a
special way to analyse those data to get answers. Thinking that all the behaviors
to the emergency, including turning the steering wheel, hitting the brake pedal, re-
leasing the gas pedal etc. are actually a continuous process, if we can find a way to
build the process model, maybe we can answer the last two questions.

Wil M.P. van der Aalst [8] introduced an algorithm to discover the process model
in Petri Net. Verwer et al. [10] introduced a timed syntactic pattern recognition
to solve the limitation that Real-time automata has never actually been applied to
real data. Salehi et al. [11] created a machine-learning algorithm to identify a car
and its driver from detailed driving data.

From the reference above, one can make a prototype in the mind, a discrete event
model related to drivers’ behaviors and time may be built by mining the raw driv-
ing data. Hence, we will try to use the process mining methods to analyse driving
behaviors.

To verify the effects of the auditory advisory system, data with respect to the driver
behaviors collected from the experiments need to be analyzed and evaluated. Pro-
cess mining, i.e, extracting valuable, process-related information from the event
logs, complements existing approaches to Business Process Management (BPM) [8].
BPM primarily focuses on the analysis of process management and the organization
of the work from process automation and process analysis, and aims to improve op-
erational business processes, possibly without the use of new technologies. On the
other hand, BPM is often associated with software to manage, control and support
operational processes. As BPM heavily relies on process models, process mining
plays a very important role in raw data analyzing. Process mining focuses on the
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process but utilizes the actual data, are bridges the gap between classical process
model analysis and date oriented analysis like data mining and machine learning.

In this case, related to the driving behavior, data like steering wheel angles, ve-
locities, accelerations, reaction times, longitudinal/lateral position, will contribute
to build a model to illustrate how drivers behave with and without the auditory
advisory system in different scenarios.

Process mining is a relatively new research discipline that sits between machine
learning and data mining on the one hand and process modeling and analysis on
the other hand [11]. The idea of process mining is to discover, monitor and improve
real processes (i.e not assumed processes) by extracting knowledge from event logs
readily available in today’s systems [11]. Hence, we can consider the process mining
as a "super glue" between data and process as well as the fusion between business
decision makers and IT people.

Figure 4.1 gives an overview in a sense. It illustrates that process mining connects
BPM and classical data in this pattern.

Figure 4.1: The relationship connecting with data mining and BPM.

Figure 4.1 illustrates that process mining establishes links between the actual pro-
cesses and their data on the one hand and process models on the other hand. As
shown in Figure 4.2, the "World" represent the different types of raw data. Most
information systems store information in unstructured form. For example, raw data
is sometimes scattered over many tables. In such cases, event data exist but some
efforts are needed to extract them.Thus by using a software system (in a company, it
can be provided by the IT department according to the requirements from the data
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analysts), the event log which records the necessary information in some specific for-
mat can be gotten. Then, by using some algorithm (here we will use Alpha-algorithm
[8]), the process model can be discovered to analyse the "World", i.e to answer the
questions illustrated at the beginning of this chapter.

Figure 4.2: The steps and relationships in process mining. [8]

4.1 From raw data to event logs

After finishing the experiment, the raw data set includes all information from the
simulator including the time, velocity, steering angle, brake pedal, gas pedal, ac-
celeration, distances to road users, TTC to the road users, road users’ speed and
etc.. Those data exist in the columns of the raw data set. How can we extract the
event logs from the raw data to fit the requirements of discovering the process model?

For the row data, we have three main columns of data need to be extracted i.e.the
data from the steering angle, gas pedal and brake pedal. We need to compare the
order of each reaction in the data stream, as there can be not just one action for each
stream. However, to transform the row data to the event log will become sophisti-
cated because there are much noises in the columns. There are many reasons that
can cause those shakes or tingles, like muscle control and driving habits. Hence, we
can consider these “useless behaviors” as noise superimposed on the “right behav-
iors”. The task is thus to separate the noise from the actual driver behavior.

The spectral subtraction method [24] is a simple and effective method for noise
reduction. As the noisy is uncorrelated, and there are no connection with any oc-
curring incident, the spectral subtraction will be a good choice to remove the noise
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from the non-noisy signal.

We will not introduce the specific theory of spectral subtraction in this thesis, if
you are interested in spectral subtraction, you can go to http://dsp-book.narod.
ru/304.pdf to have a check, and the code in Matlab is also illustrated as following.
One example of spectral subtraction from the real test is shown as in Figure 4.3

func t i on [ P_gas ] = spec t r a l_subt ra c t i on ( gas )
y = gas ;
N_gas = length (y ) ; % the l ength o f the frame
max_gas = max(y ) ;

%add Gauss no i s e
noise_est imated = random ( ’ norm ’ , 0 , 0 .1∗max_gas , [N, 1 ] ) ;
f f t_gas = f f t ( y ) ;
f f t_gas = f f t ( no ise_est imated ) ;
E_noisegas = sum( abs ( f f t_gas ) ) / N_gas ;
mag_gas = abs ( f f t_gas ) ;
phase_gas = angle ( f f t_gas ) ; % Keep the phase in fomrat ion
mag_g = mag_gas − E_noisegas ;
mag_g(mag_g<0)=0;

% r e s t o r e
f f t_gas = mag_g . ∗ exp (1 i . ∗ phase_gas ) ;
g = i f f t ( f f t_gas ) ;
P_gas = r e a l ( g ) ;
end

Figure 4.3: The original data stream(red) and spectral subtraction result(blue).

In Figure 4.3, the red curve is a plot from the raw steering angle data. As can
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be seen, there is much noise in the data, making it hard to to distinguish the
behavior from it. After applying the spectral subtraction, as illustrated in the blue
curve in the Figure 4.3, the noise is filtered out and the curve becomes smoother.
Therefore, general behaviors can more easily be recognized. As Figure 4.4 shows,
the behaviors are as follows:: 1. Turn left, 2. Turn right, 3. Turn left, 4. Turn
right. Other reactions, such as the usage of accelerator and brake pedals, can also
be discovered in a similar fashion. Then, comparing the time when each reaction
happen, a sequence of behavior can be found, an example is shown in Figure 4.5.

Figure 4.4: The trend of steering wheel angle.
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4.2 Event logs
Figure 4.5 shows a standard event log sheet used in process mining. Furthermore,
the event logs shown in Figure 4.5 are generated using data collected from the driving
experiments. This figure shows that there are three fundamental variables, as can
be seen by the respective columns.

4.2.1 An example of the event log

Figure 4.5: An example of the event log of Cutin.

In Figure 4.5, a single row does not mean a complete process instance, just an event.
Since a data set used in process mining consists several events, these data are often
referred to as an event log. In an event log:

• Each event reflects to a behavior that was implemented in the whole process.
• Multiple events are linked together in a process instance or case.
• Logically, each case forms a sequence of events—ordered by their timestamp[8].

As seen in the Figure 4.5, one case ID is constructed by a complete series of han-
dling behaviors during the scenario Cutin. Thus, the number of the drivers can be
the case ID. There are several activities occurring for each case and each of them
corresponds to a driving behavior.

• Gas off: releasing the gas pedal.
• Accelerate: hitting the gas pedal.
• Brake: hitting the brake pedal.
• Turn left: turning the steering wheel left.
• Turn right: turning the steering angle right.
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• Event on: The road users move the car/start to cross the road suddenly.

The activities above are assumed reasonable for the process mining. Furthermore,
the time-stamps columns show the handling time of each action clearly. The times-
tamps give additional information when investigating the driver behavior patterns.
For example, by comparing the mean value of each action’s time and frequency, the
statistically most likely driving behavior, based on the choices of all participants,
can be determined for each scenario.

From the data sample in Figure 4.5, we can see why even doing simple process
related analyses, for example count the frequency of each behaviors, or the time
between activities, is no way to use standard tools such as Excel. Process instances
are scattered over multiple rows in a spreadsheet and can only be linked by adopting
a process-oriented meta model. For example, if we look at the rows 6-11 in Figure
4.5, you can see one process(Person 2) that starts with the status Registered on 1st
February 2016, 00:00 (a relative value), moves on to 00:00:03 where we can see the
complete action last for three seconds.

There are three types of process mining that can use event logs as illustrated in
the Figure 4.2, discovery, conformance, enhancement. The first one is discovery.
The discovery technique which we will use in this thesis takes an event log and
thus creates the process model without using any other types of data. An example
is the Alpha-algorithm[13] which will be introduced in the coming sections. This
algorithm uses the event log to create a Petri net to describe the behavior. For
example, by using the Alpha-algorithm, the Petri net can be directly built without
using redundant information.

4.2.2 Case ID

A case ID is a defined instance of an action/process. The precise meaning of a case
depends on in which stage in the process the case is found. For example:

• In a hospital, booking a doctor is one case.
• In a purchasing process, the case could be the writing of a purchase order.
• In a police station, recording reporters’ information would be a case

For every event/activity, one need to identify which case it belongs to so that the
process mining algorithm can distinguish between the different executions.

The case ID can determine the scope of the process and where the process starts
and ends respectively. In fact, the case ID can be constructed in more than one way.
An example could be the following:

If professors from Division of Systems and Control would like to buy some stuff
in their offices, like printers, computers or some new chairs and etc., then the pur-
chasing process can be set up in two approaches:
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1. One can regard the processes of a specific lead through the purchasing funnel as
the process you would like to analyze. Thus the product lead number will be the
case ID. E.g. computer 1, chair 2 and etc..
2. On the other hand, one can consider the whole purchasing process for a professor
as the process scope and thus, professors’ names can be the case ID.

The two alternatives are all logical and reasonable based on the goal of purchas-
ing appliances and what kind of reault that people want to get from the data.

Rule #1: The case ID determines the scope of the process[17].

4.2.3 Activity

An activity constructs one step in the process. For example, if a professor wants to
buy a new computer for his office, then the process may contain the following activi-
ties: Writing report, Sending to the secretary, Approved by the financial department,
Request rework, Ordering from the shop, Refuse etc.. Some of the activities might
be executed more than once. For instance in the example above, the action “Writing
report” might be executed every time when “Request rework” occurred.

All the activities in the process or the different procedures should be named. If
one has only one activity for each case, then the event log is not specific enough.
The events can also include outlier actions not only just the information that at-
tracts people. Of course, it is also necessary to “clean” those outliers before the
analysis to access a relatively better conclusion.

Rule #2: The activity name determines the level of detail for the process steps[17].

4.2.4 Timestamp

The third mandatory data is the timestamp which displays the time when each ac-
tivity occurs. It is essential for both building the sequence for the activities and
investigating the timing characters of each case. It is all right to just have a start
time, however, if an event log also includes a complete time column, like illustrates
in Figure 4.5, the time of each activity period can be found. This is also called
execution time or activity handling time[17]. The activity period helps one to di-
vide the inactive waiting time from the active one and this is one of the advantages,
compared to having only a start time column.

Rule #3: If you don’t have a sequentialized log file, you need timestamps to
determine the order of the activities in your process[17].

32



4. Process mining

4.2.5 Other variables
Additional variables can also be added in the event log to analyze other character-
istics or properties of the process. The suitable additional variables depend on the
domain of the process. As this thesis will not use other variables to analyse the
behavior of the drivers, additional attributes will not be introduced. Please see [17]
for more detail on this.

4.3 Petri net
As Petri nets are foundational process notation and oldest and best investigated
process modeling language, this thesis will use the Petri net to represent the process
model. Even if the graphical notation is simple, there are still many analysis tech-
niques that can be used to analyze the Petri nets[?][15][16]. A Petri net describes
an "action flow", and consists of places and transitions. The network structure is
constant, however, supervised by the firing rule, tokens can flow through the “pro-
cess stream”. The state of a Petri net is determined by the distribution of tokens
over the places.

Definition (Petri net): A Petri net N = (P, T, F ) where P is a finite set of places,
T is a finite set of transitions such that P ∩T = 0, and F ⊆ (P ×T )∪(T ×P )is a set
of directed arcs, called the flow relation. A marked Petri net is a pair (N,M), where
N = (P, T, F ) is a Petri net and where M ∈ B(P ) is a multi-set over P denoting the
marking of the net. The set of all marked Petri nets is denoted N .

Figure 4.6: An example of Petri net, traffic light.
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Here we will use an elementary example to illustrate the Petri nets. A traffic light
is a very simple process consisting of three states which is obviously the red, yellow
and green light, as shown in Figure 4.6.

The process model for the traffic light has the states red, green and yellow as well
as the transitions to shift from one state to another. Here we can see the Petri net
is static which means that the process is fully described and the net will not be
subject to change. However in the Petri nets there are so called tokens, of which
there can be several. The tokens can move from one place to another place. In this
case, when the transition R2G fires, the token will be moved from the state red to
the state green. Then, the transition G2Y can fire moving the token from green to
yellow. Finally, the token will be moved from the yellow to the red as a result of
firing Y2R.
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4.4 Process discovery: Alpha-algorithm

Process discovery is the main job of the process mining task. From an event log,
a process model can be built , capturing the behaviors found in the event logs.
This section will describe the method mentioned in the previous section, i.e. the
alpha-algorithm.

Figure 4.7: A sketch map explaining Play-in, Play-out and Replay. Picture from
[8].

One of the most essential elements of process mining is to build a strong connec-
tion between a process model and extracting the “reality” from an event log [8],
according to Van der Aalst et al. [8], to Play-in, Play-out, and Replay. The process
discovery corresponds to the Play-in. For Play-in, opposite to the Play-out, the
actions behind the event logs will be regarded as inputs and the aim of which is to
build a model. The alpha-algorithm is such an example of Play-in technique.

Definition (Process discovery):A process discovery algorithm is a function that
maps an event log onto a process model such that the model is “representative” for
the behavior seen in the event log[8]. The key step is to find such a model.
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4.4.1 From an example to access to Alpha-algorithm
As a function, we know that there should be input and output of the Alpha-
algorithm. We know that the output of the alpha-algorithm is the process model(it
can be a Petri net, BPMN model etc.), so what kind of input does the Alpha-
algorithm use? When we apply the Alpha-algorithm and we just focus on control
flow like the Activity column in the Figure 5.4, we ignore the resources and other
data elements, as well as the actual timestamps of the events taking place. The
ordering is the only thing that need to be taken into consideration. Hence, we
can convert such an event log to a multiset of traces (because the same trace can
appear more than one time) and for each trace there is a sequence of the names
corresponding to the activities. Here is an abstract example:

L1 = [< a, b, c, d >3, < a, c, b, d >2, < a, e, d >]

Here, we can see the log L1 contains six traces (the index on the right corner mean
the number of each order) and they can be considered as six different cases. They
are modeled as a sequence of activity names. So the sequence a, b, c, d were exe-
cuted three times (there are three traces of that type).

The goal of the alpha-algorithm is to capture L1 to a process model automatically,
no matter what kind of way to represent it e.g. BPMN, Petri Net etc.. Here, we
will start the Alpha-algorithm with the ordering relations without considering the
frequency or some other attributes. In this case, we are only interested in finding in
the log.

As we can see in L1, the sequence < a, b, c, d >3 represents that the event/be-
havior a is followed by b, b is followed by c and c is followed by d. This relationship
is called direct succession. The relations between the event are listed as followed:

• Direct succession: x > y, iff for some case x is directly followed by y, thus for
L1, the following relationships can be given:

a > b

a > c

a > e

b > c

b > d

c > b

c > d

e > d

• Causality: x → y, iff x > y and not y > x. Hence we can get the following
relations:

a→ b
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a→ c

a→ e

b→ d

c→ d

e→ d

• Parallel: x||y, iff x > y and y > x. In this case, the direct succession relation
holds in both directions:

b||c
c||b

• Choice: x#y, iff not x > y and not y > x, which means x is never followed by y
and vice versa:

b#e
e#b
c#e
a#d

The relations mentioned above are used to learn patterns in the process. For exam-
ple, if we see a is followed by b but b is never followed by a, Figure 4.8 can be used
to model this behavior.

Figure 4.8: Causality patten: a→ b.

If we find that a is sometimes followed by b, but never the other way around and
at the same time, a is sometimes followed by c, but c is never followed by a, and b
and c never followed one another, we can learn the XOR-split pattern as followed.

Figure 4.9: XOR-joint pattern: a→ b, a→ c, and b#c.
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The corresponding part to the XOR-split is the XOR-join illustrated as follows:

Figure 4.10: XOR-split pattern: b→ d, c→ d, and b#c.

If we look at the concurrency, a is followed by b and c but b and c are never followed
by a, we can learn an AND-split pattern:

Figure 4.11: AND-split pattern: a→ b, a→ c, and b||c.

And the corresponding AND-join pattern:

Figure 4.12: AND-join pattern: b→ a, c→ a, and b||c.
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Hence, based on these patterns, a Petri net can be automatically constructed from
Table 4.1 as in Figure 4.13:

a > b
a > c
a > e
b > c
b > d
c > b
c > d
e > d

a→ b
a→ c
a→ e
b→ d
c→ d
e→ d

b||c
c||b

b#e
e#b
c#e
a#d

Table 4.1: The relationships extracted from L1.

Figure 4.13: The result produced by the Alpha-algorithm from L1.

This example shows the basic idea of how can we transfer the event log to the pro-
cess model. However, in this case, it is actually already a bit more involved and
furthermore, the Alpha-algorithm can handle more situations.

Here, let us look at L1 in more detail. When we take an event log, we can talk
about so-called footprints and Table 4.2 illustrates them. Table 4.2 illustrates the
relation between each sequence displayed by Footprint.

4.4.2 Algorithm
After the basic idea has shown, the Alpha-algorithm can be described as following[23]:
Definition (Alpha-algorithm):

1. TL = {t ∈ T | ∃σ∈L ∈ σ}
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a b c d e
a #L1 → L1 → L1 #L1 #L1
b ← L1 #L1 ||L1 → L1 #L1
c ← L1 ||L1 #L1 → L1 #L1
d #L1 ← L1 ← L1 #L1 ← L1
e ← L1 #L1 #L1 → L1 #L1

Table 4.2: Footprint of L1.

2. TI = {t ∈ T | ∃σ∈L = first(σ)}
3. TO = {t ∈ T | ∃σ∈L = last(σ)}
4. XL = {(A,B) ∈ XL|A ⊆ TL ∧ A 6= ∅ ∧ B ⊆ TL ∧ A 6= ∅ ∧ ∀a∈A∀b∈Ba →
B ∧ ∀a1,a2∈Aa1#La2 ∧ ∀b1,b2∈Bb1#Lb2}
5. YL = {(A,B) ∈ XL | ∀(A′,B′)∈XL

A ⊆ A′ ∧ B ⊆ B′ =⇒ (A,B) = (A′, B′)}
6. PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL, oL}
7. FL = {a, p(A,B)| (A,B) ∈ YL ∧ a ∈ A} ∪ p(A,B),b| (A,B) ∈ YL ∧ b ∈ B}∪
{(iL, t) | t ∈ T1} ∪ {(t, oL) | t ∈ TO}
8. α(L) = (PL, TL, FL)

L is an event log over some set T of activities.The first step that we take is that
we scan the event log (TL) to see what are the activities or what are the transitions
that are appear. We just look at the symbols that occur in the event log. These will
be the activities in the process model, and each corresponding to a transition.Then,
step 2 check which is occurred (TI) as the first activities in some traces and TO as the
last one (step 3). The fourth step to the sixth step are the key of Alpha-algorithm.

If we think about the process discovery in terms of Petri nets, step 4, 5 and 6
are all about discovering places. As can be seen in the Figure 5.14, we want to
discover places by identifying sets of transitions, A and B where A are the input of
the place and B are the output transitions for the place[8].

Figure 4.14: Place p(A,B) connects the transitions in set A to the transitions in
set B. Resource from[8].
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As illustrated above, we try to find two sets of activities, A and B which should
follow the following rules (step 4):

• If two activities are taken in the set A, they should never follow one another
and should not follow themselves. The same applies for B.
• If any activity is taken in set A and set B, there should always be a direct suc-
cession between these two activities. So there should be at least one position in the
log and that should hold for all combinations.

The 5th step of the algorithm says that we should only pay attention to the sets
A and B that are maximum. Because if we suppose that we have pairs of sets of
activities A and B, having all these requirements, then if we remove a node in A or
B or we remove the corresponding arcs, what we see then is that still the properties
hold. Hence, in a way any subset of this AB relationship automatically also has the
properties that we listed before.

In the 6th step, PL is the set of places. All the maximal pairs that we have just
discovered in step five are the places and we add an initial place I and a final place
O. So it is important to see that the really interesting part happens when we look
at the sets A and B, and thereby derive the places that we want to see.

Then we take a look at the arcs (step 7), it represents all the connections from
the initial place, I, to all the initial transitions in Ti. From all the transitions in the
set To. Therefore, the transitions corresponding to the activities that happen at the
end and all internal places. Internal places are represented by sets A and B and the
connections are made accordingly.

Finally, In Step 8 of the algorithm, these are referred to as PL, TL and FL (not
P, D, F).

Let us replay the eight rules for L1. We now have the footprint, as Table 4.2 il-
lustrated. Then we execute the different steps of the algorithm where the key steps
are steps four and steps five. XL1 is the set meeting the requirement of Step 4.

XL1 = {({a}, {b}), ({a}, {c}), ({a}, {e}), ({a}, {b, e}), ({b}, {d}), ({c}, {d}), ({e}, {d}),
({b, e}, {d}), ({c, e}, {d}), ({a}, {c, e})}

Here, we have found the relationship X, which contain elements that are not maxi-
mal, i.e. some of these elements are contained in other elements. Hence, we remove
them which result as the following:

YL1 = {({a}, {b, e}), ({a}, {c, e}), ({e}, {d}), ({b, e}, {d}), ({c, e}, {d})}

Now we have PL:
PL = {P({a},{b,e}), P({a},{c,e}), P({e},{d}), P({b,e},{d}), P({c,e},{d}), iL, oL}
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The rest correspond to the internal places. Thus, the relationship can be found
in the corresponding Figure 4.13.

4.5 Result
As we have huge numbers of data, it is impossible to build the process model manu-
ally. Hence, we will use DISCO (https://fluxicon.com/disco), a professional process
mining tool, to discover the process model. The result of BASE and UI are as shown
in Figure 4.15 and Figure 4.16 respectively.

Figure 4.15: The process model of BASE.
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Figure 4.16: The process model of UI.

As shown in the both figures, the green points are the start place TI , and the red one
is the end place TO. The blue boxes are the transitions, and the deeper the color,
the higher frequency they have. Although the two models are enough for further
research (for example, machine learning), one cannot intuitively find the difference
between two models. If we filter the small probability events and arcs, more intuitive
models which can represent the main flow of the events hidden behind the rather
complex processes of figures 4.15 and 4.16, as illustrated in Figure 4.17. Compared
to the BASE, participants would do something (release the gas pedal) before the
emergency event happen. This confirmed that 3DATIS do made the participants’
behavior change, and the most important was that it made participants behaviors
safer, i.e. they slow down before the dangerous event happened. Furthermore, with
3DATIS, the Accelerate happens before turning the steering wheel. On the con-
trary, Accelerate happens after turning the steering wheel. It is probably because
with 3DATIS, the speed has already slowed down, drivers need to accelerate in order
to overtake the obstacle whereas without 3DATIS, drivers need to avoid the obstacle
first, and then overtake.
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(a) BASE (b) UI

Figure 4.17: The filtered process model.

Besides, some other statistics can be concluded from the process mining result.

In Table 4.3, it can be seen that in each case, events with 3DATIS are less than
BASE but the duration is longer. That is to say participants did each action more
leisurely with 3DATIS, and they had enough time to control their car.

BASE UI
Events 166 117
Cases 27 21

Event per case 6.15 5.57
Activities 8 8

Median case duration 3.1s 3.9s
Mean case duration 3.7s 3.9s

Table 4.3: Statistics from process mining.
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Conclusion

In this thesis work, three main tasks for 3DATIS have been done: design, test and
analysis. In the design task, the main question was solved: how to present the
sound in order to make drivers easily understand the surrounding traffic informa-
tion. Then, we tested 3DATIS with 30 participants and each of them did two rounds
of experiments, one with 3DATIS and one without. Two groups of behavior data
were collected from the experiments. When it came to data analysis, the driv-
ing behavior of each scenario was studied. The performance of 3DATIS in Cutin,
Pedestrian, Overtake and Intersection was fairly good. Especially in Intersection
and Pedestrian, 3DATIS gave participants very positive indications to reduce the
rate of collision and improve the TTC. However, in Redcab, except TTC (Time to
collision), all the other indices went in the wrong direction. Most participants were
not prepared and performed in panic with 3DATIS. As there were two obstacles in
this scenario and one of them was the disturbance, participants could not distin-
guish where the sound came from and thus their judgements were interfered. Also
according to the questionnaire and interview, 3DATIS was sometimes annoy when
there are more than one other road user in the road at the same time. Therefore,
3DATIS can hardly exert its advantages in a relatively sophisticated traffic envi-
ronment and even disturbed participants’ judgement. In Chapter 4, a rather recent
method called process mining to discover the process behind a given data set was
introduced. Through process mining, the process models of scenario Cutin was dis-
covered. By comparing the models with and without 3DATIS, the driving behavior
with the help of 3DATIS was found to make participants behaviors safer.

The limitation of this thesis work is mainly focused on the experiment. First, there
were 30 participants that took part in the experiment and this number is almost
the baseline that an experiment requires. With more participants, the conclusion
would be more robust and reliable. Secondly, as each participant was required to
finish two experiments with the same scenarios, the learning effect cannot be totally
avoided, even though the randomization of scenarios can theoretically eliminate the
bias. Thirdly, the steering wheel and pedals of the simulator was designed for the
game, so it could make participants feel not like driving in a real world. The con-
sequence of which is that collected data might not reflect the real driving habit of
participants.
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